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ABSTRACT:

In many industrial processes, such as power generation, chemical production, and waste management, accurately monitoring in-
dustrial burner flame characteristics is crucial for safe and efficient operation. A key step involves separating the flames from the
background through binary segmentation. Decades of machine vision research have produced a wide range of possible solutions,
from traditional image processing to traditional machine learning and modern deep learning methods. In this work, we present a
comparative study of multiple segmentation approaches, namely Global Thresholding, Region Growing, Support Vector Machines,
Random Forest, Multilayer Perceptron, U-Net, and DeepLabV3+, that are evaluated on a public benchmark dataset of industrial
burner flames. We provide helpful insights and guidance for researchers and practitioners aiming to select an appropriate approach
for the binary segmentation of industrial burner flames and beyond. For the highest accuracy, deep learning is the leading approach,
while for fast and simple solutions, traditional image processing techniques remain a viable option.†

1. INTRODUCTION

Industrial combustion processes play a critical role in many in-
dustrial processes, including power generation, chemical pro-
duction, and waste management. To ensure safe and efficient
operation, it is essential to accurately monitor the characteristics
of the burner flames, such as their shape, size, and temperature.
A key step in camera-based monitoring involves separating the
flames from the background through segmentation (Großkopf
et al., 2021; Landgraf et al., 2022).

Traditionally, binary segmentation has been performed using
image processing techniques such as thresholding, edge detec-
tion, region growing, and morphological operations (Steger et
al., 2018). While these techniques can be effective, they of-
ten require deep knowledge about the application, significant
manual tuning, and may not generalize well to new data.

In recent years, deep learning has emerged as a powerful data-
driven approach for segmentation tasks. These methods can
learn meaningful features and patterns from training data, which
generalize well to the real application, and therefore achieve
higher accuracy than traditional techniques (Long et al., 2015).
However, they require large amounts of training data, which are
costly to label, and are typically computationally more expens-
ive.

In this work, we present a comparative study of traditional im-
age processing techniques, traditional machine learning-based
methods, and deep learning approaches for binary segmenta-
tion of industrial burner flames in grayscale images. Our study
provides insights into the strengths and limitations of each ap-
proach and can help guide researchers and practitioners in se-
lecting the most appropriate method for their specific applica-
tion.

*Corresponding author
†Our modified version of the used dataset:
https://publikationen.bibliothek.kit.edu/1000159497
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Figure 1. An overview of our comparative study. We compare
seven different approaches for the binary segmentation of

industrial burner flames: Global Thresholding, Region Growing,
Support Vector Machines, Random Forest, Multilayer

Perceptron, U-Net, and DeepLabV3+.

2. RELATED WORK

The following related work focuses on flame segmentation and
is divided into three categories: i) Traditional image processing
methods, ii) traditional machine learning methods, and iii) deep
learning methods. With traditional image processing methods,
we refer to methods that use hand-crafted features and rule-
based decisions to distinguish between flame and background.
Traditional machine learning methods, on the other hand, refer
to data-driven methods like Support Vector Machines (SVM),
Random Forest (RF), and Multilayer Perceptron (MLP) which
work with hand-crafted features. Finally, by deep learning meth-
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ods, we mean state-of-the art methods for image segmentation
with modern deep neural network-based architectures. This
section only covers related work regarding the segmentation of
flames in images. Classification and detection approaches are
not covered to limit the scope.

Traditional Image Processing. Early approaches for flame
segmentation use traditional image processing techniques (Ce-
lik et al., 2007; Zhang et al., 2009; Fan et al., 2014; Wang et al.,
2014; Matthes et al., 2019; Li and Wang, 2020). These meth-
ods rely on different hand-crafted features such as color (Ce-
lik et al., 2007; Zhang et al., 2009; Wang et al., 2014; Li and
Wang, 2020) and geometrical characteristics like area, round-
ness and contour fluctuation (Zhang et al., 2009). Several of
these methods use image sequences or videos of the flames to
determine time-dependent features like color and area changes
(Zhang et al., 2009; Wang et al., 2014; Matthes et al., 2019;
Li and Wang, 2020). Some methods distinguish between flame
and background by using empirically determined thresholds for
combinations of these features (Zhang et al., 2009; Wang et al.,
2014) or determine the thresholds automatically using Otsu’s
method (Matthes et al., 2019). Others combine the features
with fuzzy logic (Celik et al., 2007) or a Bayesian model (Li
and Wang, 2020). Fan et al. (2014) choose a different approach
and use a level set method to detect the contour of the flame.

Traditional Machine Learning. Many of the traditional ma-
chine learning methods for flame segmentation also use hand-
crafted features like those described above. However, these
methods do not decide based on rules created by the human
developer, but create their own set of rules based on the data.
In addition to some of the features described above, Borges and
Izquierdo (2010) use surface coarseness, boundary roughness
and skewness as geometrical characteristics and a Bayesian Clas-
sifier flame segmentation. Zhao et al. (2011) and Jamali et al.
(2013) also use image sequences and time-dependent features
and then perform segmentation with a SVM, where Zhao et al.
(2011) takes into account other texture features such as entropy
and contrast. Recently, Liang et al. (2022) proposed a two step
segmentation method. In the first step, they determine the fea-
ture importance of different geometric, texture and color fea-
tures with a RF, and in the second step they use the five most
important features as input neurons of a MLP that distinguishes
between flame and background.

Deep Learning. Since the breakthrough of deep learning meth-
ods in many areas of image processing, they have also been
applied for flame segmentation. These methods represent the
current state-of-the-art in terms of segmentation quality. In
comparison to traditional machine learning methods, they no
longer rely on hand-crafted features, they learn the features best
suited to separate foreground and background through train-
ing. In this regard, Zhong et al. (2018) is a hybrid method,
since it first determines candidate regions for flames based on a
threshold on color values and then uses a Convolutional Neural
Network (CNN) to classify the candidate regions into flame or
background. Großkopf et al. (2021) introduce a pure CNN-
based method to segment industrial burner flames in images.
They not only focus on binary segmentation of flames, but also
perform multi-class segmentation. They also provide a public
image dataset with ground truth labels. Recently, Landgraf et
al. (2022) analyzed several self-supervised learning methods as
pre-training for the segmentation of flames. They show how the
required amount of training data can be significantly reduced
without decreasing the quality of the segmentation. Most re-
cently, Wang et al. (2022) compared four different deep learn-

ing methods, namely Fully Convolutional Network (Long et al.,
2015), U-Net (Ronneberger et al., 2015), PSPNet (Zhao et al.,
2017) and DeepLabV3+ (Chen et al., 2018a) on the segment-
ation of forest fires in images captured by UAVs. Their ana-
lysis shows that U-Net achieves the best performance, though
also having the slowest inference time. Compared to that, Dee-
pLabV3+ is slightly faster but also yields slightly worse results.
In contrast, the FCN and PSPNet models have shown to be less
suitable because of lower scores for the performance metrics.

3. METHODOLOGY

In the following, we provide an overview of our comparative
study, as well as explain the examined traditional image pro-
cessing, traditional machine learning and deep learning meth-
ods in more detail.

3.1 Overview

In contrast to the related work on flame segmentation and as
Figure 1 shows, we provide a comprehensive study that covers
methods from traditional image processing to traditional ma-
chine learning and modern deep learning. Our goal is to provide
helpful insights and guidance for researchers and practitioners
aiming to select an appropriate approach for the binary seg-
mentation of industrial burner flames and similar applications.

For our study, we compare seven popular binary segmentation
approaches:

1. Global Thresholding (GTH) (Lee et al., 1990),

2. Region Growing (RG) (Adams and Bischof, 1994),

3. Support Vector Machines (SVM) (Hearst et al., 1998),

4. Random Forest (RF) (Breiman, 2001),

5. Multilayer Perceptron (MLP) (McClelland et al., 1987),

6. U-Net (Ronneberger et al., 2015),

7. DeepLabV3+ (DL3+) (Chen et al., 2018b).

The hyperparameters of the traditional image processing tech-
niques, GTH and RG, as well as the traditional machine learn-
ing methods RF, SVM, and MLP, are tuned on the training data-
set. On the other hand, all of the deep learning models are
trained on the same fixed set of hyperparameters to limit the
computational cost. In return, we evaluate the effect of train-
ing from scratch in comparison to fine-tuning from ImageNet
pre-training and estimate the impact of the model size, through
training both U-Net and DL3+ with three different backbones
each.

3.2 Traditional Image Processing

Traditional image processing offers an easy and effective ap-
proach for binary segmentation if they are adapted for the un-
derlying application. This is why we explore GTH and RG as
a baseline for the more sophisticated data-driven methods. We
implemented both GTH and RG with HALCON (MVTec Soft-
ware GmbH, 2023).

Global Thresholding. GTH is a widely-used method for per-
forming binary image segmentation, where two threshold val-
ues are selected to separate the foreground objects from the
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Figure 2. Example of the used basic multiscale features and
Moravec corners from Scikit-image for a single image with the

ground truth label’s contour overlaid in green.

background. In our case, each pixel is classified as industrial
burner flame based on the following condition:

TL ≤ g ≤ TU , (1)

where g is the gray value of the respective pixel between 0 and
255, TL is the lower, and TU is the upper threshold. To determ-
ine the optimal values for the lower and upper thresholds, we
performed a grid search on the training dataset.

Region Growing. RG is another traditional image processing
technique for binary segmentation, which can start at any pixel
in the image. It then grows the segmented region by including
neighboring pixels that satisfy certain criteria. In our case, a
pixel is added to the region if the following criterion is met:

|rg − g| ≤ T, (2)

where rg is the mean gray value of the region, g is the gray
value of the respective pixel, and T is the chosen threshold. We
segment the background with the RG and invert the segment-
ation results instead of segmenting the flames directly. This
results in a better performance because industrial burner flames
are not always coherent. For the starting pixel, we choose the
lowest gray value in every given image and to determine the op-
timal value of the threshold, we performed a grid search on the
training dataset.

3.3 Traditional Machine Learning

In addition to the aforementioned traditional image processing
techniques, we also explored three traditional machine learning
approaches: SVM, RF, and MLP. We implemented all of them
in Python with Scikit-learn (Pedregosa et al., 2011), Scikit-
image (Van der Walt et al., 2014) and OpenCV (Bradski et al.,
2000).

Features. To improve the performance of the traditional ma-
chine learning classifiers, we extract 23 hand-crafted features
from the images. Like Figure 2 shows, these include 20 in-
tensity, texture, edge, and corner features obtained using ba-
sic multiscale features and Moravec corners from Scikit-image.
For smoothing the image with a Gaussian kernel, we used stand-
ard deviations from 1.0 to 30.0. We also use OpenCV to build
three median features with square filters of sizes 51, 101, and

151. All of the features are extracted pixelwise and as a con-
sequence, the classification is performed on each pixel individu-
ally.

Support Vector Machines. SVM is a popular algorithm for
binary segmentation that works by finding the optimal hyper-
plane that separates the positive and negative examples with the
largest possible margin. For hyperparameter optimization, we
performed a grid search on the training dataset to determine the
optimal values for the regularization parameter and the kernel
function.

Random Forest. RF is an ensemble learning method that com-
bines multiple decision trees to improve the performance of the
classifier. Thereby, each decision tree is trained on a random
subset of the dataset. For hyperparameter optimization, we per-
formed a grid search on the training dataset to determine the
optimal values for the number of decision trees, the maximum
depth of the trees, and the maximum number of training images
for each tree.

Multilayer Perceptron. MLP is a basic neural network that
consists of multiple layers of interconnected nodes that can be
utilized for binary segmentation. Hereby, each node applies a
nonlinear activation function to the weighted sum of its inputs.
Following the previous machine learning classifiers, we used
the 23 extracted features as input for the MLP. To optimize the
hyperparameters of the MLP, we performed a grid search on the
training dataset using a range of possible values for the number
of hidden layers, the number of nodes in each layer and the
learning rate.

3.4 Deep Learning

Aside from traditional image processing techniques and tradi-
tional machine learning methods, we also explore deep learning
approaches for binary segmentation of industrial burner flames.
Both U-Net and DL3+ were implemented with PyTorch (Paszke
et al., 2019).

U-Net. U-Net is a fully convolutional neural network that uses
a contracting path to capture the image context and a symmet-
ric expanding path to achieve precise localization. The result-
ing encoder-decoder architecture has a U-shape, which utilizes
skip connections that allow information to be propagated from
the encoder to the decoder. The U-Net was first introduced for
medical image segmentation (Ronneberger et al., 2015).

DeepLabV3+. DeepLabV3+ is a fully convolutional neural
network that uses atrous (or dilated) convolutions within the
atrous spatial pyramid pooling (ASPP) module to capture multi-
scale contextual information. It builds upon the encoder-decoder
architecture by fusing high-level ASPP features with low-level
features from earlier layers in the network (Chen et al., 2018b).

Backbones and Initialization. In order to estimate the impact
of the model size, we train both U-Net and DL3+ with three
different backbones:

1. MobileNetV3 Small (MN) (Howard et al., 2019),

2. ResNet-18 (RN18) (He et al., 2016),

3. ResNet-101 (RN101) (He et al., 2016).

Additionally, we evaluate the impact of the initialization for
every model by:



Figure 3. Example images of the industrial burner flames dataset
with the ground truth labels overlaid as transparent red regions.
The upper row displays the original labels by Großkopf et al.

(2021), whereas the lower three images represent the labels that
we created.

1. Training from scratch, i.e. with random weights (R),

2. Training from ImageNet (I) (Deng et al., 2009).

Implementation Details. We train all the deep learning models
with a binary cross-entropy loss and employ a Stochastic Gradi-
ent Descent (SGD) optimizer based on Robbins and Monro
(1951) with an initial learning rate of 0.01, momentum of 0.9,
and weight decay of 0.0005 as optimizer-specific hyperpara-
meters. During training, the learning rate decays based on:

lr = lrinitial · (1−
iteration

total iterations
)0.9, (3)

where lr is the current learning rate, and lrinitial is the initial
learning rate. All models are trained for 25 epochs with a batch
size of 8 and without any data augmentations to ensure a fair
comparison.

4. EXPERIMENTS

In this section, we share a variety of experiments conducted on
the basis of a modified public dataset to gather helpful insights
about the strengths and limitations of all the methods in our
study.

4.1 Dataset

All of our experiments are based on a modified version of the
publicly available industrial burner flames dataset provided by
Großkopf et al. (2021). The original dataset consists of 3000
labeled grayscale images of two industial burner flames with
552 × 552 pixels in size.

In Figure 3, the upper row shows that some labels in the ori-
ginal dataset are questionable. We suspect that these labels were
at least in part created automatically. To address this, we ran-
domly selected 200 images and relabeled them by hand, creat-
ing a new dataset of 160 training images and 40 test images.
As shown in the lower row of Figure 3, this process resulted in
an improved label quality. In the original labels, flames repres-
ented 23.8% of the dataset, whereas in our labels the portion
of flames is 26.5%. Finally, we computed the Intersection over

IoU [%] ↑ Inference Time [ms] ↓
GTH 80.3 0.1
RG 77.0 13.4
SVM 82.3 8.2
RF 87.0 124.8
MLP 86.6 106.3
U-Net (MN) 92.6 (91.9) 106.7 (7.6)
U-Net (RN18) 92.9 (92.6) 138.4 (5.6)
U-Net (RN101) 93.1 (91.9) 436.9 (16.6)
DL3+ (MN) 92.6 (91.9) 81.2 (6.5)
DL3+ (RN18) 93.2 (92.9) 117.8 (4.6)
DL3+ (RN101) 92.9 (92.3) 394.3 (15.5)

Table 1. Quantitative comparison between the traditional image
processing, traditional machine learning, and deep learning

Intersection over Union (IoU) and inference time per image. IoU
scores in parantheses refer to training from scratch, whereas the

regular scores depict fine-tuning from ImageNet. Inference
times in parantheses were computed on a GPU, while the regular

values are CPU times.

Union (IoU) between the original labels and our labels, which
yielded a score of 80.8%.

4.2 Quantitative Evaluation

Table 1 presents a quantitative comparison between the best
segmentation results obtained by each method in our study, along
with their respective inference time per image. Unless other-
wise noted, we used an AMD EPYC 7502 32-Core CPU with
1 TB of RAM. The results demonstrate that there are clear
improvements going from traditional image processing (GTH:
80.3%) over traditional machine learning (RF: 87.0%) to deep
learning (DL3+ (RN18-I): 93.2%). There is, however, a cor-
responding increase in CPU time going from 0.1 ms per image
with GTH up to 436.9 ms with U-Net (RN101-I).

Traditional Image Processing. Looking at the traditional im-
age processing techniques in particular, GTH outperforms RG
in both the segmentation task and the needed inference time.
GTH yields an IoU score of 80.3% which is 3.3% higher than
what RG achieves. On top of that, GTH only needs 0.1 ms to
process an image, whereas RG needs 13.4 ms.

Traditional Machine Learning. In comparison to the tradi-
tional image processing techniques, the machine learning ap-
proaches, SVM, RF, and MLP, yield a significant performance
improvement in the segmentation task. SVM achieved an IoU
score of 82.3%, outperforming both GTH and RF by noteworthy
margin. In addition, SVM only requires 8.2 ms to process an
image, making it faster than RF but slower than GTH. With
87.0% RF achieved the highest IoU score among the traditional
machine learning methods. However, it also requires 124.8 ms
to process an image. MLP achieved a very similar IoU score of
86.6%, but with a slightly faster inference time of 106.3 ms.

Deep Learning. Judging by the results laid out in Table 1,
all of the deep learning approaches outperform the traditional
image processing and machine learning methods on the seg-
mentation task. Depending on the configuration, the models
achieve IoU scores between 91.9% and 93.2%. Table 1 also
shows that training from scratch in comparison to fine-tuning
from ImageNet pre-training deteriorates performance by 0.3%



(a) Input Image (b) Ground Truth (c) GTH (d) RG

(e) SVM (f) RF (g) MLP (h) DL3+ (RN18-I)

Figure 4. Qualitative comparison between the input image (a) overlaid in transparent red color with the ground truth (b), the
segmentation results of Global Thresholding (c), Region Growing (d), Support Vector Machines (e), Random Forest (f), Multilayer

Perceptron (g), and DeepLabV3+ with a ResNet-18 backbone pre-trained on ImageNet (h).

to 1.2%. As Table 1 displays, deep learning comes at a high
computational cost. Inference times on the CPU range from
81.2 ms for DL3+ (MN) to a maximum of 436.9 ms for U-Net
(RN101). However, inference times can be decreased greatly
if inference is performed on a GPU. In our case, using a com-
mon NVIDIA GeForce RTX 3090 GPU with 24 GB of memory
reduced inference times to a range from 4.6 to 16.6 ms depend-
ing on the architecture. Among all of the deep learning models,
DL3+ (RN18-I) achieved the highest IoU score of 93.2% while
simultaneously having the fastest inference time of 4.6 ms with
the GPU.

4.3 Qualitative Evaluation

Figure 4 shows a visual comparison between the traditional im-
age processing techniques, the traditional machine learning ap-
proaches, and the best deep learning model. Overall, the qualit-
ative evaluation of the segmentation results confirms the obser-
vations of the quantitative analysis: There are clear improve-
ments going from traditional image processing to traditional
machine learning to deep learning. Figure 5 in the Appendix
shows more qualitative examples, which corroborate this claim.

Traditional Image Processing. The two traditional image pro-
cessing techniques, GTH and RG, largely suffer from the same
shortcoming: Both oversegment the industrial burner chamber
and undersegment the flame. As both methods solely rely on
the underlying gray values, there is no way for these methods
to distinguish between bright areas of the image that belong to
the chamber or darker parts of the flame. Hence, the segmenta-
tion results are systematically flawed in these situations.

Traditional Machine Learning. In comparison to the tradi-
tional image processing techniques, the machine learning ap-
proaches, SVM, RF, and MLP, do not suffer from oversegment-
ation of the chamber. However, they undersegment darker parts

of the flames too, which is especially noticeable for SVM. Over-
all, all of the traditional machine learning methods can improve
upon the traditional image processing techniques due to the ex-
tra information added by the hand-crafted features.

Deep Learning. Visually, an even better segmentation result is
achieved by the best deep learning model DL3+ (RN18-I). The
segmentation result suffers from no apparent systematic short-
comings. Through the training process, the deep learning model
learns meaningful features and patterns that seem to generalize
very well to the test data. This also holds for the other deep
learning models not shown in Figure 4.

4.4 Impact of Training Dataset Size

In order to evaluate the effect of the number of training images,
we retuned all of the traditional image processing and tradi-
tional machine learning methods and retrained all deep learn-
ing models with an inverse ratio of training and test images, i.e.
we use just 40 randomly selected images for training and the
remaining 160 images for testing.

As Table 2 shows, the observations from the previous exper-
iments remain unchanged: There are significant segmentation
improvements going from traditional image processing (GTH:
78.6%) to traditional machine learning (MLP: 84.9%) to deep
learning (U-Net (RN101-I): 92.1%). To our surprise, however,
the average performance loss was larger for the traditional im-
age processing techniques and traditional machine learning ap-
proaches.

GTH and RG suffered a performance loss of 1.7% and 2.7%,
respectively. The IoU of the traditional machine learning-based
methods deteriorated by 1.9% on average. Whereas the average
performance loss for the deep learning models pre-trained on



IoU [%] ↑ Performance Loss [%] ↓
GTH 78.6 1.7
RG 74.3 2.7
SVM 80.6 1.7
RF 84.7 2.3
MLP 84.9 1.7
U-Net (MN) 91.7 (90.5) 0.9 (1.4)
U-Net (RN18) 91.6 (91.1) 1.3 (1.5)
U-Net (RN101) 92.1 (88.1) 1.0 (3.8)
DL3+ (MN) 91.4 (90.6) 1.2 (1.3)
DL3+ (RN18) 91.8 (91.6) 1.4 (1.3)
DL3+ (RN101) 91.8 (90.7) 1.1 (1.6)

Table 2. Quantitative comparison between the traditional image
processing, traditional machine learning, and deep learning IoU
with just 40 training images and 160 test images. Additionally,
the performance loss compared to the regular dataset with 160

training images is displayed. The IoU scores in parantheses refer
to training from scratch, whereas the regular scores depict

fine-tuning from ImageNet.

ImageNet was only 1.2% and 1.8% for the models trained from
scratch.

5. DISCUSSION

We conducted extensive experiments to compare traditional im-
age processing techniques with traditional machine learning and
deep learning methods. In the following, we discuss our key in-
sights into the strengths and limitations of each approach.

Traditional Image Processing. GTH and RG are both effective
for creating a baseline binary segmentation of industrial burner
flames. They are computationally efficient, require little tuning
and offer fast inference times, making them a good choice when
speed is a priority. In our experiments, GTH outperformed RG
on the segmentation task, with the fastest inference time of all
examined methods with just 0.1 ms per image. However, these
techniques may not be suitable if the quality of the segmentation
results is more important, as they rely solely on gray values and
can suffer from under- and oversegmentation.

Traditional Machine Learning. SVM, RF, and MLP signific-
antly improve segmentation results compared to GTH by using
hand-crafted features. For example, RF achieved a 6.7% relat-
ive IoU score improvement over GTH. However, these methods
are computationally more expensive and require careful engin-
eering and feature selection. It is worth noting that adding more
features could improve the performance. On the other hand, it
can also introduce noise and lead to overfitting, aside from in-
creasing computation time. As a possible solution, SVM and
RF allow the computation of feature importances to help select
appropriate features.

Deep Learning. Our experiments show that the deep learning
models U-Net and DL3+ achieve the best segmentation per-
formance overall with a maximum IoU score of 93.2%. Sur-
prisingly, the choice of architecture or pre-training on ImageNet
had very little impact on the performance, although the latter
helped in all experiments. Another revealing advantage of deep
learning is its ability to generalize from small datasets, as the
models suffered the smallest performance loss when trained on
less data. The only apparent downside to the deep learning

methods is their high computational cost. However, training
and inference times can greatly benefit from using a GPU. Over-
all, deep learning is the best choice for binary segmentation of
industrial burner flames, particularly if a GPU is available.

6. CONCLUSION

In this work, we conducted a comparative study of traditional
image processing techniques, traditional machine learning meth-
ods, and deep learning approaches for the binary segmentation
of industrial burner flames. Extensive experimentation on a
modified version of a public dataset (Großkopf et al., 2021) re-
vealed key insights into the strengths and limitations of each
approach.

Traditional image processing techniques like Global Threshold-
ing and Region Growing offer a fast and simple solution but
suffer from systematic under- and oversegmentation. Tradi-
tional Machine learning methods, such as Support Vector Ma-
chines, Random Forests, and Multilayer Perceptrons, improve
the segmentation performance in exchange for increased com-
putational cost and feature engineering effort. Deep learning
models, like U-Net and DeepLabV3+, achieve the best seg-
mentation performance in our study while showing remarkable
ability to generalize even from small datasets. Despite their
high computational requirements, they are the best choice for
binary segmentation of industrial burner flames, especially if a
GPU is available.

In summary, our study provides helpful insights and guidance
for researchers and practitioners aiming to select an appropri-
ate approach for the binary segmentation of industrial burner
flames and beyond. For the highest accuracy, deep learning is
the leading approach, while for fast and simple solutions, tra-
ditional image processing techniques remain a viable option.
With the continuing progress in deep learning and the increas-
ing availability of compute power, we expect these methods to
become even more capable and efficient in the future.
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APPENDIX

Figure 5. More qualitative comparisons between the input image in the first row, the ground truth in the second row, the segmentation
results of GTH in the third row, RF in the fourth row, and DL3+ (RN18-I) in the last row.
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