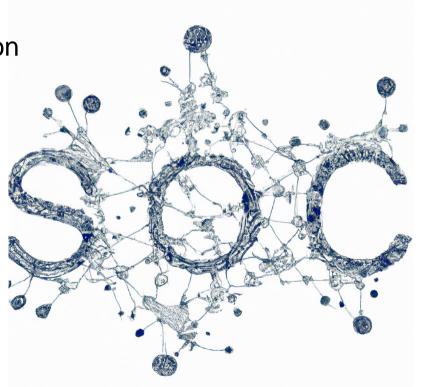


Generating realistic data for developing artificial neural network based SOC estimators for electric vehicles

Alexis Kalk, Oleg Birkholz, Jiaming Zhang, Christian Kupper, Marc Hiller 2023 IEEE Transportation Electrification Conference, Detroit MI USA 23.06.2023


Motivation

ANN: Powerful tool for SOC Estimation

The Achilles' Heel: Data Dependency

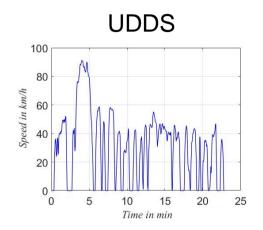
- Data must be:
 - Adequate & Accurate
 - Representative
 - Disjoint for training and testing

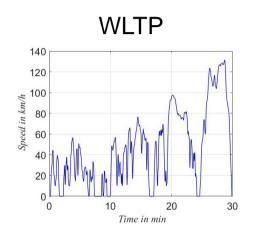
Our Data Sources for SOC Estimation

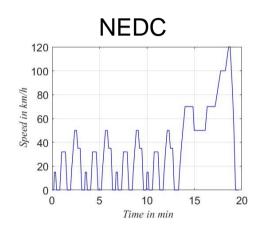
Karlsruhe Institute of Technology

- Real driving data [1]
- Online databases
- Battery or cell testing with
 - Standardized Driving Profiles

[1] D. Jimenez-Bermejo, J. Fraile-Ardanuy, S. Castano-Solis, J. Merino, and R. Alvaro-Hermana, "Using dynamic neural networks for battery state of charge estimation in electric vehicles," Procedia Computer Science, vol. 130, pp. 533–540, 2018.







Standardized Driving Profiles

Objective

Tests with Standardized Driving Profiles

- (+) cost effective
- (+) reproducibility

- (-) speed profiles
- (-) representability

Tests with realistic profiles

- (+) cost effective
- (+) load oriented
- (+) reproducibility
- (+) representability
- (-) inaccuracies (model, data etc...)

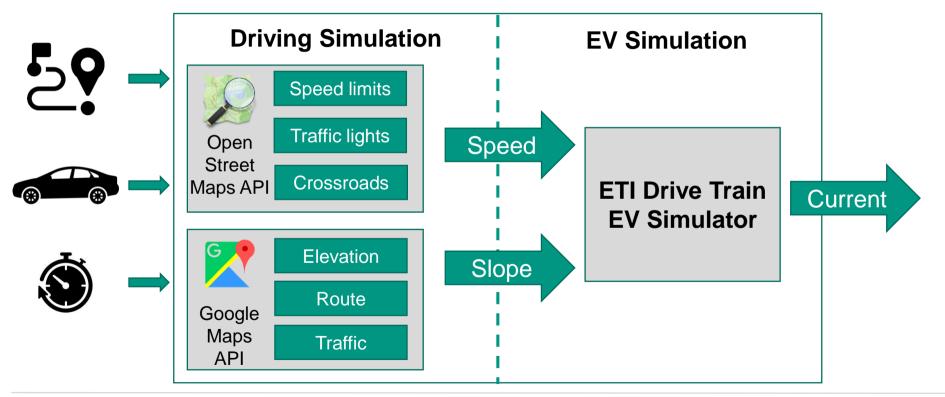
Real driving experiments

- (+) real life cond.
- (+) load oriented

- (-) time consuming
- (-) expensive

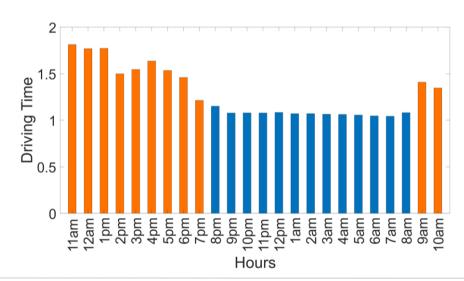
cost & representativeness

Overview of Proposed Method



Design of Realistic Profile Generator

Driving Simulation - Average Speed


Real time average speed in traffic

$$v_{av} = \begin{cases} \frac{l_{seg}}{t_{traffic}} &, & v_{av} \leq v_{lim} \\ v_{lim} &, & v_{lim} \leq v_{av} \end{cases}$$

- 24h analysis of driving duration:
 - Karlsruhe → Stuttgart
 - 19.08.2022 Friday 11:00 20.08.2022 Saturday 10:00

Driving Simulation - Speed Deviation

Oscillation model of speed fluctuations [2]

Low-Frequency Noise (LF)

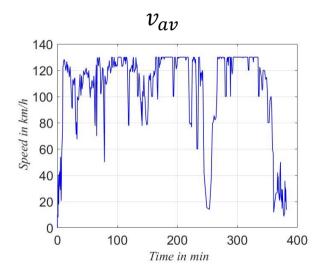
- traffic congestion
- speed limits
- construction areas

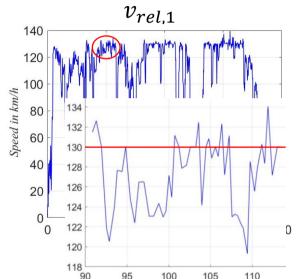
Medium-Frequency Noise (MF)

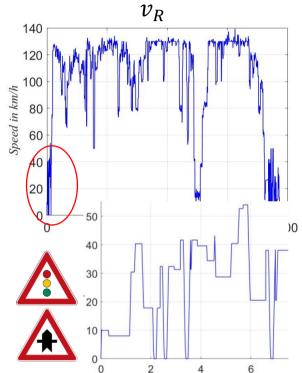
- road topology
- traffic flow
- driving behavior

High-Frequency Noise (HF)

- road conditions
- lane changes
- rapid driving maneuvers
- Spontaneous reactions


$$v_{dev}(t) = A_{HF} \sin(\omega_{HF} t + \varphi_{HF}) + A_{MF} \sin(\omega_{MF} t + \varphi_{MF})$$
$$v_{rel,1} = v_{av} + v_{dev}$$


[2] V. Schwarzer and R. Ghorbani, "Drive cycle generation for design optimization of electric vehicles," IEEE Transactions on Vehicular Technology, vol. 62, no. 1, pp. 89–97, 2013..

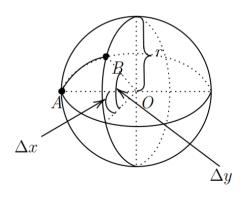


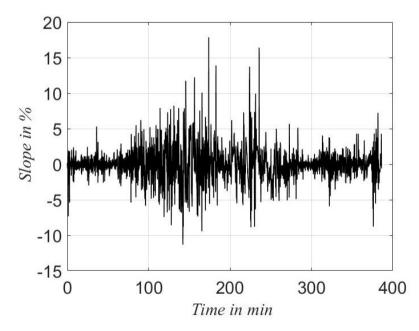
Driving Simulation: Evolution of Speed Profile

Road: Karlsruhe - Berlin

Departure Time: 05.02.2023 at 21:47

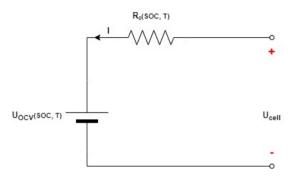
Distance: 683 km (424 miles)

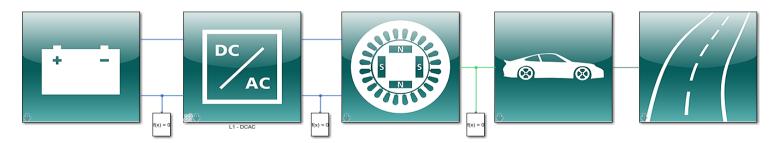

Duration: 6h 25 min.


Generating Slope Profile

- Impact on load and recuperation
- Google Maps API: Coordinates
- Haversine Formula for ΔL_p
- Google Elevation API: ΔH_p

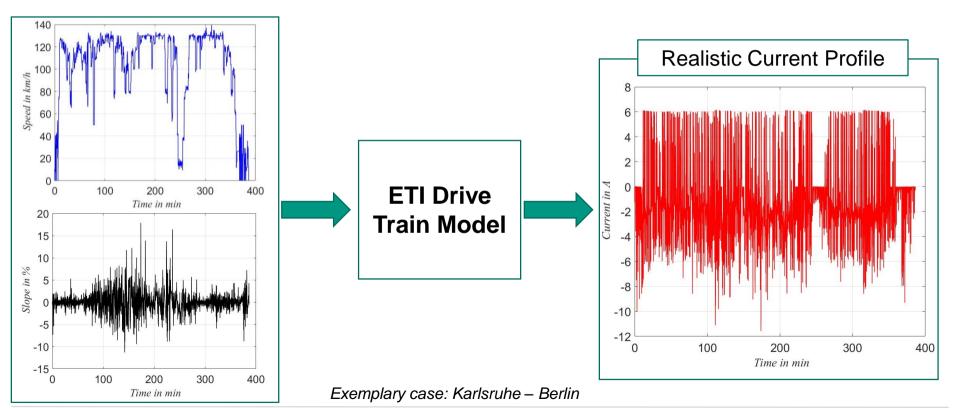
$$\delta_p = \frac{\Delta H_p}{\Delta L_p} = \tan(\alpha_p)$$


Slope profile for Karlsruhe - Berlin



EV Simulation - ETI Drive Train Model

- In House developed EV Simulator
 - Speed- and slope profile
 - Battery: 400 V / 40 kWh with Rint Model
 - Motor: 100 kW / 220 Nm (PMSM)
 - Weight: 1400 kg
 - Drag coef.: 0,29

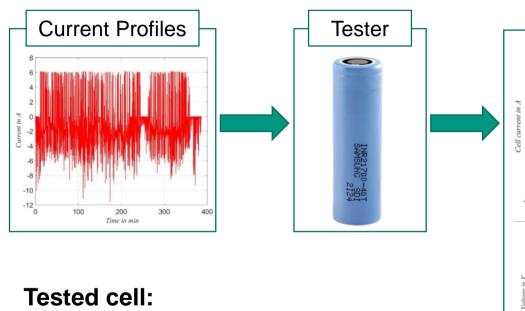


Workflow for EV Simulation

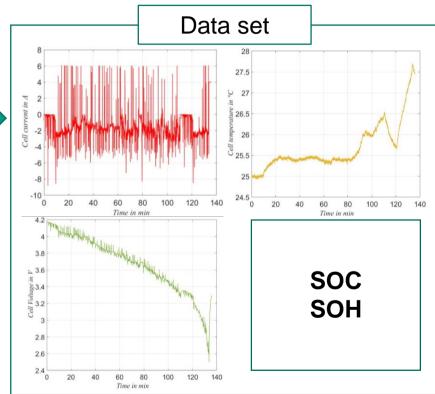
Cell Testing

APL Group SKIT

- Cell-Testing at APL Group
 - 25°C at Temperature chamber
 - Voltage accuracy: ±1mV
 - Current accuracy: ±0,05%
 - Temperature accuracy: ±1*K*

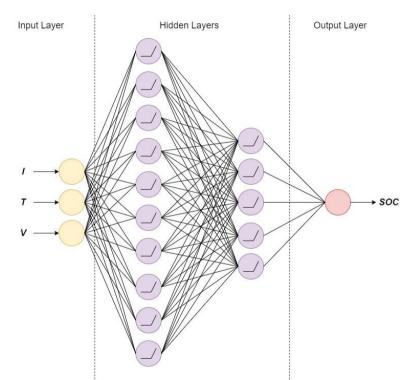


Workflow for Cell Testing



Samsung INR21700-40T

Nom. Capacity: 4Ah Nom. Voltage: 3,6 V



ANN based SOC Estimator

- Multi Layer Perceptron (MLP)
- ReLU Activation Functions in HLs
- Linear Activation Functions in OL
- Loss function mean squared error

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (SOC_i - \widehat{SOC_i})^2$$

Performance Analysis of SOC Estimator

- Estimator trained with WLTP data set
- Testing with realistic data sets and NEDC
- Root mean squared error:

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (SOC_i - \widehat{SOC_i})^2}$$

Relative estimation error:

$$REE = \frac{RMSE_{TP} - RMSE_{WLTP}}{RMSE_{TP}} \times 100\%$$

Results: Generated realistic driving profiles

- 10 driving profiles: 1.321 km (820 miles), 15 h
- Highway & City Driving
- Rush-hour & off-peak periods

TABLE III
GENERATED REALISTIC DRIVING PROFILES

No.	Origin - Destination	Departure Time	Duration	Length	\overline{v}	v_{max}
1.a	Berlin, Mitte - Berlin, Neuköln	06.02.2023 (Mon) 00:53	$27.8\mathrm{min}$	$16.15\mathrm{km}$	$34.3{\rm km}{\rm h}^{-1}$	$80.9{\rm km}{\rm h}^{-1}$
1.b	Berlin, Mitte - Berlin, Neuköln	08.02.2023 (Wed) 15:58	$56.8\mathrm{min}$	$16.15\mathrm{km}$	$17.2{\rm km}{\rm h}^{-1}$	$80.4{\rm km}{\rm h}^{-1}$
2.a	Frankfurt, Innenstadt - Frankfurt, Nieder-Erlenbach	05.02.2023 (Sun) 22:12	$22.8\mathrm{min}$	$14.53\mathrm{km}$	$38.5{\rm km}{\rm h}^{-1}$	$113{\rm km}{\rm h}^{-1}$
2.b	Frankfurt, Innenstadt - Frankfurt, Nieder-Erlenbach	06.02.2023 (Mon) 17:13	$32.2\mathrm{min}$	$14.53\mathrm{km}$	$27.4 \mathrm{km} \mathrm{h}^{-1}$	$109.4{\rm km}{\rm h}^{-1}$
3.a	Frankfurt, West - Frankfurt, Mitte-Nord	05.02.2023 (Sun) 22:14	$13.3\mathrm{min}$	$4.9\mathrm{km}$	$22 {\rm km} {\rm h}^{-1}$	$50 {\rm km} {\rm h}^{-1}$
3.b	Frankfurt, West - Frankfurt, Mitte-Nord	06.02.2023 (Mon) 17:19	$16\mathrm{min}$	$6.1\mathrm{km}$	$22 {\rm km} {\rm h}^{-1}$	$60 {\rm km} {\rm h}^{-1}$
4	Karlsruhe - Berlin	05.02.2023 (Sun) 21:47	$386\mathrm{min}$	$677.5\mathrm{km}$	$104{\rm km}{\rm h}^{-1}$	$139{\rm km}{\rm h}^{-1}$
5.a	Frankfurt - Würzburg	08.02.2023 (Wed) 01:23	$78.8\mathrm{min}$	$119.86\mathrm{km}$	$89.2{\rm km}{\rm h}^{-1}$	$122.7{\rm km}{\rm h}^{-1}$
5.b	Frankfurt - Würzburg	09.02.2023 (Thu) 01:58	$77.8\mathrm{min}$	$119.86\mathrm{km}$	$91.3{\rm km}{\rm h}^{-1}$	$128.4{\rm km}{\rm h}^{-1}$
6	Karlsruhe - Zugspitze	05.02.2023 (Sun) 08:30	$207.7\mathrm{min}$	$332.2\mathrm{km}$	$95.2{\rm km}{\rm h}^{-1}$	$136.2{\rm km}{\rm h}^{-1}$
	WLTP NEDC		30 min 19.7 min	23.1 km 11 km	$46.3 \mathrm{km}\mathrm{h}^{-1}$ $33.6 \mathrm{km}\mathrm{h}^{-1}$	$131.3 \mathrm{km}\mathrm{h}^{-1}$ $120 \mathrm{km}\mathrm{h}^{-1}$

Results: Performance of SOC Estimator

Test Profile	RMSE	Rel. Error
WLTP	1,31%	-
NEDC	1,44%	9,03%
1.a (City)	1,91%	31,45%
1.a (City)	1,92%	31,77%
2.a (City)	1,97%	33,5%
2.a (City)	1,86%	29,57%

Test Profile	RMSE	Rel. Error
3.a (City)	1,95%	32,82%
3.a (City)	2,18%	39,91%
4 (Highway)	1,74%	24,71%
5.A (Highway)	1,95%	32,82%
5.B (Highway)	1,70%	22,94%
6 (Highway)	1,87%	29,95%

Mean Error: 33,17% in "City" | 27,60% on "Highway" | 30,94% Overall

Summary & Outlook

- Real or realistic data is crucial for accurate performance analysis of SOC Estimators.
- Realistic data can improve the generalization capabilities.
- The proposed approach is able to generate realistic data sets in a cost efficient way.
- Future steps include generating a more extensive set of profiles for training.
- Conducting long-term tests to study the impact of various driving scenarios on battery degradation.

Thank you for your kind attention!

Dipl.-Ing. Alexis Kalk

Research Associate, Team System Engineering

Battery Technology Center,

Institute of Electrical Engineering (ETI)

Karlsruhe Institute of Technology (KIT)

+49 (0) 721-608-28281 | alexis.kalk@kit.edu | www.batterietechnikum.kit.edu

APL Automobil-Prüftechnik Landau GmbH APL Battery Development

Am Hölzel 11, 76829 Landau in der Pfalz, Germany

+49 (0) 6341 991-0 | e-mobility@apl-landau.de | www.apl-landau.de

