
Massively Parallel Genetic Optimization
Through Asynchronous Propagation

of Populations

Oskar Taubert(B) , Marie Weiel , Daniel Coquelin , Anis Farshian ,
Charlotte Debus , Alexander Schug , Achim Streit , and Markus Götz

Steinbuch Centre for Computing (SCC), Karlsruhe Institute of Technology (KIT),
76344 Eggenstein-Leopoldshafen, Germany
{oskar.taubert,markus.goetz}@kit.edu

Abstract. We present Propulate, an evolutionary optimization algo-
rithm and software package for global optimization and in particular
hyperparameter search. For efficient use of HPC resources, Propulate
omits the synchronization after each generation as done in conventional
genetic algorithms. Instead, it steers the search with the complete pop-
ulation present at time of breeding new individuals. We provide an
MPI-based implementation of our algorithm, which features variants
of selection, mutation, crossover, and migration and is easy to extend
with custom functionality. We compare Propulate to the established opti-
mization tool Optuna. We find that Propulate is up to three orders of
magnitude faster without sacrificing solution accuracy, demonstrating
the efficiency and efficacy of our lazy synchronization approach. Code
and documentation are available at https://github.com/Helmholtz-
AI-Energy/propulate/.

Keywords: Genetic Optimization · AI · Parallelization · Evolutionary
Algorithm

1 Introduction

Machine learning (ML) algorithms are heavily used in almost every area of
human life today, from medical diagnosis and critical infrastructure to trans-
portation and food production. Almost all ML algorithms have non-learnable
hyperparameters (HPs) that influence the training and in particular their pre-
dictive capacity. As evaluating a set of HPs involves at least a partial train-
ing, state-free approaches to HP optimization (HPO), like grid and random
search, often go beyond available compute resources [15]. To explore the high-
dimensional HP spaces efficiently, information from previous evaluations must
be leveraged to guide the search. Such state-dependent strategies minimize the
number of evaluations to find a useful model, reducing search times and thus the
energy consumption of the computation. Bayesian and bio-inspired optimizers
are the most popular of these AutoML approaches. Among the latter, genetic

c© The Author(s) 2023
A. Bhatele et al. (Eds.): ISC High Performance 2023, LNCS 13948, pp. 106–124, 2023.
https://doi.org/10.1007/978-3-031-32041-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-32041-5_6&domain=pdf
http://orcid.org/0000-0002-3707-499X
http://orcid.org/0000-0001-9648-4385
http://orcid.org/0000-0001-8552-5153
http://orcid.org/0000-0002-9888-0653
http://orcid.org/0000-0002-7156-2022
http://orcid.org/0000-0002-0534-502X
http://orcid.org/0000-0002-5065-469X
http://orcid.org/0000-0002-2233-1041
https://github.com/Helmholtz-AI-Energy/propulate/
https://github.com/Helmholtz-AI-Energy/propulate/
https://doi.org/10.1007/978-3-031-32041-5_6

Propulate 107

algorithms (GAs) are versatile metaheuristics inspired by natural evolution. To
solve a search-for-solutions problem, a population of candidate solutions (or indi-
viduals) is evolved in an iterative interplay of selection and variation [23,30].
Although reaching the global optimum is not guaranteed, GAs often find near-
optimal solutions with less computational effort than classical optimizers [8,9].
They have become popular for various optimization problems, including HPO
for ML and neural architecture search (NAS) [14].

To take full advantage of the increasingly bigger models and datasets, design-
ing scalable algorithms for high performance computing (HPC) has become a
must [40]. While Bayesian optimization is inherently serial, the structure of GAs
renders them suitable for parallelization [34]: Since all candidates in each itera-
tion are independent, they can be evaluated in parallel. To breed the next gen-
eration, however, the previous one has to be completed. As the computational
expenses for evaluating different candidates vary, synchronizing the parallel evo-
lutionary process affects the scalability by introducing a substantial bottleneck.
Approaches to reducing the overall communication in parallel GAs like the island
model (IM) [34] do not address the underlying synchronization problem.

To solve the issues arising from explicit synchronization, we introduce Pro-
pulate, a massively parallel genetic optimizer with asynchronous propagation of
populations and migration. Unlike classical GAs, Propulate maintains a contin-
uous population of already evaluated individuals with a softened notion of the
typically strictly separated, discrete generations. Our contributions include:

– A novel parallel genetic algorithm based on a fully asynchronous island model
with independently processing workers, allowing to parallelize the optimiza-
tion process and distribute the internal evaluation of the objective function.

– Massive parallelism by asynchronous propagation of continuous populations
and migration.

– A prototypical implementation in Python using extremely efficient commu-
nication via the message passing interface (MPI).

– Optimal use of parallel hardware by minimizing idle times in HPC systems.

We use Propulate to optimize various benchmark functions and the HPs of a deep
neural network on a supercomputer. Comparing our results to those of the popu-
lar HPO package Optuna, we find that Propulate is consistently drastically faster
without sacrificing solution accuracy. We further show that Propulate scales well
to at least 100 processing elements (PEs) without relevant loss of efficiency,
demonstrating the efficacy of our asynchronous evolutionary approach.

2 Related Work

Recent progress in ML has triggered heavy use of these techniques with
Python as the de facto standard programming language. Tuning HPs requires
solving high-dimensional optimization problems with ML algorithms as black
boxes and model performance metrics as objective functions (OFs). Most com-
mon are Bayesian optimizers (e.g. Optuna [2], Hyperopt [7], SMAC3 [24,27],
Spearmint [32], GPyOpt [5], and MOE [38]) and bio-inspired methods such as

108 O. Taubert et al.

swarm-based (e.g. FLAPS [39]) and evolutionary (e.g. DEAP [16], MENNDL [40]) algo-
rithms. Below, we provide an overview of popular HP optimizers in Python, with
a focus on state-dependent parallel algorithms and implementations. A theoret-
ical overview of parallel GAs can be found in surveys [3,4,12] and books [29,37].

Optuna adopts various algorithms for HP sampling and pruning of unpromis-
ing trials, including tree-structured Parzen estimators (TPEs), Gaussian pro-
cesses, and covariance matrix adaption evolution strategy. It enables parallel
runs via a relational database server. In the parallel case, an Optuna candidate
obtains information about previous candidates from and stores results to disk.

SMAC3 (Sequential Model-based Algorithm Configuration) combines a
random-forest based Bayesian approach with an aggressive racing mecha-
nism [24]. Its parallel variant pSMAC uses multiple collaborating SMAC3 runs which
share their evaluations through the file system.

Spearmint, GPyOpt, and MOE are Gaussian-process based Bayesian optimiz-
ers. Spearmint enables distributed HPO via Sun Grid Engine and MongoDB.
GPyOpt is integrated into the Sherpa package [22], which provides implementa-
tions of recent HP optimizers along with the infrastructure to run them in par-
allel via a grid engine and a database server. MOE (Metric Optimization Engine)
uses a one-step Bayes-optimal algorithm to maximize the multi-points expected
improvement in a parallel setting [38]. Using a REST-based client-server model,
it enables multi-level parallelism by distributing each evaluation and running
multiple evaluations at a time.

Nevergrad [31] and Autotune [25] provide gradient-free and evolution-
ary optimizers, including Bayesian, particle swarm, and one-shot optimization.
In Nevergrad, parallel evaluations use several workers via an executor from
Python’s concurrent module. Autotune enables concurrent global and local
searches, cross-method sharing of evaluations, method hybridization, and multi-
level parallelism. Open Source Vizier [33] is a Python interface for Google’s
HPO service Vizier. It implements Gaussian process bandits [19] and enables
dynamic optimizer switching. A central database server does the algorithmic
proposal work, clients perform evaluations and communicate with the server
via remote procedure calls. Katib [18] is a cloud-native AutoML project based
on the Kubernetes container orchestration system. It integrates with Optuna
and Hyperopt. Tune [26] is built on the Ray distributed computing platform.
It interfaces with Optuna, Hyperopt, and Nevergrad and leverages multi-level
parallelism.

DEAP (Distributed Evolutionary Algorithms in Python) [16] implements gen-
eral GAs, evolution strategies, multi-objective optimization, and co-evolution of
multi-populations. It enables parallelization via Python’s multiprocessing or
SCOOP module. EvoTorch [36] is built on PyTorch and implements distribution-
and population-based algorithms. Using a Ray cluster, it can scale over mul-
tiple CPUs, GPUs, and computers. MENNDL (Multi-node Evolutionary Neural
Networks for Deep Learning) [40] is a closed-source MPI-parallelized HP opti-
mizer for automated network selection. A master node handles the genetic opera-
tions while evaluations are done on the remaining worker nodes. However, global
synchronization hinders optimal resource utilization [40].

Propulate 109

Algorithm 1: Basic GA. In each generation, the individuals are evaluated
in terms of the optimization problem’s OF. Genetic operators propagate
them to the next generation: The selection operator chooses a portion of
the current generation, where better individuals are usually preferred. To
breed new individuals, the genes of two or more parent individuals from
the selected pool are manipulated. While the crossover operator recombines
the parents’ genes, the mutation operator alters them randomly. This is
repeated until a stopping condition is met.
Input: Search-space limits, population size P , termination condition,

selection policy, crossover probability, mutation probability.
1 Initialize population pop of P individuals within search space.
2 while not termination condition do // OPTIMIZE

3 Evaluate individuals in pop. // EVALUATE

4 Choose parents from pop following selection policy. // SELECT

5 foreach individual in pop do // VARY

6 if random ≤ crossover probability then // RECOMBINE

7 Recombine individuals randomly chosen from parents.
8 if random ≤ mutation probability then // MUTATE

9 Mutate.
10 Update individual in pop.

Result: Best individual found (i.e., with lowest OF value for minimization).

3 Propulate Algorithm and Implementation

To alleviate the bottleneck inherent to synchronized parallel genetic algorithms,
our massively parallel genetic optimizer Propulate (propagate and populate)
implements a fully asynchronous island model specifically designed for large-
scale HPC systems. Unlike conventional GAs, Propulate maintains a continuous
population of evaluated individuals with a softened notion of the typically strictly
separated generations. This enables asynchronous evaluation, variation, propa-
gation, and migration of individuals. To ensure interoperability with existing
data science and ML workflows, we provide a Python implementation. In most
applications, evaluating the OF represents the largest contribution to the total
resource consumption. Performance-relevant paths inside the OF evaluation are
expected to be implemented and optimized in CUDA and C/C++ or Fortran.
With the aforementioned workflows, this is typically already the case.

Propulate’s basic mechanism is that of Darwinian evolution, i.e., beneficial
traits are selected, recombined, and mutated to breed more fit individuals (see
Algorithm 1). On a higher level, Propulate employs an IM, which combines inde-
pendent evolution of self-contained subpopulations with intermittent exchange of
selected individuals [34]. To coordinate the search globally, each island occasion-
ally delegates migrants to be included in the target islands’ populations. With
worse performing islands typically receiving candidates from better performing
ones, islands communicate genetic information competitively, thus increasing
diversity among the subpopulations compared to panmictic models [11]. Inde-
pendent from the breeding mechanism used on each single island of a synchronous

110 O. Taubert et al.

IM, this migrant exchange occurs simultaneously after a fixed number of syn-
chronously evaluated generations, with no computation happening in that time.
The following hyperparameters characterize an IM:

– Island number and subpopulation sizes
– Migration (pollination) probability
– Number of migrants (pollinators): How many individuals migrate from

the source population at a time.
– Migration (pollination) topology: Directed graph of migration (pollina-

tion) paths between islands.
– Emigration policy: How to select emigrants (e.g., random or best) and

whether to remove them from the source population (actual migration) or
not (pollination).

– Immigration policy: How to insert immigrants into the target population,
i.e., either add them (migration) or replace existing individuals (pollination,
e.g., random or worst).

Propulate’s functional principle is outlined in Algorithm 2. We consider mul-
tiple PEs (or workers) partitioned into islands. Each worker processes one indi-
vidual at a time and maintains a population to track evaluated and migrated
individuals on its island. To mitigate the computational overhead of synchro-
nized OF evaluations, Propulate leverages asynchronous propagation of contin-
uous populations with interwoven, worker-specific generations (see Fig. 1). In
each iteration, each worker breeds and evaluates an individual which is added
to its population list. It then sends the individual with its evaluation result
to all workers on the same island and, in return, receives evaluated individu-
als dispatched by them for a mutual update of their population lists. To avoid
explicit synchronization points, the independently operating workers use asyn-
chronous point-to-point communication via MPI to share their results. Each one
dispatches its result immediately after finishing an evaluation. Directly after-
wards, it non-blockingly checks for incoming messages from workers of its own
island awaiting to be received. In the next iteration, it breeds a new individ-
ual by applying the evolutionary operators to its continuous population list of
all evaluated individuals from any generation on the island. The workers thus
proceed asynchronously without idle times despite the individuals’ varying com-
putational costs.

After the mutual update, asynchronous migration or pollination between
islands happens on a per-worker basis with a certain probability. Each worker
selects a number of emigrants from its current population. For actual migration1,
an individual can only exist actively on one island. A worker thus may only
choose eligible emigrants from an exclusive subset of the island’s population to
avoid overlapping selections by other workers. It then dispatches the emigrants
to the target islands’ workers as specified in the migration topology. Finally, it
sends them to all workers on its island for island-wide deactivation of emigrated
individuals before deactivating them in its own population.

1 See github.com/Helmholtz-AI-Energy/propulate/tree/master/supplementary for
pseudocode with migration and explanatory figure.

https://github.com/Helmholtz-AI-Energy/propulate/tree/master/supplementary

Propulate 111

Algorithm 2: Propulate with pollination.
Input: Search-space limits; hyperparameters n islands, island sizes Pi

(i = 1, . . . , n islands), number of iterations generations, evolutionary
operators (including selection policy, crossover probability,
mutation probability etc.), pollination probability, pollination topology,
emigration policy, immigration policy.

1 Configure n islands islands with Pi workers each. Each worker evaluates one
individual at a time and maintains its own population list pop of evaluated and
migrated individuals on the island.

2 /* START OPTIMIZATION. */

3 for each worker do in parallel
4 while generation ≤ generations do // Loop over generations.

5 Breed and evaluate individual. Append it to pop. Send it to other
workers on island to synchronize their populations lists:
evaluate individual() // BREED AND EVALUATE

6 Check for and possibly receive individuals bred and evaluated by other
workers on island. Append them to pop:
receive intra isle individuals() // SYNCHRONIZE

7 if random ≤ pollination probability then // EMIGRATE

8 Choose pollinators from currently active individuals on island
according to emigration policy. Send copies of pollinator(s) to
workers of target islands according to pollination topology :
send emigrants()

9 Check for and possibly receive pollinators sent by workers from other
islands. Add them to pop. Determine individuals to be replaced by
incoming pollinators according to immigration policy. Send
individuals to be replaced to other workers on island for deactivation:
receive immigrants() // IMMIGRATE

10 Check for and possibly receive individuals replaced by pollinators on
other workers on island. Try to deactivate them in pop. If an
individual to be deactivated is not yet in pop, append it to history list
replaced and try again in the next generation:
deactivate replaced individuals() // SYNCHRONIZE

11 Go to next generation: generation += 1

12 /* OPTIMIZATION DONE: FINAL SYNCHRONIZATION */

13 Wait for all other workers to finish: MPI.COMM WORLD.barrier()

14 Final check for incoming messages so all workers hold complete population.
15 Probe for individuals evaluated by other workers on island:

receive intra isle individuals()

16 Probe for incoming pollinators immigrating from other islands:
receive immigrants()

17 Probe for individuals replaced by other workers on island to be
deactivated: deactivate replaced individuals()

Result: n individuals with smallest OF values.

In the next step, the worker probes for and, if applicable, receives immigrants
from other islands. It then checks for individuals emigrated by other workers of its
island and tries to deactivate them in its population. Due to the asynchronicity,

112 O. Taubert et al.

Fig. 1. Asynchronous propagation. Interaction of two workers on one island. Indi-
viduals bred by worker 1 and 2 are shown in blue and red, respectively. Their origins
are given by a generation sub- and an island superscript. Populations are depicted as
round grey boxes, where most recent individuals have black outlines. Varying evaluation
times are represented by sharp boxes of different widths. We illustrate the asynchronous
propagation and intra-island synchronization of the population using the example of
the blue individual indi1

g3. This individual is bred by worker 1 in generation 3 by apply-
ing the propagator (yellow) to the worker’s current population. After evaluating indi1

g3,
worker 1 sends it to all workers on its island and appends it to its population. As no
evaluated individuals dispatched by worker 2 await to be received, worker 1 proceeds
with breeding. Worker 2 receives the blue indi1

g3 only after finishing the evaluation of
the red indi1

g2. It then appends both to its population and breeds a new individual for
generation 3. (Color figure online)

individuals might be designated to be deactivated before arriving in the popula-
tion. Propulate continuously corrects these synchronization artefacts during the
optimization.

For pollination (see Fig. 2), identical copies of individuals can exist on mul-
tiple islands. Workers thus can choose emigrating pollinators from any active
individuals in their current populations and do not deactivate them upon emi-
gration. To control the population growth, pollinators replace active individ-
uals in the target population according to the immigration policy. For proper
accounting of the population, one random worker of the target island selects the
individual to be replaced and informs the other workers accordingly. Individuals
to be deactivated that are not yet in the population are cached to be replaced in
the next iteration. This process is repeated until each worker has evaluated a set
number of generations. Finally, the population is synchronized among workers
and the best individuals are returned.

Propulate uses so-called propagators to breed child individuals from an exist-
ing collection of parent individuals. It implements various standard genetic
operators, including uniform, best, and worst selection, random initialization,

Propulate 113

Fig. 2. Asynchronous pollination. Consider two islands with N (blue) and M (red)
workers, respectively. We illustrate pollination (dark colors) by tracing worker N on
island 1. After evaluation and mutual intra-island updates (light blue, see Fig. 1), this
worker performs pollination: It sends copies of the chosen pollinators to all workers
of each target island, here island 2. The target island’s workers receive the pollinators
asynchronously (dark blue arrows). For proper accounting of the populations, worker
1 on island 2 selects the individual to be replaced and informs all workers on its island
accordingly (middle red arrow). Afterwards, worker N receives incoming pollinators
from island 2 to be included into its population. It then probes for individuals that have
been replaced by other workers on its island, here worker 1, in the meantime and need
to be deactivated. After these pollination-related intra-island population updates, it
breeds the next generation. As pollination does not occur in this generation, it directly
receives pollinators from island 2. This time, worker N chooses the individual to be
replaced. (Color figure online)

stochastic and conditional propagators, point and interval mutation, and several
forms of crossover. In addition, Propulate provides a default propagator: Having
selected two random parents from the breeding pool consisting of a set num-
ber of the currently most fit individuals, uniform crossover and point mutation
are performed each with a specified probability. Afterwards, interval mutation
is performed. To prevent premature trapping in a local optimum, a randomly
initialized individual is added with a specified probability instead of one bred
from the current population.

4 Experimental Evaluation

We evaluate Propulate on various benchmark functions (see Sect. 4.4) and an
HPO use case in remote sensing classification (see Sect. 4.5) which provides a
real world application. We compare our results against Optuna since it is the
most widely used HPO software.

114 O. Taubert et al.

4.1 Experimental Environment

We ran the experiments on the distributed-memory, parallel hybrid supercom-
puter Hochleistungsrechner Karlsruhe (HoreKa2) at the Steinbuch Centre for
Computing, Karlsruhe Institute of Technology. Each of its 769 compute nodes
is equipped with two 38-core Intel Xeon Platinum 8368 processors at 2.4 GHz
base and 3.4 GHz maximum turbo frequency, 256 GB (standard) or 512 GB
(high-memory and accelerator) local memory, a local 960 GB NVMe SSD disk,
and two network adapters. 167 of the nodes are accelerator nodes each equipped
with four NVIDIA A100-40 GPUs with 40 GB memory connected via NVLink.
Inter-node communication uses a low-latency, non-blocking NVIDIA Mellanox
InfiniBand 4X HDR interconnect with 200 Gbit/s per port. A Lenovo Xclar-
ity controller measures full node energy consumption, excluding file systems,
networking, and cooling. The operating system is Red Hat Enterprise Linux 8.2.

4.2 Benchmark Functions

Benchmark functions are used to evaluate optimizers in terms of convergence,
accuracy, and robustness. The informative value of such studies is limited by how
well we understand the characteristics making real-life optimization problems
difficult and our ability to embed these features into benchmark functions [28].
We use Propulate to optimize a variety of traditional and recent benchmark
functions emulating situations optimizers have to cope with in different kinds of
problems (see Table 1).

– Sphere is smooth, unimodal, strongly convex, symmetric, and thus simple.
– Rosenbrock has a narrow minimum inside a parabola-shaped valley.
– Step represents the problem of flat surfaces. Plateaus pose obstacles to opti-

mizers as they lack information about which direction is favorable.
– Quartic is a unimodal function padded with Gaussian noise. As it never

returns the same value on the same point, algorithms that do not perform
well on this test function will do poorly on noisy data.

– Rastrigin is non-linear and highly multimodal. Its surface is determined by
two external variables, controlling the modulation’s amplitude and frequency.
The local minima are located at a rectangular grid with size 1. Their func-
tional values increase with the distance to the global minimum.

– Griewank’s product creates sub-populations strongly codependent to paral-
lel GAs, while the summation produces a parabola. Its local optima lie above
parabola level but decrease with increasing dimensions, i.e., the larger the
search range, the flatter the function.

– Schwefel has a second-best minimum far away from the global optimum.
– Lunacek’s bi-sphere’s [28] landscape structure is the minimum of two

quadratic functions, each creating a single funnel in the search space. The
spheres are placed along the positive search-space diagonal, with the optimal
and sub-optimal sphere in the middle of the positive and negative quadrant,

2 https://www.scc.kit.edu/en/services/horeka.php.

https://www.scc.kit.edu/en/services/horeka.php

Propulate 115

Table 1. Benchmark functions.

Name Function Limits Global minimum

Sphere f1 = x2
1 + x2

2 ±5.12 f (0, 0) = 0

Rosenbrock f2 = 100
(
x2
1 − x2

)2
+ (1 − x1)

2 ±2.048 f (1, 1) = 0

Step f3 =
∑5

i=1 int (xi) ±5.12 f (xi ≤ −5) = −25

Quartic f4 =
∑30

i=1

(
ix4

i + Ni (0, 1)
) ±1.28 f (0, ..., 0) =

∑
i Ni

Rastrigin f5 = 200 +
∑20

i=1 x2
i − 10 cos (2πxi) ±5.12 f (0, ..., 0) = 0

Griewank f6 = 1 + 1
4000

∑10
i=1 x2

i − ∏10
i=1 cos

xi√
i

±600 f (0, ..., 0) = 0

Schwefel f7 = 10V − ∑10
i=1 xi sin

√|xi| ±500 f
(
x∗
1, ..., x∗

10

)
= 0,

with V = 418.982887 x∗
i = 420.968746

Bi-sphere f8 = min
(∑30

i=1 (xi − μ1)
2 , ±5.12 f (μ1, ..., μ1) = 0

30 + s · ∑30
i=1 (xi − μ2)

2
)

with

μ1 = 2.5, μ2 = − (
s−1

(
μ2
1 − 1

))1/2
,

s = 1 −
(
2
√
50 − 8.2

)−1/2

Bi-Rastrigin f9 = f8 + 10
∑30

i=1 1 − cos 2π (xi − μ1) ±5.12 f (μ1, ..., μ1) = 0

respectively. Their distance and the barrier’s height increase with dimension-
ality, creating a globally non-separable underlying surface.

– Lunacek’s bi-Rastrigin [28] is a double-funnel version of Rastrigin. This
function isolates global structure as the main difference impacting problem
difficulty on a well understood test case.

4.3 Meta-optimizing the Optimizer

Propulate itself has HPs influencing its optimization behavior, accuracy, and
robustness. To explore their effect systematically and give transparent recom-
mendations for default values, we conducted a grid search across the six most
prominent HPs. The search space is shown in Table 2. We ran the grid search
five times for the quartic, Rastrigin, and bi-Rastrigin benchmark functions (see
Table 1 and Sect. 4.4), each with a different seed consistently used over all points
within a search. All three functions have their global minimum at zero. They
were chosen for their high-dimensional parameter spaces (30, 20, and 30, respec-
tively) and different levels of difficulty to optimize. For quartic, Propulate found a
minimum below 0.01±0.005 for 80.12% of all points across the five grid searches.
This increases to 94.94% for minima found within 0.1± 0.05 of the global mini-
mum. In comparison, the tolerances have to be relaxed considerably for the more
complex Rastrigin and bi-Rastrigin. While only 18.57% of all grid points had a
function value less than 1.0 ± 0.5 for Rastrigin, only a single point resulted in
an average value of less than 10 for bi-Rastrigin. Although the average value of
bi-Rastrigin was only less than 10 once, we found the minimum across each of
the five searches to be less than 1.0 for 3.31% of the grid points.

116 O. Taubert et al.

Table 2. Grid search parameters. All experiments use 144 CPUs equally distributed
between two nodes. Random-initialization probability refers to the chance that a new
individual is generated entirely randomly.

Number of islands 2 4 8 16 32

Island population size 72 36 18 9 4

Migration (pollination) probability 0.1 0.3 0.5 0.7 0.9

Pollination True False

Crossover probability 0.1 0.325 0.55 0.775

Point-mutation probability 0.1 0.325 0.55 0.775

Random-initialization probability 0.1 0.325 0.55 0.775

Considering grid points with at least one result smaller than 1.0, 86.61% used
either 16 or 36 islands, while the remainder used eight. As Propulate initializes
different islands at different positions in the search space, the chance that one of
them is at a very beneficial position increases with the number of islands. This
is further confirmed by a migration probability of 0.7 or 0.9 for 61.41% of these
points. If one of the islands is well-initialized, it thus will quickly notify others.

With every best grid point using pollination, we clearly find pollination to be
favorable over real migration. To determine the other HPs, we compute the aver-
ages of the results for the top ten grid points across all three functions. The top
ten were determined by grouping over the lowest average and standard deviation
of the function values, sorting by the averages, and sorting by the standard devi-
ations. This method reduces the chances of a single run simply benefiting from
an advantageous starting seed. Average crossover, point-mutation, and random-
initialization probabilities are 0.655 ± 0.056, 0.363 ± 0.133, and 0.423 ± 0.135,
respectively. The average number of islands was 28.800 ± 6.009 which equates
to an island population of 5.00 ± 1.043. The average migration probability was
0.527±0.150. These values provide a reasonable starting point towards choosing
default HPs for Propulate (see Table 3). As the grid searches only considered
functions with independent parameters, we assume a relatively high random-
initialization probability to be useful due to the benefits of random search [6].
On this account, we chose to reduce the default random-initialization probabil-
ity to 0.2. As the migration probability might also be lowered artificially by this
phenomenon, we set its default to 0.7. The default probabilities for crossover
and point-mutation were chosen as 0.7 and 0.4, respectively. The island size was
set at four individuals. This is a practical choice as our test system has four
accelerators per node and the number of CPUs per node is a multiple of four.

Propulate 117

Table 3. Propulate HPs for benchmark function minimization.

Number of islands 38

Island population size 4

Pollination probability 0.7

Crossover probability 0.7

Point-mutation probability 0.4

Sigma factor 0.05

Random-initialization probability 0.2

Generations per worker 256

Selection policy Best

Pollination topology Fully connected

Number of migrants 1

Emigration policy Best

Immigration policy Worst

4.4 Benchmark Function Optimization

For each function, we ran each ten equivalent Propulate and Optuna optimiza-
tions, using the same compute resources, degree of parallelization, and number
of evaluations. Figure 3 shows the optimization accuracy over wallclock time
comparing Propulate with default parameters determined from our grid search
(see Table 3) to Optuna’s default optimizer. In terms of accuracy, Propulate and
Optuna are comparable in most experiments. For many functions, e.g. Schwe-
fel, bi-Rastrigin, and Rastrigin, Propulate even achieves a better OF value. In
terms of wallclock time, Propulate is consistently at least one order of magni-
tude faster. This is due to Propulate’s MPI-based communication over the fast
network, whereas Optuna uses relational databases with SQL and is limited by
the slow file system. Since the functions are cheap to evaluate, optimization and
communication dominate the wallclock time. In particular for problems where
evaluations are cheap compared to the search itself, we find that Optuna’s compu-
tational efficiency suffers massively from the frequent file locking inherent to its
parallelization strategy, reducing its usability for large-scale HPC applications.

In addition, we inspected the evolution of the population over wallclock time
for both Propulate and Optuna. An example for minimizing the Rastrigin function
is shown in Fig. 4. Propulate is roughly three orders of magnitude faster and
makes significantly greater progress in terms of both OF values and distance to
the global optimum. Due to this drastic difference in runtime, we measured only
46.27 Wh for Propulate compared to Optuna’s 2646.29 Wh.

118 O. Taubert et al.

Fig. 3. Benchmark function minimization accuracy over wallclock time. Low-
est function values found by Propulate (red) and Optuna (blue) versus wallclock time
to reach them, each averaged over ten runs. Step is not shown since both optimizers
achieve a perfect value of −25 within 0.6 s and 278.2 s, respectively. (Color figure
online)

4.5 HP Optimization for Remote Sensing Classification

BigEarthNet [35] is a Sentinel-2 multispectral image dataset in remote sensing.
It comprises 590 326 image patches each of which is assigned one or more of the
19 available CORINE Land Cover map labels [10,35]. Multiple computer vision
networks for BigEarthNet classification have been trained [35], with ResNet-
50 [20] being the most accurate. While a previous Propulate version was used to
optimize a set of HPs and the architecture for this use case [13], a more versatile
and efficient parallelization strategy in the current version makes it worthwhile
to revisit this application. Analogously to [13], we consider different optimizers,
learning rate (LR) schedulers, activation functions, loss functions, number of
filters in each convolutional block, and activation orders [21]. The search space
is shown in Table 4. Optimizer parameters, LR functions, and LR warmup are
included as well. We only consider SGD-based optimizers as they share common
parameters and thus exclude Adam-like optimizers from the search. We theorize
that including Adam led to the difficulties seen previously [13]. The training is
exited if the validation loss has not been increasing for ten epochs. We prepared
the data analogously to [13]. The network is implemented in TensorFlow [1].

For both Propulate and Optuna, we ran each three searches over 24 h on
32 GPUs. We use 1 − F val

1 with the validation F1 score as the OF to be min-
imized. On average, Optuna achieves its best OF value of (0.39 ± 0.01) within
(7.05 ± 3.14) h. Propulate beats Optuna’s average best after (5.30 ± 2.41) h and
achieves its best OF value of (0.36 ± 0.00) within (13.89 ± 5.15) h.

Propulate 119

Fig. 4. Evolution of the population over wallclock time for the Rastrigin
function. Propulate (left) versus Optuna (right). OF values (blue) use the left-hand
scale, distances to the global optimum (purple) use the right-hand scale. Pastel dots
show each individual’s OF value/distance. Solid (dashed) lines show the minimum
(median) value and distance achieved so far. Maximum value and distance are shown
in black. Both optimizers perform 38 912 evaluations. Note the difference on the time
axis. (Color figure online)

4.6 Scaling

Finally, we explore Propulate’s scaling behavior for the use case presented in
Sect. 4.5. Figure 5 shows our results for weak and strong linear scaling. Our
baseline configuration used two nodes. Since each node has four GPUs, we cal-
culate speedup and efficiency with respect to eight workers. For strong scaling,
we fix the total number of evaluations at 512 and increase the number of work-
ers, i.e., GPUs. We average over three runs with different seeds and keep four
workers per island while increasing the number of islands. Speedup increases up
to 128 workers, where we reach approximately half the optimal value. This is an
expected decline since each worker only processes few individuals, so the vari-
ance in evaluation times leads to larger idle times of the faster workers before
the final population synchronization at the end. Additionally, as the number of
workers approaches the total number of evaluations, the randomly initialized
evolutionary search in turn approaches a random search. This means that the
search performance is likely to be worse than what the pure compute perfor-
mance might suggest. It is still possible to apply Propulate on these scales, but
the other search parameters have to be adjusted accordingly as shown in the weak
scaling plot (see Fig. 5 top). The early super-scalar behavior is likely due to the
non-sequential baseline. For small node counts, the performance is influenced by
effects stemming from cluster utilization beyond the use case studied here, like
file system congestion or inter-node distance in the network. With larger node

120 O. Taubert et al.

counts relative to total cluster size, these effects average out or approach the
worst case, which is consistent with the trend shown in Fig. 5. Weak efficiency
only drops to 95% on average at our largest configuration of 128 workers.

Table 4. HP search space of ResNet-50 for BigEarthNet classification.

Optimizers Optimizer parameters LR warmup parameters

Adagrad Initial accum. value 10−4, 0.5 LR warmup steps 100, 104

SGD Clipnorm [−1,−1000] Initial LR 10−5, 10−1

Adadelta Clipvalue [−1, 1000] Decay steps 102, 105

RMSprop Use EMA Boolean LR warmup power 10−1, 101

EMA momentum [0.5, 1.0]
EMA overwrite 1, 103

Momentum [0.0, 1.0]
Nesterov Boolean
Rho [0.8, 0.99999]
Epsilon 10−9, 10−4

Loss functions LR parameters

Binary CE Categorical CE Categorical hinge Decay rate [0.8, 0.9999]
Hinge KL divergence Squared hinge Staircase inverse Boolean

time decay

Activation functions Decay rate [0.1, 0.9]

ELU ReLU Softplus Staircase poly- Boolean
Exponential SELU Softsign nomial decay
Hard sigmoid Sigmoid Swish End LR 10−4, 10−2

Linear Softmax Tanh Power [0.5, 2.5]

Fig. 5. Scaling with respect to a baseline of eight workers. Weak efficiency
(top) and strong linear speedup (bottom). Use case and search space are described
in Sect. 4.5. Weak-scaling problem size is varied via the number of OF evaluations.
Results are averaged over three runs.

Propulate 121

5 Conclusion

We presented Propulate, our HPC-adapted, asynchronous genetic optimization
algorithm and software. Our experimental evaluation shows that the fully asyn-
chronous evaluation, propagation, and migration enable a highly efficient and
parallelizable genetic optimization. To our knowledge, all existing Python-based
genetic optimization tools use synchronization schemes that are not tailored to
application in HPC environments. Harder to quantify than performance but
very important is ease of use. Especially for HPC applications at scale, some
parallelization and distribution models are more suited than others. A purely
MPI-based implementation as in Propulate is not only extremely efficient for
highly parallel and communication-intensive algorithms but also easy to set up
and maintain, since the required infrastructure is commonly available on HPC
systems. This is not the case for any of the other tools investigated, except for the
not publicly available MENNDL. In addition, Propulate’s asynchronicity facilitates
a tighter coupling of individuals during the optimization, which enables a more
efficient evaluation of candidates and in particular early stopping informed by
previously evaluated individuals in the NAS case. Propulate was already success-
fully applied to HPO for various ML models on different HPC machines [13,17].
Another avenue for future work is including variable-length gene descriptions.
Mutually exclusive genes of different lengths, such as the parameter sets for
Adam- and SGD-like optimizers in our NAS use case, can thus be explored effi-
ciently. While this is already possible, it requires an inconvenient workaround of
including inactive genes and adapting the propagators to manually prevent the
evaluation of many individuals differing only in inactive genes.

Acknowledgments. This work is supported by the Helmholtz AI platform grant and
the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT
partition.

References

1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283 (2016)

2. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-
generation hyperparameter optimization framework. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 2623–2631 (2019). https://doi.org/10.1145/3292500.3330701

3. Alba, E., Tomassini, M.: Parallelism and evolutionary algorithms. IEEE Trans.
Evol. Comput. 6(5), 443–462 (2002). https://doi.org/10.1109/TEVC.2002.800880

4. Alba, E., Troya, J.M.: A survey of parallel distributed genetic algorithms. Com-
plexity 4(4), 31–52 (1999)

5. The GPyOpt authors: GPyOpt: A Bayesian Optimization Framework in Python
(2016). https://github.com/SheffieldML/GPyOpt

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1109/TEVC.2002.800880
https://github.com/SheffieldML/GPyOpt

122 O. Taubert et al.

6. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization.
J. Mach. Learn. Res. 13(10), 281–305 (2012). https://jmlr.org/papers/v13/
bergstra12a.html

7. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: hyperpa-
rameter optimization in hundreds of dimensions for vision architectures. In: Inter-
national Conference on Machine Learning, pp. 115–123. PMLR (2013). https://
proceedings.mlr.press/v28/bergstra13.pdf

8. Bianchi, L., Dorigo, M., Gambardella, L.M., Gutjahr, W.J.: A survey on meta-
heuristics for stochastic combinatorial optimization. Nat. Comput. 8(2), 239–287
(2009). https://doi.org/10.1007/s11047-008-9098-4

9. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. (CSUR) 35(3), 268–308 (2003).
https://doi.org/10.1145/937503.937505

10. Bossard, M., Feranec, J., Otahel, J., et al.: CORINE land cover technical guide -
Addendum 2000, vol. 40. European Environment Agency Copenhagen (2000)

11. Cantú-Paz, E.: Efficient and Accurate Parallel Genetic Algorithms, vol. 1. Springer
Science & Business Media, Berlin, Heidelberg (2000). https://doi.org/10.1007/978-
1-4615-4369-5

12. Cantú-Paz, E., et al.: A survey of parallel genetic algorithms. Calculateurs paral-
leles, reseaux et systems repartis 10(2), 141–171 (1998)

13. Coquelin, D., Sedona, R., Riedel, M., Götz, M.: Evolutionary optimization of neural
architectures in remote sensing classification problems. In: 2021 IEEE International
Geoscience and Remote Sensing Symposium IGARSS, pp. 1587–1590. IEEE (2021).
https://doi.org/10.1109/IGARSS47720.2021.9554309

14. Elsken, T., Metzen, J.H., Hutter, F.: Neural architecture search: a survey. J. Mach.
Learn. Res. 20(1), 1997–2017 (2019)

15. Feurer, M., Hutter, F.: Hyperparameter optimization. In: Hutter, F., Kotthoff, L.,
Vanschoren, J. (eds.) Automated Machine Learning. TSSCML, pp. 3–33. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-05318-5 1

16. Fortin, F.A., De Rainville, F.M., Gardner, M.A.G., Parizeau, M., Gagné, C.:
DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13(1), 2171–2175
(2012)

17. Funk, Y., Götz, M., Anzt, H.: Prediction of optimal solvers for sparse linear systems
using deep learning. In: Proceedings of the 2022 SIAM Conference on Parallel
Processing for Scientific Computing, pp. 14–24. Society for Industrial and Applied
Mathematics (2022). https://doi.org/10.1137/1.9781611977141.2

18. George, J., et al.: A Scalable and Cloud-Native Hyperparameter Tuning System
(2020). https://doi.org/10.48550/arXiv.2006.02085

19. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google
Vizier: a service for black-box optimization. In: Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1487–1495 (2017). https://doi.org/10.1145/3097983.3098043

20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

21. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In:
Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp.
630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0 38

22. Hertel, L., Collado, J., Sadowski, P., Baldi, P.: Sherpa: hyperparameter optimiza-
tion for machine learning models. In: 32nd Conference on Neural Information Pro-
cessing Systems (NIPS 2018) (2018). https://github.com/sherpa-ai/sherpa

https://jmlr.org/papers/v13/bergstra12a.html
https://jmlr.org/papers/v13/bergstra12a.html
https://proceedings.mlr.press/v28/bergstra13.pdf
https://proceedings.mlr.press/v28/bergstra13.pdf
https://doi.org/10.1007/s11047-008-9098-4
https://doi.org/10.1145/937503.937505
https://doi.org/10.1007/978-1-4615-4369-5
https://doi.org/10.1007/978-1-4615-4369-5
https://doi.org/10.1109/IGARSS47720.2021.9554309
https://doi.org/10.1007/978-3-030-05318-5_1
https://doi.org/10.1137/1.9781611977141.2
https://doi.org/10.48550/arXiv.2006.02085
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1007/978-3-319-46493-0_38
https://github.com/sherpa-ai/sherpa

Propulate 123

23. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT
Press, Cambridge (1992). https://doi.org/10.7551/MITPRESS/1090.001.0001

24. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization
for general algorithm configuration. In: Coello, C.A.C. (ed.) LION 2011. LNCS,
vol. 6683, pp. 507–523. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25566-3 40

25. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune: a
derivative-free optimization framework for hyperparameter tuning. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 443–452 (2018). https://doi.org/10.1145/3219819.3219837

26. Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J.E., Stoica, I.: Tune:
a research platform for distributed model selection and training (2018). arXiv
preprint arXiv:1807.05118

27. Lindauer, M., et al.: SMAC3: a versatile Bayesian optimization package for hyper-
parameter optimization. J. Mach. Learn. Res. 23, 54–1 (2022)

28. Lunacek, M., Whitley, D., Sutton, A.: The impact of global structure on search.
In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008.
LNCS, vol. 5199, pp. 498–507. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87700-4 50

29. Luque, G., Alba, E.: Parallel Genetic Algorithms: Theory and Real World Applica-
tions, vol. 367. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22084-5

30. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

31. Rapin, J., Teytaud, O.: Nevergrad - A Gradient-free Optimization Platform (2018).
https://github.com/FacebookResearch/Nevergrad

32. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of
machine learning algorithms. In: Pereira, F., Burges, C., Bottou, L., Wein-
berger, K. (eds.) Advances in Neural Information Processing Systems, vol. 25.
Curran Associates, Inc. (2012). https://proceedings.neurips.cc/paper/2012/file/
05311655a15b75fab86956663e1819cd-Paper.pdf

33. Song, X., Perel, S., Lee, C., Kochanski, G., Golovin, D.: Open source Vizier: dis-
tributed infrastructure and API for reliable and flexible blackbox Optimization. In:
Automated Machine Learning Conference, Systems Track (AutoML-Conf Systems)
(2022). https://github.com/google/vizier

34. Sudholt, D.: Parallel evolutionary algorithms. In: Kacprzyk, J., Pedrycz, W. (eds.)
Springer Handbook of Computational Intelligence, pp. 929–959. Springer, Heidel-
berg (2015). https://doi.org/10.1007/978-3-662-43505-2 46

35. Sumbul, G., et al.: BigEarthNet Dataset with a New Class-Nomenclature for
Remote Sensing Image Understanding (2020). arXiv preprint arXiv:2001.06372

36. Toklu, N.E., Atkinson, T., Micka, V., Srivastava, R.K.: EvoTorch: advanced
evolutionary computation library built directly on top of PyTorch, created at
NNAISENSE (2022). https://github.com/nnaisense/evotorch

37. Tomassini, M.: Spatially Structured Evolutionary Algorithms: Artificial Evolution
in Space and Time. Springer, Berlin, Heidelberg (2006). https://doi.org/10.1007/
3-540-29938-6

38. Wang, J., Clark, S.C., Liu, E., Frazier, P.I.: Parallel Bayesian global optimization
of expensive functions. Oper. Res. 68(6), 1850–1865 (2020). https://doi.org/10.
1287/opre.2019.1966

https://doi.org/10.7551/MITPRESS/1090.001.0001
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1007/978-3-642-25566-3_40
https://doi.org/10.1145/3219819.3219837
http://arxiv.org/abs/1807.05118
https://doi.org/10.1007/978-3-540-87700-4_50
https://doi.org/10.1007/978-3-540-87700-4_50
https://doi.org/10.1007/978-3-642-22084-5
https://doi.org/10.1007/978-3-642-22084-5
https://github.com/FacebookResearch/Nevergrad
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://github.com/google/vizier
https://doi.org/10.1007/978-3-662-43505-2_46
http://arxiv.org/abs/2001.06372
https://github.com/nnaisense/evotorch
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1007/3-540-29938-6
https://doi.org/10.1287/opre.2019.1966
https://doi.org/10.1287/opre.2019.1966

124 O. Taubert et al.

39. Weiel, M., Götz, M., Klein, A., Coquelin, D., Floca, R., Schug, A.: Dynamic parti-
cle swarm optimization of biomolecular simulation parameters with flexible objec-
tive functions. Nat. Mach. Intell. 3(8), 727–734 (2021). https://doi.org/10.1038/
s42256-021-00366-3

40. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.H., Patton, R.M.: Optimizing
deep learning hyper-parameters through an evolutionary algorithm. In: Proceed-
ings of the Workshop on Machine Learning in High-Performance Computing Envi-
ronments, pp. 1–5 (2015). https://doi.org/10.1145/2834892.2834896

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1038/s42256-021-00366-3
https://doi.org/10.1038/s42256-021-00366-3
https://doi.org/10.1145/2834892.2834896
http://creativecommons.org/licenses/by/4.0/

	Massively Parallel Genetic Optimization Through Asynchronous Propagation of Populations
	1 Introduction
	2 Related Work
	3 Propulate Algorithm and Implementation
	4 Experimental Evaluation
	4.1 Experimental Environment
	4.2 Benchmark Functions
	4.3 Meta-optimizing the Optimizer
	4.4 Benchmark Function Optimization
	4.5 HP Optimization for Remote Sensing Classification
	4.6 Scaling

	5 Conclusion
	References

