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1  INTRODUCTION 

Bubble train flow (BTF) is a common flow pattern for 
gas-liquid flows in narrow channels. It consists of a regular 
sequence of bubbles of identical shape which fill almost the 
entire channel cross-section (Taylor bubbles). The individual 
bubbles are separated by liquid slugs and move with the same 
axial velocity. Therefore, BTF is fully described by a single 
flow unit cell which consists of one bubble and the liquid slug 
separating it from the trailing bubble. BTF is of technical 
relevance for monolithic reactors [1], for micro-bubble 
columns [2] and for other miniaturized multiphase reactors 
involving slug flow [3]. 

An important characteristic of any chemical reactor is its 
residence time distributions (RTD), since this provides 
information about the flow and mixing behaviour of reaction 
components. In practice, the residence time distribution is 
often measured by a stimulus-response technique, where a 
specific quantity of tracer (e.g. fluorescent substance, 
radionuclide, solution of salt, etc.) is introduced at the system 
inlet as a short duration pulse or step function and where the 
time variation of the tracer concentration at the outflow is 
recorded. 

The tracer particles injected at the inlet are assumed to 
follow the same paths through the system as did the original 
fluid particles they replaced [4]. Thus, the tracer particles will 
have the same distribution of residence times as the original 
fluid particles. By recording the times when particles leave, a 
histogram can be constructed which, with a large sampling size, 
will converge to the differential residence time distribution 
function, E(t). The probability that a particle had a residence 
time less than t is then given by the cumulative residence time 
distribution function 
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The extension of the above measurement principle from 

single phase flow to gas-liquid two phase flow presents no 
special difficulties [4]. The main difference is that the system 
now usually has two inlets (one for the gas phase and one for 
the liquid phase) while there is still one common outlet. To 
measure the residence time distribution of the liquid phase, the 
tracer pulse is injected at the liquid inlet only. For bubble train 
flow, a measurement of the residence time distribution of the 
gas phase is not of interest, since its mean residence time can 
easily be determined from the bubble velocity. 

The described measurement concept is well suited for 
macro-reactors where the reactor volume is much larger than 
the volume of the tracer measuring unit. However, for 
micro-reactors the reactor volume is usually smaller than the 
volume of the measuring unit. This means that the residence 
time response of the tracer may already be influenced by the 
measuring construction itself [5]. Measurements of RTD in 
narrow channels are reported by Heibel et al. [6] and Yawalkar 
et al. [7] for the film flow in a monolith reactor and by Günther 
et al. [8] for bubble train flow in micro-fluidic channel 
networks of rectangular cross-section. 

An alternative way to determine the RTD is by means of 
computational fluid dynamics (CFD). There exist in principle 
two options to determine the residence time distribution from 
CFD methods [9]. The first one is to numerically simulate the 
stimulus-response experiment, i.e. setting a short concentration 
pulse at the inlet of the computational domain, computing the 
unsteady concentration field of the tracer within the 
computational domain and evaluating it at the outlet. The 
second possibility is the particle tracking method. Here, virtual 
particles are released at the inlet and their trajectories are 
computed from the known velocity field of the CFD 
calculation (see e.g. [10]). A notable difference between both 
methods is that in evaluating the unsteady concentration field 
in addition to convective transport diffusive transport may be 
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taken into account, too, whereas in the particle method only 
convective properties of the flow are monitored. 

An important issue when computing the RTD by CFD is the 
introduction of the tracer at the inlet and its detection at the 
outlet, because this may strongly influence the obtained 
residence time distribution [11]. There are essentially two 
different concepts, namely the flux and planar introduction and 
measurement, respectively. Both lead to different response 
curves which may, for laminar pipe flow, be transformed into 
each other, see section 3.2. As pointed out by Levenspiel [11], 
only the flux-flux method yields the proper RTD for reactor 
purposes. To distinguish it from the response curve obtained 
by a planar-planar method, we will call the latter one P-RTD. 

In this paper we present an original CFD-based method for 
evaluation of the residence time distribution of the continuous 
phase for a bubble-train flow. Our method is a particle method 
and relies on the known bubble shape and velocity field within 
a unit cell, which are assumed to be available from direct 
numerical simulation (DNS). The particle method is usually 
based on the computed steady velocity field. For BTF the 
velocity field is unsteady in the fixed frame of reference, for 
which the RTD needs to be computed. It is, however, steady in 
the frame of reference moving with the bubble. In our method 
we take advantage of this fact and apply an appropriate 
transformation between both frames of reference. Because the 
concept of planar introduction is not suited for BTF, we extend 
it to a “volumetric introduction”, where virtual particles are 
introduced in all mesh cells within the flow domain that are 
entirely filled with liquid. For each particle we determine the 
time the particle needs to travel an axial distance equal to the 
unit cell length. By normalizing the resulting histogram we 
obtain a residence time curve which we call V-RTD. 

The remainder of this paper is organized as follows. In 
section 2 we present the direct numerical simulations, where 
we consider the co-current upward flow of air bubbles through 
silicon oil in a square vertical channel with a cross section of 2 
mm × 2 mm. In section 3 we introduce our original particle 
method for evaluating the V-RTD for bubble train flow. In 
section 4 we present results for the V-RTD curve of the liquid 
phase in bubble train flow. Finally, we give conclusions and 
outlook in section 5. 

2  DNS OF BUBBLE TRAIN FLOW 

In this section we give a short overview on the numerical 
method and the computer code used to compute bubble train 
flow and then discuss the results obtained by previous direct 
numerical simulations of BTF. 

2.1 Numerical method 

The DNS are performed with the in-house computer code 
TURBIT-VOF which solves the Navier-Stokes equations with 
surface tension term in single-field formulation for two 
incompressible immiscible fluids under assumption of constant 
fluid properties (density, viscosity, surface tension). The 
governing equations are written in non-dimensional form, see 
[12], where for normalization a reference length Lref and 
reference velocity Uref are used, which both need to be 
specified. The solution strategy is based on a projection 
method, where the resulting Poisson equation for the pressure 
is solved by a conjugate gradient solver. Time integration of 
the single field Navier-Stokes equation is done by an explicit 
third order Runge-Kutta method. Discretization in space is by a 
finite volume method where a regular Cartesian staggered grid 

is used. All derivatives in space are approximated by second 
order central differences. 

For computing the evolution of the deformable interface 
that separates the two immiscible fluids, the volume-of-fluid 
(VOF) method is used. As an approximation, we locally 
represent the interface in any mesh cell that instantaneously 
contains both phases by a plane. The orientation and location 
of the plane is reconstructed from the discrete distribution of 
the volumetric fraction f of the continuous fluid. Note that f = 1 
for mesh cells entirely filled with liquid, f = 0 for mesh cells 
entirely filled with gas, and 0 < f < 1 for mesh cells 
instantaneously containing both fluids. The evolution of f is 
governed by an advection equation which expressed the mass 
conservation of the continuous phase. To avoid any smearing 
of the interface, this f-equation is not solved by a difference 
scheme. Instead, the flux of f across the faces of any interface 
mesh cell is calculated in a geometrical manner, depending on 
the location and orientation of the interface representing plane. 
For further details about the numerical method we refer to [13]. 

2.2 Simulations of bubble train flow 

We now give a short overview on the previously performed 
simulations of bubble train flow (see [12] and [14]) that we use 
here to analyse the RTD. The bubble train flow simulations 
consider one flow unit cell only and use periodic boundary 
conditions in vertical axial direction (y). Otherwise, the 
simulations reproduce the conditions of an experiment by 
Thulasidas et al. [15], where the co-current upward flow of air 
bubbles in silicon oil of various viscosities in a square vertical 
channel with a cross section of 2 mm × 2 mm is investigated. 
Simulations were performed for silicon oil with two different 
viscosities, which results in different values of the capillary 
number Ca = µl UB / σ, namely Ca ≈ 0.04 and Ca ≈ 0.2. The 
capillary number is the relevant non-dimensional group for 
two-phase flow in narrow channels, as it represents the ratio of 
the two dominant forces, namely viscous forces and surface 
tension. The influence of the capillary number is discussed in 
detail in [12]. In the present paper, we consider only the more 
viscous case, i.e. that with higher value of Ca, where µl = 0.048 
Pa s and ρl = 957 kg/m3. While these values for density and 
viscosity match the experiment of Thulasidas et al. [15], we 
increased the gas density and gas viscosity by a factor of 10 to 
improve the computational efficiency. So we use µg = 1.48 × 
10-4 Pa s and ρg = 11.7 kg/m3 while the coefficient of surface 
tension is the same as in [15], i.e. σ = 0.02218 N/m. 

For the above physical parameters a detailed study of the 
influence of the length of the flow unit cell has been performed 
by a series of five simulation runs, see [14]. Using Lref = 2 mm, 
the computation domain is a box of non-dimensional size Lx × 
Luc × 1. Here, a square channel is considered so that Lx = 1. The 
non-dimensional length of the flow unit cell Luc is varied from 
1 for case A to 2 for case E, see Table 1. To test whether the 
resolution of 48 mesh cells per unit length is sufficient, a grid 
refinement study has been performed for case A. The 
comparison of the results obtained with the 48 × 48 × 48 grid 
with those of an additional simulation with a grid consisting of 
64 × 64 × 64 mesh cells showed only very small differences. 
Therefore the simulations of case B – E have been performed 
with the coarser resolution. Table 1 lists the grid parameters of 
the different runs. In all five cases the gas content in the 
computational domain is ε = 33% and the same driving axial 
pressure gradient is applied in y-direction, which is the 
direction of flow. For each case about 50,000 time steps of 



 
(non-dimensional) width ∆t = 2.5⋅10-5 are computed till the 
non-dimensional bubble velocity UB and the non-dimensional 
mean liquid velocity UL (both scaled by Uref = 26.4 mm/s) 
reached steady values. From the respective data listed in Table 
1 we see, that with the increase of the length of the flow unit 
cell both, UB and UL increase, too. 

Table 1: Direct numerical simulations of bubble train flow 

Case Luc domain grid UB UL 
A 1 1×1×1 48×48×48 3.60 1.21 
B 1.25 1×1.25×1 48×60×48 3.61 1.29 
C 1.5 1×1.5×1 48×72×48 3.83 1.37 
D 1.75 1×1.75×1 48×84×48 4.17 1.44 
E 2 1×2×1 48×96×48 4.50 1.51 

 
For verification of the simulation runs a comparison with 

experimental results of Thulasidas et al. [15] is performed. As 
shown in [14] we obtained good agreement for the bubble 
diameter, the bubble velocity normalized by the total 
superficial velocity, and for the relative velocity between 
bubble and liquid slug scaled by the total superficial velocity. 

Figure 1 shows a visualization of the computed bubble 
shape and flow field for the five cases. To allow for a good 
visualization, the results are shown for each case for an instant 
in time when the bubble tip is almost at the top of the 
computational domain. In all five cases the bubble is 
axisymmetric, i.e. its cross section at any axial position is 
circular. It is therefore sufficient to display only the left half of 
the steady bubble shape.  

Figure 1 also shows the velocity field in the axial mid-plane 
for the five cases. In the left half of the figure the velocity field 
is shown in the fixed frame of reference while in the right half 
it is displayed in the frame of reference moving with the bubble, 
i.e. the bubble velocity is subtracted from the vertical velocity 
component. In the fixed frame of reference it can be seen that 
the velocity profile in the liquid slug has the form of a parabola 
and is similar for all five cases. In the region where the liquid 
film is very thin the liquid velocity is almost zero. In the frame 
of reference moving with the bubble the flow inside the bubble 
can be analyzed. We find that there is one big vortex which 
occupies almost the complete bubble. In the rear part of the 
bubble, however, the velocity is almost zero in the moving 
frame of reference. For the flow in the liquid, the blank regions 
in the right half of the figures indicate that part of the liquid 
slug that is moving with the velocity of the bubble. 

 

3 NUMERICAL EVALUATION OF RTD 

3.1 Tracking of mass-less particles 

We now describe our procedure to evaluate the V-RTD 
from the DNS data and start by presenting the method for the 
reconstruction of the tracer paths. In this context we introduce 
the following definitions. Let xp,j be the position vector of 
particle j in the fixed frame of reference and let v(x,t) be the 
velocity field in the fixed frame of reference. Then, the time 
variation of the position of an infinitesimal small mass-less 
particle in the fixed frame of reference is given by 
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Thus, if one knows the particle position at time tn, then the 
position at time tn+1 = tn + ∆tn is given by 
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Using an explicit first order Euler forward integration 
procedure, one can approximate the above formula as 
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This means to compute the new position of the tracer particle 
one needs to know the fluid velocity at the particles actual 
position. For the case of bubble-train flow the phases are in 
relative motion, so that the velocity field in the fixed frame of 
reference changes in time. However, for periodic fully 
developed bubble-train flow the bubbles move with constant 
speed UB = (0, UB, 0)T and a steady flow is recovered in the 
referential linked to the centre of mass of the bubble. Let zp,j be 
the position vector of particle j in the frame of reference 
moving with the bubble and let w(x) be the steady velocity 
field in this frame of reference. Then, the relation between the 
position vector in the moving frame of reference and in the 
fixed frame of reference is given by 
 

0 B( )t t= − −z x U , (5) 
 
where t0 is the time level for which both frames of reference 
coincide. Here we use t0 = 0. At the same time, the velocity 
fields in the moving frame of reference and in the fixed frame 
of reference are related by 
 

B( ) ( , )t= −w z v x U  (6) 
 
Thus, in a discrete representation in time we obtain from the 
last two equations 
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and 
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Inserting Eq. (8) into Eq. (4) we finally obtain 
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Equation (9) together with Eq. (7) allow us to compute the 
particle path in the fixed frame of reference from knowing the 
steady velocity field in the moving frame of reference. 

As mentioned above, our DNS computer code uses a regular 
rectilinear staggered grid. Thus, the components of the velocity 
vector are defined at the centre of those two faces of a mesh 
cell that are normal to the respective coordinate direction. To 
determine the velocity at the particle position we perform for 
each velocity component a linear interpolation, which involves 
the eight nearest face-centred values of the respective velocity 
component. The time step width ∆tn for the forward Euler step 
is determined so that the Courant number based on the local 
particle velocity takes a constant value (here this value is 0.1). 



 
 
 
 

 
 

 
 

 
 

 
 

 

Fig. 1. Bubble shape and velocity field in plane z = 0.5 for fixed frame of reference (left half) and for frame of 
reference linked to the bubble (right half) for (a): case A, t = 0.595, (b): case B, t = 0.38, (c): case C, t = 0.44, (d): 
case D, t = 0.51, (e): case E, t = 0.54. In y-direction only every 8th vector is displayed. 
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Fig. 2: Non-dimensional E** curves for laminar single phase 
flow in a square duct for different values of nppul. 

 Fig. 3: Non-dimensional V-RTD curves for the bubble train 
flow of case A on two different grids for nppul = 64. 

 

3.2 Initializing the particle positions 

Up to now we have discussed only the problem of finding 
the position of a particle at a certain moment of time assuming 
that its position at a previous time step is known. In order to 
compute the RTD we must define the initial positions where 
the particles are released into the flow. Additionally, we have 
to define a criterion to determine when a particle has left the 
domain. Thus, we have to discuss the methods for introducing 
the numerical tracer and for “measuring” it. 

Single phase flow. Levenspiel [11] points out that there 
exist two different ways of introducing and measuring tracer. 
These are the flux introduction and planar introduction and the 
flux measurement and planar measurement, respectively. In the 
flux introduction method the amount of tracer introduced 
within the cross-section of a duct is proportional to the velocity 
within this cross-section. Thus, more tracer particles are 
released in the centre of the duct and less close the walls, where 
the velocity is low. Accordingly, the principle of the flux 
measurement method is to catch all the exit fluid by a “mixing 
cup measurement”. The flux introduction and flux 
measurement are thus related to the volumetric flow rate 
entering and leaving the duct within a certain time interval. In 
contrast, the planar introduction and planar measurement do 
not rely on a time interval but on a certain instant in time. 
Therefore, in the planar introduction the tracer is evenly 
distributed across the cross-section of the duct while the planar 
measurement detects the instantaneous tracer concentration 
within the cross-section. 

It is important to note, that the various combinations of the 
input-output methods give different curves [11]. For reactor 
purposes, the flux introduction - flux measurement method 
(flux-flux) is appropriate and gives the proper RTD curve 
denoted as E. The flux-planar and planar-flux methods yield 
the curve E* while the planar-planar method yields E**. For 
laminar single-phase pipe flow the different curves can be 
transformed by the relationship 
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Here, τ is the mean hydrodynamic residence time, defined as 
the ratio of pipe volume V and volumetric flow rate Q 
 

V
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From Eq. (10) we see that the tail of E is proportional to t-3, that 
of E* is proportional to t-2 and that of E** is proportional to t-1. 
While the mean value of E is identical to τ, the mean values of 
E* and E** are ∞ which is a consequence of the long tails. 

The flux-flux method is suitable for a CFD method where 
the RTD is computed by solving a convection-diffusion 
equation for the tracer concentration. For a particle method the 
realisation of the flux-flux method is not straight forward. 
Therefore, in the present approach we choose the planar-planar 
method and thus obtain E** instead of E. 

To test our particle method we computed the laminar single 
phase flow in a straight duct with square cross-section. In the 
simulations a cubic domain of non-dimensional size 1 × 1 × 1 is 
used which is discretized by 48 × 48 × 48 uniform mesh cells. 
The flow is in y-direction. In this direction periodic boundary 
conditions are used while at x = z = 0 and x = z = 1 no-slip 
conditions apply. Starting from fluid at rest, fully developed 
flow is obtained after some time, and the computed velocity 
field agrees well with the analytical solution. 

In order to obtain reliable results with the planar 
introduction method it is essential that the particles are 
uniformly distributed in the inlet plane. This is ensured by 
specifying a certain number of particles per unit length nppul, 
which is an input parameter of our method. The 
non-dimensional distance between neighbouring particles in 
each coordinate direction is therefore 1 / nppul. For a 
cross-section of size 1 × 1 then nppul × nppul particles are 
released in the inlet plane at y = 0. E.g. for nppul = 50 the particle 
positions in x and y-direction are 0.01, 0.03, 0.05, ..., 0.99. We 
then computed the trajectories of the Np = nppul ⋅ nppul particles 
and stored for each particle the time needed to reach the outlet 
plane at y = 1. So, the axial distance each particle travels is 
Ltravel = 1. By classifying the travel time of all particles in 
certain time intervals a histogram is produced. Here, as time 
interval for each class ∆tclass = 0.1 is used. The histogram is 
then normalized by nppul ⋅ nppul ⋅ ∆tclass to obtain the E** curve. 

In Fig. 2 we show the E** curves obtained for nppul = 48, nppul 
= 96, and nppul = 192. We see that the E** curve has the typical 
shape for laminar flow. It is zero for times smaller than the 
breakthrough time, takes a sharp peak at about the 
breakthrough time and then shows a decay. For times t < 1.5 all 
three E** curves agree well. However, for larger values of t 



 
there are some discrepancies, see lower right inset graphic in 
Fig. 2. These discrepancies are not surprising. In fact, one may 
expect that a continuous E** curve at large values of t requires a 
very fine resolution with many particles close to the wall. The 
upper right inset graphics in Fig. 2 shows the E** curves in 
double logarithmic scale. In this representation, the curve for 
nppul = 192 can well be fitted by a line indicating the typical 
power law dependence of laminar flow. 

The mean value of the E** curve is 2.87 for nppul = 48, is 3.47 
for nppul = 96, and is 4.13 for nppul = 192. These values are 
clearly larger than the mean hydraulic residence time which 
takes a value of τ = 1.0. The increase of the mean value of the 
E** curve with increasing number of particles suggests that the 
mean value will go to infinity for large values of nppul as it 
should for laminar flow. 

Two-phase flow. While the planar introduction method 
described above is reasonable to determine the E** curve for 
single phase flow, it can not be used for a two phase flow. The 
reason is that releasing particles at a certain instant in time in a 
cross-section fully occupied by liquid (i.e. a cross-section 
within the liquid slug) will not be a representative particle 
subset for the liquid phase. By such a procedure the 
contributions of the liquid film flow and the corner flow would 
be missed. Therefore, with exception of two-phase flows 
which do not show any axial variation of the cross-sectional 
void distribution (i.e. stratified flow and annular flow) the 
concept of planar introduction must be extended. 

In this paper we propose an extension of the planar 
introduction concept from single-phase flow to two-phase flow, 
namely the volumetric introduction. To have a representative 
sample of particles we adopt the following procedure. With the 
normalization used in TURBIT-VOF the non-dimensional size 
of the computation domain is Lx × Luc × 1 and the 
non-dimensional volume is Lx Luc. Within this domain nppul·Lx 
× nppul·Luc × nppul are uniformly distributed. 

The non-dimensional volume occupied by the liquid phase 
within the computational domain is  
 

L x uc(1 )V L Lε= −  (12) 
 
Here, ε is the overall volume fraction of the gas phase. The 
number of particles in the liquid phase is thus approximately 
 

3
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In practice, particles are only released in mesh cells that are 
entirely filled with liquid. Thus, mesh cells which contain both 
liquid and gas are ignored. 

In our DNS simulations the flow is spatially periodic and 
the periodicity length is equal to the length of the flow unit cell 
Luc. It is therefore reasonable to take the travelling distance to 
be a multiple of the length of the flow unit cell 
 

travel uc ucL n L=  (14) 
 

Here, nuc is a positive integer. In this paper we will only 
consider the case nuc = 1. 

4. RESULTS FOR BUBBLE TRAIN FLOW 

In this section we give results for the non-dimensional 
V-RTD curve of the liquid phase in bubble train flow. To test 

the accuracy and grid sensitivity of the method we first apply it 
to the two simulations performed for case A with a grid 
consisting of 48 × 48 × 48 mesh cells and 64 × 64 × 64 mesh 
cells, respectively. For this comparison we use nppul = 64. The 
results are displayed in Fig. 3. They show that the V-RTD 
computed from both DNS data sets is quite similar. Note that in 
this and all other figures the time is dimensionless, at it is 
normalized by tref ≡ Lref / Uref = 75.76 ms. 

In Fig. 4 we show the V-RTD curve for BTF case A on grid 
48 × 48 × 48 for three different values of nppul. While the curves 
are very similar, that one for nppul = 96 is clearly the smoothest 
especially for larger values of t. The inset graphics in Fig. 4 
shows the curve for nppul = 96 in semi-logarithmic 
representation. The constant slope indicates that the curve may 
well be approximated by an exponential relationship. Also 
shown in Fig. 4 as dashed vertical line is the non-dimensional 
bubble breakthrough time 
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This is the time the bubble needs to move an axial distance of 
Ltravel = Luc. From Fig. 4 we see that no fluid particles are 
moving faster then the bubble, a result that was expected. 
However, most of the fluid particles have a residence time that 
is only slightly larger than tB. These fluid particles belong to 
the liquid slug region behind the bubble, which is moving 
almost with the bubble velocity, as indicated by the velocity 
profiles in the right half of Fig. 1. The long tails in the V-RTD 
on the other hand correspond to the flow in the liquid film 
which is almost stagnant (see velocity profiles in the left half of 
Fig. 1). 

The shape of the V-RTD curve in Fig. 4 suggests that if it 
would be the real RTD it could well be approximated by a 
compartment model consisting of two tanks in series, where 
the first “tank” is a plug flow reactor and the second “tank” is a 
perfectly stirred vessel (see Fig. 12.1 in [11]). We therefore 
propose the following approximation for the V-RTD curve 
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and as an alternative 
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where we replace the mean liquid velocity UL by the liquid 
superficial velocity JL ≡ (1− ε) UL.  

Note that in above formulas the inverse of the pre-factor of 
the exponential term defines the mean residence time of the 
perfectly stirred tank. With Acs as the cross-sectional area of the 
duct, the volume of the unit cell is given by V = Luc ⋅ Acs while 
the liquid volumetric flow rate is Q = JL ⋅ Acs.. Equation (11) 
thus gives a mean residence time of V / Q = Luc / JL which 
indicates that Eq. (17) might be the better model. 
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Fig. 4: Computed V-RTD curves for BTF case A (grid 48 × 
48 × 48) for three different values of nppul. The inset figure 
shows the curve for nppul = 96 in semi-logarithmic scale. The 
dashed green line indicates the bubble breakthrough time. 

 Fig. 5: Comparison of evaluated V-RTD for BTF case A 
(grid 48 × 48 × 48) and nppul = 96 with model equations (16) 
and (17). 
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Fig. 6: Comparison of evaluated V-RTD for BTF case B and 
nppul = 96 with model equations (16) and (17). 

 Fig. 7: Comparison of evaluated V-RTD for BTF case C and 
nppul = 96 with model equations (16) and (17). 
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Fig. 8: Comparison of evaluated V-RTD for BTF case D and 
nppul = 64 with model equations (16) and (17). 

 Fig. 9: Comparison of evaluated V-RTD for BTF case E and 
nppul = 64 with model equations (16) and (17). 

 
 
 

  



 
In Figures 5 to 9 we compare the model equations (16) and 

(17) with the evaluated V-RTD curves for cases A to E. In all 
these figures the data are represented in the main graphics as 
linear plot and in the inset graphics as semi-logarithmic plot. In 
the linear plots we see that the peak value clearly decreases as 
the length of the flow unit cell increases from Luc = 1 in case A 
to Luc = 2 in case E. Therefore, for larger values of Luc the tails 
in the V-RTD become more important. The evaluated V-RTD 
curves themselves are not very smooth, indicating that a larger 
value of nppul might be used. Nevertheless, in the 
semi-logarithmic plots one can recognize that for t ≈ 4 – 5 the 
curves change their slope. The steeper slope for lower values 
of t is well fitted by model equation (16) while the flatter slope 
for larger values of t is better fitted by model equation (17). So, 
neither model 16 nor model 17 gives a perfect fit over a wide 
range of t. Overall, however, model equation (17), which is 
based on the liquid superficial velocity, seems to show a 
slightly better performance than model (16) based on the mean 
liquid velocity. So at the present stage Eq. (17) is 
recommended and can be considered as reasonable ap-
proximation to the residence time for volumetric introduction 
for bubble train flow at the capillary number considered here. 

A topic which needs further discussion is, in how far the 
V-RTD evaluated from the DNS data and fitted by Eq. (17) 
represents the real RTD, based on flux introduction and 
measurement. We recall that Eq. (17) is based on the two-tanks 
in series compartment model with a plug flow reactor as first 
and a stirred vessel as second tank. Interestingly, the RTDs of 
both the plug flow reactor and the stirred vessel are the same 
for flux-flux and planar-planar measurement. Namely, for the 
plug flow reactor the RTD is a delta pulse with zero variance, 
while the RTD for the stirred tank is derived on the assumption 
that all the fluid particles are instantaneously perfectly mixed. 
We thus conclude that model (17) might be a reasonable 
approximation for the real RTD in bubble train flow. 

5. CONCLUSIONS AND OUTLOOK 

In this paper we presented an original method for evaluating 
the liquid phase residence time distribution of bubble train 
flow using data from direct numerical simulations. The method 
is a particle method and relies on the uniform introduction of 
virtual particles in the volume occupied by the liquid phase 
within a single flow unit cell. The residence time distribution 
for such a volumetric introduction (V-RTD) is then obtained 
by statistical evaluation of the time needed by any particle to 
travel an axial distance equivalent to the length of the flow unit 
cell. Respective residence time curves have been evaluated 
from DNS data of bubble train flow in a square mini-channel 
for different length of the flow unit cell, where the capillary 
number is in the range 0.2 − 0.25. The V-RTD curves obtained 
can well be fitted by a simple exponential function, Eq. (17), 
which has been developed on the basis of a compartment 
model consisting of two tanks in series, the first tank being a 
plug flow reactor and the second being a perfectly stirred 
vessel. Based on this compartment model it is argued that 
model (17) is not only a good representation for the V-RTD but 
also for the real RTD of bubble train flow with flux 
introduction and measurement. 

In future work we will try to extend our particle method 
from volumetric introduction to a flux introduction method and 
will investigate the relationship between both RTD curves. Up 
to now we have only investigated the RTD for a single flow 
unit cell. In practice, a duct will contain tens or hundreds of 

unit cells. We will therefore apply our method to multiple 
lengths of the flow unit cell (nuc = 2,3, …) and determine the 
respective RTD curves. In particular, it will be interesting to 
check if the RTD for an arbitrary number of nuc can be obtained 
by convolution of the RTD for a single flow unit cell (nuc = 1). 
Finally, we will investigate if there is any influence of the 
capillary number on the RTD curve. 
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