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Abstract
There are numerous applications in geodesy and other geo-sciences inwhich the gravitational potential effect or other functions
of the potential are computed by forward modelling from a given mass distribution. Different volume discretisations, e.g.
prisms, tesseroids ormass layers are used. In order to control the numerical realisation of the forward calculation in the practical
application, e.g. in reduction tasks, these evaluation programs should be verified against rigorous analytical solutions. In this
contribution, a closed analytical solution for the potential of an ellipsoidal shell as a test body is presented. Furthermore, we
derive the respective closed formulae for the gravity vector and the gravity gradient tensor. Program implementations of the
tesseroid approach are compared on the basis of this ellipsoidal mass arrangement. For the practical usage, fast-converging
expansions in spherical harmonics are provided in addition. The derivation of the formulae is based on a closed solution of
the potential of a homogeneous ellipsoid for computation points situated on the rotation axis, which then is extended to the
external space.

Keywords Ellipsoidal shell · Gravity forward modelling · Tesseroid · Spherical harmonics · Ellipsoidal harmonics

1 Introduction

The determination of the gravity field of the Earth and
its variation in time is one of the main tasks of Geodesy
(Rummel et al. 2005). The most dominant spatial variations
on the Earth’s surface and in external space close to the
Earth are induced by the topographical, isostatic masses and
hydrological mass variations. The modelling of these masses
is generally performed by volume discretisations, reducing
the shape of the volume elements to geometrically simple
bodies such as rectangular prisms (Forsberg 1984; Nagy
et al. 2000, 2002), polyhedrons (D’Urso 2014), spherical
tesseroids (Anderson 1976; Heck and Seitz 2007; Grombein
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et al. 2013; Fukushima 2018; Marotta et al. 2019) or ellip-
soidal prisms (Abd-Elmotaal and Kühtreiber 2021; Roussel
et al. 2015). The precise computation of the gravitational field
of the topographic and isostatic masses is still a numerical
challenge, despite of the use of modern parallel computers
with distributed kernels, since—due to the irregularity of
these mass constituents—a huge amount of volume elements
has to be used in the discretisation of the attracting masses.
This applies in particular due to the continuing increase in
the resolution of volume elements.

Efficient approaches have been developed in the past years
for the accurate calculation of the gravitational potential
and its functionals and have been implemented by suit-
able software. In order to control those approaches and the
respective computer programs, the numerical results should
be compared with and verified against analytical solutions,
based on simple mass distributions. The most simple global
mass distribution, approximating the Earth’s topography, is
a spherical shell, which has often been applied in Geodesy
for testing evaluation procedures and software (cf. Heck and
Seitz 2007; Fukushima 2018). A massive spherical shell
bounded by two concentric spheres produces a gravitational
field that can be described by a closed analytical solution.
However, a spherical shell creates a mathematically sim-
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ple, isotropic gravitational field. Only the potential and its
radial derivatives do not vanish and can therefore be tested
in such a simple test embedding. By using Laplace’s equa-
tion, Vxx = Vyy = −Vzz/2 can be calculated indirectly in
the isotropic case.

In the present paper, we propose an ellipsoidal massive
shell bounded by two confocal ellipsoids of revolution as a
more general and realistic test configuration. Using the ellip-
soid instead of the isotropic spherical case leads to a much
better approximation of the general shape of the Earth as it
depends also on the horizontal position of the computation
point. In addition to the derivatives in radial direction also
the latitudinal and mixed gradients can be controlled by this
ellipsoidal setting. Analytical solutions for the external grav-
itational potential of a homogeneous ellipsoid of revolution
have been derived by various authors, e.g. byKellogg (1929),
Hobson (1931), MacMillan (1958) andWang (1988). Any of
these solutions refers to coordinate systems which are rather
unfamiliar in Geodesy. The arctan, sinh, cosh functions used
in these approaches are also very time-consuming in terms
of numerical efforts.

In this paper, we derive solutions in spherical coordinates
and elliptical coordinates which have not been published
before, according to our knowledge. Furthermore, we follow
a new innovative way of derivation: after having obtained a
closed solution for the special case of a computation point
on the positive z-axis, this result is extended to the complete
external space of the ellipsoid by harmonic continuation. As
a by-product, this procedure provides an illustration of the
well-known Runge–Krarup theorem related to the validity
of the spherical harmonic series. We prove that any homo-
geneous ellipsoid of revolution with the same total mass
M (but different in density and volume) and the same lin-
ear eccentricity (but different semi-major axes) produces the
same gravitational field at any computation point in external
space.

While the solution in terms of spherical coordinates pro-
duces an infinite, but very fast-converging series in spherical
harmonics, an alternative derivation in elliptical coordinates
results in a finite series of ellipsoidal harmonics of degrees
zero and two. However, in practice the series solution in
spherical harmonicswill be preferred due to its higher numer-
ical effectivity. The computing times required in both cases
are comparatively small. A significant advantage of the rep-
resentation in spherical harmonics series expansion is the
possibility of obtaining their spectral components and being
able to use them for further investigations.

The structure of the paper is as follows: in Sect. 2, the
geometrical properties of an ellipsoidal shell are explained,
while the central Sect. 3 presents two approaches for the
calculation of the gravitational potential of a solid homoge-
neous ellipsoid of revolution and an ellipsoidal shell, based
on spherical and ellipsoidal harmonics. A new methodology

for the analytical derivation of the mathematical expressions
is presented.

Section 4 contains numerical comparisons between sev-
eral solution approaches, before a discussion of results and
some conclusions finalise the paper. In an appendix, we pro-
vide the complete expressions for the gravity vector and the
gravity gradient tensor (first- and second-order derivatives of
the potential) in terms of spherical and elliptical coordinates,
and investigate the convergence behaviour of the spherical
harmonic series.

2 Geometry of an ellipsoidal shell

It is assumed that the ellipsoidal shell is situated between two
concentric, confocal ellipsoids ε1 with semi-axes a1, b1 and
ε2 with semi-axes a2, b2 having the same rotational axis (cf.
Fig. 1). The attached Cartesian coordinate system is defined
as follows: the z-axis is the rotation axis and the (x, y)−plane
is the equatorial plane. For the dimensions of the two consid-
ered ellipsoids the relation a1 > a2 and b1 > b2 holds, this
means that ε2 is completely situated inside ε1. External field
means that the calculation point P is situated on or outside
the ellipsoid ε1.

Since both ellipsoids have been assumed as confocal, the
linear eccentricity E = √

a2 − b2 is the same for ε1 and ε2.
Numerical values for the parameters ai , bi and ei = E/ai
of various confocal ellipsoids are listed in Table 1, starting
from the respective values of the Geodetic Reference System
1980 (Moritz 1980b), where EGRS80 = 521854.0097 m.

3 Gravitational potential of a homogeneous
ellipsoid and ellipsoidal shell

In this chapter, we will present two approaches for the cal-
culation of the potential and its derivatives at points outside

Fig. 1 Confocal ellipsoids and the geometry of an ellipsoidal shell
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Table 1 Parameters ai , bi and
e2i based on
E = EGRS80 = a0e0

i ai (m) a0 − ai (m) bi (m) b0 − bi (m) e2i (−)

0 6378137 0 6356752.3141 0.0000 0.00669438002290

1 6377137 1000 6355748.9495 1003.3646 0.00669647968138

2 6376137 2000 6354745.5838 2006.7303 0.00669858032784

3 6375137 3000 6353742.2171 3010.0970 0.00670068196289

4 6374137 4000 6352738.8493 4013.4648 0.00670278458716

5 6373137 5000 6351735.4804 5016.8337 0.00670488820127

6 6372137 6000 6350732.1105 6020.2036 0.00670699280584

7 6371137 7000 6349728.7395 7023.5746 0.00670909840148

8 6370137 8000 6348725.3675 8026.9467 0.00671120498883

9 6369137 9000 6347721.9943 9030.3198 0.00671331256850

10 6368137 10000 6346718.6201 10033.6940 0.00671542114113

the ellipsoid. The first approach is based on representations
in terms of spherical harmonics. The second approach is
related to ellipsoidal harmonics. However, both representa-
tions describe the same gravitational field and lead to the
same numerical values (besides rounding effects) for the
potential and its derivatives outside the ellipsoid ε1.

The derivation of the formulae relies on the following pro-
cedure: first, we derive a closed analytical solution for the
special case of a computation point situated on the positive
z-axis, the rotation axis of the ellipsoid. In a second step,
this result is extended to computation points in the complete
external space, using harmonic continuation by representa-
tions in terms of spherical and ellipsoidal harmonics. As a
by-product, an illustration of the well-known Runge–Krarup
theorem related to the validity of the spherical harmonic
series in the spatial domain below the Brillouin sphere is
provided.

The gravitational potential of a homogeneous ellipsoidal
shell results from thedifferenceof the external potential fields
of the two confocal ellipsoids ε1 and ε2, due to the linear
superposition principle of potentials.

3.1 Approach I: analytical expansion in spherical
harmonics

The gravitational potential of an ellipsoidal shell with con-
stant mass density ρ can be expressed by Newton’s integral
(Heiskanen and Moritz, 1967, (1–11))

V (P) = Gρ

∫∫∫
�

1

�(P, P ′)
d�, (1)

at the computation point P outside the domain � contain-
ing the total mass M . P ′ ∈ � is the running integration
point. Newton’s gravitational constant is denoted by G. The
Euclidean distance � between P and P ′ can be expressed in

Cartesian coordinates (x , y, z)

� = �(P, P ′) =
√

(x − x ′)2 + (y − y′)2 + (z − z′)2, (2)

or in geocentric spherical coordinates (r , ϑ , λ)

�(P, P ′) =
√
r2 + r ′2 − 2rr ′ cosψ, (3)

or in cylindrical coordinates (η, ζ , λ)

�(P, P ′) =
√

η2 + η′2 − 2ηη′ cos(λ − λ′) + (ζ − ζ ′)2. (4)

The respective differential volume elements d� in the men-
tioned coordinate systems, which are used within this paper,
are

d� = dx ′dy′dz′ ,

d� = r ′2 sin ϑ ′dϑ ′dλ′dr ′ ,
d� = η′dλ′dη′dζ ′ .

(5)

The spherical distance ψ between the position vectors of P
and P ′ which occurs in Eq. (3) is defined by

cosψ(P, P ′) := cosϑ cosϑ ′ + sin ϑ sin ϑ ′ cos
(
λ′ − λ

)
.

(6)

3.1.1 Special case: gravitational potential of a
homogeneous ellipsoid at P ∈ z-axis

First, let us consider a computation point P on the z-axis,
with z ≥ b and xP = yP = 0.

It is tempting to use spherical polar coordinates (r , ϑ, λ)
for the evaluation of the Newton integral (1), but this pro-
cedure leads to insurmountable difficulties in the integration
process. As an alternative we prefer cylindrical coordinates
(η′, ζ ′, λ′) for the position of the integration point P ′, where
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Fig. 2 Spherical and cylindrical coordinates

λ′ is the geographical longitude, η′ the distance from the
rotation axis of the ellipsoid and ζ ′ the distance from the
equatorial plane (see Fig. 2). The distance � from the com-
putation point to the integration point can be expressed in
cylindrical coordinates by setting ζP ≥ max(ζ ′), η = 0 in
Eq. (4)

�(P, P ′) =
√

η′2 + (z − ζ ′)2, with z ≥ max(ζ ′). (7)

Expressing Newton’s integral (1) by replacing the volume
element d� in cylindrical coordinates (see Eq. (5)) results in
the explicit form of Newton’s integral

V (P) = Gρ

2π∫

λ′=0

p(ζ ′)∫

η′=0

+b∫

ζ ′=−b

η′dλ′dη′dζ ′√
η′2 + (z − ζ ′)2

. (8)

The upper limit of η′ is the orthogonal distance of the ellip-
soidal surface points from the z-axis, depending on ζ ′: p(ζ ′),
which can be derived from the equation of the ellipsoid.

From (Heck 2003)

( p
a

)2 +
(

ζ ′

b

)2
= 1

p2 = x ′2 + y′2 ,

(9)

results

p2(ζ ′) = a2
(
1 − ζ ′2

b2

)
. (10)

Integration with respect to λ′ gives simply

2π∫

λ′=0

dλ′ = 2π, (11)

while the integral with respect to η′ yields

V (P(z)) = 2πGρ

+b∫

−b

√
η′2 + (z − ζ ′)2

∣∣∣∣
p(ζ ′)

η′=0
dζ ′ ,

= 2πGρ

+b∫

−b

[√
z2 + a2 − 2zζ ′ − e′2ζ ′2 − z + ζ ′

]
dζ ′ ,

(12)

where

e′2 = a2 − b2

b2
(13)

is the square of the second numerical eccentricity. In the
following, we also refer to the first numerical eccentricity e

e2 = a2 − b2

a2
(14)

and the linear eccentricity E with

E2 = a2 − b2 , (15)

related by the well-known formulae

(1 − e2)(1 + e′2) = 1 ,

a2 = (1 + e′2)b2 and

E = ae = be′ .
(16)

Integration of Eq. (12) with respect to ζ ′, making use of
Bronstein et al. (2008)

∫ √
Xdx = (2αx + β)

√
X

4α
+

4αγ − β2

8α

(
− 1√−α

arcsin
2αx + β√−4αγ + β2

)
,

(17)

where X = αx2 + βx + γ and α < 0, yields

V (P(z)) = 2πGρ

{
1

2e′2 (e′2b + z)
√
z2 + a2 − 2zb − e′2b2

− 1

2e′2 (−e′2b + z)
√
z2 + a2 + 2zb − e′2b2

− 1

2e′3 (e′2(z2 + a2) + z2)

[
arcsin

−e′2b − z√
e′2(z2 + a2) + z2

− arcsin
e′2b − z√

e′2(z2 + a2) + z2

]
− 2zb

}
.

(18)
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The difference between two arcsin terms, which occur in
(18), can be expressed by

arcsin x − arcsin y = arcsin

(
x
√
1 − y2 − y

√
1 − x2

)
.

Together with

√
z2 + a2 − 2zb − e′2b2 = z − b√
z2 + a2 + 2zb − e′2b2 = z + b

yields after some tedious, but elementary manipulations

V (P(z)) = 2πGρ
b

e2

⎡
⎣ z2

2ae

(
1 + a2e2

z2

)
arcsin

⎛
⎝ 2 ae

z

1 + a2e2

z2

⎞
⎠− z

⎤
⎦ .

(19)

Defining x := ae
z and using the relationship

arctan x = 1

2
arcsin

2x

1 + x2

result in

V (P(z)) = 2πGρ
b

e2

[
z2

ae

(
1 + a2e2

z2

)
arctan

(
ae

z

)
− z

]
.

(20)

Finally, let us consider the total mass M of the homogeneous
ellipsoid

M = 4

3
πρa2b (21)

resulting in the closed expression

V (P(z)) = 3

2

GM

E

[
z2

E2

(
1 + E2

z2

)
arctan

(
E

z

)
− z

E

]

(22)

(in consistency with Lambert (1961), after correction of
Eq. (50) ibd.). Consult also the former paper of Lambert
(1952).

For numerical reasons, a series expansion of Eq. (22) is
preferable. Denoting x := E

z , |x | < 1 and using

arctan x = x − 1

3
x3 + 1

5
x5 − 1

7
x7 + . . . ,

the bracket [. . . ] in (22) can be developed in

z

x
(1 + x2) arctan x − z = 2z

(
x2

1 · 3 − x4

3 · 5 + x6

5 · 7 − . . .

)
,

resulting in the numerically fast-converging series expansion

V (z) = GM

E

∞∑
n=0

3(−1)n

(2n + 1)(2n + 3)

(
E

z

)2n+1

. (23)

For an evaluation point P outside the ellipsoid which is
located on the (positive) z-axis, z > b holds. It is straight-
forward that E/z = be′/z < e′ = 0.082 094 438 (Moritz
1980b). This leads to (E/z)2n+1 < 2 · 10−8 even for n = 3
which indicates the very fast numerical convergence.

3.1.2 General case: gravitational potential at arbitrary
points outside the ellipsoid

Expression (23) holds for any computation point on the pos-
itive z-axis (or on the negative z-axis if z is changed to |z|)
for z ≥ b. This equation can easily be extended to the whole
space outside the ellipsoid, considering that V in the external
space is a harmonic function, with rotational symmetry with
respect to the z-axis and equatorial symmetry with respect to
the (x, y)−plane:

V (r , ϑ) = GM

r

(
1 + c2

r2
P2(cosϑ) + c4

r4
P4(cosϑ) + . . .

)

(24)

with unknown coefficients c2n . P2 and P4 denote Legendre
polynomials of degrees 2 and 4, depending on the polar dis-
tance ϑ (complement to geocentric latitude). Specifying this
expression for points on the positive z-axis, i.e. r = z, ϑ = 0
yields

V (z) = GM

z

(
1 + c2

z2
+ c4

z4
+ c6

z6
+ . . .

)
(25)

which can be compared with the series expansion (23).
Termwise comparison results in the coefficients c2n

c2 = − 3

3 · 5 E
2, c4 = + 3

5 · 7 E
4, c6 = − 3

7 · 9 E
6, . . . .

(26)

Thus, we obtain the final result for the gravitational poten-
tial of the homogeneous ellipsoid at any computation point
outside the ellipsoid

V (r , ϑ) = GM

E

∞∑
n=0

3(−1)n

(2n + 1)(2n + 3)

(
E

r

)2n+1
P2n(cosϑ) .

(27)

The terms of degree zero and two (n = 0 and n = 1) are
consistent with the respective expressions by Moritz (1990,
p. 36), approximately derived in a different context.
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Table 2 Fully normalised
coefficients V n based on GRS80
parameters R = a and E
(Moritz 1980b)

n V n

0 1.00000000000000

2 −0.00059876355194

4 0.00000128042068

6 −0.00000000396223

8 0.00000000001476

10 −0.00000000000006

Remark 1 It is obvious from Eq. (27) that the potential of
a homogeneous ellipsoid only depends on its total mass M
and linear eccentricity E , not on any other ellipsoidal param-
eter. Thus, any homogeneous ellipsoid of revolution with the
same mass M and the same linear eccentricity E (confocal
ellipsoids) produces the same gravitational field at any point
P(r , ϑ, λ) in the external (mass-free) space, i.e. outside of
ε1 (see Fig. 1).

Usually, the spherical harmonic expansion of the gravi-
tational potential is scaled to a fixed radius R > E (e.g.
R = a, Brillouin sphere, or R = b, Bjerhammar sphere).
For a mass distribution with rotational and equatorial sym-
metry, the standard expression is provided by the formula

V (r , ϑ) = GM

r

∞∑
n=0

(
R

r

)n
Vn Pn(cosϑ) , n even .

(28)

Since Eqs. (27) and (28) represent the same function, the
Stokes’ coefficients Vn in Eq. (28) can be analytically
expressed as

Vn = 3(−1)n/2

(n + 1)(n + 3)

(
E

R

)n
, 0 ≤ n even (29)

or in fully normalised coefficients

Vn = Vn√
2n + 1

= 3(−1)n/2

(n + 1)(n + 3)
√
2n + 1

(
E

R

)n
, 0 ≤ n even .

(30)

Numerical values for the fully normalised coefficients derived
in Eq. (30) are listed in Table 2. They are based on the linear
eccentricity EGRS80 = 521854.0097 m and semi-major axis
a = R = 6378137 m of the Geodetic Reference System
1980 (GRS80) (Moritz 1980b).

Remark 2 The construction of Eqs. (27) and (28) by the
extension of the closed expression Eq. (22) from the z-axis
to the external space can be considered as an illustration of
the validity of the Runge property of harmonic functions,
which in the present context is formulated by the Runge–
Krarup theorem (Moritz, 1980a, p. 67 ff). Loosely spoken

the Runge–Krarup theorem, applied to our case, guarantees
that any harmonic function, regular outside the ellipsoid, can
be approximated arbitrarily well by harmonic functions reg-
ular outside a sphere situated completely within the ellipsoid.
Due to our constructive approach based on Eq. (24), we have
extended the domain of harmonicity from the region outside
a Brillouin sphere, enclosing the ellipsoid completely, to the
larger region outside a Bjerhammar sphere, situated com-
pletely within the ellipsoid; as Eq. (27) shows, the radius of
this internal sphere may be as small as R = E , the linear
eccentricity of the ellipsoid. As a matter of fact, although
the spherical harmonic series (27) and (28) converge in the
domain outside the focal sphere R = E , they do not repre-
sent the potential inside the ellipsoid, which is not a harmonic
function but fulfils the Poisson equation inside the masses.
In contrast, the spherical harmonic series (27) and (28) rep-
resent the analytical (harmonic) continuation in the internal
domain.

Based on Eq. (27), it is straightforward to develop the first
and second derivatives of the potential at a point in the space
outside the ellipsoid.

The first and second radial derivatives of the potential are

∂V (r , ϑ)

∂r
= GM

E2

∞∑
n=0

3(−1)n+1

2n + 3

(
E

r

)2n+2

P2n(cosϑ) ,

(31)

∂2V (r , ϑ)

∂r2
= GM

E3

∞∑
n=0

3(−1)n+2 2n + 2

2n + 3

(
E

r

)2n+3

P2n(cosϑ) .

(32)

Ageneral representation of the radial derivative of any degree
k > 0 is provided in Appendix A.3.

Applying the relation between the partial derivatives in
spherical coordinates and Cartesian coordinates in a local
topocentric system which are given in Tscherning (1976) or
Grombein et al. (2013), we elaborated the components of the
gravity vector and the gravity gradient tensor gi and Mi j of
the potential of a homogeneous ellipsoid of revolution. The
expressions are compiled in Appendix A.1.

The gravitational potential and its derivatives at computa-
tion points on the surface of the ellipsoid can be calculated
by inserting rE (ϑ) for r in Eqs. (27), (31) and (32) (cf. Heck
(2003))

rE (ϑ) = a

√√√√ 1 − ( Ea
)2

1 − ( Ea
)2

sin2 ϑ
. (33)
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3.1.3 Gravitational field of a homogeneous ellipsoidal shell

In the following, we will derive the gravity field of a homo-
geneous shell between two confocal ellipsoids of revolution.

Confocal ellipsoids ε1 and ε2 have the same linear eccen-
tricity (see Fig. 1 and compare the definition in Eq. (15))

E =
√
a2i − b2i = ai ei , i = {1, 2} , a1 > a2 .

From Eqs. (27), (31) and (32), it is obvious that just the
difference of the masses M1 and M2 has to be considered:

Mi = 4

3
πρa2i bi , i = {1, 2} ,

�M = M1 − M2 = 4

3
πρ

⎛
⎝a31

√
1 −

(
E

a1

)2
− a32

√
1 −

(
E

a2

)2⎞⎠ .

(34)

With this premise, the final expression for the potential of a
homogeneous ellipsoidal shell results in

�V (r , ϑ) = G�M

r

∞∑
n=0

3(−1)n

(2n + 1)(2n + 3)

(
E

r

)2n
P2n(cosϑ) ,

E > 0 .

(35)

It should be noted that the radial distance between two
confocal ellipsoids is not constant. Figure 3 presents the vari-
ation of the thickness of the ellipsoidal shell from the pole to
the equator, where a1 corresponds to the semi-major axis of
the GRS80 ellipsoid and a2 = a1 − 10 km. The maximum
difference occurs at the pole with d(ϑ = 0◦) = 34 m; see
also Table 1.

The lower bound rLB(ϑ) of the shell is the ellipsoidal
radius of the confocal ellipsoid ε2

rLB(ϑ) = rE(ϑ, a2) = a2

√√√√√√
1 −

(
E
a2

)2

1 −
(

E
a2

)2
sin2 ϑ

, (36)

and the upper bound rE (ϑ) is defined in Eq. (33). Throughout
this chapter, we fix the dimension of ε2 by definition of the
thickness of the ellipsoidal shell at the equator with d = a1−
a2 > 0. The latitude-dependent thickness of the ellipsoidal
shell is sufficiently accurately approximated by

d(ϑ) = rE(ϑ) − rLB(ϑ) ≥ d > 0 . (37)

Fig. 3 Variation of the thickness d(ϑ) of an ellipsoidal shell with a1 −
a2 = 10 km

Fig. 4 Dimensions of confocal ellipsoids, elliptical, spherical and
geodetic coordinates

Elliptical (u, θ, λ) and spherical (r , ϑ, λ) coordinates, the
dimensions of confocal ellipsoids as well as the thickness of
the ellipsoidal shell are depicted in Fig. 4.

The semi-major and semi-minor axis of the confocal ellip-
soid ε1 is denoted by a and b, and the semi-minor axis of any
smaller confocal ellipsoid ε2 is denoted by the elliptic coor-
dinate u. The thickness d(ϑ) of the ellipsoidal layer can be
computed from the difference of Eqs. (36) and (33). Its slight
increase from the equator to the pole is visible in Fig. 3. At
the equator d(ϑ = π/2) = d holds.

Figure 5 shows the contribution of each degree n to the
potential, assuming a1−a2 = 10 km. The rapid convergence
of the series (35) is obvious. From the extremal numerical
example (thickness of the shell is approx. 10 km, P on ε1),
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Fig. 5 Contributors to the series expansion for the gravitational poten-
tial of an ellipsoidal homogeneous shell, calculated on the surface of ε1
along a meridian. a1 − a2 = 10 km, ρ = 2670 kg m−3

the truncation error is less than 10−5 m2 s−2 if the series is
expanded only up to degree n = 6.

The radial derivative of the potential of a homogeneous
shell between two confocal ellipsoids of revolution results
from Eqs. (31) and (34) by the findings that the potential of
the shell is only a function of the mass difference between
the two confocal ellipsoids:

δg(r , ϑ) = −∂�V (r , ϑ)

∂r
= G�M

r2

∞∑
n=0

3(−1)n

2n + 3
(
E

r

)2n
P2n(cosϑ) , E > 0 .

(38)

In Fig. 6, the rapid convergence of the series (38) is obvious.
From the extremal numerical example (thickness of the shell
is approx. 10 km, P on ε1), the truncation error is less than
10−6 mGal if the series is expanded only up to degree n = 6.
Even if the series is truncated after n = 4, the approximation
error is still below 10−3 mGal.

3.2 Approach II: expansion in ellipsoidal harmonics

As an alternative to spherical harmonics the external gravi-
tational potential of a mass distribution can be represented
in ellipsoidal harmonics, which will be based on elliptical
coordinates (u, θ, λ). According to Heiskanen and Moritz
(1967, p. 43), specified for a body with rotational and equa-
torial symmetry, which is independent on longitude λ, the
potential can be expressed by the infinite series

V (u, θ) =
∞∑
n=0

a2nQ2n

(
ι̇
u

E

)
P2n(cos θ) , (39)

Fig. 6 Contributors to the series expansion for the negative radial
derivative of the gravitational potential of an ellipsoidal homogeneous
shell, calculated on the surface of ε1 along ameridian. a1−a2 = 10 km,
ρ = 2670 kg m−3

where ι̇ = √−1 is the imaginary unit and E is the linear
eccentricity as defined in (15); a2n are complex-valued coef-
ficients. For n = 0 and n = 1, the Legendre functions of
second kind Q2n can be taken from Heiskanen and Moritz
(1967, p. 66)

Q0

(
ι̇
u

E

)
= −ι̇ arctan

E

u

Q2

(
ι̇
u

E

)
= ι̇

2

[(
1 + 3

u2

E2

)
arctan

E

u
− 3

u

E

]
.

(40)

For the derivation of the ellipsoidal harmonic coefficients
a2n , we use a procedure analogous to chapter 3.1; i.e. we
first consider a computation point P situated on the z-axis
and then generalise the result to the complete external space
by harmonic extension.

For points on the rotational (= z) axis of the homogeneous
ellipsoid of revolution θ = 0◦ holds. From this, it follows
that for all Legendre polynomials P2n(cos θ) = 1 ∀ n holds.
Furthermore, it is obvious that for the points P located on
the rotational axis the coordinate z in the polar system of the
point P is identical to u; thus, u = z.

Based on this new approach (ansatz), Eqs. (39) and (40)
result in

ι̇V (z, θ) = a0 arctan
E

z
− 1

2
a2

[(
1 + 3

z2

E2

)
arctan

E

z
− 3

z

E

]
+ . . . .

(41)

Now, let us compare this expression with the closed form
(22). It can easily be recognised that

a0 = ι̇
GM

E
, a2 = −ι̇

GM

E
, a2n = 0 ∀ n > 1
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which can be inserted in (39) in order to obtain the develop-
ment of the external potential in ellipsoidal harmonics:

V (u, θ) = ι̇
GM

E

{
Q0

(
ι̇
u

E

)
− Q2

(
ι̇
u

E

)
P2(cos θ)

}
.

(42)

Obviously, the ellipsoidal harmonic series is finite and is
composed of degree 0 and 2 terms only. As a result, we get
the gravitational potential of the homogeneous ellipsoid of
revolution in the space outside the ellipsoid with semi-minor
axis b and linear eccentricity E in closed form

V (u, θ) = GM

E

{
arctan

E

u
+ 1

4

[(
1 + 3

u2

E2

)
arctan

E

u
− 3

u

E

]

(
3 cos2 θ − 1

)}
.

(43)

In Appendix A.2, we present the partial derivatives of first
and second order with respect to the elliptical coordinates u
and θ and compose them into the components of the gravity
vector and gravity gradient tensor with respect to the local
triad (−θ, λ, u), corresponding to a North/East/Up coordi-
nate system. It is obvious that—although the formulae in
elliptical coordinates are closed analytical expressions—in
practical applications the fast-converging, truncated spheri-
cal harmonic series aremore convenient andwill be preferred
due to their simpler programming feasibility. In addition, the
representation in spherical harmonics provides information
about the spectral content, which can be of great importance
in practice.

In detail, the components of the gravity vector are

gN = 3

2

GM

E

1√
u2 + E2 cos2 θ

[(
1 + 3

u2

E2

)
arctan

E

u
− 3

u

E

]

sin θ cos θ,

(44)

gL = 0, (45)

gU = − GM

E2

√
u2 + E2

u2 + E2 cos2 θ

{
E2

E2 + u2

−
[
3u

2E
arctan

E

u
− 1 − 1

2

u2

E2 + u2

](
3 cos2 θ − 1

)}
.

(46)

Since the linear eccentricity E is the same for all confo-
cal ellipsoids, the gravitational potential of a homogeneous
ellipsoidal shell results from Eq. (43) by replacing the mass
M by the mass �M of the shell, provided by Eq. (34).

On the surface of the homogeneous ellipsoid (u = b), the
expression (43) reduces to

V (u = b, θ) =GM

E

{
arctan

E

b

+1

4

[(
1 + 3

b2

E2

)
arctan

E

b
− 3

b

E

]

(
3 cos2 θ − 1

)}

= GM

E

{
arctan(e′)

+ 1

2

[(
1 + 3

e′2
)
arctan(e′) − 3

e′
]
P2(cos θ)

}
,

(47)

where e′ = E
b denotes the second numerical eccentricity of

the ellipsoid (see Eq. (16)). Similarly, the gravitational poten-
tial of an ellipsoidal shell results from Eq. (47) by replacing
M by �M , when b and e′ are the parameters of the upper
boundary surface containing the computation point.

Throughout this paper, geocentric spherical coordinates
are denoted by r , ϑ , λ and elliptical coordinates by u, θ ,
λ. In elliptical coordinates, a point P in space is fixed by
the intersection of a confocal ellipsoid u = const., a hyper-
boloid θ = const. and the meridian plane λ = const. passing
through P . Furthermore, geodetic (geographical) coordi-
nates are denoted by h, ϕ, λ. The longitude λ is identical in
any coordinate system used. The “vertical” coordinates are
accordingly r , u and the ellipsoidal height h in the case of
geodetic coordinates. The geodetic latitude ϕ of a point P on
the surface of an ellipsoid of revolution is the angle between
the ellipsoidal normal, which is running through P , and the
projection of the ellipsoidal normal onto the equatorial plane
(see Fig. 4).

For the transformation from spherical co-latitude (polar
distance) ϑ to elliptical co-latitude θ at points on the surface
of the ellipsoid, the relation

cos θ = cosϑ√
1 − e2 sin2 ϑ

=
√

1 + e′2
1 + e′2 cos2 ϑ

cosϑ (48)

can be used, similarly for the transformation from geodetic
latitude ϕ to elliptical co-latitude θ the following relation
holds:

cos θ = sin ϕ√
1 + e′2 cos2 ϕ

=
√

1 − e2

1 − e2 sin2 ϕ
sin ϕ . (49)

Equations (48) and (49) result from the manipulation of
(Heiskanen and Moritz, 1967, (1–103)) and (Heck, 2003,
(3.35), (3.37)). The geodetic latitude ϕ, the spherical co-
latitude ϑ and the elliptical co-latitude θ are related to each
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other by the following equations

tan ϑ = 1

(1 − e2) tan ϕ
,

tan θ = 1√
1 − e2 tan ϕ

,

tan θ =
√
1 − e2 tan ϑ .

(50)

Remark 3 Equations (48) or (49) can easily be inserted in
Eq. (47). Obviously, the gravitational potential on the surface
of a homogeneous ellipsoid can be represented in closed ana-
lytical form not only in elliptical coordinates but also when
geodetic or spherical latitudes are used.

4 Numerical comparisons

The formulae derived in Sect. 3 provide helpful analytical
tools for testing algorithms and software in gravity fieldmod-
elling. In Geodesy, a spherical shell has often been applied
to testing software for calculating topographic gravity field
functionals (cf. Heck and Seitz, 2007; Fukushima, 2018).
However, a spherical shell creates a mathematically simple
gravitational field that is independent from the horizontal
position; in contrast, an ellipsoidal shell provides a more
geo-realistic test setting which is also dependent on the geo-
graphical latitude because it takes the flattening of the Earth
into account. As a very concrete practical consequence of
modelling the test masses in the form of an ellipsoidal shell,
not only the potential and its radial derivatives but also the
latitude-dependent (and mixed ones with r ) derivatives are
different from zero, so that the software is also controllable
for these functionals.

The massive ellipsoid or ellipsoidal shell can be discre-
tised in various ways, as performed by different groups,
resulting in numerical values for the potential and its deriva-
tives (see, for example, Šprlák et al, 2020). By the derived
analytical formulae, we have a means to check the perfor-
mance of those approaches and software, in space as well
as in frequency domain. Using a global discretization of an
ellipsoidal topography, we demonstrate in Chapter 4.2 such
a benchmark check related to the tesseroid approach accord-
ing to Heck and Seitz (2007) and Grombein et al. (2013)
which has been implemented in software used by different
groups. Before, in Chapter 4.1, we validate the spherical har-
monic expansion described in Chapter 3.1 with respect to the
rigorous closed formula (43).

All numerical investigations are carried out for computa-
tion points Pi running along a meridian at λi = �ϑ/2 =
constant with 0◦ < ϑi < π/2, ϑi = �ϑ/2 + (i − 1)�ϑ .
A step size of �ϑ = 5′ is chosen. Pi (ϑi , λi ) is located
on the surface of the ellipsoid ε1. In all numerical inves-

Fig. 7 Difference in potential between the solution in ellipsoidal and
spherical harmonics of an ellipsoidal homogeneous shell, calculated on
the surface of ε1 along a meridian. a1 −a2 = 10 km, ρ = 2670 kg m−3

tigations carried out, the Newtonian gravitation constant
G = 6.6743 · 10−11 m3 kg−1 s−2 is used. The mass density
is set to ρ = 2670 kg m−3 without restriction of generality.

Since the potential of an ellipsoidal shell and also its radial
derivative are rotationally symmetrical, and there is equato-
rial symmetry too, this test setting is obvious and sufficiently
general.

4.1 Spherical versus ellipsoidal harmonic expansion

In this chapter, the analytical representations developed in
Sect. 3 for the potential of a homogeneous ellipsoidal shell
in terms of spherical and ellipsoidal harmonics are compared
numerically.

We compare the results given in Eqs. (30) and (35) with
the exact closed solution in two terms based on ellipsoidal
harmonics (47). To ensure that the evaluation of the potential
is taken at the same points Pi on the ellipsoid, the geocentric
polar distance ϑi is converted to the elliptical co-latitude θi
by the use of Eq. (48). Both latitude parameters are visualised
in Fig. 4.

In Fig. 7, the difference between the potential of the
ellipsoidal shell given in ellipsoidal harmonics and the
series solution in spherical harmonics is provided for N ∈
{0, 2, 4, 6, 8, 10} in semi-logarithmic scale.

The approximation error in spherical harmonics compared
to the closed (exact) solution in ellipsoidal harmonics is as
follows: for the potential, it is less than 10−5 m2 s−2 if the
series is expanded only up to degree N = 6, as can be seen
in Fig. 7. For N ≥ 10, the results are numerically identical
indicated by the difference smaller than 10−9 m2 s−2 which
primarily is due to rounding errors and corresponds to a rel-
ative accuracy of 10−14.

The difference in gravitational attraction between the
solution in ellipsoidal (Eq. (38)) and spherical (Eq. (46))
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Fig. 8 Difference in gravitational attraction between the solution in
ellipsoidal and spherical harmonics of an ellipsoidal homogeneous
shell, calculated on the surface of ε1 along ameridian. a1−a2 = 10 km,
ρ = 2670 kg m−3

harmonics of an ellipsoidal homogeneous shell of thickness
d = 10 km and homogeneous density ρ = 2670 kg m−3

is less than 10−3 mGal if the series is expanded only up
to degree N = 6. This can be seen in Fig. 8 indicated by
the dashed lines. If δgs(N = 20) is used as reference, the
approximation error becomes much smaller (cf. Fig. 8 solid
lines). From these results, it can be concluded that the closed
solution faces some numerical limitations, rather than the
solution in spherical harmonics.

Statistical values for the potential and gravitational attrac-
tion in ellipsoidal and spherical harmonics are provided in
Table 3.

The equivalent representation of the potential and its
attraction in spherical and elliptical coordinates (Eqs. (35),
(43) and (38), (46), respectively) is confirmed by the identi-
cal numerical results (besides negligible numerical effects)
presented in Figs. 7 and 8.

4.2 Tesseroid discretisation versus spherical
harmonic expansion

Usually, a computational implementation of a spatial mass
discretisation is validated against an analytical solution.
Here, we apply extended spherical volume elements, called
tesseroids. A spherical tesseroid is bounded by two merid-
ians in East–West direction with geocentric longitudes λ1
and λ2. In North–South direction, the tesseroid is bounded
by two concentric conical surfaces with opening angles
ϑ1 = π/2−ϕ1 and ϑ2 = π/2−ϕ2. In the spherical case, the
top and bottom bounding surfaces are spheres of radii r1 = R
and r2 = R+d. The spherical tesseroid is depicted in Fig. 9.
An ellipsoidal tesseroid is bounded by the confocal ellip-
soids ε1 and ε2, respectively, where the distance d between

Fig. 9 Geometry of a spherical tesseroid (Heck and Seitz 2007)

the bounding surfaces is latitude-dependent (Roussel et al.
2015).

Routines for the computation of the gravitational field
of a spherical tesseroid have been developed and tested in
many studies (Marotta and Barzaghi 2017; Hirt et al. 2014;
Grombein et al. 2013; Uieda et al. 2016). In Heck and Seitz
(2007) and Fukushima (2018), the potential and the gravi-
tational attraction (negative radial derivative) was validated
against a spherical shell, using the closed formulae (Vaníček
et al. (2001, 2004))

V shell(r) := 4

3
πρ
(
r32 − r31

) 1
r
, r ≥ r2 > r1, (51)

gshell(r) := 4

3
πρ
(
r32 − r31

) 1

r2
, r ≥ r2 > r1. (52)

In the spherical case, the thickness of the shell is H = d =
r2 − r1. R = r1 = 6368137 m is the constant radius of the
sphere on which the shell is elongated.

Already in Heck and Seitz (2007), it is pointed out that the
spherical tesseroid formulae can also be used in an ellipsoidal
arrangement. An ellipsoidal tesseroid can be approximated
by a spherical one by using r1 = rE(ε2) and r2 = rE(ε1),
respectively, referring Eq. (33) to the mean latitude (ϕ1 +
ϕ2)/2.

In order to check the tesseroid approach in the ellipsoidal
context, we have discretised an ellipsoidal shell between the
confocal ellipsoids ε1 and ε2, using a grid size �ϕ = �λ =
30′′ and a1−a2 = 10 km, identical with the tesseroid dimen-
sions. The differences between the results of the tesseroid
approach and the rigorous formulae for the potential and its
radial derivative are presented in Figs. 10 and 11, showing the
approximation error along a meridian on the upper boundary
surface ε1.
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Table 3 Statistical values for the potential (m2 s−2) and gravitational attraction (mGal) in ellipsoidal and spherical harmonics

Function N = nmax Eq Min Max Mean std

Ve – (43) 142543.067958 142734.612103 142638.999086 68.469311

Vs 0 (35) 142447.502357 142926.708552 142687.204935 171.297087

Vs 2 (35) 142542.862281 142734.057733 142638.917647 68.345663

Vs 4 (35) 142543.067320 142734.614178 142638.999294 68.469630

Vs 6 (35) 142543.067956 142734.612094 142638.999085 68.469610

Vs 8 (35) 142543.067958 142734.612103 142638.999086 68.469311

Ve − Vs(N ) 6 −0.000004 0.000009 0.000001 0.000003

Vs(20) − Vs(N ) 6 −0.000004 0.000009 0.000001 0.000003

V shell – (51) 142605.592705 142607.850787 142607.012876 0.637011

Ve − V shell – −63.524747 128.773619 31.986209 68.742264

ge (46) 2237.873098 2239.375026 2238.624372 0.536882

gs 0 (38) 2233.371631 2248.423432 2240.897532 5.380419

gs 2 (38) 2237.856943 2239.331487 2238.616725 0.527355

gs 4 (38) 2237.873028 2239.375255 2238.623148 0.536916

gs 6 (38) 2237.873098 2239.375025 2238.623125 0.536881

gs 8 (38) 2237.873098 2239.375026 2238.623125 0.536881

ge − gs(N ) 6 0.000001 0.002522 0.001247 0.000901

gs(20) − gs(N ) 6 −0.000001 0.000001 0.000000 0.000001

Fig. 10 Approximation error for the gravitational potential of an ellip-
soidal homogeneous shell, calculated on the surface of ε1 along a
meridian, when using tesseroids. a1 − a2 = 10 km, ρ = 2670 kg m−3,
�ϕ = �λ = {3′ (red), 2′ (blue), 1′ (green), 30′′ (black) }. The exact
solution which the tesseroid evaluation is compared to, is calculated
using Eq. (35) in spherical harmonics with amaximumdegree of expan-
sion N = 20

The absolute difference between the potential values cal-
culated from Eq. (35) and the tesseroid method (Heck and
Seitz 2007; Grombein et al. 2013) indicates that generally
the tesseroid approach agrees better than 10−5 m2 s−2.

Themaximal numerical discrepancy occurs at the pole and
reaches an absolute value of 0.027 m2 s−2. Keep in mind,
that at the poles, the tesseroids degenerate into triangular
columns.

The same conclusions can be drawn for the radial deriva-
tive of the potential (gravity attraction). For the chosen
numerical example (a1 − a2 = d = 10 km, �ϑ =
�λ = 30′′, hP = 0 m), the numerical tesseroid solution
agrees with Eq. (38) to an order of magnitude better than
10−6 mGal, besides in the direct vicinity of the poles. Both
the analytical solution for the ellipsoidal shell and the gravity
forward modelling by tesseroids—as well as the respective
software implementations—are thus confirmed. This mutual
confirmation is of course dependent on the used geometri-
cal fineness of discretization of the ellipsoidal shell. In order
to touch this important topic, which is not in the focus of
this paper, the approximation errors obtained on a coarser
discretisation with �ϕ × �λ = {3′ × 3′, 2′ × 2′, 1′ × 1′}
are presented in Figs. 10 and 11. The effect of the different
discretisations can be clearly seen here.While the coarser dis-
cretisation leads to systematic deviations with a very smooth
progression, the result with a discretisation of 30′′ × 30′′
merely shows random behaviour. This is caused by rounding
errors and reflects only numerical effects. In addition, this
confirms that the used fine discretisation of 30′′ × 30′′ is fine
enough for our numerical investigations.
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Fig. 11 Approximation error for the radial derivative of the potential of
an ellipsoidal homogeneous shell, calculated on the surface of ε1 along
a meridian when using tesseroids. a1 −a2 = 10 km, ρ = 2670 kg m−3,
�ϕ = �λ = {3′ (red), 2′ (blue), 1′ (green), 30′′ (black) }. The exact
solution which the tesseroid evaluation is compared to, is calculated
using Eq. (38) in spherical harmonics with amaximumdegree of expan-
sion N = 20

5 Conclusion

We have derived the external gravitational potential of a
homogeneous ellipsoidal shell, bounded by two confocal
ellipsoids of revolution, by solving the respective New-
ton integral in terms of spherical and elliptical coordinates,
resulting in spherical and ellipsoidal harmonics. While the
spherical harmonic representation produces a numerically
fast-converging series for a global homogeneous ellipsoidal
shell of, for example, 10 km thickness, which is used as
an extreme case in the presented numerical investigations,
the development in ellipsoidal harmonics consists of a finite
series of degrees zero and two. As a matter of fact, both rep-
resentations are theoretically equivalent, providing the same
numerical results (up to rounding effects) if the spherical
harmonic series is truncated at a suitable maximal degree.
The series development in spherical harmonics enables the
representation of the spectral components of the potential
and the gradients, which may be considered as an advantage
compared with the representation in ellipsoidal harmonics.

In Sects. 3.1 and 3.2, the derivation procedure starts from
the solution of the Newton integral for computation points
situated on the rotation axis, for which a closed analytical
solution exists in spherical aswell as in elliptical coordinates;
in a second step, this solution is extended to the external space
by harmonic continuation. The comparison between the rig-
orous finite ellipsoidal harmonic solution and the spherical
harmonic expansion proves that the series expansion up to
degree n = 6 is sufficient for guaranteeing an approximation
error less than 10−5 m2 s−2. This truncated series is easy

to handle and contains only four terms. Thus, in practical
applications the truncated spherical harmonic series will be
preferred due to its higher numerical efficiency in compari-
son with the closed, but complicated analytical expressions
in elliptical coordinates. The latter shows in the presented
investigations some numerical problems, especially for the
gravity gradient. The closed solution in elliptical coordinates
consists only of two terms, but time-consuming arctan(x)
function calls appear. Another disadvantage is that the spec-
tral components cannot be used explicitly.

The derived formulae can be applied for testing and verifi-
cation of computer programs and software implementations
used for forward and inverse modelling in gravity field stud-
ies. In contrast to the often used isotropic test scenario based
on a homogeneous spherical shell, the gravitational field of
an ellipsoidal shell is also dependent on the horizontal posi-
tion of the computation point, thus providing a more general
control. As a matter of fact, with the presented ellipsoidal
approach it is now possible to check also the gradients in
latitudinal direction.

InSect. 4.2,wehave checked thewell-established tesseroid
approach (Heck and Seitz 2007; Grombein et al. 2013) and
respective software by using a homogeneous ellipsoidal shell
as test body representing the Earth’s topography. Discretis-
ing the ellipsoidal shell by tesseroidal volume elements of
different sizes (3′, 2′, 1′, 30′′) and summing up their con-
tributions to the gravitational potential provide a numerical
solution that has been compared with the rigorous analytical
solution. In this way, the validity of the approach and the
performance of the evaluation software could be proved. In
the case of a 10 km-thick ellipsoidal shell and a discretisa-
tion of 30′′ × 30′′, the agreement at a computation point on
the ellipsoidal surface is generally better than 10−5 m2 s−2;
the maximal discrepancy occurs at the poles, amounting to
0.027 m2 s−2, due to the degeneration of the tesseroids in the
near zone to (quasi-)triangular elements. The results obtained
with the coarser resolution clearly show the obvious depen-
dencyon thegeometrical discretisationused.The latter is also
an important outcome of the presented investigations. The
derived solutions for potential and gravitational attraction
for an ellipsoidal shell can be used to get a reliable statement
on the results derived from DTMs of different resolutions.

In a similar way, the formulae derived in the paper may
be used for checking other approaches and software (e.g. TC
Software, Forsberg (1984); Forsberg andTscherning (2014)),
based on different discretisations, e.g. rectangular prisms
(Nagy et al. 2000, 2002) or polyhedrons (D’Urso 2014).

Finally, also software for spherical harmonic analysis and
synthesis can be controlled by the aid of the formulae derived
in our paper.

Acknowledgements The authors would like to thank the two anony-
mous reviewers and Gábor Papp for their useful and constructive

123



   54 Page 14 of 18 K. Seitz et al.

comments. The effort and cooperation of the Associate Editor is kindly
acknowledged.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Data availability All data generated or analysed during this study are
included in this published article.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendices

A.1 Derivation of the gravity vector and gravity
gradient tensor in spherical coordinates

Applying the relation between the partial derivatives in
spherical coordinates and Cartesian coordinates in a local
topocentric system which are given in Tscherning (1976) or
Grombein et al. (2013), we elaborated the following expres-
sions:
for the components of the gravity vector

g1 = −1

r

∂V

∂ϑ
, g2 = 1

r sin ϑ

∂V

∂λ
, g3 = ∂V

∂r
. (53)

and gravity gradients

M11 = 1

r2

(
∂2V

∂ϑ2 + r
∂V

∂r

)
,

M22 = 1

r2 sin2 ϑ

(
∂2V

∂λ2
+ sin ϑ cosϑ

∂V

∂ϑ
+ r sin2 ϑ

∂V

∂r

)
,

M33 = ∂2V

∂r2
,

M12 = 1

r2 sin ϑ

(
− ∂2V

∂ϑ∂λ
+ cot ϑ

∂V

∂λ

)
= M21,

M13 = 1

r

(
− ∂2V

∂ϑ∂r
+ 1

r

∂V

∂ϑ

)
= M31,

M23 = 1

r sin ϑ

(
∂2V

∂λ∂r
− 1

r

∂V

∂λ

)
= M32 , (54)

we found the following expressions for the components of
the gravity vector and the gravity gradient tensor gi and Mi j

of a homogeneous ellipsoid of revolution:

g1 = −1

r

∂V (r , ϑ)

∂ϑ
= GM

E2

∞∑
n=0

(−1)n+1

(2n + 1)(2n + 3)

(
E

r

)2n+2

P ′
2n(cosϑ) ,

(55)

g2 = 1

r sin ϑ

∂V (r , ϑ)

∂λ
= 0 , (56)

g3 = ∂V (r , ϑ)

∂r
, cf. Eq. (31) , (57)

M11 = 3GM

E3

∞∑
n=0

(−1)n

(2n + 1)(2n + 3)

(
E

r

)2n+3

[
P ′′
2n − (2n + 1)P2n

]
,

(58)

M22 = GM

E3

∞∑
n=0

(−1)n+1

(2n + 1)(2n + 3)

(
E

r

)2n+3

[
cot ϑP ′

2n + (2n + 1)P2n
]

,

(59)

M33 = Vrr = ∂2V (r , ϑ)

∂r2
, cf. Eq. (32) , (60)

M12 = Vϑλ = 0 , (61)

M13 = GM

E3

∞∑
n=0

(−1)n

(2n + 1)(2n + 3)

(
E

r

)2n+3
2nP ′

2n , (62)

M23 = Vλr = 0 . (63)

The presented tensor elements gi and Mi j can be con-
sidered as the physical coordinates of the tensors of first
and second order (covariant derivatives). They refer to the
topocentric left-handed reference frame with the orthonor-
mal base vectors (northing, easting, up). The normalised base
vectors are defined as:

g1 := −1

r

∂x
∂ϑ

, g2 := 1

r sin ϑ

∂x
∂λ

, g3 := ∂x
∂r

, (64)

with the position vector xP of P and its geocentric distance
r = |xP |.

A.2 Derivation of the gravity vector and gravity
gradient tensor in elliptical coordinates

In order to derive the gravity vector and gravity gradient ten-
sor in elliptical coordinates, we are using the tensor calculus
(cf. Klingbeil, 1966).

In an earth-fixed equatorial coordinate system with base
vectors ei , the Cartesian coordinates of a position vector of a
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computation point P are given in elliptical coordinates βk =
{θ, λ, u}

x1 =
√
u2 + E2 sin θ cos λ ,

x2 =
√
u2 + E2 sin θ sin λ ,

x3 = u cos θ .

(65)

The respective covariant base vectors are defined as

gk = ei
∂xi

∂βk
. (Einstein’s summation rule has been applied).

(66)

Applying (66) to (65), we get the covariant base vectors:

g1 =
⎛
⎝ c1 cos λ

c1 sin λ

−u sin θ

⎞
⎠ , g2 =

⎛
⎝−c2 sin λ

c2 cos λ

0

⎞
⎠ , g3 =

⎛
⎝ c3 cos λ

c3 sin λ

cos θ

⎞
⎠

(67)

with the abbreviations c1 = √
u2 + E2 cos θ , c2 = √

u2 + E2

sin θ and c3 = u√
u2+E2 sin θ .

From this, we evaluate the covariant metric tensor gi j =
gi ⊗ g j as a dyadic product:

(gi j ) =
⎛
⎜⎝
u2 + E2 cos2 θ 0 0

0 (u2 + E2) sin2 θ 0

0 0 u2+E2 cos2 θ
u2+E2

⎞
⎟⎠ ,

(68)

and its inverse, the contravariant metric tensor gi j = 1/gi j :

(gi j ) =
⎛
⎜⎝

1
u2+E2 cos2 θ

0 0

0 1
(u2+E2) sin2 θ

0

0 0 u2+E2

u2+E2 cos2 θ

⎞
⎟⎠ . (69)

The Christoffel symbols are defined as

�k
�m = 1

2
gkn
(
gmn,� + gn�,m − g�m,n

)
(70)

and are elaborated based on (68) and (69):

�1
�m =

⎛
⎜⎜⎝

−E2 sin θ cos θ
u2+E2 cos2 θ

0 u
u2+E2 cos2 θ

−(u2+E2) sin θ cos θ

u2+E2 cos2 θ
0

sym E2 sin θ cos θ
(u2+E2)(u2+E2 cos2 θ)

⎞
⎟⎟⎠ ,(71)

�2
�m =

⎛
⎝ 0 tan θ 0

0 u
u2+E2

sym 0

⎞
⎠ , (72)

�3
�m =

⎛
⎜⎜⎝

−u(u2+E2)

u2+E2 cos2 θ
0 −E2 sin θ cos θ

u2+E2 cos2 θ
−u(u2+E2) sin2 θ

u2+E2 cos2 θ
0

sym uE2 sin2 θ
(u2+E2)(u2+E2 cos2 θ)

⎞
⎟⎟⎠ . (73)

Now, the covariant second derivatives of the potential in
elliptical coordinates are:

Vik = ∂2ikV − �n
ik Vn , (74)

V11 = ∂2V

∂θ2
+ E2 sin θ cos θ

u2 + E2 cos2 θ

∂V

∂θ
+ u(u2 + E2)

u2 + E2 cos2 θ

∂V

∂u
, (75)

V12 = 0 = V21 , (76)

V13 = ∂2V

∂θ∂u
− u

u2+E2 cos2 θ

∂V

∂θ
+ E2 sin θ cos θ

u2+E2 cos2 θ

∂V

∂u
= V31,

(77)

V22 = (u2 + E2) sin θ

u2 + E2 cos2 θ

[
cos θ

∂V

∂θ
+ u sin θ

∂V

∂u

]
, (78)

V23 = 0 = V32 , (79)

V33 = ∂2V

∂u2
− E2 sin θ

(u2 + E2)(u2 + E2 cos2 θ)[
cos θ

∂V

∂θ
+ u sin θ

∂V

∂u

]

= ∂2V

∂u2
− E2

(u2 + E2)2
V22 . (80)

Finally, we get the physical components of the grav-
ity vector and gravity gradient tensor in the left-handed
local north-oriented frame (northing, longitudinal=easting,
up) which is defined as (N , L,U )=̂(−θ, λ, u).

The gravity vector elements are:

gN = − 1√
u2 + E2 cos2 θ

∂V

∂θ
, (81)

gL = 0 , (82)

gU =
√

u2 + E2

u2 + E2 cos2 θ

∂V

∂u
. (83)

The gravity gradient tensor elements are:

MNL = MLN = MLU = MUL = 0 , (84)

MNN = 1

u2 + E2 cos2 θ
V11 , (85)

MLL = 1

(u2 + E2) sin2 θ
V22 , (86)

MUU = u2 + E2

u2 + E2 cos2 θ
V33 , (87)

MNU = −
√
u2 + E2

u2 + E2 cos2 θ
V13 = MUN . (88)

The Laplace equation LapV = �V = MNN + MLL +
MUU = 0 results from Equations (85), (86) and (87)
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LapV = �V = 1

u2 + E2 cos2 θ[
∂2V

∂θ2
+ cot θ

∂V

∂θ
+ (u2 + E2)

∂2V

∂u2
+ 2u

∂V

∂u

]
,

(89)

in accordance with Heiskanen and Moritz (1967, p. 41, (1-
105)).

The partial derivatives in elliptical coordinates required
for the evaluation are as follows, starting from equation (43)
for the potential:

∂V (u, θ)

∂u
= − 1

2

GM

E2

{
2E2

E2 + u2

−
[
3u

E
arctan

E

u
− 2 − u2

E2 + u2

]

(
3 cos2 θ − 1

)}
, (90)

∂V (u, θ)

∂θ
= − 3

2

GM

E

[(
1 + 3

u2

E2

)
arctan

E

u
− 3

u

E

]

sin θ cos θ, (91)

∂2V (u, θ)

∂u2
= GM

E3

{
2uE3

(E2 + u2)2

+
[
3

2
arctan

E

u
− 5uE3 + 3u3E

2(E2 + u2)2

]

(
3 cos2 θ − 1

)}
, (92)

∂2V (u, θ)

∂u∂θ
= − 3

GM

E2

[
3u

E
arctan

E

u
− 2 − u2

E2 + u2

]

sin θ cos θ, (93)

∂2V (u, θ)

∂θ2
= − 3

2

GM

E

[(
1 + 3

u2

E2

)
arctan

E

u
− 3

u

E

]

(2 cos2 θ − 1) . (94)

Inserting the partial derivatives with respect to the ellipti-
cal coordinates (Eqs. (90)–(94)) into (85)–(88), we get the
final result, the gravity gradient tensor expressed in elliptical
coordinates:

MNN = − 3

2

GM

E(u2 + E2 cos2 θ)2{[
− u2

E2 (E2 + 3u2) −
(
u2 + E2 − 6

u4

E2

)
cos2 θ

+ 2(E2 − 3u2) cos4 θ
]
arctan

E

u

+ 2
u3

E
+ u

E
(2E2 − 3u2) cos2 θ − 3uE cos4 θ)

}
,

(95)

MLL = − 3

2

GM

E3

[
arctan

E

u
− uE

u2 + E2

]
,

(96)

MUU = 3

2

GM

E

u2 + E2

u2 + E2 cos2 θ{[
3 cos2 θ

E2 − u2 + E2 cos2 θ

E2(u2 + E2)

]
arctan

E

u

+ 2uE

(u2 + E2)2
sin2 θ + u

E(u2 + E2)
(3 cos2 θ − 1)

− uE sin2 θ

(u2 + E2)(u2 + E2 cos2 θ)

(
1 − E2 sin2 θ

u2 + E2

)}
,

(97)

MNU = 3

2

GM

E2

√
u2 + E2

u2 + E2 cos2 θ
sin θ cos θ

{
3u

E
arctan

E

u
− 2 − u2

u2 + E2

}
. (98)

A.3 Higher-order radial derivatives of the potential
in spherical coordinates

Based on Eq. (27), the radial derivative of any degree k > 0
at a point in the space outside the ellipsoid can be expressed
in the general formula:

∂kV (r , ϑ)

∂rk
= GM

Ek+1

∞∑
n=0

(−1)n+k

⎡
⎣ k∏

j=1

(2n + j)

⎤
⎦

(2n + 1)(2n + 3)

(
E

r

)2n+k+1

P2n(cosϑ) .

(99)

The first and second radial derivatives are explicitly given in
Eqs. (31) and (32).

A.4 Convergence of the infinite spherical harmonic
series

The fast convergence of the potential coefficients can be
derived analytically as shown in the following. Starting with
Eq. (30), the analytical expression of the potential coeffi-
cients in the basis of spherical harmonics is:

V n = Vn√
2n + 1

= 3(−1)n/2

(n + 1)(n + 3)
√
2n + 1

(
E

R

)n
,

0 ≤ n even .
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Weexpress the convergence as ratio between two consecutive
coefficients V n and

V n+2 = 3(−1)(n+2)/2

(n + 2 + 1)(n + 2 + 3)
√
2(n + 2) + 1

(
E

R

)n+2

,

= 3(−1)n/2(−1)

(n + 3)(n + 5)
√
2n + 5

(
E

R

)n+2

,

0 ≤ n + 2 even .

(100)

The ratio between V n+2 and V n is given straightforward by

V n+2

V n
= 3(−1)n/2

3(−1)n/2(−1)

(n + 1)(n + 3)

(n + 3)(n + 5)

√
2n + 1√
2n + 5

(
E

R

)n+2

(
R

E

)n

= −n + 1

n + 5

√
2n + 1

2n + 5

(
E

R

)2
.

(101)

It can be seen that the magnitude of the n-dependent pre-
factor in Eq. (101) is always smaller than one. If we assume
that ε1 is the surface of the Geodetic Reference System 1980
(Moritz 1980b), we set R = a, without loss of generality, and
note that E = ae, the final expression of the convergence of
the potential coefficients is given by:

V n+2

V n
≈ −e2 . (102)

The numerical behaviour of the coefficients expressing the
potential of an ellipsoidal shell in spherical harmonics is
clearly shown in Fig. 5. The rapid decay is obvious from the
provided numbers in Table 2.
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