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Abstract
A poset (P ′,≤P ′) contains a copy of some other poset (P,≤P ) if there is an injection
f : P ′ → P where for every X , Y ∈ P , X ≤P Y if and only if f (X) ≤P ′ f (Y ). For any
posets P and Q, the poset Ramsey number R(P, Q) is the smallest integer N such that
any blue/red coloring of a Boolean lattice of dimension N contains either a copy of P with
all elements blue or a copy of Q with all elements red. A complete �-partite poset Kt1,...,t�

is a poset on
∑�

i=1 ti elements, which are partitioned into � pairwise disjoint sets Ai with
|Ai | = ti , 1 ≤ i ≤ �, such that for any two X ∈ Ai and Y ∈ A j , X < Y if and only if i < j .
In this paper we show that R(Kt1,...,t� , Qn) ≤ n + (2+on(1))�n

log n .
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1 Introduction

Ramsey theory is a field of combinatorics that asks whether in any coloring of the elements
in a discrete host structure we find a particular monochromatic substructure. This question
offers a lot of variations depending on the chosen sub- and host structure. While originating
from a result of Ramsey [8] on uniform hypergraphs from 1930, the most well-known setting
considers monochromatic subgraphs in edge-colorings of complete graphs. In contrast, this
paper considers a Ramsey-type problem using partially ordered sets, or posets for short, as
the host structure. A poset is a set P which is equipped with a relation ≤P on the elements
of P that is transitive, reflexive, and antisymmetric. Whenever it is clear from the context
we refer to such a poset (P,≤P ) just as P . Given a non-empty set X , the poset consisting
of all subsets of X equipped with the inclusion relation ⊆ is the Boolean lattice Q(X ) of
dimension |X |. We use Qn to denote a Boolean lattice with an arbitrary n-element ground
set.

We say that a poset P1 is an induced subposet of another poset P2 if P1 ⊆ P2 and for
every two X , Y ∈ P1,

X ≤P1 Y if and only if X ≤P2 Y .
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A copy of P1 in P2 is an induced subposet P ′ of P2 which is isomorphic to P1. Here we
consider color assignments of the elements of a poset P using the colors blue and red, i.e.
mappings c : P → {blue, red}, which we refer to as a blue/red coloring of P . A poset is
colored monochromatically if all its elements have the same color. If a poset is colored
monochromatically in blue [red], we say that it is a blue [red] poset. The elements of a
poset P are usually referred to as vertices.

Axenovich and Walzer [1] were the first to consider the following Ramsey variant on
posets. For posets P and Q, the poset Ramsey number of P versus Q is given by

R(P, Q) = min {N ∈ N : every blue/red coloring ofQN contains either

a blue copy ofPor a red copy ofQ} .

As a central focus of research in this area, bounds on the poset Ramsey number R(Qn, Qn)

were considered and gradually improved with the best currently known bounds being
2n + 1 ≤ R(Qn, Qn) ≤ n2 − n + 2, see listed chronologically Walzer [9], Axenovich
and Walzer [1], Cox and Stolee [4], Lu and Thompson [7], Bohman and Peng [3]. Falgas-
Ravry, Markström, Treglown and Zhao [5] showed computationally that R(Q3, Q3) = 7.
The related off-diagonal setting R(Qm, Qn), m < n, also received considerable attention
over the last years. A trivial lower bound in this setting is R(Qm, Qn) ≥ m + n obtained
from a layered coloring. When both m and n are large, the best known upper bound is due to
Lu and Thompson [7] who showed that

(
m−2+ 5

m

)
n+m. Whenm is fixed and n is large, an

exact result is only known in the trivial case m = 1 where R(Q1, Qn) = n + 1. For m = 2,
after earlier estimates by Axenovich andWalzer [1] as well as Lu and Thompson [7], the best
known upper bound is due to Grósz, Methuku, and Tompkins [6], which is complemented
by a lower bound shown recently by Axenovich and the present author [2]:

n

(

1 + 1

15 log n

)

≤ R(Q2, Qn) ≤ n

(

1 + 2 + o(1)

log n

)

.

In this paper we generalize the upper bound of Grósz, Methuku and Tompkins [6] on
R(Q2, Qn) to a broader class of posets, namely we discuss the poset Ramsey number of
a complete multipartite poset versus the Boolean lattice Qn . A complete �-partite poset
Kt1,...,t� is a poset on

∑�
i=1 ti vertices obtained as follows. Consider � pairwise disjoint sets

A1, . . . , A� of vertices, where Ai consists of ti distinct vertices. Now for any two indexes
i, j ∈ {1, . . . , �} and any vertices X ∈ Ai , Y ∈ A j , let X < Y if and only if i < j (Fig. 1).
Such a poset can be seen as a complete blow-up of a chain and in the literature is also referred
to as a (strict) weak order. Note that Q2 = K1,2,1.

Theorem 1 For n ∈ N, let � ∈ N be an integer such that � = o(log n) and for i ∈ {1, . . . , �},
let ti ∈ N be integers with supi ti = no(1). Then

R(Kt1,...,t� , Qn) ≤ n

(

1 + 2 + o(1)

log n

)�

≤ n +
(
2 + o(1)

)
�n

log n
.

Here and throughout this paper, the O-notation is used exclusively depending on n, i.e.
f (n) = o(g(n)) if and only if f (n)

g(n)
→ 0 for n → ∞. For parameters as above, this theorem

implies that R(Kt1,...,t� , Qn) = n + o(n). Moreover, under the precondition that � is fixed,
our result provides the order of magnitude of the two leading additive terms: We say that a
complete �-partite poset K = Kt1,...,t� is non-trivial if it is neither a chain nor an antichain,
i.e. if � ≥ 2 and ti ≥ 2 for some i ∈ {1, . . . , �}. Observe that such a non-trivial K contains
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Fig. 1 Hasse diagram of the complete 3-partite poset K3,4,2

a copy of K1,2 or K2,1, so Theorem 2 of [2] yields R(K , Qn) ≥ n + n
15 log n . Thus, for non-

trivial K , R(K , Qn) = n + �
( n
log n

)
. For trivial K , it is known that R(K , Qn) = n + �(1).

More precisely, if K is a chain on � vertices, then R(K , Qn) = n + � − 1, which is an easy
consequence of Lemma 4 of Axenovich and Walzer [1]. If K is an antichain on t vertices,
then a trivial lower bound, Lemma 3 of [1], and Sperner’s Theorem imply n ≤ R(K , Qn) ≤
n + α(t) where α(t) is the smallest integer such that

(
α(t)

	α(t)/2

) ≥ t . Ramsey bounds for an

antichain versus a Boolean lattice are considered in detail in [10].
First we shall consider a special complete multipartite poset that we call a spindle. Given

r ≥ 0, s ≥ 1 and t ≥ 0, an (r,s,t)-spindle Sr ,s,t is defined as the complete multipartite poset
Kt ′1,...,t ′r+1+t

where t ′1, . . . , t ′r = 1 and t ′r+1 = s and t ′r+2, . . . , t
′
r+1+t = 1. In other words,

this poset on r + s + t vertices is constructed by combining an antichain A of size s and
two chains Cr ,Ct on r and t vertices, respectively, such that every vertex of A is larger than
every vertex from Cr but smaller than every vertex from Ct (Fig. 2).

Theorem 2 Let r , s, t be non-negative integers with r + t = o(
√
log n) and s = no(1) for

n ∈ N. Then

R(Sr ,s,t , Qn) ≤ n +
(
1 + o(1)

)
(r + t)n

log n
.

If s ≥ 2, the lower bound R(Sr ,s,t , Qn) ≥ R(Q2, Qn)+c(r , t) ≥ n
(
1+ 1

15 log n

)+c(r , t)
can be obtained by following the construction in [2] with some additional monochromatic
blue layers at the exterior. It remains openwhether there is a lower bound such that the second
summand depends on r and t .

The spindle S1,s,1 is known in the literature as an s-diamond Ds , while the poset S1,s,0 is
usually referred to as an s-fork Vs .
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Fig. 2 Hasse diagram of the spindle S2,5,3

Corollary 3 Let s ∈ N with s = no(1) for n ∈ N. Then

R(Ds, Qn) ≤ n +
(
2 + o(1)

)
n

log n
and R(Vs, Qn) ≤ n +

(
1 + o(1)

)
n

log n
.

For a positive integer n ∈ N, we use [n] to denote the set {1, . . . , n}. Here ‘log’ always
refers to the logarithm with base 2. We omit floors and ceilings where appropriate.

The structure of the paper is as follows. In Section 2 we introduce some notation and
two preliminary lemmas. In Section 3 we show the bound for spindles and subsequently the
generalization for general complete multipartite posets.

2 Preliminaries

2.1 RedQn Versus Blue Chain

Let X and Y be disjoint sets. Then the vertices of the Boolean lattice Q(X ∪ Y), i.e. the
subsets of X ∪Y , can be partitioned with respect to X and Y in the following manner. Every
Z ⊆ X ∪ Y has an X -part XZ = Z ∩ X and a Y-part YZ = Z ∩ Y . In this setting, we refer
to Z alternatively as the pair (XZ , YZ ). Conversely, for any X ⊆ X , Y ⊆ Y , the pair (X , Y )

corresponds uniquely to the vertex X∪Y ∈ Q(X∪Y). One can think of such pairs as elements
of the Cartesian product 2X × 2Y which has a canonical bijection to 2X∪Y = Q(X ∪ Y).
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Observe that for Xi ⊆ X , Yi ⊆ Y , i ∈ [2], we have (X1, Y1) ⊆ (X2, Y2) if and only if
X1 ⊆ X2 and Y1 ⊆ Y2.

We shall need the following lemma.

Lemma 4 LetX andY be disjoint sets with |X | = n and |Y| = k for some n, k ∈ N. LetQ =
Q(X ∪Y) be a blue/red colored Boolean lattice. Fix some linear ordering π = (y1, . . . , yk)
of Y and define Y (0), . . . , Y (k) by Y (0) = ∅ and Y (i) = {y1, . . . , yi } for i ∈ [k]. Then
there exists at least one of the following in Q:

(a) a red copy of Qn, or
(b) a blue chain of length k + 1 of the form (X0, Y (0)), . . . , (Xk, Y (k)).

Note that a version of this lemma was used implicitly in a paper of Grósz, Methuku
and Tompkins [6]. It was stated explicitly and reproved by Axenovich and the author, see
Lemma 8 in [2].

2.2 Gluing Two Posets

By identifying vertices of two posets, they can be “glued together” creating a new poset.
We will later construct complete multipartite posets by gluing spindles on top of each other
using the following definition. Given a poset P1 with a unique maximal vertex Z1 and a poset
P2 disjoint from P1 with a unique minimal vertex Z2, let P1�P2 be the poset obtained by
identifying Z1 and Z2. Formally speaking, P1�P2 is the poset (P1 \ {Z1})∪ (P2 \ {Z2})∪{Z}
for a Z /∈ P1 ∪ P2 where for any two X , Y ∈ P1�P2, X <P1�P2 Y if and only if one of the
following five cases hold: X , Y ∈ P1 and X <P1 Y ; X , Y ∈ P2 and X <P2 Y ; X ∈ P1 and
Y ∈ P2; X ∈ P1 and Y = Z ; or X = Z and Y ∈ P2 (Fig. 3).

Lemma 5 Let P1 be a poset with a unique maximal vertex and let P2 be a poset with a unique
minimal vertex. Then R(P1�P2, Qn) ≤ R(P1, QR(P2,Qn)).

Proof Let N = R(P1, QR(P2,Qn)). Consider a blue/red colored Boolean lattice Q of dimen-
sion N which contains no blue copy of P1�P2. We shall prove that there exists a red copy of
Qn in this coloring. We say that a blue vertex X in Q is P1 − clear if there is no blue copy
of P1 in Q containing X as its maximal vertex. Similarly, a blue vertex X is P2 − clear if
there is no blue copy of P2 in Q with minimal vertex X . Observe that every blue vertex is
P1-clear or P2-clear (or both), since there is no blue copy of P1�P2.

Fig. 3 Creating P1�P2 from P1 and P2
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We introduce an auxiliary coloring of Q using colors green and yellow. Color all blue
vertices which are P1-clear in green and all other vertices in yellow. Then this coloring does
not contain a monochromatic copy of P1 with all vertices green, since otherwise the maximal
vertex of such a copy is not P1-clear. Recall that N = R(P1, QR(P2,Qn)), thus Q contains a
copy of QR(P2,Qn) colored monochromatically yellow, which we refer to as Q′.

Consider the original blue/red coloring of Q′. Every blue vertex of Q′ is yellow in the
auxiliary coloring, i.e. not P1-clear. Thus every blue vertex of Q′ is P2-clear. This coloring
of Q′ does not contain a blue copy of P2, since otherwise the minimal vertex of such a copy
is not P2-clear. Note that the Boolean lattice Q′ has dimension R(P2, Qn), thus there exists
a monochromatic red copy of Qn in Q′, hence also in Q. ��
Corollary 6 Let P1 be a poset with a uniquemaximal vertex and let P2 be a poset with a unique
minimal vertex. Suppose that there are functions f1, f2 : N → R with R(P1, Qn) ≤ f1(n)n
and R(P2, Qn) ≤ f2(n)n for any n ∈ N and such that f1 is monotonically non-increasing.
Then for every n ∈ N,

R(P1�P2, Qn) ≤ f1(n) f2(n)n.

Proof For an arbitrary n ∈ N, let n′ = f2(n)n. Note that for any poset P , R(P, Qn) ≥ n, so
n′ ≥ n. Thus, f1(n′) ≤ f1(n), and Lemma 5 provides

R(P1�P2, Qn) ≤ R(P1, Qn′) ≤ f1(n
′)n′ ≤ f1(n) f2(n)n.

��

3 Proofs of Theorem 2 and Theorem 1

Proof of Thereom 2 Let ε = log s
log n , so s = nε and ε = o(1). We can suppose that n is large

and hence ε < 1. Then let c = r+t+δ
1−ε

where δ = 2(r+1)
log n (log log n + r + t). Since r + t =

o(
√
log n), δ = o(1). Let k = cn

log n .We show for sufficently largen that R(Sr ,s,t , Qn) ≤ n+k.
If s = 1, then Sr ,s,t is a chain and R(Sr ,s,t , Qn) ≤ n + r + s ≤ n + k by Lemma 4 of [1],
so suppose s ≥ 2.

Claim: For sufficiently large n, k! > 2(r+t)(n+k) · (s − 1)k+1.

Note that k! >
( k
e

)k = 2k(log k−log e) and (s − 1)k+1 = 2(k+1) log(s−1). Thus, we shall prove
that k(log k − log e) > (r + t + log(s − 1))k + log(s − 1) + (r + t)n. Using the fact that
k = cn

log n and s − 1 ≤ nε , we obtain

k
(
log k − log(s − 1)

) − k
(
r + t + log e

) − log(s − 1) − (
r + t

)
n

≥ cn

log n

(
log c + log n − log log n − ε log n

) − cn

log n

(
r + t + log e

) − ε log n − (
r + t

)
n

≥ cn
(
1 − ε

) − (
r + t

)
n − cn

log n

(
log log n + r + t + log e

) − ε log n

> δn − 2(r + 1)n

log n

(
log log n + r + t

) = 0,

where the last inequality holds for sufficiently large n. ��
Let X and Y be disjoint sets with |X | = n and |Y| = k. We consider a blue/red coloring

ofQ = Q(X ∪Y)with no red copy of Qn . We shall show that there is a monochromatic blue
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copy of Sr ,s,t in Q. For every linear ordering π = (yπ
1 , . . . , yπ

k ) of Y , Lemma 4 provides a
blue chain Cπ of the form Zπ

0 = (Xπ
0 , ∅), Zπ

1 = (Xπ
1 , {yπ

1 }), . . . , Zπ
k = (Xπ

k ,Y), where
Xπ
i ⊆ X .
For every ordering π of Y , we consider the r smallest vertices Zπ

0 , . . . , Zπ
r−1 and the t

largest vertices Zπ
k−t+1, . . . , Z

π
k of its corresponding chain Cπ , so let I = {0, . . . , r − 1} ∪

{k − t + 1, . . . , k}. Each Zπ
i is a vertex of Q, so one of the 2n+k distinct subsets of X ∪ Y .

Thus for a fixed π , there are at most
(
2n+k

)r+t
distinct combinations of the Zπ

i , i ∈ I .
Recall that k! > 2(r+t)(n+k) · (s − 1)k+1. By the pigeonhole principle, we find a collection
π1, . . . , πm of m = (s − 1)k+1 + 1 distinct linear orderings of Y such that for any j ∈ [m]
and i ∈ I , Z

π j
i = Zi , where Zi ⊆ X ∪ Y is a fixed vertex independent of j . In other words,

we find many chains with the same r smallest vertices Zi , i ∈ {0, . . . , r − 1}, and the same
t largest vertices Zi , i ∈ {k − t + 1, . . . , k}. Let P be the poset induced in Q by the chains
Cπ j , j ∈ [m].

If there is an antichain A of size s inP , then none of the vertices Zi , i ∈ I , is in A, because
each of them is contained in every chain Cπ j and therefore comparable to all other vertices
in P . Note that here we used that s ≥ 2. Now A together with the vertices Zi , i ∈ I , form
a copy of Sr ,s,t in P . Recall that all vertices in every Cπ j are blue, i.e. P is monochromatic
blue. Thus we obtain a blue copy of the spindle Sr ,s,t in Q, so we are done. From now on,
suppose that there is no antichain of size s in P . By Dilworth’s Theorem we obtain s − 1
chains C1, . . . , Cs−1 which cover all vertices of P , i.e. all vertices of the Cπ j ’s. Note that the
chains Ci might consist of significantly more vertices than the (k + 1)-element chains Cπ j .

Now we consider the restriction to Y of each vertex in P , i.e. the sets Zπ
i ∩ Y , in order

to apply the pigeonhole principle once again. Assume for a contradiction that for some
i ∈ [s − 1] there are Z , Z ′ ∈ Ci with |Z ∩ Y| = |Z ′ ∩ Y| but Z ∩ Y �= Z ′ ∩ Y . This implies
that Z ∩ Y � Z ′ ∩ Y and Z ∩ Y � Z ′ ∩ Y , so Z and Z ′ are incomparable, a contradiction
as they are both contained in the chain Ci . Consequently, there is only at most one �-element
set Y �

i ⊆ Y , � ∈ {0, . . . , k}, for which there exists a Z ∈ Ci with Z ∩ Y = Y �
i .

Note that for any j ∈ [m] and for any � ∈ {0, . . . , k}, |Zπ j
� ∩Y| = �, i.e. Z

π j
� ∩Y = Y �

i for
some i ∈ [s − 1]. In other words, for fixed j , each of the k + 1 sets Z

π j
� ∩Y , � ∈ {0, . . . , k},

is equal to one of at most s − 1 Y �
i ’s. Recall that we have chosenm = (s − 1)k+1 + 1 distinct

linear orderings π j of Y . Using the pigeonhole principle we find two indexes j1, j2 such that

Z
π j1
� ∩ Y = Z

π j2
� ∩ Y for any � ∈ {0, . . . , k}. This implies that y

π j1
� = y

π j2
� , i.e. π j1 and π j2

are equal. But this is a contradiction to the fact that all orderings π j are distinct.
Now we extend Theorem 2 to general complete multipartite posets by the use of Corollary 6.

Proof of Thereom 1 Let t = supi ti . Then Theorem 2 shows the existence of a function

ε(n) = o(1) with R(K1,t,1, Qn) ≤ n
(
1 + 2+ε(n)

log n

)
. We can suppose that ε is monotonically

non-increasing by replacing ε(n) with maxN>n{ε(N ), 0} where necessary. Note that this
maximum exists since ε(N ) → 0 for N → ∞. In order to prove the theorem, we show a
stronger statement using the auxiliary (2� + 1)-partite poset P = K1,t,1,t,...,1,t,1. Observe
that Kt1,...,t� is an induced subposet of P , thus R(Kt1,...,t� , Qn) ≤ R(P, Qn). In the following
we verify that

R(P, Qn) ≤ n

(

1 + 2 + ε(n)

log n

)�

.

We use induction on �. If � = 1, then P = K1,t,1, so R(P, Qn) ≤ n
(
1 + 2+ε(n)

log n

)
. If

� ≥ 2, we “deconstruct” the poset into two parts. Consider P1 = K1,t,1 and the complete
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(2�−1)-partite poset P2 = K1,t,1,t,...,1,t,1. Then P1 has a unique maximal vertex and P2 has
a unique minimal vertex. Observe that P1�P2 = P . Using the induction hypothesis

R(P1, Qn) ≤ n

(

1 + 2 + ε(n)

log n

)

and R(P2, Qn) ≤ n

(

1 + 2 + ε(n)

log n

)�−1

.

Now Corollary 6 provides the required bound.

4 Concluding Remarks

In this paper we considered R(K , Qn), where K is a complete multipartite poset. Although
the presented bounds hold if the parameters of K depend on n, the original motivation for
these results concerned the case where K is fixed, i.e. independent from n:

After R(Q2, Qn) was bounded asymptotically sharply by Grósz, Methuku and Tompkins
[6] and Axenovich and the present author [2], the examination of R(Q3, Qn) is an obvious
follow-up question. The best known upper bound is due to Lu and Thompson [7], while the
best known lower bound can be deduced from a bound on R(K1,2, Qn) in [2],

n + n
15 log n ≤ R(K1,2, Qn) ≤ R(Q3, Qn) ≤ 37

16n + 39
16 .

In order to findbetter upper bounds and answer the question as towhether or not R(Q3, Qn) =
n+o(n), the consideration of R(P, Qn) for small posets P might prove helpful.We have seen
in Corollary 6 how small posets can be used as building blocks for more complex posets P ′
when bounding R(P ′, Qn). Going one step further, a potential generalization of Corollary 6
might allow for building the poset Q3. For example, Q3 can be partitioned into a copy of
K1,3 and a copy of K3,1 which interact in a proper way. Both of these building blocks are
complete 2-partite posets with, as shown here, Ramsey numbers bounded by

R(K1,3, Qn) = R(K3,1, Qn) = n + �

(
n

log n

)

.
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