Poset Ramsey Number $R\left(P, Q_{n}\right)$. I. Complete Multipartite Posets

Christian Winter ${ }^{1}$ (1)

Received: 26 April 2022 / Accepted: 4 April 2023
© The Author(s) 2023

Abstract

A poset ($P^{\prime}, \leq_{P^{\prime}}$) contains a copy of some other poset (P, \leq_{P}) if there is an injection $f: P^{\prime} \rightarrow P$ where for every $X, Y \in P, X \leq_{P} Y$ if and only if $f(X) \leq_{P^{\prime}} f(Y)$. For any posets P and Q, the poset Ramsey number $R(P, Q)$ is the smallest integer N such that any blue/red coloring of a Boolean lattice of dimension N contains either a copy of P with all elements blue or a copy of Q with all elements red. A complete ℓ-partite poset $K_{t_{1}, \ldots, t_{\ell}}$ is a poset on $\sum_{i=1}^{\ell} t_{i}$ elements, which are partitioned into ℓ pairwise disjoint sets A^{i} with $\left|A^{i}\right|=t_{i}, 1 \leq i \leq \ell$, such that for any two $X \in A^{i}$ and $Y \in A^{j}, X<Y$ if and only if $i<j$. In this paper we show that $R\left(K_{t_{1}, \ldots, t_{\ell}}, Q_{n}\right) \leq n+\frac{\left(2+o_{n}(1)\right) \ell_{n}}{\log n}$.

Keywords Poset Ramsey • Boolean lattice • Complete multipartite poset • Induced subposet

1 Introduction

Ramsey theory is a field of combinatorics that asks whether in any coloring of the elements in a discrete host structure we find a particular monochromatic substructure. This question offers a lot of variations depending on the chosen sub- and host structure. While originating from a result of Ramsey [8] on uniform hypergraphs from 1930, the most well-known setting considers monochromatic subgraphs in edge-colorings of complete graphs. In contrast, this paper considers a Ramsey-type problem using partially ordered sets, or posets for short, as the host structure. A poset is a set P which is equipped with a relation \leq_{P} on the elements of P that is transitive, reflexive, and antisymmetric. Whenever it is clear from the context we refer to such a poset $\left(P, \leq_{P}\right)$ just as P. Given a non-empty set \mathcal{X}, the poset consisting of all subsets of \mathcal{X} equipped with the inclusion relation \subseteq is the Boolean lattice $\mathcal{Q}(\mathcal{X})$ of dimension $|\mathcal{X}|$. We use Q_{n} to denote a Boolean lattice with an arbitrary n-element ground set.

We say that a poset P_{1} is an induced subposet of another poset P_{2} if $P_{1} \subseteq P_{2}$ and for every two $X, Y \in P_{1}$,

$$
X \leq_{P_{1}} Y \text { if and only if } X \leq_{P_{2}} Y .
$$

[^0]A copy of P_{1} in P_{2} is an induced subposet P^{\prime} of P_{2} which is isomorphic to P_{1}. Here we consider color assignments of the elements of a poset P using the colors blue and red, i.e. mappings $c: P \rightarrow$ \{blue, red\}, which we refer to as a blue/red coloring of P. A poset is colored monochromatically if all its elements have the same color. If a poset is colored monochromatically in blue [red], we say that it is a blue [red] poset. The elements of a poset P are usually referred to as vertices.

Axenovich and Walzer [1] were the first to consider the following Ramsey variant on posets. For posets P and Q, the poset Ramsey number of P versus Q is given by

$$
\begin{array}{r}
R(P, Q)=\min \left\{N \in \mathbb{N}: \text { every blue/red coloring of } Q_{N}\right. \text { contains either } \\
\text { a blue copy of } P \text { or a red copy of } Q\} .
\end{array}
$$

As a central focus of research in this area, bounds on the poset Ramsey number $R\left(Q_{n}, Q_{n}\right)$ were considered and gradually improved with the best currently known bounds being $2 n+1 \leq R\left(Q_{n}, Q_{n}\right) \leq n^{2}-n+2$, see listed chronologically Walzer [9], Axenovich and Walzer [1], Cox and Stolee [4], Lu and Thompson [7], Bohman and Peng [3]. FalgasRavry, Markström, Treglown and Zhao [5] showed computationally that $R\left(Q_{3}, Q_{3}\right)=7$. The related off-diagonal setting $R\left(Q_{m}, Q_{n}\right), m<n$, also received considerable attention over the last years. A trivial lower bound in this setting is $R\left(Q_{m}, Q_{n}\right) \geq m+n$ obtained from a layered coloring. When both m and n are large, the best known upper bound is due to Lu and Thompson [7] who showed that $\left(m-2+\frac{5}{m}\right) n+m$. When m is fixed and n is large, an exact result is only known in the trivial case $m=1$ where $R\left(Q_{1}, Q_{n}\right)=n+1$. For $m=2$, after earlier estimates by Axenovich and Walzer [1] as well as Lu and Thompson [7], the best known upper bound is due to Grósz, Methuku, and Tompkins [6], which is complemented by a lower bound shown recently by Axenovich and the present author [2]:

$$
n\left(1+\frac{1}{15 \log n}\right) \leq R\left(Q_{2}, Q_{n}\right) \leq n\left(1+\frac{2+o(1)}{\log n}\right)
$$

In this paper we generalize the upper bound of Grósz, Methuku and Tompkins [6] on $R\left(Q_{2}, Q_{n}\right)$ to a broader class of posets, namely we discuss the poset Ramsey number of a complete multipartite poset versus the Boolean lattice Q_{n}. A complete ℓ-partite poset $K_{t_{1}, \ldots, t_{\ell}}$ is a poset on $\sum_{i=1}^{\ell} t_{i}$ vertices obtained as follows. Consider ℓ pairwise disjoint sets A^{1}, \ldots, A^{ℓ} of vertices, where A^{i} consists of t_{i} distinct vertices. Now for any two indexes $i, j \in\{1, \ldots, \ell\}$ and any vertices $X \in A^{i}, Y \in A^{j}$, let $X<Y$ if and only if $i<j$ (Fig. 1). Such a poset can be seen as a complete blow-up of a chain and in the literature is also referred to as a (strict) weak order. Note that $Q_{2}=K_{1,2,1}$.

Theorem 1 For $n \in \mathbb{N}$, let $\ell \in \mathbb{N}$ be an integer such that $\ell=o(\log n)$ and for $i \in\{1, \ldots, \ell\}$, let $t_{i} \in \mathbb{N}$ be integers with $\sup _{i} t_{i}=n^{o(1)}$. Then

$$
R\left(K_{t_{1}, \ldots, t_{\ell}}, Q_{n}\right) \leq n\left(1+\frac{2+o(1)}{\log n}\right)^{\ell} \leq n+\frac{(2+o(1)) \ell n}{\log n}
$$

Here and throughout this paper, the O-notation is used exclusively depending on n, i.e. $f(n)=o(g(n))$ if and only if $\frac{f(n)}{g(n)} \rightarrow 0$ for $n \rightarrow \infty$. For parameters as above, this theorem implies that $R\left(K_{t_{1}, \ldots, t_{\ell}}, Q_{n}\right)=n+o(n)$. Moreover, under the precondition that ℓ is fixed, our result provides the order of magnitude of the two leading additive terms: We say that a complete ℓ-partite poset $K=K_{t_{1}, \ldots, t_{\ell}}$ is non-trivial if it is neither a chain nor an antichain, i.e. if $\ell \geq 2$ and $t_{i} \geq 2$ for some $i \in\{1, \ldots, \ell\}$. Observe that such a non-trivial K contains

Fig. 1 Hasse diagram of the complete 3-partite poset $K_{3,4,2}$
a copy of $K_{1,2}$ or $K_{2,1}$, so Theorem 2 of [2] yields $R\left(K, Q_{n}\right) \geq n+\frac{n}{15 \log n}$. Thus, for nontrivial $K, R\left(K, Q_{n}\right)=n+\Theta\left(\frac{n}{\log n}\right)$. For trivial K, it is known that $R\left(K, Q_{n}\right)=n+\Theta(1)$. More precisely, if K is a chain on ℓ vertices, then $R\left(K, Q_{n}\right)=n+\ell-1$, which is an easy consequence of Lemma 4 of Axenovich and Walzer [1]. If K is an antichain on t vertices, then a trivial lower bound, Lemma 3 of [1], and Sperner's Theorem imply $n \leq R\left(K, Q_{n}\right) \leq$ $n+\alpha(t)$ where $\alpha(t)$ is the smallest integer such that $\binom{\alpha(t)}{\lfloor\alpha(t) / 2\rfloor} \geq t$. Ramsey bounds for an antichain versus a Boolean lattice are considered in detail in [10].

First we shall consider a special complete multipartite poset that we call a spindle. Given $r \geq 0, s \geq 1$ and $t \geq 0$, an (r, s, t)-spindle $S_{r, s, t}$ is defined as the complete multipartite poset $K_{t_{1}^{\prime}, \ldots, t_{r+1+t}^{\prime}}$ where $t_{1}^{\prime}, \ldots, t_{r}^{\prime}=1$ and $t_{r+1}^{\prime}=s$ and $t_{r+2}^{\prime}, \ldots, t_{r+1+t}^{\prime}=1$. In other words, this poset on $r+s+t$ vertices is constructed by combining an antichain A of size s and two chains C_{r}, C_{t} on r and t vertices, respectively, such that every vertex of A is larger than every vertex from C_{r} but smaller than every vertex from C_{t} (Fig. 2).

Theorem 2 Let r, s, t be non-negative integers with $r+t=o(\sqrt{\log n})$ and $s=n^{o(1)}$ for $n \in \mathbb{N}$. Then

$$
R\left(S_{r, s, t}, Q_{n}\right) \leq n+\frac{(1+o(1))(r+t) n}{\log n}
$$

If $s \geq 2$, the lower bound $R\left(S_{r, s, t}, Q_{n}\right) \geq R\left(Q_{2}, Q_{n}\right)+c(r, t) \geq n\left(1+\frac{1}{15 \log n}\right)+c(r, t)$ can be obtained by following the construction in [2] with some additional monochromatic blue layers at the exterior. It remains open whether there is a lower bound such that the second summand depends on r and t.

The spindle $S_{1, s, 1}$ is known in the literature as an s-diamond D_{s}, while the poset $S_{1, s, 0}$ is usually referred to as an s-fork V_{s}.

Fig. 2 Hasse diagram of the spindle $S_{2,5,3}$

Corollary 3 Let $s \in \mathbb{N}$ with $s=n^{o(1)}$ for $n \in \mathbb{N}$. Then

$$
R\left(D_{s}, Q_{n}\right) \leq n+\frac{(2+o(1)) n}{\log n} \quad \text { and } \quad R\left(V_{s}, Q_{n}\right) \leq n+\frac{(1+o(1)) n}{\log n}
$$

For a positive integer $n \in \mathbb{N}$, we use $[n]$ to denote the set $\{1, \ldots, n\}$. Here 'log' always refers to the logarithm with base 2 . We omit floors and ceilings where appropriate.

The structure of the paper is as follows. In Section 2 we introduce some notation and two preliminary lemmas. In Section 3 we show the bound for spindles and subsequently the generalization for general complete multipartite posets.

2 Preliminaries

2.1 Red Q_{n} Versus Blue Chain

Let \mathcal{X} and \mathcal{Y} be disjoint sets. Then the vertices of the Boolean lattice $\mathcal{Q}(\mathcal{X} \cup \mathcal{Y})$, i.e. the subsets of $\mathcal{X} \cup \mathcal{Y}$, can be partitioned with respect to \mathcal{X} and \mathcal{Y} in the following manner. Every $Z \subseteq \mathcal{X} \cup \mathcal{Y}$ has an \mathcal{X}-part $X_{Z}=Z \cap \mathcal{X}$ and a \mathcal{Y}-part $Y_{Z}=Z \cap \mathcal{Y}$. In this setting, we refer to Z alternatively as the pair $\left(X_{Z}, Y_{Z}\right)$. Conversely, for any $X \subseteq \mathcal{X}, Y \subseteq \mathcal{Y}$, the pair (X, Y) corresponds uniquely to the vertex $X \cup Y \in \mathcal{Q}(\mathcal{X} \cup \mathcal{Y})$. One can think of such pairs as elements of the Cartesian product $2^{\mathcal{X}} \times 2^{\mathcal{Y}}$ which has a canonical bijection to $2^{\mathcal{X} \cup \mathcal{Y}}=\mathcal{Q}(\mathcal{X} \cup \mathcal{Y})$.

Observe that for $X_{i} \subseteq \mathcal{X}, Y_{i} \subseteq \mathcal{Y}, i \in[2]$, we have $\left(X_{1}, Y_{1}\right) \subseteq\left(X_{2}, Y_{2}\right)$ if and only if $X_{1} \subseteq X_{2}$ and $Y_{1} \subseteq Y_{2}$.

We shall need the following lemma.
Lemma 4 Let \mathcal{X} and \mathcal{Y} be disjoint sets with $|\mathcal{X}|=n$ and $|\mathcal{Y}|=k$ for some $n, k \in \mathbb{N}$. Let $\mathcal{Q}=$ $\mathcal{Q}(\mathcal{X} \cup \mathcal{Y})$ be a blue/red colored Boolean lattice. Fix some linear ordering $\pi=\left(y_{1}, \ldots, y_{k}\right)$ of \mathcal{Y} and define $Y(0), \ldots, Y(k)$ by $Y(0)=\varnothing$ and $Y(i)=\left\{y_{1}, \ldots, y_{i}\right\}$ for $i \in[k]$. Then there exists at least one of the following in \mathcal{Q} :
(a) a red copy of Q_{n}, or
(b) a blue chain of length $k+1$ of the form $\left(X_{0}, Y(0)\right), \ldots,\left(X_{k}, Y(k)\right)$.

Note that a version of this lemma was used implicitly in a paper of Grósz, Methuku and Tompkins [6]. It was stated explicitly and reproved by Axenovich and the author, see Lemma 8 in [2].

2.2 Gluing Two Posets

By identifying vertices of two posets, they can be "glued together" creating a new poset. We will later construct complete multipartite posets by gluing spindles on top of each other using the following definition. Given a poset P_{1} with a unique maximal vertex Z_{1} and a poset P_{2} disjoint from P_{1} with a unique minimal vertex Z_{2}, let $P_{1} \ell P_{2}$ be the poset obtained by identifying Z_{1} and Z_{2}. Formally speaking, $P_{1} \backslash P_{2}$ is the poset $\left(P_{1} \backslash\left\{Z_{1}\right\}\right) \cup\left(P_{2} \backslash\left\{Z_{2}\right\}\right) \cup\{Z\}$ for a $Z \notin P_{1} \cup P_{2}$ where for any two $\left.X, Y \in P_{1} \bigvee P_{2}, X<P_{1}\right\rangle P_{2} Y$ if and only if one of the following five cases hold: $X, Y \in P_{1}$ and $X<P_{1} Y ; X, Y \in P_{2}$ and $X<P_{2} Y ; X \in P_{1}$ and $Y \in P_{2} ; X \in P_{1}$ and $Y=Z$; or $X=Z$ and $Y \in P_{2}$ (Fig. 3).

Lemma 5 Let P_{1} be a poset with a unique maximal vertex and let P_{2} be a poset with a unique minimal vertex. Then $R\left(P_{1} \bigvee P_{2}, Q_{n}\right) \leq R\left(P_{1}, Q_{R\left(P_{2}, Q_{n}\right)}\right)$.

Proof Let $N=R\left(P_{1}, Q_{R\left(P_{2}, Q_{n}\right)}\right)$. Consider a blue/red colored Boolean lattice \mathcal{Q} of dimension N which contains no blue copy of $P_{1} \curlyvee P_{2}$. We shall prove that there exists a red copy of Q_{n} in this coloring. We say that a blue vertex X in \mathcal{Q} is P_{1} - clear if there is no blue copy of P_{1} in \mathcal{Q} containing X as its maximal vertex. Similarly, a blue vertex X is P_{2} - clear if there is no blue copy of P_{2} in \mathcal{Q} with minimal vertex X. Observe that every blue vertex is P_{1}-clear or P_{2}-clear (or both), since there is no blue copy of $P_{1} \bigvee P_{2}$.

Fig. 3 Creating $P_{1} \bigvee P_{2}$ from P_{1} and P_{2}

We introduce an auxiliary coloring of \mathcal{Q} using colors green and yellow. Color all blue vertices which are P_{1}-clear in green and all other vertices in yellow. Then this coloring does not contain a monochromatic copy of P_{1} with all vertices green, since otherwise the maximal vertex of such a copy is not P_{1}-clear. Recall that $N=R\left(P_{1}, Q_{R\left(P_{2}, Q_{n}\right)}\right)$, thus \mathcal{Q} contains a copy of $Q_{R\left(P_{2}, Q_{n}\right)}$ colored monochromatically yellow, which we refer to as \mathcal{Q}^{\prime}.

Consider the original blue/red coloring of \mathcal{Q}^{\prime}. Every blue vertex of \mathcal{Q}^{\prime} is yellow in the auxiliary coloring, i.e. not P_{1}-clear. Thus every blue vertex of \mathcal{Q}^{\prime} is P_{2}-clear. This coloring of \mathcal{Q}^{\prime} does not contain a blue copy of P_{2}, since otherwise the minimal vertex of such a copy is not P_{2}-clear. Note that the Boolean lattice \mathcal{Q}^{\prime} has dimension $R\left(P_{2}, Q_{n}\right)$, thus there exists a monochromatic red copy of Q_{n} in \mathcal{Q}^{\prime}, hence also in \mathcal{Q}.

Corollary 6 Let P_{1} be a poset with a unique maximal vertex and let P_{2} be a poset with a unique minimal vertex. Suppose that there are functions $f_{1}, f_{2}: \mathbb{N} \rightarrow \mathbb{R}$ with $R\left(P_{1}, Q_{n}\right) \leq f_{1}(n) n$ and $R\left(P_{2}, Q_{n}\right) \leq f_{2}(n) n$ for any $n \in \mathbb{N}$ and such that f_{1} is monotonically non-increasing. Then for every $n \in \mathbb{N}$,

$$
R\left(P_{1} 久 P_{2}, Q_{n}\right) \leq f_{1}(n) f_{2}(n) n .
$$

Proof For an arbitrary $n \in \mathbb{N}$, let $n^{\prime}=f_{2}(n) n$. Note that for any poset $P, R\left(P, Q_{n}\right) \geq n$, so $n^{\prime} \geq n$. Thus, $f_{1}\left(n^{\prime}\right) \leq f_{1}(n)$, and Lemma 5 provides

$$
R\left(P_{1} \curlyvee P_{2}, Q_{n}\right) \leq R\left(P_{1}, Q_{n^{\prime}}\right) \leq f_{1}\left(n^{\prime}\right) n^{\prime} \leq f_{1}(n) f_{2}(n) n
$$

3 Proofs of Theorem 2 and Theorem 1

Proof of Thereom 2 Let $\epsilon=\frac{\log s}{\log n}$, so $s=n^{\epsilon}$ and $\epsilon=o(1)$. We can suppose that n is large and hence $\epsilon<1$. Then let $c=\frac{r+t+\delta}{1-\epsilon}$ where $\delta=\frac{2(r+1)}{\log n}(\log \log n+r+t)$. Since $r+t=$ $o(\sqrt{\log n}), \delta=o(1)$. Let $k=\frac{c n}{\log n}$. We show for sufficently large n that $R\left(S_{r, s, t}, Q_{n}\right) \leq n+k$. If $s=1$, then $S_{r, s, t}$ is a chain and $R\left(S_{r, s, t}, Q_{n}\right) \leq n+r+s \leq n+k$ by Lemma 4 of [1], so suppose $s \geq 2$.

Claim: For sufficiently large $n, k!>2^{(r+t)(n+k)} \cdot(s-1)^{k+1}$.
Note that $k!>\left(\frac{k}{e}\right)^{k}=2^{k(\log k-\log e)}$ and $(s-1)^{k+1}=2^{(k+1) \log (s-1)}$. Thus, we shall prove that $k(\log k-\log e)>(r+t+\log (s-1)) k+\log (s-1)+(r+t) n$. Using the fact that $k=\frac{c n}{\log n}$ and $s-1 \leq n^{\epsilon}$, we obtain

$$
\begin{aligned}
& k(\log k-\log (s-1))-k(r+t+\log e)-\log (s-1)-(r+t) n \\
& \geq \frac{c n}{\log n}(\log c+\log n-\log \log n-\epsilon \log n)-\frac{c n}{\log n}(r+t+\log e)-\epsilon \log n-(r+t) n \\
& \geq c n(1-\epsilon)-(r+t) n-\frac{c n}{\log n}(\log \log n+r+t+\log e)-\epsilon \log n \\
& >\delta n-\frac{2(r+1) n}{\log n}(\log \log n+r+t)=0,
\end{aligned}
$$

where the last inequality holds for sufficiently large n.
Let \mathcal{X} and \mathcal{Y} be disjoint sets with $|\mathcal{X}|=n$ and $|\mathcal{Y}|=k$. We consider a blue/red coloring of $\mathcal{Q}=\mathcal{Q}(\mathcal{X} \cup \mathcal{Y})$ with no red copy of Q_{n}. We shall show that there is a monochromatic blue
copy of $S_{r, s, t}$ in \mathcal{Q}. For every linear ordering $\pi=\left(y_{1}^{\pi}, \ldots, y_{k}^{\pi}\right)$ of \mathcal{Y}, Lemma 4 provides a blue chain C^{π} of the form $Z_{0}^{\pi}=\left(X_{0}^{\pi}, \varnothing\right), Z_{1}^{\pi}=\left(X_{1}^{\pi},\left\{y_{1}^{\pi}\right\}\right), \ldots, Z_{k}^{\pi}=\left(X_{k}^{\pi}, \mathcal{Y}\right)$, where $X_{i}^{\pi} \subseteq \mathcal{X}$.

For every ordering π of \mathcal{Y}, we consider the r smallest vertices $Z_{0}^{\pi}, \ldots, Z_{r-1}^{\pi}$ and the t largest vertices $Z_{k-t+1}^{\pi}, \ldots, Z_{k}^{\pi}$ of its corresponding chain C^{π}, so let $I=\{0, \ldots, r-1\} \cup$ $\{k-t+1, \ldots, k\}$. Each Z_{i}^{π} is a vertex of \mathcal{Q}, so one of the 2^{n+k} distinct subsets of $\mathcal{X} \cup \mathcal{Y}$. Thus for a fixed π, there are at most $\left(2^{n+k}\right)^{r+t}$ distinct combinations of the $Z_{i}^{\pi}, i \in I$. Recall that $k!>2^{(r+t)(n+k)} \cdot(s-1)^{k+1}$. By the pigeonhole principle, we find a collection π_{1}, \ldots, π_{m} of $m=(s-1)^{k+1}+1$ distinct linear orderings of \mathcal{Y} such that for any $j \in[m]$ and $i \in I, Z_{i}^{\pi_{j}}=Z_{i}$, where $Z_{i} \subseteq \mathcal{X} \cup \mathcal{Y}$ is a fixed vertex independent of j. In other words, we find many chains with the same r smallest vertices $Z_{i}, i \in\{0, \ldots, r-1\}$, and the same t largest vertices $Z_{i}, i \in\{k-t+1, \ldots, k\}$. Let \mathcal{P} be the poset induced in \mathcal{Q} by the chains $C^{\pi_{j}}, j \in[m]$.

If there is an antichain A of size s in \mathcal{P}, then none of the vertices $Z_{i}, i \in I$, is in A, because each of them is contained in every chain $C^{\pi_{j}}$ and therefore comparable to all other vertices in \mathcal{P}. Note that here we used that $s \geq 2$. Now A together with the vertices $Z_{i}, i \in I$, form a copy of $S_{r, s, t}$ in \mathcal{P}. Recall that all vertices in every $C^{\pi_{j}}$ are blue, i.e. \mathcal{P} is monochromatic blue. Thus we obtain a blue copy of the spindle $S_{r, s, t}$ in \mathcal{Q}, so we are done. From now on, suppose that there is no antichain of size s in \mathcal{P}. By Dilworth's Theorem we obtain $s-1$ chains $\mathcal{C}_{1}, \ldots, \mathcal{C}_{s-1}$ which cover all vertices of \mathcal{P}, i.e. all vertices of the $C^{\pi_{j}}$'s. Note that the chains \mathcal{C}_{i} might consist of significantly more vertices than the $(k+1)$-element chains $C^{\pi_{j}}$.

Now we consider the restriction to \mathcal{Y} of each vertex in \mathcal{P}, i.e. the sets $Z_{i}^{\pi} \cap \mathcal{Y}$, in order to apply the pigeonhole principle once again. Assume for a contradiction that for some $i \in[s-1]$ there are $Z, Z^{\prime} \in \mathcal{C}_{i}$ with $|Z \cap \mathcal{Y}|=\left|Z^{\prime} \cap \mathcal{Y}\right|$ but $Z \cap \mathcal{Y} \neq Z^{\prime} \cap \mathcal{Y}$. This implies that $Z \cap \mathcal{Y} \nsubseteq Z^{\prime} \cap \mathcal{Y}$ and $Z \cap \mathcal{Y} \nsupseteq Z^{\prime} \cap \mathcal{Y}$, so Z and Z^{\prime} are incomparable, a contradiction as they are both contained in the chain \mathcal{C}_{i}. Consequently, there is only at most one ℓ-element set $Y_{i}^{\ell} \subseteq \mathcal{Y}, \ell \in\{0, \ldots, k\}$, for which there exists a $Z \in \mathcal{C}_{i}$ with $Z \cap \mathcal{Y}=Y_{i}^{\ell}$.

Note that for any $j \in[m]$ and for any $\ell \in\{0, \ldots, k\},\left|Z_{\ell}^{\pi_{j}} \cap \mathcal{Y}\right|=\ell$, i.e. $Z_{\ell}^{\pi_{j}} \cap \mathcal{Y}=Y_{i}^{\ell}$ for some $i \in[s-1]$. In other words, for fixed j, each of the $k+1$ sets $Z_{\ell}^{\pi_{j}} \cap \mathcal{Y}, \ell \in\{0, \ldots, k\}$, is equal to one of at most $s-1 Y_{i}^{\ell}$'s. Recall that we have chosen $m=(s-1)^{k+1}+1$ distinct linear orderings π_{j} of \mathcal{Y}. Using the pigeonhole principle we find two indexes j_{1}, j_{2} such that $Z_{\ell}^{\pi_{j_{1}}} \cap \mathcal{Y}=Z_{\ell}^{\pi_{j_{2}}} \cap \mathcal{Y}$ for any $\ell \in\{0, \ldots, k\}$. This implies that $y_{\ell}^{\pi_{j_{1}}}=y_{\ell}^{\pi_{j_{2}}}$, i.e. $\pi_{j_{1}}$ and $\pi_{j_{2}}$ are equal. But this is a contradiction to the fact that all orderings π_{j} are distinct.
Now we extend Theorem 2 to general complete multipartite posets by the use of Corollary 6.
Proof of Thereom 1 Let $t=\sup _{i} t_{i}$. Then Theorem 2 shows the existence of a function $\epsilon(n)=o(1)$ with $R\left(K_{1, t, 1}, Q_{n}\right) \leq n\left(1+\frac{2+\epsilon(n)}{\log n}\right)$. We can suppose that ϵ is monotonically non-increasing by replacing $\epsilon(n)$ with $\max _{N>n}\{\epsilon(N), 0\}$ where necessary. Note that this maximum exists since $\epsilon(N) \rightarrow 0$ for $N \rightarrow \infty$. In order to prove the theorem, we show a stronger statement using the auxiliary $(2 \ell+1)$-partite poset $P=K_{1, t, 1, t, \ldots, 1, t, 1}$. Observe that $K_{t_{1}, \ldots, t_{\ell}}$ is an induced subposet of P, thus $R\left(K_{t_{1}, \ldots, t_{\ell}}, Q_{n}\right) \leq R\left(P, Q_{n}\right)$. In the following we verify that

$$
R\left(P, Q_{n}\right) \leq n\left(1+\frac{2+\epsilon(n)}{\log n}\right)^{\ell}
$$

We use induction on ℓ. If $\ell=1$, then $P=K_{1, t, 1}$, so $R\left(P, Q_{n}\right) \leq n\left(1+\frac{2+\epsilon(n)}{\log n}\right)$. If $\ell \geq 2$, we "deconstruct" the poset into two parts. Consider $P_{1}=K_{1, t, 1}$ and the complete
($2 \ell-1$)-partite poset $P_{2}=K_{1, t, 1, t, \ldots, 1, t, 1}$. Then P_{1} has a unique maximal vertex and P_{2} has a unique minimal vertex. Observe that $P_{1} \bigvee P_{2}=P$. Using the induction hypothesis

$$
R\left(P_{1}, Q_{n}\right) \leq n\left(1+\frac{2+\epsilon(n)}{\log n}\right) \text { and } R\left(P_{2}, Q_{n}\right) \leq n\left(1+\frac{2+\epsilon(n)}{\log n}\right)^{\ell-1}
$$

Now Corollary 6 provides the required bound.

4 Concluding Remarks

In this paper we considered $R\left(K, Q_{n}\right)$, where K is a complete multipartite poset. Although the presented bounds hold if the parameters of K depend on n, the original motivation for these results concerned the case where K is fixed, i.e. independent from n :

After $R\left(Q_{2}, Q_{n}\right)$ was bounded asymptotically sharply by Grósz, Methuku and Tompkins [6] and Axenovich and the present author [2], the examination of $R\left(Q_{3}, Q_{n}\right)$ is an obvious follow-up question. The best known upper bound is due to Lu and Thompson [7], while the best known lower bound can be deduced from a bound on $R\left(K_{1,2}, Q_{n}\right)$ in [2],

$$
n+\frac{n}{15 \log n} \leq R\left(K_{1,2}, Q_{n}\right) \leq R\left(Q_{3}, Q_{n}\right) \leq \frac{37}{16} n+\frac{39}{16}
$$

In order to find better upper bounds and answer the question as to whether or not $R\left(Q_{3}, Q_{n}\right)=$ $n+o(n)$, the consideration of $R\left(P, Q_{n}\right)$ for small posets P might prove helpful. We have seen in Corollary 6 how small posets can be used as building blocks for more complex posets P^{\prime} when bounding $R\left(P^{\prime}, Q_{n}\right)$. Going one step further, a potential generalization of Corollary 6 might allow for building the poset Q_{3}. For example, Q_{3} can be partitioned into a copy of $K_{1,3}$ and a copy of $K_{3,1}$ which interact in a proper way. Both of these building blocks are complete 2-partite posets with, as shown here, Ramsey numbers bounded by

$$
R\left(K_{1,3}, Q_{n}\right)=R\left(K_{3,1}, Q_{n}\right)=n+\Theta\left(\frac{n}{\log n}\right)
$$

Acknowledgements The author would like to thank Maria Axenovich for helpful discussions and comments on the manuscript, and the two referees for their careful reading of the paper and their constructive feedback. Research was partially supported by Deutsche Forschungsgemeinschaft, grant FKZ AX 93/2-1.

Funding Open Access funding enabled and organized by Projekt DEAL.
Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Axenovich, M., Walzer, S.: Boolean lattices: Ramsey properties and embeddings. Order 34(2), 287-298 (2017)
2. Axenovich, M., Winter, C.: Poset Ramsey numbers: large Boolean lattice versus a fixed poset. Comb. Probab. Comput. (2023)
3. Bohman, T., Peng, F. A Construction for Cube Ramsey. Order, (2022)
4. Cox, C., Stolee, D.: Ramsey numbers for partially-ordered sets. Order 35(3), 557-579 (2018)
5. Falgas-Ravry, V., Markström, K., Treglown, A., Zhao, Y.: Existence thresholds and Ramsey properties of random posets. Random Struct. Algoritm. 57(4), 1097-1133 (2020)
6. Grósz, D., Methuku, A., Tompkins, C.: Ramsey numbers of Boolean lattices. Bull. Lond. Math, Soc (2023)
7. Lu, L., Thompson, C.: Poset Ramsey numbers for boolean lattices. Order 39(2), 171-185 (2022)
8. F. P. Ramsey. On a Problem of Formal Logic. Proc. Lond. Math. Soc. s2-30(1), 264-286, (1930)
9. Walzer, S. Ramsey Variant of the 2-Dimension of Posets. In: Master Thesis, Karlsruhe Institute of Technology (2015)
10. Winter, C. Poset Ramsey Number R(P,Qn). II. Antichains. Submitted, preprint available at arXiv:2205.02275v1 (2022)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Christian Winter
 christian.winter@kit.edu
 1 Karlsruhe Institute of Technology, Karlsruhe, Germany

