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Abstract We revisit the phenomenological predictions of
the Universal Texture Zero (UTZ) model of flavour originally
presented in [1], and update them in light of both improved
experimental constraints and numerical analysis techniques.
In particular, we have developed an in-house Markov Chain
Monte Carlo (MCMC) algorithm to exhaustively explore the
UTZ’s viable parameter space, considering both leading- and
next-to-leading contributions in the model’s effective opera-
tor product expansion. We also extract – for the first time –
reliable UTZ predictions for the (poorly constrained) leptonic
CP-violating phases, and ratio observables that characterize
neutrino masses probed by (e.g.) oscillation, β-decay, and
cosmological processes. We therefore dramatically improve
on the proof-in-principle phenomenological analysis orig-
inally presented in [1], and ultimately show that the UTZ
remains a minimal, viable, and appealing theory of flavour.
Our results also further demonstrate the potential of robustly
examining multi-parameter flavour models with MCMC rou-
tines.
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1 Introduction

The bulk of the free, unexplained parameters in the Stan-
dard Model (SM) of particle physics originate in its flavour
sector, thanks to the replication of SM fermion generations
with distinct masses and quantum mixings. These param-
eters are technically natural, in that sending them to zero
recovers a global U(3)5 flavour symmetry of the Lagrangian
[2,3]. However, the Yukawa couplings of SM fermions to
the Higgs boson break this symmetry in a deeply flavour-
non-universal manner, with a mass ratio of ∼ O(1012)

between (e.g.) neutrinos and the top quark. Furthermore
the Cabibbo–Kobayashi–Maskawa (CKM) quark mixing
matrix exhibits a hierarchical, approximately unit structure
[4], while the Pontecorvo–Maki–Nakagawa–Sakata (PMNS)
leptonic mixing matrix is extremely non-hierarchical, with
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large mixings amongst generations [5]. These highly dis-
parate patterns of fermionic mass and mixing strongly hint
that the origins of flavour in the SM may be dynamical, as
opposed to a random, soft deviation from an accidental sym-
metric limit.

The flavour puzzle therefore remains a compelling moti-
vation to search for physics Beyond-the-SM (BSM), as it
can be solved dynamically via the breakdown of an ultravi-
olet (UV), BSM symmetry in specific directions of flavour
space. This symmetry breaking typically occurs when exotic
scalar familons develop special vacuum expectation values
(vev) as determined by a family-symmetric scalar poten-
tial, although other alignment mechanisms are conceivable.
When familons couple to SM fermions and the Higgs boson,
their flavoured vevs shape the otherwise free Yukawa matri-
ces of the SM, and therefore control their associated mass
eigenvalues and mixing angles after electroweak symme-
try breaking. These predictions can be compared to global
flavour data sets to falsify the model, serving as an indirect
probe of the new physics proposed.

While the predictions of flavour models – derived from
either top-down or bottom-up considerations – are rich, they
are also becoming increasingly difficult to falsify, given that
experiment is rapidly resolving all SM flavour parameters
to a high degree of precision, such that the models’ predic-
tions should actually be considered postdictions. Indeed, vir-
tually all quark masses and CKM mixings are measured with
exceptional accuracy, while only the PMNS angle θ l23,1 the
Dirac CP-violating phase δl , absolute neutrino mass eigen-
values, and Majorana CP-violating phases (if relevant) are
poorly constrained in the leptonic sector. While physical
observables that depend on non-trivial combinations of these
parameters, e.g. neutrinoless-double-β decay rates (0νββ),
single β-decay rates, and the sum of neutrino mass eigenval-
ues (as constrained by cosmology), offer additional indepen-
dent probes of flavour models, it is conceivable that a believ-
able BSM theory will also make falsifiable predictions for a
subset of the aforementioned, unresolved constituent flavour
parameters. Complicating matters further, many (most) BSM
flavour models introduce a number of UV theory parameters
that are difficult to numerically sample in a fully generic man-
ner, and so extracting concrete predictions from said models
is challenging in its own right.

In light of this experimental situation, and in response
to the need for more robust analysis routines for exploring
viable model parameter spaces, we will re-examine the Uni-
versal Texture Zero (UTZ) Model originally presented in [1].
The UTZ is an effective theory (EFT) valid at mass scales

1 In what follows we use the label l for leptons, q for quarks, and
u, d, e, ν for individual families of either. We also include neutrino
mass and mixing when we reference ‘SM’ flavour parameters in the
text, despite these being fundamentally BSM objects.

above those characteristic of the SM, but below those of hypo-
thetical (and potentially unfalsifiable), renormalizable UV
completions, e.g. those incorporating ultra-heavy fermionic
messenger fields V: �V > �UTZ > �SM. Its Yukawa sector
is therefore generated only at the non-renormalizable level,
with EFT expansion parameters in inverse powers of the mes-
senger masses Mi . The UTZ Lagrangian is symmetric under
a �(27) � (Z3 × Z3)�Z3 [6–10] non-Abelian discrete fam-
ily symmetry and a further ZN discrete shaping symmetry,
and is consistent with an underlying stage of SO(10) grand
unification as all fermions and their conjugates – including
right-handed (RH) gauge-singlet neutrinos – are assigned as
triplets 3 under �(27). Critically, the additional scalars intro-
duced are charged such that a�(27)-invariant scalar potential
exists that drives family-symmetry breaking as mentioned
above, yielding symmetric mass matrices with a character-
istic texture zero in the (1, 1) position for all family sectors.
As shown in [1], this UTZ structure is capable of explaining
quark and lepton flavour data with as few as nine infrared (IR)
theory parameters, and therefore amounts to an appealing and
predictive theory for the origin of SM flavour patterns. The
UTZ stands as a continuation of similar solutions employing
texture zeroes, explored already in e.g. [11,12].

However, the numerical exploration of the UTZ parameter
space presented in [1] only achieved a ‘proof-in-principle’
fit demonstrating the model’s phenomenological viability.
It did not exhaustively explore the predictions of the UTZ
Lagrangian at leading order (LO) in its EFT expansion
parameters, nor did it consider the complete set of correc-
tions generated by operators present at next-to-leading order
(NLO) in 1/Mi . Most importantly, the analysis in [1] did
not present robust predictions for the aforementioned unre-
solved leptonic flavour parameters nor any other observables
(e.g. β-decay rates) that depend on them, and hence it did
not provide a reliable means of falsifying the UTZ model
space as data continues to improve. In this paper we aim
to remedy these shortcomings by applying a Markov Chain
Monte Carlo (MCMC) fitting algorithm to the UTZ. Inspired
by similar analyses [13,14] (also see [15–17] for advanced
statistical analyses of flavour-texture models), the MCMC
technology we employ allows for a robust exploration of
multi-parameter models and their associated likelihoods. It
also allows one to simultaneously extract predictions for
poorly-constrained observables which are controlled (in part
and in different combinations) by the same parameters that
control exceptionally well-constrained observables, thereby
accounting for the intricate correlations between UTZ theory
parameters and their associated phenomenology. In this way
we are capable of presenting predictions in experimentally-
preferred regions of the UTZ parameter space, for both the
LO and NLO UTZ Lagrangian. As we will show, the the-
ory is phenomenologically viable at both orders in its oper-
ator product expansion, with the latter NLO terms yielding
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Table 1 The fields and �(27) × ZN family symmetry content of the
UTZ flavour model. Note that θX only appears in the scalar potential, and
hence the only restriction on its ZN charge is that it does not contribute
significantly to the fermionic mass matrices. Its ZN charge can therefore
be left generic, as shown

Fields ψq,e,ν ψc
q,e,ν H 	 S θ3 θ23 θ123 θ θX

�(27) 3 3 100 100 100 3̄ 3̄ 3̄ 3̄ 3

ZN 0 0 0 2 –1 0 –1 2 0 x

only minor corrections to the dominant LO predictions. The
UTZ is therefore a stable, predictive, and minimal theory of
flavour.

The remainder of the paper develops as follows: in Sect. 2
we review the UTZ model as conceived in [1], including
the field and symmetry content composing the (N)LO con-
tributions to its operator product expansion, as well as its
qualitative predictions in the quark and lepton sectors. Then
in Sect. 3 we review the most up-to-date experiment that con-
strains its predictions in the Yukawa sector, and also discuss
the uncertainties associated to renormalization group evolu-
tion (RGE) from the UV to the IR. In Sect. 4 we discuss the
MCMC algorithm we have developed to explore the UTZ
parameter space, and also present the results and analysis
following from our scans. We conclude in Sect. 5.

2 The universal texture zero model

The field and �(27)× ZN symmetry content of the UTZ [1]
is given in Table 1. There one observes that all SM fermions
ψa are assigned as triplets 3 under the family symmetry, as
are additional gauge singlet ‘sterile’ neutrinos that partici-
pate in a seesaw mechansim. Besides the fermionic content,
we also have a set of BSM scalar familons θi , charged as
�(27) anti-triplets 3̄, a lepton-number-violating (LNV) anti-
triplet familon θ necessary for describing the Majorana neu-
trino mass sector, and finally a triplet familon θX necessary
for successful vacuum alignment. All such familons are SM
gauge singlets. There is also a �(27) singlet sector composed
of the 	 and Higgs H scalars, both associated to an underly-
ing stage of grand unification consistent with the following
symmetry-breaking chain:

SO(10) → SU(4) × SU(2)L × SU(2)R
→ SU(3) × SU(2) × U(1), (1)

where the SO(10) breaking proceeds via an H vev and where
〈	〉 ∝ B−L+κ T R

3 is associated to Pati-Salam breaking. As
seen below, this latter 	 field selects unique Dirac textures
for distinct fermion families out of an otherwise universal
mass matrix structure. Finally, the �(27) singlet scalar S is
a shaping field that, along with the ZN shaping symmetry,

restricts the class of operators that appear in the UTZ EFT.
Its main role is to indirectly forbid terms ∝ θ123θ123 in the
UV Majorana Lagrangian presented in (18), which would
destroy the desirable UTZ texture. We note that this field and
symmetry content exhibits explicit discrete gauge anomaly
freedom at the relevant scale of our EFT – see (e.g.) [10,18–
25].

Besides the Yukawa Lagrangian to be discussed in upcom-
ing Sections, the familons θi , θX and θ also compose an asso-
ciated scalar potential V = VA + VB ,

VA =
∑

i=3,123

(V1(θi ) + V2(θi )) + V3 + V4 + V5,

VB = V1(θ) + V2(θ) + V6. (2)

While we leave the complete description of the vacuum align-
ment mechanism to [1], we recall that the individual compo-
nents Vi of V are given by

V1(θi ) = m2
i |θi |2, V2(θi ) = hi (θi )

2
(
θ†i

)2
,

V3 = k1θX,iθ
†i
123θ123, jθ

† j
X (k1 > 0), V4 = k2m0θ

1
Xθ2

Xθ3
X

V5 = k3θ23,iθ
i
Xθ

† j
23 θ

† j
X + k4θ23,iθ

†i
3 θ3,iθ

†i
23

(k3 > 0 and k4 < 0), V6 = k5θ3,iθ
†iθiθ

†i
3 (k5 < 0).

(3)

The first term V1 sets the scale of the scalar familon fields,
and is sufficient to break the family symmetry spontaneously
uponm2

i being driven to negative values, perhaps via radiative
corrections in the manner of [26]. Then the second term V2

aligns the θ3,123 vevs in flavour space as a function of the sign
of hi ; h123 ≡ hi > 0 while h3 ≡ hi < 0. The terms V3,4,5,6

account for the final alignment of the θ23,X and θ vevs, with
V3 sourcing the dominant coupling of θX ,V4 selecting 〈θX 〉 ∝
(2,−1, 1) out of the two degenerate vacua V3 allows, and V5

and V6 respectively driving the final θ23 and θ orientations
upon minimization.2

All subtleties considered, the potential in (3) aligns the
scalar familon fields in special directions in flavour-space,

〈
θ(3)

〉 = vθ(3)

⎛

⎝
0
0
1

⎞

⎠ , 〈θ123〉 = v123√
3

⎛

⎝
eiβ

eiα

−1

⎞

⎠ ,

2 Observe that in (2) we have only included terms that are consistent
with a spontaneously broken, supersymmetric (SUSY) underlying the-
ory with triplet mediators. Additional quartic terms may appear, but
must be suppressed in order to preserve (4). All other aspects of the
tree-level phenomenology of the UTZ model can be studied without
reference to hypothetical UV completions, and we adopt this agnosti-
cism to be as generic as possible in what follows.
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〈θ23〉 = v23√
2

⎛

⎝
0
eiα

1

⎞

⎠ ,
〈
θ

†
X

〉
= vX√

6

⎛

⎝
2eiβ

−eiα

1

⎞

⎠ ,

where the parentheses on the first term indicate that both θ3

and θ are aligned in the third-family direction, and where
we have included the generic phases α, β for complete-
ness, although we will eventually set these to zero following
the discussion in [27]. We note that, of the above potential
terms, many are not invariant under SU(3)F , and so the use
of �(27), a non-Abelian discrete subgroup of SU(3)F , was
instrumental in the above discussion.

2.1 The leading-order effective Yukawa Lagrangian

Upon demonstrating that a successful vacuum alignment
is plausible upon family-symmetry breaking, a meaningful
BSM Yukawa sector can be subsequently formed from the
field and symmetry content of Table 1. This leads to the fol-
lowing LO UTZ effective Lagrangian in the Dirac sector of
the theory:

LLO
D, f = ψi

(
c(6)

3

M2
3, f

θ i3θ
j

3 + c(7)
23

M3
23, f

θ i23θ
j

23	

+ c(7)
123

M3
123, f

(θ i123θ
j

23 + θ i23θ
j

123)S

)
ψc

j H, (4)

where f ∈ {u, d, e, ν}. Here c(n)
i are free Wilson coeffi-

cients whose superscript denotes the mass dimension n of the
operator, while Mi, f represent the mass scales associated to
heavy messenger fields that have been integrated out of the
spectrum in forming the EFT, a lá the Froggatt-Nielsen mech-
anism [28]. These messenger fields are associated to distinct
UV completions and are typically taken to be vector-like
fermions, although we do not wish to commit ourselves to
any particular scenario. In what follows we will simply point
out the implications and constraints on said UV messengers
coming from the (falsifiable) IR spectrum associated to (4).

To that end, one quickly notices that a natural hierarchy
for the third-family fermions is realized, thanks to the power
suppression (assuming only mild hierarchies amongst mes-
senger masses) of the second and third terms with respect
to the first, which only contributes to the (3, 3) entry of the
Dirac mass matrices. While this helps realize an approximate
SU(2)F symmetry of the quark mass matrices and associated
CKM mixing matrix, it also implies that the ratio θ3/M3, f

is large [29], at least in the up sector. This is acceptable if
θ3 is the dominant contributor to the messenger mass, which
we assume for all charged fermion sectors. For an alternative
solution to this issue involving Higgs mediators, see [30].

Besides (4), the field and symmetry content of Table 1 also
permits a Majorana mass Lagrangian, which at leading order
in the OPE is of the following form:

Lν
M = ψc

i

(
c(5)
M

M
θ iθ j + 1

M4 [c(8)
M,1 θ i23θ

j
23(θ

kθkθk123)

+c(8)
M,2 (θ i23θ

j
123 + θ i123θ

j
23)(θ

kθkθk23)]
)

ψc
j . (5)

Here one notices that there are two insertions of the LNV
scalar θ in each operator, as is consistent with our underlying
SO(10) → SU(4)×SU(2)L×SU(2)R GUT embedding, and
also that the leading contributions in this effective Lagrangian
are at dimension five and eight in the 1/M expansion of the
EFT, as opposed to six and seven in the case of the Dirac
Lagrangian given in (4). This results in an extremely domi-
nant third-family hierarchy that has important phenomeno-
logical implications in the neutrino sector upon applying the
seesaw, as mentioned below. Further discussion regarding
the relative power suppression between Dirac and Majorana
sectors will be given in Sect. 2.2.

Qualitative charged fermion masses and sum rules

While the SM’s quark and charged lepton flavour sector
is exceptionally well-measured and therefore offers little
opportunity for novel predictions, we do note that the UTZ
Lagrangian above has been designed to realize successful
charged fermion mass ratios, as well as two long-standing and
successful phenomenological ansätze: the Georgi–Jarlskog
mechanism and the Gatto–Sartori–Tonin sum rule. This is
due to the UTZ structure of the Dirac mass matrices, given
qualitatively by

MD
f ≈ m3

⎛

⎜⎝
0 ε3

f ε3
f

ε3
f r f ε

2
f r f ε

2
f

ε3
f r f ε

2
f 1

⎞

⎟⎠ , ru,d = 1/3, re = −1,

(6)

with f again indicating the family sector, f ∈ {u, d, e} and
ε f associated small parameters. Phenomenologically viable
values are given by εu ≈ 0.05 and εd,e ≈ 0.15. This family
splitting is accommodated via the UTZ relations

r f ε2
f ≡ 〈θ23〉2〈	〉

M3
23, f

· M
2
3, f

〈θ3〉2 , ε3
f ≡ 〈θ23〉〈θ123〉〈S〉

M3
123, f

· M
2
3, f

〈θ3〉2 ,

(7)

which hold up to O(1) coefficients and signs. Here one sees
that εu < εd is realized if M3,u/M23,u < M3,d/M23,d , and
of course εe and εd can be equal given the symmetry breaking
in (1) and the fact that both are TR,3 = −1/2 states which (in
SUSY models) acquire their mass from the same Higgs boson
(Hd ). Note that we assume the messenger masses carry both
lepton and quark quantum numbers, and so it is important
that RH messengers associated to SU(2)R breaking in (1)
dominate for εu < εd , as opposed to the LH messengers
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associated to SU(2)L , whose up and down masses are of
course equal due to SU(2)L invariance.

Also associated to this pattern of family suppression are
the r f coefficients in (6), which are sourced from the 	

vev and therefore implement the Georgi–Jarlskog mecha-
nism [31], resulting in

mτ = mb, mμ = 3ms, me = 1

3
md (8)

at the scale of grand unification, as is consistent with RGE
and threshold corrections [12].

In addition to these characteristic mass relations, the quark
sector realizations of (6) also implement the Gatto-Sartori-
Tonin mixing sum rule [32],

sin θc =
∣∣∣∣
√
md

ms
− eiδ

√
mu

mc

∣∣∣∣ , (9)

relating the Cabibbo angle θc � θ
q
12 to mass ratios from the

first- and second-generation quarks of both the up and down
families. Setting δ ≈ π/2 and again accounting for RGE
and threshold corrections [12] (cf. Sect. 3.1), both (8) and
(9) remain successful predictions that are maintained in our
UTZ framework.3

Qualitative neutrino masses and sum rules

As discussed above, the bulk of the parameters left to be con-
strained experimentally are in the neutrino sector, and so it
is worthwhile to discuss the qualitative, analytic predictions
of the UTZ construction in this area. As with other flavour
models, we employ the Type-I seesaw mechanism [34–37]. In
this framework the right-handed (RH) Majorana mass terms
generated by (5) are parametrically heavier than the Dirac
neutrino masses coming from (4). Integrating the RH neu-
trino fields out of the spectrum generates a left-handed (LH)
Majorana neutrino mass term,

Mν = 1

2
MD

ν · M−1
M · MD,T

ν , (10)

which is of course naturally light due to the heavy MM sup-
pression. In the presence of a sequentially dominant [38–41]
RH neutrino spectrum

MM,3 � MM,2 ≥ MM,1, (11)

which is naturally realized thanks to the hierarchical sup-
pression of the second term in (18) with respect to the domi-

3 These predictions are a consequence of the texture zeroes in the
charged fermion structures and are therefore not unique to the UTZ,
see e.g. [11,29,33].

nant (third-family) first term, the see-saw contribution com-
ing from νc3 exchange is negligible. This results in the lightest
active neutrino having a parametrically smaller mass com-
pared to the two heaviest active neutrinos. This spectrum
is described by an effective 2 × 2 neutrino mass structure
in the IR, which can be analyzed analytically. In particular,
after application of the Type-I seesaw mechanism, one can
extract sum rules for the PMNS mixing angles as a function
of neutrino mass eigenvalues,

sin θν
13 ≈

√
m2

3m3
, sin θν

23 ≈ | 1√
2

− eiη sin θν
13|,

sin θν
12 ≈ 1√

3
, (12)

where the phase η is defined from the predicted ratio of the
heavy neutrino masses m2/m3 (see the discussion in [1]).
One notes that the relationships in (12) are similar to the
renowned ‘Tri-Bimaximal’ (TBM) texture [42] (sin θT BM

13 =
0, sin θT BM

23 = 1/
√

2, sin θT BM
12 = 1/

√
3) that is often a

starting point for neutrino mass model building. However, the
salient difference with respect to prior models of this type –
see e.g. [29,33] or the more recent [43–45] – is that the (1,1)
texture zero of the mass matrix remains after application of
the seesaw, such that our UTZ setup leads to a non-negligible
departure from the TBM texture and naturally allows for a
large(r) reactor mixing angle θ l13 (which also receives cor-
rections from the charged-lepton sector), in accord with data.
Finally, we note that our �(27) family-symmetry breaking
realizes the Z2 × Z2 [46] residual symmetry of the IR neu-
trino mass term only ‘indirectly,’4 in that it is not a subgroup
of �(27) and appears only accidentally thanks to (4).

2.2 Higher-order contributions

The Lagrangians in (4), (5) represent the LO contributions
to the UTZ operator product expansion. Higher-order terms
in this series are suppressed by further powers of the rele-
vant mediator masses, and should therefore represent small
corrections to the qualitative structures and predictions dis-
cussed above. However, these corrections can a priori be
non-negligible as noted in [1], and so it is important that
we consider them robustly as we revisit the UTZ.

In the Dirac sector, the NLO �(27) × ZN invariant terms
composed of the same field content as in Table 1 arise at
mass-dimension eight, i.e. with four powers of mediator mass
suppression,

4 ...following the classification system of [47]. For a pedagogical
algorithm and exhaustive discussion regarding the reconstruction of
effective Lagrangians analogous to (4)-(5) in the alternative ‘direct’
symmetry-breaking scenario, see [48].
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LHO
D, f = ψi

(
c(8)

23

M4
23, f

(θ i23θ
j

3 + θ i3θ
j

23)	S

+ c(8)
123

M4
123, f

(θ i123θ
j

3 + θ i3θ
j

123)S
2

)
ψc

j H. (13)

While these terms contribute at the same order in the EFT’s
power counting, we have already identified in the discussion
below (7) that the LO Dirac mass contribution ∝ 〈	〉 is
parametrically larger than that ∝ S. If one assumes roughly
universal messenger masses, one finds that

〈θ23〉〈θ23〉〈	〉
M3

23

∼ O(ε2),
〈θ23〉〈θ123〉〈S〉

M3
123

∼ O(ε3)

�⇒ 〈θ23〉〈	〉
〈θ123〉〈S〉 ∼ O

(
1

ε

)
, (14)

from which once can readily conclude that the HO contribu-
tions ∝ S2 in (13) are also parametrically smaller than those
∝ 	S:

〈θ3〉〈θ23〉〈	〉〈S〉
M4 ∼ 1

ε

〈θ3〉〈θ123〉〈S〉2

M4 . (15)

In [1] we used (15) to justify ignoring the S2 contribution to
the Dirac mass matrix entirely. However, we will now include
both terms in (13) for completeness.

The UTZ’s operator product expansion is of course
infinite-dimensional in the absence of an explicit UV com-
pletion. Hence further, next-to-next-to-leading order contri-
butions can also be written down. However, these operators
will have at least three additional insertions of �(27) triplets,
and are therefore highly suppressed. We neglect their contri-
butions as a result. We also note that the NLO contributions
to the Dirac Lagrangian given in (13) enter at the same mass-
dimension as LO contributions to the Majorana Lagrangian
given in (5),

OHO
D ∼ OLO

M ∼ O(1/M4), (16)

and so we do not consider any corrections to (5) to be con-
sistent in our power counting.

2.3 Complete effective mass matrices in the ultraviolet

The discussions in the subsections above lead to the LO and
NLO Lagrangians of (4), (5) and (13). After family- and
electroweak-symmetry breaking, these Lagrangians gener-
ate the following Dirac and Majorana fermion UTZ mass
matrices:

MD
f �

⎛

⎝
0 a ei(α+β+γ ) a ei(β+γ ) + c ei(β+ζ )

a ei(α+β+γ ) (b e−iγ + 2a e−iδ) ei(2α+γ+δ) b ei(α+δ) + c ei(α+ζ ) + d ei(α+ψ)

a ei(β+γ ) + c ei(β+ζ ) b ei(α+δ) + c ei(α+ζ ) + d ei(α+ψ) 1 − 2a eiγ + b eiδ − 2c eiζ + 2d eiψ

⎞

⎠ , (17)

MM �
⎛

⎝
0 y ei(α+β+ρ) y ei(β+ρ)

y ei(α+β+ρ) (x e−iρ + 2y e−iφ) ei(2α+ρ+φ) x ei(α+φ)

y ei(β+ρ) x ei(α+φ) 1 − 2y eiρ + x eiφ

⎞

⎠ . (18)

Here the matrices have been normalized such that MD
f ≡

MD
f /s f , MM ≡ MM/Mθ , where Mθ and s are the over-

all scale-setting parameters of (17), (18) which, along with
the relative-scale-setting parameters {a, b, c, d, x, y}, are
defined in terms of scalar vevs and other coefficients:

a′
f = c(7)

123v123v23 〈S〉√
6M3

123, f

, b′
f = c(7)

23 r f v2
23 〈	〉

2M3
23, f

,

c′
f = c(8)

123v123v3〈S〉2

√
3M4

123, f

, d ′
f = c(8)

23 r f v23v3〈	〉〈S〉√
2M4

23, f

,

s f = c(6)
3 v2

3

M2
3, f

, x ′ = c(8)
M,1v2

23〈�123〉
2M4 ,

y′ = c(8)
M,2v23v123〈�23〉√

6M4
, Mθ = c(5)

M v2
θ

M
, (19)

with ru,d,e,ν = (1, 1,−3,−3)/3 and 〈�23,123〉 ≡ 〈θkθk
θk23,123〉, i.e. the vev of the singlet contractions with k super-
script in (5). The relationship between primed and unprimed
parameters, along with associated complex phases, is then
given by

a′

s
=

∣∣∣∣
a′

s

∣∣∣∣ e
iγ ≡ a eiγ ,

b′

s
=

∣∣∣∣
b′

s

∣∣∣∣ e
iδ ≡ b eiδ,

c′

s
=

∣∣∣∣
c′

s

∣∣∣∣ e
iζ ≡ c eiζ ,

d ′

s
=

∣∣∣∣
d ′

s

∣∣∣∣ e
iψ ≡ d eiψ,

x ′

Mθ

=
∣∣∣∣
x ′

Mθ

∣∣∣∣ e
iφ ≡ x eiφ,

y′

Mθ

=
∣∣∣∣
y′

Mθ

∣∣∣∣ e
iρ ≡ y eiρ,

(20)

and it is clear that c and d account for the HO Dirac correc-
tions in (13).

Given (17), (18), the values of the ‘physical’ fermionic
mass, mixing, and CP-violating parameters can be extracted
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numerically as described in [1] or analytically, using flavour-
invariant theory as described in (e.g.) [49–51]. Then, given
(19), (20), one can compare the number of IR theory parame-
ters vs. IR physical parameters as a measure of the predictiv-
ity of the UTZ. At LO, there are a priori two coefficients (a,b)
and two phases (γ , δ) for each charged fermion sector, plus
the additional two family-universal phases (α, β) from vac-
uum alignment. However, following [27], we can set all but
two of these phases to zero without loss of generality. Assum-
ing the GUT embedding discussed above to relate the down
quarks to charged leptons taking into account the Georgi–
Jarlskog factors, one then has (2 + 2) · 3 + 2 − 4 − 4 = 6
UTZ model parameters (including two phases) to describe
three CKM mixing angles, one CKM Dirac phase, four quark
mass ratios and two charged lepton mass ratios, totalling
10 physical parameters. The neutrino sector’s predictivity
is even more striking, in the sequentially dominant limit of
(12). There, only three parameters, including a phase and an
overall mass scale, are necessary to reproduce the neutrino
mass differences, which when combined with the aforemen-
tioned charged lepton parameters also generate PMNS angles
and phases. In total, we see that only nine theory parameters
are required to reproduce 18 physical parameters at LO in
the UTZ OPE. This is to be compared to the SM where,
before allowing for weak basis transformations or rephasing
freedoms, the same physical parameters are controlled by
three, 3 × 3 complex matrices (charged fermion Yukawas)
and unspecified neutrino mass operator(s) (taking the Wein-
berg operator [52] as an infrared limit of the seesaw mecha-
nism, at least one additional complex symmetric 3×3 matrix
must be introduced).

3 Experimental constraints

The core experimental constraints on the UTZ model pre-
sented in Sect. 2 are of course the fermionic mass eigenval-
ues and CKM/PMNS mixings extracted from a host of low-
and high-energy flavour experiments. Regarding the charged
fermion sector, this information is regularly collated in the
PDG review [4], which reports bounds on fermion masses
and mixing angles. We have reported these IR bounds for the
mass sector in Table 3, translating the uncertainties on indi-
vidual masses into uncertainties on mass ratios, given that
the UTZ only predicts the charged fermion mass spectrum
up to a common scale. On the other hand, uncertainties on
mixing angles and the Dirac CP phase can be extracted from

global fits to the CKM matrix and Jarlskog invariant given
by [4]

|VCKM| ≡ |U †
uUd |

∈

⎛

⎜⎜⎜⎜⎜⎜⎝

(
0.97419
0.97451

) (
0.22433
0.22567

) (
0.00358
0.00388

)

(
0.22419
0.22553

) (
0.97333
0.97365

) (
0.04108
0.04267

)

(
0.00839
0.00877

) (
0.04038
0.04193

) (
0.999082
0.999149

)

⎞

⎟⎟⎟⎟⎟⎟⎠

J CKM ∈
(

3.23
2.95

)
· 10−5, (21)

where the left equality defines the CKM as the overlap of the
matricesUu,d diagonalizing the up / down Yukawa couplings.
The translation of these bounds to the θ

q
i j and δq basis is given

in Table 2.
Leptonic mass and mixing constraints are of course deeply

sensitive to ongoing neutrino oscillation, cosmology, and β-
decay experiments. The authors of [5] have compiled a global
fit to the available oscillation data, finding (e.g.)

|VPMNS| ≡ |U †
l Uν | ∈

⎛

⎜⎜⎜⎜⎜⎜⎝

(
0.801
0.845

) (
0.513
0.579

) (
0.144
0.156

)

(
0.244
0.499

) (
0.505
0.693

) (
0.631
0.768

)

(
0.272
0.518

) (
0.471
0.669

) (
0.623
0.761

)

⎞

⎟⎟⎟⎟⎟⎟⎠
,

(22)

where the LHS again gives the standard definition of the
PMNS matrix as it appears in the charged-current interactions
in terms of constituent charged-lepton and neutrino mixing
matricesUl,ν , and the 3σ confidence bounds on the RHS fur-
ther assume a unitary VPMNS and include Super-Kamiokande
atmospheric data – see [5] for details. As seen in [5] and
also in Table 2, current 3σ oscillation constraints do not yet
fully determine the quadrant of the atmospheric mixing angle
θ l23 and, at least in the normal ordering scenario, have only
excluded ∼ 43% of the available domain of the leptonic CP-
violating phase δl , i.e. δl is only constrained within a ∼ 200◦
arc. This is reduced to an exclusion of only ∼ 20% of the
phase domain when not including SK data.

The authors of [5] have also obtained global constraints on
the differences of squared neutrino mass eigenvalues, finding
at the 3σ confidence level

�m2
sol ≡ m2

2 − m2
1 ∈ {6.82, 8.04}3σ · 10−5 eV2,

�m2
atm ≡ m2

3 − m2
2 ∈ {2.430, 2.593}3σ · 10−3 eV2, (23)

123



  479 Page 8 of 22 Eur. Phys. J. C           (2023) 83:479 

Table 2 Uncertainty estimates for fermionic mixing parameters. In the
CKM sector, the (experimental) IR bounds are given in [4], while the
UV bounds are estimated by considering various input RGE/threshold
correction parameter choices from [12], and accounting for the prop-

agated IR experimental uncertainties. In the PMNS sector we take 3σ

global bounds from NuFit, in the normal ordering scenario and incor-
porating Super-Kamiokande atmospheric data

Uncertainties on fermionic mixing parameters

CKM Parameters sin θ
q
12 sin θ

q
23 sin θ

q
13 sin δ

q
CP

(μ = MI R)

(
0.226
0.224

) (
0.427
0.411

)
· 10−1

(
0.380
0.358

)
· 10−2

(
0.921
0.899

)

(μ = MUV )

(
0.226
0.224

) (
0.463
0.219

)
· 10−1

(
0.409
0.184

)
· 10−2

(
1.000
0.194

)

PMNS parameters sin θ l12 sin θ l23 sin θ l13 sin δlC P

(μ = MI R,UV )

(
0.586
0.519

) (
0.776
0.639

) (
0.156
0.144

) (
0.588

−1.000

)

Table 3 The same as Table 2, but for fermion masses. We estimate
the neutrino mass squared difference in the UV from [53], and recall
that the ξ ratio only differs from the IR when tan β is large and/or the
neutrino mass spectrum is partially degenerate (see text), hence the two

UV bounds for ξ in the last row, with the left (right) cell correspond-
ing to the low (high) tan β scenario. IR bounds for mβ(β) and m	 are
taken from [54–56], and their corresponding UV bounds are given by
conservatively setting s = 1.4 (see text)

Uncertainties on fermionic masses

Quarks mu/mt mc/mt md/mb ms/mb

(μ = MI R)

(
1.543
1.097

)
· 10−5

(
7.509
7.217

)
· 10−3

(
1.238
1.069

)
· 10−3

(
2.452
2.138

)
· 10−2

(μ = MUV )

(
5.807
1.592

)
· 10−6

(
2.576
0.911

)
· 10−3

(
8.303
3.570

)
· 10−4

(
1.729
0.880

)
· 10−2

Leptons me/mτ mμ/mτ �m2
sol/�m2

atm

(μ = MI R)

(
2.876
2.876

)
· 10−4

(
5.947
5.946

)
· 10−2

(
3.31
2.63

)
· 10−2

(μ = MUV )

(
2.875
2.343

)
· 10−4

(
5.753
5.096

)
· 10−2

(
3.31
2.63

)
· 10−2

(
3.421
0.124

)
· 10−1

Neutrinos mβ (GeV) 〈mββ 〉 (GeV) m	 (GeV)

(μ = MI R) 8 · 10−10 6 · 10−12 1.2 · 10−10 See text for
UV Estimates

(μ = MUV ) 1.12 · 10−9 8.4 · 10−12 1.68 · 10−10

in the normal-mass-ordering scenario relevant to the UTZ
construction, and again including Super-Kamiokande atmo-
spheric data.5 We have translated this to a bound on the ratio
ξ ≡ �m2

sol/�m2
atm in Table 3.

A second class of neutrino mass constraints comes
directly from cosmological probes. For example, assum-
ing the �CDM model and using data from the Cosmic
Microwave Background’s (CMB) angular spectra, the Planck
experiment has put an upper bound on the sum of cosmolog-
ically stable neutrino masses m	 of [54]

m	 ≡
∑

i

mνi < 0.26 eV (24)

5 Note that, by definition, the mass eigenvalues are labeled according
to their relative magnitudes, i.e. m3 > m2 > m1 in the normal-ordering
scenario.

at the 95 % confidence level. When also including data from
Baryon Acoustic Oscillations this bound is reduced to m	 <

0.12 eV [54], which can be yet further reduced tom	 < 0.09
eV when including Type Ia supernova luminosity distances
and growth rate parameter determinations [57] – see [58] for
a recent review.

Finally, additional constraints in the neutrino mass and
mixing sector originate in the effective mass terms control-
ling electron-neutrino 0νββ decay and single β decays,

〈mββ〉 ≡ ∣∣
∑

i

V 2
ei mi

∣∣ < (61 − 165) · 10−3 eV, (25)

mβ ≡
√∑

i

|Vei |2 m2
i < 0.8 eV, (26)
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where Vei is the matrix element of the first row and i-th
column of the PMNS matrix defined in (22), and mi is the
corresponding neutrino mass eigenvalue. Robust bounds for
these quantities are provided by dedicated terrestrial experi-
ments. In (25) we have cited the KamLAND-Zen collabora-
tion [55], while the limit in (26) is the 90% confidence-level
bound from KATRIN [56]. KATRIN’s future sensitivity is
expected to reach mβ < 0.2 eV [59].6

At this point we should clarify that, while in practice we
must specify a numerical value for the scale Mθ when apply-
ing the seesaw formula (10),7 and must therefore count this
as a relevant IR model parameter in our theory (unlike the
charged fermion case), this choice completely determines
the overall neutrino mass scale. As this is a free UTZ model
parameter, we can vary it between sensible UV seesaw scales
to accommodate (e.g.) (23)–(26), and probe said variation’s
effect on the relative-scale-setting parameters {aν, bν, x, y}.
We have done so between Mθ ∈ 1010−12 GeV, and observe
in Fig. 1 that, at least qualitatively, larger values of Mθ are
preferred. Regardless, as with the charged fermion spectrum,
we only consider UTZ predictions for ratios of observables
that depend on the overall neutrino mass scale, where Mθ

cancels, as truly meaningful. For this reason we will present
ξ , 〈mβ(β)〉/m	 , and 〈mββ〉/mβ as predictions in Sect. 4, but
not their individual constituent parameters mνi or mβ(β),
although we can report these based on the various Mθ ’s iden-
tified in the MCMC evolution, and indeed mβ(β), �m2

sol,atm ,
and m	 should be seen as giving reliable constraints on the
MCMC algorithm, in that once a value for Mθ has been set-
tled on, their associated values must still be consistent with
observation.

3.1 Renormalization group evolution uncertainties

A critical uncertainty for any prediction of the UTZ model
comes from the fact that (17), (18) are the textures associated
to the UV theory. Any comparison with data must be made at
the scale where said experimental constraints are obtained,
which in the case of the UTZ model is orders of magnitude
below where (17), (18) hold. Thankfully the Renormaliza-
tion Group (RG) evolution required to account for this scale
separation is well-studied in the context of a background
SM or minimally-SUSY SM (MSSM) spectrum (consistent
with our vacuum alignment mechanism discussed above),
for both the charged fermion [12,62,63] and neutrino sec-
tors [26,53,64–67]. For example, assuming a large flavour-

6 See e.g. [60,61] and references therein for a recent summary review
of these independent flavour constraints and the ability to use them to
probe neutrino mass models.
7 ...which amounts to specifying both the Dirac and Majorana neutrino
mass scales and hence their relative hierarchy, as we have no way of
differentiating Mθ from M̃θ ≡ s2

ν /Mθ in the seesaw formula...

breaking scale and a background SUSY spectrum allowing
for high-scale gauge-coupling unification, the phenomeno-
logical charged-fermion structures discussed between (6)-(9)
are already consistent with RGE and threshold corrections
from the IR to UV – see e.g. [12] – up to uncertainties regard-
ing (e.g.) the underlying SUSY breaking scale and parameter
spaces (in particular the ratio of Higgses, tan β), which can
drive some mass and mixing-angle splittings. As we do not
specify tan β or other parameters and/or fields beyond those
of the Yukawa sector of the EFT presented in Sect. 2.1, we
have used [12] to estimate the overall uncertainty associated
to UV quark mass and mixing parameters, accounting for the
broad range of possible theory parameters studied therein,
and of course propagating updated IR experimental uncer-
tainties from [4] to the UV. These estimates are reported in
Tables 2 and 3.

Moving to the neutrino sector and assuming a Type-I see-
saw mechanism, detailed RGE and threshold correction anal-
yses can be found in [53,64] and references therein. There
one concludes that, in the absence of a conspiracy between
special alignments of phases, large tan β, and/or a (parti
ally-)degenerate8 light neutrino spectrum, radiative correc-
tions to PMNS mixing angles and phases between disparate
scales is generally minimal,

�θ li j ≡ θ li j (�M1) − θ li j (�MZ )

∼ 1

2
· ln

M1

MZ
· 10−6 ·

(
1 + tan2 β

)
· �enh, (27)

for the lowest seesaw scale of M1, and with �enh =
{1,

√
ξ, 1,

√
ξ/θ l13,

√
ξ} for {θ l12, θ

l
13, θ

l
23, δ

l , φi }, respec-
tively. Taking rough order-of-magnitude estimates for �enh

and allowing for M1 as large as MGUT ∼ 1016 GeV and
tan β as large as 50, one sees that typically �θ li j � O(10−2),
which is largely insignificant in comparison to the experi-
mental uncertainties on mixing parameters given in Table 2,
except for possible corrections to θ l13. Given that we predict
a normally-ordered, hierarchical mass spectrum as a result
of the sequential dominance condition of (11),9 we can take
the 3σ bounds of (22) to hold in the UV, implying that the
experimental uncertainties are large in comparison to radia-
tive effects.

On the other hand, the light neutrino mass eigenvalues are
far more sensitive to RGE than are the PMNS parameters,
even in a hierarchical system. Assuming small tan β, neutrino

8 Here a ‘degenerate’ spectrum corresponds to �m2
atm � m2

3 ∼
m2

2 ∼ m2
1, while a ‘partially degenerate’ spectrum corresponds to

�m2
sol � m2

1 � �m2
atm . Hierarchical neutrinos satisfy m2

1 � �m2
sol

in the normal-ordering scenario.
9 Note that the presence of a dominant scale M3 in the RH neutrino mass
matrix also minimizes the inter-threshold radiative effects between Mi
[64].
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Fig. 1 Histograms demonstrating the distribution of MCMC iterations
for the Dirac (Majorana) scale-setting UTZ parameters {a, b, c, d}d,u,ν

({x, y, M}), in the LO (blue) and HO (red) scans. We have distributed

our results across 100 horizontal bins, while the sum of all vertical his-
togram values in a given plot is equal to N�. By and large, phases, like
the {c, d} f shown, do not exhibit strong preferential values
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mass eigenvalues generally evolve with a common scaling,
mν,i (μ) ≈ S(μ,μ0)mν,i (μ0) with (e.g.) S ≈ 1.1 − 1.2
for tan β ≈ 10 or S ≈ 1.35 − 1.4 for SM-like running.
This obviously leads to a UV enhancement of the neutrino
mass differences in (23) ∝ S

2, but this effect cancels in the
ratio ξ . On the other hand, large tan β can drive UV flavour
splittings amongst the neutrino mass eigenvalues, evolving
both �m2

sol,atm and ξ , an effect which is especially enhanced
in the case of a (partially-)degenerate spectrum, and which
is considerably uncertain when allowing for generic phase
configurations. We have used [53] to estimate the effect on
ξ in this regime in Table 2, where one sees that an uncer-
tainty greater than an order of magnitude in principle exists,
although this is quite conservative given the neutrino mass
domain considered in [53], and the fact that we can constrain
our MCMC scan to prefer a hierarchical mass spectrum, i.e.
�m2

sol/m
2
ν1

� 1.10 Finally, we note that RGE discussed
above also impacts the UV values of (24)–(26), which serve
as constraints on the MCMC system. In Table 3 we have
estimated these in the (conservative) SM-like scenario, with
S = 1.4 for all neutrino species.

In summary, we will apply the UV bounds in Tables 2 and 3
to account for a rather generic class of RGE and threshold cor-
rections to fermionic mass and mixing in the UTZ. They will
allow us to robustly explore the UTZ’s predictions without
introducing unnecessary assumptions about the background
field content and/or non-flavour parameter spaces that are
irrelevant to the EFT construction at hand, which is designed
to be as model-independent as possible.

4 An MCMC scan of parameter space

A proof-in-principle numerical analysis of the UTZ predic-
tions derived from (17), (18) was originally performed in [1],
in order to show that the model was consistent with available
mass and mixing data at the time. This semi-analytic study,
while successful, relied on a largely heuristic contour anal-
ysis to identify a viable region of the UTZ parameter space.
However, the analysis was incomplete in many ways, in that
it did not

1. exhaustively explore the available UTZ model space,
robustly accounting for all theory correlations amongst
its Lagrangian parameters and therefore conclusively

10 While sequential dominance (11) naturally generates a hierarchi-
cal spectrum, variations of the relative-scale-setting neutrino coeffi-
cients {aν , bν , x, y} can in principle edge the spectrum towards par-
tial degeneracy. We have applied a likelihood of 1 to any value of
�m2

sol/m
2
ν1

> 10 found in our MCMC scans, and have applied a
smoothing, Gaussian-like corrective factor to assign likelihoods for val-
ues close to this threshold.

determine whether the LO UTZ effective Lagrangian
adequately describes nature;

2. explore the complete set of corrections coming from
NLO effective operators as discussed in Sect. 2.2. Only
the largest corrections identified in the Dirac Lagrangian
were briefly considered in [1], and only in the down-quark
sector (the corrections parameterized by dd and ψd ).

3. identify sufficiently generic predictions for (e.g.) the CP-
violating phases δl and φ1,2 or PMNS atmospheric angle
θ l23, when all other (well-measured) flavour parameters
were simultaneously resolved by the UTZ;

4. consider in any way the experimental constraints from,
nor predictions for, neutrino-sector observables like
0νββ, single β-decay rates, or the sum of neutrino masses
m	 .

Furthermore, the experimental datasets available for theory
comparison have been updated since the original publica-
tion of [1]. All of these considerations motivate us to revisit
our phenomenological analysis of the UTZ in order to bet-
ter determine its viability and identify means of falsifying it.
However, given the number of free parameters introduced by
(4), (5), and even (13), numerical techniques more sophisti-
cated than those applied in [1] will be necessary to achieve 1-
4. To that end, in this work we consider a Markov Chain
Monte Carlo (MCMC) algorithm for exploring the UTZ.

4.1 The generic MCMC algorithm

Our numerical analysis will rely on a Metropolis-Hasting
MCMC algorithm. The purpose of this approach is to find
the posterior distribution of the model after applying rel-
evant experimental constraints, thereby obtaining viable,
high-likelihood UTZ parameter regions. The MCMC tech-
nique has proven to be very powerful when applied to
the exploration of high-dimensional parameter spaces, with
physics applications originating in phenomenological stud-
ies of SUSY extensions of the SM [68–70], cosmology [71],
and the determination of parton distribution functions [72].
More recently, two publications have used this approach to
study the viability of a flavoured SUSY SU(5) model [13]
and a scotogenic model for loop-induced neutrino masses
[14], from which we will follow most of the methodology.

The algorithm is based on an iterative process where every
new proposed parameter point is selected in an area near to the
previous one, and its estimated viability drives its acceptance
in the chain. To be more explicit, every Markov chain starts
on a randomly selected point within the parameter interval
ranges. Then, on every iteration, a new point with parameters
�θn+1 is proposed in the vicinity of the previous point with
parameters �θn . In our study, the new proposed parameter
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value is computed according to

θn+1
i = �

{
θni , κ

(
θmax
i − θmin

i

)}
, (28)

where � {a, b} is a Gaussian distribution with mean value a
and standard deviation b. The parameter κ parametrizes the
allowed jump length between two iterations, and its value
is chosen empirically in order to maximize the efficiency of
the algorithm. If the calculated value exceeds the limits of
the defined intervals for the model parameters, the point is
rejected.

We then compute the global likelihood associated with the
proposal point Ln+1, which is accepted with a probability

p = min
(

1, Ln+1/Ln
)

, (29)

which enforces the acceptance of points with higher likeli-
hood and conditions the acceptance to the viability of the
proposal point with respect to the previously accepted one.
Since our objective is to evaluate the global posterior distri-
bution for the parameters, accepting points with lower like-
lihoods and using a large number of chains is important both
in attempting to avoid an MCMC evolution where the chain
gets trapped in local maxima that might be fine-tuned, and
also in helping to enforce a better distribution across the full
parameter space.

For simplicity, we assume here that our experimental con-
straints are not correlated and that the global likelihood is
simply the products of the individual likelihoods, i.e

Ln ≡ L(�θn, �O) =
∏

i

Ln
i (

�θn, Oi ), (30)

where �O is the set of experimental observables used as con-
straints. Furthermore, we assume a Gaussian shape for all
the constraint likelihoods where uncertainties are given in
Tables 2 and 3, except for constraints that only correspond to
upper or lower bounds. In these latter cases we apply a step
function whose likelihood is assigned to 1 if the bound is sat-
isfied, and which otherwise employs a Gaussian ‘corrective’
factor that diminishes the likelihood assigned to the phase-
space point as a function of the extent to which the bound
is violated. Within this numerical setup, the chain will con-
verge to high-likelihood domains whose area represents the
viability of the models according to the applied uncertainties
on the constraints.

Additionally, in order to speed up the convergence process,
we modify our jump parameter κ to include a memory of
proposal tries

κ(t) = (1 − ε)tκ0, (31)

where t is the number of tries before accepting a new point
in the chain. This becomes extremely helpful as the chain
converges since some parameters might have a very thin data-
compatible range. As soon as one point is accepted, t is set
to 0 again, maintaining the chain’s ability to jump to another
parameter region.11

Finally, we focus solely on points within a chain for
which the convergence already occurred (i.e. where maxi-
mums of likelihoods are reached). Therefore, we set up a
‘burning-length’ parameter which automatically removes the
first Nburn points of each chains. This parameter is once again
chosen empirically during the pre-runs by studying multiple
likelihood evolution plots.

For clarification and to summarize, we emphasize that the
MCMC strategy presented above is associated to Bayesian
statistical methods. Our goal is to obtain the posterior distri-
bution for UTZ model parameters while taking into account
available experimental constraints. During this process, our
algorithm will successively compare parameter points while
keeping the best ones, within a probability associated to
their respective likelihood ratios. In this approach, prior
knowledge is represented by the parameter distributions in
the absence of any constraints. We have performed such
‘constraint-free’ scans and found that every parameter in
the scan follows a uniform prior distribution, which demon-
strates that the final posterior distributions we present in the
following sections are solely explained by the use of experi-
mental constraints (also see Footnote 12).

Given the above discussion, we present the different
MCMC hyper-parameters that we use in our setup: Nburn,
κ0, ε, the number of chains launched Nchains, and the length
of the chains Lchain which determine the target number of
accepted points for every chain. All these parameters are
chosen empirically depending on the model and the final
statistics desired for the distributions. As a final comment, we
note that it is usually better to allow for more chains, rather
than longer chains, as this ensures a more reliable parameter
exploration.

4.2 UTZ specifics

Following the algorithm above, we now specify the con-
straints that will guide our likelihood evolution in the
MCMC, and also the hyper- and model-parameter choices
that control our statistics. Regarding the former, we have
identified / implemented the following set of MCMC con-

11 Note that, by setting ε = 0, we have checked that the additional
proposal in (31) does not impact our conclusions; upon running our
scripts with this modification (albeit with slightly lower statistics) we
find the same qualitative results as presented in Fig. 1 for the model
parameters and subsequent figures for associated physical parameters,
which are generated with (33).
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Table 4 The scan ranges of UTZ model parameters, along with the
value of the model parameter in the global best-fit dataset, for both
LO and HO fits. Recall that only two charged-fermion phase param-
eters are non-redundant at LO [27], and so we have chosen {γd , δd },
as in [1]. Graphical representations of the MCMC evolution of these
parameters are given in Fig. 1. Also recall that there are no relevant HO

Majorana corrections, that we have kept the HO corrections real, and
that the global best-fit values identified for the phases are not terribly
meaningful, as we do not observe very strong MCMC preferences for
any phase values in our scans (they are all relatively evenly distributed
across [0, 2π ])

LO UTZ model parameter MCMC ranges and global best fits

(a, b)d · 103 (a, b)u · 105 (a, b)ν · 101 (x, y) · 103

Range ([2, 6] , [10, 20]) (∓30,∓800) ∓5 ∓5

LO (3.579, 15.924) (6.720,−192.922) (−1.166, 1.818) (−0.146,−4.641)

HO (3.415, 15.416) (7.604,−200.279) (−1.819, 2.440) (3.728, 3.501)

(γ, δ)d (γ, δ)ν (ρ, φ) Mθ · 10−11 [GeV]

Range [0, 2π ] [0, 2π ] [0, 2π ] [0.1, 10]

LO (3.910, 5.782) (3.163, 4.553) (2.964, 4.784) 3.084

HO (4.228, 6.134) (0.464, 2.293) (3.636, 3.976) 9.918

HO UTZ model parameter MCMC ranges and global best fits

(c, d)d · 105 (c, d)u · 106 (c, d)ν · 103

Range (∓5,∓50) (∓5,∓50) (∓5,∓50)

HO (0.640, 10.811) (0.916,−37.298) (−0.896,−1.565)

straints and predictions:

Constraints :{R fi f3 ( f ∈ u, d, e), sin θ
q,l
i j ,

sin δq,l ,�m2
sol,atm, mβ(β), m	, ξ,

n.h.}
Predictions : {Rνi ν3 , mββ/m	,

mβ/m	, mββ/mβ, sin φ1, sin φ2}
Quasi-Predictions : {sin δq,l , ξ} (32)

where R fi f3 corresponds to the ratio of the i th generation over
third-generation mass (Ri3 ≡ m fi /m f 3) for the correspond-
ing family f , and where ‘n.h.’ corresponds to the constraint
�m2

sol/m
2
ν1

� 1, which enforces a strictly-hierarchical
normal-ordered light neutrino spectrum. The associated
numerical constraints correspond to the UV bounds from
Tables 2 and 3. Hence there are Ncons = 21 constraints to
guide the MCMC likelihood evolution, and Nobs = 7 addi-
tional predictions that depend on correlated theory parame-
ters, but which do not impact MCMC likelihoods. Observe
that sin δq,l and ξ are listed as quasi-predictions because,
as discussed above, the UV bounds associated to them are
extremely large, either due to IR experimental uncertainties
(sin δl ) or due to theory uncertainties associated to radiative
corrections (sin δq , ξ ). We will therefore use Tables 2 and
3 as (weak) MCMC constraints, but will also present these
results as novel predictions of the UTZ framework, along
with those already listed as such in (32).

Given (32), we then set the values of the MCMC hyper-
parameters we have employed to12

Nchains = 2500, Lchains = 500,

Nburn = 40, κ0 = 0.01, ε = 0.00005, (33)

while Table 4 gives the ranges scanned over for the actual
UTZ model parameters outlined in Sect. 2. The ranges
listed for both were identified from successful preliminary
MCMC runs with broader model-parameter ranges, coarser
hyper-parameter specifications and, most importantly, gen-
eral physics considerations from Sect. 2, which we now dis-
cuss.

Considering the Majorana sector, we heuristically observe
that establishing the sequential dominance condition in (11)

12 We have explored the stability of our results under variations of each
of these parameters. We already mentioned in Footnote 11 that set-
ting ε → 0 does not qualitatively impact our conclusions, a fact that we
have also confirmed with respect to κ0, by varying it by a factor of three.
Furthermore, Nburn was determined empirically by conservatively ana-
lyzing the likelihood evolution of numerous individual chains; decreas-
ing it will only serve to include lower-likelihood regions of parameter
space. Finally, preliminary scans of the UTZ implementing (32) were
done using much lower statistics than implied by {N , L}chains, finding
results in qualitative agreement with the high-statistics run generated
by (33). Hence we believe these choices are quite conservative. Finally,
as mentioned above, we performed a preliminary scan with the same
statistics as in (33), but without applying the constraints of (32) (all
model parameter configurations generate a likelihood of 1), in order to
confirm that the UTZ does not exhibit built-in preferred regions. Taking
the generic scan range −5 · 10−1 ≤ {a f , b f , x, y} ≤ 5 · 10−1, we find
that all parameter distributions are flat. In other words, the shapes of the
distributions presented in Fig. 1 are truly driven by (32).
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Table 5 The maximum likelihoods returned from preliminary LO
MCMC scans with Nchains = 500, Lchain = 250, and Lburn = 20,
upon choosing different charged fermion phase configurations. Note

that we have shown the results for the {γd , δd } configuration in Figs. 2,
3, 4, 5 and 6, to readily compare with [1]

Phase combos {γd , δd } {γd , γu} {γd , δu} {γu , δd } {δu , δd } {γu , δu}
LO max likelihood ×100 3.22 3.57 4.35 1.17 1.30 2.35 ·10−3

with M3/M2 ∼ 10n GeV requires max(x, y) ∼ O(10−n),
and this is largely independent of the scale Mθ . We have
required n ≥ 3, to truly establish the third-family Majorana
dominance implied by (5). Requiring M2 � M1 of course
requires further suppression between x and y, such that
M2/M1 ∼ 10n GeV (roughly) corresponds to min(x, y) ∼
max(x, y) ·10−n/2, and we recall that the qualitative physics
leading to (12) does indeed imply said additional hierarchy.
However, we also notice from (5) that the two coefficients
are sourced from Lagrangian terms that enter at the same
power counting (suppressed by M4). While the combinations
of vevs and coefficients can lead to additional suppression,
in Table 4 we have kept the scan range for y on the same
generic order of magnitude as x , which of course allows for
the additional suppression, but does not enforce it.

Scan ranges for the LO Dirac parameters {a, b} f are deter-
mined by observing that the LO Dirac Lagrangian in (4) only
exhibits one order of messenger mass suppression w.r.t. the
leading third-generation scale-setting terms. Allowing for
a broad range of Wilson coefficients and flavon vevs, we
consider −5 · 10−1 < {a, b} f < 5 · 10−1 as a reasonable
first constraint on preliminary MCMC scans, which we then
iteratively refine given observed preferential domains. Fol-
lowing this procedure, we have noticed that the up-family
parameters prefer to be (roughly) symmetrically distributed
around zero, and extend to ±O(10−4) (O(10−3)) for the
au (bu) terms. The down-quark and charged-lepton parame-
ters are also symmetric about zero, but with centers around
O(10−3) (O(10−2)) for ad (bd ). In Table 4 and Fig. 1 we
have only considered the positive branch of these parameters.
Finally, the Dirac neutrino parameters are also distributed in
a roughly symmetric way about zero, with both aν and bν

peaked around O(10−1).
Upon identifying the final LO scan ranges as above, we

then consider the HO Dirac parameters {c, d} f , which we
recall from (13) contribute at 1/M4

i, f in the UTZ OPE, i.e. at
one order higher than the leading terms. Consistent with our
power-counting philosophy at LO, we require these terms be
at least one order of magnitude smaller than their LO coun-
terparts. We then consider the analytic hierarchy between the
HO operators identified in (15) suggesting the c f correction
∝ S2 be yet further suppressed w.r.t. d f . To this end, if we
have identified a scan range of |min{a, b} f | < O(10−n), we
require |d f | < O(10−n−1) and |c f | < O(10−n−2). While
this of course does not forbid the possibility that |d f | ∼ |c f |

(as is also in principle allowed given slightly non-universal
messenger masses and/or hierarchical Wilson coefficients),
it is sufficiently generic for our purposes and, in any event,
we observe that these HO corrections do not converge on
highly-preferential domains regardless, which is clearly vis-
ible in the last two rows of Fig. 1. Note that, for simplicity,
we have kept these HO corrections real.

Finally, we note that in all of the above considerations
we have allowed for generic LO phase configurations in the
neutrino sector,13 but have chosen the two non-redundant LO
phases in the charged fermion sector as in [1], i.e. we allow
for non-zero γd and δd . This allows us to readily compare
the physical conclusions of our analysis with those of [1].
In Table 5 we show that this choice is amongst the higher-
likelihood configurations given the six possible pairings, hav-
ing considered other configurations in preliminary MCMC
scans with limited statistics. Up to this choice, we have other-
wise allowed for arbitrary phases in our MCMC scans; all are
constrained to [0, 2π ], and we observe that there is typically
no strong MCMC preference for said phase domains. For this
reason we do not show their MCMC histogram distributions
in Fig. 1.

4.3 Results and analysis

We implement the MCMC scan as described above on a
computing cluster. The output is a data-set composed of
UTZ model parameters, associated values for the constraints
and predictions from (32), and the corresponding likeli-
hood of said predictions for each saved MCMC iteration.
We denote the corresponding data-set �

j
i , where our nota-

tion implies that the i th data-set has j entries correspond-
ing to the model / physical / likelihood parameter(s). Hence
i ∈ {1, 2, . . . , N�}, where

N� = Nchains · (Lchains − Nburn) , (34)

i.e the overall number of data-sets, each of which has j ∈
{1, 2, . . . , L�} constituents, where

L� = Nmodel + Ncons + Nobs + 1, (35)

13 Although recall that in the sequentially-dominant IR limit only one
neutrino phase, formed from a combination of said UV phases, domi-
nates the phenomenology.

123



Eur. Phys. J. C           (2023) 83:479 Page 15 of 22   479 

Fig. 2 MCMC density plots for UTZ quark and lepton flavoured mass
ratio predictions. Plots are generated with the hyper-parameter choices
in (33) with model-parameter variations as given in Table 4. The blue
(red) regions correspond to the LO (HO) MCMC scan results, with

darker regions corresponding to places of higher density. Gray regions
represent the UV bounds for the mass ratios as presented in Table 3, and
the black target markers correspond to the global best-fit values shown
numerically in Table 6

with the additional unit in L�’s counting coming from the
standard likelihood function L for a set of model predictions
compared to experiment. Given (33), N� = 1.15·106, and we
now examine the physical and model parameters embedded
therein.

Fermion flavour mass ratios

We first examine the MCMC results for the UTZ’s predic-
tions in the fermion mass sector. Figure 2 illustrates these
for mass ratios in the up quark, down quark, charged lepton,
and neutrino families. Both Fig. 2 (and upcoming figures)
and Table 6 give results for the LO and, when indicated, HO
MCMC scans, with the former given in blue and the latter
in red. Note that these figures represent density plots, in that
darker regions correspond to parameter domains where more
Markov chains evolved. Also, the black ‘target’ marker in
Figs. 2, 3, 4, 5 and 6 corresponds to the location of the overall
(global) best-fit data-set �i , which is also given numerically
in Table 6.

The gray bands correspond to the global data available
from the PDG (NuFit) collaborations for the charged fermion

(neutrino) masses, corrected to the UV according to the dis-
cussion in Sect. 3.1. Comparing these to the blue and red
regions, we see that the UTZ is capable of successfully
resolving the entire charged fermion mass spectrum, for
both quarks and leptons, up to the RGE and threshold cor-
rection uncertainties. Furthermore, the UTZ predictions for
(currently unmeasured) neutrino mass ratios are shown in
the bottom-right panel; given the model parameter ranges
explored in Table 4, the ratio Ri3 ≡ mνi /mν3 is densely
populated within 2.5 · 10−2 < R23 < 2 · 10−1 for the heav-
ier generations while the smaller mass ratio is densely pop-
ulated between 1.5 · 10−3 < R13 < 2 · 10−2. However,
we see that, albeit less frequent, much larger neutrino mass
hierarchies are also resolved, with R13 (R23) falling below
10−6 (5 · 10−3).

Finally, we notice from the up-family plot that the inclu-
sion of the red HO corrections sourced from (13) do not
qualitatively change the physics conclusions of the blue LO
regions. We have in fact observed this quite generically across
family and observable sectors, and hence for visual clarity
we only display the dominant LO results in what follows,
unless otherwise specified.
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Table 6 The UTZ global best-fits for fermionic mass (top) and mix-
ing (bottom) parameters in the UV, as determined from the MCMC
scan described in Sect. 4. The upper lines correspond to the fit allowing
for only LO UTZ Lagrangian parameters, while the lower lines also

account for HO parameters, both of whose MCMC distributions are
given in Table 4. Figures 2 and 3 show the total spread of MCMC pre-
dictions in this sector, and also highlight the LO global fits presented in
this table with a black target marker

Global best-fit UV fermionic mass parameters

Quark masses mu/mt mc/mt md/mb ms/mb

LO fit 2.518 · 10−6 1.805 · 10−3 7.738 · 10−4 1.563 · 10−2

HO fit 3.126 · 10−6 1.862 · 10−3 7.397 · 10−4 1.490 · 10−2

Lepton masses me/mτ mμ/mτ mν1/mν3 mν2/mν3

LO fit 2.621 · 10−4 5.423 · 10−2 8.450 · 10−3 1.149 · 10−1

HO fit 2.475 · 10−4 5.341 · 10−2 2.540 · 10−3 1.298 · 10−1

Global best-fit UV fermionic mixing parameters

CKM parameters sin θ
q
12 sin θ

q
23 sin θ

q
13 sin δ

q
CP

LO fit 0.225 1.762 · 10−2 3.429 · 10−3 0.485

HO fit 0.225 1.752 · 10−2 3.247 · 10−3 0.446

PMNS parameters sin θ l12 sin θ l23 sin θ l13 sin δlC P

LO fit 0.550 0.704 0.146 −0.845

HO fit 0.547 0.714 0.150 −0.975

Fig. 3 The same as Fig. 2, but for the CKM and PMNS mixing angles and Dirac CP-violating phases
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Fig. 4 The same as Fig. 3, but now comparing the quark and lepton Dirac CP-violating phases, and presenting the novel predictions for the
Majorana CP-violating phases φ1,2

Fig. 5 The same as Fig. 2, but now comparing the neutrino mass ratio observables predicted by the UTZ

Fermion mixings and CP-violation

In Fig. 3 we have presented the MCMC UTZ predictions for
the CKM (top two plots) and PMNS (bottom two plots) mix-
ing angles θ

q,l
i j as well as the associated Dirac CP-violating

phases δq,l . Here we again compare to (radiatively corrected)
data from the PDG and NuFit given in gray, and notice that
the blue (red) LO (HO) UTZ Lagrangian is again highly
successful at resolving these parameters. Indeed, while we
observe that the overlap with PMNS uncertainty bands is per-

haps qualitatively more successful than that of the quarks, the
regions overlap with the UV bounds for all fermion families.

Note that this conclusion differs from the naive analysis
in [1], which found elements in the third row and column
of the CKM to be outside of the UV uncertainty bands con-
sidering only the LO UTZ Lagrangian, a deviation sourced
by the θ

q
23 mixing angle. While we observe that the bulk of

the MCMC sample points for sin θ
q
23 are indeed lower than

the allowed uncertainty region, a significant number of LO
points do overlap successfully. Studying [12], one concludes
that lower values of θ

q
23 tend to correspond to higher tan β
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Fig. 6 MCMC scatter results for β-decay and absolute neutrino
mass scale observables. Gray regions correspond to IR bounds from
KamLAND-Zen (mββ ), KATRIN (mβ ), and Planck (m	), corrected

to the UV (if stated) with the conservative S evolution factor for the
heaviest generation. As noted in the text, these results are presented as
consistency tests of our approach

RGE scenarios. Hence independent evidence that a back-
ground spectrum imitating this UV MSSM structure14 is not
physical would in principle also disfavor the UTZ theory of
flavor, up to the extent the bounds on sin θ

q
23 drive our current

MCMC likelihoods.
In addition to θ

q
23, the bottom-right panel of Fig. 3 suggests

that resolving values of sin δl ∼ 0 simultaneously with θ l23
in the UTZ is disfavored compared to larger | sin δl | in the
UV. Hence the {θ l23, δ

l} sector of the PMNS represents an
exceptional opportunity to constrain significant portions of
the UTZ parameter space, as information on δl from neutrino
oscillations continues to improve.

To fully present the CP-violating sector of the UTZ, we
have also presented our MCMC results for sin δq,l side-
by-side in Fig. 4, along with results for the Majorana CP-
violating phases φ1,2 of the PMNS matrix. Reliable exper-
imental constraints on φ1,2 are presently non-existent, and
so they also represent opportunities to falsify / further con-
strain our model space. However, one observes that a broad
range of Majorana phases are predicted in the UTZ. We have
contextualized this observation by including the MCMC his-

14 ...assuming a certain threshold correction structure and SUSY break-
ing scale, of course...

tograms for these phases, analogous to the model parameters
presented in Fig. 1, in the bottom two panels of Fig. 4. These
histograms reveal that, while it is true that virtually all values
of sin φ1,2 are acceptable, a huge number of Markov chains
evolved to | sin φ1,2| ∼ 1. Hence improving data (and there-
fore more rigid constraints in (32)) could allow us to resolve
more precise predictions for these Majorana phases.

Finally, as with the masses presented in Fig. 2, we have
noticed that HO corrections (as shown in red the top left
panel of Fig. 3, and in the histograms of 4) do not qualita-
tively alter the LO physical conclusions we present above.
This is because we have been conservative in Table 4 regard-
ing the relative magnitude of said HO corrections w.r.t. LO
parameters, which is of course motivated by the relative sup-
pression of these Lagrangian terms.15

β-Decay and cosmological probes

We now focus on the sector of observables sensitive to the
absolute neutrino mass scale and the Majorana (vs. Dirac)
nature of the neutrino field, i.e. m	 and mβ(β). As men-

15 We did not enforce this suppression on dd in [1] and hence allowed
it to be comparatively large.
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tioned above, we only consider ratios of these observables
as highly meaningful predictions in the UTZ, and we present
their regions in Fig. 5, where it is clear that, at least for the
parameter-space we have explored, the UTZ largely prefers
values for the ratios mβ(β)/m	 and mββ/mβ given by

5.9 · 10−1 � mββ

m	

� 7.3 · 10−1,

7.0 · 10−1 � mβ

m	

� 8.4 · 10−1,

7.8 · 10−1 � mββ

mβ

� 9.2 · 10−1. (36)

In the event that a positive signal for mβ(β) is ever observed,
(36) will serve as an excellent probe of the UTZ construction.
One also notices in the right panel of Fig. 5 that the MCMC
has evolved such that relatively small values of the neutrino-
mass-squared difference ratio ξ are preferred, with respect
to the possible UV upper bound in Table 3. However, the
observed region is still consistent with both the low-tan β /
SM-like RGE and high-tan β-like RGE scenarios discussed
in Sect. 3.1.16

Of course, as mentioned, we can also report the actual
values of the constituent functions m	 and mβ(β), despite
them being less meaningful due to their sensitivity to Mθ .
For completeness we do so in Fig. 6. As expected due to their
use as constraint in (32), we observe that the UTZ readily
evades available bounds from (e.g.) KATRIN, Planck, and
KamLAND-Zen. However we emphasize that this statement
effectively amounts to a consistency check on the MCMC
framework implemented.

4.4 Summary comments

Before concluding, we summarize the results in the above
sections:

• The LO UTZ Lagrangian in (4) and (5) is sufficient to
describe all available data on fermionic mass and mix-
ing, as well as data constraining the overall scale of
neutrino masses. This result is novel, and represents a
substantial improvement on the phenomenological find-
ings of [1], which found that HO corrections were nec-
essary to describe the third row and column of the CKM
matrix (due to θ

q
23). This illustrates the power of our

MCMC algorithm to robustly explore viable UTZ param-
eter spaces, in comparison to less sophisticated methods.
However, θ

q
23 still represents an excellent parameter to

exclude UTZ parameter spaces in the future.

16 For consistency with the quark sector we have trained our MCMC on
the more uncertain UV scenario for ξ , which allows for the possibility
of high-tan β-like RGE. If we instead train on the low-tan β / SM-like
RGE scenario, the preferred regions in Fig. 5 shift upwards to center on
the darker, smaller UV/IR uncertainty band.

• The MCMC algorithm also allows us to present robust
predictions for observables that are not well constrained
by data – e.g. leptonic CP-violating phases sin{δl , φ1, φ2}
and neutrino mass ratios mνi /mν3 , ξ , mβ(β)/m	 , and
mββ/mβ – despite the fact that said observables depend
sensitively on theory parameters that are highly-correlated
to other, well-constrained observable sectors. These find-
ings provide excellent opportunities for the falsification
/ exclusion of UTZ parameter spaces. We have presented
these predictions using the (N)LO UTZ Lagrangian in
Figs. 2, 3, 4 and 5.

• The HO corrections generated by the operators in (13) do
not qualitatively change the physics conclusions driven
by the dominant operators in (4), (5). This is due to our
(natural) assumption that said HO parameters are sup-
pressed with respect to LO parameters, a constraint that
we did not impose as rigorously in [1]. As a result, the
UTZ’s predictions are dominated by as few as nine IR
theory parameters. Hence the UTZ is realized as a well-
defined, stable, and predictive effective theory of flavour.

• The results we have presented are of course sensi-
tive to the hyper- and model-parameter ranges we have
explored, which are presented in (33) and Table 4. While
we have taken care in identifying these ranges, and have
indeed demonstrated that they are successful, they are
not necessarily unique. Exploring alternative parameter
spaces, possibly with even more statistics than implied
by (33), will be especially motivated in the event data
fully excludes the predictions presented in Figs. 2, 3, 4
and 5, and/or a specific renormalizable completion (with
exact RGE / threshold behavior) of the UTZ is identified.

5 Summary and outlook

We have re-examined the Universal Texture Zero (UTZ)
model of flavour presented in [1] in light of updated experi-
mental constraints and in the context of a novel Markov Chain
Monte Carlo (MCMC) analysis routine. We have considered
the UTZ’s predictions at both leading- and next-to-leading
orders in its effective theory operator product expansion, and
the associated phenomenological pre- and post-dictions are
given in Figs. 2, 3, 4 and 5. There we observe that the UTZ
is capable of fully resolving the fermionic mass and mixing
spectrum as constrained by global data sets, for both the quark
and lepton sectors, up to uncertainties regarding radiative cor-
rections to/from the ultraviolet. We have also presented a host
of novel, robust predictions for poorly-constrained leptonic
observables, in particular the PMNS CP-violating phases δl ,
φ1,2 and neutrino mass-sector ratio observables mβ(β)/m	

and mββ/mβ . These latter results offer a route to UTZ falsi-
fication and/or parameter-space exclusions.
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Our analysis therefore greatly improves on the proof-in-
principle phenomenology pursued in the original UTZ pub-
lication [1], which was incapable of yielding a robust predic-
tion for even (e.g.) δl , and which did not consider observables
like mβ(β) and m	 . Indeed, our updated MCMC analysis
revises the claim from [1] that the leading UTZ Lagrangian
is insufficient to account for all fermionic data, before consid-
ering next-to-leading corrections. However, as discussed at
the end of Sect. 4, there is still room for improvement, as a yet
more exhaustive scan of the UTZ parameter space is in prin-
ciple possible. We also note that, while our MCMC algorithm
fully accounts for theory correlations amongst UTZ model
parameters, we have not accounted for experimental correla-
tions, beyond what is already accounted for in the global fits
presented in Sect. 3. While we do not expect such correla-
tions to qualitatively change our conclusions, pursuing such
an analysis in the future could be interesting.

Besides these future technical/phenomenological improve-
ments, we also note that significant progress has recently
been made in rigorously connecting theories of flavour con-
trolled by non-Abelian discrete symmetries (and additional
shaping symmetries) to string theories with toroidal orbifold
compactifications – see e.g. [73–76]. It would be interest-
ing to determine whether the UTZ (or a close cousin) could
be formally embedded into one of these structures, thereby
providing a UV origin for the field and symmetry content
of Table 1, and an unambiguous background spectrum that
would minimize the radiative uncertainties that we have con-
sidered agnostically in our effective field theory setup. After
all, the absence of �(27) contractions with non-trivial sin-
glets in (4), (5), and (13) is already consistent with the stringy
models examined in [77].

We leave these questions to future work, and simply
conclude that Figs. 2, 3, 4, 5 and 6 indicate that the UTZ
represents an appealing, minimal, and phenomenologically
viable model of flavour physics, and therefore provides some
support for the idea that observed flavour patterns are the
result of yet-discovered Beyond-the-Standard Model dynam-
ics, rather than (e.g.) random chance.
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