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Abstract

Mersenne number based cryptography was introduced by Aggarwal et al. as a potential post-
quantum cryptosystem in 2017. Shortly after the publication Beunardeau et al. propose a lattice
based attack significantly reducing the security margins. During the NIST post-quantum project
Aggarwal et al. and Szepieniec introduced a new form of Mersenne number based cryptosystems
which remain secure in the presence of the lattice reduction attack. The cryptoschemes make use of
error correcting codes and have a low but non-zero probability of failure during the decoding phase.
In the event of a decoding failure information about the secret key may be leaked and may allow
for new attacks.

In the first part of this work, we analyze the Mersenne number cryptosystem and NIST submission
Ramstake and identify approaches to exploit the information leaked by decoding failures. We
describe different attacks on a weakened variant of Ramstake. Furthermore we pair the decoding
failures with a timing attack on the code from the submission package. Both our attacks significantly
reduce the security margins compared to the best known generic attack. However, our results on the
weakened variant do not seem to carry over to the unweakened cryptosystem. It remains an open
question whether the information flow from decoding failures can be exploited to break Ramstake.

In the second part of this work we analyze the Groverization of the lattice reduction attack by
Beunardeau et al.. The incorporation of classical search problem into a quantum framework
promises a quadratic speedup potentially reducing the security margin by half. We give an explicit
description of the quantum circuits resulting from the translation of the classical attack. This
description contains, to the best of our knowledge, the first in depth description and analysis of a
quantum variant of the LLL algorithm. We show that the Groverized attack requires a large (but
polynomial) overhead of quantum memory.
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1. Motivation

Many post-quantum cryptosystems make extensive use of mathematical principles. A compre-
hensive understanding requires knowledge in non-trivial fields of mathematics, such as algebraic
geometry or lattices. With the Mersenne number cryptosystems, in form of encapsulation mecha-
nisms, a class of new and easy to grasp cryptosystem was introduced during the NIST post-quantum
competition 2017 by Aggarwal et al. in [1] and by Szepieniec in [36]. Mersenne number cryptosys-
tems are competitive with regard to encryption speed and key sizes while fulfilling the security
margins. The required mathematics boil down to the use of modular (integer) arithmetic, the
application of an one-time-pad as a XOR and the use of black box functions for an error correcting
code. The simplicity of the cryptosystems allows a broad range of researchers to analyze the
security assumptions. So far, considering that the schemes are considerably new, there have been
only few publications regarding attacks on the systems – none of which poses a significant security
threat. The best known attack is based on lattice reduction and is exponential in the security
parameter. In this work, we analyze the impact of the black-box error correcting code onto the
security of a Mersenne number cryptoscheme. The application of an error correcting code during
encapsulation and decapsulation result in the occurrence of decoding failures. With a low but
non-zero probability of failure there may also be the imminent risk of leaking information about the
secrets. We identify a range of possibilities to exploit decoding failures to extract information about
the secrets following the basic setup of the Mersenne number encapsulation mechanism Ramstake.
First, we define a weakened variant of the scheme and mount attacks to recover the secrets with
significantly reduced security margins compared to the best known generic attack. Then we discuss
if our attacks can be lifted to the strong variant submitted to the NIST competition.
In the second part of this work we present the Groverization of the best known classical attack
and analyze the complexity of the attack in the quantum setup. The Groverized attack contains,
we believe the first, in-depth description of the LLL algorithm as a quantum circuit. In Figure 1.1
we give a brief overview of the contents of the thesis. In the first chapter we introduce notions
and the know how required to follow the rest of the thesis. The second chapter contains a detailed
description of the two currently known Mersenne number cryptosystems. In the next chapter we
present our analysis of the Ramstake cryptosystem using different levels of abstraction. The last
chapter contains our detailed circuit description of the quantum attack before we finish with a
conclusion.
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Figure 1.1 Outline of the thesis chapters.



2. Preliminaries

The second chapter deals with the basic notions of public-key cryptography, quantum computation
and lattice reduction that are required to follow the rest of the thesis. The introduction of quantum
circuits is more extensive as we aim to provide a complete description of the quantum algorithms
in our work.

2.1 Public Key Cryptography
Key Encapsulation Mechanism

A key encapsulation mechanism (KEM) is the standard notion of a hybrid encryption scheme which
uses an asymmetric key to encapsulate a symmetric key. Furthermore some KEM constructions are
associated with a failure probability ε which captures the event of transmission exchange of the
symmetric key. The failure probability is supposed to be negligible or at least “small”.

Definition 2.1 (KEM) LetK be the key-space associated with the symmetric key, let λ be a security
parameter and let ε be the failure probability. A KEM consists of three polynomial-time algorithms
KeyGeneration, Encapsulation, Decapsulation such that:

• (pk, sk)← KeyGeneration(1λ); outputs a public and secret key pair.

• (k, ctxt)← Encapsulation(pk); outputs a symmetric key k ∈ K and a ciphertext ctxt.

• {(k′,⊥})← Decapsulation(ctxt, sk); outputs the decapsulation of the ctxt or ⊥ if the ctxt is
rejected (with probability ε).

• The keys generated by the encapsulation and the decapsulation must be equal: k′ = k with
probability 1 − ε.

Security Notions for KEMs

The security of KEMs is defined using the notion of indistinguishability under a chosen plain
text attack (IND-CPA) or chosen ciphertext attack (IND-CCA). The notion does not capture the
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1 (pk, sk)← KeyGeneration(1λ)

2 b
$
←− {0, 1}

3 k0
$
←− K

4 ctxt0
$
←− {0, 1}∗

5 k1, ctxt1 ← Encapsulation(1λ, pk)
6 b′ ← A(pk, ctxtb, kb)
7 Output b′ == b

Figure 2.1 GameIND−CPA by Bellare et al.

1 (pk, sk)← KeyGeneration(1λ)
2 S ← ∅

3 b
$
←− {0, 1}

4 k0
$
←− K

5 ctxt0
$
←− {0, 1}∗

6 k1, ctxt1 ← Encapsulation(1λ, pk)
7 b′ ← ADec(·)(pk, ctxtb, kb)
8 Output b′ == b and ctxtb < S

1 Oracle Dec ( ctxt )
2 S ← S ∪ {ctxt}
3 return Dec ( sk , ctxt )

Figure 2.2 GameIND−CCA

event of a KEM failure, hence it is assumed that ε = 0. If a failure occurs all guarantees of the
security notion are lost. The IND-CPA notion can be expressed by the game given in Figure 2.1.
An adversary A is said to win the game if b′ is equal to b. The game given in Figure 2.2 follows the
IND-CCA-OP game given by Bellare et al. in [2].

Definition 2.2 (Negligible function) A function ε is negligible if it approaches zero faster than
the reciprocal of every polynomial:

ε negligible ⇔ ∀c ∈ N ∃n0 ∈ N s.t. ∀n ≥ n0 : ε <
1
nc (2.1)

Definition 2.3 (IND-CPA security of KEM) A key encapsulation mechanism is IND-CPA secure
if the advantage of every polynomial-time adversary over a random guess is negligible in the
security parameter, formally

AdvIND−CPA(A) :=
∣∣∣∣∣Pr

[
1← GameIND−CPA(1λ)

]
−

1
2

∣∣∣∣∣ ≤ negl(λ) . (2.2)

IND-CCA security is defined in the same matter.

NIST Security margins

In 2017 the National Institute of Standards and Technology (NIST) has launched a project to
standardize post-quantum cryptoschemes. Different requirements and evaluation criteria have
been specified within the call-for-proposals. In terms of security margins for KEMs the following
restrictions and criteria have to be fulfilled according to the NIST requirements [26]. Note that the
list is not complete, but sufficient for this work.

Cryptosystem

• The KEM has to be IND-CCA2 secure.
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• The target model for security is the (classical) random oracle model, rather than the quantum
random oracle model.

• The resources required to break the scheme must be equivalent to the resources required to
break an AES − 256 encryption.

Adversary

• An adversary is limited to 264 queries to the decapsulation oracle or function.

• Quantum attacks are restricted with regard to a maximal circuit depth. The restrictions vary
from 240 for quantum attacks that are possible within a few years, to a circuit depth of 264 in a
few decades and a depth of 296 in a millennium.

• A quantum circuit depth of 264 represents the computational power of 2234 classical operations.

2.2 Quantum Computation

Quantum computation is described by the postulates of quantum mechanics. Theses postulates
do not describe any actual entity nor explain any definite action in the world. Rather they give
a basic rule set that every entity has to obey and every action has to follow. The four postulates
describe the state space of entities, transformations taken by single (or multiple) entities in the state
space, consequences of observing entities and last but not least how entities interact with each other.
In the course of this work we will focus on a special set of entities, namely entities with a finite
state space, that form the basis for quantum computation. Along with the postulates we will build
the notion of quantum bits and develop descriptive methods to explain how they can be exploited
to enhance computation. This section follows Preskills lecture notes [30] and Nielsen & Chuang.
[25].

2.2.1 Qubits

Postulate 2.4 (State space) The state space of a quantum system is the Hilbert space, the space in
which quantum entities live. Hilbert space can be described as a vector space with an inner product
that allows the definition of a norm. Every entity in a (closed) quantum system can be mapped to a
state vector that is an unit vector in Hilbert space. This is often denoted as normalization condition.
The common notation for entities is the “Dirac” notation: a vector is denoted as |ψ〉 and its dual as
〈ψ|.

A Qubit is the quantum equivalent of a classical bit. The state space of a qubit is a two dimensional
complex vector space, C2. Likewise their classical counterparts a qubit can be found in the state
|0〉 or |1〉 and additionally in a superposition of theses states: |ψ〉 = α|0〉 + β|1〉, with α, β ∈ C. The
coefficients α and β are called amplitudes.
The states |0〉 and |1〉 form a basis for C2, since every vector in C can be described as a linear
combination of these two states. Note that bases are not unique. Upon measurement the qubit ψ
takes state 0 with probability |α|2 and state 1 with probability |β|2. The normalization condition
for a single qubit is thus given as |α|2 + |β|2 = 1. Furthermore the basis states |0〉 and |1〉 form an
orthonormal basis for this vector space. Remember, a set of basis vectors is orthonormal if and
only if their inner product is zero. In terms of linear algebra the qubit states are represented as

2-dimensional complex vectors. The state |0〉 is represented as
(
1
0

)
, the state |1〉 as

(
0
1

)
. A qubit is
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|ψ〉

x

y

z = |0〉

−z = |1〉

φ

θ

Figure 2.3 Geometric representation of a qubit |ψ〉 as an unit vector on a Bloch sphere.

then represented as |ψ〉 = α|0〉 + β|1〉 =

(
α

β

)
. [25, p. 16, 63] [30, ch. 2] Further the global phase of

a qubit does not influence the state, such that |ψ〉 = exp(θi) where exp(θi) is the global phase. A
relative phase is a factor between two amplitudes: α = exp(θi)β, where α and β differ by the relative
phase exp(θi). This can be seen when taking a look at a visual representation of a qubit on an unit
sphere: q single qubit α|0〉 + β|1〉 can be described as an unit vector on a sphere, where α = cos( θ2 )
and β = exp(iψ) sin( θ2 ). The “top end” of the z − axis (the north pole) represents the state |0〉, the
“bottom end” (the south pole) |1〉. The state vector of the qubit aims towards a point on the sphere
that represents the probability distribution of 0 and 1. If the vector is horizontal (with regard to
x and y axis, on the equator), then the qubit is in an equally distributed superposition. A relative
phase is a rotation along the z-axis, influencing the amplitudes but not changing the probability
distribution.

Postulate 2.5 (Composite System) The state space of a collection of quantum entities can be
described as a tensor product of their state spaces. A tensor product of complex vector spaces
V1,V2 is itself again a complex vector space V1 ⊗ V2. In terms of the matrix representation of
vector spaces the tensor product is the outer product of the matrices representing V1 and V2. The
elements in V1⊗V2 are vectors that are a linear combination of the vectors in V1 and V2. The tensor
product of the state spaces of quantum entities therefore describes a composite system of linear
combinations containing linear combinations of all of their basis states. Further more, composite
systems allow to describe the phenomena of “entanglement”, a conditioned state where the state
vector of several quantum entities depends on each other. State spaces are entangled if and only if
they can not be factorized into a tensor product of distinct state spaces.

In terms of qubits a composite system is a quantum register. A quantum register with n qubits is
represented as state vector in a 2n-dimensional complex vector space. The register can describe

a superposition of 2n different states. Often the states are denoted as sum:
2n−1∑
x=0

αx|x〉 and the

normalization condition is given as
2n−1∑
x=0
|αx|

2 = 1.
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Assume the example of two-dimensional vector spaces V1 and V2 with the basis vectors |0〉 and |1〉.
Let αi|0〉 + βi|1〉 be the state vectors of two elements. Then the elements in V1 ⊗ V2 are of the form

(α1|0〉 + β1|1〉) ⊗ (α2|0〉 + β2|1〉)

=α1α2|00〉 + α1β2|01〉 + α2β1|10〉 + α2β2|11〉

Formally the tensor product of state spaces also satisfies the following conditions:

• Let s be a scalar, then s(|v1〉 ⊗ |v2〉) = (s|v1〉) ⊗ |v2〉 = |v1〉 ⊗ (s|v2〉)

• |v1〉 ⊗ (|w1〉 + |w2〉) = (|v1〉 ⊗ |w1〉) + (|v1〉 ⊗ |w2〉).

• (|v1〉 + |v2〉) ⊗ |w1〉 = (|v1〉 ⊗ |w1〉) + (|v2〉 ⊗ |w1〉).

Postulate 2.6 (Evolution) The evolution of quantum entities is described by unitary transforma-
tions on the state vector. Evolution has the property to preserve the length of the vector and thus
also the normalization condition. A unitary transformation is also a linear transformation and can
be expressed by a matrix acting on the state vector describing the entity. Formally unitary evolution
is denoted as |ψ′〉 = U |ψ〉.

The unitary transformations acting on the state vectors of qubits are linear operations. Therefore an
unitary transformation U has an equivalent representation as matrix M: let V1 be a vector space
of dimension m and V2 of dimension n. Then the transformation U : V1 → V2 is represented by a
n × m matrix with coefficients in the respective state space.
A matrix M is unitary if and only if MM† = M†M = I where M† is the conjugate transpose of M.
As a consequence, every transformation and therefore every operation on qubits is invertible (for
reasons that are beyond the scope of this work). For those craving for a detailed motivation on the
reversibility of evolution Nielsen & Chuang offer salvation [25, p.63].

Postulate 2.7 (Measurement) Observing entities in the quantum space disturbs their nature, caus-
ing their superposition to collapse and definitely determining their state. Observing entities is
called measurement. The outcome of the measurement is solely dependent of the state vector; the
probability to measure a state is given by the square of the magnitude of its amplitude.

Measurement directly carries over to the notion of qubits and their respective state vectors. Measur-
ing a composite system partly yields the state of the measured qubits based on their probability
distribution. The state space of the remaining qubits is collapsed (renormalized) to represent the
superposition of the unobserved qubits. Let |ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 be a
2-qubit quantum register. Measuring the first qubit yields the classical state 0 with probability
|α00|

2. In that event the state vector is left in the superposition

|ψ′〉 =
α00|00〉 + α01|01〉√
|α00|2 + |α01|2

.
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|a〉

|b〉

|c〉

n

G

G
at

e |a〉

|b〉

c

Figure 2.4 The figure shows the general layout of a quantum circuit with the input states on the left
and the output states on the right. Quantum gates can span one or multiple “quantum wires”. A
measurement collapses the quantum state to a classical state.

2.2.2 Quantum Circuits

The following paragraphs build the model of quantum circuits and how to describe them. Figure
2.4 shows the basic layout for such a circuit. The notation is as follows:

|a〉 The ends of the quantum wires carry the initial and final state of the qubits.
n The size or term of the quantum register represented by the wire.

Swap operation.

G
at

e

A quantum gate taking multiple inputs and having the same number of outputs.

(G
at

e)
−

1

The inverse of a quantum gate: applying the operations of a quantum gate in
“backwards” order (from the right to the left).

G
at

e A copy-and-uncompute version a gate as in Figure 2.12. The gate preserves the
result of the gate but uncomputes any changes of the inputs.

The outputs of quantum gates that are changed are denoted with a black arrow. All
other inputs are unchanged.

The control qubit of an operation.

The hollow circle is used to mark input to a gate that is several wires away (to avoid
extensive overlap with wires that are not used within the gate).

The measurement symbol denotes the collapse of the quantum state to a basis state.

The double wire represents classical information in a quantum register, i.e., after a
measurement.
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H
Figure 2.5 Hadamard quantum gate.

R
Figure 2.6 Rotation quantum gate.

Quantum Gates

Paving the way towards quantum algorithms the smallest unit to start with are logical gates. The
smallest logical quantum gate is an operation on a single qubit. Such a gate can be expressed by a
2 × 2 unitary matrix. In this work we will make extensive use of the following gates:

1. The Hadamard gate as in Figure 2.5 with the linear transformation

H =
1
√

2

(
1 1
1 −1

)
,

which creates an equally distributed superposition when applied to a basis state:

H|0〉 =
1
√

2
(|0〉 + |1〉)

H|1〉 =
1
√

2
(|0〉 − |1〉)

2. The rotation gate Rk as in Figure 2.6 with the transformation

Rk =

(
1 0
0 exp(2πi/2k)

)
which modifies the phase of a qubit.
The Pauli Z gate as in Figure 2.7 is a special case of the rotation gate which rotates the phase
by an angle of π. The transformation of the Pauli-Z gate is given by the matrix:

Z = Rπ =

(
1 0
0 −1

)

3. The NOT gate negates the state of a qubit and is expressed by the matrix(
0 1
1 0

)
.

We may use both of the notations in Figure 2.8.

X
Figure 2.8 NOT quantum gate.

Z
Figure 2.7 Pauli-Z quantum gate.
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|a〉 |a〉

|b〉 |a ⊕ b〉

Figure 2.9 CNOT gate

|a〉 |a〉

|b〉 |b〉

|c〉 |c ⊕ (a ∧ b)〉

Figure 2.10 Toffoli gate or controlled-controlled-not gate

Another important primitive of quantum circuits are controlled operations. A controlled operation is
applied if and only if the controlling qubit is one. Any transformation T represented by the matrix
T can be translated into a controlled transformation by doubling the size of the matrix, plugging in
the identifying matrix in the “top-left” corner and the transformation into the “bottom-right” corner:

Tcontrolled =

(
I 0
0 T

)
.

A frequently used example for controlled operations is the controlled-not gate which can be
expressed as matrix 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


or as quantum circuit as in Figure 2.9
and entangles the qubits |a〉 and |b〉. Another frequently used gate is the controlled-controlled-not
gate (or Toffoli gate) which is composed of the negation of a qubit controlled by two other qubits as
in Circuit 2.10.

Quantum Fourier Transform

The quantum Fourier transform (QFT) is one of the most important applications in quantum
computation; for example enabling Shor’s algorithm to factor integers in polynomial time. In this
work the QFT is (merely) used as a subroutine for quantum arithmetic. The description follows
Nielsen & Chuang [25, ch.5]: the quantum Fourier transform is the quantum counterpart to the well
known discrete Fourier transform. Given a computational basis state

∑
j

= 0N−1| j〉 it computes the

discrete Fourier transform of the amplitudes αi:∑
j

= 0N−1| j〉 7→
∑

k

= 0N−122π jk/N |k〉 . (2.3)

We consider the binary expansion of the computational basis state

j = jn−12n−1 + jn−22n−2 + . . . + j12 + j0 ,
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where the most significant bit is written on the left side. A binary fraction 0. jl jl+1 . . . jm may be
represented as

jl
2

+
jl

22 +
jl+1

22 . . .
jm

2m−l+1 .

Nielsen & Chuang show that the QFT has an equivalent representation in product form:

| j〉 =| jn, jn−1, . . . , j1〉

→
1
N

(
(|0〉 + e2πi0. j1 |1〉)(|0〉 + e2πi0. j2 j1 |1〉) . . . (|0〉 + e2πi0. jn jn−1... j2 j1 |1〉)

)
where the leftmost (most significant) qubit contains a representation as a fraction of the least
significant qubit. The state is derived by applying a sequence of Hadamard and controlled rotation
gates. Circuit 2.11 shows the quantum Fourier transform for three qubits. In order to derive the
description where the most significant qubit represents a fraction of the least significant qubit, the
order of the qubits is swapped, either in the beginning or at the end of the circuit. The quantum
Fourier transform can be trivially inverted by running the circuit in the reverse direction and
inverting the rotation gates. Moreover the QFT requires n quantum gates for the first, n − 1 for the
second, n − 3 gates for the rotations on the third qubit, etc. resulting in n(n+1)

2 gates for the rotations
and n

2 swap gates. Asymptotically the QFT requires O(n) gates of which many can be applied in
parallel resulting in a depth of O(log n) operations.

| j3〉

| j2〉

| j1〉

H R2

H

R3

R2

H

|k3〉

|k2〉

|k1〉

≡
Q

FT

Figure 2.11 Quantum Fourier Transform for three qubits where the order of the qubits is reversed
by swap operations in the beginning or at the end of the circuit.

Quantum Subtleties

Theorem 2.8 [No-cloning, informal] An unknown quantum state can not be copied using unitary
evolution.
A proof can be found in [25, p. 532].

A major advantage in classical computation is the ability to copy arbitrary information and compu-
tational states and reuse the states later. In the quantum world the No-cloning theorem – the fact
that an unknown quantum state can not be copied (see Theorem) – forbids any such action. Using a

controlled-not gate one can create a state that seems like a copy: |a〉|0〉
CNOT
−−−−−→ |a〉|0 ⊕ a〉 = |a〉|a〉,

however, the two qubits are now entangled and cannot be factored into two separate states. While
one can still apply individual operations to the states and transformations that influence the super-
position, i.e., by causing interference, the applied transformation will affect all entangled qubits.

In classical circuits ancillary bits are often used to hold intermediate results or to cache information
resulting from computations for later use, i.e. the carry bits in an addition circuit. After putting
the ancillary information to use, the memory is simply ignored and overwritten on the next use. In
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|g〉 |g〉

|a〉 |a〉

|r〉 |r ⊕ a′〉

U

|g′〉

|a′〉
U−1

Figure 2.12 Copy-and uncompute trick to preserve the result |Ua〉 of the unitary transformation
with out leaving garbage qubits |g〉 around. The inverse of the unitary U is not applied to the third
register and therefore the result of the computation is not reversed.

the quantum case however this can lead to unexpected results as the intermediate results are still
entangled with the qubits used in the computation. The ancillary qubits, the “garbage”, have thus to
be taken out of the equation by removing any trace and resetting it into its original state; as it was
before the computation. Let U be an unitary transformation acting on two registers |a〉 and |g〉 and
let |r〉 be a register that should hold the result of the transformation. Then the transformations in
Equation (2.4) allow to “undo” a computation and reset the ancillary qubit |g〉 without loosing the
result of the computation. Figure 2.12 shows the circuit version of the transformations.

|g〉|a〉|r〉 (2.4)
U⊗U⊗I
−−−−−−→|g′〉|a′〉|r〉 (2.5)

I⊗I⊗CNOT|a′〉
−−−−−−−−−−−→|g′〉|a′〉|r ⊕ a′〉 (2.6)

U−1⊗U−1⊗I
−−−−−−−−−→|g〉|a〉|r ⊕ a′〉 (2.7)

Resource Estimation

Resource estimation of quantum circuits can be based on multiple properties where as this thesis
will focus on the following:

• The number of elementary gates: every unitary operation can be decomposed into a product
of single or two-qubit gates. A set of gates such that every operation can be expressed by
using these gates only is called an universal set. A elementary gate is a single operation from
such a set. In terms of cost or efficiency universal sets might differ, however, this thesis does
not take into account any such considerations. Furthermore some operations can only be
approximated for use in practical applications; this is also ignored in the rest of the thesis.

• The depth of a circuit: assuming that many operations can be applied in parallel the depth
of a circuit considers the largest number of gates on a single path from an input state to an
output state. The time complexity of quantum circuits is often measured in terms of its depth.
[30, ch. 5] [25, ch. 4]

• The number of qubits: the amount of space required for computation may greatly vary
compared to classical algorithms due to the need of reversibility. The number of qubits may
be used as an argument for the practicability of algorithms since current technology only
allows a very limited number of qubits.

We note that the controlled equivalent of an operation can be significantly more expensive. Fang
et al. show in [10] that a lower bound on additional qubits for adding n controls to a circuit is
Ω(log n).
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2.2.3 Grover’s Algorithm

Lov Grover’s quantum algorithm [11], referred to as Grover’s algorithm, is a search algorithm
to find a set of elements in an unstructured dataset. The quantum algorithm has an asymptotic
quadratic speedup compared to the best known classical counterpart. Given an unstructured data set

X of cardinality N and a set of targets with cardinality M Grover’s algorithm takes only O
(√

N
M

)
steps where as its classical counterpart requires O

(
N
M

)
operations. The algorithm builds upon an

oracle function which decides the membership problem for the target set on input of an element
of the dataset. Formally, let |X| > 1 such that x∗ ∈ X denotes a target element and there exists a
non-target element x′ ∈ X. Then the oracle function

f (x) =

1 if x = x∗ and x , x′

0 if x , x∗

determines the membership of the elements of the target set in the dataset X. In the quantum case
one can assume that the output of the oracle is applied to an ancillary qubit. Consider a qubit
|ψ〉 =

∑
x |x〉, and a qubit |1〉. Then the unitary transformation representing f (x) is

|ψ〉|1〉
U f (x)
−−−−→ |ψ〉

∑
x

|1 ⊕ f (x)〉

and determines for each state represented in the superposition of |ψ〉 if it is a target or not. The
oracle applies a phase shift of −1 to the targets. It is shown by Nielsen & Chuang [25, ch. 6]
that the oracle function applied on the state |ψ〉 with the oracle qubit in the uniform superposition
H|1〉 = |0〉 − |1〉 computes

|ψ〉|1〉
Oracle U f
−−−−−−−−→ (−1) f (x) = |ψ〉

|x〉|0〉 − |x〉|1〉, if x = x
|x〉|1〉 − |x〉|0〉, if x = x∗

.

The oracle function is embedded into the Grover iteration, a quantum subroutine that is applied
iteratively until the amplitudes of the target elements are high and thus measurement would yield
such an element with high probability. For the sake of simplicity let N = 2n be the cardinality of the
dataset X, such that an element can be represented in n qubits. From a high level view, the Grover
algorithm is split into three parts and can be described by the pseudo code in Algorithm 2.1. We
denote the application of a transformation T as unary operation. The change from a known to an
unknown state is denoted as |ψ〉 as T |·〉:

Algorithm 2.1: Grover’s algorithm

Input: |0〉 ← quantum register of size n
Output: x∗ (a target element)

1 |ψ〉f H⊗n|0〉 // transformation from known into unknown state

2 for i← 0 to
√

N
M do

3 Grover iteration |ψ〉
4 end
5 H⊗n|ψ〉

6 Measure |ψ〉
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Algorithm 2.2: Grover iteration

Input: (|ψ〉), U f the oracle function
Output: (|ψ〉) //where target states are more likely to be measured

1 U f |ψ〉

2 H⊗n|ψ〉

3 (2|0〉〈0| − I)|ψ〉
4 H⊗n|ψ〉

The Grover iteration contains the application of the oracle deciding the membership problem,
followed by a conditioned phase shift embedded into Hadamard transforms as in Algorithm 2.2.
The phase shift operator (2|0〉〈0| − I) acts as the identity on every computational basis state |0〉 and
applies a phase shift of −1 to any other basis state. Consider the state |x̂〉:

(2|0〉〈0| − I)|0〉 ≡ (2|0〉〈0|0〉 − |0〉) ≡ |0〉 if |x̂〉 ≡ 0

(2|0〉〈0| − I)|1〉 ≡ (2|0〉〈0|x̂〉 − |x̂〉) ≡ −|x̂〉 if |x̂〉 . 0 ,

where the computational basis states |0〉 and |x〉 . 0 are orthogonal and thus cancel out. The
operator thus applies the phase shift to all states in the vector, except for |0〉.
The phase shift together with the Hadamard transforms applied to a quantum state is called rotation
over the mean, as it rotates the state vector over the mean of all states. Consider the unitary operator

H⊗n(2|0〉〈0| − I)H⊗n ,

as combined operator
2|φ〉〈φ| − I ,

where |φ〉 =
∑

x |x〉. The combined operator acting on a state

|ψ〉 =
∑

x̂

αx̂|x̂〉

results in the calculation:

(2|φ〉〈φ| − I)|ψ〉

= 2|φ〉〈φ|ψ〉 − |ψ〉

=
∑

x̂

2αx̂

 1
√

N

∑
x

|x〉

 〈φ|x̂〉 −∑
x̂

αx̂|x̂〉

=
∑

x̂

2αx̂

 1
√

N

∑
x

|x〉

 1
√

N
−

∑
x̂

αx̂|x̂〉 where 〈φ|x̂〉 =
1
√

N

=
∑

x

2 ∑
x̂

αx̂

N

 |x〉 −∑
x̂

αx̂|x̂〉

=
∑

x

(
2α(x̂ mean)

)
|x〉 −

∑
x̂

αx̂|x̂〉 x can be relabeled as x̂ since they describe the same range

=
∑

x̂

(
2α(x̂ mean) − αx̂

)
|x̂〉 where α(x̂ mean) represents the mean over all αx̂
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Repeat
√

M
N times

|0〉

|0〉

|0〉

|0〉

|1〉

H

H

H

H

U
f

Z
(U

f)
−

1

H

H

H

X

X

X H H

X

X

X

H

H

H

H

|ψ3〉

|ψ2〉

|ψ1〉

|0〉

|1〉

oracle diffusion

Figure 2.13 Circuit representation of Grover’s algorithm where the first three qubits represent the
index space for the database, the fourth qubit workspace for the oracle function and the last qubit
the oracle qubit. The oracle function is applied to the database indices’s and the workspace. The
phase of the oracle qubit is then flipped based on the workspace. The database is then uncomputed
to its original value before the diffusion operator is applied.

Note that in the above term 〈φ|x̂〉 = 1√
N
· 1 + 1√

N
· 0 + . . .+ 1√

N
· 0 = 1√

N
because x̂ has only a single

non-zero amplitude.
The above calculation causes the amplitudes of the elements in the target set to get closer to 1

M and

the amplitudes of all other elements to get closer to zero. After
√

M
N iterations the amplitudes of the

target elements in the state vector approach 1
M and the amplitudes of all other elements approach 0

and thus a measurement can be done yielding a target element with high probability. The resulting

time complexity for Grover’s algorithm is O
(√

M
N

)
.

2.2.4 Arithmetic operations

Basic arithmetic operations like addition or multiplication are the fundamental building blocks to
implement algorithms and therefore, as they are considered “low-level” operations, implemented
in every programming language. Since quantum computation is at its very beginning so are the
existing frameworks to implement quantum algorithms. Most platforms, like IBM-Q or Microsoft’s
Liquid feature a basic set of quantum gates to work with: Hadamard gates, rotations gates, Toffoli
gates and other transformations working on qubit level. Any actual register types, like integers
or floats, or operations like addition of quantum-numbers have to be implemented in order to be
available on the respective platform. In the following we give explicit quantum circuits for all
operations required to construct a quantum LLL algorithm. For the sake of readability all circuits
are based on the transformation of 3 − qubit registers rather than a general n qubit register but can
be lifted to any number in qubits in the canonic way of “extending” the circuit to more qubits.
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Informal separation from classical circuits

The 2nd law of thermodynamic states that the entropy in the entire universe increases over time.
Furthermore the entropy of a irreversible process increases over time while it may remain constant
for a reversible process [41, p.110]. In an isolated system no information is lost and thus processes
are reversible. In terms of information theory irreversible means that the information to reverse
the process is lost. Therefore if a process is irreversible information must have been lost and the
system enclosing the process is not isolated. In quantum computation the loss of information in a
non-isolated system means dissipation of information about a quantum state, i.e., information about
the current state of a quantum system as in a measurement. A quantum system that dispenses such
information can not remain in a stable superposition. Therefore processes in quantum computation
should be performed in an isolated system and thus be reversible.

Many functions used in classical circuits are irreversible such as the AND function:

fAND : (a, b)→ (a ∧ b)

Any non-invertible function f (x) can be translated into a reversible circuit by preserving the input
and using additional memory:

finvertible : (x, 0)→ (x, 0 ⊕ f (x)) .

This translation allows to translate any classical function into a quantum circuit, i.e., the classical
AND function:

frevAND : (a, b, 0)→ (a, b, 0 ⊕ (a ∧ b)) .

This may increase the time and space complexity due to the need for additional inputs and outputs
and the additional application of the XOR. Moreover the need for uncomputation of used quantum
memory may require additional resources. Lifting classical circuits does not exploit any of the
“special” quantum gates, such as Hadamard or rotation gates. While many classical circuits can be
translated into reversible procedures it may be possible non-optimal but reversible classical circuits
perform better on quantum computers. It might be arguable that the cost of quantum memory is
larger than the cost of applying operations, hence quantum circuits that use less space but more
time might have a better cost efficiency. However, as the quantum technology is not yet advanced
enough to do any such claims for practical applications this work ignores any such argumentation
and focuses on providing a complete but perhaps non-optimal model of quantum circuits.

Quantum Addition and Subtraction

Addition and subtraction are the basis for all future operations like multiplication or division and
also differ the most from their classical counterparts. Our description of a quantum adder follows
the QFT adder of Draper [6]. The decision for the QFT addition rather than a normal ripple adder
is based on the fact that the QFT adder does not require any ancillary qubit omitting the need for
uncomputation. Finally, for us, the QFT based addition is a lot more impressive than a normal carry
adder and thus has been added for a taste of quantum superiority.
The addition circuit takes two 3 − qubit quantum registers |a〉, |b〉 and performs the computation:

|a〉|b〉 → |a + b〉|b〉
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The main idea follows the observation from the product representation of the QFT as in Paragraph
2.2.2. In the following we omit the factor 2πi from the exponent and the normalization 1

N to stress
the fractional representation of the qubits: the state

|a〉 →
(
(|0〉 + e0.a1 |1〉) + (|0〉 + e0.a2a1 |1〉) + . . . + (|0〉 + e0.an...a2a1 |1〉)

)
has been derived by performing controlled rotations on the qubits of a. Let the QFT be denoted by
φ. After the QFT, consider the state of the least significant qubit:

φ(a1)← (|0〉 + e0.a3a2a1 |1〉) .

By performing controlled rotations on the qubits of b we can add the fractions of the qubits b:

φ(a1)
R1 on b3
−−−−−−→ (|0〉 + e0.a3a2a1+0.b3 |1〉)
R2 on b2
−−−−−−→ (|0〉 + e0.a3a2a1+0.b3b2 |1〉)
R1 on b1
−−−−−−→ (|0〉 + e0.a3a2a1+0.b3b2b1 |1〉)

≡ φ(a1 + b1)

Applying respective transformations on the other qubits leaves us with a state:

|φ(a)〉|b〉 → |φ(a + b)〉|b〉 .

Applying the invers QFT results in the summand a + b mod 2 in the first register. A complete
circuit representation can be found in Circuit 2.14. The number of gates used in the addition can be
reduced by omitting the swap operations from the QFT and the inverse QFT such that the most
significant qubits represent the fraction of all qubits, and the controlled rotations on b3, b2 and b1
are performed in a3 rather than a1.

Complexity Overall the QFT addition requires n(n + 1) gates for the QFT’s and additional n(n+1)
2

gates for the rotations controlled by b resulting in a total of 3
2 (n(n + 1)) = O(n2) qubit gates.

However, due to the application of the QFT and the independently applied controlled rotations
the circuit is heavily parallelizable, where the bottle neck is the single qubit with the controlled
operations by all qubits of b. The maximal circuit depth is log(n) for each of the QFT and its inverse,
and at most another n for the controlled rotations by the qubits of b resulting in an asymptotic
depth of O(n) operations. We note that there exist quantum look-ahead carry adders with a depth of
O(log n) and O(n) quantum gates, i.e., see Draper et al. [7].

If the qubit length of (a + b) is larger than n an overflow occurs and the value of the qubit n + 1 is not
computed in the process. In order to avoid such misery one can integrate an extra carry qubit into
the addition by adding a qubit a4. After the QFT, in the naive implementation, the least significant
bit is in the state

φ(a1) = (|0〉 + e0.a4a3a2a1 |1〉) .
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|b0〉
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Figure 2.14 In-place addition using the quantum Fourier transform. Note that in an optimized
implementation the swap operations can be removed from the QFT addition if the controlled phase
in between are mirrored along the diagonal z gates.

In order to capture the addition of the 3 − qubit register b we need to start with a rotation R2 to
achieve

φ(a1)
R2 on b3
−−−−−−→ (|0〉 + e0.a4a3a2a1+0.0b3 |1〉)
R3 on b2
−−−−−−→ (|0〉 + e0.a3a2a1+0.0b3b2 |1〉)
R4 on b1
−−−−−−→ (|0〉 + e0.a3a2a1+0.0b3b2b1 |1〉)

≡ φ((a3 + b3)1) ,

where (a3 + b3)1 denotes the carry bit from the addition of a3 and b3. Circuit 2.15 shows the naive
implementation.

|a4〉

|a3〉

|a2〉

|a1〉

|b3〉

|b2〉

|b1〉

Q
F

T

R1

R2

R1

R2

R3

R1

R2

R3

R4

Q
F

T
−

1

|(a3 + b3)1〉

|(a3 + b3)0〉

|a2 + b2〉

|a1 + b1〉

|b3〉

|b3〉

|b1〉

Figure 2.15 In-place addition using the quantum Fourier transform and an explicit carry qubit.

The addition circuit can be inverted in a trivial way by running all operations backwards resulting
in a subtraction circuit with the computation |a〉|b〉 → |a − b〉|b〉.
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In [33] and [39] Ruiz-Perez et al. described how the special case a < b can be used to build a
comparison circuit: if a < b the subtraction will result in |a〉|b〉 → |2n+1 − b + a〉|b〉. This allows to
construct a comparison circuit from add and sub:

|0〉|a〉|b〉
cmp
−−−→ |a < b〉|a〉|b〉 . (2.8)

First, |b〉 is subtracted from |0, a〉 such that the n + 1 qubit is 1, if and only if a < b. Then |b〉 is
added back to |a〉 to undo the subtraction and reset |a〉 to the known state. This computation is
equivalent to classical signed-integer subtraction where the most significant bit is set if a < b.

|0〉

|a〉

|b〉

su
b

ad
d

|a < b〉

|a〉

|b〉

=

cm
p

Figure 2.16 In-place comparison circuit using QFT addition and subtraction. The comparison uses
the fact that the subtraction results in 2n+1 − b + a effectively setting the most significant bit if a is
smaller than b.

Below we also give an explicit circuit for a ripple adder from Draper in [6] using n + 1 ancillary
qubits to compute the addition of a + b. The ripple adder is the direct translation of a classical
addition circuit, adding only the uncomputation of the carry bits. In comparison to the QFT addition
the ripple adder does not require any special gates such as Hadamard gates and is based only on
Toffoli gates. Therefore it can be implemented on most classical circuit simulations.
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|b1〉
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Figure 2.17 Carry operation.

|c0〉

|a1〉

|b1〉

|c0〉

|a1〉

|b1 ⊕ a1 ⊕ c0〉

= su
m

Figure 2.18 Sum operation.

Multiplication, Squaring and Division

The quantum translation of the classical square-and-multiply algorithm used for modular squaring
is used by Roetteller et al. in [32] for quantum modular addition. We use the circuit both, as
modular and non-modular multiplication based on the underlying operations. The multiplication
is achieved by applying a sequence of controlled addition and doubling operations. The result is
written to a new register, such that the circuit performs the transformation:

|a〉|b〉|0〉 → |a〉|b〉|a · b〉 .

We consider the circuit as multiplication on unsigned integers rather than modular multiplication
and follow the pseudo code in Algorithm 2.20. Furthermore, we do not take into account the
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|(a3 + b3)0〉
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Figure 2.19 Quantum ripple adder using n + 1 ancillary qubits to cache carry qubits.

Algorithm 2.3: Double-And-Add

Input: A, B
Output: A · B

1 R← 0
2 for i← n − 1 to 1 do
3 if A[i] = 1 then
4 R← R + B
5 end
6 R← R · R
7 end

Figure 2.20 Multiplication by doubling and adding



2.2. Quantum Computation 21

possibility of an overflow, and therefore assume that the target register is large enough to contain
all qubits of |a · b〉. Let bi be the qubits in |b〉 and let c denote the target register. For each qubit
n − 1, n − 2, . . . , 1 a controlled addition and a doubling operation is performed on c. The doubling
operation can be implemented as left shift (swap) of the qubits. For the least significant qubit of b
the doubling operation is not performed.

Complexity The multiplication circuit requires n controlled additions and n − 1 doubling opera-
tions which can be implemented using swap operations (left shift). Using the look carry-lookahead
adder in [7] this totals in O(n2) quantum gates and a circuit depth of O(n(log n + 1)).

|a3〉

|a2〉

|a1〉

|b〉

|0〉

ad
d

<< 1

ad
d

<< 1

ad
d

|a3〉

|a2〉

|a1〉

|b〉

|a · b〉

Figure 2.21 Multiplication of arbitrary unsigned numbers by subsequent controlled addition and
doubling.

The multiplication circuit can easily be translated into a squaring circuit by temporarily copying the
target register into an ancillary register as depicted in Circuit 2.22.

|0〉

|x3〉

|x2〉

|x1〉

|0〉

ad
d

<< 1

ad
d

<< 1

ad
d

|0〉

|x3〉

|x2〉

|x1〉

|x2〉

Figure 2.22 Squaring of arbitrary unsigned integers by subsequent controlled addition and doubling.

For modular addition and multiplication see appendix A.

Division

The incorporated quantum division algorithm is the quantum translation of a classical restoring
division algorithm. Khosropour et al. present the quantum version in [20]. Their description follows
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Algorithm 2.4: Restoring Division

Input: N ← Numerator, D← Denominator
Output: D,R← Remainder, Q← Quotient

1 R← 0n||N
2 D← D << n
3 for i = n − 1 to 0 do
4 R = 2R − D
5 if R ≥ 0 then
6 Q[i]← 1
7 else
8 Q[i]← 0
9 R← R + D

10 end
11 end

Figure 2.23 Restoring division

the pseudo code in Algorithm 2.23: the algorithm takes as input a numerator N, a denominator D
of bit length n and outputs the quotient q as well as the remainder overwriting the numerator.

First, the numerator is concatenated by n zero-qubits resulting in the binary expansion of (0nN).
The denominator is shifted by n bits, such that it affects only the most significant half of the
numerator during subtraction (see line 3 in Algorithm 2.23). If the result of the doubling of N
and the subtraction of D of each iteration is less than zero then the quotient bit, starting with the
most significant one, is set to one. Else it is set to zero and the denominator is added again to
retain a positive number in the register of the numerator. When implementing a division circuit the
denominator does not have to be shifted by n bits, since the subtraction in the loop can simply be
conditioned on the highest significant bits of N. The sign of the result is determined by the highest
significant bit of the numerator; which is one if and only if D is larger than 2N. In the case of a
quantum circuit the state of the qubit can be “copied” to the quotient qubit with a controlled-not
operation. The addition of the denominator is controlled by the negation of the quotient qubit. A
single round of the iteration is drawn in Figure 2.24.
Additionally we introduce the circuit divround which uncomputes the remainder to contain the
value of the numerator but keeps the state of the quotient. It is equivalent to the inverse circuit
of the division algorithm except for the “copying” of the state of the most significant qubit after
subtraction into the quotient register.
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Figure 2.24 Single round of the loop of a quantum division circuit based on restoring division.

Complexity The restoring division has a depth of O(n log n) (or n2 with naive add) and requires
O(n2) (or n3 with naive add) gates.

2.3 The LLL Algorithm
The algorithm due to Lenstra, Lenstra Lovasz (LLL) was introduced in 1982 to be the first
polynomial-time algorithm to factor polynomials with rational coefficients [21]. Nowadays it is
widely known for its myriad of algorithmic applications and its use in cryptography for computing
lattice reductions. One of the first applications in cryptanalysis were attacks on the knapsack based
cryptosystems [9, 22]. Later the LLL algorithm was used to model the RSA invertion problem as
roots of univariate polynomial equations [24, p. 335]. Furthermore, lattice based cryptosystems
based on the hardness of the NP-complete Shortest Vector and Closes Vector Problem can be
approached using the lattice reduction provided by the LLL scheme [24, p. 363] [34]. The
description of the section follows closely the work of Joux [19].

Definition 2.9 (Lattice) A lattice L is a discrete additive subgroup of Rn that is spanned by a
linear combination of a basis of Rn.

Let B̂ = ( ~b1, ~b2, ..., ~br) be a basis. L =
r∑

i=1
zibi s.t. zi ∈ Z, bi ∈ B̂ In the following we will consider

integer lattices only.

A basis B̂ of a lattice is a set of linear independent vectors ~bi, i ∈ {1, 2, ..., r} such that each point
in the lattice can be represented by a linear combination of the basis vectors. The basis vectors
can be represented as matrix B by representing each row of the matrix by a basis vector. In the
following we will refer to B as a basis matrix. The cardinality of a minimal basis set B̂ is called the
rank of the lattice and is equivalent to rank of the basis matrix B. The dimension of the embedding
vector space Rn is called embedding dimension. The basis of a lattice is not unique, hence there
exists a basis B′ such that each basis vector b′i is a linear combination of vectors in B. The linear
combination can be expressed via unimodular matrices U and U′ such that B = U′B′ and UB = B′.
Since B = U′B′ = U′UB it is clear that U and U′ are inverse. Furthermore, it can be shown that
the determinant of U and U′ is ±1.

Theorem 2.10 Let X be a square integer matrix. The inverse X−1 contains integers if and only if
the determinant det(X) = ±1.
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Proof 2.11 For the inverse X−1 we have

X−1 =
1

det(X)
ad j(X) .

det(X−1) =
1

det(X)
(2.9)

where ad j(X) is the adjugate of X. Clearly the adjugate ad j(X) contains only integers.

⇒ If X−1 contains only integers, then det(X−1) is also an integer. For Equation (2.9) to hold det(X)
must be ±1.

⇐ If the determinant det(X) = ±1, then 1
det(X) is clearly an integer and therefore X−1 contains only

integers. �

Definition 2.12 (Lattice determinant) Let L be a lattice. The determinant det(L) is defined as:

• det(L) =
√

det(B>B), where B is any basis for L

• or
r∏

i=1
||b∗i ||, where b∗i , i ∈ {1, 2, . . . , r} are orthogonal basis vectors.

There is a smallest non-zero vector in L denoted by the first minimum λ1(L). In general, there is
a k − th minimum λk(L), such that there exists a set of k linear independent vectors with norm at
most λk(L). An important relation between the determinant and the successive minima is given by
the Minkowski theorem; as shown in [19]:

Theorem 2.13 (Minkowski) For every integer r > 1, there exists constant γr, such that for any
lattice L of rank r and for all 1 ≤ k ≤ r: k∏

i=1

λi(L)


1
k

≤
√
γrdet(L)

1
r

Essentially the theorem states that there exists a non-zero vector ~v such that the length of ~v is
bounded by the determinant of the lattice.

Lattice reduction

Many algorithmic applications, for example the Partition-and-try attack in Section 3.4.2, ask for
a lattice basis containing “short” vectors (with regard to a length, i.e. l2 − norm) and nearly
orthogonal vectors. Such a basis is denoted as a reduced basis. In the two dimensional case the
vectors of a basis ~b1, ~b2 are considered short if they lie within the first two successive minima.
These can be computed in a single step by applying a Gauss reduction, reducing the length of ~b2
and its orthogonal projection onto the space spanned by ~b1. For higher dimensions there is no
straightforward definition of a “short” basis; a more sophisticated motivation can be found in Joux
[19, p.329]. Lenstra et al. introduced a definition for a reduced basis in arbitrary dimension that,
heuristically, admits a good condition for a short basis.
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Definition 2.14 (δ − LLL reduced Basis) Let B̂ be a basis of the lattice L and B∗ the Gram-
Schmidt orthogonalized basis. The lattice L is δ − LLL reduced if the following conditions are
satisfied [19, p.319]:

∀i < j : |(~b j| ~b∗i ) ≤
|| ~b∗i ||

2

2
(2.10)

∀i : δ|| ~b∗i ||
2 ≤

|| ~b∗i+1|| +
( ~bi+1| ~b∗i )2)

|| ~b∗i ||
2

 (2.11)

where δ is some constant
1
4
< δ ≤ 1 and (·|·) is the inner product. (2.12)

The first Condition refers to the definition of a reduced basis in two dimensions and its orthogonal
projection. The second Condition (2.11) is known as Lovasz condition and defines an ordering of
the basis, such that the length of the sequence of basis vectors differs by a factor δ.

Algorithms

The Gram-Schmidt orthogonalization (GSO) takes as input a basis matrix and computes an or-
thogonal basis. The main observation is that for each basis vector the orthogonal projection of
the vector ~bi onto the space spanned by the vectors ~b1, . . . , ~bi−1 results in a shorter basis vector.
Therefore the GSO computes an orthogonal basis that is also shorter. Given a lattice L with a basis
B = (b1, b2, ..., br) the GSO computes an orthogonal basis B∗ = (b∗1, b

∗
2, ..., b

∗
n) as follows:

~b∗1 = ~b1 ,

~b∗2 = ~b2 −
( ~b2| ~b∗1)

( ~b∗1| ~b
∗
1)
~b1 ,

... ,

~b∗r = ~br −

r−1∑
i=0

mr,i ~b∗i with mr,i =
(~br | ~b∗i )

|| ~b∗i ||
2
,

such that ~b∗j is the projection of ~b j onto the vector space defined by b∗1, b
∗
2, ..., b

∗
i−1. The Gram-

Schmidt orthogonalization computes a matrix M containing the values mi, j and the modified basis
matrix B∗ = BM, where M is a lower triangular matrix with ones on its diagonal and is denoted as
Gram-matrix.

LLL

The LLL algorithm consecutively considers the sublattice spanned by the basis vectors 1 . . . k and
checks if the sublattice is short with regard to the Lovasz condition. The algorithm iterates over the
basis vectors and takes into consideration a higher dimensional sublattice if and only if the Lovasz
condition, and hence the correct ordering of the basis, is met. Each iteration starts by considering
the next vector k and reducing the kth vector in the two dimensional lattice spanned by the vectors
k and k − 1. If the Lovasz condition holds the basis vector k is larger than the vector k − 1 and the
the row of the Gram matrix associated with the vector k is updated to reflect the reduction with the
lesser vectors 1 . . . k − 2.
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If the Lovasz condition does not hold, then the basis vector k is shorter than k − 1 and the basis
vectors are swapped. Vector k is reduced by a multiple of vector k − 1 and the Gram matrix is
updated accordingly. Then the counter k is reduced to consider and check the sublattice spanned by
the vectors k and k − 2 in the next iteration. We give a version of the LLL algorithm following the
mathematical description from Joux [19, ch. 10] in Algorithm 2.26.

We give a short description of the algorithm line by line:

Line 1 The algorithm starts by computing an orthonormal basis and the Gram-matrix.

Line 6 The while loop iterates basis vectors until all pairs of basis vectors fulfill the Lovasz
condition, hence until the basis is sorted, such that the smallest vector is “on top” of the matrix.

Line 7-8 A sublattice of dimension two spanned by the two currently largest basis vectors that
have not been checked is considered. For each such sublattice, one reduces the first vector by the
second. Then the Lovasz condition with

Lk + m2
k,k−1Lk−1

≡Lk +

 (~bk| ~b∗k−1)

|| ~b∗k−1||
2


2

Lk−1

≡

Lk +
(~bk| ~b∗k−1)2

|| ~b∗k−1||
2

 ,
compares the ordering based on the initial length and the linear transformation of the coefficient.

Line 9-12 The Gram-matrix can be updated to reflect the reduction of vector k by all lesser vectors
and k is incremented.

Line 13-17 Computes the adjusted transformation coefficient and vector length to ensure that they
fulfill the Lovasz condition.

Line 18-28 Swaps the basis vectors and reduces the “shorter” vectors while enlarging the “greater”
vector. The matrix M is updated accordingly. The details behind the mathematics can be found in
[19, p.335],

It is shown in [19] that the LLL algorithm computes an exponential approximation of the shortest
vector, such that

|| ~b1|| ≤ 2(n−1)/2λ1(L) . (2.13)

Complexity

We bound the runtime of the LLL algorithm following the argumentation in [28, 31].

Theorem 2.15 The number of iterations in the LLL algorithm is polynomial in the bit-length of the
input basis and the rank of the lattice. The iterations are bound by log 1

δ
DInit.
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Algorithm 2.5: LLL Algorithm

Input: Basis B = (~b1, ~b2, . . . , ~br)
Output: Reduced Basis B

1 B∗,M ← GS O(B)
2 for i = 1 to r do
3 Li ← ||~b∗i ||

2

4 end
5 k ← 2
6 while k ≤ r do
7 VectorReduction(k, k − 1)
8 if Lk + m2

k,k−1Lk−1 ≥
3
4 Lk−1 then

9 for l = k − 2 down to 1 do
10 VectorReduction(k, l)
11 end
12 Increment k
13 else
14 L̂k−1 ← Lk + m2

k,k−1Lk−1

15 mk,k−1 ← mk,k−1Lk−1/L̂k−1

16 Lk ← Lk−1Lk/L̂k−1

17 Lk−1 ← L̂k−1

18 S WAP(~bk, ~bk−1)
19 for l = 1 to k − 1 do
20 µ← mk,l

21 mk,l ← mk−1,l
22 mk−1,l ← µ

23 end
24 for l = k + 1 to r do
25 µ← ml,k

26 ml,k ← ml,k−1 − mk,k−1 · µ

27 ml,k−1 ← µ + mk,k−1 · ml,k

28 end
29 k ← max(2, k − 1)
30 end
31 end

Figure 2.26 LLL Algorithm as described in [19, ch. 10]. We denote that the algorithm given by
Joux differs on lines 19-28.
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Algorithm 2.6: VectorReduction

Input: i, j and access to B,M
Output: Modifies mi j ∈ M, ~bi ∈ B

1 if |mi, j| > 1/2 then
2 r ← bmi, je

3 ~bi ← ~bi − r~b j

4 for k = 1 to j − 1 do
5 mi,k ← mi,k − rm j,k

6 end
7 end

Figure 2.27 Reduction algorithm taken from Joux [19, p.334]. The algorithm reduces a vector ~bi

by an integer multiple of a vector ~b j. The check if the term mi, j is ≤ 1
2 ensures that the subroutine

does not reduce by a null-vector.

Proof 2.16 Let δ be the comparative factor given in the Lovasz condition, such that the LLL
algorithms branches on Lk + m2

k,k−1Lk−1 ≥ δLk−1 for some 1
2 < δ < 1. Define a value D which is

shown to be reduced in each iteration of the LLL algorithm. We will bound the starting value of D
and see that D is larger than 1 at any time, making it possible to determine an upper bound for the
number of iterations of the loop. Define

D =

r∏
i=1

det(Li) ,

such that D is the product of the determinants of all sub-lattices spanned by the basis B. From the
definition of the determinant we get

D =

r∏
i=1

(||b∗1|| · . . . · ||b
∗
i ||)

=

r∏
i=1

(||b∗i ||)
r−i+1 .

Note that in the description of the algorithm we work with Li = ||bi||
2, however the notation with

the orthogonal vectors is more convenient for this proof.
First we see that D remains larger than 1 at any time since the basis of the (integral) Lattice has a
positive determinant. At the beginning of the LLL algorithm we have

DInit =

r∏
i=0

||bi||
r−i+1 (2.14)

and we can clearly bound this:

DInit ≤

r∏
i=0

||bi||
r ≤ maxi||bi||

r2
≤ 2poly(r,|B|) , (2.15)

resulting in an upper bound for D.
In each iteration of the loop either the Lovasz condition is met and a single basis vector is reduced
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or the Lovasz condition is in conflict and the order of the basis is changed. In the first case the
Gram-basis does not change and therefor the values of the Li as well as value of D remain the same.
In the second case the basis vectors bk, bk−1 are exchanged. Furthermore we have

b̂k−1 = ||bk|| + mk,k−1||bk−1|| . (2.16)

We consider the size of the sub-lattice that is influenced from the exchange, L̂k−1, and compare the
size of the determinant with the preceding size:

L̂i

Li
=
||b1|| · ||b2||... · ||bk−2|| · (||bk|| + mk,k−1||bk−1||)

||b1|| · ||b2||... · ||bk−2|| · ||bk||

=
||bk|| + mk,k−1||bk−1||

||bk||
≤

√
1
δ
,

where the last square-root comes from comparing the squared length in the Lovasz condition. We

now see that in each iteration of the loop D is reduced by a factor of
√

1
δ . After x iterations we

have Dx = D√
( 1
δ )x

; and for D ≥ 1 we have at most log 1
δ
DInit exchanges. Bounding D with 2r,|B| we

see that the number of iterations is bounded by O(r, |B|) which is polynomial in the rank and in the
input size of the basis. �

In order to bound the complexity of the LLL algorithm one would need to argue over the size of the
intermediate bases. We do not show this proof and refer to [19] where the complexity of LLL is
given as O(nr5log3(|B|)).

Application: Modular relations with small solution

The LLL algorithm can be used to compute solutions to modular relations with small solutions as

described in [13]. Given any modular relation of the form
n∑

i=1
aixi = 0 mod N the solutions is, in

general, not unique solution. However, if there exists a solution x∗ such that
n∏

i=1
x∗i ≤ N than the

solution is unique. Assuming there is only a single shortest vector which fulfills bound in Equation
(2.13), the LLL algorithm can find such a vector. The relation can be computed by considering the
lattice

L =

(x1, x2, ..., xn)|
n∑

i=1

aixi = 0 mod N

 . (2.17)

In order for the LLL algorithm to find the solution we need to give an initial basis matrix. This can
be constructed by considering kernel vectors for each dimension fulfilling the Equation (2.17). Each
vector consists of a one at the position according to the column representing the dimension and a
zero in all other places but the last. The last columns is used to fulfill the modular relation. Consider
the first vector where the one is in the position of x1 and the last position of xn is adjusted to fulfill
the equation. Given all other variables are zero we have the equation a1x1 + 0 + . . . + anxn ≡ 0
mod N. If x1 = 0, than xn =

−a1
an

to satisfy the relation. The constructed kernel matrix for all vectors
is:
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B =


1 0 ... 0 −a1

an

...

0 0 ... 1 −an−1
an

0 0 ... 0 N ,


where the last row (0, 0, . . . , 0,N) guarantees that all vectors are reduced by N, hence enforcing the
modular relation. The constructed matrix allows the LLL algorithm to find a short solution for the
modular relation.



3. Mersenne Number Cryptosystems

This chapter introduces the Mersenne number cryptosystems that are analyzed throughout the rest
of this work. We provide a detailed description of the key encapsulation schemes and the underlying
hard problems. Finally we present a weakened variant of the Ramstake KEM that we constructed
as a foundation for our analysis in the next chapter.

Mersenne number cryptosystems are based on integer arithmetic in a ring modulo a Mersenne
number. A Mersenne number is of the form p = 2n − 1 where n is an integer. First, note that the
binary expansion of p is of the form 11 · · · 1. A Mersenne prime is a Mersenne number p such that
p is prime, implying that n is also prime. For the rest of this work we will always assume Z/pZ to
be the ring modulo a Mersenne prime unless stated otherwise.

Theorem 3.1 Let p = 2n − 1 be a Mersenne prime. Then n is also a prime.

Proof 3.2 Let a, b,m be integers. A number of the form am ± bm is called binomial number and
can be factorized as am − bm = (a − b)(am−1 + am−2b + . . . + abm−2 + bm−1) [40].
Let 2n − 1 be prime and n = n0n1 be composite. Let x = 2n0 , then 2n0n1 = xn1 . The binomial number
xn1 −1 can be factored as (x−1)(xn1−1 + xn1−2 + . . .+ x1 + 1). Since we assumed that 2n−1 is prime
the factor (x − 1) = 1 or (x − 1) = p. Substitution of x gives (x − 1) = (2n0 − 1) and 2n0 − 1 = 1 or
2n0 − 1 = p. Therefore n0 = 1 or n0 = n, and the factors n0, n1 of n are either n or 1. �

For an element of the integer ring x ∈ Z/pZ with p being a Mersenne prime the following
properties hold. Let hw(·) denote the Hamming weight and therefore the number of ones in the
binary expansion of ·. ham(·, ·) denotes the Hamming distance between the binary expansion of
integers.

• Let x ∈ Z/pZ. Than hw(x2i mod p) = hw(x) for any integer i. Multiplication by a power
of 2 is equivalent to a cyclic rotation of the binary expansion.

• ∀i∃ j such that (2i)−1 ≡ 2 j mod p. The inverse of a power of 2 is again a power of 2 in the
ring Z/pZ.

The security of the Mersenne number cryptosystems are based on a range of different assumptions
presented in Section 3.2. The following section introduces, to the best of our knowledge, the only
published variants of Mersenne number cryptosystems.
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3.1 Post-Quantum Cryptoschemes

Mersenne number cryptosystems were first introduced in 2017 by Aggarwal et al. [1] and later
refined and reintroduced during the NIST post-quantum cryptography project by Szepieniec [36]
and Aggarwal et al. as key encapsulation mechanism. The schemes follow the encryption-based
approach using a shared noisy secret to encrypt the entire message. The shared noisy secret (snotp)
acts as an one time pad to mask the message; in case of a key encapsulation the targeted secret
key is masked. Furthermore both cryposystems make use of derandomization and re-encryption in
order to achieve CCA security.

Mersenne-756839

The Mersenne-756839 cryptosystems was published by Aggarwal et al. [1] to the NIST post-
quantum project without stating a definite name. The submission name and the supporting docu-
mentation suggest to name the scheme Mersenne-756839 and we will refer to this scheme as such.
The key encapsulation mechanism is embedded into an IND-CCA secure transform with a proof of
classical IND-CCA security, however a proof in the quantum random oracle is not presented. The
cryptoscheme is based on the following parameters:

• A Mersenne number determining the ring: p = 2n − 1.

• A security parameter λ

• An integer ω determining the Hamming weight of sparse integers in the scheme.

• An error correcting code with encoding function E(·) and decoding functionD(·) that can
correct up to t errors.

• Random oraclesH1,H2,H3, that output uniformly random integers in Z/pZ of Hamming
weight ω.

Let bin(·) denote the binary expansion of an integer as string. The cryptosystem is fully determined
by the three polynomial-time algorithms

∏
= (KeyGen756839, Encaps756839,Decaps756839) in

Algorithm 3.1, Algorithm 3.2 and Algorithm 3.3 as given in [1].

Algorithm 3.1: KeyGen756839

Input: (p)
Output: (pk, sk)

1 G ← uniformly random integer in Z/pZ
2 a, b← uniformly random integers in Z/pZ with hw(·) = ω

3 PD ← (a ·G + b) mod p
4 pk := (G, PD)
5 sk := (a)
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Algorithm 3.2: Encaps756839

Input: (pk, p)
Output: (ctxt, key)

1 key← uniformly random λ-bit string
2 c← H1(key), d = H2(key), e = H3(key)
3 PE ← (c · pk.G + d) mod p
4 enc← E(key) ⊕ bin((c · pk.PD + d) mod p)
5 ctxt := (enc, PE)

Algorithm 3.3: Decaps756839

Input: (ctxt, sk, pk, p)
Output: (key′ or ⊥)

1 key′ ← D(bin(sk.a · ctxt.PE) ⊕ ctxt.enc)
2 c′ ← H1(key′), d′ = H2(key′), e′ = H3(key′)
3 P′E ← (c′ · pk.G + d′) mod p
4 enc′ ← E(key′) ⊕ (bin(c′ · pk.PD + e′) mod p)
5 if enc′ = ctxt.enc then
6 Output key′

7 else
8 Output ⊥
9 end

For the sake of simplicity we omit the terms of the pk, sk and the notion of mod p in the
following equation and assume our addition and multiplication to be in Z/pZ. The decoding of the
encapsulated key

D(bin(a · PE) ⊕ ctxt) = D(bin(acG + d) ⊕ (cPD + d)2 ⊕ E(key))

= D((acG + ad)2 ⊕ (acG + cb + e)2 ⊕ E(key)) ,

is correct and gives key′ = key if and only if the Hamming distance of the snotp’s is less than t:

ham(acG + ad, acG + cb + e) ≤ t . (3.1)

Choosing an appropriate error correcting code Aggarwal et al. prove that the decapsulation is

successful with probability at least 1−2
−ω2

4 . For a secure instantiation, with regards to the underlying
problem, Aggarwal et al. suggest the Mersenne prime with n = 756839, however, in general it is
not required for the Mersenne number to be prime. The Hamming weight is set equal to the security
parameter λ = ω = 256 to derive a failure probability provably lower than 2128. A detailed proof
can be found in [1]. Furthermore Aggarwal et al. give a heuristic analysis of a decoding failure
probability deriving an even lower heuristic bound of 2−239.

Ramstake

Ramstake was introduced as post-quantum key encapsulation scheme by Szepieniec during the NIST
post-quantum project. The scheme is embedded into a transformation featuring derandomization
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and re-encryption inspired by Targhi and Unruh [38]. Szepieniec does not give a security proof in
the NIST submission, nevertheless a proof is given by Szepieniec et al. in [37]. The cryptoscheme
uses the following parameters:

• A Mersenne prime p = 2n − 1.

• A security parameter λ.

• An integer ω denoting the Hamming weight of sparse integers in the scheme.

• A function PRGg(·) that deterministically outputs an integer in Z/pZ

• A function PRG(·) that deterministically outputs integers in Z/pZ of Hamming weight ω

• A random oracleH

• An error correcting code with encoding function E(·) and decoding functionD(·), correcting
at most t errors.

The key encapsulation mechanism can be described by the three polynomial-time algorithms∏
= (KeyGenRamstake, EncapsRamstake,DecapsRamstake) given in Algorithms 3.4, 3.5 and 3.6. Let

(·)2 denote the binary expansion of an integer as string.

Algorithm 3.4: KeyGenRamstake

Input: (seedKeyGen ← uniformly random λ-bit string, p)
Output: (pk, sk)

1 rg, ra, rb ← PRG(seedKeyGen) // pseudo random strings
2 G ← PRGg(rg) // random integer in Z/pZ
3 a← PRG(ra) // random integer in Z/pZ with hw(·) = ω

4 b← PRG(rb) // random integer in Z/pZ with hw(·) = ω

5 PD ← (a ·G + b) mod p
6 pk := (rg, PD)
7 sk := (a, b)

Algorithm 3.5: EncapsRamstake

Input: (pk, seedEncaps ← uniformly random λ-bit string , p)
Output: (ctxt, key)

1 G ← PRGg(pk.rg)
2 rc, rd ← PRG(seedEncaps) // pseudo random strings
3 c← PRG(rc) // random integer in Z/pZ with hw(·) = ω

4 d ← PRG(rd) // random integer in Z/pZ with hw(·) = ω

5 PE ← (c ·G + d) mod p
6 S E ← (c · pk.PD) mod p
7 enc← bin(S E) ⊕ E(seedEncaps)
8 key← H(pk||rc||rd)
9 hash← H(seedEncaps)

10 ctxt := (enc, PE , hash)
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Algorithm 3.6: DecapsRamstake

Input: (ctxt, sk, pk, p)
Output: (key′ or ⊥)

1 G ← PRGg(pk.rg)
2 S D ← (sk.a · ctxt.PE) mod p
3 seed′Encaps ← D(bin(S D) ⊕ ctxt.enc)
4 ctxt′, key′ ← EncapsRamstake(seed′Encaps)
5 if (ctxt) = (ctxt′) then
6 Output key′

7 else
8 Output ⊥
9 end

For the sake of simplicity we omit the terms of the pk, sk and the notion of mod p in the following
equation and assume our addition and multiplication to be in Z/pZ. The decoding

D(bin(S D) ⊕ ctxt) = D(bin(acG + ad) ⊕ bin(acG + bc) ⊕ E(seed)) ,

is successful if and only if

ham((acG + ad)2 ⊕ (acG + bc)2) ≤ t

.

The Ramstake cryptoscheme instantiates the error correcting code with Reed-Solomon codes of
dimension 32 and codewords of size 255 over GF(256), hence 32 bytes of data are encoded into 255
byte codewords. Szepieniec recommend to use 6 codewords such that each codeword is encrypted
with a different part of the shared noisy one-time-pad. For six codewords the decoding failure
probability if less then 2−64. The work of Szepieniec does not give a formal proof but refers to
empirical evaluation of the cryptoscheme. The resulting failure probability has been experimentally
verified by me.

3.2 Security Assumptions
The following section introduces the fundamental hard problems that act as basis for the post-
quantum cryptoschemes as given in [1] and [36]. The resulting relations between the problems are
stated explicitly.

Definition 3.3 [Mersenne Low Hamming Combination Problem (LHC)(LHC)] Let p = 2n − 1 be
a Mersenne prime and ω an integer such that 4h2 < n ≤ 16h2 for some integer h. Let a, b1, b2 be
uniformly random integers with Hamming weight ≤ ω. Let G1,G2,R1,R2 be uniformly random in
Z/pZ. Distinguish which of the following tuples is given:([

G1
G2

]
,

[
G1
G2

]
· a +

[
b1
b2

])
or

([
G1
G2

]
,

[
R1
R2

])
Definition 3.4 [Mersenne Low Hamming Combination Search Problem (LHCS)] Let p = 2n − 1 be
a Mersenne prime and ω an integer. Let a, b be uniformly random integers with Hamming weight
≤ ω, and G uniformly random in Z/pZ. Given the tuple (G, P = aG + b) mod p. Find a, b.
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Definition 3.5 [Mersenne Low Hamming Diffie-Hellman Search Problem (LHDHS)] Let p = 2n−1
be a Mersenne prime, and ω an integer. Let a, b, c, d be uniformly random with Hamming weight
at most ω and G an uniformly random in Z/pZ. Let PD = aG + b mod p and PE = cG + d
mod p. Given PD, PE ,G. Find an integer S such that ham(cPD, S ) ≤ t and ham(aPE , S ) ≤ t for
some integer t.

Definition 3.6 [Mersenne Low Hamming Diffie-Hellman Decisional Problem (LHDHD)] Let
p = 2n−1 be a Mersenne prime, and ω an integer. Let a, b, c, d be uniformly random with Hamming
weight at most ω and G uniformly random inZ/pZ. Let PD = aG+b mod p, PE = cG+d mod p
and S be a n-bit integer. Given PE , PD,G, S . Decide whether ham(cPD, S ) ≤ t and ham(aPE , S ) ≤ t
for some integer t.

The security of the schemes is based on the hardness of the search and decisional problems, that is,
they are secure if all quantum polynomial-time adversaries solve the respective problem with at
most negligible probability. The problems are connected as given in Figure 3.1.

Theorem 3.7 [Informal] The LHDHD problem can be reduced to solving the LHDHS problem.

Proof 3.8 [Informal] Given PD, PE ,G, S as in Definition 3.6, an adversary solving the LHDHS
can find a S ′ such that ham(S ′, cPD) ≤ t and ham(S ′, aPE) ≤ t with non-negligible probability.
ham(S , S ′) ≤ t solves the LHDHD problem. �

Theorem 3.9 [Informal] The LHC problem can be reduced to solving the LHDHD problem.

Proof 3.10 [Informal] Given a tuple ([
G1
G2

]
,

[
C1
C2

])
,

of the LHC problem. Set the input for the LHDHD decider as follows: PE = C1, PD = cG1 + d
mod p, S = cC with c, d as in Definition 3.6. Consider the two tuples of the LHC problem:
case C = R1 : Then ham(aPD, S ) = ham(acG1 + ad, cR1) > t with high probability, and
ham(cPE , S ) = ham(cR1, cR1) = t, hence the LHDHD decider answers with NO.
case C = aG1 + b1 : Then ham(aPD, S ) = ham(acG1 + ad, acG1 + cb1) ≤ t with high probability,
and ham(cPE , S ) = ham(acG + b1c, acG1b1c) = t, hence the LHDHD decider answers with YES ,
and thus the LHC tuple can be distinguished. �

Theorem 3.11 [Informal] The LHC problem can be reduced to solving the LHCS problem.

Proof 3.12 [Informal] Given a tuple ([
G1
G2

]
,

[
C1
C2

])
,

of the LHC problem. If C1 = aG1b1 then an adversary solving the LHCS problem on input G1,C1
can find a and b1 with non-negligible probability. If C1 is a random number an adversary can most
likely not find x, y such that C1 = xG1 + y. �
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LHC LHCS

LHDHD LHDHS
Figure 3.1 The figure summarizes the relation between the computational problems. An arrow
x→ y indicates that a solver to problem x can be used to solve problem y.

3.3 WeakRamstake
We define a simplified version of the Ramstake cryptosystem and denote this as WeakRamstake.
The scheme is weakened by removing derandomization and re-encryption hence creating a scheme
without explicit rejection of ciphertexts and free choice of parameters. Furthermore we prove that
the cryptosystem remains IND-CPA secure by reducing WeakRamstake to the hardness of the
LHDHD problem 3.6.

The modified cryptoscheme is the basis for the cryptanalysis of Mersenne number cryptosystems in
Chapter 4. Removing explicit rejection allows an adversary, in the position of an encapsulator, to
choose arbitrary values during encapsulation and influence the behavior of the decapsulator. The
new encapsulation and decapsulation algorithms are given in Algorithm 3.7 and Algorithm 3.8.

Algorithm 3.7: EncapsWeakRamstake

Input: (pk, seedWeakEncaps ← uniformly random λ-bit string , p)
Output: (PE , ctxt, hash, key)

1 G ← PRGg(pk.rg)
2 c← random integer in Z/pZ with hw(·) = ω // no derandomization
3 d ← random integer in Z/pZ with hw(·) = ω // no derandomization
4 PE ← (c ·G + d) mod p
5 S E ← (c · pk.PD) mod p
6 ctxt ← bin(S E) ⊕ E(seedWeak−Encaps)
7 hash← H(seedWeakEncaps)
8 key← H(pk||seedWeakEncaps)

Algorithm 3.8: DecapsWeakRamstake

Input: (ctxt, hash, PE , sk, pk, p)
Output: (key or ⊥)

1 G ← PRGg(pk.rg)
2 S D ← (sk.a · PE) mod p
3 seed′WeakEncaps ← D (bin(S D) ⊕ ctxt)
4 hash← H(seed′WeakEncaps)
5 if hash’ == hash then
6 Output key← H(pk||seed′WeakEncaps)
7 else
8 Output ⊥
9 end
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Theorem 3.13 [IND-CPA security of WeakRamstake] If the LHDHD in Definition 3.6 is hard, then
WeakRamstake is IND-CPA secure.

Proof 3.14 We consider the notion of IND-CPA as in Section 2.1. Let AWeakRamstake be an adversary
that breaks the WeakRamstake KEM with advantage Adv(AWeakRamstake). We construct an adversary
ALHDHD that simulates the KeyGen and Encapsulation of WeakRamstake for AWeakRamstake and
solves the LHDHD problem with non-negligible probability if Adv(AWeakRamstake) is non-negligible.

Let a, b, c, d,G, PE , PD, S be as in Definition 3.6. The adversary ALHDHD simulates the attack on
LHDHD in game 0 and plays an IND-CPA KEM game with AWeakRamstake in game 1:

game 0: ALHDHD receives PE , PD, S ,G.

game 1: Letr
$
←− {E,D}.

game 1: Set pk := (G, Pr).

game 1: Let bit
$
←− {0, 1}

ctxtbit ←

S ⊕ E(seed) for a randomly generated seed, if bit = 1
R randomly generated bit string, if bit = 0

game 1: Send pk, ctxtbit to ALHDHD.

game 1: Let b′ be the answer received from ALHDHD.

game 0: Output b′ as answer to the LHDHD problem.

Given an instance of the LHDHD problem and the games played with AWeakRamstake there are three
distinct cases:

1. ham(aPE , S ) ≤ t and ham(cPD, S ) > t or ham(aPE , S ) > t and ham(cPD, S ) ≤ t

2. ham(aPE , S ) ≤ t and ham(cPD, S ) ≤ t

3. ham(aPE , S ) > t and ham(cPD, S ) > t

Let µ be the advantage of winning the WeakRamstakeKEM game that an adversary AWeakRamstake

has. The Diffie-Hellman component in the public key is either PE or PD, each occurring probability
1/2. We will see that the success probability of the adversary is the same for both components, hence
this does not influence the success probability of AWeakRamstake.

For the first case, the success probability of an adversary in game1 is µ + 1
2 since with probability 1

2
ALHDHD sends over the encapsulation with the string S . The adversary AWeakRamstake can return
the correct bit if and only if either of the snotp’s aPE or cPD and S have Hamming distance less
than or equal t. In the second case the decapsulation is successful in both games with probability
µ + 1

2 . In the last game the adversary can do no better than guessing. Table 3.2 summarizes the
success probability of the adversaries.

The adversary ALHDHD trying to solve the LHDHD problem can play game1 with the adversary
AWeakRamstake and has advantage at least as high as µ. Per assumption µ is non-negligible and
therefore ALHDHD solves the LHDHD problem with non-negligible probability. �
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LHDHD parameters Pr[A wins game1]
ham(aPE , S ) ≤ t

ham(cPD, S ) > t
µ + 1

2

ham(aPE , S ) > t

ham(cPD, S ) ≤ t
µ + 1

2

ham(aPE , S ) ≤ t

ham(cPD, S ) ≤ t
µ + 1

2

ham(aPE , S ) > t

ham(cPD, S ) > t
1
2

Figure 3.2 Success probabilities of the adversaries A := AWeakRamstake win the INP-CPA game
dependent on the values of the LHDHD problem

3.4 Known Attacks
This section presents known attacks on Mersenne number cryptosystems presented by de Boer et al.
[5] and by Beunardeau et al. [3]. To the best of our knowledge, no other attacks, neither classical
nor quantum, have been published.

3.4.1 Quantum Meet In The Middle Attack

The quantum meet in the middle attack (QMITM) is an approach to tackle the Mersenne Low
Hamming Combination Search problem, first considered by Aggarwal et al. in their work on the
Mersenne-756839 cryptosystem, but was dismissed after being assumed to be to inefficient. The
idea was picked up by Boer et al.; in 2018 they presented a quantum meet in the middle attack with

a quantum time complexity of O
((

n
ω

) 1
3

)
and quantum accessible memory of size O

((
n/3
ω/3

))
, where n

is the bit length of the Mersenne prime and ω is the Hamming weight of the sparse integer.

Generic Meet In The Middle

The fundamental idea of a meet in the middle attack balance the trade off between time and space
complexity towards utilizing more space in order to save on the amount of operations. This is
achieved by splitting the search space of an unknown into smaller spaces, such that the concatenation
of the search spaces equals space for the original unknown value.
Let key be the unknown value with key space K . Furthermore, let Fkey be a function mapping from
a message spaceM to a ciphertext space C: Fkey : M → C, such that the function Fkey operates
on some m ∈ M and for each key ∈ K there exists a distinct image c ∈ C. Given a pair (m, c), to
find the according key one would have to try all possible values for key. The meet in the middle
attack approaches this problem by defining new functions F ′k1

and F ′′k2
operating on k1, k2 ∈ K

such that k1||k2 = key. Assuming F ′k1
◦ F ′′k2

= Fkey, a brute force search can now compute all
values of F ′k1

(m) and save (k1,F
′

k1
(m)) into a lookup table. Then one can search for a value of k2,

such that (F ′k2
)−1(c) collides with an item in the lookup table, hence one has found k1, k2 such that

Fkey(m) = F ′k1
(m) ◦ Fk2(c) = c. The meet in the middle attack requires memory equivalent to the

size of all possible values for k1 and time complexity equal to the size all values for each k1 and k2.
The attack is more efficient if and only if the search space for k1 and k2 is at most half as big as the
search space for key.
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Quantum Meet In The Middle Attack on LHCS

Boer et al. apply a quantum MITM attack in [5] to the Mersenne prime cryptosystem. The paper
presents an attack on a single-bit encryption version of the Mersenne prime cryptosystem. Let
p = 2n − 1 be a Mersenne prime and a, b ∈ Z/pZ of Hamming weight ω. In the single-bit
encryption scheme the element G is not a random bit string but is computed from the secrets a, b as:

G :=
b
a

and used as a public parameter. The aim in the original attack is to split up the search of the secret
a = a1||a2 to find a a such that a ·G mod p has Hamming weight ω. We describe the attack for
this setup and discuss the application to the Mersenne prime KEM in the end. Formally the task
is: given G = b

a find an integer a ∈ Fn
2 such that hw(aG) = ω. Boer et al. give the following

partial function for a by considering the binary expansion and splitting it up into bin(a1)0 . . . 0 and
0 . . . 0bin(a2): let α ∈ [0, 1]

Aα1 = {(bin(a1), 0d(1−α)en) : bin(a1) ∈ Fbαnc
2 , |bin(a1)| = bαωc}

Aα2 = {(0d(α)ne, bin(a2)) : bin(a2) ∈ Fb(1−α)nc
2 , |bin(a2)| = d(1 − α)ωe}

Now a1 + a2 = a such that aG = a1G + a2G has low Hamming weight and is a solution. The
attack requires the notion of a locality sensitive hash function H , that is, a hash function that
maps similar preimages to the same image. In the case of the attack on the Mersenne prime
cryptosystem similar means preimages that are close to each other with regard to their Hamming
distance: H(x1) = H(x2)⇔ ham(x1, x2) ≈ 2ω.
The requirement for the locality sensitive hash function which results in collisions on inputs that
are close to each other is based on a lemma stated by Boer et al. in [5]. The lemma is accompanied
by a heuristic assumption about the application of the lemma onto the cryptoscheme. We do not
discuss the explicit lemma but want to motivate the idea:
Consider so find a solution to the equation

−a2G = a1G − b mod p . (3.2)

The lemma states that given an uniformly random element f ∈ Z/pZ and an element g ∈ Z/pZ
with |g| = ω for some ω ∈ N that the Hamming distance ham( f , f + g) is small with high probability.
Instantiating this lemma with g = −b one can try to find f ≈ a1G ≈ −a2G using the locality
sensitive hash functions such that ham(−a2G, a1G − b) is small, trying to mimic the Equation (3.2).
Therefore the locality sensitive hash function tries to find a collision between a1G and −a2G. The
attack is described by [5] as follows:

1. Choose locality sensitive hash functionH .

2. Let D be an empty lookup table. For all a1 ∈ Aα1 add (a1,H(a1G)) to D.

3. For each a2 ∈ Aα2 look upH(−a2G) in D. Let L be all such entries of D.

4. For each entry in L check if hw(a1G + a2G) = ω; output the correct a1 + a2

This attack can be speed up by a quantum computer by applying a Grover search to step (3) and
(4). Filling the database D can not be improved by a quantum computer. The maximum speedup is
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obtained by choosing a small value for α, hence having a smaller lookup table. As 1 − α is closer
to one, the steps computed by a quantum computer are larger compared to the classical steps. In

[5] Boer et al. show that the optimal value for α is 1
3 obtaining a time complexity of O

((
n
ω

) 1
3

)
and

quantum accessible memory for table D of size O
((

n/3
ω/3

))
.

Application to Mersenne prime key encapsulation mechanisms

For the case of the Ramstake cryptosystem where G is an uniformly random n-bit string and the
public component is given as

PA := aG + b mod p ,

the aim is to split up a such that PA − aG has low Hamming weight (likewise b). Translating the
attack one would try to solve the equation

PA − aG ≡ b mod p

= PA − a1G − a2G ≡ b mod p

= a2G ≡ PA − b − a1G mod p

= a2G ≡ −a1G + PA − b mod p (3.3)

Translating this instance to the lemma given by Boer et al. with f ≈ −a1G ≈ a2G and g = PA − b
the aim is to find a collision H(a2G) = H(−a1G). Due to the lemma the Hamming distance
ham(a2G,−a1G + PA−b) is low with high probability and thus the Equation 3.3 has been mimicked.
We did not analyze this attack in detail and do not make any claims towards the application of the
attack on the Mersenne prime KEM’s. Nevertheless, since both cryptosystems build on the same
Mersenne number and share the same Hamming weight on their sparse integers we assume the
attack is applicable.

3.4.2 Slice’n’Dice

In [3] Beunardeau et al. present an attack on the single-bit NTRU-like variant of the Mersenne-
756839 cryptoscheme by applying a lattice reduction technique. The lattice is constructed based on
the modular relation of the public key. Running the LLL algorithm on a basis vector matrix allows
to compute the secret key.
We describe the original attack on the single-bit variant of the Mersenne-756839 cryptosystem and
translate in to the Ramstake cryptosystem later. Assume the given public component

b
a
≡ H mod p , (3.4)

where p is a Mersenne prime and a and b are random integers in Z/pZ of Hamming weight ω.
The public key is given by pk := (H) and the secret key is sk := (a, b). The secrets a and b can be
represented as sum of powers of two, such that

a =

k∑
i=1

2pi b =

l∑
l=1

2ql .

The main observation is that the lattice defined by
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La,b,H = {(x1, x2, ..., xk, y1, y2, ..., yl)|
k∑

i=1

2pi xiH −
l∑

j=1

2q jy j ≡ 0 mod p} (3.5)

contains a short vector that represents the secrets a and b. In order to approach the problem using
lattice reduction one has to assume that the sparse integer a and b are the only sparse integers that
fulfill the modular relation b/a = H. The assumption carries over to the lattice, such that there exists
only a single short vector representing a and b. This heuristic is summarized in Assumption 3.15.

Assumption 3.15 The secret vector containing a and b is the only vector in La,b,H that fulfills the
Minkowski bound.

Following the assumption that there are no other short solutions to the equation, the secret vectors
are the only vectors, that fulfill the Minkowski bound:

λ1(La,b,H) ≤
√

rdet(L
1
r
a,b,H) ,

where r = k + l is the rank of the basis matrix M of La,b,H .
Before we construct the matrix M we take a look at some properties of the basis matrix. M is an
upper triangular matrix. Note that M>M is also a triangular matrix. To apply the Minkowski bound
consider the computation of the determinant: det(La,b,H) =

√
det(M>M) is the product of M’s

diagonal. Assume det(La,b,H) = p (we will construct the basis matrix accordingly). Therefore the
Minkowski bound assures the existence of a vector ~v such that

||~v|| ≤
√

rp
1
r .

The length of any vector ||~x|| in La,b,H is

||~x|| =
√

x2
1 + x2

2 + . . . + x2
r ≈
√

r (maxi xi) .

In order for a vector to fulfill the Minkowski bound we need that maxi xi ≤ p
1
r , hence we need that

all xi ≤ p
1
r for i ∈ {0, 1, . . . , r}. Let Xi be an upper bound for xi. Then Xi ≤ p

1
r and

∏r
i=1Xi ≤ p.

Furthermore, in order for the secrets to be represented by a short vector, we need a “short” repre-
sentation for both a and b. Partitioning the binary expansion of the secrets into subranges, each
representing a shifted part, does the trick. Let r be the number of parts. Then a (respectively b) is
split into r

2 parts. Each parts is represented by a dimension of the lattice, hence by a variable xi

(respectively y j).

Let ai denote the starting positions of the partitioning of a and bi respectively for b. In order to
fulfill the Minkowski bound we need

∏ r
2
i=1Xi

∏ r
2
j=1Y j ≤ p, where Xi and Y j are upper bound for

the part starting as position ai represented by xi (respectively b j and y j). Following the requirements

to fulfill the bound,we need
∏ r

2
i=1Xi ≤ p. Now Xi ≤ p

1
r . But each part xi corresponds to a part of a

whose binary expansion has length 2
r . In order to fulfill the Minkowski bound, Xi may only have

bits set in the lower half.



3.4. Known Attacks 43

Figure 3.3 Valid partitioning of a sparse integer. The partitioning is correct if and only if all of the
ones are in the lower half of each partition.

Kernel matrix M

We construct the matrix of kernel vectors for the Equation (3.4) as described by Beunardeau et al..
Note that the description contains an additional variable z, such that the lattice points are described
by (x1, . . . , x m

2
, y1, . . . , y m

2
, z). For each part of a construct a vector representing its shift. For the

first vector this results in: (1, 0, . . . , 0,H2a1 mod p), where the first dimension represents the first
part. For each part of b construct a similar vector (0, . . . , 0, 1, 0, . . . , 0,−2b1 mod p). Together with
a vector enabling the reduction modulo p once arrives at the following kernel matrix. All terms in
the matrix (except for the last row) can be computed modulo p, which has been omitted here:

M =



1 0 . . . 0 0 . . . 0 H2a1

0 1 . . . 0 0 . . . 0 H2a2

...
...

. . . 0 0
. . .

...
...

0 0 . . . 1 0 . . . 0 H2am/2

0 0 . . . 0 1 . . . 0 −2b1 mod p
...

...
. . . 0 0

. . .
...

...

0 0 . . . 0 0 . . . 1 −2bm/2

0 0 . . . 0 0 . . . 0 p


. (3.6)

For each possible partition of a and b one can construct a matrix. Applying the LLL algorithm to
the lattice basis yields a reduced basis. One can check if the reduced basis contains the solution
by computing the Hamming weight of integers represented by the shortest vector. The partition
is correct if and only if the Hamming weight is ω. The probability that all the ones of a and b lie
in the lower half of a random partition is 22ω and therefore the runtime for an attack using this
technique is approximately O

(
22ω

)
.

Kernel matrix for Ramstake

The attack can be translated to the Ramstake cryptosystem by giving a kernel matrix for the public
component aG + b ≡ H mod p. The lattice is constructed as:

La,b,H =

k∑
i

2ai xiGH−1 +

l∑
j

2b jy jH−1 − z ≡ 0 mod p ,

where ai and b j represent the starting positions of the partitions of a and b. Note that due to the
different computation of the public component we have an additional dimension (variable z) that
is to be fixed in the kernel matrix. The variable will be set to a sufficiently high (i.e., p2) value to
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avoid that vectors are reduced by a multiple of this. Note that this increases the determinant of the
lattice, however the calculations still hold.

M =



1 0 . . . 0 0 . . . 0 0 −2a1GH−1

0 1 . . . 0 0 . . . 0 0 −2a2GH−1

...
...

. . . 0 0
. . .

...
...

...

0 0 . . . 1 0 . . . 0 0 −2am/2GH−1

0 0 . . . 0 1 . . . 0 0 −2b1 H−1

...
...

. . . 0 0
. . .

...
...

...

0 0 . . . 0 0 . . . 1 0 −2bm/2 H−1

0 0 . . . 0 0 . . . 0 p2 H
0 0 . . . 0 0 . . . 0 0 p



. (3.7)

An alternate kernel matrix with one fewer dimension can be fixed by removing the dimension for a
single part of a, resulting in:

M =



2−a1G−1H 0 . . . 0 0 . . . 0 p2

−2−a1G−12bm/2 0 . . . 0 0 . . . 1 0
...

...
. . . 0 0

. . .
...

...

−2−a1G−12b1 0 . . . 0 1 . . . 0 0
−2−a12am/2 0 . . . 1 0 . . . 0 0

...
...

. . . 0 0
. . .

...
...

−2−a12a2 1 . . . 0 0 . . . 0 0
p 0 . . . 0 0 . . . 0 0


. (3.8)



4. Cryptanalysis with Decoding Failures

The fourth chapter contains our analysis of the Ramstake cryptosystem and its weakened variant
WeakRamstake. First the basic setup of cryptanalysis with decoding failures is introduced and
possible strategies to gain information are presented. Different levels of abstraction are formulated
starting from WeakRamstake and approaching the an attack on the Ramstake cryptosystem.

Decoding failures are an imminent risk arising when building cryptosystems that use error cor-
recting codes as a subroutine. The promise of those systems is that only legitimate parties in the
communication channel can compute an encoding from the ciphertext such that the decoding is
successful. Since most protocols are based on some kind of randomness there is a low but non-zero
probability of a decoding failure, even when following the protocol honestly. If the probability of
failure is low enough, i.e., one in a billion, the practicability is not in danger. From a security point
of view decoding failures pose a small threat if the cryptoscheme is used for either ephemeral or
short term keys where the number of decoding queries prior to a change of secret keys is very low.
On the other hand, if the probability of failure is sufficiently low, i.e., negligible in the security
parameter, then finding such a decoding failure might be more expensive than applying a generic
attack. Furthermore it is not clear in general, how much or what information may be leaked from
decoding failures.

In the past different (post-quantum) cryptosystems have been successfully attacked using decoding
failures. Guo et al. show in [12] how to break the QC-MDPC variant of McEliece using only a large
set of decoding failures. The authors first describe an approach based on a weakened cryptoscheme
which is stripped of derandomization and reencryption. By querying the decapsulation oracle
with different patterns of ones in the binary expansion of their respective parameters they derive a
pattern of ones in the binary expansion of the secrets. Based on the number of decoding failures
with a certain pattern the authors were able to reconstruct the secrets keys. Guo et al. were
able to generalize their attack to the CCA variant of QC-MDPC McEliece by generating random
plaintext-ciphertext pairs and grouping the pairs based on certain patterns. Working on a scheme
that promised a security parameter of 80 − bits the authors were able to reduce the security to
40 − bits using only the decoding errors.
In [8] Eaten et al. extended the attack by applying a timing analysis to the decoding errors. Queries
with a larger number of errors consumed more time due to a higher number of iterations in the
decoding procedure. Combining a variant of Guo et al. attack with the timing analysis also lead to
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a successful attack.
Furthermore back in 2000 the NTRU encryption scheme was broken as described in [15] and
[18]. The authors were able to derive bits of the secret keys directly from comparing counts of
decoding queries. In [16] Howgrave-Graham et al. describe a padding for NTRU encrypt as a
countermeasure that achieves CCA2 security and remains secure in the presence of decoding errors.
The generic games capturing CPA or CCA security do not include the notion of decoding failures,
hence some security proofs may not capture the notion of decoding errors. While this does not
necessarily raise a concern if the probability of decoding failures is smaller than the probability of
success of any generic attack, it may be a security issue if this is not the case.

In this chapter we show how decoding failures in the Mersenne number cryptosystem Ramstake can
be exploited to extract information about the secret key. We build on different levels of abstraction
by defining three problems of finding the secret parameters a and b. The first problem represents
attacks on the WeakRamstake scheme, the second problem captures an abstraction that is closer to
the CCA secure scheme and the third problem finally represents the problem of finding the secrets
when using the Ramstake cryptosystem. The idea is to develop an attack on the weak variant of
Ramstake and lift the approach to the CCA secure variant. We have chosen Ramstake due to its
naturally high decoding failure probability of about 2−64 and the resulting practicability of the
simulation of attacks. In the following, we do not tackle the underlying hard problems directly, but
assume communication of the two parties Alice and Eve where Alice generates the public and secret
key and takes the position of the decapsulator and Eve the position of the encapsulator. The attacks
are described from the view point of Eve.

4.1 Technicalities in Ramstake
Setup and Notations

For the rest of this chapter we consider the following parameters and settings:

• A Mersenne prime p = 2n − 1 with n = 756839.

• The Hamming weight ω = 128 denoting the number of ones in the binary expansion of the
sparse integers.

• The Reed-Solomon code has a minimal distance of δ = 224 and thus corrects up to

t =

⌊
224 − 1

2

⌋
= 111

errors.

• The encoding and decoding functions of the error correcting code are E,D.

• A security parameter of λ = 256.

• The decapsulation oracle OA(·).

The communication to simulate the key encapsulation is carried out by Alice and Eve, where Alice
computes:

• KeyGen(·)
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g ∈ Z/pZ uniformly random

a, b ∈ Z/pZ uniformly random with hw = ω

PA = aG + b mod p

• OA(·)

snotpA = cPB = acG + ad

Returns either > on successful decoding or ⊥ on a decoding failure.

And Eve computes:

• Encapsulation(·)

c, d ∈ Z/pZ with hw = ω

PE = cG + d

snotpE , as further specified

The encapsulation utilizes the lenc least significant bytes of the snotpE for the encapsulation. This
part will be referred to as the encoding block.

snotp: ... | ...

unused snotp encoding block of length lenc

Figure 4.1 Representation of the shared noisy secrets with the encoding block of byte length lenc.

Empirical evaluation of decoding failures

The Ramstake cryptosystem instantiates its error correction with a Reed-Solomon code to correct
up to t errors. The encoding translates an input of 32 bytes into a codeword of 255 bytes, where
each byte is represented by a symbol, an element in GF(28). A codeword contains 255 symbols and
can be decoded if at most 112 of the symbols have an error. Therefore, multiple bit errors in a single
byte (symbol) do not account for multiple errors. This results in a high resistance against burst
errors induced, i.e., errors from addition modulo p during computation of the snotp and resulting
carry operations.

Therefore an error in a byte position in the encoding appears if the XOR of the shared noisy
one-time-pads disagree on a single bit. Denote byte positions in the noisy one-time-pads with
snotpE,[i] and snotpA,[i]. The occurence of byte errors is captured in Observation 4.1 and depicted
in Figure 4.2.

Observation 4.1 The encoded secret contains error only at those positions where the snotp’s
disagree: there is an error at position i if snotpA,[i] , snotpE,[i] as in Figure 4.2.

In Section 3.1 we have seen that a decoding failure occurs if the Hamming distance of the shared
noisy secrets, restricted to the lenc least significant bytes, is greater than the number of correctable
errors t, formally if:

ham(acG + ad, acG + bc) > t .
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snotpE

snotpA

XOR

error no-error

Encoding block

, =

Figure 4.2 Relation between the encapsulator’s and the decapsulator’s snotp and the resulting error.
An error occurs if and only if the snotp’s differ on at least one bit.

Both snotp’s share the common term acG and differ only based on the changes admitted by the
addition of ad and bc. Aggarwal et al. prove in [1] an upper bound for the Hamming distance of a
random element and its addition with a sparse element, thus also an upper bound for

ham(acG, acG + ad) and ham(acG, acG + bc) .

Theorem 4.2 Let U be an uniformly random n-bit integer and x an uniformly random n-bit integer
of Hamming weight h. For every ε > 0,

Pr[ham(U,U + x) ≥ 2(1 + ε)h] ≤ 2−2h(ε−ln(1+ε))

The proof can be found in [1, ch. 9].

Aggarwal et al. use the upper bound on the Hamming distance to instantiate the error correcting
code for the Mersenne-756839 cryptosystem and thus derive a failure probability based on the
Hamming weight of the sparse integers. The exact or expected Hamming weight inferred by the
addition of the sparse integers has been computed empirically by Aggarwal et al.. The failure
probability of the Ramstake cryptosystem is based purely on an empirical evaluation of the failure
probability. To derive its failure probability of greater than 2−64 Szepieniec instantiates six separated
encryptions of the encoded seed with the shared noisy one-time-pad. As depicted in Figure 4.3
the encoded seed is encrypted separately with six different parts the snotp where each part has a
chance of about 2−13 of resulting in a decoding failure. However, as only a single codeword has to
decode successfully, the chance of failure is low enough to fulfill the NIST requirements for key
encapsulation mechanisms. We have statistically verified the error count and failure probability by
generating 50000 random keys of the Ramstake cryptosystem. For the sake of practicability the
attacks on WeakRamstake are implemented on a setup with only a single codeword, such that the
decoding failure probability is fairly high (about 2−12). Our analysis and work with the decoding
failures is based on these results.

The snotp’s acG + bc and acG + ad carry the noisy terms ad and bc. The noise introduced by
each one of the terms is based on the number of ones in the product of either a and d or b and c.

Consider the multiplication of a =
n−1∑
i=0

2iai and d =
n−1∑
j=0

2 jd j:

(an−1 an−2 an−3 . . . a0) ·2n−1dn−1
+ (an−1 an−2 an−3 . . . a2) ·2n−2dn−2

...
...

...
...

...
...

+ (an−1 an−2 an−3 . . . a0) ·20d0 . (4.1)
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. . . . . . . . . . . . . . . . . .

Codeword 6 Codeword 5 Codeword 4 Codeword 3 Codeword 2 Codeword 1

Encoding block

Figure 4.3 Implementation of six separate encryptions of the encoded seed with parts of the shared
noisy one-time-pad.

Average Variance
hw(ad) 16208 13.2
hw[0:255](ad) 43.6 6.5
hw (bin(acG + ad) ⊕ bin(acG + bc)) 85.3 9
hwBytes (bin(acG + ad) ⊕ (acG + bc)2) 73.8 7.3

Figure 4.4 Empirical evaluation of decoding failures of the Ramstake cryptosystem for a single
codeword. The data is based on the evaluation of 50000 random inputs.

The Hamming weight of ad is the product of the Hamming weight of each a and d minus the number
of carries that occur: hw(ad) = hw(a)hw(d) − #carriesad. Carries occur during the sequential
multiplication and addition of a with a bit position of d. Hence a carry occurs if and only if the
rotational shift caused by the multiplication of a2 jd j infers with another rotational shift in the
sequence of additions. In case that no such carry occurs we can clearly bound the Hamming weight
by

hw(ad) ≤ hw(a)hw(d) = ω2

Empirical evaluations show that hw(ad) ≈ 16267, which is close to the bound 16384, and thus we
assume that almost no carries occur. For the encryption of the encoded seed only the last lenc bytes
of the snotp’s are relevant. The evaluations show that on average only approximately 43 bits in
the encoding block of ad or bc are set to one. The statistical evaluation suggests that the positions
of the error bits are distinct whereas such that ad and bc together influence about 85 bits in the
encoding block. These errors are distributed over about 73 bytes in the encoding block and hence it
can be assumed that the errors introduced by ad and bc are approximately distinct. This property
can significantly improve an adversary’s attempt to distinguish the positions of the ones of ad and
bc.

Strategies

In the following sections we will follow the four strategies in Figure 4.5 to extract the secrets a, b
from the decapsulator:

1. Finding a correct partition for the unknowns a, b, which is equal to finding the approximate
positions of the ones in the respective binary expansion. This allow to apply the Slice’n’Dice
attack to extract the actual exact values or positions in polynomial time.
Finding a partition for the term bc may also improve the Slice’n’Dice attack. Consider the
lattice in Equation (4.2)

La,γ =

(x1, x2, . . . , xk, y1, y2, . . . , yl)|
k∑

i=1

2ai xicG +

l∑
j=1

2γ jy j ≡ acG + bc mod p

 ,

(4.2)
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Strategy 1:
Find partitions
for a, b or bc

Slice’n’Dice

Strategy 2:
Find snotpA

snotpA = a · (cG + d) a, b

Strategy 3:
Find ad ± bc

snotpB ± (ad ± bc) = snotpA

Strategy 4:
Find bit posi-

tions of a or b
Figure 4.5 Possible strategies to derive the secret sparse integers in Ramstake.

where γ j are the bit positions of bc. Given the approximate positions of the ones in the term
bc one can apply the Slice’n’Dice attack to this lattice. This leaves an adversary with the
challenge to find a correct partition for a and improving the success probability to O(2ω),
hence a quadratic improvement over the generic attack in Section 3.4.2.

2. The shared noisy one-time-pad of the decapsulator, snotpA is the product of the secret a and
the public component of the encapsulator. Finding this product allows to directly compute
the secret a:

a = snotpA · (PE)−1 mod p

3. If Eve can extract ad ± bc mod p from the samples received from Alice then Eve can learn
the secrets a, b with the following calculations:

• snotpE − (ad + bc) ≡ (acG + bc) − (ad + bc) ≡ acG − ad mod p

• (acG − ad)(cG − d)−1 = a

• (aG + b) − (aG) = b

If Eve extracts a sample ad − bc mod p the computation

• snotpE + (ad − bc) ≡ (acG + bc) + ad − bc ≡ acG + ad mod p

• (acG + ad)(cG + d)−1 = a

• (aG + b) − (aG) = b

results in the secrets.

4. Details are given in the respective attack.
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4.2 Problem 1: Attacks on WeakRamstake
The first approach captures the challenge of finding Alice′s secrets from arbitrary inputs to the
decapsulation oracle of WeakRamstake as defined in Problem 4.3.

Problem 4.3 Learning Bit Error Positions from Decoding Failures: Find random n-bit secrets
a, b ∈ Z/pZ with Hamming weight ω from q samples

(c, d) s.t. hw
(
snotpE.[0:lenc] ⊕ snotpA,[0:llenc ]

)
> t ,

where c, d ∈ Z/pZ are choosen freely with Hamming weight ω and the snotpE is chosen freely by
Eve.

When the adversary Eve queries the encapsulator Alice on WeakRamstake, Eve can freely choose
the parameters c, d. Furthermore Eve can modify the snotpE and query Alice with encapsulations
of a malicious snotp.

4.2.1 Attack 1: Error Injection

We show how Eve can extract Alice’s snotp by querying the a set of malicious encapsulations.
The fundamental idea for Eve is to inject artificial errors into the snotp used for encrypting the
encoded seed and induce exactly t errors. Figure 4.6 shows the initialization of the attack. Each
stripped square in Figure 4.6 represents a single byte. Errors are injected and the decapsulation
oracle queried until the encapsulation fails to decode and hence omits exactly t + 1 errors. Then Eve
can learn information about Alice’s snotp. During the attack the encapsulation switches between
three states:

• E<t: the encapsulation contains < t errors (OA → >)

• E=t: the encapsulation contains exactly t errors (OA → >)

• Et+1: the encapsulation contains exactly t + 1 errors (OA → ⊥)

Starting from the state E<t artificial errors are introduced until the state S t+1 is reached. Then the
attack keeps switching between S =t and S t+1 to learn snotpA one byte at a time.

Approach

Figure 4.7 shows how Eve communicates with the oracle to switch between the states and at what
point Eve learns about the shared noisy secret. The attack starts with Eve random sparse integers c, d
of Hamming weight ω and computing the resulting public component and the snotpE . An initial
query to the decapsulation oracle determines the initial state of the encoding. If the encapsulation is
in state Et+1 Eve starts over until the state E<t or E=t is reached.
Now Eve starts to inject errors into the snotpE by changing a single byte. Without loss of generality
assume Eve starts with byte snotpE,[lenc]. Since there is only a single value for the byte, namely the
value of the byte snotpA,[0] that does not cause an error, setting the byte to 0 will result in an error
with high probability (we will ignore the case where either of the snotp’s was zero before for now).
We denote this by snotpE,[0] = 0.
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. . .

E . . .

E E . . .

E E . . . E E

. . . E . . . or . . . E E . . .

reset byte value

t errors > ← ODecaps t + 1 errors ⊥ ← ODecaps

⇒ snotpA,[l−1] = snotpE,[l−1] Brute force byte, learn snotpA,[l−1]

Encoding block as bytes

inject error 1

inject error 2

> ← ODecaps< t errors

> ← ODecaps< t errors

. . .

⊥ ← ODecapst + 1 errors
⇒ snotpA,[l] = snotpE,[l]

Figure 4.6 Eve continuously changes bytes in the snotpE to inject lenc errors, such that a decapsu-
lation failure occurs.

Querying the oracle yields either the state S <t, S =t or S t+1 where the first two states are indistin-
guishable. In the case of S <t or S =t Eve continues to inject errors.
Assume OA = ⊥ after injecting an error into position l; hence after setting snotpE,[l] = 0 such that
snotpE,[i] = 0 for i = {0, 1, . . . , l}. Since snotpE,[0...l−1] admitted the state S <t or S =t the change
in byte l introduced an error with certainty and Eve learns that the original shared noisy secrets
must have matched: snotpE,[l] = snotpA,[l]. Eve proceeds to change between the states S =t and
S t+1 by removing at most one error at a time and learning the respective byte. Iteratively each byte
l − 1, l − 2, . . . , 0 is tested and learned. For each byte Eve takes the following actions:

1. Reset byte i to its original value.

2. Query the decapsulation oracle with the resulting ciphertext resulting in either:

OA = > The encoding is in the state S =t and Eve learns the value of the byte.

OA = ⊥ The encoding is still in the state S t+1. Eve can conduct a brute force attack on this
byte to learn the value. Consider values of the snotp’s:

snotpE,[i] ⊕ snotpA,[i] , 0 . (4.3)

Eve introduces a new byte variable Y such that

Y ⊕ snotpE,[i] ⊕ snotpA,[i] = 0 (4.4)

and queries the decapsulation oracle for each value of Y with the encoding resulting from
Y ⊕ snotpE,[i] until the state S =t is reached. The variable Y represents only a single byte and
thus requires at most 256 queries until repetition. Then Eve learns

snotpA,[i] = Y ⊕ snotpE,[i] .
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Oracle

Oracle

Oracle

Inject next error Learn byte

(>: state S <t)

(query)

(⊥: state S t+1)

(query)

Learn byte
Reset Error

Brute force byte

(>: state S =t)

(query) (⊥: state S t+1)

(query with Y)

(⊥: state S t+1)(>: state S =t)

Initial query

End

l bytes learned

Figure 4.7 High level overview of the communication of Eve with the decryption oracle. The
rectangle represent the decapsulation oracle. Note that both boxes represent the same oracle but are
separated to present the flow of communication. The oracle returns either > on successful decoding,
or ⊥ on a decoding failure. The rounded boxes represent the actions of Eve, either computing
rotational shifts or learning byte after a certain response from the oracle.

3. Re-inject the error to get to the state S t+1 and continue with the next byte.

Once the byte 0 has been learned Eve can apply a rotational shift to both shared noisy secrets and
start over to inject errors. The rotational shift of both snotp’s can be applied by multiplying both
c, d with (28l)−1 resulting in the new representation of the snotp’s:

(28l)−1(acG + ad) (28l)−1(acG + bc) ,

such that the “new” byte 0 is the least significant byte in the encoding block and the previously
modified bytes do not interfere with the next round.

Complexity

For each byte in the snotp Eve needs to query the decapsulation oracle once when injecting the
error, and at least once when resetting the byte to its original value. Additionally, Eve queries
the oracle 256 times for each error in the snotp, with at most ω2 errors. In total Eve requires
2n + 256ω = O(n + ω) queries.

After O(n + ω2) queries to the decapsulation oracle Eve can reconstruct the decapsulator’s snotp
and find the secrets a, b. The complexity of the attack builds as follows:
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O(n) = 2n Two queries for each byte to check the current state.

O(ω) = 256 · 2ω2 The brute-forced method to find each error byte requires at most 256 queries
each.

For an actual implementation an adversary would require at least 7568392+1282 ≈ 572 billion ≈ 240

decapsulation queries, which seems quite out of scope. However, the NIST standards allow up to
264 decapsulation queries (see Paragraph 2.1).

Implementation

Our implementation can extract the full snotp of Alice in a few hours. Computing the secrets a and
b remains trivial. Applied to Ramstake with n = 756839 and ω = 128 requires about 240 queries to
the decapsulation oracle. Moreover we note certain subtleties discovered during implementation
that one has to circumvent:

• The modulus bit length n is not a multiple of 8, and with n = 756839 we have n ≡ 7 mod 8.
The last seven bits can not be shifted into the encoding block and used as a byte, but rather
have to be brute forced by trying all 27 combinations.

• The Reed-Solomon code has a minimal distance of δ = 224 and should correct up to
t = b 224−1

2 c = 111 errors. However, the original code of the NIST submission contains a
small flaw in the error correcting code such that sometimes 112 errors are corrected. The bug
has been reported and corrected in our implementation.

• Injecting an error into the snotp, i.e., by setting it to zero, might lead to false assumptions if
the injection does not add, but rather remove an error, i.e., the other snotp′s byte is 0.

4.2.2 Attack 2: Malicious Public Component

Approach

Eve can identify bit positions of the secret b by computing and querying encapsulations with a
malicious public component of Alice. Consider the binary expansion of the secret b as sum of
powers of two: b =

∑ω
i=1 2b

i where bi are the positions of the ones. The public component of Alice
can be written as:

PA = aG +

ω∑
i=1

2b
i .

Eve picks a x ∈ Z/nZ and computes a modified public component P′A as:

P′A = aG +

ω∑
i=1

2b
i − 2x .

When modifying the public component there arise two cases: the value x is a bit position of a one
in the binary expansion of b. In this case we assume, w.l.o.g. that x = b1. In the second case x is a
bit position of a zero:

P′A = aG + b − 2x

aG + 2b2 + 2b3 + . . . + +2bω if x = b1

aG + b − 2x .
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acG + bc

acG + c2b2 + . . . + 2bω acG + cb − 2xc

Figure 4.8 Finding bit positions of b

Computing the snotpE results in:

snotp′E = acG + c(b − 2x)

acG + c(2b2 + 2b3 + . . . + +2bω) if x = b1

aG + bc − 2xc
.

In the first case the number of errors introduced by the addition of the sparse product c(2b2 + 2b3 +

. . . + +2bω) may be lower than the number of errors of the original product bc, since the upper
bound on errors is lower:

hwc(2b2 + 2b3 + . . . + +2bω) ≤ ω(ω − 1) .

In the second case the error bound introduced by bc − 2xc may be larger, since the term 2xc
will introduce more errors, since the positions of the ones of bc and c2x do not match with
high probability. Querying the decapsulation oracle with resulting encapsulations allows Eve to
distinguish the two cases, and therefore distinguish if x is a position of a one or a zero as depicted
in Figure 4.8.

Overall the attack can be summarized as follows:

1. Pick a x ∈ Z/nZ.

2. Modify the public component: P′A = PA − 2x = aG + b − 2x.

3. Pick random c, d and compute the snotp “honestly” with P′A.

4. Repeat the previous step until the two cases can be distinguished.

5. Go to step 1 and repeat until ω one-positions in b are known.

Complexity

The attack requires to receive a number D of decoding failures to be able to distinguish the two
cases. To get a single decoding query about 264 queries have to be submitted. In teh worst case
each one of the 756839 bit positions in b has to be queried to distinguish the ones and the zeros in
the binary expansion. In total this may result in a number of decoding queries in a magnitude of
about 264 · 220 · D = 284 · D where D is the number of decoding errors required to distinguish the
two cases.
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Implementation

In our implementation we compare the number of decoding failures on a one-bit position of b with
the number of decoding failures on a zero-bit position. We found that the second case contains
about 20% more decoding failures than the first case. Note that the upper bound on decoding
failures is not just increased by the bit positions on the ones in 2xc. The subtraction of 2xc from
acG may hit a patch of zero’s 0 . . . 01 such that the subtraction of 1 of the left most bit flips all the
bits of the patch and introduce multiple errors. In fact, an attacker may choose values for c, d such
that the number of bits flipped is maximal to increase the chance of decoding failures.

4.3 Problem 2: A little closer to Ramstake

The second abstraction represents a problem where Eve has to compute the snotp honestly from the
given public component such that only the parameters c and d can be modoified to gain knowledge
about the secrets.

Problem 4.4 Learning Byte Error Positions from Decoding Failures Find random n-bit secrets
a, b ∈ Z/pZ with Hamming weight ω from q samples

(c, d) s.t. hw
(
snotpE.[0:lenc] ⊕ snotpA,[0:llenc ]

)
> t ,

where c, d ∈ Z/pZ are chosen freely by Eve with Hamming weight ω and the snotpE = c(aG + b)
is computed honestly.

4.3.1 Attack 3: Shifting Bytes

Setup

Within the framework of problem 2 Eve is restricted to use snotp’s that are computed from sparse
integers c, d of Hamming weight ω. As it may be difficult to find a c′, d′ such that the resulting
snotp differs on exactly one byte in the encoding block Eve can no longer inject errors into arbitrary
positions. Instead Eve can utilize the existing errors to gain knowledge. The main idea of the
attack follows Observation 4.5: querying encapsulations where the parameters c, d are shifted
by one byte to derive an encapsulation where both of the snotp’s are shifted by exactly one
byte. Given an initial pair (c, d) and the resulting encapsulation Eve can query the encapsulation
resulting from each possible shift, keep track of the output of the decapsulation oracle and deduce
information from the respective answers of the decapsulation oracle. For this purpose we introduce
the method ByteS hi f t(·, ·) which takes the initial values of c, d, computes rotational shifts, queries
the decapsulation oracle with the resulting snotpE and extracts information.

Observation 4.5 A rotational shift of the parameters c, d carries the rotational shift to the encapsu-
lator’s and decapsulator’s shared noisy secret: Let c′ = c28, d′ = d28. Then snotp′A = ac′G +ad′ =

28(acG + ad) and snotp′E = 28(acG + bc).

For the remaining part of this attack, consider the four following byte positions:
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|snotp

snotp[lenc] snotp[lenc−1] snotp[0]snotp[−1]

Encoding block

Figure 4.9 Representation of the rotational shift of the shared noisy secret, where the least sig-
nificant byte is moved out of the encoding block and the most significant byte into the encoding
block.

Byte Description
snotpE,[0] The least significant byte in the encoding block.
snotpE,[−1] The most significant byte in the snotp, next to byte [0]
snotpE,[lenc−1] The most significant byte in the encoding block.
snotpE,[lenc] The first byte outside the encoding block.

A rotational “right” shift, from the most significant byte towards the least significant byte, shifts the
bytes as:

snotpE,[0] → snotpE,[−1]

snotpE,[lenc] → snotpE,[lenc−1] .

The byte at position [0] is “moved” out of the encoding block, the byte at position [lenc] is “moved”
into the encoding block. Figure 4.9 shows a representational setup.

Moreover an encapsulation can be in one of the states:

• E≤t: the encapsulation contains ≤ t errors (OA → >)

• Et+1: the encapsulation contains ≥ t errors (OA → ⊥)

ByteShift

The ByteS hi f t(·, ·) procedure takes an initial pair c, d and extracts information about related, with
regard to rotational shifts, encapsulations. Information is gained whenever a pair encapsulations
that have a shifting distance of one switch between the state S ≤t and S ≥t. Let c(0) and d(0) denote
the initial values of c and d. Querying the resulting encapsulation yields either the state S ≤t or the
state S ≥t+1. Querying the next representation,

c(1) = c(0) · 28 d(1) = d(0) · 28 ,

yields another state. Figure 4.10 shows the transition of the states based on the change of state.
When querying all the rotational shifts Eve can gain information when distinguishing the two
events:

1. After a successful query a decapsulation error occurs, therefore the state switched from S ≤t

to state S ≥t+1. The encapsulation mapped to the new state must carry more errors than the
previous state, hence the rotational shift must have moved an error into the encoding block
and moved a non-error byte out of the encoding block.
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|S ≤t { S ≥t+1

|S ≥t+1 { S ≤t

error no − error

no − error error

Figure 4.10 Representation of the rotational shift of the shared noisy secret. When the state of the
encapsulation switches from decoding success to decoding failure, an error was moved into the
block and a non-error byte was moved out of the encoding block. A switch from decoding failure
to success indicates the opposite movement of bytes.

2. After a decapsulation failure the next encapsulation decodes correctly. The state switched
from the state S ≥t to the state S ≤t. Therefore the rotational shift must have moved an error
out of the encoding block, and moved a non-error byte into the encoding block.

In all other cases, the transition between two successful or failing queries, the movement of the
byte does not leak any information. In those cases Eve can not distinguish if the error occurred
at the beginning, at the end of the encoding block, or somewhere in between. This leads to a loss
of information, since the rotational shift does not uncover any information about certain bytes of
the snotp. Figure 4.11 depicts the communication between the decapsulation oracle and Eve and
marks the cycles that cause a loss of information.

The knowledge whether the shifted bytes contain error bytes or non-error bytes can be utilized as
follows:

• A non-error byte implies that the snotp’s match on the respective position, hence Eve learns:
snotpA,[i] = snotpE,[i]

• An error byte must be introduced by either the noise bc or the noise ad. The error positions
therefore mark the approximate positions of the term ad ± bc. Note that the position is only
approximate since

– Eve can only extract the byte position of the error: shifting the snotp’s by single bit
would result in untraceable behavior due to the change of codewords, i.e., a single faulty
codeword that contained an error, might be rotated such that the errors are now split
into two codewords.

– the addition of ad or bc onto acG might have caused carries and might therefore be
shifted by a few bits.

If Eve manages to extract all error bytes the resulting approximate positions of ad ± bc allow to
conduct an improved Slice’n’Dice attack by applying the attack to a lattice defined by acG + bc
and partitioning a and bc. While the term ad ± bc does not give away the positions of bc it is spares
enough to “overpartition” bc, i.e., give a correct partition of the binary expansion of ad ± bc and
let the wrong parts be mapped to 0 within the attack. The resulting complexity to find a correct
partition of a is O(2ω).
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Figure 4.11 High level overview of the communication of Eve with the decryption oracle. Both
oracles are the same, though have been separated for clarity reasons. The oracle returns either >
on successful decoding, or ⊥ on a decoding failure. The rectangles with rounded corners describe
Eves actions. The dashed red lines mark loops that cause the loss of information. Note that the
graph has no “exit” but terminates after a full rotation of the snotp.
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Complexity

A single round of the ByteShift procedure requires a single decapsulation query for each byte in the
snotp. This results in a complexity of O(n).

Implementation

We applied our implementation of the ByteS hi f t procedure to different random secret keys and
were able to extract less than 1000 error and non-error positions for each secret ket. Using this
approximation does not improve the Slice’n’Dice attack but actually worsens it: when applying
the lattice reduction to the term acG + bc one needs to partition the unknown values a and bc.
The Hamming weight of bc is approximately ω2 = 16384. To get a short representation of bc the
partitions can not be too big and require more parts than the partition of a. With less than 1000 error
positions there are too many unknown parts in bc and the number of parts that have to be guessed is
larger as if partitioning the secret b, hence the complexity of the “improved” attack is greater.
To improve on the attack we tried to distinguish the error positions introduced by ad and bc.
We can distinguish the positions by running multiple iterations of the ByteS hi f t procedure with
changed values for d, such that we extract information from ByteS hi f t(c, d), ByteS hi f t(c, d′),
ByteS hi f t(c, d′′), . . . where each value of d is uniformly random with the respective Hamming
weight and thus introduces different error positions with high probability. This results in the shared
noisy one-time-pads:

acG + ad acG + bc

acG + ad′ acG + bc

acG + ad′′ acG + bc

. . . .

The encapsulator’s snotp and therefore the error positions introduced by bc remain the same over
all iterations oft ByteS hi f t. The error positions introduced by ad are distinct with high probability.
Extracting the error positions and comparing pairs of (c, d), (c, d′) allows to identify some common
positions of the term bc since they share a common position over at least two iterations of ByteS hi f t.
Figure 4.12 gives a high level overview over the iterative approach. With a sufficiently large number
of iterations one might be able to find enough approximate bit positions of bc. Our implementation
was able to extract about 1600 positions with about 10 distinct values for d. Due to a limitation of
computational power we were not able to conduct a larger attack and it remains unclear if or how
many pairs are required to conduct a successful attack.

4.4 Problem 3: Attacking Ramstake

The last approach reflects the challenge of learning from a decapsulation oracle while acting as in
the CCA secure variant of Ramstake as described in Problem 4.6. The previous attacks solving
Problem 4.2 and Problem 4.3 can not be applied due to derandomization of the secret parameters
and reencryption with the decoded seed:

1. Attack 1 and Attack 2: modifying the snotp allowed to extract information based on decod-
ing failures. Applying the approach on the CCA secure variant of Ramstake triggers the
reencryption such that every decapsulation will fail.
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Figure 4.12 Overview of the use of two ByteS hi f t procedures to distinguish error positions and
compute statistics.

2. Attack 3: finding pairs of related (c, d) such that the resulting snotp’s leak information on
decoding failures may be difficult. The derandomization of the CCA secure Ramstake would
require to either search for a pair of seeds resulting is the required pair of parameters, or
to invert the pseudo random sampling function, which is supposed to be hard. It may be
sufficient to find any relation R(·) such that c′ = R(c) and d′ = R(d), however, the output of
the pseudo random sampling function does not generate such pairs with high probability.

In the following we describe a statistical approach aiming to extract knowledge about the secrets.
We identify encountered problems and present our results based on a set of graphs. In the second
part we argue that the code contained in the NIST submission package of Ramstake is prone to
timing attacks. We explain how to exploit the timing attack to conduct the attacks on WeakRamstake
on the code of the submission package.

Problem 4.6 Learning Distributions from Decoding Failures: Find random n-bit secrets a, b ∈
Z/pZ with Hamming weight ω from q samples

(c, d) s.t. hw
(
snotpE.[0:lenc] ⊕ snotpA,[0:llenc ]

)
> t ,

where c, d ∈ Z/pZ with Hamming weight ω are derived deterministically from a seed by Eve and
the snotpE is computed honestly.

4.4.1 Attack 4: A statistical approach

We analyze Ramstake based on a large set of decoding failures, each with a fresh random pair of
parameters c, d. For each decoding failure we compute candidate positions of the corresponding
secret values a and b. While the parameters in the encapsulation change in every iteration the values
of the secrets are fixed with the public key and remain the same, hence the candidate positions of
the secrets are merged into one big pool.

Approach

Consider the encoding block of 255 bytes of the snotp’s. In average the bytes carry 73 errors, in
the case of a decoding failure at least 112 of 255, about 44% of the used bytes, of the snotp’s carry
a one of the binary expansion of ad or bc.



62 4. Cryptanalysis with Decoding Failures

Oracle

Choose random seed Compute statistics

(> with ≤ t errors )

(query)
(⊥ with ≥ t + 1 errors)

ε

Initial query

Figure 4.13 Overview of the communication of Eve with the decryption oracle for the statistical
approach. Note that the graph has no “exit” node since Eve can submit an “arbitrary” number of
queries.

Let sk be a bit position in the encoding block and let ai, d j, bl, cm be positions of ones in the binary
expansion of a, b, c and d. We consider the composition of the noise term bc:

bc =
∑

l

2bl
∑

m

2cm = 2b12c1 + 2b12c2 + . . . + 2bω2cω .

The addition of bc onto the term acG in the snotp may cause the error positions to be shifted by a
few bits, however, we ignore that fact for the moment and assume that the following approach holds
approximately. Since the multiplication of a power of two modulo a Mersenne prime resembles a
rotational shift the result may differ by a few bit positions, an inaccuracy that can be ignored when
translating the positions into a partition for the Slice’n’Dice attack.

About half of the error positions in the encoding block relate to a pair bl, cm such that

2sk = 2bl2cm

Eve does not know which error position in the encoding block relates to ad or bc, neither which of
the bytes is an actual error position. For each error position k ∈ {1, 2, . . . , 255} and some positions
j,m ∈ {1, 2, . . . , ω} of a one in the binary expansion of c, d we have:

∃k s.t.

∃i, j : 2sk = 2ai2d j

∃l,m : 2sk = 2bl2cm
. (4.5)

In the case of a decoding failure at least 112 out of the 256 possible values for j and m relate to
an error position. Eve does not know which of those positions match. Computing all possible
candidates with

2ai = 22k (2d j)−1, j ∈ {1, 2, . . . , ω}, k ∈ {1, 2, . . . , 255}

2bl = 22k (2cm)−1,m ∈ {1, 2, . . . , ω}, k ∈ {1, 2, . . . , 255} ,

gives 32640 candidate positions of ones for each a and b. Eve may try to find decoding failures
until the candidate positions omit dense points of attraction around the actual positions of the ones
in a and b. Using theses approximate positions a Slice’n’Dice attack can be conducted.
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for k = 0 ... 255 do
for cm in bin(c) do

list.add(bi ← k · (n − c j))
end

end

Figure 4.14 Computation of candidate positions from the unknown error positions in the encoding
block and the possible related bit in the known parameter c (respectively d).

... |
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snotpE ⊕ snotpA

bc

c

b

encoding block

Figure 4.15 The figure shows the mapping between the error positions in the encoding block and
the positions of the secret b. Eve does not know which position carries an error and has to pick a
position to pair with a bit position of the known parameter c.

Complexity

The complexity of the attack is based on the number of decoding errors that are collected to
compute candidate positions. The more decoding queries are collected, the more information may
be gathered in a statistic model. Therefore a magnitude of about 264 queries is required.

Implementation

Our implementation of the attack statistical approach collected 2000 decoding failures in total and
computed the candidate positions for each decoding failure. The candidate positions are spread
all over the range of the binary expansion. Using GnuPlot we compute the density function of the
positions and try to relate them to the positions of the ones in the binary expansion of the secrets.
Figure 4.16 shows a histogram of the distribution of ones of the secrets a and b.

Figure 4.17 shows the resulting density functions of the candidate positions for each secret a and b
with a different number of decoding failures, starting with 100 decoding failures at the top, 500
decoding failures in the middle and 2000 decoding failures at the bottom. Figure 4.18 shows the
resulting density functions for those candidate positions that have the highest counts.

We expected that the density function would be similar to the distribution of the secrets, or have
negative spikes on the patches of zero’s. Directly comparing density of the candidate positions and
the secrets does not seem to give any relation. Increasing the number of decoding failures result in
a spike of candidate positions in the lower significant bits of the binary expansion. Unfortunately
we were unable to explain this behavior.
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(a) secret a (b) secret b
Figure 4.16 Distribution of the decapsulator’s secret sparse integers.

Reducing the candidate positions to those positions with the largest counts introduces more spikes.
However, we were not able to match the density functions nor produce a reliable prediction of
patches of zero’s in the binary expansion of a or b. We assume that the inaccuracy introduced by
taking into consideration all possible bytes of the encoding block and all possible related bits of c
and d hides all valuable information.

4.4.2 Attack 5: A timing attack

In this section we present a timing attack on the code of Ramstake submitted to the NIST post-
quantum project. The timing attack allows to conduct all attacks applicable to WeakRamstake
to the CCA secure variant by distinguishing between decoding failures and rejections based on a
failed reencryption.

Approach

The implementation of the Ramstake KEM that was submitted to the NIST competition uses six
distinct parts of the encapsulator’s snotp to encrypt the encoded seed. The hash of the unencoded
seed allows the decapsulator to check whether the decoding was successful.
During the decapsulation all codewords are decrypted by applying the decapsulators snotp. Then
iteratively, each codeword is first decoded and the hash of the resulting seed is compared to the
hash computed by the encapsulator. If the hashes match, the decapsulator runs the encapsulation
algorithm with the public key and the decoded seed and compares the output. If the hashes do
not match the next codeword is considered until either a codeword is decoded successfully or all
codewords failed to decode in which case the ciphertext is rejected. The iterative process leads to a
timing difference based on the number of codewords that are decoded.

An adversary, Eve, may construct a malicious snotp to exploit this behavior: consider the six
codewords. The first codeword contains a malicious block, for example artificial errors as in
Attack 4.2.1, that allows to extract information about the secrets. The second to fifth codewords
are filled with random bit value such that they fail with high probability during the decoding
process. The sixth codeword contains the respective part of the honestly computed shared noisy
one-time-pad XORed with the encoded seed. The construction is shown in Figure 4.19. Querying
the decapsulation oracle the encapsulator can distinguish between

• a “quick” rejection, if and only if the malicious codeword decodes successful;
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Figure 4.17 Probability density function of candidates positions of secret vectors a and b. The top
image captures the resulting function for 100 decoding failures, the second for 500 and the bottom
graph for 2000 decoding failures.
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Figure 4.18 Probability density function of candidate positions for 2000 decoding failures where
only the most frequently hit positions are plotted. The ranking has been chosen based on “large”
steps between the number of candidate positions with the same number of hits.
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Figure 4.19 Timing attack

• a “slow” rejection, if the malicious codewords fails to decode and all six codewords have to
be decoded before the rejection is communicated.

Note that the reencryption may also fail if the malicious codeword is decoded correctly, since the
output of the reencryption does not fit the communicated ciphertext.

The presented approach allows to lift all attacks on WeakRamstake onto the CCA secure variant:

• Attack 1: artificial error can be introduced into the first codeword until a “slow” rejection
occurs and bytes can be brute-forced until a “quick” rejection occurs.

• Attack 2: the first codeword can be computed with the modified public component leading to
a higher number of “slow” rejections.

• Attack 3: the transitions of “slow” and “quick” response translate directly to decoding success
or failure and give information about the approximate positions of ad ± bc.

Complexity

The complexity of the attacks exploiting the timing analysis is comparable to the respective attacks
on WeakRamstake. Prior to running the attacks an encapsulator has to query the decapsulation
oracle with two sets of malicious encodings: one set, where the first codeword decodes correctly and
one set where the first codeword (and the subsequent) do not decode successfully. Environmental
parameters such as network latency might influence the number of queries required to positively
identify the two cases.

Implementation

We implemented a proof of concept distinguisher which is able to distinguish if the first codeword
was decoded correctly or not. The implementation generates a set malicious encapsulations and
generates a timing table based on the response time of the decapsulation function. Given this table
our implementation can then, on measuring the timing delay for an arbitrary oracle call, distinguish
if the first codeword decoded successfully or not. On our single-machine proof of concept we were
able to distinguish the long and short timings with less than ten samples for each case and totaling
in less than 10000 initial decapsulation queries. It follows that all of the previous attacks can be
used on Ramstake. We note that this does not weaken the underlying scheme but is only an issue
with the respective code. An easy countermeasure is a constant-time implementation.
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5. Quantum Attack

In this chapter we present an explicit description of the Groverized Slice’n’Dice attack on Ramstake
as quantum circuit. Aggarwal et al. and by Szepieniec suggested in [1] and [36] that the attack can
be improved by implementing a quantum version of the LLL algorithm as an oracle subroutine in
the Grover algorithm. The Groverization promises a quadratic speedup over the classical attack. We
provide an analysis of the quantum resources and the overhead of computing the LLL quantumly
and provide a more concise security estimate for the attack. Along the way we provide the first, to
the best of our knowledge, in-depth description of the LLL algorithm as a quantum circuit.

Following the description of Grover’s algorithm in Section 2.2.3 and the description of the
Slice’n’Dice attack in Section 3.4.2 we define the intersection of the classical and quantum search
spaces. The aim of the Slice’n’Dice attack is to find a “correct” partition of the secrets a and b;
in the quantum setting the partitions translate to the search space. Instead of sampling random
partitions as in the classical case the quantum algorithm runs on a superposition of partitions.
In each iteration of the Grover algorithm the quantum oracle, including the computation of the
quantum LLL, identifies the correct partition and flips the oracle qubit accordingly.

In the beginning of the chapter we describe the basic setup of the attack in more detail. Then we
build on the quantum arithmetic in Section 2.2.4 and specify notions required to build quantum
algorithms. For every non-trivial subroutine or operation we give an explicit quantum circuit. After
putting together all the building blocks achieving a complete description of the attack we present
the algorithm on qubit gate level. The circuit implementation is based on the classical algorithm by
Joux given in Section 2.3. We will frequently refer to the according lines in the pseudocode. At the
end of the chapter we analyze the complexity of the quantum variant and compare it to the classical
attack.

5.1 Quantum Slice’n’Dice
The classical Slice’n’Dice attack repeats the following sequence:

1. Pick a random partition for a and b

2. Create the kernel matrix of the constructed lattice based on the starting positions of the parts
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3. Run the LLL algorithm

4. Check the reduced basis and repeat the procedure until the reduced basis contains a represen-
tation of sparse integers (the secrets)

Each basis vector in the kernel matrix represents a single part with a fixed starting position of the
binary expansion of either a or b. When running the LLL algorithm on a “correct” partition the
resulting reduced basis will contain the actual secret values of subranges of the binary expansion of
a and b, shifted accordingly.

In the quantum case however, creating a superposition of starting positions of parts is difficult: if
the superposition incorporates “all possible” starting positions, it would have to represent the full
range of n bits. Then the parts of the secrets are not shifted anymore and the representation in the
lattice is not short anymore. Therefore the LLL algorithm can not find the sparse solution anymore.
In the quantum case the aim is to find the starting positions of a “correct” partition rather than the
secrets directly. From this observation the quantum Slice’n’Dice follows:

1. Start with quantum registers representing the partitions.

2. Run Grover’s algorithm with the quantum LLL incorporated into an oracle.

3. Run until the “correct” partition is measured with high probability.

4. Measure to receive the starting positions of a “correct” partition.

5. Run the classical Slice’n’Dice (in polynomial time) on the partition to get the secrets.

The oracle for the Grover iteration will be denoted as OQLLL-gate in the following circuits:

OQLLL

We repeat the basic notation from Section 3.4.2: the constructed lattice is defined as in Equation
(5.1).

La,b,H =

(x1, x2, ..., xk, y1, y2, ..., yl)|
k∑
i

2ai xiGH−1 +

l∑
j

2b jy jH−1 − z ≡ 0 mod p

 (5.1)

The oracle takes as input a representation of the starting positions as a kernel matrix of the lattice.
Let m

2 be the number of parts for each secret and r = m = k + l is the rank of the constructed lattice.
Let n̂ be the number of qubits required to represent all possible start positions of partitions. One
prepares r quantum registers |P j〉, j ∈ {0, 1, . . . , r − 1} each consisting of n̂ qubits. These registers
represent the input of the Grover algorithm and will be used in every iteration to build the kernel
matrix as input for the quantum LLL subroutine. The Circuit 5.1 gives a high level representation
of the Groverized Slice’n’Dice attack, omitting work space qubits used during the oracle call.
Measuring the partition registers gives the partitions to run the classical attack. The states of the
other qubits collapse to some unknown state and can be discarded. The circuit of the Grover oracle
OQLLL is specified in more detail in the remaining chapter.
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Figure 5.1 Groverized Slice’n’Dice attack omitting large amounts of work space qubits. The first
two registers symbolize the partitions, the third register carries the kernel matrix, the last register
describes the oracle qubit. After measurement of the partition registers the remaining qubits can be
discarded.

Kernel Matrix

The kernel matrix B is a square matrix of size (r + 1) × (r + 1) and is initially prepared as
described in Section 3.4.2 in Equation (5.3). In the quantum Slice’n’Dice attack the kernel matrix
is reconstructed at the beginning of every iteration of the Grover algorithm and uncomputed at the
end of every iteration such that the quantum memory can be reused. Therefore the kernel matrix is
assembled into a set of registers which are assumed to be in the state |0〉. First, the diagonal line of
|1〉’s is added using a constant addition circuit. Then the last column is constructed by adding the
current state of the partition registers onto the respective register position in the basis vectors. The
last column is computed by multiplying each superposition of partitions Pi,x, x ∈ {a, b} with the
public element G or the inverse of the public component H−1. One computes

1
√

n

n−1∑
i=0

|i〉
·G·H−1 mod p
−−−−−−−−−−−−→

1
√

n

n−1∑
i=0

|i ·G · H−1 mod p〉 ,

for the partitions Pi,a and

1
√

n

n−1∑
i=0

|i〉
·H−1 mod p
−−−−−−−−−−→

1
√

n

n−1∑
i=0

|i · H−1 mod p〉 , (5.2)

for the partitions Pi,b to get the values in the last column of the kernel matrix. This can be derived
by classically controlled multiplication of the superposition of partitions with the values G and
H−1 modulo p in the canonical way. The modular multiplication can be achieved by exchanging
the addition and doubling subroutines in the multiplication circuit with the modular addition
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and doubling found in Appendix A. The last two rows of the matrix are the result of classically
controlled addition of p. The resulting matrix at the beginning of each Grover iteration is:

B =



|1〉 |0〉 . . . |0〉 |0〉 . . . |0〉 |0〉 |P1,aGH−1〉

|0〉 |1〉 . . . |0〉 |0〉 . . . |0〉 |0〉 |P2,aGH−1〉
...

...
. . . |0〉 |0〉

. . .
...

...
...

|0〉 |0〉 . . . |1〉 |0〉 . . . |0〉 |0〉 |Pm/2,aGH−1〉

|0〉 |0〉 . . . |0〉 |1〉 . . . |0〉 |0〉 |P1,bH−1〉
...

...
. . . |0〉 |0〉

. . .
...

...
...

|0〉 |0〉 . . . |0〉 |0〉 . . . |1〉 |0〉 |Pm/2,bH−1〉

|0〉 |0〉 . . . |0〉 |0〉 . . . |0〉 |p2〉 |H〉
|0〉 |0〉 . . . |0〉 |0〉 . . . |0〉 |0〉 |p〉



. (5.3)

We do not give a circuit for the construction of the matrix since all operations, except for the
addition of the partitions, are controlled by classical bits only. The uncomputation of the registers
containing the matrix can be achieved using classically controlled multiplication with H and with
the invers of G as well as the subtraction of the states in the partition-registers, the one’s and p. In
the quantum circuits the construction of the matrix is represented as:

Kernel matrix

5.2 Primitives

Signed Integers: two’s complement

In Section 2.2.4 we described the basic arithmetic quantum operations on unsigned integers. The
kernel matrix contains only positive integers, since it is calculated modulo p. The reduced basis
requires negative numbers and the Gram-matrix as well as some internal work registers of the LLL
procedure require positive and negative fractions. From a quantum circuit point of view (and of
the quantum-simulators known to us) all numbers are represented in quantum registers, rather than
types of numbers, such as integers or floats. To overcome the hurdle of negative integers we will
make use of the two’s complement representation: a register of n bits allows the representation
of the integers from 0 to 2n − 1 bit unsigned integers. In order to represent signed integers we
add another sign bit such that we can represent the numbers from −2n . . . 0 . . . 2n − 1. The two’s
complement representation for a n-bit number x we apply the mapping

x = (xn−1, xn−2, . . . , x0) 7→

(0, xn−1, xn−2, . . . , x0), s.t. 0 ≤ x ≤ 2n−1

(1, xn−1, xn−2, . . . , x0) = 2n − x, s.t. − 2n−1 ≤ x < 0 .
(5.4)
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|xs〉
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|x1〉
+

1

|xs〉

|x2〉

|x1〉

≡ S

Figure 5.2 The circuit converts a quantum state of a two’s complement number to a state of an
unsigned number by flipping all bits condition on the sign bit and adding one.

Example 5.1 The two’s complement representation of a 2-bit number with a sign bit in front of the
representative term:
Value Binary Expansion Representation

0 000 0
1 001 1
2 010 2
3 011 3
4 100 -4
5 101 -3
6 110 -2
7 111 -1

The negation of any number can be derived by inverting all bits and adding 1 to the result. Moreover
the two’s complement representation allows for a sequential ordering, such that the next larger (or
smaller) number can be reached by adding (or subtracting) 1; i.e., (−3, 101) + (1, 001) = (−2, 110).
The sequential property has the effect that the “normal” addition and subtraction circuits from
Section 2.2.4 remain functional with the two’s complement representation.

The multiplication and division circuits are functional on unsigned integers and do not work out of
the box when considering negative numbers. In order to use the same circuits we translate the signed
numbers to unsigned numbers, feed them into the circuits, and afterwards reverse the translation.
Circuit 5.2 depicts the subroutine S to switch between the signed and unsigned representation.
For a n-bit number the procedure requires n gates to flip the qubits and another O(n) gates (n2 for
the naive implementation) for the addition. The circuit has a gate depth of log n (n for the naive
implementation).

Following the operation with unsigned integers the sign of the result has to be computed based on
the sign of the inputs. If the result of the computation is negative, the result has to be translated
into the negative counterpart in two’s complement representation. Circuit 5.3 computes the result
using a single work qubit which is set to one if and only if exactly one of the inputs is negative. The
circuit uses 2n − 2 + O(n) (+n2 for naive) gates and has a depth of (2n − 1) + log n (+n for naive)
operations.

The Circuits 5.4 and 5.5 show the unsigned multiplication and division using the subroutine S
to switch between the representations and the subroutine SR to compute the sign of the result.
The additional process of translating adds additional gates to the circuit and increases the depth,
however, both quantities vanish in the asymptotic notation.
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Figure 5.3 The circuit converts the result of a binary operation into the signed state in two’s
complements representation.
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Figure 5.4 Circuit for singed quantum multiplication by switching between signed and unsigned
representation of numbers.
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Figure 5.5 Circuit for singed quantum division by switching between signed and unsigned repre-
sentation of numbers.
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Fractions

Floating point numbers allow classical algorithm to compute approximations of rational expressions
by “forgetting” some information. For many applications the rounding error and thus the loss of
information is sufficiently small such that the result does not change. In quantum computation
losing information is not an option as it disturbs the quantum state and results in an unpredictable
outcome. When computing a floating point number, for example as the result of a division, the
number if calculated to the required approximation; the remainder is discarded. Quantum circuits
are reversible, therefore the concept of discarding a remainder can not be applied when working
with superpositions. In fact the information has to be carried all the way until the result is measured.
The use of fractions in quantum computation is illusive. Instead of storing a register for the
“fraction” and a register for the remainder and denominator one can also store the number as a
rational. However, for the sake of “normal” calculations it may be more intuitive to keep track of a
fraction and store the ancillary remainder in some workspace qubits.

To be able to work with normal integers and decimal arithmetic we implement our circuits with
fixed point arithmetic, such that a n bit number actually consists of an n-bit integer component and
an n-bit fractional component. In [17] Häner et al. argue that the use of floating-point numbers
significantly increases the range of digits that can be represented with a certain number of (qu)bits.
The arithmetic operations for floating point numbers differ slightly from fixed-point arithmetic
and seem to be more expensive due to the translation process. Since many of the operations in
the (quantum) LLL algorithm require only integers we implement the circuits with fixed-point
arithmetic, allowing us to use the same arithmetic circuits for all types of numbers. Our analysis of
the complexity of the quantum LLL is also based on the assumption of fixed-point arithmetic and
therefore the number of qubits may be improved for a trade-off in the number of gates or of the
circuit depth.

We denote the fraction of a number, variable or register with a dot: |x. f 〉 where |x〉 denotes the
integer part and |. f 〉 denotes the fraction. The arithmetic operations remain the same, with the only
difference that the length of the input and output registers is doubled.

Size of registers and overflows

The main registers are:

• |Pi〉 j: an integer register representing part i of secret j of length n̂.

• |M〉: the Gram-matrix. A single register |m. fi j〉 ∈ |M〉 is represented by an integer and
a fractional part. In [19] the size is bounded by the squared determinants of the lattice.
However, as the registers are reduced by p every now and then a tighter bound might be
applied here.

• |M̂〉k,Workspace: registers containing the updated Gram-matrix from every iteration of the
quantum LLL algorithm.

• |L〉: a register containing the current length of the basis vectors as fraction. The (qu)bit-length
of a vector is increased if and only if the Lovasz condition fails and the ordering of the vectors
in the basis is changed.

• |L̂〉k,Workspace: registers containing the updated length from every iteration of the quantum
LLL algorithm.
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The size of the numbers appearing during reduction steps or in the Gram-Schmidt matrix does not
have a clear bound. In [28, 31] it is shown that the numbers can be represented using a polynomial
number of bits and the size of the numbers can further be bounded by a multiple of the value D
defined in Paragraph 2.15. For the implementation of the quantum LLL algorithm we will assume
that the incorporated registers are sufficiently large to avoid any kind of overflows. Therefore the
arithmetic operations also do not contain any “extra” carry qubits.

Loops

In classical computation loops allow to iterate a range of values that are determined during runtime,
i.e., where the minimal and the maximal value of the loop counter are conditioned on a variable.
In the quantum setting, if the range is conditioned on a superposition, the exact range of the loop
can not be determined during runtime since a measurement of the maximal value may disturb
the superpositional states. To ensure that the function evaluated in the loop is applied sufficiently
often, but not too often, the execution of the loop content has to be controlled by a qubit. While
looping over the worst-case number of possible iteration the control bit ensures that the function is
applied while the counter is in the “correct” range. By means of an example, consider the classical
loop in Algorithm 5.1 that iterates the subrange x . . . 0. If the value of x describes a variety of
superpositions in the range from 0 . . . 2|x| as in Algorithm 5.2 it is not clear how often the loop
has to be iterated. Running the loop the maximal number of iterations, 2|x| and conditioning the
execution of the loop content on a comparison with the required range allows to apply the content
if and only if the respective state is in the target range. Note that in this trivial example the quantum
loop may require exponentially more time than the classical loop. The runtime of this algorithm
could be improved given a bound on the maximal value of x.

Algorithm 5.1: Classical Loop

1 x← some value
2 for i← x to 0 do
3 DoS omething
4 end

Algorithm 5.2: Quantum Loop

1 H⊗|x||x〉
2 |x〉 ← some inter f erence
3 for i← 2|x| to 0 do
4 |cntl〉 ← |x〉 ≥ i ≥ 0
5 if cntl then
6 Do Something
7 end
8 end

Furthermore, we distinguish between loops with a fixed decrement or increment of the loop counter
in every iteration, and those where the counter is based on a branching operation within the loop.
In the first case the number of iterations is finite and the quantum translation can use the control bit
suggested above. The control qubit can be uncomputed at the end of the loop before incrementing or
decrementing the counter. In the second case the loop may be infinite and a bound on the maximum
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|0〉ctrl

ctr < max

Do Loop

(ctr < max)−1
+1 −bound |0〉ctr

|0〉ctrl

Repeat bound times

Figure 5.6 Loop operations on superpositions need to be controlled by a qubit determining if the
conditions have been fulfilled or not to avoid too many or too few applied transformations.

number of iterations is required. It may be the case that the control bit can not be uncomputed
based on the counter, since this was incremented or decremented in a branch of the loop, hence the
uncomputation of the loop control qubit has to be conditioned on the content of branching and the
state of the resulting qubits. Since quantum circuits are reversible in general, there exists some way
to uncompute the control bit, however, it may require additional work to uncompute the counter or
control bit.

Algorithm 5.3: Variable Loop

1 while i ≤ k do
2 if S omething then
3 i← i + 1
4 else
5 i← i − 1
6 end
7 end

The implementation of the loop control differs for every loop and is described in more detail on
every occasion. Circuit 5.6 shows a high level overview of a loop control considering a loop from
0 . . . < max. The counter qubit |·〉ctr is incremented in iteration. The transformations of the loop are
applied if and only if the counter is less than the maximum value max. At the end of the loop the
ctr qubit has value bound and thus can be reset to the known state |0〉 by subtraction.

Algorithm 5.4: Fixed Loop

1 for i← 0 to k do
2 DoS omething
3 end

Supportive functions

The vector inner product and the squared norm of basis vectors are computed frequently throughout
the LLL algorithm. In the Appendix A we give the explicit circuit for the quantum vector inner
product and the squared norm which will be denoted as (·|·) in the remaining chapter.
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~R± : |a〉|b〉|0〉|c〉 7→ |a〉|b〉|0〉|c ± ab〉 ,

~R±

Figure 5.7 Supportive functions to multiply a scalar with a vector and add or subtract a vector from
the result.

R± : |a〉|~x〉|0〉|~y〉 7→ |a〉|~x〉|0〉|~y ± a~x〉 ,

R±

Figure 5.8 Supportive functions to multiply two numbers and add or subtract a number from the
result.

Additionally we require a subroutine denoting a vector multiplication followed by a vector addition
or subtraction. The register |0〉 functions as a workspace for the multiplication and is uncomputed.
This operation requires r ·O(2 ·mult + add) gates. The depth is a trade-of of ancillary registers and
circuit depth. The minimal depth is 2 O(mult) + O(add) using r registers and r · (2mult + add) gates
using a single ancillary register. The subroutine function and gate symbol is shown in Figure 5.7.
Exchanging the vector inner product for a scalar multiplication gives a circuit that represents the
multiplication of a scalar with a vector followed by a vector addition or subtraction as in Figure 5.8.

5.3 Quantum LLL Oracle

Oracle

The oracle subroutine is similar to running a single round of the classical Slice’n’Dice attack with a
random partition: on input of the kernel matrix into the quantum LLL algorithm the output contains
a superposition of reduced bases. The Grover oracle flips the phase of the oracle qubit conditioned
on the partition resulting in a short vector in this reduced basis. In order to determine which
partition contains the short solution, the oracle computes the Hamming weight of the resulting
bases and flips the oracle qubit phase if and only if the Hamming weight of a basis vector matches
the Hamming weight ω of the secrets. Following the assumption that there exists only a single
short solution vector, the oracle phase of the qubit is flipped only a single time. The Circuit 5.9
gives an overview of the sequence as a quantum circuit. Circuit 5.10 counts the Hamming weight
by performing a controlled constant addition on a work qubit. The addition is controlled by each
qubit in the respective basis vector of the superposition of bases.

5.3.1 QLLL

The quantum LLL algorithm is a direct but reversible replicate of the classical variant. The
reversibility of the procedure requires to keep track of the change of the basis vectors. The
algorithm is built-up from different components representing small steps:

• Quantum Gram Schmidt Orthogonalization

• Computation of the Lovasz condition

• Loop control
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Figure 5.9 The Grover oracle for the Slice’n’Dice attack calls the qauntum LLL algorithm as
a subroutine to compute the superposition of reduced bases. After flipping the oracle qubit
conditioned on the Hamming weight of the reduced bases the computations in the quantum LLL
algorithm need to be reversed and all work space qubits have to be uncomputed.
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Figure 5.10 The circuit computes the Hamming weight, compares the result to the target Hamming
weight of the secrets and flips the oracle qubit accordingly.
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Figure 5.11 Complete quantum LLL omitting workspace registers
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Figure 5.12 Runtime analysis of the quantum GSO

• An iteration of the loop: QLLLround split further into subcomponents

• Uncomputation of the loop counter

Circuit 5.11 shows the complete quantum LLL algorithm.

Quantum Gram Schmidt Orthogonalization

The quantum Gram-Schmidt orthogonalization (GSO) works on a “copy” of the basis vector matrix
M and computes the Gram-matrix as well as a set of (close to) orthogonal basis vectors. The
Gram-matrix is computed into a new qubit register. The input matrix of B is modified to contain
the orthogonal basis set. Circuit 5.13 shows the first round of the GSO, projecting vector bi into the
sublattice spanned by vector b j. The generalization of this scheme to the full GSO includes the
iterative projection onto the sublattice spanned by j = 1 . . . i − 1 and hence the repetition of this
circuit for each j, where bi remains the “same wire”. The loop has a fixed length, the number of
vectors in the basis, thus can be modeled with a hardwired number of iterations. Table 5.12 gives a
detailed overview of the complexity of the required operations. In total the depth of the circuit is
O(r3 · n̂ log n̂) with O(r3 · n̂2) gates.

Quantum VectorReduction

The reduction subroutine reduces the length of a vector bk by an integer multiple of a vector
b j and updates the Gram-matrix accordingly. To determine the integer multiple one needs to
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Figure 5.13 Scheme for a single projection of a basis vector bi onto a sublattice generated by b j.
To generalize this for the complete GSO the circuit has to be repeated for each subsequent basis
vector. In each iteration i the number of basis vectors 1 . . . j to compute the projection increases,
such that mi, j has to be computed for each vector and bi has to be manipulated accordingly.
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Figure 5.14 Rounding function; where m.1 is the msb of the fraction. m. f has to rounded up, iff
m.1 is 1. Depending on negative or positive m. f we have to add or subtract 1, where mn is the sign

bit of m. f . We have:
ms = 1 ∧ m.1 = 1⇔ dmc = bmc − 1
ms = 0 ∧ m.1 = 1⇔ dmc = bmc + 1

m.1 = 0⇔ dmc = bmc

round the value mk,k−1 to the closest integer dmk,k−1c. Then the vector bi is reduced by dmk,k−1cb j

and all relevant entries mk−1,l of the Gram-matrix are updated. First we consider the function
|m〉|0〉 7→ |m〉|dmc〉. For negative numbers rounding down is equivalent to removing the fraction part
and subtracting one from the integer part. For positive numbers one needs to remove the fraction.
Rounding up equals the integer part of a negative number, and the integer part plus one of a positive
number. The number is rounded up if and only if the first (qu)bit of the fraction is 1. Therefore
the rounding can be controlled by the first qubit of the fraction. The addition or subtraction can be
conditioned on the sign bit of the number mk,k−1. Circuit 5.14 displays the rounding of a number.

Circuit 5.15 displays the complete reduction function where the “Loop” iterates over different
mk−1,ω. The circuit shows only a single |·〉 for all implicit values of mk−1,ω and is controlled by the
most significant fraction qubit of mk,k−1 such that the transformations are applied if and only if
mk,k−1 >

1
2 .

The loop is conditioned on the superposition of the value k − 1 (in the pseudocode j = k − 1). The
value of k and hence the number of iterations of the loop are bounded by the value r. The loop is
controlled by a qubit which determines whether the counter is less or equal to k − 2.
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Figure 5.15 Quantum circuit of the QVectorReduction function.

5.3.2 QLLL Line by Line

After computing the QGSO and the length of the basis vectors the algorithm consists of an iterative
process which considers a sublattice of dimension two in every iteration. The Lovasz condition is
checked in every iteration comparing the length and the ordering of the two respective basis vectors.
If the condition is fulfilled the Gram-matrix is updates accordingly using the QVectorReduction in
a loop. Else the positions of the vectors are exchanged and the gram matrix and lengths updated
accordingly in the Exchange subroutine.
Circuit 5.16 shows a single iteration of the loop. First the current vector is reduced, then the Lovasz
condition decides whether the basis is in correct ordering or an exchange has to be done. The
Lovasz qubit is 1 if and only if the ordering is correct and the target vector is reduced by an integer
multiple of all lesser vectors. If the Lovasz qubit is 0, the two currently considered basis vectors
have to be exchanged. The loop counter k is updated accordingly, either by incrementing or by
setting to max(2, k − 1) as shown in Circuit 5.19. Circuit 5.17 computes the Lovasz bit and is the
direct translation of the classical comparison.

Circuit 5.18 shows the branch that is applied if the Lovasz condition does not hold. If the Lovasz
qubit is zero the ordering of the basis is flawed and the currently considered vectors have to be
exchanged. The values L̂k−1, L̂k, m̂k,k−1 are computed as in the Algorithm 2.26. The corresponding
quantum circuits are given in the appendix in Paragraphs A.5, A.6 and A.7 and are merely a direct
translation of the classical counterpart. The respective values are stored in new registers. The old
value of mk,k−1 is kept for reversibility. The quantum registers of Lk and Lk−1 could be uncomputed.
However, to ensure reversibility one would have to keep the remainder of the division operations.
Instead of storing the remainder we decided to uncompute the remainder and store the values of L
for each iteration.
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Figure 5.16 Single loop iteration of the quantum LLL algorithm. B,M, L contain the basis matrix,
the Gram-matrix and the Length of the respective basis vectors. The qubit Li which contains the
outcome of the Lovasz condition is stored after every iteration.
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Figure 5.17 Computation of the Lovasz condition in iteration i. The Lovasz qubit determining
the outcome is not uncomputed, but instead kept for the process of reversing the quantum LLL
algorithm.
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Figure 5.18 The circuit represents the exchange of basis vectors and the update of the new lengths
and entries of the Gram-matrix. The loops need to be iterated for different input registers |x, y〉 as in
the respective pseudo code in Algorithm 2.26.
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Figure 5.19 Conditioned decrementing of the counter in the QLLL algorithm where the counter is
decremented if and only if the value is larger than 2.
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Uncomputation of QLLL

In each iteration of the loop the result of the updated values M̂i of the matrix M is saved into
a new register. Furthermore the values of the updates lengths L are saved into new registers L̂i.
Additionally the Lovasz bit is saved for every iteration.
Given the values of the Gram-matrix for every iteration and the length after every reduction all the
quantum circuits can be run backwards, conditioned on the corresponding Lovasz bit. Therefore all
the workspace registers can be uncomputed and returned to states representing the known value
|0〉. The QGSO can be uncomputed in a similar manner returning the Gram-matrix to a state of an
“empty” matrix where all the registers are in state |0〉. The kernel matrix remains and is uncomputed
controlled by classical bits and the partition registers.

5.4 Complexity
First, we assess the circuit complexity of the quantum LLL algorithm. Building on this result we
estimate the required resources to mount the quantum Slice’n’Dice attack.

QLLL

In Section 2.3 we have seen that the number of loop iterations in the LLL algorithm can be bound
by the initial lattice determinant. The overall runtime is heavily influenced by the size of the
numbers computed in the Gram-matrix and the intermediate results such as fractions of rational
numbers. Different implementations and estimations based on the underlying data types have been
published in the past, such as the theoretical result of Storjohan in [35] with a total complexity of
O(nr4 log2 B). The use of “approximations” using floating point numbers introduces an inaccuracy
such that it is not clear anymore if the bound of the loop holds. The best known floating-point
variant is due to Nguyen et al. [23] and has a complexity of O(r5)(r + log B) log B.

As the reversibility of quantum circuits, and hence the loss of information due to rounding makes
quantum circuits predestined for the use of rational arithmetic we will compare our circuit with
the analysis provided by Joux in [19]. We compare the time and space complexity for a single
iteration of the LLL algorithm and consider the overall runtime for a single iteration of the quantum
LLL algorithm based on an upper bound of iterations. Due to the setup of the Slice’n’Dice attack
the size of the number is reduced every now and then by p. It is not clear when or how often this
reduction is applied or how large the numbers grow in between reductions.
We start by considering the loops in the QLLL. In Paragraph 5.3.1 we saw that the quantum GSO
has a depth of O(r3 · n̂ log n̂) with O(r3 · n̂2) gates. The computation of the length of each vector
into the registers L has the depth of an inner product and but r· inner product gates. This gives a
total depth of O(r3 · n̂ log n̂) for the precomputation before the main loop starts.

The main loop consists of the reduction of the currently considered sublattice and the controlled
looped reduction of the lesser vectors and the controlled exchange of the basis vectors. Both
operations have to be executed subsequently such that the depth of the circuits is the sum of both
depths. Figure 5.20 shows the detailed analysis of the depth and gate count for the distinct circuits.
In Section 2.26 we have shown that there are at most log 1

δ
Dinit basis vector exchanges before

the algorithm terminates. Therefore the loop requires log 1
δ

Dinit iterations. In each iteration we

require new memory for the updated Gram-matrix M̂, the updated lengths of the vectors L̂ and
the Lovasz qubit which are required for uncomputation (and reversibility). Therefore the main
loop needs quantum registers worth of log 1

δ
Dinit · (|M| · |L| + 1) qubits. Additionally we need r · n
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Circuit Depth Gate Count
Lovasz Qubit O(n) [O(log n)] O(n2) [O(n)]
Loop RED O(r(mult + r · add) O(r3(mult + add))

Line 14, 15, 16 O(mult + add) O(mult + add)
Line 19 − 23 O(r) O(r)
Loop 24 − 28 O(r(mult + add)) O(r(mult + add))

Figure 5.20 Quantum gate and operation complexity for the main loop.

Operation Depth [Lower bound] Gate Count [Lower bound]
Addition/ Subtraction O(n) [O(log n)] O(n2) [O(n)]

Multiplication O(n2) [O(n log n)] O(n3) [O(n2)]
Division O(n2) O(n2)

Figure 5.21 Overview over circuit depth and gate count for the quantum arithmetic operations.

workspace registers to cache intermediate results during the iteration. This space is reset to |0〉 after
every iteration and can be reused. The depth and the gate count of the main loop are dominated by
application of the looped QVectorReduction with a depth of O(r(mult + r · add)) and a gate count
of O(r3(mult + add)). In total the QLLL algorithm has a depth of log 1

δ
Dinit · O(r(mult + r · add))

operations. In total the main loop has a gate depth of

r3 · n̂ log n̂ + log 1
δ

Dinit · O(r(mult + r · add))

⇒O(log 1
δ

Dinit · r(mult + r · add)) .

The gate count is in total:

O(r3 · n̂2) + log 1
δ

Dinit · O(r3(mult + add))

⇒O(log 1
δ

Dinit · r3(mult + add)) .

Quantum Slice’n’Dice

The implementation of the Slice’n’Dice attack on a quantum computer promises a quadratic speed
up over the classical attack. Figure 5.24 gives the complexity of the subroutines used in the Grover
oracle. The initial value of D, representing the bound for the loop in the QLLL, is the product of

Subroutine Circuit Depth Gate Count
〈·|·〉 O(r · add) O(r · (mult + add))
~R± O(mult + r · add) O(r · (mult + add))
RED O(~R±) = O(r(mult + r · add)) O(r · ~R±) = O(r2 · (mult + add))

Figure 5.22 Overview over circuit depth and gate count for the quantum support operations
used in the quantum Slice’n’Dice attack. The values are specified with regard to a count of
multiplications and additions and thus not based on a fixed implementation. The original
circuits in Appendix A.4 and Figure 5.15 have an increased depth by a multiplicative factor
of r. This can be reduced by adding r ancillary registers to compute all the multiplications in parallel.
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Loop logδ D times

VecRed Row k of M̂

Lovasz Lovasz Decision Qubit

Branch: |L〉 = 1,
loop RED Remaining rows of M̂

Branch: |L〉 = 0,
exchange

Remaining rows of M̂

L̂

Figure 5.23 Additional space required in each iteration of the QLLL main loop.

Subroutine Circuit Depth Gate Count
kernel matrix O(r · add) O(r · (mult + add))

Hamming weight O(2mult + add) O(r · (2mult + add))
QLLL O(log 1

δ
Dinit · r(mult + r · add)) O(log 1

δ
Dinit · r3(mult + add))

Diffusion O(r · n̂) O(r · n̂)
Figure 5.24 Overview over circuit depth and gate count for the quantum operations used in the
quantum Slice’n’Dice attack. The values are specified with regard to a count of multiplications and
additions and thus not based on a fixed implementation.

the determinants of all sublattices spanned by the basis vectors. For the input kernel matrix of the
Slice’n’Dice attack we have D = O(log p) = O(n), depending on the chosen value for δ.
In total the depth of a single iteration of the circuit would be

(r · n̂) + (r · add) + (log 1
δ

Dinit · r(mult + r · add)) = O(log 1
δ

Dinit · r(mult + r · add)) . (5.5)

The total gate count of a single iteration is

(r · (mult +add))+ (r · (2mult +add))+ (log 1
δ

Dinit · r3(mult +add)) = O(log 1
δ

Dinit · r3(mult +add)) .
(5.6)

Furthermore we require a polynomial amount of space to mount the attack. For the sake of
simplification we assume that the numbers in the QLLL oracle do not grow much larger than n
qubits, since they are reduced every now and then by p:

• The partition registers require n̂ = log n qubits each.



88 5. Quantum Attack

• The basis matrix B requires (r + 1) × (r + 2) integer registers of size O(n).

• The Gram-matrix M consists of (r + 1) × (r + 2) registers each requiring 2 · O(n) qubits for
integer and fractional part. One such matrix is required for each of the log 1

δ
Dinit iterations.

• The lengths of the basis vectors require r registers with each fractional and integer part of
total size 2 · O(n).

In total the attack requires O(r2 · n2 + log n) qubits to cache quantum states and another O(r · n)
qubits as a workspace that can be reused throughout the attack. This results in a total gate
complexity of O(2ω) with a hidden polynomial factor of log 1

δ
Dinit · r(mult + r · add) gates and

O(log 1
δ

Dinit · r(mult + r · add)) circuit depth. It remains to fix the number of iteration in Grover’s

algorithm. The amplitudes of the target set are close to one after
√
|dataset|
|targetset| =

√
N
M iterations. In

the case of the Slice’n’Dice attack the data set is the set of all possible partitions for each input
register. With 2ω input registers each representing a superposition over all possible partitions the
size of N equals the number of possible starting positions n of parts of all 2ω registers:

N = n2ω

The number of correct partitions is different for each public key, therefore it may be necessary to
apply the algorithm repeatedly with a different number of iterations. Lets consider the case where
the one’s in the binary expansion of the secrets are distributed equally: an integer register of bit
length n is partitioned into ω parts. Each part covers about n

ω many bits. The partition is correct if
and only if the bits of the secret lie in the lower half of each part. Therefore there are b n

2ωc many
correct parts and hence correct starting positions for a part in a single register. Combining the
possible starting positions over all 2ω register one gets the total number of correct partitions as

M =

(
ω ·

n
2ω

)2ω
=

(n
2

)2ω
.

In this case Grover’s algorithm requires√(
n

n/2

)2ω

=
√

22ω = 2ω

iterations. Figure 5.25 shows the possible correct parts for an example where the intervals have
length 10.

In the general case for arbitrary distributions of one’s in the binary expansion of the secret the
number of correct partitions may differ slightly, however, reducing the number of correct starting
positions for a single part leads to an increase of possible correct starting positions for another part
as depicted in Figure 5.26.
Following the analysis of Boer et al. in [5] we assume that the number of required Grover iterations
is about O(( 1

2 − c( r
ω )2 + o(1))2ω) for some small c ≈ 1/140 and r the rank of the constructed lattice.

One can approach the result by repeatedly applying the algorithm with an increasing number of
iterations until the successful extraction of the secrets:

22ω,
√

2 · 22ω,
√

22 · 22ω, . . . = O(22ω(1 +
√

2 +
√

4 + . . .))
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Figure 5.25 Possible correct starting positions for equally distributed one’s. Each partition covers
10 bits. If the secret is in the highest bit of the lower half of the parts, there are 5 correct starting
positions for the part.

Figure 5.26 Unbalanced variant of valid parts.

Instantiation

Applying the attack on the instantiation with a bit length n = 756839 ≤ 220 and a Hamming weight
of ω = 128 = 27 one requires a lattice of rank r = 2ω = 214. Consequentially one would require
about O(n · r) 214 · 220 = 234 qubits to cache computational results throughout the algorithm.
These registers would be reset to a known state (zero) after each circuit. In contrast one would
require about O(n2 + r2) 240 · 228 = 268 qubits as workspace registers to store the information
required to invert the lattice reduction. The quantum LLL oracle would require about 234 operations
in each round of the Grover algorithm and thus requires a large but polynomial overhead. Both
values are highly dependent on the number of iterations of the main loop.

The overhead in time complexity might seem large but is still insignificant taking into account the
fact that in runs in a loop that take about 2128 iterations. On the other hand the large amount of
workspace required raises the question how practical the enclosed lattice reduction is in general. A
space requirement with a magnitude of 264 may already raise questions about the practicability of a
classical attack. This suggests that this attack will be feasible only for very sophisticated quantum
computers.

We conclude with some open problems on how to reduce the quantum memory and the overhead of
operations: First a better bound on the main loop, hence on the maximal number of exchanges that
may happen during the reduction, would decrease the overall complexity of the lattice reduction.
Secondly, bounding the size of the rational numbers appearing within the (Q)LLL algorithm allows
minimize the amount of allocated quantum memory. Last, a more dense representation of the
information required for the uncomputation would significantly reduce the space over head.
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6. Conclusion

In this thesis we addressed the problem of attacking Mersenne number cryptosystems with decoding
failures resulting from queries to a decapsulation oracle. Furthermore we present the Groverization
on the best classical attack. One of the main contributions of this thesis is the in-depth description
of the quantum LLL algorithm.

The main focus of our thesis was the attack of the Ramstake key encapsulation mechanism. For
the non-quantum approach we presented a range of attacks on a weakened variant which removes
reencryption and derandomization from the Ramstake scheme. Our contribution here are three
different successful attack schemes: our first scheme attacks the WeakRamstake cryptosystem.
The attack can extract the secrets in polynomial time but also requires the most simplifications.
Our subsequent attacks on a less weakened scheme remain infeasible with regards to the number
of queries to the decoding oracle. Nevertheless they reduce the security to about 98 bits of
effective security which is below the target of 128 bits. Our attacks have been implemented as
proof-of-concepts using decapsulation oracles with artificial high decoding failure probability.

Our contribution on the analysis of the original Ramstake cryptoscheme targets the code submitted
to the NIST competition. We propose a timing attack allowing an adversary to distinguish between
reencryption failures and decoding failures. This allows to mount all attacks on the weakened
version onto the original cryptosystem.

Another contribution is the detailed description of the Groverization of the best known classical
attack: the in-depth description of the quantum Slice’n’Dice attack allows to follow the implemen-
tation up to gate level. We propose different constructions to circumvent challenges arising when
conditioning loop on quantum superpositions. Our contribution contains the first, to the best of
our knowledge, construction specifying the details of a quantum LLL algorithm. We analyze the
circuit depth and gate count of the LLL algorithm in a generic way, such that it is independent
of actual implementation of arithmetic operations such as addition or multiplication. This allows
to reuse the analysis using different models of numbers such as implementations with rational
or with decimal numbers. Our in-depth analysis of the required memory of the quantum LLL is
extended to the application in the quantum Slice’n’Dice attack. We conclude that the polynomial
overhead in the number of iterations remains small enough. However, the polynomial overhead of
required quantum memory raises doubts about the feasibility of such an attack. We leave space for
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improvement of both the required memory as well as the quantum circuit complexity and identify
the main reasons for the overhead.

Overall the Ramstake cryptosystem remains secure despite the high chance of a decoding failure.
While the space complexity of a quantum attack seems infeasible the security margin is not higher
than expected. Our timing attack shows that it is vital to implement a constant-time variant of
the scheme. To me, personally, it seems like a miracle that the cryptosystem is secure. The use
of burst-efficient error correcting code and the occurrence of carries in the encapsulation and
decapsulation make it difficult to mount attacks. The “low” number of 128 unknown positions
makes it feel like there must be an easy approach to find those few positions; nevertheless, no such
method is known to us.

Future research might include more sophisticated statistical analysis of the decoding failures, such
as the use of a maximum likelihood estimation based on decoding failures. The space complexity
of the quantum LLL algorithm may be improved significantly when applying algebraic “shortcuts”
to recompute the unreduced basis rather than directly caching all the information or by giving better
bounds on the loops.



A. Appendix

Modulo Operations

The circuits to implement quantum modular arithmetic are constructed based on the description in
[32].
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Figure A.1 A quantum circuit for addition modular p. First a and b are added and the result is
saved in the former register of b. Then p is subtracted from a + b. If (a + b) are less than p the
lowest (carry) qubit is set to one and an overflow occurred. Therefore p must be added back. If the
result (a + b) mod p is larger than a no overflow occurred and the carry qubit is set to 0. On the
other hand side if (a + b) mod p is less than a an overflow occurred and the carry qubit is set to 1
and must be negated.
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Figure A.2 Quantum circuit for quantum doubling modulo p. We assume that p is odd. Than
2a − p has a 1 on the least significant bit if and only if 2a was reduced by p (since 2a has a 0 on the
least significant bit). Therefor the uncomputation of the carry bit is conditioned on the first bit of a.
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Supportive functions

The quantum function for the vector inner product

(·|·) : |~x〉|~y〉|0〉|0〉 7→ |~x〉|~y〉|0〉|(~x|~y)〉

computes the canonical function for an inner product, where one of the registers |0〉 is used as a
workspace to cache the result of the multiplications of the intermediate terms. Circuit A.3 gives
the quantum circuit for the inner product of two vectors with two coefficients, but can be extended
to a fixed but arbitrary number of coefficients by increasing the iterations of multiplications. The
squared norm of a vector is a special case of the inner product with ||~x||2 = (~x|~x) and can therefor
be computed by the same circuit using squaring instead of multiplication. For a vector with r
components the circuit requires 2rn2 (naive 2rn3) gates for multiplication and uncomputation and
rn (naive r log n) gates for the additions. The depth of the circuit is r(n log n + log n) (naive r(2n2)).
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Figure A.3 Computation of the inner product of two quantum vectors for the first two coefficients.

The algorithm is constructed from 2r multiplication circuits and r addition circuits where r is
the rank of the lattice. Using a single ancillary register all multiplications have to be computed
sequentially resulting in a depth of r · O(mult + add). Using r ancillary registers one can compute
the multiplications in parallel resulting in a depth of only r · O(add).

The subroutine

R± : |a〉|b〉|0〉|c〉 7→ |a〉|b〉|0〉|c ± ab〉

denoting a multiplication followed by an addition or subtraction is given in Circuit A.4. The
register |0〉 functions as a workspace for the multiplication and is uncomputed. The circuit may also
represent the multiplication of a scalar with a vector followed by a vector addition or subtraction
where the multiplication is exchanged for the scalar multiplication:

~R± : |~a〉|~x〉|0〉|~y〉 7→ |a〉|~x〉|0〉|~y ± a~x〉 .
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