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A B S T R A C T

Due to the electrification of vehicles, the focus of vehicle noise is shifting to the tires. Since tire noise is
dependent of the tread pattern, methods to characterize tread patterns are required. This research investigates
the effects of different processes of tire digitization on the identification of tread pattern features. An open
source digitization pipeline is built to extract a tessellation surface model. This model is compared to one,
generated with a commercial photogrammetric system. The comparison is based on three acoustically relevant
tire features. Fully automated algorithms are introduced to extract these features from any 3D tire tessellation
model. The research finds that although the resolution of the mesh surface of the proposed model is lower,
feature recognition is not affected by this change. This paves the way for more accessible models that accelerate
the statistical coupling of tire tread characteristics and their acoustic, handling or braking behavior.
. Introduction

In 2012 more than 125 million people in the countries of the Euro-
ean Economic Area were exposed to higher noise directive indicators
han the threshold of 55 dB 𝐿𝑑𝑒𝑛. As main reduction sources the authors
ention, noise limits for vehicle exhaust and engine, quieter tires and

ow-noise road surfaces [1, p.40f].
Especially when noise threshold limits are exceeded, this can have

erious impact on humans health. Even if sound pressure levels are
ot high but exposure is long enough, health problems such as sleep
isturbances can occur [2]. This is why governmental institution reg-
late the overall emitted sound pressure levels of vehicles [3]. For the
ehicle certification, the tire noise has a dominant role [4]. That impact
nly gets greater with the ongoing electrification of vehicles [5,6].
dditionally, in the subject of interior noise, tire noise is of grave

mportance. This is mainly due to it merely negative indications by
he driver. While especially high powered combustion engines might be
onsidered as pleasant sound, tire noise is always connected to negative
motions [7].

The tire tread is a complex structure that gives tire manufacturers
he ability to modify a tire’s wet and dry friction, and thus its braking
nd acceleration performance, vehicle stability, and sound emission.

Ejsmont et al. [8] conducted research on the impact of different
read features. The investigated tires were not mass-produced tires, but
ires with hand-cut profile patterns that were acoustically measured

∗ Corresponding author at: Mercede-Benz AG, Stuttgart, 70372, Germany.
E-mail address: michael.leupolz@mercedes-benz.com (M. Leupolz).

in an indoor road-wheel facility on two different drums. The authors
determined the width and angle of transverse grooves, the existence
of circumferential grooves, ventilation of pocket type grooves, and
orientation of curvilinear grooves as important for the overall sound
pressure level [8].

Stalter and Gauterin [9] investigated the impact of the circumfer-
ential tread pattern stiffness on sound pressure levels while applying
torque on the tire. For that, two different tire tread patterns were
hand-cut from smooth tires. The patterns were built with three tires
each, each composed of different rubber mixture. The authors identified
harder rubber, as well as tread patterns with longer blocks, to be
louder. This is explained by analyzing the transferred tangential force
in the contact patch. Thereby, high circumferential stiffness makes the
tire slip over a longer distance in the contact patch, which causes a
higher increase in noise level compared to noise generation mechanism
without slipping [9].

Li et al. [10] compared the tire noise recorded in the near-field
with a digital tire model. The tire tread was digitalized using a laser
producing a highly accurate model. The recorded acoustical signal was
divided into air pumping noise and tread pattern noise. These were
compared to tire features in order to show correlations between the
features and the acoustical signals. The method was applied to five
different tires with similar size and aspect ratio [10]. The same authors
later expanded the measured tires to a total number of 23, also with
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similar size and aspect ratio. A difference of up to 17.2 dB(A) in the
tread pattern noise was recorded. The acoustic signals were processed
similar to the previously mentioned research and used to train an
Artificial Neural Network (ANN). The ANN was able to predict the
sound pressure levels for test and validation sets with an average error
of 2.1 dB and 3.5 dB [11].

Oorath et al. [12] investigated different tire tread features and their
impact on air pumping noise. For this, they developed an image scan-
ning algorithm tracking air gaps entering or exiting the contact patch.
The change in air volume in the tread as well as an assumed rubber
compression are combined to a noise source, assuming a monopole
source in the free field. From the representation as volume velocity
source, a sound pressure level was then calculated. With the algorithm,
tread pattern variations in groove width, contact patch length, groove
length, groove angle and pitch offset in both shoulder regions were
investigated [12].

Rapino et al. [13] investigated a similar approach to Li et al. [11].
83 different tires were measured in a semi-anechoic chamber on a drum
with sandpaper surface. Six microphones were placed in a semicircle
around the tire in a distance of 1.5m. Measurements were conducted
at 50 kmh−1, 80 kmh−1 and 110 kmh−1. The acoustical measurements
as well as 24 other parameters were used to train a statistical model.
These parameters describe the outer shape of the tire (width, radius,
and rubber hardness), the shape of the contact patch under axial
load (width, length and roundness factor), the tread pattern (width of
circumferential grooves and power spectrum in 14 1/3 octave bands)
and operation conditions (rounding per minute and inflation pressure)
of the tire. For that, the tire was digitalized with a laser profilometer.
The trained ANN predicted the target output with a root mean square
error of 2.3 dB(A). The trained model was particularly well suited to
reconstruct the trend between tires, allowing the model to rank the
tires by their sound intensity levels measured under the described
conditions [13].

All mentioned research utilized either direct images of pressure
profiles of the used tires or with laser scans. In general, there are
different open source pipelines/reviews for image based 3D modeling
of objects available [e.g. 14–16].

Following, we give insight into an open source pipeline built for
the extraction of a tessellation surface model of a tire, as well as a
commercial photogrammetry system. Different algorithms to extract
the

• Air–Rubber ratio as area ratio (defined in Eq. (5))
• Circumferential grooves widths and locations
• Power spectrum of the tread pattern

are presented. According to recent research, these features are im-
portant for tire noise. The algorithms are then used to compare the
tire models received through the different digitalization pipelines. Two
tires are investigated, one winter and one summer tire. The herein
proposed pipeline distinguishes itself from other, the authors known,
open source solutions. This is especially seen in the preprocessing of the
images where an image segmentation in relevant (tire) and irrelevant
parts (rim and background) is done. This was shown to have a positive
impact on the whole reconstruction process [17]. Furthermore, the
postprocessing of the received model is highly adapted to the specific
tire reconstruction purpose. This includes elimination of outliers in the
mesh, the chosen meshing algorithm as well as the clustering of the
final model which only selects the tire. These processes are further
described in the following sections.

2. Reconstruction fundamentals

In this section, we give a definition of Structure-from-Motion (SfM),
which is the underlying method to reconstruct our tires from image
series. Furthermore, the steps of an incremental SfM pipeline are de-
scribed. Finally, the densification of the reconstructed point cloud is
discussed.
2

Fig. 1. Simultaneous determination of scene geometry and camera poses with SfM.
Based on Özyeşil et al. [19, p. 307].

2.1. Structure-from-motion

The tire reconstruction is based on the SfM method. SfM can be
assigned to photogrammetric methods and is used to determine three-
dimensional structures from a series of overlapping images. The char-
acteristic of the SfM method lies in the fact, that no precise knowledge
of the orientations and positions of the camera, also referred to as
pose, is required. Instead, the three-dimensional scene geometry and
the camera poses are determined simultaneously, which is illustrated in
Fig. 1. For this purpose, the extraction of corresponding feature points
between the images in the series is used. These points are tracked across
the image series and allow poses to be estimated, which can then be
refined iteratively [18].

2.2. Incremental SfM-pipelines

SfM pipelines often follow an incremental structure and combine
multiple steps to accomplish the reconstruction task, which is illus-
trated in Fig. 2. A SfM pipeline can be divided into two sub-steps,
which are referred to as correspondence search and incremental recon-
struction [20].

The correspondence search uses the image series as input and starts
with the feature extraction, in which characteristic points are detected
in each image. This is followed by a feature matching, in which
feature points are compared across images and correspondences are
matched. These corresponding points usually represent the same three-
dimensional scene point. Nevertheless, outliers in form of wrong point
assignments can still be present in the found correspondences. As a
result, the correspondence search ends with a geometric verification. The
latter describes the calculation of a geometric transformation between
two images, which is intended to map a sufficient number of points
from one image to the corresponding points in the other image. Cor-
respondences, which do not hold the transformation, are detected as
outliers. As a result, the correspondence search outputs geometrically
verified image pairs in the form of a graph whose nodes represent the
images and whose edges represent the associated image pairs. This is
also called the scene graph [20].

The second step is the incremental reconstruction, which receives the
previously determined scene graph as input variable. It starts with the
reconstruction initialization, which describes the choice of an initial
image pair. Usually, it is the pair with the largest point correspondence
to provide a robust basis for the reconstruction. This reconstruction
initialization is followed by an image registration, in which a new
image is added to the reconstruction and in which the translation and
rotation of the camera with respect to the world coordinate system are
determined. It is estimated from correspondences between the already
reconstructed three-dimensional scene points and the two-dimensional
feature points contained in the newly added image. The image provides
further point correspondences, which can be triangulated during the
triangulation. Due to inaccuracies in the preceding steps such as the
pose estimation, so called reprojection errors occur during triangula-
tion [20]. This error describes the distance between a point detected
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Fig. 2. Structure of incremental SfM pipelines. Based on Bianco et al. [20].
in the image and the three-dimensional scene point projected onto the
image [21, p. 177–180].

Therefore, the last step of the incremental reconstruction is called
bundle adjustment and tries to minimize the accumulation of these er-
rors. Here, the positions of the reconstructed points and the parameters
of the cameras are refined. The result of the incremental reconstruction is
an estimation of the camera poses for each image and the reconstructed
object as a point cloud [20].

2.3. Sparse and dense reconstruction

The point cloud created by the SfM method is sparse due to the small
number of feature points, which are reconstructed three-dimensionally.
To create a denser point cloud, the sparse reconstruction can be fol-
lowed by a dense reconstruction. A pipeline, as shown in Fig. 3 can
start with the calculation of depth maps. This calculation is done by
estimating the depth of each image pixel. Two-View-Stereo algorithms
construct a window around pixels and perform a correspondence search
along the epipolar lines.

The latter are part of the epipolar geometry, which describes the
geometric relationships between two views of the same scene [22, p.
14]. An important relationship is the epipolar constraint, which states
that a point in the second image that corresponds to a point in the first
3

image must lie on a specific line, the epipolar line [23, p. 1332]. This
reduces the search space for correspondences [24, p. 239–241].

Because many pixels can have similar appearances, Two-View-
Stereo algorithms can lead to noisy depth maps. This problem can
be countered by using Multi-View-Stereo (MVS) algorithms. Here, the
epipolar geometry of all images that form an overlap is exploited and
corresponding epipolar lines are determined to enable more robust
similarity calculations for pixels. With the Multi-View-Fusion, the depth
maps are then combined into a dense point cloud. In the last step,
the surface reconstruction, the point cloud is transformed into a mesh
[25, p. 36–38].

3. Reconstruction methods

This section describes our reconstruction pipeline for creating sur-
face models from image series with its used methods and techniques.

3.1. Reconstruction pipeline

Our process of reconstructing vehicle tires from a series of images is
a sequence of processing steps, which is why we refer to it as a pipeline.
A first subdivision is the reduction of the pipeline into three steps called
preprocessing, processing, and postprocessing, which is illustrated in Fig. 4.
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Fig. 3. Visualization of the dense reconstruction. Based on Schönberger [25, p. 36].
Fig. 4. Proposed reconstruction pipeline with a preprocessing, processing and postprocessing step.
The first step called preprocessing essentially describes a segmen-
tation of each image, dividing the image content into relevant and
irrelevant areas. This step is useful to digitize only significant image
content, such as the tire itself, and to increase the quality of the
final surface model. The next step is called processing and describes
the reconstruction of the segmented images into a three-dimensional
point cloud. It includes the estimation of the camera poses during
sparse reconstruction and the generation of a dense point cloud of
the reconstructed object during dense reconstruction. In the last step,
the postprocessing, the quality of the point cloud is then improved by
removing outliers and the cloud is transformed into a surface model
with a suitable meshing algorithm.

The implementation of these steps is possible in various program-
ming languages. Due to the existence of libraries for image processing,
machine learning and the modification of point clouds and meshes,
Python [26] is used as the scripting language.

3.2. Preprocessing

As mentioned before, the preprocessing step divides the content of
each image in the series into relevant and irrelevant areas. The idea
is to only digitize the relevant image area during the following steps.
While the background and the rim are considered to be irrelevant parts
of the image, the tire is a significant one.

The problem of filtering image areas is reduced to the creation
of a binary mask, which is applied on the original image to form a
masked image. Various methods are conceivable for generating the
binary mask, for example thresholding, k-Means algorithm, or ANN.
Own experiments showed that especially the latter one has proven to
be particularly suitable. Our results are illustrated in Fig. 5.

The U-Net is used as ANN, which is supposed to deliver precise
image segmentation with a small amount of training data [27]. The
network is provided by the Python library Segmentation Models, which
allows a simple and fast configuration of neural networks with pre-
trained parameters [28]. Two separate networks are trained, one for
background removal and one for rim removal. In combination, they
allow the extraction of the tire.
4

Fig. 5. Segmentation results with U-Net.

To train the networks, two datasets are generated. For this purpose,
100 images of different wheels are shot. These represented the wheels
from various angles with different tires, backgrounds, and rims to
ensure a high level of generalization capability of the trained networks.
The images are then segmented manually with the Software VGG Image
Annotator (VIA) [29], that allows the rim and background to be out-
lined with polygons. The outlined images are then exported as json-File
and transformed via a Python script into corresponding binary masks.
These images and masks are then scaled to a uniform size of 256x256
pixels due to the constant size input and output of the ANNs. Next,
the two image datasets are enlarged with data augmentation. Existing
images are transformed using techniques such as shearing, rotation or
noise and added to the dataset. This is done with the Python library
Albumentations [30] and has the purpose to prevent the networks from
overfitting to few existing images and keeping their generalization ca-
pabilities high. Finally, two datasets for rim and background detection
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Fig. 6. Sparse reconstruction with OpenMVG and dense reconstruction with OpenMVS.

and removal were available, each of which consists of 1500 images
including the corresponding masks.

For the training, the previously created image datasets are divided
into training data consisting of 1200 images and test data consisting
of 300 images. The datasets are propagated through the networks 100
times with a batch size of 8. The Dice Loss function delivered good
results. Fig. 5 shows well performing masks to separate rim and tire.

3.3. Processing

The processing step describes the reconstruction of the tire as a point
cloud from the previously segmented images. SfM is used as the under-
lying method for estimating camera poses and the sparse point cloud,
while MVS algorithms are used to create the dense point cloud. Because
of the high complexity and the high effort involved in implementing
these algorithms, existing software packages are used. There are mul-
tiple open source solutions such as Meshroom [31], COLMAP [32,33]
or OpenMVG [34] in combination with OpenMVS [35].

We used the latter two packages for the tire reconstruction. Open-
MVG and OpenMVS come with precompiled binaries for e.g. feature
computation, feature matching, camera pose estimation and sparse
reconstruction as well as point cloud densification and meshing, which
together form a complete SfM and MVS toolchain. This toolchain is
purely console-based and therefore its executables can be easily used
and started within a Python script. Furthermore, initial tests showed,
that the calculations of OpenMVG v1.6 and OpenMVS v1.1.1 run purely
on the CPU and do not require a dedicated graphics card. Due to that,
the reconstruction can be done on any computer without portability
issues. OpenMVG v1.6 comes with one global and two incremental SfM
methods for camera pose estimation and sparse reconstruction. We used
the first incremental method called IncrementalSfM. Fig. 6 shows the
difference between sparse and dense point cloud.

3.4. Postprocessing

The postprocessing steps essentially describe the removal of outliers
in the reconstructed point cloud, the meshing of the point cloud,
and the eventual smoothing of the mesh. The focus is on choosing
a suitable meshing algorithm. There are multiple different meshing
methods that can be used. These are, for example, the Ball-Pivoting
Algorithm (BPA) [36] or the Poisson Algorithm [37]. Both algorithms
are provided by the Python library Open3D [38].

The BPA is based on the idea that a triple of points should form a
triangular plane if they are touched by a ball of defined radius. This
ball then pivots around all edges of the newly generated triangle and
the collision with another point is checked. If a collision occurs, the
edge and the point are combined to form another triangle [36].

The Poisson Algorithm on the other hand, is based on calculating
an indicator function, which is zero outside and one inside the model.
This leads to the fact that its slope is non-zero only near the surface.
There it corresponds to the inward surface normal, so a cloud with
oriented points essentially samples the gradient. The name of the
5

Fig. 7. Meshing results with Ball-Pivoting Algorithm and Poisson Algorithm. Holes in
Mesh are marked in blue color.

algorithm results from the possibility of formulating the search for an
indicator function, whose gradient approximates the sampling points,
as Poisson equation. If the function is known, it implicitly specifies
the reconstructed surface, which can then be extracted in further
steps [37].

To mesh our point cloud, the Poisson Algorithm is preferred over the
BPA, because it produces watertight meshes [37]. For the BPA, there
is a risk that it can deliver meshes with holes, which is illustrated in
Fig. 7. Furthermore, tires can have a very fine profile structure, which
is why a very small ball radius may have to be selected for the BPA
to be able to resolve these structures well. In combination with large
tread blocks and the relatively flat and structureless sidewalls, longer
calculation times are observed with BPA.

4. Structured light

As an alternative to the previously explained reconstruction
pipeline, a commercial system using a structured light 3D modeling
approach, is used. Following, we refer to the commercial model as
reference model.

The structured light approach needs at least one camera and one
projector [39]. The relative position between the cameras and the
projector needs to be known [40, p. 238]. The projector then projects a
light pattern onto the object. For the construction of the light pattern,
different approaches are possible. The light pattern is referred to as
codification, since it allows to uniquely identify each surface point
of the object [39]. For example, a binary structured codification is
achieved through projecting different binary intensity patterns with 0
(black) and 1 (white) onto the object. By varying the orientation and
thickness of each line of the pattern, a unique codeword for each pixel
is created. Using the codewords, camera, and projector position, the 3D
coordinate of each pixel is calculated [39].

The used sensor ATOS III Triple Scan from the former company GOM
GmbH nowadays Carl Zeiss IQS Deutschland GmbH works with two
camera systems. The object is thus viewed from different angles each
time a picture is taken. This allows the visualization of deeper pouches
and the process gets more stable since multiple pictures overlap, mak-
ing it possible to calculate the coordinates of some points multiple
times [41,42].

Furthermore, the use of two camera systems allows a correction
of thermal expansion in the camera system through the use of both
cameras as triangulation basis. This allows a wider use of the system
without the need for recalibration [43, p. 50].

The system used in this research does not apply a single binary
black and white projection but uses multiple different codes with phase
difference and blue light. Blue light makes it easier to detect objects
under bad lighting as well as shiny ones. As mathematical basis for the
triangulation, the distance between the two cameras is used [41,42].
The system outputs a fully meshed tessellation surface model.
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Fig. 8. Tread pattern images with grooves being cut out for a summer tire as sparse point cloud and connected tessellation surface model.
5. Image processing

In Section 3 we described the process of reconstructing a 3D tire
model from images with either a self constructed pipeline that only
uses open source packages which was developed in a Master’s Thesis
[17] or a commercial software. Even though some tire features might be
extracted directly out of these models, some are more easily accessible
from a standardized tread image or require a combination of both.

5.1. Extraction of standard images

To gain more insight in tire tread parameters as e.g. Air–Rubber
ratio, number and width of circumferential grooves as well as quantity
of grooves, we create a standardized digital footprint of the tire tread
that resembles the imprint of the tread pattern that results from the tire
rolling on the ground without axial load applied.

Fig. 8(a) shows such a resembling tread pattern image with only
the grids being shown. Both of the previously explained algorithms
to create a 3D tire model do not only create a sparse point cloud
but fully meshed tessellation surface model. A set of three grid points
(nodes) is connected to a triangle. Each node can be referred to with
a number as well as three coordinates 𝑥1, 𝑥2 and 𝑥3. To each triangle
a specific number is assigned. Each of the triangles also refers to the
corresponding three nodes. The resulting connected surface is shown
in 8(b).

The nodes and triangles do not have any specific numbering rule.
Due to this, to extract all nodes that do not lay on the upper surface of
the tire, the nodes are first sorted according to their 𝑥2 (for coordinate
system refer to Fig. 9) coordinate.

After sorting the nodes, they are divided into chunks of the width
0.5mm by their 𝑥2 coordinate. This creates circumferential lines of the
specified bandwidth. These are necessary to extract the real circumfer-
ence for each 𝑥2 coordinate. One of these lines is presented in Fig. 9.

Next, the distance between the tire axle and each node is calculated
through

𝑑 =
√

𝑥21 + 𝑥23 . (1)

With the point distances and the categorization into axial chunks, a tire
reference radius is defined. For the reference radius, the 95 quantile of
all points in each chunk is calculated. This ensures that no single grid
point, which might result from measurement errors, defines the radius
of a chunk. The defined radius is then compared to the distance of each
point in the specified chunk. Every point that does not meet the criteria

𝑟 − 𝛥𝑟 ≤ 𝑑 ≤ 𝑟 + 𝛥𝑟 (2)
6

Fig. 9. Tessellation surface model of tire and rim with marked tire width chunk; chunk
amplified for visibility.

with 𝑟 as previously calculated radius and 𝛥𝑟 as user defined threshold,
is deleted. Therefore, 𝛥𝑟 specifies the depth of grooves that remain in
the model. The upper bound is kept to eliminate possible outliers. The
calculation of a flexible reference radius 𝑟 is necessary for two reasons.
First, the tire default radius calculated through the rubber width, aspect
ratio, and wheel radius is impacted by production tolerance. Second,
using the default radius of the tire, the whole shoulder part would be
lost due to the curvature of the tire.

Nevertheless, the default radius is still important. This is especially
the case for tires with circumferential grooves. In these cases, it is
possible that all grid points of one chunk lay in a circumferential
groove. This results in the groove being defined as 𝑟 so that almost no
grid points fail Eq. (2). To avoid these cases an additional criterion

𝑟default − 𝑟 < 𝑟threshold (3)

is defined in cases, that do not satisfy Eq. (3), and are situated in the
center region of the tire, 𝑟 is set to be 𝑟default. 𝑟threshold needs to be larger
than the maximum depth of the circumferential grooves.

The center region of the tire is determined by four steps, presented
in Fig. 10. First, all grid points of the tire are projected on one surface
with every point being way below the default radius being neglected
for clarity reasons. This leads to a scatterplot that shows a bandwith
of possible radii for each width position on the tire. Also, this method
avoids that by taking only one cross section, the different regions might
be altered by local grooves. Second, the silhouette of the scatterplot
is extracted by comparing every point in a given 𝑥2-chunk and only
keeping the largest one in the specific chunk. This way the second
image is received. Third, a Savgol filter [44] is applied. This is done,
to eliminate single outlier, which would alter the last step. Lastly, a
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central discrete differentiation, according to

𝛿𝑟𝑖

𝛿𝑥2
= 𝑟𝑖+1 − 𝑟𝑖−1

𝑥𝑖+12 − 𝑥𝑖−12

(4)

is calculated [45]. This allows to look for the smallest 𝑥2 value with
a slope that is smaller or equal than zero and the last 𝑥2 value with a
slope that is greater or equal to zero. These points identify either the
point where the first circumferential groove starts, respectively the last
one ends or the first point, respectively the last point forming a flat
rubber surface area and therefore define the center region of the tread
pattern.

Every grid point is then, according to his position on the tire, either
compared to the default radius or its individually calculated radius as
stated in Eq. (2). For each triangle, it is checked whether all referring
grid points are kept in the model, otherwise, they are eliminated from
the model as well. This procedure leads to a tessellation surface model
of the tire that does only include elements on the upper surface of
the tire. To generate the images shown in Fig. 8, the remaining grid
points are transformed via polar coordinate transformation in a manner
that the tire surface is virtually rolled out. The relation between every
grid and according triangle remains the same, which allows for the
plot to include the triangles and not only the grid points. Resulting in
not only a scatter plot but a fully closed surface plot. The coordinate
transformation is achieved through cutting the tire in half, transforming
each half and then adding the flattened parts back together. This is
necessary because of the periodicity of the transformation. As seen in
the filtered silhouette curve, usage of the largest value in each chunk,
might lead to outliers defining the surface. Still this is considered a
better approach than the usage of a e.g. median values since this leads
to a loss in the precision of the first groove, which especially occurs in
tires with slanted block edges as seen in Fig. 14(b).

5.2. Feature extraction

To compare the resulting standardized images as well as the tes-
sellation surface model themselves, some tread features relevant to
tire noise are calculated. First, the Air–Rubber ratio which basically
defines how much of the rubber will be in contact with the road is
calculated. Thereby, a smooth road surface is assumed and the effect of
the axle load on the tire is neglected, which would lead to deformation
and a change in the groove shape. Second, the number and width of
circumferential grooves. Third, the average length as well as frequency
of different lengths in the grooves is investigated.

5.2.1. Air–rubber ratio
The Air–Rubber ratio basically shrinks down the whole tire tread to

one number. It can be calculated from the standard images extracted
earlier. Nevertheless, these images basically show the whole tire with
some parts of the sidewall, which makes it necessary for a valid compar-
ison to focus only on the tread that is in contact with the road in reality.
Even though the Air–Rubber ratio allows some insight in the tires con-
stitution, it neglects orientation and shape of each groove/block itself.
To consider these, the shape of a realistic contact patch is necessary. For
such a contact patch, the Air–Rubber ratio can be calculated along the
leading and trailing edge. Through propagating these edges stepwise
over the whole circumference of the tire, realistic changes in the Air–
Rubber ratio are tracked. By Fourier transforming these values, spectra
corresponding to psychoacoustic perceived tire noise can be calculated.
Since the purpose of this research is not to describe two diverse tires
exactly but to investigate the different methods of digitalization, a
simplification is applied. The standard image is cropped symmetrically
to the tire’s centerline in each shoulder region. The remaining region
is defined by minimal and maximal width, still included in Fig. 10.

The Air–Rubber ratio is calculated through

𝐴𝑖𝑟–𝑅𝑢𝑏𝑏𝑒𝑟 𝑟𝑎𝑡𝑖𝑜 =
𝑝𝑖𝑥𝑒𝑙𝑠𝑤ℎ𝑖𝑡𝑒 . (5)
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𝑝𝑖𝑥𝑒𝑙𝑠𝑏𝑙𝑎𝑐𝑘 + 𝑝𝑖𝑥𝑒𝑙𝑠𝑤ℎ𝑖𝑡𝑒
Even though the total number of each pixel changes through different
scaling of the pictures, the ratio remains the same, which makes the
process robust.

5.2.2. Extraction of circumferential grooves
Circumferential grooves are especially important to avoid air being

trapped in transverse grooves, which typically results in noisy tires.
Additionally, they are also necessary for safety reason, as e.g. provision
against aquaplaning. This makes them an important feature of each tire,
including their width, location as well as depth. Following, a process
to extract width as well as location of each circumferential groove
is explained. The process is, as the shoulder tracking, based on the
silhouette curve of the tire, presented in Fig. 10. The curve is once more
smoothed and derived. From the central difference, points with low and
high slopes are extracted. These basically define the beginning and end
of a circumferential groove. Fig. 11 shows the smoothed outer shape,
the related central difference and the corresponding image with pixel
lines, highlighted in color, that are identified as locations with high and
low slope. The grooves are extracted in the following manner: Going
from high to low pixel values in 𝑥2, the first two lines are selected. The
absolute pixel value between these lines is calculated through adding
up all pixel values in the enclosed area to one number. The resulting
value is compared to the absolute pixel value obtained for the same
area, assuming only white pixels. If the absolute pixel value is larger
than 0.9 times the reference value, a groove is detected. In this case,
the two lines are kept and the same process is done for the second and
third line. If a groove is detected once more, the second line can be
deleted, since line one and three form a wider groove. This process
is repeated for every point detected through the central difference.
The advantage of the combined approach between image and central
difference over solely image processing lies in the customizability.
Through the definition of a slope threshold that needs to be reached,
grooves that are shallow will not be detected.

5.2.3. Profile randomization — pitch frequency
Looking at the transverse grooves, it is of importance whether the

distance between grooves on each circumferential line are randomized
as well as whether transverse grooves align for both shoulders or if
there is a certain offset in-between grooves. The distance between
grooves is referred to as pitch. While the randomization of the pitch
does not necessarily reduce the overall emitted sound power, it spreads
the power over a wider frequency band. This results in a less tonal
and therefore more pleasant sound [46, p. 222–226]. Furthermore, this
leads to a lower excitation at the resonance frequency which results in
less sound emission. The offset in-between shoulders however results
in lower force fluctuations in the contact area. This is equivalent to the
effect for a change from straight to helical gears and results in lower
broadband sound pressure levels.

To analyze this impact, the tire tread spectrum is calculated accord-
ing to the method presented by Li et al. [11]. They used a laser system
to create a flat 3D model of the tire with the dimensions width, length
and profile height of the tread pattern. This is converted to time series
by assuming a vehicle speed leading to the dimensions width, time and
profile height. With this time series, a Fourier transformation is possible
resulting in a frequency spectrum for each axial chunk of the tire. These
spectra are merged into one coherent profile spectrum by summing up
all complex Fourier coefficients over the width [11].

In the research presented in this publication, this process has to
be adapted slightly. This is mainly the case because the principle of
generating the 3D model is completely different. Li et al. [11] use a
laser with defined resolution, leading to a structured grid pattern with
constant spacing in width and length. The camera based approaches
discussed in the presented research generates an unstructured tessel-
lation mesh that does not guarantee constant spacing in width and
length of the tire. This has to be taken into account before applying

a Fast-Fourier-Transformation (FFT).
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Fig. 10. Extracting the center region of the tire. For better visualization, the displayed points are downsampled by factor 150, 2, 2, and 2 for the graphs from top to bottom.
Due to that it is reasonable to resample the data points before
pplying the FFT. To enable a summation over the whole tire width
fterwards, the resampling should be identical for each axial chunk.
herefore, the tire model is divided into circumferential chunks (as

n Section 5.1). For all chunks, the number of grid points is counted.
o avoid undersampling in the following step, the highest number of
oints in all chunks is selected as the baseline. Each circumferential
hunk is resampled to twice the amount of these points via a linear
nterpolation. To make the spectra comparable, the summation is nor-
alized with the sampling frequency before building the power spectral
ensity.

Considering the tread pattern spectrum of one specific tire, a precise
itch frequency can be calculated. This is based on the assumption
f a specific vehicle speed. This speed is then transformed into an
8

angular velocity and multiplied with the total number of transverse
grooves on one shoulder. In this research, we investigate one summer
and one winter tire. In case of the summer tire, this leads to a pitch
frequency of 417.8Hz, assuming a speed of 50 kmh−1 and 68 grooves.
The spread bandwidth of the actual tire spectra received, around that
pitch frequency describes how well a groove design is randomized.

6. Results

The following two subsections present the results obtained for the
three tire features explained earlier on one summer and one winter tire,
each compared for the two digitalization processes. For the open source
pipeline, a normal digital single lens reflex camera was used.
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Fig. 11. Circumferential groove detection.
Fig. 12. Extracted standard tread pattern images.
6.1. Summer tire

As shown in Fig. 12, the summer tire leads in both digitalization
processes to clear, visually comparable standard images.

The Air–Rubber ratio for equivalently cropped images results in
comparable values with 0.282 for the reference model and 0.274 for
the proposed model, which is a deviation of −2.8%.

Out of both models, four circumferential grooves are extracted.
The groove width as well as the center of the groove are displayed
in Table 1. Since both digitalization processes do not guarantee the
coordinate center to be at the identical location, relatively to the tire,
the distance between grooves is of higher importance than their actual
location. The reference and proposed models have deviations of 3.39%,
0.28%, and −0.53% for the distances between neighboring grooves.
9

Table 1
Groove width and center location for the summer tire and different digitalization
approaches.

Groove Reference model
width/center (mm)

Proposed model
width/center (mm)

Deviation groove
width (%)

1 7.86/3.93 7.82/3.20 −0.5%
2 7.68/32.84 7.26/33.09 −4.2%
3 7.73/64.68 7.77/65.02 0.5%
4 10.98/94.91 11.07/95.09 0.8%

Fig. 13 shows the tread pattern power spectra for both models, as
well as the theoretical pitch frequency and its harmonics for the case
of no randomization of the profile. These are labeled as 1, 2 and, 3.
The large peak at low frequencies can be disregarded since it is mainly
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Fig. 13. Coherent tread pattern spectra for reference model (blue) and proposed model (orange) of the summer tire.
Fig. 14. Standard images of the winter tire for both digitalization processes.
.

a result of either measurement errors, leading to a slightly displaced
center of the tire compared to the true physical center or a noncircu-
larity of the tire which is the result of either manufacturing process,
improper storage, or wear. The lower boundary frequency is defined as
a signal appearing four times on the whole circumference, which lead
to 24.6Hz. Nevertheless, it is visible that in case of the summer tire, the
FFT is able to detect the pitch frequency in both models. The overall
spectra are highly comparable in their shape and only vary in absolute
amplitude. This is not surprising, since the commercial system builds
a tessellation surface model with higher resolution in the depth of the
grooves and therefore also leads to higher peaks in the block profile.

6.2. Winter tire

The winter tire does not lead to comparable standard images for
both modeling principles, as presented in Fig. 14.

The images are calculated with the same thresholds, nevertheless
the proposed model does not lead to a full surface presentation of the
tire. It rather shows a small section of the outer tire surface. Further
variations in threshold as well as the chosen percentile of radius which
defines the center of the threshold do not lead to more satisfying
images. Decreasing the percentile mainly shifts the area of extracted
surface. Meaning, decreasing the percentile leads to the grooves in the
center of the image being closed while the border regions of the image
are extracted. This behavior leads the question of whether the tire is
perfectly round shaped. Looking at different cross section of the tire
shows that the proposed tire model does not have a constant radius. As
seen in Fig. 15, the difference between these cross sections ranges up
to 4mm. Considering the tire as a circle, the cross sections are taken
at 0°, 90°, 180° and 270°. The difference in the radius is a result of a
misplacement of the center point of the model.

The calculation of the Air–Rubber ratio for the proposed model is
therefore done on only the part of the tire in which the tread pattern
is fully represented. The obtained values are 0.370 and 0.351 for the
reference and proposed model, which is a deviation of −5.1%. The
groove widths of the winter tire with corresponding center locations
are displayed in Table 2. The deviation between the models is slightly
10

higher than in case of the summer tire. Looking at the center locations,
Table 2
Groove width and center point for the winter tire and different digitalization approaches

Groove Reference model
width/center (mm)

Proposed model
width/center (mm)

Deviation groove
width (%)

1 7.46/−12.23 7.19/−64.87 −3.6%
2 8.28/18.69 7.70/−33.68 −6.9%
3 8.01/86.32 7.48/33.50 −6.6%
4 7.57/117.43 7.19/64.74 −5.0%

there is an almost constant offset between both models which results
out of the different coordinate systems of the models. Nevertheless,
the distance between the center of neighboring circumferential grooves
remains comparable with 0.7%, −0.7%, and 0.4% deviation.

Regarding the average power spectrum of the winter tire in Fig. 16,
leads to the same result as for the summer tire. The shapes and
therefore randomization characteristics of the tread pattern profile, are
detected similarly in both models. The large difference in amplitude
for the winter tire results out of misplacement of the model’s center.
This assumption is supported through the previous observation, that
the proposed winter model does not have a constant radius. Other
reasons for the varying radius are implausible since these would also
be detected in the reference model of the winter tire, which is not the
case. The lower boundary frequency is defined as 22.4Hz . Other than
the similarity in the models’ behavior, the winter tire shows a generally
different output signal compared to the summer tire. While the signal
analysis of the summer tire shows a clear first harmonic and a blurred
second and third harmonic of the pitch frequency, the winter tire’s
shoulders are better randomized and offset from each other so that the
harmonics almost cancel out. Nevertheless, it is to state that to calculate
the shown power spectra for both winter and summer tire, the road
is assumed to be smooth. In reality, the partly stochastic geometry of
the road results in stochastic force fluctuation and therefore excitation
without strong phase relationship on both shoulders. Due to changes
in the acoustical impedance over the width of the tire, also known
as horn effect, force fluctuations near the centerline of the tire have
larger impact on overall sound pressure levels than fluctuations in the
shoulder regions.
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Fig. 15. Tire silhouette at four different cross sections of the winter tire from the proposed digitalization process.
Fig. 16. Coherent tread pattern spectra for reference model (blue) and proposed model (orange) of the summer tire.
6.3. Calculation time

Other than the quality of the obtained models, the usability es-
pecially considering the necessary time to build a tire model can be
compared.

Two steps can be investigated

1. taking images
2. calculation time

In the process of taking images, none of the systems has an advantage.
To this point, the step wise rotation (in respect to 𝑥2 in Fig. 9) of the tire
and changing of the angular orientation of 𝑥2 in respect to the camera
system is done manually. While the commercial system needs fewer
images than the proposed method to extract the shown results, taking
one picture takes longer. This results from the applied version of the
structured light approach, where different light patterns are projected
onto the object. This essentially leads to a longer exposure time than the
proposed method requires for each image. Nevertheless, these opposing
trends cancel out for the shown models, resulting in an approximate
time effort of 1.5 h per tire.

The necessary time for the reconstruction of the 3D models differs
greatly between both systems. The commercial system runs on a 12
kernel (Intel Xeon Gold 6136) with 128GB of RAM, where it takes
around 30min to reconstruct each tire model. The proposed method
runs on a CPU with 6 kernels (Intel Core i7-1070H) with 64GB of RAM,
where it takes around 24 h for each tire [17].

The calculation time of the feature extraction depends only on the
absolute number of grid points in the model. Since this is higher for
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the commercial system, the necessary calculation time is also somewhat
longer for this system. Nevertheless, the reconstruction of the standard
images, as well as the calculation of the Air–Rubber ratio as well
as the groove calculations happens within a few minutes. Only the
tread pattern spectra calculation takes around 3 h. That time is needed
since for each circumferential line, the grid points are first linearly
interpolated to standardize the time step before applying the FFT. Since
these lines are independent of each another, parallelization could speed
up the calculation. The feature calculation is done on a 4 kernel CPU
(Intel Core i7-6820HQ) with 48GB of RAM.

7. Conclusion

In this paper we compare the tessellation surface model built from
two different photogrammetry processes. One is constructed using a
commercial application working with two different cameras as well as
the structured light approach. The second one is constructed through a
self built open source pipeline. The camera used for digitalization is a
rather normal digital single-lens reflex camera with no special setting
or ocular. The different approaches are used to digitize one summer
and one winter tire each.

In the second part of the paper, three algorithms to extract charac-
teristic features, describing tires and especially their acoustical behav-
ior are explained. Even though there are many more relevant features,
we decided to analyze the Air–Rubber ratio of the tire tread, the
amount, width and location of circumferential grooves as well as
a tread pattern frequency which also indicated the tread pattern’s
randomization.
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These algorithms are applied on the four different tire models to
compare the usability of the open source pipeline against the com-
mercial system. In case of the summer tire, which generally have
tread patterns with less lamella, the commercial system does not seem
to have an advantage over the open source pipeline. The extracted
standard footprint of the tire appears visually almost identical to the
one of the commercial system. This is supported by the Air–Rubber
ratio, which records a neglectable difference. Also, the circumferential
grooves are recorded as almost same widths and locations. The tread
pattern power spectra are also highly comparable, only varying in
absolute amplitudes, which for the use case of this research is not of
relevance. In case of the winter tire, the commercial system leads to an
advantage. Especially the lamella are not really recorded in the open
source model. This and an error in the absolute radius of the tire, lead
to problems while extracting the standardized footprint. Nevertheless,
comparing the Air–Rubber ratios in a smaller image frame, leads to
similar values. Looking at the extracted tread pattern power spectra
leads to similar results for both models. Both models show amplitudes
in the same frequency ranges.

Future research should extract the tire features of a larger number
of tires to link these statistically to the tire road noise. Since Ejsmont
et al. [8] found six important tread pattern characteristics to be of great
importance to the A-weighted sound pressure level, we assume that a
dataset of 42 tire models will be enough to link the characteristics with
supervised machine learning models to the sound pressure level. These
measurements had already taken place and will be provided in further
research. Also, the tire contact patch should be modeled in a more
realistic shape than a rectangle. Considering the open source pipeline,
more research is necessary to avoid the divergence in the radius and to
extract lamella more precisely. Additionally, investigations into differ-
ent modeling methods, especially using video material of tires, could be
done. The presented feature extracting algorithms can also be applied
to any other 3D representation of tires. Especially digital prototypes can
be easily analyzed and their features can be used to predict e.g. the tires
acoustic behavior.
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