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A B S T R A C T

Spatially highly-resolved capacity expansion models are often simplified to a lower spatial resolution because
they are computationally intensive. The simplification mixes sites with different renewable features while
ignoring transmission lines that can cause congestion. As a consequence, the results may represent an infeasible
system when the capacities are fed back at higher spatial detail. Thus far there has been no detailed
investigation of how to disaggregate results and whether the spatially highly-resolved disaggregated model
is feasible. This is challenging since there is no unique way to invert the clustering.

This article is split into two parts to tackle these challenges. First, methods to disaggregate spatially
low-resolved results are presented: (a) an uniform distribution of regional results across its original highly-
resolved regions, (b) a re-optimisation for each region separately, (c) an approach that minimises the ‘‘excess
electricity’’. Second, the resulting highly-resolved models’ feasibility is investigated by running an operational
dispatch. While re-optimising yields the best results, the third inverse method provides comparable results
for less computational effort. Feasibility-wise, the study design strengthens that modelling countries by single
regions is insufficient. State-of-the-art reduced models with 100–200 regions for Europe still yield 3%–7% of
load-shedding, depending on model resolution and inverse method.
1. Introduction

Capacity expansion models are computer programs for the dimen-
sioning of energy generators, storage or the expansion of transmission
lines, typically utilised to simulate ambitious climate change mitigation
or carbon-dioxide reduction targets. Such models have gained recogni-
tion over the past years as their results are often taken as a reference
to formulate energy transition road maps. They are used by non-
governmental organisations, political institutions, transmission system
operators and large companies. Latest trends in model utilisation are
analysed by Lopion et al. [1], who outline that today’s models must
accurately portray renewable potentials and thus capture the weather-
driven variability of wind and solar photovoltaic generation in order to
provide reliable investment recommendations for renewable generator,
storage and transmission installations.

Recent literature has identified that a high spatial resolution is
required for the modelling to produce an accurate representation of
renewable generation. Schlachtberger et al. [2] found that modelling
a large geographical area at the scale of Europe allows the model
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to exploit very good continental renewable potentials and strongly
impacts the composition of the generation and storage fleet of indi-
vidual regions. Frew and Jacobson [3] demonstrated similar findings
for the United States. For models at continental scope, Aryanpur et al.
[4] stress the incompleteness of single region optimisation models
that do not capture sufficient spatial detail. They demonstrate that a
high spatial granularity is particularly relevant for models that include
heterogeneous regions (such as regions with a high share of renewable
generation), or regions with higher variability in energy demands. In
such modelling scenarios, results significantly change when the spatial
resolution of the model is varied. Martínez-Gordón et al. [5] explain the
different modelling results by the ability of a spatially detailed model
resolution to detect bottlenecks in the transmission grid and, therefore,
to adequately assess renewable potentials based on local weather con-
ditions and to identify regional variations in electricity demand. The
granularity of this data-driven information significantly improves the
design and composition of the electricity mix and the routing of new
grid infrastructure predicted by the model. Similar results have been
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found by Miranda et al. [6], who show that a detailed transmission
infrastructure significantly affects capacity deployments and electricity
prices. On the resource side, Frew and Jacobson [3] reveal significant
differences in wind and solar development when modelling renewable
generation sites independently for optimal site diversity, compared to
assuming an aggregated buildout across all sites uniformly as is done in
many grid integration studies. Frysztacki et al. [7] disentangle the ef-
fects of sourcing renewable generation versus routing the electricity to
locations of high demand using large transmission networks, revealing
that routing dominates the system effects and forces the model to build
renewable assets closer to demand centres at potentially worse capacity
factors when the model has a high spatial resolution. These findings are
not unique to the electricity sector; they can also be observed when
modelling the heat decarbonisation [8].

The downside of higher resolution is that processing large data
volumes inevitably results in a computational burden that arises from
solving the associated mathematical formulation in the model. In order
for the spatially aggregated models to better represent the highly-
resolved system, more effective clustering methods have been devel-
oped. Methods developed by Scaramuzzino et al. [9] and Siala and
Mahfouz [10] show that aggregating based on political zones and
borders is not suited to accurately portray the electricity system because
there is per se no correlation between the distribution of solar radiation,
wind speed, electrical load on the one hand and the administrative
divisions on the other hand. Instead, they suggest to aggregate regions
based on their similarities in renewable feed-in or demand-patterns,
such as load density distribution and solar and wind potentials. Another
approach by Biener and Garcia Rosas [11] suggests to cluster regions
with high electrical connectivity to minimise load flow deviations after
the aggregation. A recent survey by Frysztacki et al. [12] improves
previous methods and suggests which of them is most suitable for which
modelling scenario. The overall consensus of most studies is to model
the European electricity system that contains more than 5000 electrical
substations at and above 220 kV at a spatial model resolution of at least
100–200 regions, depending on the model configuration.

Previous literature did not provide answers if the spatial resolution
of the models impacts the optimality of the solution, or whether these
spatially simplified modelling results are feasible with respect to the
original, spatially highly-resolved model. Moreover, as of now, there
exist no or only limited approaches in previous research to disaggregate
the spatially simplified modelling results back at its original high
resolution. There exist only few publications to the authors knowledge,
such as from [13] who disaggregate simplified modelling results at
higher spatial detail. In their approach only the power dispatch of
spatially low-resolved model was disaggregated to a spatially higher
resolved model, investment variables were not considered. Beyond
that, the study did not analyse the overall feasibility of the resulting
disaggregated model at a higher spatial resolution and focuses only
on a German model. Neither the assumptions on the disaggregation,
or the resulting highly-resolved systems were analysed in detail with
respect to their plausibility. Another disaggregation method is pre-
sented by Reinert et al. [14], who propose an iterative disaggregation
process and allow transmission grid expansion in the final iteration,
so that solving the highly-resolved model becomes feasible. It remains
unclear how feasible the disaggregated model is when omitting trans-
mission grid expansion in the final iteration. Finally, Grochowicz et al.
[15] propose three disaggregation methods. At highest resolution, they
generate results for a model where every country is represented as a
single region, which is already below the sufficient resolution suggested
by prior research. Moreover, the proposed disaggregation follows a
pre-defined iterative approach that guarantees that the resulting highly-
resolved one-region-per-country model is feasible. Therefore, they do
not provide an analysis on whether spatially low-resolved capacity
planning results can represent a feasible solution to a spatially more
2

complex system.
This contribution focuses on the unresolved inverse problem of
mapping spatially low-resolved optimisation variables at a higher res-
olution. The first comparison of different disaggregation methods in a
European continent-scale model is presented and new algorithms for
disaggregation options are provided in Section 2. Spatial decomposition
methods such as optimality cut or feasibility cut were specifically not
applied, because this approach would aim to solve the fully resolved
model, and provide no insight if the spatially aggregated model results
are feasible with respect to the higher dimensioned model formulation.

First, the capacity expansion model used for this study is presented,
followed by a detailed description of three new methods to disaggregate
the resulting coarse model variables at high resolution in Section 2.
In Section 3 a feasibility analysis is carried out where it is tested
if the spatially low-resolved capacity planning results are capable to
meet electricity demand at all places at all times when disaggregated
at a spatially highly-resolved model. The feasibility of the resulting
system is not intuitive, because the spatially low-resolved models omit
transmission constraints that can result in congestion and, at the same
time, smooth variable renewable resources by aggregating potentially
heterogeneous resource sites. The novelty of this analysis is that none
of the very limited disaggregation methods from the literature was
previously tested with respect to model feasibility. Therefore, the error
in investment decisions made by the low-resolved models compared
to a spatially highly-resolved model is quantified for the first time.
Conclusions are drawn in Section 4. Finally, the limitations of this study
are discussed in Section 5.

2. Data and methods

In this section the underlying data is presented. The overall mod-
elling process in described in 2.1, where the novelty of this study is
highlighted. A selection of the most important data and methods of
the model employed for this study are presented in Section 2.2. The
three proposed inverse methods on how spatially low-resolved capacity
expansion model results can be disaggregated back at higher spatial
detail are presented in Sections 2.3–2.5 and are summarised in Table 1.
The treatment of inter-cluster powerflows is discussed in Section 2.6.
The study design and evaluation of results are presented in Section 2.7.

2.1. Modelling overview

Fig. 1 displays the overall approach of electricity system modelling.
It typically executes in the following order: (i) Creating the model. This
includes collecting data of the system to be analysed, for example the
network topology of the transmission system, capacities of generators
that are to be included in the model, land-use constraints, time-series of
electricity demand, wind speeds, solar radiation, etc. and assigning the
data to the correct locations. (ii) Clustering the spatially highly-resolved
network down to a smaller approximation to gain computational ad-
vantages. (iii) Formulating a set of mathematical equations associated
with the problem and solving it.

Here, the additional fourth and fifth steps are introduced to this
queue: (iv) Disaggregating the low-resolved results (i.e. the resulting
renewable capacities 𝐺𝑣,𝑠) back at high spatial resolution. As the clus-
tering 𝑓 ∶ R𝑚 → R𝑛 reduces the (spatial) dimension of the data
(𝑛 < 𝑚, in many cases even 𝑛 ≪ 𝑚), the mapping is surjective but not
injective, hence not bijective. Therefore, finding an inverse that maps
the results back at high dimension 𝑓−1 ∶ R𝑛 → R𝑚 is a challenging
task and the inverse is not unique. Therefore three different approaches
to tackle the disaggregation of the generation and storage capacities
for each technology from the low-resolved capacity expansion model
to the highly-resolved operational model are presented and adequate
inverse methods are suggested. The proposed methods are summarised
in Table 1 and are explained in detail in the following three sections.
(v) Running an optimisation with fixed capacity that is derived from
step (iii), applying the disaggregation from (iv). (v) is also referred to
as operational optimisation. It allows to gain insights into the dynamics

of the electricity system, particularly to analyse its feasibility.
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Fig. 1. Illustration of the typical model process: (i) Data collection and model creation,
(ii) spatially clustering the network down to a smaller number of nodes to obtain a
computationally tractable model, (iii) optimise the model, i.e. find the cost-optimal
configuration of generators, storage units and power flows. Normally, the modelling
task is completed at this stage. In this work, two additional steps are proposed: (iv)
disaggregating the spatially reduced model results into higher spatial resolution and
(v) an operational optimisation is conducted, testing the resulting network model for
feasibility.

2.2. Model and input data

For this study, the openly available European Electricity System
Model at transmission substation level, PyPSA-Eur is employed. It is
used to model a future fully renewable electricity system that con-
sists of today‘s transmission grid, and can build solar pv, onshore
wind, offshore wind, hydrogen storage and batteries to cover European
electricity demands. The model is described in detail in its original
publication by Hörsch et al. [16], therefore only its major functionality
are summarised here. The mathematical model formulation and solving
is based on the python package PyPSA, originally developed by Brown
et al. [17]. This section focuses on features that are relevant for the
specific use-case for this study.

The full model covers 33 European countries with a full spatial
resolution of 5323 nodes (3609 substations), 6640 transmission HVAC
and HVDC lines at and above 220kV. The transmission grid is assumed
as it was installed by 2020, but includes planned over-sea HVDC lines
that strengthen the connection between continental Europe and the
British Isles. Electricity demand is embedded from the Open Power
System Data (OPSD) [18] project. Historical weather data to account
for the variability of renewable resources is openly provided by the Eu-
ropean Centre for Medium-Range Weather Forecasts (ECMWF) [19]
in the ‘‘ERA5 Reanalysis’’ dataset, and by Pfeifroth et al. [20] in the
second edition of the ‘‘Surface Radiation Data Set (SARAH-2)’’. This raw
data contains for example solar radiation, wind-speeds or temperature,
and is processed using the open source software ‘‘atlite’’, developed
by Hofmann et al. [21], to translate it into capacity factors for the
modelling.

The main objective of the capacity expansion model is to minimise
the annual system costs that consist of the sum of all investments in
new capacity 𝐺𝑣,𝑠 at each node 𝑣 of every technology 𝑠, as well as the
variable costs related to the dispatch of the generators 𝑔𝑣,𝑠,𝑡 at each time
𝑡. The weight 𝑤𝑡 relates to the duration of dispatch and is fixed to 2 in
our application, i.e. 𝑤𝑡 ≡ 2 to balance computational model fidelity
against accuracy of the modelling results [see [22]]. Mathematically,
this can be formulated as

min
𝐺𝑣,𝑠,
𝑔𝑣,𝑠,𝑡

,

𝑓(𝑣,𝑤),𝑡

[

∑

𝑣∈

∑

𝑠∈

(

𝑐𝑣,𝑠𝐺𝑣,𝑠 +
∑

𝑡∈
𝑤𝑡𝑜𝑣,𝑠𝑔𝑣,𝑠,𝑡

)]

, (1)
3

with additional constraints to guarantee network security, to cover
demand at all times and places, to account for the system to be phys-
ically plausible including Kirchhoff’s circuit laws and upper and lower
bounds for generator dispatch. Such model is called ‘‘capacity expan-
sion model’’, because the variables that are subject to the optimisation
represent the dimensioning of renewable generators or storage units,
𝐺𝑣,𝑠. Furthermore, generator dispatch and energy storage behaviour as
well as electricity power flows are also subject to the optimisation,
constrained by the size of the respective unit. The optimisation is solved
using an interior point method to find the minimum using the Gurobi
Optimisation [23] python interface.

All variables appearing in this article are explained in the Glossary,
Section 6, Table 4. Cost assumptions are based on suggestions by the
Danish Energy Agency [24] for wind technologies, Schröder et al. [25]
in case of open cycle gas turbines, pumped hydro storage, hydro, run-
of-river, Budischak et al. [26] for storage technologies and Vartiainen
et al. [27] for solar. For details, see A.1.

To enable computational feasibility, the whole model with more
than 5000 nodes must be reduced to a computationally tractable size by
spatially clustering the nodes. Then, the reduced optimisation problem
(1), now with a smaller set of nodes  , can be solved. There exist many
approaches to spatially reduce the size of such model. Latest research
from [11,12], motivated by insights from [10], have demonstrated that
the best suited clustering method for capacity expansion models with
highly renewable scenarios are of hierarchical nature. Therefore, for
this study, a hierarchical agglomerative clustering is chosen for the
spatial scale. It is a bottom-up approach, where each node is treated
as a singleton cluster. Then, in every iteration, two clusters that have
the highest similarity and that are connected by a transmission line
are aggregated. The same similarity measure as previously analysed is
used. It is defined such that the aggregated nodes have the most similar
renewable time-series �̄�𝑣,𝑠,𝑡 throughout the whole year, i.e.

̄𝑣∈ , 𝑠∈{solar,wind}, 𝑡∈ ∈ [0, 1]2| | . (2)

Note that such spatially aggregated models are not capable to
account for all transmission lines that can be constraining in terms of
the load-flow. For example, transmission lines within an aggregated
region are ignored in the simulation. As a result, the optimal solution
of a spatially clustered model can still be inaccurate compared to a
highly-resolved solution. Eventually, this inaccuracy can lead to an
infeasibility when coarse modelling results are implemented in a spa-
tially more complex system. This inaccuracy is quantified in Section 3.
For the remaining part of this section, the focus lies on the three pro-
posed disaggregation methods including the treatment of inter-cluster
transmission flows.

In terms of temporal scale, every two consecutive hours are aggre-
gated. Temporal aggregation, such as spatial aggregation, can lead to a
different type of modelling error. Therefore a high temporal resolution
is maintained. The approach to aggregate only two consecutive hours
has shown to yield good results compared to hourly-resolution while
reducing the model size by a factor of 2. A general overview of temporal
aggregation and accompanying errors are discussed by Kotzur et al.
[28] or Jacobson et al. [29].

2.3. Uniform distribution

The first approach to disaggregate spatially low-resolved modelling
results is inspired by suggestions made by Müller et al. [13], where a
similar disaggregation was applied on the power dispatch 𝑔𝑐,𝑠,𝑡. Here,
the focus lies on the investment variables 𝐺𝑐,𝑠 and the disaggregated
dispatch is determined only after running an operational problem
(see Section 2.1). The method is simple and computationally inex-

pensive. For each generation and storage technology, the capacities
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Table 1
Summary of the proposed disaggregation methods.

Short name Method description

Optimal capacities retrieved from an optimised low-resolution model are
distributed ...
uniform ... uniformly across all nodes within a cluster of the

highly-resoled network while accounting for land-use
restrictions by imposing an upper bound.

re-optimise ... anew by re-optimising capacities within each cluster with
full formulation, while enforcing the same build-out capacity
totals per technology as in the clustered model.

min excess ... according to a local optimisation which seeks to
concentrate generation at nodes with higher demand and
grid capacity and thus to minimise load-shedding.

retrieved from the spatially low-resolved model is distributed within
every cluster uniformly across all highly-resolved nodes:

𝐺𝑐,𝑠 ↦
1

|𝑐 |

⎛

⎜

⎜

⎝

𝐺𝑐,𝑠
...
𝐺𝑐,𝑠

⎞

⎟

⎟

⎠

∈ R|𝑐 | . (3)

An additional constraint is formulated to account for land-use con-
straints. This upper limit is formally defined as

𝐺𝑣,𝑠 ≤ 𝐺max
𝑣,𝑠 ∀𝑣 ∈ 𝑐 (4)

nd is enforced by selecting the generators where (4) is not satisfied and
niformly distributing the residual capacity over the remaining nodes
ithin the cluster, i.e. across the following set of generators:

𝐺𝑣,𝑠 ∶ 𝑣 ∈ 𝑐 ∧ 𝐺𝑣,𝑠 < 𝐺max
𝑣,𝑠 } . (5)

he last step is repeated until all nodes satisfy constraint (4).

.4. Regional re-optimisation

The second considered method is inspired by suggestions made
y Reinert et al. [14], who have proposed a similar, iterative dis-
ggregation method with adaptations to the transmission grid in the
inal iteration. Further adaptations to the optimal solution or the orig-
nal transmission grid are not allowed, and the problem is not it-
rative. However, it may be computationally challenging. For each
luster 𝑐 ⊂  the re-optimisation is conducted at high resolution
sing the original objective function (1) with all associated mathemat-
cal constraints. Additionally, a set of constraints to incorporate the
ow-resolved modelling results is imposed:
∑

∈𝑐

𝐺𝑣,𝑠 = 𝐺𝑐,𝑠 ∀𝑠 ∈  . (6)

his set of constraints ensures that the amount of installed capacity is
he same for every technology in every region.

Depending on the size of the cluster, the disaggregation may blow
p the problem beyond the computational capacity of the machine and
an result in an even larger problem than the clustered one. On the
ositive side, the re-optimisations for each cluster can be run in parallel.

.5. Minimal excess electricity

Our third Ansatz for disaggregation is motivated by finding a com-
romise in terms of computational resources. It is not evident that
olving the full optimisation problem is necessary to distribute renew-
ble capacity. Instead, a simpler new objective function that minimises
renewable) excess electricity is defined. It is designed to spatially align
enewable generation with demand and possible flexibility options
nside the cluster:

in
𝐺𝑣,𝑠

∑

𝑣∈𝑐 ,
𝑠∈𝑆re ,

[

�̄�𝑣,𝑠,𝑡𝐺𝑣,𝑠 − 𝑑𝑣,𝑡 − 0.7
∑

𝑙(𝑣,𝑤)∈∶
𝑣=𝑐∨𝑤=𝑐

𝐹(𝑣,𝑤)

]+
. (7)
4

𝑡∈
he bracket
[

𝑥
]+ ∶= max{0, 𝑥} yields the positive part of the sum.

ompared to the regional re-optimisation introduced in Section 2.4,
he set of additional constraints to the optimisation problem is much
maller. Only Eqs. (4) and (6) are imposed. The choice of this objective
unction is motivated by prior research carried out by Lund et al. [30]
r Frysztacki and Brown [31] where Eq. (7) was invoked as a measure
o balance the spatial resolution of the model and accurate modelling
esults. Similarly to the previous methods, this disaggregation method
an be run in parallel for each cluster.

.6. Modelling power flows between clusters

For two of the three proposed disaggregation methods (‘re-optimize’
nd ‘min excess’), additional boundary constraints on the inter-cluster
ransmission lines are added to simulate electricity im- and exports.
his can be done by extracting the optimal power flows of the low-
esolved network 𝑓(𝑐,𝑑),𝑡 and distributing them proportional to the
apacities of the inter-cluster highly-resolved transmission lines 𝐹(𝑣,𝑤)
ollowing

(𝑣,𝑤),𝑡 =
𝐹(𝑣,𝑤)

𝐹(𝑐,𝑑)
𝑓(𝑐,𝑑),𝑡 ∈

[

−𝐹(𝑣,𝑤), 𝐹(𝑣,𝑤)
]

(8)

∀(𝑣,𝑤) ∈ 𝐸 ∶ 𝑣 ∈ 𝑐 , 𝑤 ∈ 𝑑 ∧ 𝑐 ≠ 𝑑 .

The resulting fine power flow 𝑓(𝑣,𝑤),𝑡 is modelled as additional demand
imposed on all nodes 𝑣 ∈ 𝑐 and 𝑤 ∈ 𝑑 that are connected by a
transmission line (𝑣,𝑤) ∈ 𝐸, with 𝑐 ≠ 𝑑, i.e.

𝑑𝑣,𝑡 ↦ 𝑑𝑣,𝑡 + 𝑓(𝑣,𝑤),𝑡 ∀𝑣 ∈ 𝑐 ,

𝑤,𝑡 ↦ 𝑑𝑤,𝑡 − 𝑓(𝑣,𝑤),𝑡 ∀𝑤 ∈ 𝑑 (𝑐 ≠ 𝑑) ,

here positive power flows represent electricity imports and negative
nes electricity exports. These results do not deviate strongly from
hose where each region is treated as an island, meaning that no
owerflows retrieved from the coarse model are considered in the
isaggregation. However it is plausible to include them when invert-
ng modelling results, therefore this article focuses on this approach.
slanded results can be found in the Appendix, see A.2.

.7. Study design

To investigate the quality of the proposed disaggregation methods,
he model is solved as a pure operational problem, where no further
apacity can be built. This is equivalent to solving Eq. (1) with its asso-
iated constraints, however the technology capacities 𝐺𝑣,𝑠 are removed
rom the set of optimisation variables and replaced by a fixed number
hat is the result of the disaggregation. Load-shedding generators with
igh but non-extendable capacity are added to the network to guar-
ntee physical feasibility. The operational problem is computationally
ess extensive to solve because the inter-temporal capacity expansion
as been removed from the problem. Therefore, solving a spatially
ighly-resolved model becomes computationally feasible.

The amount of load-shedding in the highly-resolved operational net-
ork model with the disaggregated investment variables taken from the

ow-resolved capacity expansion model, and the amount of renewable
urtailment are considered as main quality measures. Curtailment de-
cribes how much abundant electricity the low-resolved model chooses
o generate which, when highly-resolved, cannot be transported to loca-
ions with high electricity demand. This is mostly due to an inaccurate
hoice of siting capacity due to missing information about possible
ransmission bottlenecks in the low-resolved model. Load-shedding is
hosen because it indicates how much capacity is underestimated by
he low-resolved model due to averaging capacity factors and removing
rid bottlenecks from the network. Load-shedding could stem from
ifferent reasons: (i) the disaggregation of solar and wind capacities
o multiple sites with different capacity factors could result in a lower
verall yield compared to the aggregated site, or (ii) the grid bot-
lenecks inside the clusters could cause congestion, such that power
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Table 2
Investigated intra-cluster scenarios for each of the disaggregation methods. This
means that additional constraints on the transmission lines within each cluster are
formulated.

Short name Scenario description

The highly-resolved network with disaggregated capacities is solved as an
operational problem where ...
regular ... no further adaptations are made.
copperplate ... the intra-cluster transmission capacity is infinitely high. Note,

that the inter-cluster transmission capacity is still bound.

generated at locations with surplus of electricity cannot be transported
to locations with high net load.

As load-shedding is a greater risk in terms of energy security, a test
is designed to better understand its origin. To rule out reason (ii), a
second operational scenario is run (which is referred to as ‘‘copper-
plate’’), where the capacity of all transmission lines that have vanished
in the low-resolved network due to aggregation are set to ∞, i.e.

(𝑣,𝑤) → ∞ ∀(𝑣,𝑤) ∶ 𝑣,𝑤 ∈ 𝑐 , ∀𝑐 . (9)

his modification is only applied to solve the operational problem, not
or the disaggregation of results.

Note that all inter-cluster transmission capacity is still finite, mean-
ng

(𝑣,𝑤) ≪ ∞ ∀(𝑣,𝑤) ∶ 𝑣 ∈ 𝑐 , 𝑤 ∈ 𝑑 , 𝑐 ≠ 𝑑 . (10)

A summary of the two considered scenarios (‘‘regular’’ and ‘‘copper-
late’’) is provided in Table 2.

. Results

First, the feasibility of low-resolved modelling results is presented
hen disaggregated at high spatial resolution in Section 3.1 using the

hree proposed disaggregation methods. It is distinguished between the
‘regular’’ set-up where the intra-cluster transmission capacity is not
hanged (Section 3.1.1). An additional focus lies on where the curtail-
ent and load-shedding measures are spatially located (Section 3.1.2).
he ‘‘copperplate’’ set-up sets the transmission capacity within clus-
ers of the spatially highly-resolved model to infinity to approximate
he clustered copperplate optimisation model (Section 3.1.3). Then,
omputational Trade-Offs of the presented disaggregation methods are
iscussed in Section 3.2.

Results on how the generation mix and build-out rates are affected
s a function of the modelling resolution are discussed in [12,31].

.1. Feasibility considerations

In this section the feasibility of the spatially highly-resolved oper-
tional model is discussed that consists of the disaggregated spatially
ow-resolved modelling investment variables. Here, ‘‘feasibility’’ means
he notion that electricity demand can be covered by 100% renewable
lectricity and no additional generation of conventional plants is nec-
ssary for a stable operation of the grid. Finally, the model is modified
o study possible reasons of necessary intervention measures to secure
lectricity supply at all times and places.

.1.1. Regular intra-cluster transmission capacity
The results presented here are derived from the ‘‘regular’’ set-up,

eaning with no adjustment to the intra-cluster grid capacities in the
igh resolved optimisation model (see Table 2). The resulting amounts
f load-shedding and curtailment are presented in Fig. 2.

For any of the three proposed disaggregation methods it can be
een that the amounts of both curtailment and load-shedding decrease
s the resolution of the underlying low-resolved capacity expansion
odel increases. This can be explained by a better approximation of
5

Fig. 2. Amounts of annual load-shedding and curtailment after solving the highly-
resolved operational problem with the three proposed disaggregation methods. The
number of clusters on the 𝑥-axis refers to the spatial resolution of the model of which
the investment variables are disaggregated at high resolution. Transmission capacity
within every cluster is not adjusted. (‘‘regular’’ setup in Table 2).

the spatially highly-resolved model. The higher the spatial resolution
of the capacity expansion model, the better is its approximation of the
original highly-resolved model. Therefore, at higher spatial resolution,
less costly load-shedding measures are necessary when disaggregating
investment variables. It can also be seen that load-shedding is caused
by high curtailment rates, that are likely to be provoked by trans-
mission congestion. However, there are substantial differences in the
performance of the disaggregation methods.

Curtailment rates of the different disaggregation methods deviate
by 1–3% from one another on average, depending on the underlying
apacity expansion model resolution. Distributing coarse investment
ariables across the spatially highly-resolved operational model us-
ng the ‘min excess’ approach yields the highest curtailment rates of
1%–22% of annual electricity demand, depending on the low-resolved
apacity expansion model resolution and the disaggregation method.
he lowest resolution has the highest curtailment. Uniformly distribut-

ng results performs similar to the ‘min excess’ method at a very low
esolution of 37 nodes (one node per country), resulting in 22% of

curtailed electricity. The ‘re-optimise’ method performs better in this re-
gard, resulting only in 19% of curtailed electricity. But the curtailment
rates decrease to approximately 14.5% (‘min excess’), 13% (‘uniform’)
and 11% (‘re-optimised’) of annual electricity demand, as the capacity
expansion model resolution increases. Re-optimising the local problem
yields the lowest curtailment for every low-resolved model resolution,
which is approximately 2–3% lower compared to the results of the
‘uniform’ approach.

Regarding load-shedding, for a low-resolved capacity expansion net-
work where every country is represented by a single node (37 clusters
in Fig. 2), ‘re-optimise’ performs best as it results in the lowest load-
shedding rates. Re-optimising yields approximately 265 TWh or 8.2%
of the annual electricity demand that cannot be covered by renewable
generation. If this gap were filled with gas to satisfy electricity demand,
annual carbon emissions would rise from 0% to 3.2% of 1990s levels.
Compensating the unmet demand when disaggregating results with the
‘min excess’ method yields approximately 400 TWh of load-shedding,
resulting in 4.8% of carbon emissions (1.6% more compared to ‘re-
optimised’) if gas is dispatched for the load-shedding measure. When
uniformly disaggregating renewable capacity within the clusters, the
operational problem returns 500 TWh of load-shedding measures. Com-
pensating with gas would result in 6% of carbon emissions of 1990,
1.2% more compared to ‘min excess’.

When increasing the capacity expansion model resolution, the
amount of load-shedding decreases for all the disaggregation methods.
It can be seen that at a model resolution of 67 or more nodes, the
amount of load-shedding is in the same range for the methods ‘re-
optimised’ and ‘min excess’ deviating by only 0.5% on average. When
uniformly distributing the retrieved low-resolved, optimal capacities,
load-shedding measures are higher than those of the competing disag-
gregation methods by initially 2.8% at a capacity expansion resolution

of 37 nodes and linearly decreases as the resolution of the capacity
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Fig. 3. Spatial distribution of curtailment and load-shedding measures across Europe in
the highly-resolved operational 1250 node model for the three proposed disaggregation

ethods after running the operational dispatch. Optimal capacity installations are taken
rom a model resolution of 97 nodes, and are disaggregated at 1250 regions.

xpansion model increases. At around 187 nodes, the difference for
ll three methods is below 0.5% in terms of necessary load-shedding
easures. At an underlying capacity expansion model resolution of
17 nodes, the amounts of load-shedding are all within the range
4–110 TWh, corresponding to 3–3.5% of annual electricity demand in

Europe.

3.1.2. Localisation of load-shedding and curtailment
In this section it is analysed where curtailment and load-shedding

is spatially localised. Recall that the highly-resolved model yields load-
shedding measures because of (i) disaggregating capacity factors results
in a different overall yield of renewable electricity or (ii) grid bottle-
necks that did not occur in the low-resolved model, as described in
detail in Section 2.7.

Fig. 3 displays the regions of curtailment and load-shedding spa-
tially distributed after running the operational highly-resolved 1250
node model for all three disaggregation methods for a reference ca-
pacity expansion model resolution of 97 nodes. In all three cases it can
be seen that the load-shedding is scattered in central European regions
such as southern Poland, central and southern Germany, Switzerland
and Austria and thus far from coastal areas and southern locations,
such as e.g. northern Germany and France, Italy and Spain. At the
same time, coastal and southern locations have high amounts of cur-
tailment. Transmission lines connecting regions with high amounts of
curtailment and regions with high load-shedding show high congestion
rates. Thus, the results suggest that the low-resolved capacity expansion
model favours investments in wind turbines at locations with good
wind conditions at coastal areas, and in solar panels in the southern
regions with good solar radiation, while it is blind to transmission
bottlenecks that prohibit transporting the electricity to demand centres.
6

Fig. 4. Amounts of annual load-shedding and curtailment after solving the highly-
resolved operational problem with the three proposed disaggregation methods. The
number of clusters on the 𝑥-axis refers to the spatial resolution of the model of which
the investment variables are disaggregated at high resolution. Transmission capacity
within every cluster is set to infinite to approximate the copperplate clustered network
(‘‘copperplate’’ set-up in Table 2).

3.1.3. Infinite intra-cluster transmission capacity
To verify why load-shedding measures are necessary as well as to

better understand the high curtailment rates, a setting is considered
where within each cluster the transmission capacity is set to infinity,
following the description provided in the beginning of Section 2.7,
see Eqs. (9)–(10). This means that in the highly-resolved model, only
the capacity between clusters is limited. Results on load-shedding and
curtailment are presented in Fig. 4.

It can be seen that the amounts of renewable curtailment in the
disaggregated operational models deviate by less than 5% from the
curtailment rates of the capacity expansion model. They can mainly
be explained by varying capacity factors. In the highly-resolved oper-
ational models, larger deviations of capacity factors within each clus-
tered region become available compared to the spatially low-resolved
capacity expansion model.

As the resolution of the capacity expansion model increases, the
amount of curtailment also tends to increase slightly. This can be
explained by the fact that more total capacity is installed for a high
capacity expansion model resolution.

In terms of congestion, the necessary amount of load-shedding
when uniformly disaggregating renewable capacity drops to 0 for a
capacity-expansion model resolution of above 100 nodes. For a one-
node-per-country model (37 nodes), there remains a relatively low
amount of load-shedding of approximately 50 TWh, resembling about
1.5% of annual electricity demand. In case the ‘re-optimise’ disaggre-
gation Ansatz is invoked, load-shedding decreases to 0% of annual
electricity demand for every low-resolved capacity expansion model.
‘min excess’ yields less than 5 TWh (<0.5%) of load-shedding measures
for any low-resolved capacity expansion model. At peak (97 nodes)
this amount of gas would emit around 800 kg of CO2 (0.05% of 1990s
emissions). One can conclude that these results are consistent with the
main cause of load-shedding being the transmission restrictions within
the clusters.

3.2. Trade-offs of the disaggregation approaches

There are four main qualities that can be considered when evaluat-
ing trade-offs of the different disaggregation methods. First, the quality
of results: How well do the proposed methods solve the problem at
hand? Second and third, the computational efforts can be considered.
These mainly focus on the question: Are the proposed methods com-
putationally legitimate for the considered problem? This consideration
includes not only the memory requirements needed to solve the prob-
lem, but also the time it takes to solve. Fourth, depending on the results
of the methods or the problem formulation, it might also be worth
considering the efforts to implement a solver.

For the proposed methods in this paper, a summary of these four
qualities is provided in Table 3.
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Table 3
Trade-Offs of the three proposed approaches to disaggregate results. Marked with a ✓

ndicate a reasonable trade-off, entries with a ✗ indicate an inadequate compromise.
Implementation Solving time Memory (RAM) Results Quality

uniform ✓ ✓ ✓ ✗

min excess ✗ ✓ ✓ ✓

re-optimise ✗ ✗ ✗ ✓

Fig. 5. Memory resource requirements (left) and solving times (right) for executing the
proposed disaggregation methods for individual regions. The number of clusters on the
𝑥-axis refers to the spatial resolution of the model of which the investment variables
are disaggregated at high resolution. Possible memory consumption and solving times
are marked by the corresponding colour shades, depending on the size of the cluster
that is to be disaggregated. The memory resource requirement and solving time for the
largest and smallest local problem can be taken from the edges of the marked area.
Median requirements are displayed with a dotted line. The black dotted line denotes
the requirements of solving the spatially low-resolved network that has the spatial
resolution as given on the 𝑥-axis. Note that for ‘min excess’ and ‘uniform’, the median
values coincide with the lower bounds, and are thus hidden in the plot. Moreover, for
‘uniform’, there upper and lower bounds collapse, thus no distribution is visible.

The performance with respect to the quality of results of the pro-
posed disaggregation methods was already discussed in Section 3.1.
Now, the performance of the proposed methods is analysed from a
computational point of view. Rating the efforts of implementation is
a subjective task, therefore it is solely related to the fact that uni-
formly distributing a number across a set of nodes does not involve
mathematical optimisation. Therefore applying an uniform distribution
is rated ‘‘easier’’ than formulating a mathematical constraint to an
existing optimisation problem as proposed in ‘re-optimise’, or a whole
optimisation problem including both objective function and associated
constraints, as proposed in ‘min-excess’.

Computational resources and solving times for disaggregating spa-
tially low-resolved model results at high spatial resolution are pre-
sented in Fig. 5 for every proposed method.

Resource-wise, re-optimising the local model consumes up to 13
times (1.7 times in average) the amount of resources compared to
minimising a simpler objective in ‘‘min excess’’, and up to 26 times
(2.7 times in average) compared to uniformly distributing the capacity
obtained from the low-resolved model (‘‘uniform’’). In absolute num-
bers, the method ‘‘re-optimise’’ consumes up to 22.2 GB RAM at peak,
compared to 2.2 GB RAM for ‘‘min excess’’ and only 1.5 GB RAM in
case of ‘‘uniform’’. Today‘s average state-of-the-art personal computers
are able to solve both the ‘‘uniform’’ and ‘‘min excess’’ problem for-
mulations for any model resolutions, while solving the ‘‘re-optimise’’
approach needs more computational power and, therefore, requires a
more advanced machine or even a high-computational cluster access.
All local disaggregation runs were carried out in parallel.

Considering the computational times, these trade-offs are similar.
The method ‘‘uniform’’ is up to 4000 times faster at peak than ‘‘min
excess’’ and 70 times faster in average. In turn, ‘‘min excess’’ is up to 20
imes faster than ‘‘re-optimise’’ and 11 times faster in average. Note that
omputational times might change when allowing a lower accuracy of
he results. Here, a barrier convergence tolerance of 10−9 is chosen
nd a feasibility tolerance of 10−6, which is not necessarily required. A

−3
7

olerance of 10 might suffice in most applications. However, lowering
Table 4
Glossary. Variables and their description.

Abbrev. Description

 Set of all nodes contained in the model.

𝐸 Set of all edges representing transmission lines contained in the
model.

𝑣,𝑤 Representative names for highly-resolved nodes.

𝑐, 𝑑 Representative names for clustered nodes.

𝑐 Set of highly-resolved nodes that are aggregated to node 𝑐.

(𝑣,𝑤) a HVAC or HVDC line connecting nodes 𝑣 and 𝑤.

 Set of available technologies in the model, for example wind
generator or battery storage.

𝑠 Generator or storage technology.

 Set of snapshots in the model.

𝑡 snapshot, typically covering a duration of 2 hours.

𝐺𝑣,𝑠 Capacity in node 𝑣 of generators of type 𝑠.

𝑔𝑣,𝑠,𝑡 Dispatch in node 𝑣 of technology type 𝑠 at time 𝑡.

�̄�𝑣,𝑠,𝑡 Capacity factor at node 𝑣 for technology 𝑠 at time 𝑡.

𝑤𝑡 Weighting for time, here 𝑤𝑡 ≡ 2 ∀𝑡 ∈  , representing a 2-hourly
model run.

 Set of transmission lines in the model.

𝐹(𝑣,𝑤) Capacity of the transmission line connecting nodes 𝑣 and 𝑤.

𝑓(𝑣,𝑤),𝑡 Power flow from node 𝑣 to node 𝑤 at time 𝑡.

𝑑𝑣,𝑡 Electricity demand in node 𝑣 at time 𝑡.

𝑐𝑣,𝑠 Capital costs at node 𝑣 of technology 𝑠.

𝑜𝑣,𝑠,𝑡 Operational costs at node 𝑣 for technology 𝑠 at time 𝑡.

𝛶𝑉 (𝑡), 𝛶𝐶 (𝑡) Curtailment of the highly-resolved model (𝑉 ) or the clustered
model (𝐶) at time 𝑡.

𝛥𝑉 (𝑡), 𝛥𝐶 (𝑡) Load-shedding measure of the highly-resolved model (𝑉 ) or the
clustered model (𝐶) at time 𝑡.

the tolerance of the solver reduces solving times, but the memory
consumption persists.

All experiments presented in this article were carried out on a high-
computational cluster with 5 nodes, each having an allocatable capacity
of 48 cpu’s and 256 GB memory.

4. Conclusions

From these results, several conclusions on the methodology of the
disaggregation methods can be drawn as well as on the insights of
disaggregating coarse modelling results at a higher spatial detail.

The presented methods to disaggregate optimal infrastructure in-
vestment of renewable generation technologies and flexibility options
have significant differences in their quality of results, simplicity of
implementation and computational resource consumption. It has been
shown that it is not necessary to locally solve the full optimisation
problem to disaggregate coarse results at higher spatial detail, as it
was conducted in previous research. Instead, it can be sufficient to
formulate a suitable alternative objective which reduces computational
cost and is able to preserve the quality of the disaggregation. In this
paper, a novel function ‘‘min excess’’ has been suggested that performs
just as well, for lower computational burden. Further inverse functions
could be considered in future research.

Regarding the disaggregated highly-resolved modelling results, the
result presented in this article once again stress that modelling a fully
renewable European electricity system at a resolution of one node per
country is insufficient to retrieve reliable capacity expansion sugges-
tions. Moreover, results retrieved from models that simulate a fully
renewable electricity system that are clustered to a spatial resolution
of around 100–200 nodes using state-of-the-art evaluated aggregation

ethods fail to cover approximately 100 TWh of Europe’s electricity
demand, approximating 3–5% of its annual consumption. Instead of
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Fig. 6. Results as displayed in Fig. 2 of an island model, meaning that no inter-cluster
electricity imports or exports are considered for the disaggregation.

Fig. 7. Results as displayed in Fig. 7 of an island model, meaning that no inter-cluster
electricity imports or exports are considered for the disaggregation.

consuming the excess electricity, curtailment rates rise by approxi-
mately the shed amount, additional to what would have been expected
for an economic optimum. Our analysis reveals that the electricity
shortage is due to local transmission constraints. Spatially low-resolved
models assume that power can be transferred without limit to all
locations that are represented within a single region. Therefore, intra-
nodal transmission constraints are ignored in the aggregated model.
Thus, disaggregated results at higher spatial detail are confronted with
power flow restrictions, resulting in transmission congestion and imply
necessary load-shedding measures, eventually making the investment
decisions retrieved from a coarse model sub-optimal and technically
infeasible, if no additional investments can be assumed. These findings
imply that accurately representing transmission and power-flows in
the model is of high relevance to find a cost-optimal or low-cost
solution that is technically feasible. Our results do not show that a
fully renewable system is not possible. Conversely, the insight from our
results together with lessons learned from spatial clustering studies pro-
vide valuable insights that emphasise the relevance of high resolution
modelling, such that a fully renewable system can be achieved at low
cost.

5. Limitations of this study

Removing the set of optimisation variables that accounts for the
capacity expansion allows solving an operational dispatch model at a
higher model resolution. Nevertheless, due to a persisting computa-
tional burden, the presented operational model results are based on
model runs retrieved from a model resolution of 1250 nodes, i.e. ap-
proximately 25% of the original network size. Therefore, the resulting
amounts of load-shedding and curtailment resulting in the disaggre-
gated operational model runs are likely to increase if the operational
model was spatially higher resolved (for example at 5000 nodes), and,
thus, strengthen our main argument.

This study analysed methods to disaggregate spatially low-resolved
optimal generation variables. However, the study did not investigate
methods to disaggregate transmission capacity expansion modelling re-
sults, or how additional transfer capacity obtained from a transmission
expansion problem could improve the overall results. Such an analysis
could build on our presented methods and extend them on an additional
8

optimisation variable. Moreover, all results presented in this paper
were carried out for a fully self-sufficient and fully renewable Europe.
Lowering the carbon emission target could relax the findings and would
not make as strong implications. Therefore, in a future study, different
carbon emission targets could be analysed more carefully.

Results of this study are all based on the MIT-licensed models PyPSA
v0.18.0 and PyPSA-EUR v0.3.0. Therefore, nearly all of the limitations
that apply for this version of the model also apply for this study. These
include for example retrieving optimal capacities that rely on weather
data from a single weather year, applying only a linearised power flow
model or neglecting dynamic line rating. Some of these simplifications
might improve in future model releases.

6. Glossary

Abbreviations and variables are documented in Table 4.
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Appendix

A.1. Cost assumptions

Cost assumptions used for the capacity expansion models to make
cost-optimal investment decisions can be taken from Table 5.

A.2. Results of island-ed disaggregation method

In this setting each cluster is treated as an island, meaning that no
electricity trade between other clusters is considered for the disaggre-
gation. Results on load-shedding and curtailment for this scenario are
displayed in Fig. 6.

The overall trend of the results is similar to the simulations where
inter-cluster power flows were considered in the simulations. However,
there are minor differences mainly affecting the ‘‘re-optimise’’ results.
These result in an overall higher curtailment of 2–3%, and lower
oad-shedding of 1–2%.
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Fig. 8. Evaluation if load-shedding measures of the disaggregated highly-resolved
operational models occur at times with higher curtailment compared to the low-resolved
capacity expansion model, see Eqs. (11)–(12).

Table 5
Technology investment costs with 1$ = 0.7532€.

Asset Cost Unit

Onshore wind 1110 €/kW
Offshore wind 1640 €/kW
(AC/DC grid connection separate)
Solar PV utility 425 €/kW
Solar PV rooftop 725 €/kW
Open cycle gas turbine 400 €/kW
Run of river 3000 €/kW

Pumped hydro storage 2000 €/kW
Hydro storage 2000 €/kW
Battery storage 192 $/kWh
Battery power conversion 411 $/kWel
Hydrogen storage 11.3 $/kWh
Hydrogen power conversion 689 €/kWel

HVAC overhead transmission 400 €/(MW km)
HVAC underground transmission 1342 €/(MW km)
HVAC subsea transmission 2685 €/(MW km)
HVDC underground transmission 1000 €/(MW km)
HVDC subsea transmission 2000 €/(MW km)

A.3. Analysing the source for load-shedding

Fig. 8 additionally displays if load-shedding measures occur at
times where the curtailment of the highly-resolved operational model
is higher compared to the lower resolved reference results. If true,
this indicates that the load-shedding measures are due to underesti-
mated within-cluster transmission bottlenecks. To precisely evaluate
this statement, the Figure displays the following hypothesis:

𝛿{𝑡∶(𝛶𝑉 −𝛶𝐶 )(𝑡)>0} ⋅ (𝛶𝑉 − 𝛶𝐶 )(𝑡) ≥ 0.5 ⋅ 𝛥𝑉 (𝑡) (11)

𝛿{𝑡∶(𝛶𝑉 −𝛶𝐶 )(𝑡)<0} ⋅ (𝛶𝐶 − 𝛶𝑉 )(𝑡) ≤ 0.5 ⋅ 𝛥𝑉 (𝑡) , (12)

where 𝛥𝑉 (𝑡) represents the amount of load-shedding measures in the
highly-resolved disaggregated model at snapshot 𝑡, and 𝛶𝑉 (𝑡) ∶=
∑

𝑠∈
𝑣∈

(

�̄�𝑣,𝑠,𝑡𝐺𝑣,𝑠 − 𝑔𝑣,𝑠,𝑡
)

the amount of curtailment in the highly-

resolved disaggregated model at snapshot 𝑡. Accordingly, 𝛶𝐶 (𝑡) rep-
resents the amount of curtailment in the lower resolved reference
model.

It can be seen that, as the reference model resolution increases, there
are more and more times 𝑡 where the hypothesis is wrong. The amount
of curtailed electricity is higher than load-shedding in 85% of the times
9

on average for all of the three disaggregation methods for a very low-
resolved reference model of 37 nodes. As the reference model resolution
increases to 217 nodes, the statement is only true in average for 65%
of the times for all three disaggregation methods. This indicates that
transmission resolution is starting to saturate, however is still the major
bottleneck preventing to feed-in the extra green electricity that is being
curtailed.
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