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Abstract 
Reviews suggest that evaluation of land system models is largely inadequate, with undue reliance on a vague 
concept of validation. Efforts to improve and standardise evaluation practices have so far had limited effect. In 
this article we examine the issues surrounding land system model evaluation and consider the relevance of the 
TRACE framework for environmental model documentation. In doing so, we discuss the application of a 
comprehensive range of evaluation procedures to existing models, and the value of each specific procedure. We 
develop a tiered checklist for going beyond what seems to be a common practice of ‘valibration’ (the repeated 
variation of model parameter values to achieve agreement with data) to achieving ‘evaludation’ (the rigorous, 
broad-based assessment of model quality and validity). We propose the Land Use Change – TRACE (LUC-TRACE) 
model evaludation protocol and argue that engagement with a comprehensive protocol of this kind (even if not 
this particular one) is valuable in ensuring that land system model results are interpreted appropriately. We also 
suggest that the main benefit of such formalised structures is to assist the process of critical thinking about model 
utility, and that the variety of legitimate modelling approaches precludes universal tests of whether a model is 
‘valid’. Evaludation is therefore a detailed and subjective process requiring the sustained intellectual engagement 
of model developers and users. 
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1.  Introduction 

In their review of ecological modelling, Augusiak et al. (2014) concluded that the term ‘validation’ had become 
so vague as to be “useless for any practical purpose” (p.117). As models became more complex, numerous and 
influential, Augusiak et al. (2014) found that flawed approaches to validation meant that those models were 
increasingly likely to mislead the scientists and decision-makers who used them. The same argument can be 
applied to land system modelling. Models of land use change have attained a crucial position at the science-
policy interfaces of the IPCC and IPBES, but recent reviews suggest that model evaluation has not kept pace with 
model development. Instead, rigorous model evaluation has been the exception rather than the rule, hampered 
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– as in ecology – by widespread acceptance of inadequate validation practices (Brown et al., 2017; Rosa et al., 
2014; van Vliet et al., 2016). 
 
Developing a consistent approach to model evaluation is particularly difficult in land system science because of 
the range of uses to which models are put. From abstract experimentation to detailed predictions of global land 
use change over several decades, and from simple linear regression to qualitative, participatory methods, 
models are too diverse to fit with any single concept of validity (Bianchi & Squazzoni, 2019; Edmonds & ní Aodha, 
2019; van Soesbergen, 2016). Furthermore, the central role of people within land systems means that evaluation 
cannot involve simple comparisons to predictable outcomes. Indeed, because validity can only be established 
with respect to a model’s purpose, there can be no absolute universal measure, but rather a process that must 
involve model developers and users (Barlas, 1996; Edmonds et al., 2019; Hamilton et al., 2019; Troost & Berger, 
2020; Troost et al., 2023).  
 
While recognising these fundamental limitations to assessing the quality of land system models, several papers 
have defined alternative approaches to model validation (Baldos & Hertel, 2013; Hamilton et al., 2019; Ngo, The 
An & See, 2012; Troost et al., 2023; van Vliet et al., 2016). These have not yet coalesced into generally accepted 
protocols, or indeed achieved widespread usage. In this article, we explore and further develop one of these, 
the TRACE model documentation protocol (Grimm et al., 2014; Schmolke et al., 2010), with particular 
consideration of land system models and the representation of human behaviour within them. We discuss the 
relevance of each element in the protocol with reference to existing models and, in the Supplementary Material, 
to one specific agent-based (behavioural) modelling framework, CRAFTY (Murray-Rust et al., 2014), drawing 
conclusions about the utility of the evaluation protocol. 
 
 
Box 1: Terminology  

The first challenge in model evaluation relates to terminology. As noted by Augusiak et al. (2014), the term ‘validation’ has 
itself become a hindrance, obscuring an enormous range of model evaluation practices that might be assumed to produce 
a universally comparable, binary outcome (valid or not valid). Formal definitions are rare, and not widely accepted. To try 
and maximise clarity, we adopt the following definitions of key terms within this manuscript: 

Validation: Establishing whether the model is a ‘valid’ (in the sense of ‘accurate’ or ‘reasonable’, but not in the sense of 
‘true’) representation of whatever it is that is being modelled, usually through comparison of model outputs to independent 
data.  

Evaluation: A broad assessment of model quality, potentially including conceptual design, technical implementation, 
performance and relevance to the application. 

Calibration: The use of data (particularly concerning patterns) to inversely parameterise a model. 

‘Valibration’: We propose this term to describe the practice of repeatedly varying model parameter values (effectively 
‘vibrating’ model settings) until agreement with test data (which are not always independent of calibration) is produced, 
thus conflating validation and calibration. Valibration can in principle be combined with other forms of model evaluation.   

‘Evaludation’: Proposed by Augusiak et al. (2014) as “a fusion of ‘evaluation’ and ‘validation’ to describe the entire process 
of assessing a model’s quality and reliability” (p. 117). In this definition, evaludation involves distinct steps of i) data 
evaluation, ii) conceptual model evaluation, iii) implementation verification, iv) model output verification, v) model analysis 
and vi) model output corroboration. These steps were subsequently formalised in the TRACE protocol by Grimm et al. 
(2014), building on the initial TRACE documentation of Schmolke et al. (2010) to create a tool for planning, performing and 
documenting model evaludation. In this revised form, TRACE stands for ‘TRAnsparent and Comprehensive model 
Evaludation’ (Grimm et al., 2014), and was recently recommended as a basis for keeping modelling notebooks by Ayllón et 
al. (2021).  

Land system models: We focus on models of the land system in a broad sense, and so include models of various types 
dealing with land use change, its drivers and impacts, from a systemic perspective. This definition is purposefully broad and 
means that our discussion is relevant for models of other systems as well, but is chosen to reflect the emerging identity of 
land system science, and to acknowledge the particular role of human behaviour in this field. Not all elements of the TRACE 
protocol are relevant to all models. 
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2.  Current practice and proposed improvements 

2.1  Land system model evaluation 

Currently, few land system models are rigorously evaluated. In their review of calibration and validation in land-
change modelling, Van Vliet et al. (2016) found that 31% of model applications did not report any form of 
validation. Brown et al. (2017) found an even higher percentage without validation: 55% of the behavioural 
models they reviewed. Where validation does occur, it usually comprises a single exercise involving testing 
model fit to data, often data on which the model has already been calibrated (Brown et al., 2017; van Vliet et 
al., 2016).  
 
This narrow form of evaluation is inadequate for assessing the ‘validity’ of any model in a general sense. A single 
comparison to data invites what we have called ‘valibration’ - the repeated variation of model parameter values 
until the validation test is passed - or what Grimm et al. (2014) called ‘tweaking’, in which environmental settings 
and submodel formulation are tuned alongside parameter values. Such comparisons also favour overfitting and 
will tend to reward complicated models with more variables. Fitting to data also prioritises replication of 
particular, usually locational, observations over potentially more general accuracy based on theoretical or 
empirical information. Perhaps most worryingly, subsequent use of the model, for example in scenario analysis, 
is likely to require extrapolation beyond the scope of the data used for validation (Rounsevell et al., 2021). 
Augusiak et al. (2014), building on Oreskes et al. (1994), identify three further shortcomings of validation of this 
kind: 1) the possibility that agreement with test data is spurious, achieved through inaccurate model design or 
parameterisation; 2) the likelihood that suitable test data are themselves inaccurate or even unavailable; and 3) 
the degradation of the complex, debated concept of validation to a misleadingly simple test. Recent papers have 
suggested further risks: that theory-based models may be under-valued despite being just as useful (and, 
potentially, accurate) as data-based models (Taghikhah et al., 2021), and that the practice of withholding test 
data from the training or calibration phase may compromise model robustness (Arsenault et al., 2018). Finally, 
exclusively technical evaluation procedures are unlikely to be sufficient for the decisions faced by model users, 
which vary from case to case and user to user (Hamilton et al., 2019). 
 
Many authors have suggested improvements in validation and evaluation practices. Fundamentally, most 
emphasise tailored assessment of the model with respect to its specific purpose(s) (e.g. Augusiak et al., 2014; 
Edmonds et al., 2019; Hamilton et al., 2019; Oreskes et al., 1994; Troost & Berger, 2020). These purposes can 
vary enormously, for instance depending on whether the model is being used by a research scientist, stakeholder 
or policy maker (Hamilton et al., 2019; Millington et al., 2011). Another important distinction exists between 
models intended to represent a system in order to improve understanding of its dynamics, and models intended 
to simulate alternative scenarios of future or other unobservable conditions. While the latter is a major purpose 
of land system modelling (Roe et al., 2019; Rogelj et al., 2018), it poses specific problems for evaluation because 
the accuracy of a model’s results can only be definitively established if and when the scenario becomes reality 
(Edmonds & ní Aodha, 2019; Polhill, 2018). Models ‘locked into’ past land use dynamics by design or valibration 
are unlikely to accurately represent the diversity of possible future worlds (Brown et al., 2022). 
 
Establishing a model’s validity for its intended use therefore requires a variety of approaches, and several 
examples or protocols have been suggested. Tesfatsion (2017) identifies four aspects of empirical validation that 
modellers should target simultaneously: input validation, process validation, descriptive output validation and 
predictive output validation. In land systems science, Troost et al. (2023) define a protocol to identify relevant 
methods of evaluation depending on model purpose. Newland et al. (2018) propose a multi-objective 
optimisation method for calibrating and evaluating one class of model (Cellular Automata). In ecology, Augusiak 
et al. (2014) proposed a set of six ‘evaludation’ steps (see Box 1) as being essential, and these have since been 
formalised in the TRACE framework (Grimm et al., 2014, extending the work of Schmolke et al., 2010). Hamilton 
et al. (2019, 2022) emphasise the role of diverse model users in a process of evaluation that is not only technical 
in nature, proposing a framework for adaptive learning in model development and application. Others have 
developed approaches relevant within these steps, such as methods for deciding which model(s) to use in cases 
of equifinality, where multiple models have similar performance for different reasons (e.g. Williams et al. (2020), 
who emphasise the value of a diversity of models in such cases).  
 
At some point, the use of complicated evaluation protocols faces practical constraints. But there are also 
theoretical concerns. In fact, model validity may be impossible to definitively determine whatever the range of 



C. Brown et al. (2023) Socio-Environmental Systems Modelling, 5, 18434, doi:10.18174/sesmo.18434  

 4  

methods brought to bear. Steinmann et al. (2020) recommend the adoption of “exploratory modelling, global 
sensitivity analysis, and robust decision-making” to address this challenge. Several researchers have identified 
desirable model characteristics as independent of evaluation results; for instance, retaining or increasing 
behavioural richness in representations of land use decision-making (Arneth et al., 2014; Polhill & Salt, 2017). 
Related arguments stress the primacy of model validity and utility at aggregate levels, where a diversity of 
approaches among models allows a more comprehensive understanding to be developed across them (Brown 
et al., 2021).  
 
Some of these arguments are concerned with avoiding the “natural selection of bad science”, in which the 
advantages that accrue to ‘successful’ models in competitive research environments causes methodological 
deterioration even where those successful models themselves are sound (Smaldino & McElreath, 2016). This is 
a process that some have identified with the dominance of a small number of established Integrated Assessment 
Models in funding and research on land-based climate change mitigation (Gambhir et al., 2019; Hughes & 
Paterson, 2017; Low & Schäfer, 2020). Reversing such a process would require a conscious and careful response 
involving deliberate diversification of modelling approaches, even where some approaches are initially 
evaluated as inferior. A touch of Feyerabend’s epistemological anarchism (Feyerabend, 1993) is apparent here, 
in the implication that free exploration of alternative and (initially) unjustified approaches may bear more fruit 
in the long term. This implies that even the most rigorous model evaluation can never be a definitive guide to 
model utility, and could in some circumstances be worse than no evaluation at all if it leads to concentration of 
methods and premature rejection of poorly performing models. In the same way that more diverse ecosystems 
are more robust to perturbations, more diverse model systems may be more robust to changes in knowledge 
and land system drivers in the future (Brown et al., 2022).  

2.2 The special case of agent-based models? 

Agent-based models (ABMs) represent system dynamics as emergent from the behaviour and interactions of 
individual entities, and are favoured by some modellers for their greater apparent representational realism than 
optimisation-based land system models, which reduce behaviour to aggregate economic responses. They also 
often have distinct purposes, commonly being used for exploration or understanding of system dynamics rather 
than reproducing and predicting particular outcomes; attempting to generate and explain observed phenomena 
rather than to replicate them (Bianchi & Squazzoni, 2019; Boone & Galvin, 2014; Epstein, 1999). 
 
However, ABMs are also viewed with scepticism by many researchers. Giupponi et al. (2022) describe four main 
common concerns about land system ABMs: 1) they are excessively complicated for anything except specific, 
small-scale studies; 2) they have not generated transferrable modelling frameworks that can be applied by 
different researchers to different cases; 3) they are often complex and poorly-described ‘black box’ models, 
which are therefore hard to interpret or re-use; and 4) they are difficult to empirically validate. These concerns 
are widely held, and often expressed in reductionist form with reference to the ‘YAAWN syndrome’ (Yet Another 
Agent-based model … Whatever … Nevermind …) (O’Sullivan et al., 2016); originally a call for more coherent 
development across applications, including through contributions to general theoretical insights, that has in 
some cases devolved towards an arbitrary dismissal of ABM research.   
 
Not all of these criticisms are reasonable. The CRAFTY framework discussed in this paper (see Supplementary 
Material) is one example of a relatively simple, generic ABM framework that has been applied around the world, 
from local to continental scales, coupled to other models, while also being fully open-access, thoroughly 
documented and widely evaluated using different methods (Brown et al., 2019; Millington et al., 2021; Murray-
Rust et al., 2014). Other examples include the Multi-Agent Research and Simulation framework MARS (Clemen 
et al., 2021; Hüning et al., 2016) and specific integrations between fine-scaled ABMs and coarse-scaled global 
models (Niamir et al., 2020). Some researchers suggest that ABMs are the subject of residual prejudice that 
statistical data-based models are more rigorous and scientific than theory-based models (Bianchi & Squazzoni, 
2019), and of scientific groupthink in coalescing around more dominant (though intrinsically no more robust or 
transparent) approaches (Gambhir et al., 2019). At a basic level, land system ABMs operate in the same domain 
as any other type of land use model, and actually suffer from very similar revealed shortcomings in the practice 
of model evaluation (Brown et al., 2017; van Vliet et al., 2016).  
 
Nevertheless, ABMs do have specific characteristics that make them unusual, and sometimes qualitatively 
distinct, subjects for evaluation. To the extent that empirical ABMs are more complicated than other land system 
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models, they are disproportionately harder to calibrate and evaluate because small increases in complicatedness 
(in the sense of having more components; Sun et al. (2016)) require large increases in supporting data 
(Srikrishnan & Keller, 2021). These difficulties may be overcome through the use of theoretical ‘priors’ 
(Taghikhah et al., 2021) or techniques such as surrogate modelling or Machine Learning to reduce computational 
costs (Storm et al., 2020; ten Broeke et al., 2021), but are still likely to represent substantial challenges.  
 
More fundamentally, the different uses of ABMs require tailored forms of evaluation. The selection of an ABM 
approach in itself implies that agency and behaviour are of interest to the modeller, and that evaluation should 
focus more on these than it would for another type of model with different representational assumptions. 
Vermeer et al. (2022), in the context of health modelling, recommend a two-step procedure for evaluating high-
fidelity ABMs, in which validated individual-level behaviours are drawn from field (observational) data, and then 
checked for their ability to produce realistic system-level dynamics that explain the phenomenon observed. 
Millington et al. (2011) argued that structural accuracy (a model specification that appropriately represents 
processes) might in fact be a more relevant goal for many agent-based modellers than ‘mimetic accuracy’ (model 
output that reproduces empirical events). This could be particularly appropriate when ABMs are used with 
stakeholders, who might intuitively grasp the behaviours these models represent better than they grasp abstract 
economic or statistical models (e.g. Naivinit et al., 2010). It is therefore possible to actively iterate between 
qualitative and quantitative forms of evaluation; a particularly powerful, if little used, approach to improve the 
value of these models because it helps to highlight and evaluate the assumptions that are being used as well as 
any empirical basis they might have (Grimm & Railsback, 2012; Millington & Wainwright, 2017). Grimm & 
Railsback (2012) distinguish between ‘strong’ and ‘weak’ patterns, which tend to be quantitative and qualitative, 
respectively, and argue that “multiple weak patterns, observed at different hierarchical levels and scales, can 
often achieve higher structural realism, with less effort, than focusing only on one strong pattern” (p.300). 
 
Another important use of ABMs is to develop and explore theory, at levels of both system and individual 
behaviour and, crucially, at their cross-level interface, where agent dynamics translate into system dynamics 
(Lorscheid et al., 2019). As well as justifying the kind of two-step evaluation proposed by Vermeer et al. (2022), 
this can make theoretical evaluation more important than fits to data of the kind that might support empirical 
modelling (Gostoli & Silverman, 2020; Polhill & Salt, 2017). Methods exist to partially disentangle process 
accuracy from pattern accuracy (Brown et al., 2005), but are constrained by the fact that observational data can 
only ever describe a single realisation of history, and not the range of outcomes that underlying processes could 
possibly have produced (Polhill & Salt, 2017), and that these data tend to capture easily-observable outcomes 
(such as land cover) and not underlying processes (such as human decisions). Edmonds & ní Aodha (2019) 
identify agent-based modelling as particularly appropriate because it lends itself to the analysis of uncertainties 
for better understanding of the modelled system; an approach they term Reflexive Possibilistic Modelling. 
  

3.  The LUC-TRACE protocol 

The TRACE protocol was developed to aid the documentation of ecological and environmental models, and 
further to provide “a tool for planning, performing, and documenting good modelling practice” (Augusiak et al., 
2014; Grimm et al., 2014; Schmolke et al., 2010). Recently, Ayllón et al. (2021) used TRACE to standardise key 
aspects of model development, evaluation and documentation in modelling notebooks. Here, we build on these 
papers to propose the Land Use Change – TRACE (LUC-TRACE) model evaludation protocol (Table 1) as a 
comprehensive checklist for the ‘evaludation’ of models of land use change, with particular reference to agent-
based models. The relevance of the protocol is not restricted to land system models, and indeed varies widely 
within this class depending on the exact type of model being evaluated, but does reflect the range of evaluation 
considerations that we believe to be important in land system science. 
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Table 1: Summary of the ‘LUC-TRACE’ based on the TRACE protocol outline of (Ayllón et al., 2021) with our additions in bold text (additions concerning model replication are drawn from Essawy 
et al., 2020). We assign each step of the protocol to a particular tier, with Tier 1 steps being essential, Tier 2 being expected, and Tier 3 being desirable. The right-hand column summarises the 
extent to which each step has been applied to the CRAFTY framework, with ticks representing complete application, circles representing partial application and crosses representing no application 
(details in the Supplementary Material).  The application of each step is described more fully in the text. 

(Table continued on next page) 

 

Evaludation step & substeps Motivating question Type Tier Application 
to CRAFTY 

1. Problem formulation What is the model intended for? (To allow users to judge how appropriate it is) 
Descriptive; free 
interpretation 

1 
 

2. Model description How does the model work? Descriptive; free 
interpretation 

1 
 

3. Data evaluation 
What is the nature and quality of the data used to inform, develop, calibrate and 
evaluate the model? 

Partially objective 2 Ο 

4. Conceptual model 
evaluation 

System conceptualisation How is the system conceptualised and are there matches & mismatches with the 
model? 

Descriptive; free 
interpretation 

3 Ο 

Model design How is the model conceptualised as a representation of the system? Descriptive; free 
interpretation 

2 
 

System conceptualisation represented 
adequately by that design? 

Explicitly, how do the system & model conceptualisations align?  Descriptive; potentially some 
objective content 

3 Ο 

Problem relevance, e.g. 
Ability to handle scenario conditions  

Can the model be used for its intended purpose given the system & model 
conceptualisations/designs – are aspects of the problem left out? 

Descriptive; potentially some 
objective content 

1 
 

5 Implementation verification Debugging / code testing (unit testing) Has there been comprehensive testing of individual sections of code to ensure 
it (only) functions as intended? 

Objective; true/false 1 
 

Software verification/ Testing   Does the model as a whole perform as intended? Partially objective 1 
 

Usability tools design Can the model be used and interpreted correctly given its design and 
description? 

Partially objective 2 Ο 

6. Model output verification Output verification/ Goodness-of-fit: 
data used in model development 

Does the model fit the data used in its development?  Partially or wholly objective 3 Ο 

Output verification/ Goodness-of-fit: 
historical timeseries 

Can the model reproduce timeseries? 
 

Partially objective 3 Ο 

Calibration; Tests on environmental 
drivers 

How was calibration used to achieve fit to data, and what parts/processes did it 
involve? 

Partially objective 1 
 

7. Model analysis and 
application 

Sensitivity & uncertainty analysis What are the effects of model parameters on outputs? Should be fully objective, 
quantitative 

1 
 

Robustness analysis; Simulation 
experiment  

‘Reasonableness’ of model in known situation; do we understand how the 
outcomes arise? 

Partially objective & 
quantitative, partly 
descriptive 

2  

Model stochasticity & stability What effects do model stochasticity and instability have on the results? Objective 1 
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Table 1 (continued) 

Evaludation step & substeps Motivating question Type Tier Application 
to CRAFTY 

8. Model output 
corroboration 

Fitting to data 
“Output corroboration / Validation” 

Can the model replicate patterns in independent data, including spatio-temporal, 
aggregate or otherwise emergent patterns? 

Objective but not a binary test 2 Ο 

Benchmarking against other models Has there been comparison to independent data representing alternative 
modelling approaches? 

Objective but not intended to 
assess accuracy 

2 
 

9. Participatory/ companion 
modelling  

Participatory model 
development/selection 

Was the model developed or chosen through a process of user engagement? Descriptive; free 
interpretation 

3  

Details of use in participatory settings Has the model been used in a participatory setting and what were the outcomes? Descriptive; free 
interpretation 

3 Ο 

Communication of results What methods were used to communicate results, and how well did they work? Descriptive; free 
interpretation 

3 Ο 

10. Model replication Repeatability Does the model produce consistent results across multiple runs? Objective 1 
 

Runnability Does the model produce consistent results on multiple computers? Objective 2 Ο 

Reproducibility Does the model produce consistent results when run by independent 
researchers? 

Partially objective 3  

Replicability Are consistent results produced by entirely independent studies? Partially objective 3  
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3.1  Problem formulation 

“The decision-making context in which the model will be used; the types of model clients or stakeholders 
addressed; a precise specification of the question(s) that should be answered with the model, including a 
specification of necessary model outputs; and a statement of the domain of applicability of the model, including 
the extent of acceptable extrapolations.” (Grimm et al., 2014) 
 
Problem formulation is an essential basis for model evaluation because it defines the model’s purpose. 
Nevertheless, a tightly-defined problem formulation may be too prescriptive for land use models that are 
designed to be applied in different places for different reasons. Many land system models (and modelling 
frameworks in particular) are intended for use by a community of land system scientists and are general in scope, 
covering a range of social, economic and environmental factors and potentially being relevant to a wide range 
of questions and spatio-temporal domains. This open-endedness is a design feature in many cases; and one that 
may legitimately prevent complete or restrictive problem formulations from being developed by the model 
developer.  
 
The CRAFTY framework was designed with a general problem formulation in mind: the need for a model “to be 
run over large spatial extents and to be capable of accounting for relevant forms of human behaviour, variations 
in land use intensities, multifunctional ecosystem service production and the actions of institutions that affect 
land use change” (Murray-Rust et al., 2014). Other land system models with tighter foci retain fairly broad 
problem statements. For instance, the Evoland modelling approach used by Guzy et al. (2008) “was designed to 
investigate alternative futures that may result from different policy approaches in social-ecological systems in 
the flood plains and riparian forests at the junction of large rivers”, and the SLUDGE model documented by 
Polhill et al. (2008) “was designed to extend existing analytical microeconomic theory to examine relationships 
between externalities, market mechanisms, and the efficiency of free-market land use patterns” (for further 
examples and guidance, see Grimm et al., 2020). In general, few problem formulations give precise delimitations 
of model clients, stakeholders, domains or questions that should be addressed; implicitly, this is left open for 
model users to make informed decisions about.  
 
We suggest that a relatively open-ended approach, which may define limits of appropriate usage rather than 
explicit domains, is broadly applicable to land use models. This allows model scope to be defined partly by broad 
objectives and partly by proscribed uses, but retains flexibility for model users to tailor the model to their own 
problems as they see fit. We therefore place this step in Tier 1 of our evaludation hierarchy, but relax its more 
prescriptive requirements. 

3.2  Model description 

“The model. Provide a detailed written model description. For individual/agent-based and other simulation 
models, the ODD protocol is recommended as standard format. For complex submodels it should include concise 
explanations of the underlying rationale. Model users should learn what the model is, how it works, and what 
guided its design.” (Grimm et al., 2014) 
 
A model description is essential for model evaluation, as well as for model use, reproducibility and 
interpretation. An ODD protocol is often recommended for process-based models, including land system models 
(Grimm et al., 2010, 2020), with the ODD+D extension of Müller et al. (2013) tailored specifically to ABMs 
representing human decisions in social-ecological systems. This protocol ensures a degree of standardisation 
and comparability in model descriptions, and prompts the author to consider a range of essential model 
elements. At the same time, any standard format implies some inflexibility when applied to very different 
models, prioritising structure over readability (although Grimm et al. (2020) make suggestions for more narrative 
and understandable ODDs to address this issue). It is therefore possible that other forms of model description 
could be more appropriate in some cases, including visual, narrative or interactive descriptions, which are 
currently very rare, and engagement with the model code itself, ideally through clear links between ODD or 
other descriptions and corresponding sections of code (Grimm et al., 2020). Of course, model descriptions are 
difficult to evaluate in their own right, and there can be no guarantee that they are read or understood by model 
users (we know of nobody who has used an ODD protocol to understand or evaluate the CRAFTY framework). 
Nevertheless, adoption of ODD has been widespread, suggesting that it is found to be useful as a template for 
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model description (Grimm et al., 2020). While it is designed for process-based simulation models, we suggest 
that it can be applied to a full range of land system models if only to provide a basis for comparison of model 
components (with many expected to be absent from statistical land use change models, for example).  

3.3  Data evaluation 

“The quality and sources of numerical and qualitative data used to parameterize the model, both directly and 
inversely via calibration, and of the observed patterns that were used to design the overall model structure. This 
critical evaluation will allow model users to assess the scope and the uncertainty of the data and knowledge on 
which the model is based.” (Grimm et al., 2014) 
 
Data evaluation is often a problem for land system models in general and agent-based models in particular. Data 
describing fine-grained land uses (as opposed to broad land covers) and, especially, the behaviours that 
determine their uptake, are hard to find at any quality (Schulze et al., 2017; Verburg et al., 2019). This is one 
main reason why ABMs are often theory-based, although that is of course a valid approach even where data are 
available. Where data are used, evaluation is clearly important, but may also be constrained by the original 
description of those data and the confidence with which they can be interpreted. In their review of ABM 
evaluation practices, Schulze et al. (2017) also identify a tension between the scale and specificity of available 
data derived from social surveys, interviews or other intensive forms of elicitation, and the general relevance 
that many ABMs are intended to have. This potential tension has been directly addressed, for example, by 
Magliocca et al. (2014), who test the fit of an ABM calibrated on particular data across different case studies, 
suggesting a role for the model itself in data evaluation. Given these possibilities and challenges, we regard data 
evaluation as being necessary where and to the extent possible, recognising that this is not always an 
appropriate step for land system models.  

3.4 Conceptual model evaluation 

“The simplifying assumptions underlying a model’s design, both with regard to empirical knowledge and general, 
basic principles. This critical evaluation allows model users to understand that model design was not ad hoc but 
based on carefully scrutinized considerations.” (Grimm et al., 2014) 
 
We identify four elements within the scope of conceptual model evaluation: system conceptualisation, 
conceptual model design, the matches and any mismatches between those, and finally the matches and any 
mismatches with the particular problem the model will be used to address. System conceptualisation can be 
described through identification of the simplifying assumptions involved, the primary factors and processes 
retained, and the theoretical or empirical justification for these choices. As such, the description of system 
conceptualisation provides a parallel to the description of model design. In further steps, we suggest explicit 
identification of the ways in which model and system conceptualisations do and do not align with one another, 
and finally a similar identification of alignments between design choices and particular aspects of the problem 
being addressed. 
 
As described elsewhere, conceptual model evaluation mainly deals with uncertainty, and Augusiak et al. (2014) 
suggest the use of Occam’s razor as a guiding principle to ensure parsimony. The description of van Vliet et al. 
(2016) is less prescriptive: “The goal of conceptual modeling is to make the modeler's implicit way of thinking 
about the system explicit, and thus open to testing, criticism, refinement, and improvement”; an approach that 
also lends itself to assessment of whether the model is conceptually appropriate for its intended purpose (Brown 
et al., 2013). 
 
It is important that conceptual model evaluation is not seen as a test that can be passed through appeal to 
existing authority. Many land use models do not have explicit theoretical groundings (Brown et al., 2017; 
Groeneveld et al., 2017; Huber et al., 2018), which is a problem if the model’s conceptual basis is therefore 
unclear, but not necessarily otherwise. Theories themselves can be strongly disputed, and models can play a 
useful role in these disputes. Moreover, representing theories in models can reveal internal contradictions in 
those theories that preclude any single valid interpretation without reference to some external criteria (Schwarz 
et al., 2020). It can quite reasonably be argued that any clear conceptual basis is valid if a modeller believes it to 
be so and wishes to develop a model to explore it further or test outcomes. This may be especially pertinent to 
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ABMs because they can be used to explore theories in ways that other models cannot – a feature that has been 
presented as one of their main strengths (Gostoli and Silverman, 2020). 
 
A specific and crucial issue for land use models is the simulation of uncertain futures. In these cases, special 
attention needs to be paid to the conceptual relevance of the model to the future conditions to which it is being 
applied. In this sense, the lack of uptake of relevant theories from social science in land use models is a significant 
problem, as is the near-universal application of the economic optimisation paradigm at large scales, especially 
in Integrated Assessment Models, without explicit justification of its relevance (Brown et al., 2016; Groeneveld 
et al., 2017). In both cases, pattern accuracy under present conditions is likely to be favoured over process 
accuracy under future conditions, creating substantial scope for mismatches with the research questions being 
addressed (Brown et al., 2022; Steel, 2007). For example, models running Shared Socio-economic Pathways 
scenarios must somehow represent (or justify a failure to represent) a wide variety of different behavioural, 
social and cultural factors that are known to be crucial to land system outcomes (Brown et al., 2022; Pedde et 
al., 2019). These factors differ greatly in future scenarios, but models usually simulate all future conditions using 
single, fixed model architectures. In this respect, explicit consideration of the fit between model and problem 
conceptualisation is the most important but most neglected aspect of this evaluation step.  

3.5  Implementation verification 

“(1) Whether the computer code implementing the model has been thoroughly tested for programming errors, 
(2) whether the implemented model performs as indicated by the model description, and (3) how the software 
has been designed and documented to provide necessary usability tools (interfaces, automation of experiments, 
etc.) and to facilitate future installation, modification, and maintenance.” (Grimm et al., 2014) 
 
This step is the most objective and closest to a binary test of model validity. In particular, comprehensive testing 
of individual sections of code to ensure they (only) function as intended is good programming practice, and 
relatively straightforward to do through ‘Unit Tests’. This is common practice in industry but rarely reported for 
academic research, where there are increased calls for it to be adopted alongside the rapid growth of pandemic 
disease modelling post-Covid (Lucas et al., 2020). Nevertheless, systematic tests of model code and performance 
have been carried out for many land system models, such as CRAFTY (Murray-Rust et al., 2014), the Community 
Land Model (Hoffman et al., 2005) and the APSIM farm system model (Holzworth et al., 2018), all of which have 
multiple applications. Because of the importance of this step for model re-use, we identify it as an essential part 
of evaludation. 

3.6  Model output verification 

“(1) How well model output matches observations. (2) How much calibration and effects of environmental drivers 
were involved in obtaining good fits of model output and data.” (Grimm et al., 2014) 
 
Model output verification is subject to similar difficulties as input data evaluation (step 3), in that data may play 
a limited role in model development (and this step explicitly refers to data used in model development, rather 
than the independent data focused on in output corroboration, section 3.8). As such, this step is applicable to 
varying degrees within land system modelling. Nevertheless, an important contribution can be made by better 
descriptions of ABM calibration. New methods can support both the practice and communication of calibration 
(McCulloch et al., 2022), but at a basic level transparent explanation of how calibration was achieved is 
beneficial, and in particular how empirical data were used to assess alternative calibration specifications. This 
would enable clearer understanding of the level of process understanding in different components of the model, 
which is important given that models are developed and used when understanding is incomplete. 
Communicating where there is more or less process understanding within the model structure, and therefore 
less or more valibration was needed, will enable others to assess where greatest uncertainty is in model outputs, 
and where the focus should be to improve understanding in the future. Similarly, explicit quantitative calibration 
methods such as those applied by McCulloch et al. (2022) to three different ABMs provide efficient calibration 
while also revealing the greatest sources of uncertainty. 
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3.7  Model analysis and application 

“(1) How sensitive model output is to changes in model parameters. (2) How well the emergence of model output 
has been understood.” (Grimm et al., 2014) 
 
Sensitivity and uncertainty analyses are some of the most informative checks that can be carried out on land 
system models, revealing not only model behaviour but also, potentially, aspects of system behaviour itself. 
They add greatly to model interpretability as well as user confidence. Sensitivity analyses in particular are 
commonly performed, although generally using partial approaches such as one-at-a-time parameter variations 
that are known to miss large areas of parameter space (Saltelli et al., 2019). Agent-based models often have 
some stochastic elements, and in these cases, assessment of the effects of stochasticity on model outputs is also 
necessary. This can be done using established Monte Carlo sampling approaches, assessments of variance 
stability and even formalised comparisons to equivalent deterministic models, if available (e.g. Lee et al., 2015; 
Mohd, 2022).  
 
Nevertheless, uncertainty analyses on ABMs are rare, and improvements in methods and practices are likely to 
be necessary (McCulloch et al., 2022). For example, Lee et al. (2015) suggest methods to ensure that sample size 
is appropriate and effects meaningful. Ligmann-Zielinska et al. (2020) provide a roadmap for sensitivity analysis 
of ABMs that accounts for model design and several common shortcomings to make robust analyses more 
accessible. Railsback & Grimm (2019) include guidance on analysing uncertainty and its implication for reliability 
of results in agent and individual-based models, while An et al. (2021) discuss the handling of uncertainty 
associated with parameters and other components of complex ABMs. 
 
Grimm & Berger (2016) also develop the concept of Robustness Analysis, which forms part of the TRACE 
protocol. This analysis involves purposefully ‘breaking’ the model by varying parameters, structure and 
representation to the point at which the model no longer reproduces an observation, revealing when and why 
mechanisms included in the model lose their relevance.   

3.8  Model output corroboration 

“How model predictions compare to independent data and patterns that were not used, and preferably not even 
known, while the model was developed, parameterized, and verified. By documenting model output 
corroboration, model users learn about evidence which, in addition to model output verification, indicates that 
the model is structurally realistic so that its predictions can be trusted to some degree.” (Grimm et al., 2014) 
 
The step of model output corroboration may appear to overlap to some extent with model output verification 
(section 3.6), but involves the model being confronted with independent data rather than calibrated to match 
data during model development. This step often stands in for the entire process of model evaluation, being 
regarded as both necessary and sufficient by many model users (Augusiak et al., 2014; Hunka et al., 2013). It can 
certainly be a useful, informative and somewhat objective step, but is not entirely reliable or relevant in land 
system studies. This is primarily because different parts of the land system (separated by time and/or space) 
would not normally be expected to replicate one another’s behaviour in the way that different parts of a physical 
or even biological system might, for the reason that they are realisations of complex social-ecological processes 
that themselves are known to vary across space and time (Brown et al., 2016; Malek & Verburg, 2020). 
Observational data can only show one outcome of the underlying processes that an ABM might seek to 
represent, and this outcome could effectively be an extreme outlier of the theoretical probability distribution. 
As a result, a model developed using any particular set of empirical or theoretical information would only be 
expected to match independent sets of information in special cases. Furthermore, ‘observational’ land system 
data themselves invariably incorporate implicit assumptions and, effectively, modelling steps; for instance in 
converting remotely-sensed wavelengths of light into discrete land cover classes. These assumptions and models 
may not match those adopted by the land system model being evaluated, and mean that independent data 
cannot be taken as ground truth (Verburg et al., 2011).  
 
Another serious barrier to corroboration is that land system models are often applied to future contexts, making 
process accuracy and consistency with scenario conditions (as discussed above) far more relevant than fit to 
historical data. In these cases, binary determinations of model validity are impossible because the future extends 
beyond the ‘validity range’ of any existing observations. Instead, the validity of the model for future simulations 
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can be qualitatively tested against the narratives describing those futures, leading to structural changes in the 
model architecture (Brown et al., 2022).  
 
A type of model corroboration that can be informative here is comparison to spatio-temporal patterns, at 
aggregate resolutions across different contexts. In being explicitly focused on exploratory comparison rather 
than arbitrary goodness-of-fit testing, these may provide more complete and more useful information about 
model performance and relevance to a distinct problem domain. They also allow for multi-criteria analyses and 
optimisation (Newland et al., 2018) that, while still vulnerable to spurious fits, spread the risk of accidental 
agreement across multiple tests and/or types of pattern (e.g. not only the location of urban clusters but their 
existence and size; Rand et al., 2003). This also reduces the scope for cherry-picking single measures in which 
the model appears to perform well. Multi-criteria analysis can also potentially allow comparison of areas in 
which process and predictive accuracy can be disentangled (Brown et al., 2005). Methods capable of exploring 
large areas of parameter space efficiently are therefore very relevant, especially for ABMs with many 
parameters. A number of robust statistical approaches have been suggested to improve on current practice 
(Saltelli et al., 2019; Stepanyan et al., 2021). Particularly promising are techniques using machine learning, for 
instance to create surrogates of ABMs that can be analysed far more quickly than the model itself (Angione et 
al., 2022; ten Broeke et al., 2021).  
 
The ability to pattern match does not necessarily make it a good idea, however. ABMs are often intended 
explicitly for exploration of individual and social behaviours, and not for pattern-matching. Several authors have 
argued that prediction is a minor goal in land system science, and one that is unduly restrictive in prioritising the 
replication of single outcomes (Edmonds, 2017; Epstein, 2008; Williams et al., 2020). While useful debates about 
the ideal role for prediction continue (e.g. Polhill, 2018), it is certainly true that many if not most land system 
models have purposes that cannot be assessed through tests of predictive accuracy alone. 
 
Because data-based corroboration of model outputs is so difficult, the associated practice of model 
benchmarking can be particularly useful, and we include this as a distinct component of our LUC-TRACE protocol. 
Model benchmarking involves the comparison of a model’s outputs to those of alternative models, along with 
comparison of model inputs and structure to allow meaningful conclusions to be drawn. Benchmarking projects 
already exist for models of land and other systems (e.g. ILAMB; Collier et al., 2018), but benchmarking is not 
common practice for small-scale or behavioural models. Formalised comparisons can allow both individual 
model behaviour and comparative differences to be attributed to particular features, or even to aspects of the 
system. 

3.9  Participatory/companion modelling  

Records of participatory or companion modelling are new additions of ours to the TRACE protocol, although 
Schulze et al. (2017) discuss the role of participatory modelling in the evaludation framework. We suggest 
individual components relating to participatory model development or selection (details of whether and how 
the model was developed or chosen with user engagement), usage in participatory settings (records of such 
usage including its design and outcomes) and communication of results (how results were presented and how 
feedback at this point was captured and used). As argued by, for example, Hamilton et al. (2019), the prominence 
of environmental models in political and societal decision processes, and the wide range of purposes they are 
used for in these contexts, means that model selection and evaluation must actively involve a range of 
stakeholders. Land system models and ABMs in particular have additional interest in relating directly to human 
systems, and so stakeholders are likely to have important perspectives on model design and use.  
 
There is strong evidence to suggest that participatory modelling can improve models themselves and 
stakeholder understanding of their outputs (Burton et al., 2018; Hamilton et al., 2019; Holman et al., 2016; 
Millington et al., 2011). Despite the value of participatory approaches, they are rarely used at any stage of model 
design (Millington & Wainwright, 2017; Sohl & Claggett, 2013). Model complicatedness and complexity can be 
barriers, as can basic characteristics like the treatment of geographical space (e.g. in terms of discrete units) that 
are strong abstractions of the world as perceived by many stakeholders (Barnaud et al., 2013; Sun et al., 2016). 
Although ABMs may be more suitable for participatory modelling due to their representation of potentially 
relatable behaviours, their use in this way remains under-developed (O’Sullivan et al., 2016). Potential ways 
forward are provided by strategies for better and more comprehensive engagement that address model design, 
selection and evaluation in general (Hamilton et al., 2022).  
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3.10  Model replication 

Replication is an essential check in scientific progress in general, but one that requires a formidable amount of 
work in modelling. Replication can take the form of independent use of the model to check reproducibility of 
existing results, or, at its extreme, independent re-development of the model itself. Because both of these are 
so challenging, time-demanding and generally unrewarded, they are almost never done. As a result, suspicions 
that many published results may be erroneous in some way are widespread, and are borne out by evidence in 
some cases (Polhill et al., 2005; Zhang & Robinson, 2021).  
 
In the context of the TRACE protocol, a further issue for replication is that the protocol is generally intended to 
describe new models that are unlikely to have been available long enough for replication to occur. Nevertheless, 
efforts to facilitate replication are crucial and can be made at this stage. Like evaluation in general, replication 
can be hampered by poor model descriptions and lack of open-access data and code, which other parts of this 
evaludation protocol address. We also propose that models be situated within the taxonomy of reproducibility 
of Essawy et al. (2020), who define four key steps: 1) Repeatability, achieved when a model produces consistent 
results when run in its original form; 2) Runnability, achieved when consistent results are produced on a different 
computer; 3) Reproducibility, achieved when an independent researcher produces consistent results in their 
own computational environment; and 4) Replicability, achieved when independent studies produce consistent 
results in their own ways. We propose that modellers detail any steps taken to facilitate or implement the above 
steps during model development, as well as detailing the full computational environment in which published 
results were generated. Examples also exist of modellers actively testing different computing environments and 
recording performance, as Hoffman et al. (2005) did for the Community Land Model, and as Essawy et al. (2020) 
did while exploring methods for simplifying the process of maximising replicability. 
 

4.  Discussion and Conclusion 

The LUC-TRACE ‘evaludation’ framework we propose builds on the existing TRACE protocol (Ayllón et al., 2021; 
Grimm et al., 2014; Schmolke et al., 2010) in recognising that there are many ways of evaluating land system 
models, all of which have some value, some of which are essential, but none of which are sufficient on their 
own. Combining several methods of evaluation therefore provides a particularly robust approach, and the tiered 
checklist we suggest in Table 1 is intended to highlight the most important methods to use in a land system 
modelling context. It is also intended to streamline the process of evaludation and illustrate the value even of a 
brief and partial document that covers key points.  
 
It is nonetheless necessary to acknowledge practical problems associated with implementing these steps. Land 
system models are often complicated and complex, and so methods for their evaluation are not simple. It may 
be difficult for readers and users to understand what has been done even in the best of circumstances, and this 
places an explanatory burden on model developers that is not usually supported by academic or funding 
systems. Recent moves towards transparency and open science are important steps, but even with greater 
support, creating (for the model developer) and reading (for the model user) large evaluation documents may 
simply be too time-consuming and tedious. It is also important to recognise that the ultimate documentation 
remains the model code itself, which describes exactly what the model does in a standardised form. Structured 
frameworks like TRACE can be invaluable in providing a reference manual of model evaludation, and possibly 
also an interpretive bridge between narrative descriptions and underlying code, but are not intended to be 
universally applicable or sufficient. 
 
There are further challenges involved in balancing rigorous evaluation against a preference among (applied) 
funding bodies and many model users for apparently certain results that answer specific questions, even when 
models are unable to do so reliably. The consistent use of established models to address questions to which 
they might not be suited, rather than to invest in the development of alternative models, has been cited as 
evidence of this preference (Gambhir et al., 2019; Low & Schäfer, 2020). There are also inevitable difficulties in 
evaluating any models that deal with qualitative, complex and contentious issues. Registered reports, of the 
kind suggested for empirical science, could be valuable for modelling studies, ensuring that full descriptions of 
models were available and removing the need for particular results to justify publication (Center for Open 
Science, 2022). The development of models from general empirical, conceptual or theoretical foundations can 
also ensure a basic level of acceptability. Methods could include the use of ‘Digital Twins’ that pair models with 
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their real-world counterparts through ongoing data exchange, allowing iterative calibration and evaluation to 
occur (Lenfers et al., 2021), agreement on particularly important ‘high-level’ processes to be included in models 
of particular systems (Brown & Rounsevell, 2021; Urban et al., 2021), or simply fuller use of existing theories 
and qualitative information (Groeneveld et al., 2017). 
 
Ultimately of course, modelling has an important role to play as an imaginative practice to be followed where it 
might lead. In this case, model utility is dependent on communication and interpretability, and model evaluation 
is a process of understanding model behaviour – and therefore, hopefully, system behaviour itself. Users are 
likely to be faced with a choice among models that are neither valid nor invalid in a strict sense, with utilities (or 
‘fitnesses’ as Hamilton et al. (2022) term them) that cannot be comprehensively predetermined. Instead, models 
have as much or as little validity as users give them when they apply and interpret them, and evaludation is 
useful to the extent that it supports these processes. 
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