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Abstract: Recent advances in satellite observations of methane provide increased opportunities for
inverse modeling. However, challenges exist in the satellite observation optimization and retrievals
for high latitudes. In this study, we examine possibilities and challenges in the use of the total
column averaged dry-air mole fractions of methane (XCH4) data over land from the TROPOspheric
Monitoring Instrument (TROPOMI) on board the Sentinel 5 Precursor satellite in the estimation
of CH4 fluxes using the CarbonTracker Europe-CH4 (CTE-CH4) atmospheric inverse model. We
carry out simulations assimilating two retrieval products: Netherlands Institute for Space Research’s
(SRON) operational and University of Bremen’s Weighting Function Modified Differential Optical
Absorption Spectroscopy (WFM-DOAS). For comparison, we also carry out a simulation assimilating
the ground-based surface data. Our results show smaller regional emissions in the TROPOMI
inversions compared to the prior and surface inversion, although they are roughly within the range
of the previous studies. The wetland emissions in summer and anthropogenic emissions in spring
are lesser. The inversion results based on the two satellite datasets show many similarities in terms
of spatial distribution and time series but also clear differences, especially in Canada, where CH4
emission maximum is later, when the SRON’s operational data are assimilated. The TROPOMI
inversions show higher CH4 emissions from oil and gas production and coal mining from Russia
and Kazakhstan. The location of hotspots in the TROPOMI inversions did not change compared
to the prior, but all inversions indicated spatially more homogeneous high wetland emissions in
northern Fennoscandia. In addition, we find that the regional monthly wetland emissions in the
TROPOMI inversions do not correlate with the anthropogenic emissions as strongly as those in the
surface inversion. The uncertainty estimates in the TROPOMI inversions are more homogeneous
in space, and the regional uncertainties are comparable to the surface inversion. This indicates the
potential of the TROPOMI data to better separately estimate wetland and anthropogenic emissions,
as well as constrain spatial distributions. This study emphasizes the importance of quantifying and
taking into account the model and retrieval uncertainties in regional levels in order to improve and
derive more robust emission estimates.
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1. Introduction

Methane (CH4) is the second most powerful anthropogenic greenhouse gas after
carbon dioxide, contributing to ∼23% of the Earth’s atmospheric radiative forcing since
1750 [1]. Its atmospheric burden has increased by approximately 2.6 times since the pre-
industrial times, reaching 1895 ppb in 2021 [2]. The atmospheric CH4 growth rate has been
accelerating in recent years [3], and in 2021, the measured growth rate reached a record
high since 1984 (18.3 ppb year−1) [2]. In the northern high latitudes (NHLs), the most recent
two- to-three-year atmospheric CH4 growth is higher than the global mean [4]. The exact
cause is unclear, but Arctic amplification [5,6] could potentially increase CH4 emissions
from wetlands [7–9] and permafrost [10,11]. In addition, Russia is one of the largest oil
and natural gas producers in the world, and CH4 emissions, due to their production and
consumption, are expected to increase [12].

The latest report from the Global Carbon Project Methane [13] estimated that 24 Tg
CH4 year−1 (∼4% of global total) is emitted from 60°N–90°N, and 117 Tg CH4 year−1

(∼20% of global total) is emitted from Canada, Europe and Russia together, based on the
top-down estimates for 2017 [14]. The proportion of anthropogenic to total CH4 emissions
varies between the regions in the NHLs. In Eurasia, the anthropogenic sources, such as
those from oil and gas production and which use coal mining, agriculture and waste, are
estimated to contribute over 60% of the total emissions while in Canada, the contribution is
estimated to be ∼20–30% [15,16]. Although their contribution to the global total is not as
significant as, e.g., mid-latitude and tropical regions, large discrepancies are found in their
estimates between different inventories, models and their setups [15–19].

The seasonality of NHL CH4 emission is strongly driven by natural ecosystems, such
as wetlands. Due to their response to temperature and water availability, CH4 emissions
are high during summer and low in winter. However, even the timing of the maximum
emissions varies between models by two to three months (June–August) based on land–
ecosystem process-based models [20,21]. Atmospheric inverse models have been more
successful in finding robust estimates [22–24], with the estimated maximum month being
slightly later than the process-based models in general. The estimated timing of the start
of the emission season is also later in the atmospheric inversions, especially in the North
American continent [16,22,24].

The anthropogenic biogenic sources, such as rice cultivation, manure management,
landfills and waste water treatments, can produce seasonality in CH4 emissions [25,26],
as well as fossil fuel sources [22,27]. The seasonality of anthropogenic emissions is not
included in the national reports, but some global inventories such as the Emissions
Database for Global Atmospheric Research (EDGAR) include such seasonality [28,29].
However, as Tsuruta et al. [23] showed, the seasonality of the anthropogenic emissions
derived from the atmospheric inversion could be a result of strong correlation with wet-
land emissions when the spatial representativeness of the observations is not sufficient.
In the NHL, only a few ground-based observations are located close to the anthropogenic
sources [30–34]. Therefore, the ground-based observations would have difficulties in con-
straining anthropogenic emissions well. On the other hand, recent studies showed the
ability of using high-resolution satellites to detect additional sources of CH4 emissions,
such as leakage from pipe lines as well as oil and gas plants [35–37].

Previously, satellite retrievals of total column averaged dry-air CH4 mole fractions
(XCH4) from SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY
(SCIAMACHY) on board ENVIronmental SATellite (ENVISAT), and Thermal And Near
infrared Sensor for carbon Observations–Fourier Transform Spectrometer (TANSO–FTS)
on board the Greenhouse Gases Observing Satellite (GOSAT), have been used to estimate
NHL CH4 emissions, e.g., [17,24,38–44]. However, nearly all of the studies pointed out the
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latitudinal and seasonal differences in XCH4 between the retrievals and model estimates
using prior or posterior emissions derived by assimilating the surface data. Although the
magnitude varies with the underlying transport models and retrievals they used, it is often
the case that model estimates show higher XCH4 values in the NHLs [24,39,45]. In addition,
Houweling et al. [41] pointed out that seasonal differences are also important to consider.
Without correcting the regional and seasonal differences, inversions assimilating satellite
data become difficult to interpret, such that the flux distribution differs unrealistically
from the surface inversion [46]. Therefore, it has been a common practice to correct those
differences based on surface inversion, XCH4 measured from ground (e.g., TCCON data),
or CO2 data before carrying out the satellite inversion, e.g., [17,40,46,47], or simply discard
the high latitude data, e.g., [16,38,42,43,48]. More recently, Qu et al. [49] studied the use
of the Netherlands Institute for Space Research’s (SRON) v1.0 operational TROPOspheric
Monitoring Instrument (TROPOMI) XCH4 data [50] in the global inversion, but they found
high positive bias (i.e., model estimates are higher) in XCH4 in NHLs after inversions, indi-
cating the problem remains. However, it is challenging to quantify before carrying out the
inversions exactly how many corrections should be applied as some of the signals from the
satellites may indicate the fluxes that were not perfectly captured by the surface inversion.

In this study, we examine the use of the TROPOMI retrievals in estimation of NHL CH4
fluxes using an atmospheric inverse model, CarbonTracker Europe-CH4 (CTE-CH4 [51]).
We use the two TROPOMI retrievals, the SRON’s operational and the University of Bre-
men’s Weighting Function Modified Differential Optical Absorption Spectroscopy (WFM-
DOAS) [52], to examine how regional CH4 fluxes and their seasonality would be affected
when those data are assimilated in the atmospheric inversion. In addition, we carry out an
inversion using the surface data, and compare results with those driven by the TROPOMI
data. By optimizing fluxes on grid-base at a 1° × 1° resolution, we examine whether the
TROPOMI data can bring additional understanding of emission hotspots. The focus of this
study is on seasonal cycles and spatial distributions for NHLs (above 45°N) in 2018.

2. Materials and Methods
2.1. CTE-CH4 Atmospheric Inverse Model

CTE-CH4 [51] is an atmospheric inverse model based on ensemble Kalman filter
(EnKF) [53,54]. The flux-scaling factors x are optimized by minimizing the cost function

J(x) = (x− x′)TP−1(x− x′) + (y−H(x))TR−1(y−H(x)), (1)

where x′ is a vector of prior states, P is a state covariance matrix, y is a vector of atmospheric
CH4 observations,H is an observation operator and R is an observational covariance matrix.

In this study, we use the TM5 atmospheric transport model [55] as the observation
operator. TM5 is run at 6° × 4° resolution globally with a 1° × 1° zoom region over Europe,
which is surrounded by the intermediate 3° × 2° region [56]. The vertical resolution is
25 hybrid levels. The model is constrained by the European Centre for Medium-Range
Weather Forecasts (ECMWFs) ERA5 meteorological fields [57], which are interpolated
to TM5 model resolution and at 3-hourly temporal resolution. For the initial condition,
3-dimensional concentration fields are taken from the previous study assimilating surface
observations [58].

The anthropogenic and biospheric fluxes (see Section 2.2) are optimized simulta-
neously at 1° × 1° resolution over Canada, USA, Europe and Russia, and region-wise
elsewhere globally (Supplementary Figure S1). The temporal resolution is three days for
the inversions using the TROPOMI data and seven days for the inversion using the surface
data (see Sections 2.3 and 2.4 for datasets). The EnKF lag-window of five is employed for
both, i.e., the lag-window is 15 days for the TROPOMI inversions and five weeks for the
surface inversion. Different temporal resolutions were applied as the number of data points
are significantly different between the surface and TROPOMI data. Sufficient number of
data points is needed to be assimilated for each time step, but the number should be limited
to some extent to make the simulations computationally feasible [59]. In the current CTE-
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CH4, temporal correlation is not taken into account for the ensemble members, but only
to the mean states [51,53,54]. The length of lag-windows defines information content in
the observation on temporal dimension, and therefore, the differences could be significant,
especially when comparing short temporal changes. However, in this study, we focus on
the annual-to-monthly scale seasonal changes, and leave the analysis on short-term changes
in future studies. The prior uncertainties for the anthropogenic and biospheric fluxes are
set as 80% and 20% of the fluxes over land and ocean regions, respectively, and assumed to
be uncorrelated. The spatial correlation is defined by an exponential decay [54], with corre-
lation length of 100 km between the 1° × 1° grid-based optimization regions, 500 km over
other land regions and 900 km over ocean regions.

2.2. Prior CH4 Fluxes

Biospheric fluxes, i.e., those from wetlands, peatlands, permafrost and mineral soils,
are taken from Land surface Processes and eXchanges DYPTOP (LPX-Bern) model version
1.4 [60]. The seasonal cycle of the biospheric fluxes is mainly driven by meteorological
conditions, such as temperature and precipitation, and flux responses to them in each soil
type. The data are provided on monthly temporal resolution. The spatial distribution
depends much on soil types, where wetland and peatlands mainly emit CH4 during
summer, while mineral soils can be sources or sinks. The net fluxes are often positive (i.e.,
emission) during summer over wet areas, and negative (i.e., sink) on dry soils. The fluxes
during winter can be small, especially when the soil is frozen. The total CH4 fluxes from
LPX-Bern v1.4 are 119 Tg CH4 year−1 for 2018, accounting for 22% of the total global CH4
fluxes. For the NHLs (above 45°N), the fluxes are 22 Tg CH4 year−1, corresponding to 26%
of the NHL regional total fluxes.

Anthropogenic fluxes, such as those from agriculture, landfills and production and
use of oil, gas and coal, are taken from the EDGAR v6.0 inventory [29,61–63]. The data are
originally at 0.1° × 0.1° × monthly resolution, and are aggregated to 1° × 1° × monthly
resolution for the simulations. The emissions are high in cities, oil and gas plants, and live-
stock farms. The seasonality from the anthropogenic sources is often assumed to be small,
although biogenic fluxes (livestock, manure and landfills) could be dependent on temper-
ature [25,26]. The global CH4 fluxes from those sources are 374 Tg CH4 year−1 for 2018,
accounting for 70% of the global total CH4 fluxes. For NHL, the fluxes are 49 Tg CH4
year−1, corresponding to 58% of the NHL regional total fluxes.

Other natural sources from biomass burning, termites, geological and ocean sources
are taken into account to close the global budget. We did not include fluxes from lakes
and rivers specifically, although it is one of the largest uncertainties in CH4 budgets [13].
The biomass-burning emissions are taken from the Global Fire Emissions Database (GFED)
v4.2 [64], emissions from termites are taken from [13], geological sources from [65] and
ocean fluxes from [66]. Among those, biomass-burning emissions have seasonal cycles,
i.e., monthly and annually varying data are used. For those from geological sources and
ocean, the data do not have seasonality and year-to-year variations. The geological emission
is scaled down from the original data to 23 Tg CH4 year−1 based on Intergovernmental
Panel on Climate Change (IPCC) AR6 WG1 report [67]. The other natural sources together
contribute 8% and 16% of the global and NHL regional total fluxes for 2018, respectively.

2.3. TROPOMI XCH4

We use two retrieval products: the SRON operational product v01.02.02 and v01.03.01
(OPER) [50] and the University of Bremen’s WFM-DOAS research data v1.2 (WFMD)
[52]. The OPER data are taken from the Sentinel-5P Pre-Operations Data Hub (https:
//s5phub.copernicus.eu/dhus/#/home, accessed on 15 December 2019), and the WFMD
data from the University of Bremen’s website (https://www.iup.uni-bremen.de/carbon_
ghg/products/tropomi_wfmd/index_v12.php, accessed on 15 December 2019). TROPOMI
methane products include retrieved dry-air mole fraction of methane (XCH4) together with
its error estimate and averaging kernel.

https://s5phub.copernicus.eu/dhus/#/home
https://s5phub.copernicus.eu/dhus/#/home
https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/index_v12.php
https://www.iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/index_v12.php
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Both data are preprocessed to exclude potentially bad-quality observations based on
the product specifications from the data producers. For the WFMD data, only soundings
with XCH4 quality flag = 0 are considered, and for the OPER data, only soundings with QA
value >= 0.5 are considered. Both data are preprocessed to 1° × 1° × daily resolution by
taking the median XCH4 of the grid as the observation. After preproceessing, the number of
data above 45°N for 2018 is 571147 and 436547 for WFMD and OPER, respectively (see also
Supplementary Figure S2). For the calculation of averaging kernel (AK), the prior XCH4
and profile information are taken from the retrieval, which has the closest XCH4 value to the
daily median. The observational uncertainties, which are the square root of the diagonals of
the matrix R in Equation (1), are calculated as aggregation errors + transport model errors.
The aggregating errors are calculated as the standard deviation of XCH4 values in 1° × 1°
× daily grid. In order to avoid using too small errors, the minimum aggregation error is set
as 5 ppb. The transport model error is set as a globally uniform value of 15 ppb, i.e., the
minimum observational uncertainty is theoretically 20 ppb. The WFMD data originally
provide retrievals over ocean, but we use only the data over land because the validation
over ocean is limited to few remote island sites globally, and to be consistent with the OPER
data that provide only land observations from nadir observations. We do not apply any
seasonal or latitudinal bias correction before carrying out the inversions.

To compare the retrieved data to the model estimates, modeled XCH4 values are
calculated using the following equation:

XCH4model =
N

∑
i=1

(
CH4

apr
i + AKi × ∆CH4i

)
× PWi, (2)

where N is the number of vertical layers in the retrieval, CH4
apr
i is a prior CH4 value

from the retrieval at layer i, AKi and PWi are averaging kernel and pressure weight at
retrieved layer i, respectively, and ∆CH4i is the differences of model and prior CH4 values
at layer i, i.e., CH4

model
i −CH4i

apr. CH4
model
i is linearly interpolated from the model layers

to the retrieval layers based on the logarithmic of the pressure profiles. We did not take
into account the differences in the surface pressure between TM5 and the TROPOMI
retrievals specifically.

We acknowledge that the differences between the TM5 horizontal resolution and
observations could affect the discrepancies between the modeled and observed XCH4
values. The effect outside the zoom region could be a concern, as model resolution is
coarser than the observations. Although we did not find statistically significant differences
in the discrepancies within and outside of the zoom region, further examination on the
effect of transport model resolution would be needed to clarify the effect.

2.4. Ground-Based Observations
2.4.1. Surface Atmospheric CH4 Data

The ground-based surface atmospheric CH4 data are taken from the global and re-
gional observational networks, mainly those in the NOAA GLOBALVIEWplus ObsPack
v3.0 dataset [68]. In addition, the observations from the NHL stations provided by the
Finnish Meteorological Institute [23] and the National Institute for Environmental Studies
(Monitoring of Greenhouse Gases over Siberia by Tower, Ver1.2 [32]) are used. For the as-
similation and evaluation, the data are filtered according to the institution’s flags, and only
those of high quality and those representing well-mixed conditions are used. For the hourly
continuous observations, the data are preprocessed to daily means by taking average of
12–16 local time, except for the high altitude mountain sites from which average of 0–4
local time is taken. The observational uncertainty varies between the sites from 4.5 to
75 ppb. Globally, there are 153 stations, where the data for 2018 are available, and we used
69 stations located above 45°N in the inversion (see Figure 1 and Supplementary Figure S3
for location of the sites). The list of sites is found in Supplementary Table S1.
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Figure 1. Location of ground-based stations where the atmospheric data are available for 2018.
The background colors illustrate the regional definition used to calculate regional emissions.

2.4.2. TCCON XCH4 Data

The Total Carbon Column Observing Network (TCCON) consists of 28 operational
sites globally, where the spectrum of near-infrared radiation of direct sunlight is measured
with ground-based Fourier Transform Spectrometers (FTSs) [69]. TCCON is currently
the main validation network for satellite observations of methane and other trace gases;
the benefit of TCCON measurements is that solar-viewing FTSs measure direct sunlight
and therefore the measurements are not affected by surface properties, such as albedo,
or atmospheric scattering from aerosols. In this work, the TCCON data are used only
for evaluations.

We use the TCCON GGG2020 data [70] from seven sites (Table 1); Ny-Ålesund (Nor-
way) [71], Sodankylä (Finland) [72], East Trout Lake (Canada) [73], Karlsruhe (Germany) [74],
Paris (France) [75], Orléans (France) [76] and Park Falls (USA) [77]. The criteria for choos-
ing the sites are (1) the site is located at latitude above 45°N and (2) the retrieval data
are available for at least six months during which there are observations from at least
seven days.

To temporally co-locate the XCH4 from the TCCON and model, we consider the
TCCON observations that are made the closest in time to the time steps of the model
(hourly) and set the time limit to half an hour; if there is a TCCON observation made within
± half an hour of the model time step, the TCCON and modeled values are taken into
account. The TCCON averaging kernels are applied to the model estimates [78]:

ĉ = ca + (h ◦ a)T(x− xa) (3)

where ĉ is the averaging kernel corrected XCH4 value from the model, ca is the TCCON
prior XCH4, h is the TCCON pressure weighting function, a is the TCCON averaging kernel,
x is the model profile and xa is the TCCON prior profile. After applying the averaging
kernel, daily means and monthly quantiles are calculated for evaluation.
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Table 1. Bias, RMSE and correlation against observations at TCCON sites, calculated from daily
averages. RMSE* is calculated from anomalies of the daily averages, i.e., mean over time is subtracted
from the datasets. Positive biases indicate model overestimation. For each site, the simulation with
the smallest bias and RMSE and the strongest correlation are marked in bold. * The sites which have
ground-based CH4 observations assimilated in InvSURF.

Station Name Latitude Longitude Simulation Bias RMSE RMSE* Correlation
[ppb] [ppb] [ppb]

Ny-Ålesund, Norway * 78.92°N 11.92°E Prior 49.2 51.7 15.8 0.31
InvWFMD 46.9 49.6 16.1 0.27
InvOPER 47.7 49.8 14.3 0.50
InvSURF 46.7 49.1 15.4 0.36

Sodankylä, Finland * 67.37°N 26.63°E Prior 40.7 42.4 11.7 0.47
InvWFMD 38.8 40.6 12.2 0.39
InvOPER 40.6 41.9 10.2 0.66
InvSURF 39.3 40.8 10.8 0.59

East Trout Lake, Canada * 54.35°N 104.99°W Prior 43.6 46.1 14.7 0.38
InvWFMD 42.1 44.7 15.1 0.35
InvOPER 44.1 46.3 14.0 0.50
InvSURF 43.6 46.2 15.1 0.42

Karlsruhe, Germany * 49.10°N 8.44°E Prior 22.9 25.8 12.1 0.33
InvWFMD 21.1 24.4 12.3 0.30
InvOPER 24.2 27.0 11.8 0.48
InvSURF 24.6 27.5 12.2 0.49

Paris, France 48.85°N 2.36°E Prior 25.2 27.1 10.0 0.39
InvWFMD 23.6 25.7 10.1 0.40
InvOPER 28.6 30.4 10.1 0.52
InvSURF 27.7 29.9 11.3 0.59

Orléans, France 47.97°N 2.11°E Prior 28.2 30.3 11.2 0.43
InvWFMD 26.5 28.8 11.4 0.43
InvOPER 30.3 32.4 11.5 0.54
InvSURF 29.4 31.6 11.7 0.60

Park Falls, United States * 45.95°N 90.27°W Prior 32.3 35.2 14.0 0.13
InvWFMD 30.8 34.0 14.4 0.12
InvOPER 33.0 35.8 13.9 0.30
InvSURF 32.4 35.8 15.4 0.25

2.4.3. AirCore CH4 Profile Data

AirCore is a sampling system for atmospheric gas profiling, first introduced by Karion
et al. [79]. The sampler is built in a form of 100-meter-long coiled thin metal tube. It is
lifted up to 35 km by a meteorological balloon from where it descends using a parachute.
When ascending, the valve on the other end of the tube is open and the pressure in the
tube pushes the fill gas out. During the descent, the growing ambient pressure re-fills the
tube with air from all altitudes. When the sampling system reaches the ground, the valve
is closed and the system is returned to laboratory for analysis within a few hours. In the
narrow tube, mixing is slow and thus the air sample holds information on the vertical
profile of the atmospheric gases. The air samples are analyzed using a cavity ring-down
spectrometer (Picarro Inc. model G2401). We use the data from the balloon soundings
launched from the Arctic Space Centre in Sodankylä, Finland [80–82], also hosting the
Sodankylä TCCON site.

For the comparison, the model estimates are horizontally interpolated at Sodankylä
TCCON coordinates (67.37°N, 26.63°E). For the time collocation, the average over the
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AirCore sampling time is compared to the closest hourly values in the model estimates.
The statistics (bias, root-mean-square error (RMSE)) are calculated by vertically interpo-
lating the AirCore data to model grids. In this work, the AirCore data are used only
for evaluations.

2.5. Simulation Setups and Regional Definitions

In this study, we carry out three inversions for 2018 using three sets of atmospheric
data: (1) TROPOMI WFMD data (InvWFMD), (2) TROPOMI OPER data (InvOPER) and (3)
ground-based surface data (InvSURF). In InvWFMD and InvOPER, only the satellite data
are assimilated, and are together defined as the TROPOMI inversions. We carry out global
inversions, but the analyses focus on NHLs (above 45°N). The NHL is further divided into
three regions as defined in Figure 1. The regional definition is chosen based on continents,
emission magnitudes and seasonal cycle amplitudes, so that the regional emissions may be
comparable to some extent.

3. Results

In the following sections, the term prior and posterior mole fractions are used to
indicate the model estimates derived from prior and posterior fluxes, respectively. The cor-
relation presented in the following sections are the Pearson’s correlation coefficient. We
acknowledge some of the limitations using the method, and other metrics, e.g., the index of
agreement [83] could represent the agreement better in some cases.

3.1. Mixing Ratios at Ground-Based Stations

This section focuses on differences between the modelled and observed mixing ratios
in order to assess the inversion results. The comparison of the modeled atmospheric CH4
against surface observations generally shows ±30 ppb biases and moderate-to-high correla-
tion (Figure 2). The agreement is generally better in InvSURF, as those data are assimilated
in the inversion. In the TROPOMI inversions, although biases are not significantly larger
than those in InvSURF at most of the sites (|biasInvSURF| − |biasInvTROPOMI| = 3.4± 5.6 ppb),
the seasonality at the NHL sites shows overestimation of surface CH4 during March,
May and June as well as in winter, and underestimation during August and September
(Figure 3a). This is a general feature for all NHL sites. In all inversions, biases of greater
than −40 ppb are found in Noyabrsk (NOY), Russia (63.43°E, 75.78°N). Although the
number of data is limited, all models underestimate CH4 throughout the year (Supple-
mentary Figure S4). The observation uncertainty used in InvSURF at Noyabrsk is 30 ppb,
i.e., if the differences between prior and observed atmospheric CH4 are within 30 ppb
× 3 = 90 ppb, the data are assimilated. The largest positive bias is found in Baranova
(BAR), Russia (101.62°E, 79.28°N), in the TROPOMI inversions, where the biases in the
TROPOMI inversions and the prior are more than 20 ppb, but the agreement in InvSURF
is good (biasInvSURF = 3.3 ppb). At Baranova, the overestimation is prominent, except in
August–October when wetland emissions are high in Siberia (Supplementary Figure S4).

Comparison to TCCON retrievals shows overestimation of the modeled XCH4 mole
fractions throughout the year in all inversions and at all NHL sites (Table 1, Supplementary
Figure S5). The positive biases are especially high at the sites located above 50°N with more
than ∼40 ppb, while other sites have a mean bias of 27 ppb. In addition, seasonality does
not perfectly match the observations, especially in the TROPOMI inversions (Figure 3b,
Supplementary Figure S6). In InvOPER, the correlation between the modeled and TCCON
XCH4 is strongest or second-strongest (Table 1), but the annual minima are approximately
two months later than TCCON, except for Ny-Ålesund and East Trout Lake (Supplementary
Figure S6). Unlike the other sites, the annual minima are found in early spring at those sites,
which are the months affected by polar vortex. The correlation is weaker in InvWFMD,
but the general feature of the XCH4 seasonal cycle is similar to InvOPER. Low XCH4 in
spring is best captured in InvOPER, where InvWFMD and InvSURF estimates are often
higher (Supplementary Figure S6). This feature is not clearly seen in the comparison to



Remote Sens. 2023, 15, 1620 9 of 24

the surface observations, indicating possible effects of the upper atmosphere, e.g., polar
vortex. For example, at Ny-Ålesund, the low TCCON XCH4 in April is affected by polar
vortex (Supplementary Figure S5), but the observed surface CH4 is not low. The model
is able to capture the surface CH4 well, but not XCH4. For autumn to winter, we find
similar biases to those compared to the surface observations: the anomaly exhibits lower
values during autumn and higher values during winter compared to TCCON (Figure 3,
Supplementary Figure S6). At Sodankylä, the seasonality in InvSURF is captured slightly
better, although the summer minimum is overestimated, and underestimation during
autumn is strong (Figure 3b).

Figure 2. Bias and correlation between modeled and observed atmospheric CH4 assimilated in
InvSURF above 45°N. For InvWFMD and InvOPER, the modeled values are calculated using the
posterior fluxes. Positive bias indicates model overestimation of CH4. The regional definitions are as
in Figure 1. The sites with high bias or relatively weak correlation are specified.

In most cases, the shapes of the CH4 vertical profiles in Sodankylä from the inversions
do not differ by the types of the assimilated data (surface vs. TROPOMI). The model
estimates generally agree well with the observations in troposphere, where the poste-
rior mean bias above 400 hPa is 10–12 ppb, but show higher CH4 mole fractions in
the stratosphere with a mean bias of 98–103 ppb below 400 hPa. The AirCore measure-
ments show a depleted CH4 mole fraction in the lower stratosphere, which is especially
prominent during 18–20 June, but such depletion is not captured in the model estimates
(Figure 3c, Supplementary Figures S7 and S8). The shape of the profile is slightly better
captured in, e.g., 2 July (Figure 3d). However, the tropopause height is significantly higher
then, and the overestimation of the model estimates at the lower stratosphere still exists.
Based on the analysis of the air mass, those days were not in the polar vortex.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Observed and modeled atmospheric CH4 at Sodankylä, which has all the ground-based
datasets. Monthly median and first and third quantiles at surface station against the assimilated
data in InvSURF (a), quantiles of XCH4 anomaly against TCCON retrievals where annual means are
subtracted (b) and CH4 profile against AirCore measurements (c,d).

3.2. Seasonal Cycle of CH4 Emissions

The monthly CH4 fluxes in the NHL regions (Figure 1) show that the seasonal cycle
amplitude is the largest in wetlands over Canada and Eurasia+Fennoscandia, with the
highest emissions during summer (Figure 4). The seasonal cycle amplitude is the largest
in InvSURF among the inversions in both regions (Figure 4). The TROPOMI inversions
show smaller amplitudes, where summer emissions are reduced from the prior. This is
expected, as prior XCH4 values are higher than the retrievals during summer (Supplemen-
tary Figure S9). The wetland emissions reach their annual maximum in August in Canada
and Eurasia+Fennoscandia in InvSURF, while the estimates in the TROPOMI inversion
are one to two months later. In Central+Eastern Europe, the wetland emissions are small,
and the seasonal cycle is distinctive from the other regions, such that it is at its minimum in
summer and maximum in winter. This is because the region has little wetlands and the
fluxes are dominated by mineral soils, which are mostly net sink of CH4.

Figure 4. Monthly CH4 biospheric (top) and anthropogenic (bottom) fluxes over the NHL regions for
2018. The shaded areas show standard deviation of the ensemble members. For priors, the uncertainty
is that used in the inversion.
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The anthropogenic CH4 emissions in InvSURF show clear seasonality, with maxi-
mum in summer–autumn in all regions. This indicates a strong correlation between the
wetland and anthropogenic flux-scaling factors optimized in InvSURF. On the contrary,
the TROPOMI inversions generally show lower emissions during spring and autumn
compared to winter. The regional monthly scaling factors (posterior/prior) display the
strongest correlation between biospheric and anthropogenic fluxes in InvSURF, especially
in Canada (CorrInvSURF = 0.73) and Eurasia+Fennoscandia (CorrInvSURF = 0.54). The cor-
relation is much weaker in the TROPOMI inversions (CorrInvWFMD = −0.15 and −0.38,
CorrInvOPER = 0.47 and −0.35). In Central+Eastern Europe, the correlation is moderate in
all inversions (0.44–0.58), and the weakest in InvSURF.

In both TROPOMI inversions, high anthropogenic fluxes are found in August in
Eurasia+Fennoscandia and Central+Eastern Europe. This is in line with previous studies by
Berchet et al. [27], who suggested the emission peak is driven by gas production or biomass
burning. For Eurasia+Fennoscandia countries, there is little seasonality in anthropogenic
emissions in InvSURF, except for Russia, while the TROPOMI inversions show high August
emissions also in Kazakhstan (Supplementary Figure S10). The winter posterior fluxes in
the TROPOMI inversions stayed close to the prior, and this is due to the limitation of the
data availability [84].

The differences between InvWFMD and InvOPER are small in Eurasia+Fennoscandia,
but higher fluxes are found in InvWFMD in Canada, especially during summer–autumn
(Figure 4). The differences in the regional annual totals are only ∼0.4 Tg CH4 year−1

(Table 2), i.e., the lower summer emissions in InvOPER are partly compensated by the
higher anthropogenic emissions in winter (Figure 4). In Central+Eastern Europe, the an-
thropogenic fluxes are higher in InvOPER nearly throughout the year, ending up with
∼1.2 Tg CH4 year−1 differences in the regional annual total emissions (Table 2). Neverthe-
less, our estimates are roughly in line with the previous studies using atmospheric inverse
models [15,16,22].

Table 2. Annual CH4 emissions and their uncertainty for 2018 (Tg CH4 year−1). The uncertainties are
calculated as standard deviation of the ensembles.

Source Simulation Global Above 45°N Canada Eurasia Central Europe
+Fennoscandia

Biospheric Prior 118.72 ± 40.48 22.12 ± 0.90 7.62 ± 0.77 12.40 ± 0.99 2.10 ± 0.35
InvWFMD 132.70 ± 35.74 20.09 ± 0.85 6.93 ± 0.73 11.17 ± 0.93 1.99 ± 0.34
InvOPER 137.57 ± 37.31 19.93 ± 0.86 6.61 ± 0.74 11.30 ± 0.94 2.02 ± 0.34
InvSURF 107.50 ± 36.89 23.65 ± 0.81 8.30 ± 0.65 13.23 ± 0.89 2.13 ± 0.32

Anthropogenic Prior 373.69 ± 83.03 48.96 ± 2.84 7.45 ± 1.84 20.71 ± 3.17 20.80 ± 2.45
InvWFMD 401.41 ± 50.65 41.75 ± 2.56 5.12 ± 1.67 20.39 ± 2.37 16.23 ± 2.27
InvOPER 385.50 ± 57.92 42.36 ± 2.61 5.05 ± 1.69 19.92 ± 2.51 17.39 ± 2.31
InvSURF 384.98 ± 69.76 51.44 ± 2.40 7.64 ± 1.40 20.20 ± 2.68 23.60 ± 1.68

Total Prior 547.43 ± 92.55 84.56 ± 3.01 18.66 ± 2.05 39.14 ± 3.37 26.76 ± 2.47
InvWFMD 589.14 ± 60.52 75.32 ± 2.73 15.64 ± 1.88 37.59 ± 2.62 22.09 ± 2.30
InvOPER 578.09 ± 68.21 75.76 ± 2.78 15.24 ± 1.90 37.25 ± 2.74 23.27 ± 2.34
InvSURF 547.50 ± 78.86 88.57 ± 2.56 19.53 ± 1.58 39.45 ± 2.86 29.59 ± 1.71

3.3. Spatial Distribution of CH4 Emissions

The spatial distribution of the posterior CH4 fluxes shows high wetland emissions in
southern Alaska, Hudson Bay Lowlands (HBL) in Canada, northern Fennoscandia and
West Siberian Lowlands (WSL) in Russia, as expected (Figure 5a). The differences between
the TROPOMI inversions and InvSURF generally show that emissions in the TROPOMI
inversions are lower in the NHLs. The regional emissions are lower in the TROPOMI
inversions compared to InvSURF, especially during summer when CH4 fluxes are high
(Figure 4), which results in smaller annual fluxes. However, in east Canada, the differences
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are small, and the estimates in the TROPOMI inversions are higher than those in InvSURF
in some grid cells. The differences near the coasts and the UK are minor despite some
emission hotspots. In addition, the TROPOMI inversions do not show strong emissions or
higher emissions than InvSURF over northern Europe as they do over, e.g., the eastern side
of Canada. This thus supports the result that the hot and dry summer of 2018 in Europe
did not result in a positive anomaly in CH4 emissions [58].

(a) (b)

(c) (d)

(e) (f)

Figure 5. Annual mean posterior CH4 fluxes for 2018 above 45°N, estimated in InvWFMD (a,b),
and the differences of posterior fluxes between the TROPOMI inversions and InvSURF (c–f). The pos-
itive differences indicate higher fluxes in the TROPOMI inversions. The left column illustrates
those for biospheric fluxes and right column for anthropogenic emissions. Note the differences in
color scales.
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The spatial anomaly (regional mean is subtracted from the estimates) over Fennoscan-
dia shows high wetland emissions over northern Sweden, Finland and the northwest of
Russia (Figure 6). The choice of the region is again somewhat arbitrary: the region is large
enough to see details of spatial anomaly, but small enough to discriminate the effect of large
regional (e.g., latitudinal) biases. The fluxes in Russia are higher than those in Sweden and
Finland in the prior, while the regional differences are decreased in the posterior; the fluxes
over Sweden and Finland are increased in InvSURF and those in Russia are decreased
in the TROPOMI inversions from the prior. In other words, all inversions suggest that
wetland emissions are equally high in Fennoscandia and in the northwest of Russia.

Figure 6. Spatial anomaly of CH4 wetland fluxes in Fennoscandia, averaged over June–August 2018.
The regional mean over [4°E–33°E, 54°N–72°N] is subtracted from the flux estimates.

For anthropogenic emissions, hotspots are more pronounced and limited to small
regions, such that high emissions are found in cities and locations where active oil and
gas production, as well as livestock farming take place. The locations of the hotspots
after inversion do not change significantly from the prior (Supplementary Figure S11).
InvWFMD generally shows lower emissions than InvSURF. However, the emissions in the
islands of the North Sea and Kara Sea are higher in InvWFMD. In the islands of the Kara
Sea, emission hotspots are found already in the prior, where EDGAR v6.0 indicates the
emissions from the agricultural sector (enteric fermentation and manure management) are
present. Nevertheless, in all inversions, the in situ and the TROPOMI data over islands and
ice regions could have affected emissions in the Arctic ocean, but they could also be the
effect of spatial correlation between the Arctic and lower-latitude ocean regions. The prior
fluxes are assumed to be uncorrelated over land, ocean and ice.

The higher emissions in these regions in the TROPOMI inversions are likely to be a
reason for the overestimation of CH4 mole fraction against in situ observations in Bara-
nova, Russia (Supplementary Figure S4). We also find positive bias in winter, spring and
early summer, at Storhofdi, Vestmannaeyjar, Iceland (20.29°W, 63.4°N) and Ny-Ålesund,
Svalbard (11.89°E, 78.91°N) (Supplementary Figure S4). Although this is a general feature
of other NHL sites (see Section 3.1), it could be an evidence for the overestimation of the
anthropogenic emissions, especially during winter, considering that wetland emissions are
much smaller in winter compared to the anthropogenic emissions (Figure 4).

In Kazakhstan, both TROPOMI inversions show higher anthropogenic emissions
compared to InvSURF (Figure 5). This could be (1) due to the effect of spatial correlation,
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such that the emissions over Russia are decreased, and the surrounding lower-latitude
regions are correspondingly increased, (2) latitudinal bias in the TROPOMI retrievals or the
transport model or (3) actual signal in the TROPOMI inversions. In Kazakhstan, only two
in situ sites are available in the southeast (lower than 45°N), and therefore, the TROPOMI
data probably have stronger constraints on the emissions. Note that Kazakhstan is not
optimized on grid bases (Supplementary Figure S1).

3.4. Uncertainty Estimates

The uncertainty reductions in the TROPOMI inversion are spatially more homo-
geneous, while the reductions are highest near the observational stations in InvSURF
(Figure 7). This indicates that the good spatial coverage of the satellite data reduces the flux
uncertainty on locations where the surface data are not available. Uncertainty reductions
are often high in the regions where prior fluxes (and their uncertainties) are high and
observations with small observational uncertainties are located. Such regions are found
near anthropogenic sources in Europe, mid southern Canada and near biospheric sources in
the HBL area in Canada and northern Europe (Figure 7). However, despite high biospheric
emissions in Eurasian wetland regions, uncertainty reduction rates are not exceptionally
high in all inversions. The uncertainty reductions in the Arctic ocean and some southern re-
gions are high as those regions are optimized region-wise, i.e., there are more observations
per optimization region as constraints.

(a) (b)

(c) (d)

Figure 7. Annual mean uncertainty reduction rates above 45°N for 2018 estimated in InvWFMD (a,b)
and InvSURF (c,d). The left columns (a,c) are for the biospheric fluxes and right columns (b,d) for the
anthropogenic emissions.
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The grid-wise uncertainty reduction rate is smaller in the TROPOMI inversions in
general (Figure 7), although the regional posterior uncertainties are comparable to InvSURF
in the NHL regions, and lower than InvSURF on a global level (Table 2). There could be a
few explanations for this. First, temporal optimization resolution is different in InvSURF
(seven days) and the TROPOMI inversions (three days). Since our assimilated data in
the TROPOMI inversions are aggregated to 1° × 1° × daily resolution (see Section 2.3),
the number of observations may be twice larger in the surface inversion at the location
where surface data are available (in situ data are also aggregated to daily values). In addi-
tion, the observational uncertainty for the satellite data is generally higher than those for
the surface data. In general, when observational uncertainty is greater, there will be less
influence on the optimization, leading to a smaller uncertainty reduction rate.

Secondly, we did not use so-called localization [54]. Localization gives limits on
how far in distance the observations can influence the fluxes. The grid-wise uncertainty
reduction close to the observation location would be higher if the localization was used.
When it is switched off, the uncertainty reduction is likely to be spread more equally
in space, especially when observation uncertainties are correlated. This also indicates
potentially high spatial correlation in the observation uncertainties, which is not properly
taken into account in the inversions.

4. Discussion
4.1. Effect of Assimilated Data in Seasonal Cycle of CH4 Fluxes

Annual maximum emissions from wetlands are found to be between August and
September in this study. However, the in situ flux measurements in NHLs based on, e.g., the
Eddy covariance technique often show earlier summer maximum, most commonly from
June to July in North America [85,86], and from July to August in Eurasia [34,87,88]. Several
reasons can be considered for the late summer maximums, especially in the TROPOMI
inversions. One is the uncertainty in the transport model, e.g., long-range and vertical
transport, and seasonality of prescribed atmospheric sinks. The posterior surface-mixing
ratios agree well with the observations in InvSURF, which may infer that the tropospheric
CH4 seasonality is fairly well captured over the NHL regions. The shape of the vertical
profiles do not differ much between the inversions, and the comparisons to AirCore
measurements also suggest that there may be significant transport model errors in the
upper atmosphere. Based on the comparison to the TCCON data, the underestimation of
XCH4 during late summer and autumn, is found in InvSURF. It indicates that the upper
atmospheric biases in the model could in fact cause later summer maximum emissions.
Several studies indicate that the polar vortex needs to be properly modeled and taken
into account for a good estimation of XCH4 in spring [24,46,89–92], but the reasons for the
summer biases in the NHLs need to be studied further.

Lindqvist et al. [84] showed that the OPER data have significant seasonal differences
compared to TCCON at NHL sites. At East Trout Lake, the range of maximum to minimum
differences for OPER is almost 100 ppb (from about +50 ppb in early spring to −50 ppb
in summer and autumn) [84]. This could potentially be one of the reasons for the late
seasonal maximum in wetland emissions in Canada in InvOPER. In the other regions,
emission seasonality in InvWFMD and InvOPER are similar, possibly indicating that not
only seasonal differences, but also systematic differences between the retrievals and model
estimates affect the seasonality of the fluxes.

We did not correct spatial (latitudinal) differences against InvSURF or TCCON data
before carrying out the TROPOMI inversion, as suggested by, e.g., Houweling et al. [41,47].
We find that the estimated XCH4 from InvSURF and the TROPOMI inversions have seasonal
and latitudinal differences, where XCH4 from InvSURF is, e.g., ∼20 ppb higher than the
WFMD data in August 2018 (Supplementary Figure S12). This is probably one of the reasons
why the TROPOMI inversions show lower flux estimates at the NHLs; the inversion tried
to reduce emissions to match the XCH4 values. The NHL flux seasonality is dominated
by wetland emissions, and therefore this also caused the lower summer fluxes and thus
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smaller seasonal cycle amplitude. As can be seen from Table 2, global emissions are higher
in the TROPOMI inversions compared to InvSURF, indicating higher emissions in the
Southern latitudes.

4.2. Seasonal Cycle of Anthropogenic CH4 Fluxes

The seasonality in the anthropogenic emissions cannot be validated as reliable inde-
pendent data are not available for the whole region. However, the seasonality in InvSURF
can be the result of a correlation with the wetland emissions. Although we assumed
no correlation in the prior fluxes between the anthropogenic and wetland fluxes, the in-
version increases emissions from both sources during summer with strong correlation
between the anthropogenic and wetland flux-scaling factors, especially for Canada and
Eurasia+Fennoscandia (see Section 3.2). As many in situ sites are located at remote locations
to anthropogenic sources in these regions, the ability of the data to constrain anthropogenic
fluxes is questionable.

The satellite data are more equally spread within the region, and can have a stronger
influence on the anthropogenic fluxes, except in winter. Both the TROPOMI inversions
show high emissions in August in Eurasia. Anthropogenic emissions in this study include
those from fossil fuels, agriculture and waste management. A similar peak was found
in Berchet et al. [59], where they speculated the cause to be either oil and gas extraction
or wildfires. We did not optimize biomass-burning emissions, i.e., not categorized as
anthropogenic emissions, but according to GFED, the biomass-burning emissions peaked
in August in Russia in 2018 with about 0.4 Tg CH4 month−1. This corresponds to ∼30%
of the regional anthropogenic emissions. The August peak is found also in Kazakhstan,
where the anthropogenic emissions are dominated by the energy sector, especially from
coal [93]. Although further investigation is needed by, e.g., carrying out inversion for other
years, the higher emissions in the TROPOMI inversions may have indicated additional
emissions not detected by surface networks.

Our Eurasian+Fennoscandia anthropogenic emissions show an increase from February to
March in InvWFMD. This is in line with previous studies by Thompson et al. [22], Berchet et al. [27],
suggesting that the emission in spring could increase due to gas production. Although we do not
see such a peak in the Russian anthropogenic emissions, but rather in Kazakhstan’s (Supplementary
Figure S10), our results show increases in Russia where oil and gas, as well as coal emissions in the
prior are high (Supplementary Figures S13 and S14). Those locations nicely correlate with oil fields
in Sakha Republic and coal basins in the Siberian regions, such as Irkutsk and Kansk-Achinsk. We
do not find such peak in InvOPER and InvSURF. In InvSURF, this is probably due to the lack of
observations near the hotspots (see Figure 1). The observations at Yakutsk would have helped
better quantify the emissions [27], but the observations were not available for 2018. In InvOPER,
there are observational gaps during spring close to those emission locations. However, further
analysis is needed to conclude whether the gap has been spatially extensive enough, and whether
some other causes, such as spatial and temporal biases in the retrievals, caused the differences
in InvWFMD.

4.3. Confidence in TCCON Comparison

Our posterior mean XCH4 estimates show systematic differences of ∼20–50 ppb
against the TCCON data. In the previous studies, e.g., Tsuruta et al. [51], we did not find
as strong a bias as in this study. The larger biases found in this study may be due to
underlying fluxes, stratospheric chemistry and using different versions of the TCCON
data. The systematic differences are greater than the monthly mean differences between
simulations at most of the sites. This questions our analysis on the seasonality of XCH4,
whether the differences between the simulations are significant. Nevertheless, the differ-
ences in the seasonality are driven by the assimilated data and inversion setups related to
the assimilation, such as observational uncertainty.

We also found that agreement between the model estimates and TCCON data could
differ significantly by using different versions of the TCCON data. Out results show that
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the correlation at Park Falls are very weak and weakest among the NHL sites (Table 1)
when the GGG2020 data are used. However, when the model estimates are compared to
the earlier version, GGG2014, the correlation is much stronger (0.6–0.7).

While TCCON provides useful information for the evaluation of the satellite data and
the model results, the TCCON data also have uncertainties [69,70]. Therefore, the evaluation
with the TCCON data may not tell the whole story, and analysis should be continued using
other inversion-independent data for a more comprehensive examination of whether an
estimated posterior XCH4 seasonal cycle is realistic.

4.4. Observational Uncertainty Used in Inversions

We find that the grid-wise uncertainty reduction rate is smaller in the TROPOMI
inversions in general, although regional uncertainty reduction is comparable to InvSURF.
We assume observations to be uncorrelated in space and time in order to apply the ensemble
square root filter [54,94]. However, since the uncertainties in the satellite data could be
highly correlated, the assumption may have not been valid. The TROPOMI retrievals errors
may be dependent region-wise over, e.g., snow surface, but uncorrelated with snow-free
surface [84]. They also showed the differences in the biases between snow and snow-
free surface, i.e., the errors are probably dependent region-wise over, e.g., snow surface,
but uncorrelated with snow-free surface. In addition, the observational uncertainty includes
transport model uncertainty, which can be correlated based on, e.g., parameterization and
input meteorological data.

The assumption of uncorrelated errors has been commonly used in atmospheric
inverse models, e.g., [13,46,59,95]. As discussed by Houweling et al. [47] and references
therein, accounting for the satellite data uncertainty is challenging. In this study, we
assumed total observation uncertainty (transport model error + retrieval error) to be at a
minimum of 20 ppb, and did not correct the spatiotemporal patterns of the errors before
inversion. The uncertainty is within the range of those used in other satellite inversions
using SCIAMACHY and GOSAT, e.g., [13,17,24,42,46,96,97]. However, considering that the
errors may be correlated, non-diagonal terms should have been compensated by higher-
standard deviations in the diagonal approximation. The TROPOMI data are assumed
to have better precision than previous generation satellites, e.g., [90,98,99], but further
examination is needed to quantify the appropriate uncertainty range to be used in the
inversions.

5. Conclusions

This study examined the impacts of using the TROPOMI XCH4 data in the estimation
of the NHL CH4 emissions using the CTE-CH4 atmospheric inverse model for the first
time. Our analysis showed that the assimilation of the TROPOMI data can be useful in
the estimation of NHL regional budgets and seasonality. However, some differences to
the inversion using surface ground-based data are found, indicating that more detailed
analysis of the cause is needed on regional levels and in time to better quantify the regional
budgets from various data sources.

The transport model biases need to be improved to better estimate the CH4 profiles. We
found large differences in the CH4 profiles compared to AirCore measurementsm especially
in the stratosphere. However, further study is needed to identify the exact causes; potential
causes are transport (e.g., stratosphere–troposphere exchange), stratospheric chemistry
and model resolutions. We also found limited improvements in the agreement with the
observations from prior to posterior at surface stations. Although it was within the range
of expected values (i.e., within pre-defined observational uncertainty), the exact cause and
way to be improved are to be explored. Additional ground-based CH4 measurements,
especially those providing information about vertical profiles and anthropogenic sources
would be required. In addition, the CH4 differences between model and retrievals in the
NHLs are not specific only to the retrievals or models used in this study, and therefore,
a community effort is needed.
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While the biases in the retrieved and modeled total column are not fully quantified,
the partial column retrievals [100–103] could be potential alternatives to be used in the
atmospheric inverse models. Tropospheric CH4 agrees generally well between the model
and ground-based observations, and is more directly affected by the emission magnitude
compared to the stratosphere. Although it would introduce additional source of uncertainty
by introducing additional parameters in the retrievals, the tropospheric partial column
data may have smaller biases and differences to the models. This would not only serve
as constraints to the atmospheric inversions, but also for the evaluation of the transport
model biases and emission estimates from the inversions and bottom-up estimates.

In addition, we carried out the inversion only for one year, but the features found
in this paper may not be consistent for other years. The year 2018 may have not been
optimal as the TROPOMI’s nominal operational mode only started in the end of April 2018,
and therefore, the beginning of 2018 has reduced data density and potentially also reduced
quality. There are also continuous updates on the retrieval products [104,105]. We will
continue investigating by carrying out simulations for extended periods of time and using
the new retrieval products.

For future work, we recommend using various versions of the TROPOMI data in the
atmospheric inversion, but either WFMD or updated versions of OPER data could perhaps
be better-suited than OPER v1.0 data for estimation of seasonality in the northern North
America. The observational uncertainty could be increased, or the observational error
correlation could be taken into account. In addition, the comparison to inversion using
surface data should be continued as well as the evaluation of the model estimates using
various assimilation-independent datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs15061620/s1, Table S1: List of surface observation sites used in InvSURF, and located
above 45 °N. The altitudes are the sampling heights from which atmospheric CH4 is sampled in
TM5. Observation Uncertainty (Obs. Unc.) is used to define diagonal values in the observation
covariance matrix. Data type is categorized into two: discrete (D) and continuous (C). Table S2:
Statistics of agreements between the modelled and observed CH4 values at surface stations located
above 45°N. The statistics are calculated for the assimilated data. Positive values in bias means
overestimation of model estimates. For sites with same sitecode, additional information (contributor
and/or data type) is given. For details for the site information, please see Table S1. Figure S1:
Optimization regions used in CTE-CH4 simulations. Region in black is optimized on 1° × 1° grid
bases, and elsewhere region-wise. (top) global, and (bottom) zoom over NHL and Europe. Figure
S2: Number of the preprocessed TROPOMI observations and monthly average assimilation rates
for InvWFMD and InvOPER. Figure S3: Location of the surface atmospheric CH4 observational sites
at the TM5 non-zoom region (top) and TM5 zoom regions (bottom). The underlying colour maps
illustrate the horizontal resolution of TM5. Figure S4: Monthly median of observed and modelled
atmospheric CH4 at Baranova, Noyabrsk, Storhofdi and Ny-Ålesund. The error bars illustrate the
first and third quantiles. The quantiles are calculated from assimilated data in InvSURF. Note the
differences in y-axis. Figure S5: Daily averaged XCH4 at the NHL TCCON sites. Figure S6: Monthly
median anomalies of observed and modelled atmospheric XCH4 at the NHL TCCON sites. The
error bars illustrate the first and third quantiles. The quantiles are calculated from daily averaged
data. Figure S7: Observed (AirCore) and modelled CH4 profiles at Sodankylä. Figure S8: Differences
between modelled and AirCore CH4 profiles up to tropopause at Sodankylä. Figure S9: Monthly
mean XCH4 differences between prior and TROPOMI retrievals in August 2018. Positive values
indicate the higher prior XCH4 values compared to the retrievals. Figure S10: Monthly anthropogenic
fluxes per country and above 45°N. Figure S11: Annual mean posterior CH4 fluxes above 45°N for
2018. estimated in prior (a,b), and the differences between InvWFMD and prior (c,d) and those
between InvWFMD and InvOPER (e,f). The left columns are for biospheric fluxes and right columns
for anthropogenic emissions. The positive differences indicates higher fluxes from InvWFMD. Note
the differences in color scales. Figure S12: Monthly mean (solid line) and standard deviation (dashed
lines) of the differences between the posterior XCH4 and the WFMD retrieval data for August 2018.
Figure S13: Monthly mean differences in estimated anthropogenic emissions between March 2018
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and February 2018 from InvWFMD. Figure S14: Annual average CH4 emissions from coal (left) and
oil and gas industry (right) from the prior (EDGAR v6.0).
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