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Abstract: Osteopontin (OPN) is a phosphoprotein with diverse functions in various physiological
and pathological processes. OPN expression is increased in multiple cancers, and OPN within tumour
tissue has been shown to promote key stages of cancer development. OPN levels are also elevated in
the circulation of cancer patients, which in some cases has been correlated with enhanced metastatic
propensity and poor prognosis. However, the precise impact of circulating OPN (cOPN) on tumour
growth and progression remains insufficiently understood. To examine the role of cOPN, we used a
melanoma model, in which we stably increased the levels of cOPN through adeno-associated virus-
mediated transduction. We found that increased cOPN promoted the growth of primary tumours,
but did not significantly alter the spontaneous metastasis of melanoma cells to the lymph nodes or
lungs, despite an increase in the expression of multiple factors linked to tumour progression. To
assess whether cOPN has a role at later stages of metastasis formation, we employed an experimental
metastasis model, but again could not detect any increase in pulmonary metastasis in animals with
elevated levels of cOPN. These results demonstrate that increased levels of OPN in the circulation
play distinct roles during different stages of melanoma progression.
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1. Introduction

First discovered in 1979 as a transformation specific phosphoprotein [1], osteopontin
(OPN) is a multifunctional acidic protein that exists in numerous isoforms [2]. Also called
SPP-1 (secreted phosphoprotein 1), BSP-I (Bone Sialoprotein I), nephropontin, 2AR and
ETA1 (early T-lymphocyte activation 1), OPN is expressed physiologically and patho-
logically by various types of cells, reflecting its functional roles in bones, the immune
system, and the central nervous system [3,4]. Furthermore, it has been implicated in the
pathophysiology of diverse diseases, including cancer, diabetes and autoimmune and
neurodegenerative conditions, as well as cardiovascular disease [5–9]. Alternative splicing
and alternative translation produce OPN transcripts that encode protein isoforms that can
be located intracellularly and extracellularly, while post-translational modification, such as
proteolytic processing, phosphorylation and glycosylation, further enriches the complexity
of the osteopontin protein isoforms [8,10,11]. Although poorly understood, intracellular
OPN is thought to act in the cytoplasm as an adapter protein that regulates various signal
transduction pathways, and in the nucleus, where it has been implicated in regulating the
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mitotic cycle and transcription [12–15]. However, most research to date has focused on
the extracellular functions of secreted OPN, which constitutes an important matricellular
protein found in the interstitial and other bodily fluids.

Secreted OPN exerts numerous biological effects through binding to and activating
membrane-bound receptors on the surface of target cells. Particular secreted OPN isoforms
interact with and signal via a variety of different integrin heterodimer combinations [2,16].
Secreted OPN also binds to specific CD44 isoforms, eliciting a number of cellular responses
that are in part integrin dependent [17,18]. Inducible T-cell costimulator ligand (ICOSL) was
recently found to act as a further cell surface receptor for OPN [19]. These receptor-mediated
events allow secreted OPN to protect cells from apoptosis, and to play physiological roles
in bone homeostasis and biomineralization, wound healing, brain development and the
regulation of inflammation and immunity [20].

The pathophysiological roles of OPN are also largely mediated by the soluble OPN
isoforms and the receptors they activate. This has been particularly intensively studied in
the context of cancer, where OPN expression is strongly upregulated in a wide variety of
tumours including melanoma, constitutes an important component of the tumour microen-
vironment, and serves as a prognostically-relevant biomarker for many cancers [21–23].
OPN is produced not only by cancer cells in tumours, but also by tumour-associated
stromal cells, including cancer-associated fibroblasts (CAFs) and immune cells [24–27].
Furthermore, senescent tumour and stromal cells produce OPN as part of their senescence
associated secretory phenotype, which induces the growth, invasion and migration of
non-senescent tumour cells [28,29]. Functionally, OPN expression in the tumour microen-
vironment is associated with various aspects of progression, including promotion of cell
migration, invasion and metastasis, fostering proliferation and tumour growth, enabling
tumour cell survival, chemoresistance and stemness properties, induction of epithelial
mesenchymal transition, stimulation of angiogenesis and the activation of CAFs, as well
as the creation of a tumour-promoting immunosuppressive microenvironment [22,30,31].
In view of this, OPN is receiving increasing interest as a therapeutic target, and a number
of approaches are currently in preclinical development, including several antibodies that
interfere with the binding of OPN to its receptors, which have shown promise in animal
tumour models [7,32–34] and other pathological conditions [35,36]. With the recent rapid
advances in the use of immune checkpoint inhibitors to treat cancer, the therapeutic tar-
geting of OPN has particularly come to the fore in view of findings that OPN can bypass
anti-PD1 immunotherapy [33,37].

The strongly increased expression and secretion of OPN in the tumour microenvi-
ronment results in increased levels of circulating OPN (cOPN) in the peripheral blood
of patients with various types of cancer, including mesothelioma, glioblastoma, hepato-
cellular carcinoma, breast, bone and head and neck cancers [38–45], which in some cases
has been shown to be prognostically relevant. In cutaneous metastatic melanoma, in-
creased OPN plasma levels have also been detected [46,47]. However, it is currently unclear
whether these increased levels of OPN in the blood merely act as surrogate biomarkers of
the increased expression of OPN within the tumour microenvironment, or whether they
potentially play a functional role in tumour growth and metastasis.

Here we investigated the functional impact of increased circulating levels of OPN on
tumour growth and metastasis. To this end we used AAV-mediated transduction in vivo to
increase the circulating levels of OPN in healthy immunocompetent mice, before injecting
the mice with syngeneic melanoma cells. We found that primary tumour growth was
significantly enhanced in response to increased cOPN levels, but this was not associated
with a significant increase in lymph node metastasis or distant metastasis to the lungs.
These data show that increased levels of OPN in the blood are functionally relevant for
tumour progression, with distinct effects on primary tumours and metastases.
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2. Materials and Methods
2.1. Cell Culture

B16F10 mouse melanoma cells were obtained from American Type Culture Collection
(ATCC, Manassas, VA, USA) and cultivated in DMEM containing 4.5 g/L glucose (Gibco,
Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS; Sigma Aldrich,
St. Louis, MO, USA) and 1% penicillin/streptomycin sulfate (Gibco, Carlsbad, CA, USA)
at 37 ◦C in an atmosphere with 5% CO2 and 95% humidity. Cells were detached using
trypsin-EDTA (0.05%) with phenol red (Gibco, Carlsbad, CA, USA). Cells were regularly
tested and confirmed to be mycoplasma-free.

2.2. Cloning and AAV Production

Mouse Spp1 (OPN, NM_009263) was cloned into the psubCAG-WPRE-MGH vec-
tor [48], which was a gift from Andrey Anisimov and Kari Alitalo. To this end, Spp1 was am-
plified using the following primer pair with overhangs for NheI (5′-GGGGCTAGCATGAG-
ATTGGCAGTGATTTG-3′; 5′-GGGGCTAGCTTAGTTGACCTCAGAAGATG-3′), purchased
from Metabion (Steinkirchen, Germany). The PCR product, as well as the psubCAG-WPRE-
MGH vector, were then digested by FastDigest NheI in FastDigest Green Buffer (both
Fermentas, Burlington, Canada) at 37 ◦C for 2 h, followed by inactivation at 65 ◦C for 5 min.
The digested vector was then dephosphorylated at 37 ◦C for 1.5 h using calf intestinal
alkaline phosphatase (CIAP; Thermo Fisher Scientific, Waltham, MA, USA). In a next
step, the PCR product and vector were purified by electrophoresis in a 1% gel of LE (low
electroendosmosis) agarose (Biozym, Hessisch Oldendorf, Germany) and QIAquick Gel
Extraction Kit (Qiagen, Venlo, Netherlands), following the manufacturer’s instructions.
Spp1 was then ligated into the psubCAG-WPRE-MGH vector with T4 DNA ligase (Fer-
mentas, Burlington, Canada) at 16 ◦C overnight and the ligation product was transfected
into competent E. coli. Colonies that were able to grow on agar plates containing ampicillin
were screened by PCR using the following primers 5′-GAGGTCAAAGTCTAGGAG-3′;
5′-AGCGTAAAAGGAGCAACA-3′ (Metabion, Steinkirchen, Germany). The psubCAG-
WPRE-OPN vector was then isolated from a validated clone using the QIAGEN Plasmid
Maxi Kit (Venlo, Netherlands), following the manufacturer’s instructions and confirmed
by sequencing with the following primer pair from Metabion (Steinkirchen, Germany):
5′-CAGTGGATGTTGCCTTTACTTCTAGG-3′; 5′-AGCGTAAAAGGAGCAACA-3′.

Adeno-associated viruses 9 (AAV9) containing psubCAG-WPRE-OPN (OPN-AAV9)
or an empty control (S2) plasmid (Control-AAV9) were produced by and purchased from
the AAV Gene Transfer and Cell Therapy Core Facility (University of Helsinki, Finland).

2.3. AAV Transduction, Blood Collection and OPN ELISA

Animal experiments were performed according to German legal requirements and
were approved by the local regulatory authorities (Regierungspräsidium Karlsruhe; ap-
proval number AZ35-9185.81/G-260/18). Eight-week-old female C57BL/6J mice were
injected intravenously (i.v.) with empty adeno-associated viruses (control-AAV9) or osteo-
pontin expressing viruses (OPN-AAV9) in 100 µL Dulbecco′s Phosphate Buffered Saline
(DPBS; Gibco, Carlsbad, CA, USA) at titres of 5 × 1010, 1.5 × 1011 and 5 × 1011 viral
particles per mouse (8 mice per group). 100 µL blood was collected from the tail vain,
with a syringe containing 8 µL of 15% ethylenediaminetetraacetic acid tripotassium salt
dihydrate (K3-EDTA; Sigma-Aldrich, St. Louis, Missouri, USA) in DPBS, 14 days prior to
AAV injection, as well as at 7-day intervals following AAV-mediated transduction. At the
endpoint, 6 weeks after the AAV injection, blood was collected by cardiac puncture and
mixed with 30 µL 15% K3-EDTA. For metastasis assays, blood samples were collected in
the same way 14 days before AAV transduction and at the endpoint. Blood samples were
centrifugated for 10 min at 4000 rpm and 4 ◦C. The clear plasma phase was collected, flash
frozen in liquid nitrogen and stored at −80 ◦C. For OPN quantification, plasma samples
were diluted 1:500 with Calibrator Diluent RD6-12 and analysed with a Mouse/Rat Osteo-
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pontin (OPN) Quantikine ELISA Kit (R&D Systems, Minneapolis, MN, USA), according to
the manufacturer’s instructions.

2.4. Spontaneous and Experimental Metastasis Models

For the spontaneous metastasis experiments, female C57BL/6JOlaHsd mice were
purchased from Envigo (Horst, Netherlands) at the age of 5 weeks and acclimated for
1 week prior to the first blood draw at day −14. Two weeks after the first blood sample was
collected (day 1), mice were first injected i.v. with 5 × 1010 viral particles in 100 µL DPBS of
either OPN-AAV9 or control-AAV9. They were injected 6 days later with 100,000 B16F10
melanoma cells (confirmed shortly before injection to be mycoplasma negative) in 100 µL
DPBS subcutaneously (s.c.) into the flank. Tumour size was measured with a caliper. As
soon as it reached the maximum permitted diameter of 2 cm (day 28–33), blood, axillary
lymph nodes and lungs were collected for analysis. Metastases on the surface of the lungs
were counted under a stereo microscope. Tumour and lymph node volumes were calculated
using the formula V = L ×W × D/2, where L is length, W is width and D is depth.

For the experimental metastasis experiments, 6 to 7-week-old female C57BL/6J mice
were equally divided into 2 groups and blood was collected to determine pre-transduction
baseline levels of OPN. After 2 weeks, the mice were first injected i.v. with control-AAV9
or OPN-AAV9 at 5 × 1010 viral particles per animal in 100 µL DPBS (day 1), followed by
i.v. injection of 1 × 105 B16F10 melanoma cells in 100 µL DPBS 6 days later. 28 days after
AAV9 injection, blood and lung samples were collected.

Lymph nodes and right superior lung lobes were flash frozen in liquid nitrogen for
RNA isolation; the right inferior lobe was frozen in Tissue-Tek OCT; the remaining lung
lobes were fixed in 10% formalin and imaged on a Leica MZ10 F stereo microscope to
determine the size the metastases, using Fiji/ImageJ [49].

2.5. RNA Isolation and Quantitative Real Time PCR (qRT-PCR)

Tissue samples were flash frozen in liquid nitrogen and stored at −80 ◦C until RNA
isolation. For total RNA isolation, the frozen lungs and lymph nodes were transferred
into TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA), following the man-
ufacturer’s instructions. RNA (3µg) was treated with RNase-free DNase I, followed by
deactivation with EDTA for 10 min at 65 ◦C. First-strand cDNA was synthesized with
random hexamer primers, using dNTP mix and RevertAid H Minus Reverse transcriptase
(all from Thermo Fisher Scientific, Waltham, MA, USA). qRT-PCR was performed in a
Stratagene Mx3500P qPCR machine (Agilent, Santa Clara, CA, USA) using GoTaq qPCR
master mix (Promega, Fitchburg, WI, USA). The relative expression was estimated using
the ∆∆CT method, and data were normalized to RPLP0.

The following forward and reverse primers were purchased from Metabion (Steinkirchen,
Germany) and used for qRT-PCR: CCL2: 5′-GCTACAAGAGGATCACCAGCAG-3′,
5′-GTCTGGACCCATTCCTTCTTGG-3′; CXCL1: 5′-TCCAGAGCTTGAAGGTGTTGCC-3′,
5′-AACCAAGGGAGCTTCAGGGTCA-3′; CXCL2: 5′-CATCCAGAGCTTGAGTGTGACG-3′,
5′-GGCTTCAGGGTCAAGGCAAACT-3′; IL6: 5′-TACCACTTCACAAGTCGGAGGC-3,
5′-CTGCAAGTGCATCATCGTTGTTC-3′; IL8: 5′-GGTGATATTCGAGACCATTTACTG-3′,
5′-GCCAACAGTAGCCTTCACCCAT-3′; MMP2: 5′-CAAGGATGGACTCCTGGCACAT-3′,
5′-TACTCGCCATCAGCGTTCCCAT-3′; MMP3: 5′-CTCTGGAACCTGAGACATCACC-3′;
5′-AGGAGTCCTGAGAGATTTGCGC-3′; MMP9: 5′-GCTGACTACGATAAGGACGGCA-3′,
5′-TAGTGGTGCAGGCAGAGTAGGA-3′; OPN: 5′-GCTTGGCTTATGGACTGAGGTC-3′,
5′-CCTTAGACTCACCGC TCTTCATG-3′; RPLP0: 5′-GGACCCGAGAAGACCTCCTT-3′,
5′-GCACATCACTCAGAATTTCAATGG-3′; SAA: 5′-GGAGTCTGGGCTGCTGAGAAAA-3′,
5′-TGTCTGTTGGCTTCCTGGTCAG-3′; S100A8: 5′-CCTTGCGATGGTGATAAAAGTG-3′,
5′-CCCAGCCCTAGGCCAGAA-3′; S100A9: 5′-CAAAGGCTGTGGGAAGTAATTAAGA-3′,
5′-AGCCATTCCCTTTAGACTTGGT-3′; TGFβ1: 5′-AAGTTGGCATGGTAGCCCTT-3′,
5′-GCCCTGGATACCAACTATTGC-3′; TNFα: 5′-GCCTCTTCTCATTCCTGCTTG-3′,
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5′-CTGATGAGAGGGAGGCCATT-3′; Trp1: 5′-GCTGGAGAGAGACATGCAGGA-3′,
5′-AGTGCAGACATCGCAGACGTT-3′.

2.6. Statistical Analysis

All data are presented as mean ± SEM; “n” indicates the number of independent
biological replicates (separate animals). For pairwise comparisons, statistical analysis was
performed using the Mann Whitney test for quantification of lymph node and lung metas-
tases and unpaired, two-tailed Student’s t-test for the remaining experiments, as indicated
in the corresponding figure legends. For time course experiments, repeated measures two-
way ANOVA with Šídák’s multiple comparisons tests was used. A p-value <0.05 was set
as a threshold for statistical significance: * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001;
ns p ≥ 0.05 (not significant).

3. Results
3.1. Adeno-Associated Virus-Mediated Transduction Leads to a Sustained Increase in Circulating
Osteopontin Levels without Affecting OPN Expression at Potential Metastatic Sites

In order to achieve a sustained increase in circulating OPN (cOPN) expression, we used
an adeno-associated virus (AAV)-based transduction approach. AAV9 viruses expressing
either OPN or empty vector were injected intravenously into mice at different titres and
the levels of OPN in the plasma were monitored at regular intervals after transduction. All
tested titres led to a significant increase in the circulating levels of OPN, already one week
after transduction with OPN-AAV9, compared to mice injected with control viruses. At
2 weeks, the levels reached a plateau, with only moderate further increase until day 42
(Figure 1A–C).
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Figure 1. Transduction with OPN-expressing AAV9 increases cOPN levels. (A–C) C57BL/6 mice
were injected i.v. with empty adeno-associated viral vector (Control-AAV9) or osteopontin-expressing
adenoviral vectors (OPN-AAV9) at titres of 5× 1010 (A), 1.5× 1011 (B) and 5× 1011 (C) viral particles
per mouse at day 0. Blood was collected from the animals 14 days before virus injection to determine
pre-transduction levels, as well as at 7-day intervals following AAV-mediated transduction. OPN
levels in the plasma were determined by ELISA. Groups were compared using repeated measures
two-way ANOVA with Šídák’s multiple comparisons tests; n = 4 for all groups. **** p < 0.0001.

AAV9 vectors have been described as having a relatively broad tropism to various
organs of the body including the lung, liver, skeletal muscle, heart and central nervous
system [50]. To assess which organs had been targeted by OPN-AAV9 in our system, we
determined OPN levels in different organs following viral transduction. The strongest and
most robust upregulation of OPN levels at all titres was achieved in the heart (Figure 2A).
None of the other organs that were examined showed a significant increase in OPN at the
lowest titre of 5× 1010 viral particles per animal (Figure 2B–F). At higher titres, a significant
increase was also observed in other organs including skeletal muscle (Figure 2B), lung
(Figure 2C) and brain (Figure 2D).
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Figure 2. OPN expression in different tissues of transduced animals. (A–F) C57BL/6 mice were
injected i.v. with empty adeno-associated viral vectors (Control-AAV9) or osteopontin expressing
adenoviral vectors (OPN-AAV9) at titres of 5 × 1010, 1.5 × 1011 and 5 × 1011 viral particles per
mouse. At the end point of the experiment, RNA was isolated from various organs, including
skeletal muscle (A), heart (B), lung (C), brain (D), bone (E) and liver (F), and the expression levels of
osteopontin were assessed using qPCR. For each titre the control and OPN groups were compared
using Student’s t-test; n = 4 for all groups. * p < 0.05, ** p < 0.01, *** p < 0.001.

Based on these results, we selected the lowest titre for further experiments since it led
to a robust upregulation of cOPN, but without impacting the local expression of OPN in
common metastatic sites such as the lung, brain, liver or bones.

3.2. Increased cOPN Upregulates Various Factors Related to Tumour Progression

Next, we examined whether elevated circulating levels of OPN can affect the expres-
sion of various factors that have been linked to different aspects of tumour progression,
and which have been shown to be regulated by OPN [51–56]. Specifically, we screened a
panel including the chemokines CCL2, CXCL1 and CXCL2, interleukins (IL) 6 and 8, matrix
metalloproteinases (MMP) 2, 3 and 9, serum amyloid A (SAA), S100 family members, in-
cluding S100A8 and S100A9, transforming growth factor β1 (TGFβ1), and tumour necrosis
factor α (TNFα). Intriguingly, the majority of the examined factors showed significantly



Biomedicines 2023, 11, 1038 7 of 17

elevated levels in the lungs of mice transduced with OPN-AAV9 compared to control
animals (Figure 3).
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Figure 3. Circulating OPN increase enhances the expression of multiple factors linked to tumour
development. RNA was isolated from the lungs of mice transduced with 5 × 1010 control or OPN-
expressing AAVs. The expression of the indicated transcripts was assessed by qPCR. For each
transcript, the control and OPN groups were compared using Student’s t-test; n = 4 for all groups.
* p < 0.05, ** p < 0.01, *** p < 0.001.

This indicates that increased cOPN can promote the expression of various factors
linked to the growth and dissemination of tumours, prompting us to assess whether it may
have an impact on cancer growth and metastasis.

3.3. Circulating OPN Increase Promotes Primary Tumour Growth in a Mouse Model of Melanoma

To determine whether an increase in cOPN levels affects the growth of primary
tumours, we used a mouse model of melanoma. C57BL/6 mice were first injected intra-
venously with control and OPN-expressing AAV9 at 5 × 1010 viral particles per animal. Six
days later, syngeneic B16F10 melanoma cells were transplanted subcutaneously into the
mice (Figure 4A). Analysis of OPN levels in the plasma indicated that the OPN-transduction
significantly increased cOPN compared to control animals (Figure 4B). Importantly, the
mice with increased cOPN levels showed enhanced B16F10 tumour growth (Figure 4C).

3.4. Spontaneous Melanoma Metastasis Is Not Altered by Increased cOPN

We next examined whether the increased circulating levels of OPN can influence
the ability of melanoma cells to metastasise from primary tumours. Metastasis of cancer
cells to regional lymph nodes is often an early event in cancer dissemination, which may
represent an important route for further spread to distant organs and generally strongly
correlates with the ability to form distant metastases [57]. We therefore next analysed the
lymph nodes of mice with elevated OPN levels and controls. We could not detect any
significant differences in the volume of the lymph nodes that were either ipsilateral or
contralateral to the tumour (Figure 5A). We have recently established a sensitive method
for the quantitative detection of disseminated melanoma cells, based on the expression
of the melanocytic marker Trp1, which is particularly useful in cases with low metastatic
burden [58]. Quantification of Trp1 expression levels by qPCR, however, also did not reveal
any difference between control and OPN-AAV9 transduced animals (Figure 5B).
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Figure 4. Increased cOPN levels promote melanoma growth. (A) Schematic illustration of the
experimental time course. Mice were first injected i.v. with control-AAV9 and OPN-AAV9 at
5 × 1010 viral particles per animal, and 6 days later they were transplanted with 1 × 105 B16F10
melanoma cells s.c. Tumour growth was monitored, and at the end of the experiment blood, lymph
nodes and lungs were collected for analysis. Additionally, blood was collected 14 days before viral
transduction to determine pre-transduction baseline levels of OPN. (B) Plasma OPN levels pre- and
post-transduction were determined by ELISA. Control and OPN-AAV9 transduced animals were
compared using Student’s t-test. (C) Tumour size following s.c. transplantation of B16F10 melanoma
cells. Groups were compared using repeated measures two-way ANOVA with Šídák’s multiple
comparisons tests; n = 6 for Control-AAV9 and n = 7 for OPN-AAV9. **** p < 0.0001.

We next asked if the increased levels of cOPN can enhance the propensity of melanoma
cells to metastasise to distant organs. Quantification of metastatic nodules in the lungs did
not show a significant difference between the control and OPN-AAV9 transduced mice
(Figure 5C,D). Since the metastatic burden was relatively low, we additionally carried out
qPCR for Trp1, as above, but this analysis also did not detect a significant increase in the
OPN-AAV9 group (Figure 5E).
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Figure 5. An increase in cOPN does not enhance melanoma lymph node and lung metastasis. Mice
were transduced with control-AAV9 and OPN-AAV9 at 5 × 1010 viral particles, then injected with
B16F10 melanoma cells s.c. At the end point, axillary lymph nodes were analysed. (A) Volume of
contralateral and ipsilateral axillary lymph nodes (LN). (B) Expression of the melanoma marker
Trp1 in contralateral and ipsilateral axillary lymph nodes measured by qPCR. (C) Representative
images of B16F10 metastatic nodules in the lungs (indicated by black arrowheads). Scale bar: 2 mm.
(D) Number of metastatic nodules in the lungs. (E) Expression of the melanoma marker Trp1 in the
lungs. Control and OPN groups were compared using the Mann Whitney test; n = 6 for Control-AAV9
and n = 7 for OPN-AAV9.

3.5. Increased cOPN Does Not Enhance Organ Colonisation and Metastasis Formation in an
Experimental Metastasis Model

While the spontaneous metastasis model did not show a difference between mice with
elevated cOPN and controls, it remained conceivable that OPN may impact later stages
of the metastatic process, which cannot be clearly revealed in this model. To test whether
this may be the case, we employed a second model of metastasis with direct injection of
tumour cells in the circulation through the tail vein, which targets them to the lungs. This
model is well suited for examining later stages of metastasis, including extravasation, organ
colonisation and subsequent cancer growth. In this model, injection of control-AAV9 and
OPN-AAV9 was followed 6 days later by injection of B16F10 melanoma cells in the tail
vein. After 28 days, lungs were dissected and analysed (Figure 6A). As in the spontaneous
metastasis model, OPN-AAV9 transduction led to a significant increase in plasma OPN
levels (Figure 6B).
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Figure 6. Increased cOPN does not promote lung metastasis in a melanoma model of experimental
metastasis. (A) Schematic illustration of the experimental time course. Mice were first injected i.v.
with control-AAV9 and OPN-AAV9 at 5× 1010 viral particles per animal, and 6 days later transplanted
with 1 × 105 B16F10 melanoma cells i.v. Blood and lungs were collected for analysis 28 days after
the injection of the AAVs. Additionally, blood was collected 14 days before viral transduction to
determine pre-transduction baseline levels of OPN. (B) Plasma OPN levels were determined by
ELISA. Control and OPN-AAV9 transduced animals were compared using Student’s t-test; n = 7 for
Control-AAV9 and n = 6 for OPN-AAV9. (C) Representative images of B16F10 metastatic nodules in
the lungs (indicated by white arrowheads). Scale bar: 2 mm. (D) Number of metastatic nodules in
the lungs. (E) Quantification of the metastasis size (cumulative diameter of all measured metastases).
(F) Expression of the melanoma marker Trp1 in the lungs. Control and OPN groups in (D–F) were
compared using the Mann Whitney test; n = 7 per group. **** p < 0.0001.
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We did not observe a difference in the number of pulmonary metastases between
control animals and those with elevated cOPN (Figure 6C,D). In addition, the size of
pulmonary metastasis was the same in both groups (Figure 6E). Finally, assessment of Trp1
expression levels also did not reveal a significant difference between the metastatic burden
of the control- and OPN-AAV9 transduced animals (Figure 6F).

4. Discussion

A growing body of evidence highlights the crucial and pleiotropic roles of OPN in
cancer development. An involvement of OPN has been suggested at every step of tumour
progression and across a very wide range of tumour types. The vast majority of the studies
have focused on OPN produced locally within the tumour—either by tumour cells or by
stromal cells within the tumour microenvironment. However, increased levels of OPN are
observed not only inside tumours but also in the circulation of tumour patients. It remains
poorly understood, though, whether such a systemic OPN increase can have additional
effects on tumour progression, on top of those elicited by OPN produced within the tumour
tissue. Our study set out to investigate this question.

Recent work has shown that cOPN plays crucial functions in normal physiology, e.g.,
during maintenance of bone homeostasis ([59], as well as in pathological conditions, such
as respiratory failure [60] and inflammatory lung disease [61]. While the levels of cOPN
are also increased in multiple cancers [7], the functional consequences of this increase
have remained insufficiently understood. To examine the effects of increased cOPN on
tumour progression we selected a model of melanoma. Melanoma is the most malignant
skin cancer, with a rapidly rising incidence worldwide [62]. A combination of targeted
therapy and immune checkpoint inhibitors have considerably improved the treatment of
melanoma patients in recent years [62,63]. Nevertheless, most patients with metastatic
melanoma have either limited response rates to such therapies or eventually develop
resistance against them, emphasising the need to explore novel therapeutic targets for this
disease. Osteopontin has attracted considerable attention in this context. Several studies
have reported increased levels of OPN in melanoma, similarly to other tumours [7]. This
has been shown directly in tumour tissue compared to benign lesions in a number of
previous reports [28,47,64–67]. In addition, transcriptomic analyses have revealed that
OPN is one of the most highly upregulated proteins in metastatic melanoma compared
to benign nevi [67]. Furthermore, the levels of OPN are also elevated in the blood of
melanoma patients compared to healthy controls [46,47,68].

Studies aimed at determining whether OPN expression is associated with metastasis
in cutaneous melanoma patients, on the other hand, have produced considerably more
divergent findings. Some papers based on transcriptomic analyses or qPCR have reported
increased OPN mRNA levels in patients with metastatic melanoma compared to primary
(non-metastatic) melanomas [64,65]. A higher level of OPN protein was found in distant
melanoma metastases compared to primary tumours in some studies [28], but not in
others [69], and one report even found decreased OPN levels in melanoma metastases
relative to primary tumours [47]. Several studies that assessed OPN protein levels by
immunohistochemistry in primary vs. metastatic cutaneous melanomas did not reveal
any difference [65,67,70]. One report found a correlation between high OPN expression in
tumours and increased risk of lymph node metastasis, as well as a marginal decrease in
survival, which is closely linked to distant metastasis formation [71]. By contrast, a separate
study found no correlation between OPN expression and overall or recurrence-free survival
in melanoma patients [68].

Analyses of a potential link between cOPN levels in plasma and melanoma metastasis
have also not provided a clear-cut picture. Filia et al. detected significantly higher OPN
plasma levels in untreated stage IV (metastatic) melanoma patients compared to stage I-III
patients, but found no significant correlation between OPN levels and patient survival [46].
Maier et al. similarly reported increased OPN levels in metastatic melanomas compared
to non-metastatic ones, while at the same time finding no correlation with lymph node
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metastasis and a reduction of OPN protein levels in metastases compared to primary
tumours [47]. In summary, while OPN is clearly increased in melanoma patients relative to
healthy controls, it remains currently uncertain whether either local OPN expression in the
tumour or OPN levels in the circulation correlate with melanoma metastasis and disease
prognosis in human patients.

A previous publication has provided intriguing indications that cOPN could pro-
mote the growth of distant tumours in an animal model [72]. In this study, the authors
showed that breast carcinomas could instigate the growth of normally indolent tumour
cells transplanted at distant locations. Furthermore, when weakly metastatic cancer cells
were intravenously transplanted, the formation of metastatic foci in the lungs was increased
in mice carrying instigating tumours compared to controls. This was accompanied by the
recruitment of bone marrow derived cells in the stroma of the instigated tumours. Impor-
tantly, OPN levels were increased in the plasma of mice bearing instigating tumours and
silencing of OPN in the instigating cancer cells abrogated the enhanced growth of distant
tumours and metastases, as well as bone marrow-derived cell recruitment to them [72].
This suggests that increased cOPN could directly promote metastatic growth at the distant
sites, but it is also possible that OPN expression by the tumour cells may have secondary
effects on other molecular or cellular components within the instigating tumours, which
eventually promote the growth of the distant tumours.

In the present study we decided to use an adeno-associated virus (AAV)-based delivery
method, in order to increase cOPN already before tumour initiation. Adeno-associated
viruses are considered particularly suitable vectors for the delivery of exogenous genes in
animals, as they are non-pathogenic and elicit no or only very mild immune responses [73].
The AAV9 serotype that we employed can potentially target various tissues. However,
when using a moderate titre, local levels of expression were only upregulated in the heart,
in line with the reported cardiotropism of this vector [74]. At the titre used, the expression
levels of OPN were not locally upregulated in the organs that can represent potential targets
of metastasis in our model, especially the lung. This was important, as we wanted to focus
on the effects of cOPN that would more closely mimic the situation observed in tumour
patients, as opposed to local effects at premetastatic sites due to ectopic OPN expression in
the target tissue. Thus, the heart represents a suitable source of OPN production, as cardiac
metastases are very rare [75]. Despite the limited tissue distribution of OPN transduction,
we could achieve stable and significant increase of cOPN levels. In this context, the choice
of the B16F10 melanoma cell model was also pertinent, since these cells produce relatively
low levels of osteopontin [76,77], allowing us to achieve an increase in cOPN considerably
above that elicited by the presence of the primary tumour alone.

Using the above approach, we observed a significant acceleration of primary melanoma
growth. This is in line with a considerable body of evidence that has reported tumour
promoting functions of OPN in melanoma [23]. In B16 cells, for example, OPN enhances
proliferation through the ERK/MAPK signalling pathway [76]. Using OPN knockout
mice, Kumar et al. demonstrated that stromal osteopontin enhances the growth and an-
giogenesis of B16 melanoma tumours, as well as their cancer stem cell-like properties,
in an ERK2-dependent manner [78]. In addition to changes in the properties of cancer
cells, OPN can also modulate cells in the tumour microenvironment to promote primary
tumour growth [22]. For instance, OPN activated macrophages in a B16 melanoma model,
which led to a prostaglandin E2 (PGE2)-dependent increase in angiogenesis and tumour
growth [77]. In addition, it was shown that OPN can potently suppress cytotoxic T cell
proliferation and activation, promoting tumour immune evasion [37]. Furthermore, OPN
reprograms fibroblasts into a cancer-associated fibroblast (CAF)-like proinflammatory state,
which is linked to enhanced tumour growth [79].

In contrast to the effect of cOPN on primary tumour growth, we could not detect
a significant change in melanoma metastases either to the lymph nodes or to the lung.
This may appear unexpected, considering that a number of studies have demonstrated
prometastatic functions of OPN in melanoma [76,78,80], as well as other tumours [7].



Biomedicines 2023, 11, 1038 13 of 17

However, the existing literature has focused on local effects within the primary tumour,
where OPN produced by tumour or stromal cells can promote various functions linked
to metastatic dissemination, including migration, invasion and epithelial-mesenchymal
transition [7,76,78,80]. Evidence whether systemic elevation of OPN in the circulation can
have direct effects on metastasis, however, has so far been lacking and our data demonstrate
that at least in the model that we employed, it does not play a significant role.

The absence of an effect on metastasis in the spontaneous metastasis model might
be due to the lack of sufficient time for metastasis formation before the animals had to be
killed due to the primary tumour reaching a critical size. Moreover, it is perfectly possible
that cOPN primarily acts by creating a (pre)metastatic niche at distant sites such as the
lung, which may not be enough to induce metastatic growth, if a sufficient number of
cancer cells cannot disseminate away from the primary tumour within the time-frame of
the experiment. To address these potential limitations of the spontaneous metastasis model,
we employed a second, experimental metastasis model with direct tumour cell injection
into the tail vein. In this model cancer cells are rapidly targeted to the lungs, circumventing
the early steps of the metastatic cascade, which should allow any effects of a premetastatic
niche on cancer cell seeding and organ colonisation to become apparent. However, analysis
of metastatic burden in this model also did not reveal a significant increase in the animals
with elevated cOPN.

OPN exists in a variety of isoforms, which may differ in their physiological properties.
The murine OPN isoform employed in our experiments has been commonly used in
the literature [15,81,82] and was shown to be more potent than other OPN isoforms in
promoting pulmonary metastasis formation when overexpressed in B16F10 melanoma
cells [81]. Nevertheless, it remains conceivable that it might have limited activity in our
AAV9-mediated, systemic transduction-based system. However, we did observe a clear
effect of increased cOPN on primary tumour growth in our experiments. Furthermore, we
showed that a number of factors which can be regulated by OPN were markedly increased
in animals with elevated levels of cOPN. These findings demonstrate that the cOPN used
in our system was physiologically active and capable of stimulating various downstream
effects linked to tumour progression. We therefore conclude that cOPN stimulates primary
melanoma growth, but not the efficiency of metastatic seeding, nor the colonisation of
secondary sites. Despite the fact that cOPN induced the expression of tumour progression-
relevant genes in the lung, it was not sufficient to promote metastasis initiation or growth
in the pulmonary environment, indicating that cOPN has context-dependent effects on the
growth of primary and secondary tumours. These findings contribute to the understanding
of the multifaceted functions of OPN during tumour progression and have implications for
potential OPN-targeting therapeutic approaches in melanoma.
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