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Abstract
Finding a minimum vertex cover in a network is a fundamental NP-complete graph
problem. One way to deal with its computational hardness, is to trade the qualitative
performance of an algorithm (allowing non-optimal outputs) for an improved run-
ning time. For the vertex cover problem, there is a gap between theory and practice
when it comes to understanding this trade-off. On the one hand, it is known that it
is NP-hard to approximate a minimum vertex cover within a factor of

√
2. On the

other hand, a simple greedy algorithm yields close to optimal approximations in prac-
tice. A promising approach towards understanding this discrepancy is to recognize the
differences between theoretical worst-case instances and real-world networks. Fol-
lowing this direction, we narrow the gap between theory and practice by providing
an algorithm that efficiently computes nearly optimal vertex cover approximations on
hyperbolic random graphs; a network model that closely resembles real-world net-
works in terms of degree distribution, clustering, and the small-world property. More
precisely, our algorithm computes a (1+ o(1))-approximation, asymptotically almost
surely, and has a running time of O(m log(n)). The proposed algorithm is an adapta-
tion of the successful greedy approach, enhanced with a procedure that improves on
parts of the graph where greedy is not optimal. This makes it possible to introduce a
parameter that can be used to tune the trade-off between approximation performance
and running time. Our empirical evaluation on real-world networks shows that this
allows for improving over the near-optimal results of the greedy approach.
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1 Introduction

A vertex cover of a graph is a subset of the vertices that leaves the graph edgeless
upon deletion. Since the problem of finding a smallest vertex cover is NP-complete [2],
there are probably no algorithms that solve it efficiently. Nevertheless, the problem
is relevant due to its applications in computational biology [3], scheduling [4], and
internet security [5]. Therefore, there is an ongoing effort in exploringmethods that can
be used in practice [6, 7], and while they often work well, they still cannot guarantee
efficient running times.

A commonly used approach to overcoming this issue are approximation algorithms.
There, the idea is to settle for a near-optimal solution while guaranteeing an efficient
running time. For the vertex cover problem, a simple greedy approach computes an
approximation in quasi-linear time by iteratively adding the vertex with the largest
degree to the cover and removing it from the graph. In general graphs, this algorithm,
which we call standard greedy, cannot guarantee a better approximation ratio than
log(n), i.e., there are graphs where it produces a vertex cover whose size exceeds the
one of an optimumby a factor of log(n) [8]. This can be improved to a 2-approximation
using a simple linear-time algorithm. The best known polynomial time approximation
reduces the factor to 2 − �(log(n)−1/2) [9]. However, assuming the unique games
conjecture, it is NP-hard to approximate an optimal vertex cover within a factor of 2−ε

for all ε > 0 [10] and it is proven that finding a
√
2-approximation is NP-hard [11].

Therefore, it is rather surprising that the standard greedy algorithmnot only beats the
2-approximation on autonomous systems graphs like the internet [12], it also performs
well on many real-world networks, obtaining approximation ratios that are very close
to 1 [13]. This leaves a gap between the theoretical worst-case bounds and what is
observed in practice. One approach to explaining this discrepancy is to consider the
differences between the examined instances. Theoretical bounds are often obtained
by designing worst-case instances. However, real-world networks rarely resemble the
worst case. More realistic statements can be obtained by making assumptions about
the solution space [14, 15], or by restricting the analysis to networks with properties
that are observed in the real world.

Many real networks, like social networks, communication networks, or protein-
interaction networks, are considered to be scale-free [16–18]. Such graphs feature a
power-lawdegree distribution (only fewvertices have high degree,whilemany vertices
have low degree), high clustering (two vertices are likely to be adjacent if they have a
common neighbor), and a small diameter.

Previous efforts to obtain more realistic insights into the approximability of the
vertex cover problem have focused on networks that feature only one of these proper-
ties, namely a power-law degree distribution [19–21]. With this approach, guarantees
for the approximation factor of the standard greedy algorithm were improved to a
constant, compared to log(n) on general graphs [19]. Moreover, it was shown that it is
possible to compute an expected (2−ε)-approximation for a constant ε, in polynomial
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time on such networks [20] and this was later improved to about 1.7 depending on
properties of the distribution [21]. However, it was also shown that even on graphs
that have a power-law degree distribution, the vertex cover problem remains NP-hard
to approximate within some constant factor [19]. This indicates, that focusing on net-
works that only feature a power-law degree distribution, is not sufficient to explain
why vertex cover can be approximated so well in practice.

The goal of this paper is to narrow this gap between theory and practice, by con-
sidering a random graph model that features all of the three mentioned properties of
scale-free networks. The hyperbolic randomgraphmodelwas introduced byKrioukov
et al. [22] and it was shown that the graphs generated by the model have a power-law
degree distribution and high clustering [23, 24], as well as a small diameter [25].
Consequently, they are good representations of many real-world networks [26–28].
Additionally, the model is conceptually simple, making it accessible to mathematical
analysis.With it we have previously derived a theoretical explanation for why the bidi-
rectional breadth-first search works well in practice [29]. Moreover, we have shown
that the vertex cover problem can be solved exactly in polynomial time on hyper-
bolic random graphs, with high probability [30]. However, we note that the degree of
the polynomial is unknown and on large networks even quadratic algorithms are not
efficient enough to obtain results in reasonable time.

In this paper, we link the success of the standard greedy approach to structural
properties of hyperbolic randomgraphs, identify the parts of the graphwhere it does not
behave optimally, and use these insights to derive a new approximation algorithm. On
hyperbolic random graphs, this algorithm achieves an approximation ratio of 1+o(1),
asymptotically almost surely (i.e., with probability 1−o(1)), andmaintains an efficient
running time ofO(m log(n)), where n andm denote the number of vertices and edges
in the graph, respectively. Since the average degree of hyperbolic random graphs is
constant, with high probability [31], this implies a quasi-linear running time on such
networks. Moreover, we introduce a parameter that can be used to tune the trade-
off between approximation quality and running time of the algorithm, facilitating an
improvement over the standard greedy approach. While our algorithm depends on the
coordinates of the vertices in the hyperbolic plane, we propose an adaptation of it that is
oblivious to the underlying geometry (only relying on the adjacency information of the
graph) and compare its approximation performance to the standard greedy algorithm
on a selection of real-world networks. On average our algorithm reduces the error of
the standard greedy approach to less than 50%.

The paper is structured as follows. We first give an overview of our notation and
preliminaries in Sect. 2 and derive a new approximation algorithm based on prior
insights about vertex cover on hyperbolic random graphs in Sect. 3. Afterwards, we
analyze its approximation ratio in Sect. 4 and evaluate its performance empirically in
Sect. 5.

2 Preliminaries

Let G = (V , E) be an undirected and connected graph. We denote the number of
vertices and edges in G with n and m, respectively. The number of vertices in a set
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S ⊆ V is denoted by |S|. The neighborhood of a vertex v is defined as N (v) = {w ∈
V | {v,w} ∈ E}. The size of the neighborhood, called the degree of v, is denoted by
deg(v) = |N (v)|. For a subset S ⊆ V , we use G[S] to denote the induced subgraph
of G obtained by removing all vertices in V \ S.

2.1 The Hyperbolic Plane

After choosing a designated origin O in the two-dimensional hyperbolic plane,
together with a reference ray starting at O , a point p is uniquely identified by its
radius r(p), denoting the hyperbolic distance to O , and its angle (or angular coor-
dinate) ϕ(p), denoting the angular distance between the reference ray and the line
through p and O . The hyperbolic distance between two points p and q is given by

dist(p, q) = acosh(cosh(r(p)) cosh(r(q)) − sinh(r(p)) sinh(r(q)) cos(�ϕ(p, q))),

where cosh(x) = (ex + e−x )/2, sinh(x) = (ex − e−x )/2, and

�ϕ(p, q) = π − |π − |ϕ(p) − ϕ(q)||

denotes the angular distance between p and q. If not stated otherwise, we assume that
computations on angles are performed modulo 2π .

In the hyperbolic plane a disk of radius r has an area of 2π(cosh(r) − 1). That is,
the area grows exponentially with the radius. In contrast, this growth is polynomial in
Euclidean space.

2.2 Hyperbolic RandomGraphs

Hyperbolic random graphs are obtained by distributing n points independently and
uniformly at random within a disk of radius R and connecting any two of them if and
only if their hyperbolic distance is at most R. See Fig. 1 for an example. The disk
radius R (which matches the connection threshold) is given by R = 2 log(n) + C ,
where the constant C ∈ R depends on the average degree of the network, as well
as the power-law exponent β = 2α + 1, with α ∈ (1/2, 1), which are also assumed
to be constants. The coordinates of the vertices are drawn as follows. For vertex v

the angular coordinate, denoted by ϕ(v), is drawn uniformly at random from [0, 2π)

and the radius of v, denoted by r(v), is sampled according to the probability density
function

f (r) = α sinh(αr)

cosh(αR) − 1
,

for r ∈ [0, R]. For r > R, f (r) = 0. Then,
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f (r , ϕ) = 1

2π

α sinh(αr)

cosh(αR) − 1

= α

2π
e−α(R−r)(1 + �(e−αR − e−2αr )) (1)

is their joint distribution function.
In the chosen regime for α the resulting graphs have a giant component of size

	(n) [32], while all other components have at most polylogarithmic size [33, Corol-
lary 13], with high probability. Throughout the paper, we refer only to the giant
component when addressing hyperbolic random graphs.

We denote areas in the hyperbolic disk with calligraphic capital letters. The set of
vertices in an areaA is denoted by V (A). The probability for a given vertex to lie inA
is given by its measure μ(A) = ∫∫

A f (r , ϕ)dϕdr . The hyperbolic distance between
two vertices u and v increases with increasing angular distance between them. The
maximum angular distance such that they are still connected by an edge is bounded
by [34, Lemma 3.2]

θ(r(u), r(v)) = arccos

(
cosh(r(u)) cosh(r(v)) − cosh(R)

sinh(r(u)) sinh(r(v))

)

= 2e(R−r(u)−r(v))/2(1 ± �(eR−r(u)−r(v))). (2)

2.3 Hyperbolic RandomGraphs with an Expected Number of Vertices

We are often interested in the probability that one or more vertices fall into a certain
area of the hyperbolic disk during the sampling process of a hyperbolic random graph.
Computing such a probability becomes significantly harder, once the positions of
some vertices are already known, since that introduces stochastic dependencies. For
example, if all n vertices are sampled into an areaA, the probability for a vertex to lie
outside ofA is 0. In order to overcome such issues, we use an approach (that has been
often used on hyperbolic random graphs before, see for example [33, 35]), where the
vertex positions in the hyperbolic disk are sampled using an inhomogeneous Poisson
point process. For a given number of vertices n, we refer to the resulting model as
hyperbolic random graphs with n vertices in expectation. After analyzing properties
of this simpler model, we can translate the results back to the original model, by
conditioning on the fact that the resulting distribution is equivalent to the one originally
used for hyperbolic random graphs. More formally, this can be done as follows.

A hyperbolic random graph with n vertices in expectation is obtained using an
inhomogeneous Poisson point process to distribute the vertices in the hyperbolic disk.
In order to get n vertices in expectation, the corresponding intensity function fP (r , ϕ)

at a point (r , ϕ) in the disk is chosen as

fP (r , ϕ) = e(R−C)/2 f (r , ϕ),

where f (r , ϕ) is the original probability density function used to sample hyperbolic
random graphs [see Eq. (1)]. Let P denote the set of random variables representing
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the points produced by this process. Then P has two properties. First, the number of
vertices in P that are sampled into two disjoint areas are independent randomvariables.
Second, the expected number of points in P that fall within an area A is given by

∫∫

A
fP (r , ϕ)drdϕ = n

∫∫

A
f (r , ϕ)drdϕ = nμ(A).

By the choice of fP the number of vertices sampled into the disk matches n only in
expectation, i.e., E[|P|] = n. However, we can now recover the original distribution
of the vertices, by conditioning on the fact that |P| = n, as shown in the following
lemma. Intuitively, it states that probabilistic statements on hyperbolic random graphs
with n vertices in expectation can be translated to the original hyperbolic random
graph model by taking a small penalty in certainty. We note that proofs of how to
bound this penalty have been sketched before [33, 35]. For the sake of completeness,
we give an explicit proof. In the following, we use GP to denote a hyperbolic random
graph with n vertices in expectation and point set P . Moreover, we use P to denote a
property of a graph and for a given graph G we denote the event that G has property
P with E(G,P).

Lemma 1 Let GP be a hyperbolic randomgraphwith n vertices in expectation, letP be
a property, and let c > 0 be a constant, such that Pr[E(GP ,P)] = O(n−c). Then, for
a hyperbolic random graph G ′ with n vertices it holds that

Pr[E(G ′,P)] = O(n−c+1/2).

Proof The probability thatG ′ has property P can be obtained by taking the probability
that a hyperbolic random graph GP with n vertices in expectation has it, and condi-
tioning on the fact that exactly n vertices are produced during its sampling process.
That is,

Pr[E(G ′,P)] = Pr[E(GP ,P) | |P| = n].

This probability cannowbe computedusing the definition for conditional probabilities,
i.e.,

Pr[E(GP ,P) | |P| = n] = Pr[E(GP ,P) ∧ |P| = n]
Pr[|P| = n] ,

where the ∧-operator denotes that both events occur. For the numerator, we have
Pr[E(GP ,P)] = O(n−c) by assumption. Constraining this to events where |P| = n
cannot increase the probability andwe obtain Pr[E(GP ,P)∧|P| = n] = O(n−c). For
the denominator, recall that |P| is a random variable that follows a Poisson distribution
with mean n. Therefore, we have

Pr[|P| = n] = e−nnn

n! = �(n−1/2).
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The quotient can, thus, be bounded by

Pr[E(G ′,P)] = O(n−c)

�(n−1/2)
= O(n−c+1/2).

��

2.4 Probabilities

Since we are analyzing a random graph model, our results are of probabilistic nature.
To obtain meaningful statements, we show that they hold with high probability (with
probability 1−O(n−1)), or asymptotically almost surely (with probability 1− o(1)).
The following Chernoff bound can be used to show that certain events occur with high
probability.

Theorem 1 (Chernoff Bound [36, Theorems 4.4 and 4.5]) Let X1, . . . , Xn be indepen-
dent random variables with Xi ∈ {0, 1} and let X be their sum. Then, for ε ∈ (0, 1]

Pr[X ≥ (1 + ε)E[X ]] ≤ e−ε2/3 ·E[X ].

pUsually, it suffices to show that a random variable does not exceed an upper bound.
The following corollary shows that a bound on the expected value suffices to obtain
concentration.

Corollary 1 Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1}, let X
be their sum, and let f (n) be an upper bound on E[X ]. Then, for ε ∈ (0, 1)

Pr[X ≥ (1 + ε) f (n)] ≤ e−ε2/3 · f (n).

Proof We define random variables X ′
1, . . . , X

′
n with X ′

i ≥ Xi for every outcome, in
such a way that X ′ = ∑

i∈[n] X ′
i has expected value E[X ′] = f (n). Note that X ′ ≥ X

for every outcome and that X ′ exists as f (n) ≥ E[X ]. Since X ≤ X ′, it holds that

Pr[X ≥ (1 + ε) f (n)] ≤ Pr[X ′ ≥ (1 + ε) f (n)] = Pr[X ′ ≥ (1 + ε)E(X ′)].

Using Theorem 1 we can derive that

Pr[X ′ ≥ (1 + ε)E[X ′]] ≤ e−ε2/3 ·E[X ′] = e−ε2/3 · f (n).

��
While the Chernoff bound considers the sum of indicator random variables, we

often have to deal with different functions of random variables. In this case tight
bounds on the probability that the function deviates a lot from its expected value can
be obtained using the method of bounded differences. Let X1, . . . , Xn be independent
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random variables taking values in a set S. We say that a function f : Sn → R satisfies
the bounded differences condition if for all i ∈ [n] there exists a �i ≥ 0 such that

| f (x) − f (x′)| ≤ �i , (3)

for all x, x′ ∈ Sn that differ only in the i-th component.

Theorem 2 (Method of Bounded Differences [37, Corollary 5.2]) Let X1, . . . , Xn be
independent random variables taking values in a set S and let f : Sn → R be a
function that satisfies the bounded differences condition with parameters �i ≥ 0 for
i ∈ [n]. Then for � = ∑

i �
2
i it holds that

Pr[ f > E[ f ] + t] ≤ e−2t2/�.

As before, we are usually interested in showing that a random variable does not
exceed a certain upper bound with high probability. Analogously to the Chernoff
bound in Corollary 1, one can show that, again, an upper bound on the expected value
suffices to show concentration.

Corollary 2 Let X1, . . . , Xn be independent random variables taking values in a set
S and let f : Sn → R be a function that satisfies the bounded differences condition
with parameters �i ≥ 0 for i ∈ [n]. If g(n) is an upper bound on E[ f ] then for
� = ∑

i �
2
i and c ≥ 1 it holds that

Pr[ f > cg(n)] ≤ e−2((c−1)g(n))2/�.

Proof Let h(n) ≥ 0 be a function with f ′ = f + h(n) such that E[ f ′] = g(n).
Note that h(n) exists since g(n) ≥ E[ f ]. As a consequence, we have f ≤ f ′ for all
outcomes of X1, . . . , Xn and it holds that

| f ′(x) − f ′(x′)| = | f (x) + h(n) − f (x′) − h(n)| = | f (x) − f (x′)|,

for all x, x′ ∈ Sn . Consequently, f ′ satisfies the bounded differences condition with
the same parameters �i as f . Since f ≤ f ′ it holds that

Pr[ f > cg(n)] ≤ Pr[ f ′ > cg(n)] = Pr[ f ′ > cE[ f ′]].

Choosing t = (c − 1)E[ f ′] allows us to apply Theorem 2 to conclude that

Pr[ f ′ > cE[ f ′]] = Pr[ f ′ > E[ f ′] + t] ≤ e−2((c−1)E[ f ′])2/� = e−2((c−1)g(n))2/�.

��
A disadvantage of the method of bounded differences is that one has to consider

the worst possible change in f when changing one variable and the resulting bound
becomes worse the larger this change. A way to overcome this issue is to consider
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the method of typical bounded differences instead. Intuitively, it allows us to milden
the effect of the change in the worst case, if it is sufficiently unlikely, and to focus on
the typical cases where the change should be small, instead. Formally, we say that a
function f : Sn → R satisfies the typical bounded differences condition with respect
to an event A ⊆ Sn if for all i ∈ [n] there exist �A

i ≤ �i such that

| f (x) − f (x′)| ≤
{

�A
i , if x ∈ A,

�i , otherwise,
(4)

for all x, x′ ∈ Sn that differ only in the i-th component.

Theorem 3 (MethodofTypicalBoundedDifferences,[38,Theorem2])1 Let X1, . . . , Xn

be independent random variables taking values in a set S and let A ⊆ Sn be an event.
Furthermore, let f : Sn → R be a function that satisfies the typical bounded dif-
ferences condition with respect to A and with parameters �A

i ≤ �i for i ∈ [n].
Then for all ε1, . . . , εn ∈ (0, 1] there exists an event B satisfying B̄ ⊆ A and
Pr[B] ≤ Pr[ Ā] · ∑

i∈[n] 1/εi , such that for � = ∑
i∈[n](�A

i + εi (�i − �A
i ))2 and

t ≥ 0 it holds that

Pr[ f > E[ f ] + t ∧ B̄] ≤ e−t2/(2�).

Intuitively, the choice of the values for εi has two effects. On the one hand, choosing
εi small allows us to compensate for a potentially large worst-case change �i . On
the other hand, this also increases the bound on the probability of the event B that
represents the atypical case. However, in that case one can still obtain meaningful
bounds if the typical event A occurs with high enough probability. Again, it is usually
sufficient to show that the function f does not exceed an upper bound on its expected
value with high probability. The proof of the following corollary is analogous to the
one of Corollary 2.

Corollary 3 ([29, Corollary 4.13]) Let X1, . . . , Xn be independent random variables
taking values in a set S and let A ⊆ Sn be an event. Furthermore, let f : Sn → R be a
function that satisfies the typical bounded differences condition with respect to A and
with parameters �A

i ≤ �i for i ∈ [n] and let g(n) be an upper bound on E[ f ]. Then
for all ε1, . . . , εn ∈ (0, 1], � = ∑

i∈[n](�A
i + εi (�i −�A

i ))2, and c ≥ 1 it holds that

Pr[ f > cg(n)] ≤ e−((c−1)g(n))2/(2�) + Pr[ Ā]
∑

i∈[n]
1/εi .

2.5 Useful Inequalities

Computations can often be simplified by using the fact that 1 ± x can be closely
approximated by e±x for small x . More precisely, we make use of the following

1 We state a slightly simplified version in order to facilitate understandability. The original theorem allows
for the random variables X1, . . . , Xn to take values in different sets.
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well-known inequalities

1 + x ≤ ex for x ∈ R

1 − x ≥ e−(1+o(1))x for x > 0 with x = o(1)

1/(1 + x) = 1 − �(x) for x ∈ R withx = ±o(1).

3 An Improved Greedy Algorithm

Previous insights about solving the vertex cover problem on hyperbolic random graphs
are based on the fact that the dominance reduction rule reduces the graph to a remainder
of simple structure [30]. This rule states that a vertex u can be safely added to the vertex
cover (and, thus, be removed from the graph) if it dominates at least one other vertex,
i.e., if there exists a neighbor v ∈ N (u) such that all neighbors of v are also neighbors
of u.

On hyperbolic random graphs, vertices near the center of the disk dominate with
high probability [30, Lemma 5]. Therefore, it is not surprising that the standard greedy
algorithm that computes a vertex cover by repeatedly taking the vertex with the largest
degree achieves good approximation rates on suchnetworks: Since highdegree vertices
are near the disk center, the algorithm essentially favors vertices that are likely to
dominate and can be safely added to the vertex cover anyway.

On the other hand, after (safely) removing high-degree vertices, the remaining ver-
tices all have similar (small) degree, meaning the standard greedy algorithm basically
picks the vertices at random. Thus, in order to improve the approximation perfor-
mance of the algorithm, one has to improve on the parts of the graph that contain
the low-degree vertices. Based on this insight, we derive a new greedy algorithm that
achieves close to optimal approximation rates efficiently. More formally, we prove the
following main theorem.

Theorem 4 Let G be a hyperbolic random graph on n vertices. Given the radii of the
vertices, an approximate vertex cover of G can be computed in time O(m log(n)),
such that the approximation ratio is (1 + o(1)) asymptotically almost surely.

Consider the following greedy algorithm that computes an approximation of a
minimum vertex cover on hyperbolic random graphs. We iterate the vertices in order
of increasing radius. Each encountered vertex v is added to the cover and removed
from the graph. After each step, we then identify the connected components of size
at most τ log log(n) in the remainder of the graph, solve them optimally, and remove
them from the graph as well. The constant τ > 0 can be used to adjust the trade-off
between quality and running time: With increasing τ the parts of the graph that are
solved exactly increase as well, but so does the running time.

This algorithm determines the order in which the vertices are processed based
on their radii, which are not known for real-world networks. However, in hyper-
bolic random graphs, there is a strong correlation between the radius of a vertex and
its degree [23]. Therefore, we can mimic the considered greedy strategy by remov-
ing vertices with decreasing degree instead. Then, the above algorithm represents an
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adaptation of the standard greedy algorithm: Instead of greedily adding vertices with
decreasing degree until all remaining vertices are isolated, we increase the quality of
the approximation by solving small components exactly.

4 Approximation Performance

To analyze the performance of the above algorithm, we utilize structural properties
of hyperbolic random graphs. While the power-law degree distribution and high clus-
tering are modelled explicitly using the underlying geometry, other properties of the
model, like the logarithmic diameter, emerge as a natural consequence of the first
two. Our analysis is based on another emerging property: Hyperbolic random graphs
decompose into small components when removing high-degree vertices.

More formally, we proceed as follows. We compute the size of the vertex cover
obtained using the above algorithm, by partitioning the vertices of the graph into two
sets: VGreedy and VExact, denoting the vertices that were added greedily and the ones
contained in small separated components that were solved exactly, respectively (see
Fig. 1).Clearly,weobtain a valid vertex cover for thewhole graph, ifwe take all vertices
in VGreedy together with a vertex cover CExact of G[VExact]. Then, the approximation
ratio is given by the quotient δ = (|VGreedy| + |CExact|)/|COPT|, where COPT denotes
an optimal solution. Since all components in G[VExact] are solved optimally and since
any minimum vertex cover for the whole graph induces a vertex cover on G[V ′] for
any vertex subset V ′ ⊆ V , it holds that |CExact| ≤ |COPT|. Consequently, it suffices to
show that |VGreedy| ∈ o(|COPT|) in order to obtain the claimed approximation factor
of 1 + o(1).

To bound the size ofVGreedy,we identify a time during the execution of the algorithm
at which only few vertices were added greedily, yet, the majority of the vertices were
contained in small separated components (and were, therefore, part of VExact), and
only few vertices remain to be added greedily. Since the algorithm processes the
vertices by increasing radius, this point in time can be translated to a threshold radius
ρ in the hyperbolic disk (see Fig. 1). Therefore, we divide the hyperbolic disk into
two regions: an inner disk and an outer band, containing vertices with radii below
and above ρ, respectively. The threshold ρ is chosen such that a hyperbolic random
graph decomposes into small components after removing the inner disk. When adding
the first vertex from the outer band, greedily, we can assume that the inner disk is
empty (since vertices of smaller radii were chosen before or removed as part of a
small component). At this point, the majority of the vertices in the outer band were
contained in small components, which have been solved exactly. In our analysis, we
now overestimate the size of VGreedy by assuming that all remaining vertices are also
added to the cover greedily. Therefore, we obtain a valid upper bound on |VGreedy|,
by counting the total number of vertices in the inner disk and adding the number
of vertices in the outer band that are contained in components that are not solved
exactly, i.e., components whose size exceeds τ log log(n). In the following, we show
that both numbers are sublinear in n with high probability. Together with the fact that
an optimal vertex cover on hyperbolic random graphs, asymptotically almost surely,
contains 	(n) vertices [19], this implies |VGreedy| ∈ o(|COPT|).
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Fig. 1 A hyperbolic random graph with 1942 vertices, average degree 7.7, and power-law exponent 2.6.
The vertex sets VGreedy and VExact are shown in red and blue, respectively. The dashed line shows a possible
threshold radius ρ

The main contribution of our analysis is the identification of small components in
the outer band, which is done by discretizing it into sectors, such that an edge cannot
extend beyond an empty sector (see Fig. 2). The foundation of this analysis is the
delicate interplay between the angular width γ of these sectors and the threshold ρ

that defines the outer band. Recall thatρ is used to represent the time in the execution of
the algorithm at which the graph has been decomposed into small components. For our
analysis we assume that all vertices seen before this point (all vertices in the inner disk;
red Fig. 2) were added greedily. Therefore, if we choose ρ too large, we overestimate
the actual number of greedily added vertices by too much. As a consequence, we want
to choose ρ as small as possible. However, this conflicts our intentions for the choice
of γ and its impact on ρ. Recall that the maximum angular distance between two
vertices such that they are adjacent increases with decreasing radii [Eq. (2)]. Thus, in
order to avoid edges that extend beyond an angular width of γ , we need to ensure that
the radii of the vertices in the outer band are sufficiently large. That is, decreasing γ

requires increasing ρ. However, we want to make γ as small as possible, in order to
get a finer granularity in the discretization and, with that, a more accurate analysis of
the component structure in the outer band. Therefore, γ and ρ need to be chosen such
that the inner disk does not become too large, while ensuring that the discretization is
granular enough to accurately detect components whose size depends on τ and n. To
this end, we adjust the angular width of the sectors using a function γ (n, τ ), which is
defined as
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γ

ρ

Fig. 2 The disk is divided into the inner disk (red) and the outer band. It is additionally divided into sectors
of equal width γ . Consecutive non-empty sectors form a run. Wide runs (blue) consist of many sectors.
Each blue sector is a widening sector. Narrow runs (green) consist of few sectors. Small narrow runs contain
only few vertices (light green), while large narrow runs contain many vertices (dark green) (Color figure
online)

γ (n, τ ) = log

(
τ log(2)(n)

2 log(3)(n)2

)

,

where log(i)(n) denotes iteratively applying the log-function i times on n (e.g.,
log(2)(n) = log log(n)), and set

ρ = R − log(π/2 · eC/2γ (n, τ )),

where R = 2 log(n) + C is the radius of the hyperbolic disk.
In the following, we first show that the number of vertices in the inner disk is

sublinear with high probability, before analyzing the component structure in the outer
band. To this end, we make use of the discretization of the disk into sectors, by
distinguishing between different kinds of runs (sequences of non-empty sectors), see
Fig. 2. In particular, we bound the number of wide runs (consisting of many sectors)
and the number of vertices in them. Then we bound the number of vertices in large
narrow runs (consisting of few sectors but containing many vertices). The remaining
small narrow runs represent small components that are solved exactly.

The analysis mainly involves working with the random variables that denote the
numbers of vertices in the above mentioned areas of the disk. Throughout the paper,
we usually start with computing their expected values. Afterwards, we obtain tight
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concentration bounds using the previously mentioned Chernoff bound or, when the
considered random variables are more involved, the method of (typical) bounded
differences.

4.1 The Inner Disk

The inner disk I contains all vertices whose radius is below the threshold ρ. The
number of them that are added to the cover greedily is bounded by the number of all
vertices in I.
Lemma 2 Let G be a hyperbolic random graph on n vertices with power-law exponent
β = 2α + 1. With high probability, the number of vertices in I is inO(n · γ (n, τ )−α).

Proof We start by computing the expected number of vertices in I and show concen-
tration afterwards. To this end, we first compute the measure μ(I). The measure of
a disk of radius r that is centered at the origin is given by e−α(R−r)(1 + o(1)) [23,
Lemma 3.2]. Consequently, the expected number of vertices in I is

E[|V (I)|] = nμ(I)

= O(ne−α(R−ρ))

= O(ne−α log(π/2 · eC/2γ (n,τ )))

= O (
n · γ (n, τ )−α

)
.

Since γ (n, τ ) = O(log(3)(n)), this bound on E[|V (I)|] is ω(log(n)), and we can
apply the Chernoff bound in Corollary 1 to conclude that |V (I)| = O (

n · γ (n, τ )−α
)

holds with probability 1 − O(n−c) for any c > 0. ��
Since γ (n, τ ) = ω(1), Lemma 2 shows that, with high probability, the number

of vertices that are greedily added to the vertex cover in the inner disk is sublinear.
Once the inner disk has been processed and removed, the graph has been decomposed
into small components and the ones of size at most τ log log(n) have already been
solved exactly. The remaining vertices that are now added greedily belong to large
components in the outer band.

4.2 The Outer Band

To identify the vertices in the outer band that are contained in components whose
size exceeds τ log log(n), we divide it into sectors of angular width γ = θ(ρ, ρ) =
π · γ (n, τ )/n · (1 + o(1)), where θ(ρ, ρ) denotes the maximum angular distance
between two vertices with radii ρ to be adjacent [see Eq. (2)]. This division is depicted
in Fig. 2. The choice of γ (combined with the choice of ρ) has the effect that an
edge between two vertices in the outer band cannot extend beyond an empty sector,
i.e., a sector that does not contain any vertices, allowing us to use empty sectors as
delimiters between components. To this end, we introduce the notion of runs, which
are maximal sequences of non-empty sectors (see Fig. 2). While a run can contain
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multiple components, the number of vertices in it denotes an upper bound on the
combined sizes of the components that it contains.

To show that there are only few vertices in components whose size exceeds
τ log log(n), we bound the number of vertices in runs that contain more than
τ log log(n) vertices. For a given run this can happen for two reasons. First, it may
contain many vertices if its angular interval is too large, i.e., it consists of too many
sectors. This is unlikely, since the sectors are chosen sufficiently small, such that the
probability for a given one to be empty is high. Second, while the angular width of the
run is not too large, it contains too many vertices for its size. However, the vertices of
the graph are distributed uniformly at random in the disk, making it unlikely that too
many vertices are sampled into such a small area. To formalize this, we introduce a
thresholdw and distinguish between two types of runs: Awide run contains more than
w sectors, while a narrow run contains at most w sectors. The threshold w is chosen
such that the probabilities for a run to be wide and for a narrow run to contain more
than τ log log(n) vertices are small. To this end, we set w = eγ (n,τ ) · log(3)(n).

In the following, we first bound the number of vertices in wide runs. Afterwards,
we consider narrow runs that contain more than τ log log(n) vertices. Together, this
gives an upper bound on the number of vertices that are added greedily in the outer
band.

4.2.1 Wide Runs

We refer to a sector that contributes to awide run as awidening sector. In the following,
we bound the number of vertices in all wide runs in three steps. First, we determine
the expected number of all widening sectors. Second, based on the expected value,
we show that the number of widening sectors is small, with high probability. Finally,
we make use of the fact that the area of the disk covered by widening sectors is small,
to show that the number of vertices sampled into the corresponding area is sublinear,
with high probability.

Expected Number of Widening Sectors
Let n′ denote the total number of sectors and let S1, . . . ,Sn′ be the corresponding
sequence. For each sector Sk , we define the random variable Sk indicating whether Sk

contains any vertices, i.e., Sk = 0 if Sk is empty and Sk = 1 otherwise. The sectors
in the disk are then represented by a circular sequence of indicator random variables
S1, . . . , Sn′ , and we are interested in the random variableW that denotes the sum of all
runs of 1s that are longer thanw. In order to compute E[W ], we first compute the total
number of sectors, as well as the probability for a sector to be empty or non-empty.

Lemma 3 Let G be a hyperbolic random graph on n vertices. Then, the number of
sectors of width γ = θ(ρ, ρ) is n′ = 2n/γ (n, τ ) · (1 ± o(1)).

Proof Since all sectors have equal angular width γ = θ(ρ, ρ), we can use Eq. (2) to
compute the total number of sectors as

n′ = 2π/θ(ρ, ρ)

= πe−R/2+ρ(1 ± �(eR−2ρ))−1.
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By substituting ρ = R − log(π/2 · eC/2γ (n, τ )) and R = 2 log(n) + C , we obtain

n′ = πeR/2

π/2 · eC/2γ (n, τ )
(1 ± �(e−Rγ (n, τ )2))−1

= 2n/γ (n, τ ) · (1 ± �((γ (n, τ )/n)2))−1.

It remains to simplify the error term. Note that γ (n, τ ) = O(log(3)(n)). Consequently,
the error term is equivalent to (1±o(1))−1. Finally, it holds that 1/(1+x) = 1−�(x)
for x = ±o(1). ��
Lemma 4 Let G be a hyperbolic random graph on n vertices and let S be a sector of
angular width γ = θ(ρ, ρ). For sufficiently large n, the probability that S contains
at least one vertex is bounded by

1 − e−γ (n,τ )/4 ≤ Pr[V (S) �= ∅] ≤ e−(
e−γ (n,τ )

)
.

Proof To compute the probability that S contains at least one vertex, we first compute
the probability for a given vertex to fall into S, which is given by the measure μ(S).
Since the angular coordinates of the vertices are distributed uniformly at random and
since the disk is divided into n′ sectors of equal width, the measure of a single sector S
can be obtained as μ(S) = 1/n′. The total number of sectors n′ is given by Lemma 3
and we can derive

μ(S) = γ (n, τ )

2n
(1 ± o(1))−1 = γ (n, τ )

2n
(1 ± o(1)),

where the second equality is obtainedby applying1/(1+x) = 1−�(x) for x = ±o(1).
Given μ(S), we first compute the lower bound on the probability that S contains

at least one vertex. Note that Pr[V (S) �= ∅] = 1 − Pr[V (S) = ∅]. Therefore, it
suffices to show that Pr[V (S) = ∅] ≤ e−γ (n,τ )/4. The probability that S is empty is
(1 − μ(S))n . Now recall that 1 − x ≤ e−x for all x ∈ R. Consequently, we have

Pr[V (S) = ∅] ≤ e−nμ(S) ≤ e−γ (n,τ )/2 · (1−o(1))

and for large enough n it holds that 1 − o(1) ≥ 1/2.
It remains to compute the upper bound. Again, since Pr[V (S) �= ∅] = 1 −

Pr[V (S) = ∅] and since Pr[V (S) = ∅] = (1 − μ(S))n , we can compute the proba-
bility that S contains at least one vertex as

Pr[V (S) �= ∅] = 1 − (1 − μ(S))n .

Note that μ(S) ∈ o(1). Therefore, we can bound 1 − x ≥ e−x(1+o(1)) for x ∈ o(1),
and obtain the following bound on Pr[V (S) �= ∅]

Pr[V (S) �= ∅] = 1 − (1 − μ(S))n

123



Algorithmica

≤ 1 − e−nμ(S)(1+o(1))

≤ 1 − e−γ (n,τ )/2 · (1+o(1)).

For large enough n, we have (1 + o(1)) ≤ 2. Therefore,

Pr[V (S) �= ∅] ≤ 1 − e−γ (n,τ )

holds for sufficiently large n. Finally, 1− x ≤ e−x is valid for all x ∈ R and we obtain
the claimed bound. ��

We are now ready to bound the expected number of widening sectors, i.e., sectors
that are part of wide runs. To this end, we aim to apply the following lemma.

Lemma 5 [39, Proposition 4.3]2 Let S1, . . . , Sn′ denote a circular sequence of inde-
pendent indicator random variables, such that Pr[Sk = 1] = p and Pr[Sk = 0] =
1 − p = q, for all k ∈ [n′]. Furthermore, let W denote the sum of the lengths of all
success runs of length at least w ≤ n′. Then, E[W ] = n′ pw(wq + p).

We note that the indicator random variables S1, . . . , S′
n are not independent on

hyperbolic random graphs. To overcome this issue, we compute the expected value
of W on hyperbolic random graphs with n vertices in expectation (see Sect. 2) and
subsequently derive a probabilistic bound on W for hyperbolic random graphs.

Lemma 6 Let G be a hyperbolic random graph with n vertices in expectation and let
W denote the number of widening sectors. Then,

E[W ] ≤ 21/4 · τ 3/4 · n
γ (n, τ ) · log(2)(n)1/4 · log(3)(n)1/2

(1 ± o(1)).

Proof Awidening sector is part of a runofmore thanw = eγ (n,τ )·log(3)(n) consecutive
non-empty sectors. To compute the expected number of widening sectors, we apply
Lemma 5. To this end, we use Lemma 3 to bound the total number of sectors n′ and
bound the probability p = Pr[Sk = 1] (i.e., the probability that sector Sk is not empty)
as p ≤ exp(−(e−γ (n,τ ))), as well as the complementary probability q = 1 − p ≤
e−γ (n,τ )/4, using Lemma 4. We obtain

E[W ] = n′ p(w+1)((w + 1)q + p)

≤ 2n

γ (n, τ )
(1 ± o(1)) · e−(

(w+1)e−γ (n,τ )
)
·
(
(w + 1)e− γ (n,τ )

4 + 1
)

≤ 2n

γ (n, τ )
e
(−eγ (n,τ ) log(3)(n)e−γ (n,τ )

)

·
(
(eγ (n,τ ) log(3)(n) + 1)e− γ (n,τ )

4 + 1
)

(1 ± o(1)).

2 The original statement has been adapted to fit our notation. We use n′, w, and W to denote the total
number of random variables, the threshold for long runs, and the sum of their lengths, respectively. They
were previously denoted by n, k, and S, respectively. In the original statement s = 0 indicates that the
variables are distributed independently and identically, and c indicates that the sequence is circular.
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Now the first exponential simplifies to exp(− log(3)(n)) = log(2)(n)−1, since
the γ (n, τ ) terms cancel. Factoring out exp(3/4 · γ (n, τ )) log(3)(n) in the third term
then yields

E[W ] ≤ 2ne3/4 · γ (n,τ ) log(3)(n)

γ (n, τ ) · log(2)(n)

·
(

1 + 1

eγ (n,τ ) log(3)(n)
+ 1

e3/4 · γ (n,τ ) log(3)(n)

)

(1 ± o(1)).

Since γ (n, τ ) = ω(1), the first error term can be simplified as (1+o(1)). Additionally,
we can substitute γ (n, τ ) = log(τ log(2)(n)/(2 log(3)(n)2)) to obtain

E[W ] ≤ 21/4
τ 3/4 · n · log(3)(n)

γ (n, τ ) · log(2)(n)
· log

(2)(n)3/4

log(3)(n)3/2
· (1 ± o(1)).

Further simplification then yields the claim. ��

Concentration Bound on the Number of Widening Sectors
Lemma 6 bounds the expected number of widening sectors and it remains to show that
this bound holds with high probability. To this end, we first determine under which
conditions the sum of long success runs in a circular sequence of indicator random
variables can be bounded with high probability in general. Afterwards, we show that
these conditions are met for our application.

Lemma 7 Let S1, . . . , Sn′ denote a circular sequence of independent indicator random
variables and let W denote the sum of the lengths of all success runs of length at
least 1 ≤ w ≤ n′. If g(n′) = ω(w

√
n′ log(n′)) is an upper bound on E[W ], then

W = O(g(n′)) holds with probability 1 − O((n′)−c) for any constant c.

Proof In order to show thatW does not exceed g(n′)bymore than a constant factorwith
high probability, we aim to apply a method of bounded differences (Corollary 2). To
this end, we consider W as a function of n′ independent random variables S1, . . . , Sn′
and determine the parameters �i with which W satisfies the bounded differences
condition [see Eq. (3)]. That is, for each i ∈ [n′] we need to bound the change in the
sum of the lengths of all success runs of length at least w, obtained by changing the
value of Si from 0 to 1 or vice versa.

The largest impact on W is obtained when changing the value of Si from 0 to 1
merges two runs of sizew, i.e., runs that are as large as possible but notwide, as shown
in Fig. 3. In this case both runs did not contribute anything to W before the change,
while the merged run now contributes 2w + 1. Then, we can bound the change in
W as �i = 2w + 1. Note that the other case in which the value of Si is changed
from 1 to 0 can be viewed as the inversion of the change in the first case. That is,
instead of merging two runs, changing Si splits a single run into two. Consequently,
the corresponding bound on the change ofW is the same, except thatW is decreasing
instead of increasing.
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Fig. 3 A circular sequence of random variables S1, . . . , Sn′ that can either be 0 (white) or 1 (blue). Dark
blue runs are as large as possible without being wide. Depending on the value of Si , the two runs of length
w are merged into one run of length 2w + 1 (Color figure online)

It follows that W satisfies the bounded differences condition for �i = 2w + 1 for
all i ∈ {1, . . . , n′}. We can now apply Corollary 2 to bound the probability that W
exceeds an upper bound g(n′) on its expected value by more than a constant factor as

Pr[W > c1g(n
′)] ≤ e−2((c1−1)g(n′))2/�,

where � = ∑
i �

2
i and c1 ≥ 1. Since �i = 2w + 1 for all i ∈ [n′], we have

� = n′(2w + 1)2. Thus,

Pr[W > c1g(n
′)] ≤ e

− 2((c1−1)g(n′))2
n′(2w+1)2 ≤ e

− 2(c1−1)2

n′ ·
(
g(n′)
3w

)2

,

where the second inequality is valid since w is assumed to be at least 1. Moreover, we
can apply g(n′) = ω(w

√
n′ log(n′)) (a precondition of this lemma), which yields

Pr[W > c1g(n
′)] = (n′)−ω(1).

Therefore, it holds that Pr[W ∈ O(g(n′))] = 1 − (n′)−ω(1) = 1 − O((n′)−c) for any
constant c. ��
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Lemma 8 Let G be a hyperbolic random graph on n vertices. Then, with probability
1 − O(n−c) for any constant c > 0, the number of widening sectors is

W = O
(

τ 3/4 · n
γ (n, τ ) · log(2)(n)1/4 · log(3)(n)1/2

)

.

Proof In the following, we show that the claimed bound holds with probability 1 −
O(n−c1) for any constant c1 > 0 on hyperbolic random graphs with n vertices in
expectation. By Lemma 1 the same bound then holds with probability 1−O(n−c1+1/2)

on hyperbolic random graphs. Choosing c = c1 − 1/2 then yields the claim.
Recall that we represent the sectors using a circular sequence of independent indi-

cator random variables S1, . . . , Sn′ and that W denotes the sum of the lengths of all
success runs spanning more than w sectors, i.e., the sum of all widening sectors. By
Lemma 6 we obtain a valid upper bound on E[W ] by choosing

g(n′) = h(n) = 21/4 · τ 3/4 · n
γ (n, τ ) · log(2)(n)1/4 · log(3)(n)1/2

(1 ± o(1))

and it remains to show that this bound holds with sufficiently high probability. To this
end, we aim to apply Lemma 7, which states thatW = O(g(n′)) holdswith probability
1−O((n′)−c2) for any constant c2, if g(n′) = ω(w

√
n′ log(n′)). In the following, we

first show that h(n) fulfills this criterion,3 before arguing that we can choose c2 such
that 1 − O((n′)−c2) = 1 − O(n−c1) for any constant c1.

Since τ is constant and n′ = 2n/γ (n, τ ) · (1 ± o(1)) by Lemma 3, we can bound
h(n) by

h(n) = �

(
n′

log(2)(n)1/4 log(3)(n)1/2

)

= �

(
log(2)(n) · n′

log(2)(n)5/4 log(3)(n)1/2

)

= ω

(
log(2)(n)

log(3)(n)
· n′

log(2)(n)5/4

)

,

where the last bound is obtained by applying log(3)(n)1/2 = ω(1). Recall that
w was chosen as w = eγ (n,τ ) log(3)(n). Furthermore, we have γ (n, τ ) =
log(τ log(2)(n)/(2 log(3)(n)2)). Thus, it holds that w = �(log(2)(n)/(log(3)(n))),
allowing us to further bound h(n) by

h(n) = ω

(

w
n′

log(2)(n)5/4

)

3 Since we are interested in runs ofmore than w sectors, we need to show g(n′) = ω((w +1)
√
n′ log(n′)).

However, it is easy to see that this is implied by showing g(n′) = ω(w
√
n′ log(n′)).
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= ω

(

w

√

n′ log(n′) · n′

log(n′) log(2)(n)5/2

)

and it remains to show that the last factor in the root is in ω(1). Note that n′ =
	(n/ log(3)(n)) and n′ = O(n). Consequently, it holds that

n′

log(n′) log(2)(n)5/2
= 	

(
n

log(n) · log(2)(n)5/2 · log(3)(n)

)

= ω

(
n

log(n)3

)

= ω(1).

As stated above, this shows that W = O(h(n)) holds with probability 1−O((n′)−c2)

for any constant c2. Again, since n′ = 	(n/ log(3)(n)), we have n′ = 	(n1/2).
Therefore, we can conclude thatW = O(h(n)) holds with probability 1−O(n−c2/2).
Choosing c2 = 2c1 then yields the claim. ��

Number of Vertices in Wide Runs
Let W denote the area of the disk covered by all widening sectors. By Lemma 8 the
total number of widening sectors is small, with high probability. As a consequence,
W is small as well and we can derive that the size of the vertex set V (W) containing
all vertices in all widening sectors is sublinear with high probability.

Lemma 9 Let G be a hyperbolic random graph on n vertices. Then, with high proba-
bility, the number of vertices in wide runs is bounded by

|V (W)| = O
(

τ 3/4 · n
log(2)(n)1/4 · log(3)(n)1/2

)

.

Proof We start by computing the expected number of vertices in W and show con-
centration afterwards. The probability for a given vertex to fall into W is equal to its
measureμ(W). Since the angular coordinates of the vertices are distributed uniformly
at random, we haveμ(W) = W/n′, whereW denotes the number of widening sectors
and n′ is the total number of sectors, which is given by Lemma 3. The expected number
of vertices in W is then

E[|V (W)|] = nμ(W) = n
W

n′ = 1

2
W · γ (n, τ )(1 ± o(1)), (5)

where the last equality holds since 1/(1 + x) = 1 − �(x) is valid for x = ±o(1).
Note that the number of widening sectors W is itself a random variable. Therefore,
we apply the law of total expectation and consider different outcomes of W weighted
with their probabilities. Motivated by the previously determined probabilistic bound
on W (Lemma 8), we consider the events W ≤ g(n) as well as W > g(n), where

g(n) = c · τ 3/4 · n
γ (n, τ ) · log(2)(n)1/4 · log(3)(n)1/2

,
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for sufficiently large c > 0 and n. With this, we can compute the expected number of
vertices in W as

E[|V (W)|] = E[|V (W)| | W ≤ g(n)] · Pr[W ≤ g(n)]
+ E[|V (W)| | W > g(n)] · Pr[W > g(n)].

To bound the first summand, note that Pr[W ≤ g(n)] ≤ 1. Further, by applying Eq. (5)
from above, we have

E[|V (W)| | W ≤ g(n)] · Pr[W ≤ g(n)] ≤ 1

2
g(n) · γ (n, τ )(1 ± o(1)).

In order to bound the second summand, note that n is an obvious upper bound on
E[|V (W)|]. Moreover, by Lemma 8 it holds that Pr[W > g(n)] = O(n−c1) for any
c1 > 0. As a result we have

E[|V (W)| | W > g(n)] · Pr[W > g(n)] ≤ n Pr[W > g(n)] = O(n−c1+1),

for any c1 > 0. Clearly, the first summand dominates the second and we can conclude
that E[|V (W)|] = O(g(n)γ (n, τ )). Consequently, for large enough n, there exists a
constant c2 > 0 such that ĝ(n) = c2g(n)γ (n, τ ) is a valid upper bound onE[|V (W)|].
This allows us to apply the Chernoff bound in Corollary 1 to bound the probability
that |V (W)| exceeds ĝ(n) by more than a constant factor as

Pr[|V (W)| ≥ (1 + ε)ĝ(n)] ≤ e−ε2/3 · ĝ(n).

Finally, since ĝ(n) can be simplified as

ĝ(n) = c2 · c · τ 3/4 · n
log(2)(n)1/4 · log(3)(n)1/2

,

it is easy to see that ĝ(n) = ω(log(n)) and thus |V (W)| = O(ĝ(n)) holds with
probability 1 − O(n−c3) for any c3 > 0. ��

It remains to bound the number of vertices in large components contained in narrow
runs.

4.2.2 Narrow Runs

In the following, we differentiate between small and large narrow runs, containing at
most and more than τ log log(n) vertices, respectively. To obtain an upper bound on
the number N of vertices in all large narrow runs, we determine the area N of the
disk that is covered by them. We start by computing the expected number of vertices
contained in a single narrow run from which we can derive that the probability for a
narrow run to be large is low.
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Expected Number of Vertices in Large Narrow Runs

Lemma 10 Let G be a hyperbolic random graph on n vertices and letR be a narrow
run. Then, E[|V (R)|] ≤ 1/2 · eγ (n,τ ) log(3)(n)γ (n, τ )(1 ± o(1)).

Proof Anarrow run consists of atmostw = eγ (n,τ ) log(3)(n) sectors. Since the angular
coordinates of the vertices are distributed uniformly at randomand sincewe partitioned
the disk into n′ disjoint sectors of equal width, we can derive an upper bound on the
expected number of vertices inR as E[|V (R)|] ≤ nw/n′.

As n′ = 2n/γ (n, τ ) · (1 ± o(1)) according to Lemma 3, we have

E[|V (R)|] ≤ 1/2 · eγ (n,τ ) log(3)(n)γ (n, τ )(1 ± o(1))−1.

Since 1/(1 + x) = 1 − �(x) for x = ±o(1), we obtain the claimed bound. ��
Using this upper bound, we can bound the probability that the number of vertices

in a narrow run exceeds the threshold τ log log(n) by a certain amount.

Lemma 11 Let G be a hyperbolic random graph on n vertices and letR be a narrow
run. For k > τ log log(n) and n large enough, it holds that Pr[|V (R)| = k] ≤ e−k/18.

Proof First note that Pr[|V (R)| = k] ≤ Pr[|V (R)| ≥ k]. In order to show
that Pr[|V (R)| ≥ k] is small, we aim to apply the Chernoff bound in Corol-
lary 1, choosing g(n) = 1/(1 + ε) · k for any ε ∈ (0, 1) as an upper bound on
E[|V (R)|]. To see that this is a valid choice, we can use Lemma 10 and substitute
γ (n, τ ) = log(τ log(2)(n)/(2 log(3)(n)2)), which yields

E[|V (R)|] ≤ 1

2
eγ (n,τ ) log(3)(n)γ (n, τ )(1 ± o(1))

= τ log(2)(n)

4 log(3)(n)2
· log(3)(n) · log

(
τ log(2)(n)

2 log(3)(n)2

)

(1 ± o(1))

= τ log(2)(n)

4 log(3)(n)
·
(
log(3)(n) −

(
2 log(4)(n) − log(τ/2)

))
(1 ± o(1))

= 1

4
· τ log(2)(n) ·

(

1 − 2 log(4)(n) − log(τ/2)

log(3)(n)

)

(1 ± o(1)).

Note, that the first error term is equivalent to (1 − o(1)) and that (1 ± o(1)) ≤ 2
holds for n large enough. Consequently, for sufficiently large n, we haveE[|V (R)|] ≤
1/2 · τ log(2)(n). Since k > τ log log(n), it follows that g(n) = 1/(1+ ε) · k is a valid
upper bound on E[|V (R)|] for any ε ∈ (0, 1). Therefore, we can apply the Chernoff
bound in Corollary 1 to conclude that

Pr[|V (R)| ≥ k] ≤ e−ε2/3 · g(n) = e−ε2/(3(1+ε)) · k .

Choosing ε = 1/2 then yields the claim. ��
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We are now ready to compute the expected number of vertices in all large narrow
runs.

Lemma 12 LetG beahyperbolic randomgraph. Then, the expected number of vertices
in all large narrow runs is bounded by

E[N ] = O
(

τ · n · log(2)(n)

γ (n, τ ) log(n)τ/18

)

.

Proof Let n′′ denote the total number of narrow runs. We can compute the number of
vertices in all large narrow runs, by summing over all narrow runs R1, . . . ,Rn′′ and
discarding the ones that are not large. That is,

N =
n′′
∑

i=1

|V (Ri )| · 1|V (Ri )|>τ log(2)(n).

Consequently, the expected value of N conditioned on the number of narrow runs is
given by

E[N | n′′] =
n′′
∑

i=1

E

[
|V (Ri )| · 1|V (Ri )|>τ log(2)(n)

]

=
n′′
∑

i=1

n∑

k=τ log(2)(n)+1

k · Pr[|V (Ri )| = k].

Lemma11 gives a valid upper bound on Pr[|V (Ri )| = k] for all i ∈ [n′′]. Furthermore,
the number of narrow runs n′′ is bounded by the number of sectors n′. Therefore, we
obtain

E[N ] ≤ n′
n∑

k=τ log(2)(n)+1

k · e−k/18.

To get an upper bound, we replace the sum with an integral, which yields

E[N ] ≤ n′
∫ n

τ log(2)(n)

ke− k
18 dk ≤ n′

∫ ∞

τ log(2)(n)

ke− k
18 dk ≤ 18n′ · τ log(2)(n) + 18

log(n)τ/18 .

Substituting n′ = 2n/γ (n, τ )(1± o(1)) (Lemma 3) and more simplification yield the
claim. ��
Concentration Bound on the Number of Vertices in Large Narrow Runs
To show that the actual number of vertices in large narrow runs N is not much larger
than the expected value,we consider N as a function ofn independent randomvariables
P1, . . . , Pn representing the positions of the vertices in the hyperbolic disk. In order
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Fig. 4 The random variable Si indicates whether Si contains any vertices. Changing Si from 0 to 1 or vice
versa merges two narrow runs or splits a wide run into two narrow ones, respectively. If all vertices were
placed in the blue area, moving a single vertex in or out of Si may change the number of vertices in large
narrow runs by n

to show that N does not deviate much from its expected value with high probability,
we would like to apply the method of bounded differences, which builds on the fact
that N satisfies the bounded differences condition, i.e., that changing the position of a
single vertex does not change N by much. Unfortunately, this change is not small in
general.

In the worst case, there is a wide run R that contains all vertices and a sector
Si ⊆ R contains only one of them. Moving this vertex out of Si may split the run into
two narrow runs (see Fig. 4). These still contain n vertices, which corresponds to the
change in N . However, this would mean that R consists of only few sectors (since it
can be split into two narrow runs) and that all vertices lie within the corresponding
(small) area of the disk. Since the vertices of the graph are distributed uniformly, this
is very unlikely. To take advantage of this, we apply the method of typical bounded
differences (Corollary 3), which allows us to milden the effects of the change in the
unlikelyworst case and to focus on the typically smaller change of N instead. Formally,
we represent the typical case using an event A denoting that each run of length at most
2w + 1 contains at most O(log(n)) vertices. In the following, we show that A occurs
with probability 1−O(n−c) for any constant c, which shows that the atypical case is
very unlikely.

Lemma 13 Let G be a hyperbolic random graph. Then, each run of length at most
2w + 1 contains at most O(log(n)) vertices with probability 1 − O(n−c) for any
constant c.

Proof We show that the probability for a single run R of at most 2w + 1 sectors to
contain more then O(log(n)) vertices is O(n−c1) for any constant c1. Since there are
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at most n′ = O(n) runs, applying the union bound and choosing c1 = c + 1 then
yields the claim.

Recall that we divided the disk into n′ sectors of equal width. Since the angular
coordinates of the vertices are distributed uniformly at random, the probability for a
given vertex to a lie in R (i.e., to be in V (R)) is given by

μ(R) ≤ 2w + 1

n′ = 2eγ (n,τ ) log(3)(n) + 1

n′ .

By Lemma 3 the total number of sectors is given as n′ = 2n/γ (n, τ ) · (1 ± o(1)).
Consequently, we can compute the expected number of vertices inR as

E[|V (R)|] ≤ nμ(R) =
(
eγ (n,τ ) log(3)(n) + 1/2

)
γ (n, τ )(1 ± o(1)).

Substituting γ (n, τ ) = O(log(log(2)(n)/ log(3)(n)2)), we can derive that

E[|V (R)|] ≤ O
(

log(2)(n)

log(3)(n)2
log(3)(n) · log

(
log(2)(n)

log(3)(n)2

))

= O(log(2)(n)).

Consequently, it holds that g(n) = c2 log(n) is a valid upper bound for any c2 > 0
and large enough n. Therefore, we can apply the Chernoff bound in Corollary 1 to
conclude that the probability for the number of vertices inR to exceed g(n) is at most

Pr[|V (R)| ≥ (1 + ε)g(n)] ≤ e−ε2/3 · g(n) = n−c2ε2/3.

Thus, c2 can be chosen sufficiently large, such that

Pr[|V (R)| ≥ (1 + ε)g(n)] = O(n−c1)

for any constant c1. ��
The method of typical bounded differences now allows us to focus on this case and

to milden the impact of the worst case changes as they occur with small probability.
Consequently, we can show that the number of vertices in large narrow runs is sublinear
with high probability.

Lemma 14 Let G be a hyperbolic random graph. Then, with high probability, the
number of vertices in large narrow runs is bounded by

N = O
(

τ · n · log(2)(n)

γ (n, τ ) log(n)τ/18

)

.

Proof Recall that the expected number of vertices in all large narrow runs is given by
Lemma 12. Consequently, we can choose c > 0 large enough, such that for sufficiently
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large n we obtain a valid upper bound on E[N ] by choosing

g(n) = c · τ · n · log(2)(n)

γ (n, τ ) log(n)τ/18 .

In order to show that N does not exceed g(n) by more than a constant factor with
high probability, we apply the method of typical bounded differences (Corollary 3).
To this end, we consider the typical event A, denoting that each run of at most 2w + 1
sectors contains at mostO(log(n)) vertices, and it remains to determine the parameters
�A

i ≤ �i withwhich N satisfies the typical boundeddifferences conditionwith respect
to A [see Eq. (4)]. Formally, we have to show that for all i ∈ {1, . . . , n}

|N (P1, . . . , Pi , . . . , Pn) − N (P1, . . . , P
′
i , . . . , Pn)|

≤
{

�A
i ,if (P1, . . . , Pi , . . . , Pn) ∈ A,

�i , otherwise.

As argued before, changing the position Pi of vertex i to P ′
i may result in a change

of n in the worst case. Therefore, �i = n is a valid bound for all i ∈ [n]. To bound
the �A

i , we have to consider the following situation. We start with a set of positions
such that all runs of 2w +1 sectors contain at mostO(log(n)) vertices and we want to
bound the change in N when changing the position Pi of a single vertex i . In this case,
splitting a wide run or merging two narrow runs can only change N by O(log(n)).
Consequently, we can choose �A

i = O(log(n)) for all i ∈ [n]. By Corollary 3 we can
now bound the probability that N exceeds g(n) by more than a constant factor c1 as

Pr[N > c1g(n)] ≤ e−((c1−1)g(n))2/(2�) + Pr[ Ā] ·
∑

i∈[n]
1/εi ,

for any ε1, . . . , εn ∈ (0, 1] and � = ∑
i∈[n](�A

i + εi (�i − �A
i ))2. By substituting

the previously determined �A
i and �i , as well as, choosing εi = 1/n for all i ∈ [n],

we obtain

� = O
(
n · (log(n) + 1/n · (n − log(n)))2

)
= O(n · log(n)2).

Thus,

Pr[N > c1g(n)]

≤ exp

⎛

⎝−�

⎛

⎝n2 ·
(

log(2)(n)

γ (n, τ ) log(n)τ/18

)2
⎞

⎠ · 1

O(n log(n)2)

⎞

⎠ + Pr[ Ā] ·
∑

i

1/εi

= exp

⎛

⎝−	

⎛

⎝n ·
(

log(2)(n)

γ (n, τ ) log(n)1+τ/18

)2
⎞

⎠

⎞

⎠ + Pr[ Ā] ·
∑

i

1/εi
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= exp

⎛

⎝−	

⎛

⎝n ·
(

log(2)(n)

log(3)(n) log(n)1+τ/18

)2
⎞

⎠

⎞

⎠ + Pr[ Ā] ·
∑

i

1/εi ,

where the last equality holds, since γ (n, τ ) = O(log(3)(n)). By further simplifying
the exponent, we can derive that the first part of the sum is exp(−ω(log(n))). It follows
that Pr[N > c1g(n)] ≤ n−c2+Pr[ Ā]·∑i∈[n] 1/εi holds for any c2 > 0 and sufficiently
large n. It remains to bound the second part of the sum. Since εi = 1/n for all i ∈ [n],
we have Pr[ Ā]·∑i∈[n] 1/εi = Pr[ Ā]·n2. By Lemma 13 it holds that Pr[ Ā] = O(n−c3)

for any c3. Consequently, we can choose c3 such that Pr[ Ā] · n2 = O(n−(c3−2)) for
any c3, which concludes the proof. ��

4.3 The Complete Disk

In the previous subsections we determined the number of vertices that are greedily
added to the vertex cover in the inner disk and outer band, respectively. Before proving
ourmain theorem,we are now ready to prove a slightly stronger version that shows how
the parameter τ can be used to obtain a trade-off between approximation performance
and running time.

Theorem 5 Let G be a hyperbolic random graph on n vertices with power-law expo-
nent β = 2α + 1 and let τ > 0 be constant. Given the radii of the vertices, an
approximate vertex cover of G can be computed in timeO(n log(n)+m log(n)τ ), such
that the approximation factor is (1 + O(γ (n, τ )−α)) asymptotically almost surely.

Proof Running Time.We start by sorting the vertices of the graph in order of increasing
radius, which can be done in time O(n log(n)). Afterwards, we iterate them and per-
form the following steps for each encountered vertex v. We add v to the cover, remove
it from the graph, and identify connected components of size at most τ log log(n) that
were separated by the removal. The first two steps can be performed in timeO(1) and
O(deg(v)), respectively. Identifying and solving small components is more involved.
Removing v can split the graph into at most deg(v) components, each containing
a neighbor u of v. Such a component can be identified by performing a breadth-first
search (BFS) starting at u. Each BFS can be stopped as soon as it encounters more than
τ log log(n) vertices. The corresponding subgraph contains at most (τ log log(n))2

edges. Therefore, a single BFS takes time O(log log(n)2). Whenever a component of
size at most nc = τ log log(n) is found, we compute a minimum vertex cover for it
in time 1.1996nc · nO(1)

c [40]. Since nO(1)
c = O((e/1.1996)nc ), this running time is

bounded by O(enc ) = O(log(n)τ ). Consequently, the time required to process each
neighbor of v isO(log(n)τ ). Since this is potentially performed for all neighbors of v,
the running time of this third step can be bounded by introducing an additional factor
of deg(v). We then obtain the total running time T (n,m, τ ) of the algorithm by taking
the time for the initial sorting and adding the sum of the running times of the above
three steps over all vertices, which yields

T (n,m, τ ) = O(n log(n)) +
∑

v∈V

(O(1) + O(deg(v)) + deg(v) · O(log(n)τ )
)
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= O(n log(n)) + O
(

log(n)τ ·
∑

v∈V
deg(v)

)

= O(n log(n) + m log(n)τ ).

Approximation Ratio. As argued before, we obtain a valid vertex cover for the
whole graph, if we take all vertices in VGreedy together with a vertex cover CExact of
G[VExact]. The approximation ratio of the resulting cover is then given by the quotient

δ = |VGreedy| + |CExact|
|COPT| ,

whereCOPT denotes an optimal solution. Since all components inG[VExact] are solved
optimally and since any minimum vertex cover for the whole graph induces a vertex
cover on G[V ′] for any vertex subset V ′ ⊆ V , it holds that |CExact| ≤ |COPT|.
Therefore, the approximation ratio can be bounded by δ ≤ 1 + |VGreedy|/|COPT|.

To bound the number of vertices in VGreedy, we add the number of vertices in the
inner disk I, as well as the numbers of vertices in the outer band that are contained
in the area W that is covered by wide runs and the area N that is covered by large
narrow runs. That is,

δ ≤ 1 + |V (I)| + |V (W)| + |V (N )|
|COPT | .

Upper bounds on |V (I)|, |V (W)|, and |V (N )| that hold with high probability are
given by Lemmas 2, 9 and 14, respectively. Furthermore, it was previously shown that
the size of a minimum vertex cover on a hyperbolic random graph is |COPT | = 	(n),
asymptotically almost surely [19, Theorems 4.10 and 5.8]. We obtain

δ = 1 + O
(

1

γ (n, τ )α
+ τ 3/4

log(2)(n)1/4 · log(3)(n)1/2
+ τ · log(2)(n)

γ (n, τ ) log(n)τ/18

)

.

Since γ (n, τ ) = O(log(3)(n)), the first summand dominates asymptotically. ��
Theorem 4 Let G be a hyperbolic random graph on n vertices. Given the radii of the
vertices, an approximate vertex cover of G can be computed in time O(m log(n)),
such that the approximation ratio is (1 + o(1)) asymptotically almost surely.

Proof By Theorem 5 we can compute an approximate vertex cover in time
O(n log(n) + m log(n)τ ), such that the approximation factor is 1 + O(γ (n, τ )−α),
asymptotically almost surely. By choosing τ = 1we get γ (n, 1) = ω(1), which yields
an approximation factor of (1+ o(1)), since α ∈ (1/2, 1). Additionally, the bound on
the running time can be simplified toO(n log(n)+m log(n)). The claim then follows
since we assume the graph to be connected, which implies that the number of edges
is m = 	(n). ��
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5 Experimental Evaluation

It remains to evaluate how well the predictions of our analysis on hyperbolic random
graphs translate to real-world networks. According to the model, vertices near the
center of the disk can likely be added to the vertex cover safely, while vertices near the
boundary need to be treatedmore carefully (see Sect. 3).Moreover, it predicts that these
boundary vertices can be found by identifying small components that are separated
when removing vertices near the center. Due to the correlation between the radii of the
vertices and their degrees [23], this points to a natural extension of the standard greedy
approach:While iteratively adding the vertexwith the largest degree to the cover, small
separated components are solved optimally. To evaluate how this approach compares
to the standard greedy algorithm, we measured the approximation ratios on the largest
connected component of a selection of 42 real-world networks from several network
datasets [41, 42]. The results of our empirical analysis are summarized in Fig. 5.

Our experiments confirm that the standard greedy approach already yields close to
optimal approximation ratios on all networks, as observed previously [13]. In fact, the
“worst” approximation ratio is only 1.049 for the network dblp-cite. The average
lies at just 1.009.

Clearly, our adapted greedy approachperforms at least aswell as the standard greedy
algorithm. In fact, for τ = 1 the sizes of the components that are solved optimally
on the considered networks are at most 3. For components of this size the standard
greedy approach performs optimally. Therefore, the approximation performances of
the standard and the adapted greedy match in this case. However, the adapted greedy
algorithm allows for improving the approximation ratio by increasing the size of the
components that are solved optimally. In our experiments, we chose 10�log log(n)�
as the component size threshold, which corresponds to setting τ = 10. The resulting
impact can be seen in Fig. 6, which shows the error of the adapted greedy compared to
the one of the standard greedy algorithm. This relative error is measured as the fraction
of the number of vertices by which the adapted greedy and the standard approach
exceed an optimum solution. That is, a relative error of 0.5 indicates that the adapted
greedy halved the number of vertices by which the solution of the standard greedy
exceeded an optimum.Moreover, a relative error of 0 indicates that the adapted greedy
found an optimumwhen the standard greedy did not. The relative error is omitted (gray
in Fig. 6) if the standard greedy already found an optimum, i.e., there was no error to
improve on. For more than 69% of the considered networks (29 out of 42) the relative
error is at most 0.5 and the average relative error is 0.39. Since the behavior of the two
algorithms only differs when it comes to small separated components, this indicates
that the predictions of the model that led to the improvement of the standard greedy
approach do translate to real-world networks. In fact, the average approximation ratio
obtained using the standard greedy algorithm is reduced from 1.009 to 1.004 when
using the adapted greedy approach.
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permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
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Fig. 5 Approximation ratios obtained using the standard greedy approach (blue) and our improved version
(red) on a selection of real-world networks. The parameter adjusting the component size threshold was
chosen as τ = 10. For the sake of readability the bars denoting the ratios for the dblp-cite network
were cropped and the actual values written next to them (Color figure online)

and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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Fig. 6 Relative error of the improved greedy compared to the standard approach. The parameter adjusting
the component size threshold was chosen as τ = 10. Gray bars indicate that no error could be determined
since the standard approach found an optimum already (Color figure online)
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