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Abstract. With the increase of connected systems and the ongoing
digitalization of various aspects of our life, the security demands for
software increase. Software architects should design a secure and resistant
system. One solution can be the identification of attack paths or the
usage of an access control policy analysis. However, due to the system
complexity identifying an attack path or analyzing access control policies is
hard. Current attack path calculation approaches, often only focus on the
network topology and do not consider the more fine-grained information a
software architecture can provide, such as the components or deployment.
In addition, the impact of access control policies for a given scenario is
unclear. We developed an open-source attack propagation tool, which
can calculate an attack graph based on the software architecture. This
tool could help software architects to identify potential critical attack
paths. Additionally, we extended the used access control metamodel to
support a scenario-based access control analysis.
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1 Introduction

Through the digitalization of our lives, more and more systems are connected
with each other. This connection enables us to build smart systems and exchange
data between different services. These connected systems should be resilient
against cyber-attacks. One possibility to achieve this is by analyzing potential
attack paths or access control policies.

However, estimating attack paths or analyzing access control policies is
complicated. In advanced persistent threat (APT) [6], attackers often combine
multiple security issues, such as vulnerabilities and access control properties, into
one complex attack path. For instance, attackers often start with a phishing
attack to get credentials and access to an element and then use this as a starting
point to further attack the system [17]. This behavior can be reduced to first
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getting access to a subsystem and then propagating further by exploiting different
vulnerabilities. This pattern can also be seen in other incidents, such as in [34].

Existing attack path propagation approaches such as [9, 44] often only consider
a network topology or a very reduced access control model. In contrast, other
approaches with more fine-grained access control, such as Bloodhound [5] are
very specific to the application domain for instance the Active Directory.

In addition, if an access control policy changes, it is often unclear what the
impact for a specific scenario might be. A small policy change might lead to a
too restrictive policy and blocks a legitimate and essential usage scenario, such
as access to a machine in a production process. A policy change could potentially
also have the opposite effect and be too open. This in turn enables malicious
users to access data they should not be able to. Also, changes in the scenario
are unclear. For instance, if the context of a user scenario changes, such as the
access from a different location, it is unclear whether the user can still perform
the scenario.

For solving these security issues, we developed an attack propagation analysis
[40, 41] which uses a software architecture together with a fine-grained access
control model to estimate potential attack paths. Software architects annotate
vulnerabilities and access control policies to architectural elements and specify
an attacker. The attacker contains the initial starting point, the capabilities (the
attacks they can perform), and the knowledge (known credentials) of an attacker.
Based on the provided information, our analysis calculates an attack graph.
Software architects can use this attack graph to identify and evaluate potential
attack paths. In addition, we extended the developed access control metamodel to
support a scenario-based access control analysis. It enables architects to analyze
certain intended usage scenarios against the software architecture together with
access control policies and decide whether the scenarios are possible or not.

We will present our open-source Eclipse plugins1 for the attack propagation
and our short demonstration video2. We introduce our running example in
Section 2. In Section 3, we describe the features of our original tool and in
Section 3.3 describe the results of our tool. Afterward, we introduce our newly
added scenario analysis in Section 4 and Section 5. The evaluation for our
extension can be found in Section 6. Related work is described in Section 7.
Section 8 concludes the paper and describes our future work.

2 Running Example

Figure 1 illustrates our running example. It is based on a scenario from a previous
research project with industrial partners [2] that we extended in previous work
[40] by adding vulnerabilities and access control information. It is settled in an
Industry 4.0 environment.

In the scenario, a manufacturer (M) has a Machine. The Machine stores its
data at the ProductionDataStorage which is deployed on the StorageServer.

1 https://fluidtrust.github.io/attack-propagation-doc/
2 https://youtu.be/wiefWdTO9lo

https://fluidtrust.github.io/attack-propagation-doc/
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The Machine can be accessed by a Terminal, deployed on the TerminalServer.
The Terminal is used by a technician from the service contractor (S). Because
the machine data might contain sensitive data, S can only access the termi-
nal during an incident such as a broken machine. Besides the machine part,
there is the ProductStorage, which contains sensitive data about the prod-
uct, such as blueprints. Therefore, S should have no access to this data. The
LocalNetwork connects the different devices. A user with the attribute Admin

has access to the StorageServer and TerminalServer. The TerminalServer is
vulnerable to CVE-2021-28374 [29]. As stated in the vulnerability’s description,
CVE-2021-28374 can leak credentials.

<<Device>> 
TerminalServer

<<Device>> 
StorageServer

<<Device>> 
MachineController

<<Network>> 
LocalNetwork

ProductStorage

ProductionDataStorage Machine

Terminal

Fig. 1. Simplified architecture overview running example based on [40]

3 Attack Propagation Tool

Our attack propagation tool consists of three features, the software architecture
modeling, an extension to model vulnerabilities and access control properties,
and the attack propagation analysis.

3.1 Modeling Software Architecture

Our tooling is based on the existing Palladio-Bench, which extends the Eclipse
Modelling Edition with Palladio Component Model (PCM) [31] specific editors
and analyses. The Palladio-Bench is open-source and freely available. We also
provide our extensions and the analysis freely as an open-source project. PCM
is an Architecture Description Language (ADL) for the component-based devel-
opment process. The modeled software architectures can be analyzed in various
quality analyses such as performance [31] or confidentiality [33].

In PCM, software architects model the different aspects of the architecture in
different models. In the repository model, a software architect can specify the
components and their required and provided interfaces. The interfaces specify
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services with parameters and return values. Components can implement these
services or delegate them to other services. These implemented services are
called ServiceEffectSpecification (SEFF). The repository also contains datatype
specifications necessary for the services. For our running example, we would
specify the interfaces and the components there. For instance, for the Machine,
we would specify a component Machine which provides the services for the
Terminal and requires the services provided by ProductionDataStorage.

These specified components are then combined in the system model. Here,
the different components are instantiated and wired together. The instantiated
components are called AssemblyContext. For instance, in our running example,
we instantiate the components and wire them together, e.g., the instantiated
Machine is connected with the instantiated Terminal.

The different hardware elements are modeled in the resourceenvironment

model. It contains ResourceContainers for processing nodes such as servers or
notebooks and LinkingResources for network elements such as switches or routers.
It also contains the link between them. In our running example, all elements with
<<Device>> or <<Network>> would be in the resource environment.

The deployment of the different AssemblyContexts on the ResourceContainers
is modeled in the allocation model, for instance, in our running example, the
deployment of the Terminal on the TerminalServer. It, therefore, connects
the resource environment with the system model. The usage model models the
aggregated user behavior.

3.2 Attack Propagation Modeling

Our attack propagation extension [40] extends the existing PCM model by allow-
ing to specify vulnerabilities and access control policies for certain architectural
elements. In our case, these elements are BasicComponents as components in
PCM, AssemblyContexts, ServiceSpecifications, ResourceContainers, and Link-
ingResources. In our tool, the access control properties are modeled in the context
model. The access control specification is based on the eXtensible Access Control
Markup Language (XACML) [43] standard for access control policy specification.
We extended some elements such as the matching and attribute selection for
easier modeling in PCM (see Figure 4). Software architects can specify with our
extension access control policies and the attributes used in the access control
decision. This allows us to support Attribute-based Access Control (ABAC) [15]
for our access control policies. Reusing parts of XACML is beneficial since soft-
ware architects or security experts might already be familiar with the standard
and can therefore reuse their knowledge.

The vulnerability and attack specification is modeled in the attacker model.
The vulnerability specification is based on the commonly used vulnerability classi-
fications Common Weakness Enumeration (CWE) [26], Common Vulnerabilities
and Exposure (CVE) [25], and Common Vulnerability Scoring System (CVSS)
[8]. These classifications are often used by vendors or vulnerability databases such
as the US. National Vulnerability Database (NVD) [30]. This allows software
architects to reuse the existing knowledge about vulnerabilities. For instance, our
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Fig. 2. Overview of the attacker model editor

running example contains the vulnerability CVE-2021-28374 [29]. Based on the
description in the NVD, the software architects can know that credentials could
be leaked and that the vulnerability can be exploited remotely. This information
can then be added to our model (see also Figure 2) and is considered in the
attack propagation.

Besides specifying the software architecture, access control policies and vul-
nerabilities, our analysis also needs the attacker as input. For the attacker, we
specify the starting point in the software architecture, the capabilities and the
knowledge about access properties. The starting point in the architecture can be
an AssemblyContext, LinkingResource or ResourceContainer. The capabilities
are the type of attacks an attacker can perform, i.e., the vulnerabilities they
can exploit. Here, we also reused the CVE and CWE concept. For instance, the
vulnerability in our running example can be exploited by CWE-312 [27] since
CVE-2021-28374 is part of CWE-312. Therefore, an attacker with the capabil-
ity CWE-312 can exploit this vulnerability. The attributes used in the access
control specification are knowledge about access properties. For instance, if an
attacker in our running example has the Admin attribute, they could access the
StorageServer and TerminalServer.

All these models can be edited with editors integrated into Eclipse. Fig-
ure 2 shows an overview of the attacker model editor. An overview of the
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new model elements can be found in our previous publication [40]. This model
shows the attacker model for our running example. It shows the attacker
(Attacker Running Example), the attack, the vulnerability (selected element),
the CWE/CVE specification Category Specification and the integration into
PCM (System Specification Container). For the selected vulnerability (blue),
the editor shows additional properties (bottom part). These are properties for
the vulnerabilities such as a Low attack complexity.

3.3 Attack Propagation Analysis & Tool Results

Our analysis [40] then calculates an attack path from one starting point and
returns a list of all affected architectural elements. The attack path is calculated
iteratively until no new element can be affected. It works internally similar as
the KAMP [14] approach. However, they focussed on change propagation for
maintenance, and we focus on attack propagation.

Fig. 3. Overview analysis output

The results of our attack propagation analysis are stored in the kamp4attack-
modificationmarks model. An excerpt is shown in Figure 3. In our case, it
contains the attack path from the Terminal to the StorageSever by exploiting
the vulnerability of the TerminalServer and getting the Admin credential. For
instance, the selected element (blue) is the TerminalServer. In the properties
view (bottom part) the software architect can see the Affected Element (here
TerminalServer) and the reason (Causing Effect). Additionally, it contains an
ID and the Toolderived property. The last property indicates that the analysis
decided that the element is affected and that it was not one of the initial elements.
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Besides this detailed list overview, our tooling can create a graph overview, where
the connection between different elements is easier to recognize.

These analysis results can now be used by software architects. They have
a list of affected elements and the reason. They can use this information to
break potential attack paths. This could be done, for instance, by introducing
mitigation approaches such as changing the credentials or updating the system.
Afterward, they could remove the vulnerability from the attacker model and
reanalyze the system to find out whether this mitigation approach solves the
problem. However, the analysis could also be used to make trade-off decisions. For
instance, a mitigation approach could be very costly either in system performance
or monetary value. Here, architects could analyze different models with and
without the mitigation and decide whether the risk is acceptable or whether they
should choose the more secure system regardless of the cost. While our analysis
cannot derive the other quality metrics, PCM already has support for various
quality aspects like performance or cost [31] and the modeled system could be
reused.

4 Modeling Architectural Access Control

As described in Section 3.2, our attack propagation tool uses an access control
model based on XACML. So far, we have not investigated a scenario-based
analysis for usage and misusage scenarios. In contrast to the attack propaga-
tion, we focus on verifying whether modelled usage scenarios are possible with
the given software architecture and access control policies. This is especially
important in evolutionary settings, where policies or scenarios change and system
architects want to identify, whether the intended scenario is possible with the
given architecture and access control policies.

PolicySet Policy

Expression

AllOf Match

Rule

SimpleAttribute
Selector

Attribute AttributeValue

Usage
Specification

Usage
Scenario

PCMUsage
Specification

Misusage

Attribute
Provider

Connection
Specification

Service
Specification

MethodMatch

EntryLevel-
SystemCall

Fig. 4. Simplified access control policy metamodel with PCM integration

The access control metamodel (see Figure 4) contains mostly reused elements
(gray) from our attack propagation tool. However, we needed to add some new
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elements (white) to annotate the PCM usage scenario description with context
attributes. The black elements (UsageScenario, EntryLevelSystemCall) are
original PCM elements. We first describe how a policy is specified and afterwards
how we can assign attributes to a usage scenario.

All access control policies are contained in a PolicySet. It can consist of
multiple PolicySets and Policy elements. A Policy can have multiple Rule

elements. A Rule contains the actual access condition (as the Expression) and
the result such as Permit or Deny. The AllOf specifies the target for which
architectural elements the Rule or Expression should be applied. Because the
target definition allows multiple Rule elements for one architectural element,
there could exist multiple different access decisions. Therefore, the PolicySet

and Policy have combination algorithms to reduce the decisions to one (see [43]).
For a Rule or a Policy also multiple AllOf elements can be assigned. These
multiple elements build a logical disjunction. Each AllOf element has multiple
Match elements building a logical conjunction. The Match consists of boolean
operations. For the Match we extended the XACML with custom match elements
to better support the integration into PCM. MethodMatch is used to identify
instantiated services with the ServiceSpecification element. PCM currently
does not support the differentiation of instantiated services natively, therefore we
added the ServiceSpecification element. It is a mapping between a service
and the instantiated component. The Expression models the condition. The
SimpleAttributeSelector wraps a simple attribute comparison. This eases the
specification of a simple attribute condition. UsageSpecification is a tuple
of Attribute and its concrete value as AttributeValue. For instance, in our
running example, the role is a Attribute and the concrete role “technician” is a
AttributeValue. Attribute elements can have references to certain architectural
elements. This reference is later important for the model transformation to select
the correct origin of an attribute.

For our running example, a policy could be as described in Listing 1.1. For
simplicity reason, we only use one Rule and left out the PCM integration part. The
combination algorithm is Deny Unless Permit, which states that every request
is denied, unless there is a rule with a permit result. The Rule “Technician with
Machine failure” has an expression that states that the requestor needs the role
technician. In addition, other attributes can be added. The AllOf states that it
targets a method. In the commented part, the correct element is selected.

Besides modeling the access control policy, we also need to model the user
behavior and the user’s context. In our previous publication [40], we only modeled
the attacker and not normal users. Additionally, the behavior of the attacker was
only modeled implicitly through the attack propagation, and the context was
automatically derived from attacks. Here, we explicitly model the intended usage
and the system context during a scenario.

The usage scenario in PCM describes the usage of the system during a specified
scenario and it contains the EntryLevelSystemCall elements, which describe
the called services by a user. In our approach, we enrich the UsageScenario with
context information. The context is in our case the attributes used in the access
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1 PolicySet {
2 combining:Deny Unless Permit
3 Policy{
4 combining:Deny Unless Permit
5 Rule{
6 name:”Technician with Machine failure”
7 decision:permit
8 Expression{
9 And{

10 SimpleAttributeSelector{
11 UsageSpecification{
12 attribute:role
13 value:technician
14 }}/∗ further attribute conditions∗/
15 }}
16 AllOf{
17 MethodMatch{ /∗ integration into pcm ∗/ }}}}}

Listing 1.1. Simplified textual representation of technican policy for services

control decision. The attributes are defined by the PCMUsageSpecification. Be-
sides setting the context for the whole scenario, we also allow architects to specify
the context for each EntryLevelSystemCall. This allows architects to specify
context changes within a scenario. The context of an EntryLevelSystemCall

overwrites the context of the UsageScenario.
Additionally, architects can specify context changes within a service. This

is useful for internal access control. For instance, in our running example, the
Machine retrieves the log data from the ProductionDataStorage. This action can
happen on the user level, such as that the requestor is forwarded (here technician),
or it can be done on the system level. In the last case the Machine would be
the requestor at ProductionDataStorage. For modeling this context change,
we added the ConnectionSpecification together with the AttributProvider.
The AttributProvider is used in our attack propagation analysis for modeling
that architectural elements can provide attributes. Here, we extended it with the
ConnectionSpecification. This enables architects to specify that the context
changes for certain connectors between services.

Besides modeling the intended usage with the usage scenario, we also enable
the modeling of misusage scenarios. Misusage scenarios are based on misuscases
[36] and mal-activity diagrams [35]. The idea is that architects can model scenarios
that should not be possible. For instance, a possible misusage scenario for our
running example could be that the technician gets access to the terminal without
the machine in the failure state. In our case, architects can model this scenario
by reusing the concepts of the normal usage scenario. However, in addition
to modeling the scenario, they can create a Misusage element and assign an
UsageScenario. In this case the UsageScenario is considered as a misusage
scenario.
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5 Analyzing Access Control Policies

After specifying the misusage and usage scenarios, and the access control policies,
we can analyze each scenario for access control violations. Software architects can
use these violations to change the access control policies or adapt the scenario
to remove the violations. Our analysis consists of two steps. The first step is
transforming our architectural access control model into a valid XACML file. We
define valid, here, as valid according the XSD schema definition for the XACML
3.0 standard [43]. We can reuse the transformation from the attack propagation.

The second part is the scenario analysis. The scenario analysis first determines
the context for each UsageScenario. Then it identifies the context for each Entry-

LevelSystemCall of a scenario. This context is either derived from the scenario
when the call does not specify its own context or uses the specified context for
the EntryLevelSystemCall. Then the analysis follows the call hierarchy of the
services for each system call. There, it uses the ExternalCall from the SEFF to
first identify the service type and then use the system model to determine the
instantiated service. For identifying the instantiated service, we use the Assembly-
Connectors of PCM. The analysis compares them together with the service type
to the ConnectionSpecification elements of the AttributeProvider elements.
If there exists at least one matching, it replaces the context, with the context for
the ConnectionSpecification.

We then generate a valid XACML request out of the context for each instan-
tiated service call and query a Policy Decision Point (PDP). The PDP evaluates
the request based on the loaded policies and returns the access decision. This
decision is then saved together with the instantiated service. During the request
generation, we assign the UsageSpecification from the context to the three
categories (subject, environment, resource) XACML uses and assign if necessary
from which entity they come from. In XACML, this is called issuer.

After evaluating all access decisions for each scenario, the analysis decides
whether a scenario is marked in the output as passed or not. For normal scenarios,
the analysis marks a scenario as passed if every service call in it is permitted.
For misusage scenarios, the analysis marks a scenario as passed if at least one
service called is denied.

6 Evaluation

The evaluation of our attack propagation tool can be found in Walter et al. [40].
For the new scenario analysis, we describe the evaluation here. We follow the goal
question metric approach [3]. Our evaluation goal is the functional correctness
of our analysis. The analysis results should be correctly derived from the input
model. Our evaluation questions are: Q1 Can the analysis determine the correct
access decision for service calls? Q2 Can the analysis determine the correct
decision from usage scenarios or misusage scenarios?

Question Q1 focuses on the access decision for a service call. Here, we want
to investigate whether every access decision for every service call is correct.



Tool-based Attack and Scenario Analysis 11

This question is important since we later use the results of the access decision
to determine whether a scenario is passed. Q2 investigates whether, based on
the access decisions, the correct result for a scenario or misusage scenario is
determined. This is important since these are the actual output results. For Q1

and Q2, we use the Jaccard Coefficient (JC) [23] defined as JC(A,B) = |A∩B|
|A∪B| .

It is used to compare the two sets A and B for equalness. The value range is
from 1.0 for two equal sets to 0.0 for no intersection. The metric is used also in
other design-time approaches in the PCM context such as [13]. The JC does not
consider the order of elements. However, in our case we do not need the order
(see Section 6.1).

6.1 Evaluation Design

In our evaluation, we use four case studies since case studies might provide better
insights, show applicability, and increase the comparability between different
approaches. We first describe the design for the different evaluation questions
and introduce our used case studies afterwards.

For answering Q1 and Q2, we manually create reference outputs for each case
study. Afterwards, we compared the reference outputs against the results of the
analysis. For Q1 we see the access control decision as a set of tuples consisting of
the access decision, the scenario, the connector, the intended service, the origin
service and the involved instantiated component. These tuples are independent
of each other, describe the access decisions and their order is irrelevant.

The scenario decision can also be seen as a tuple consisting of the scenario
and the decision whether it is passed. The actual order of the scenarios is also
not important for this tuple. Therefore, we can apply the JC and answer Q2.
For the scenario analysis, we made sure that we had at least one normal scenario
and one misusage scenario based on the description of the case study.

The first case study is the confidentiality case study TravelPlanner [20]. It
is used in different confidentiality analyses, such as [22, 40]. We base our model
on the model from [22]. The TravelPlanner describes the process of booking a
flight from a mobile application. The main goal is that the credit card used for
booking data must be explicitly declassified before the other entities can use it.
In our scenario, we modelled this by adding an attribute for the classification.

Our second case study is based on the education example from Margrave [11].
We created, based on their description, a simple architecture model and created
usage and misusage scenarios. The access control policies are also based on their
description and their dataset. We need to adapt them since their policies are
written for an older XACML version and do not contain the PCM references.

The third case study is based on the ABAC Banking case from [33]. It
describes a simple banking system with branches in different regions. For each
region, only the manager is allowed to handle celebrity customers. Regular
customers are handled by a clerk. For our evaluation, we slightly adapted the
access control model from a dataflow-based definition to a service-based definition
since our approach only works on the service level. Additionally, we investigated
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the scenarios for the clerk and manager handling customers in the US branch
and a misusage scenario where the clerk tries to handle a celebrity customer.

Our fourth case study is our running example. We investigate the scenario
described in Section 2, scenarios regarding the saving of log data, accessing the
product storage component. As a misusage scenario we investigated, that the
technician tries to access the data without a machine failure.

6.2 Results & Discussion

For Q1 and Q2, we achieve a JC from 1.0 for every case study. These are
perfect results. These results are perfect since the case studies are small, and
we only consider the decision (either access or pass). This simplifies the result.
These results mean that for every scenario, our expected reference set is equally
comparable to the result of the analysis. This indicates that our analysis works
correctly. Based on this, architects could use our approach for analyzing the access
control decisions for different scenarios. This enables them to analyze different
alternative scenarios with various access control policies and see possible results.
This analysis could help to harden the system by defining stricter access control
policies and evaluating whether these stricter policies would still enable the use
of the system in a certain scenario. Additionally, it can help in policy changes to
not forget malicious scenarios by explicitly modelling them as misusage scenarios
and analyzing them. This can help to prohibit malicious usage through policy
changes, because the misusage scenario can automatically check for violations
after a policy change.

6.3 Threats to Validity

Based on the guidelines for case study validity from Runeson et al. [32], we
categorize our threats to validity into four categories.
Internal Validity: This discusses that only the expected factors influence the
results. Because of the different input models and that we evaluate only the result,
our evaluation highly depends on the used models. Even more, we manually
created the output models. We try to lower the risk by using mostly external case
studies and deriving the expected results based on their descriptions. Another
threat is the size of the models since the models are quite small. However,
they already cover our approach’s important functionality, such as the context
derivation, transformation of the access control model, access control decisions,
and misusage and scenario analysis. Therefore, adding more architectural elements
might increase the number of result objects but would not gain more insights.
Hence, we assume the risk to be low.
External Validity: This is how useful the results are for other researchers and,
therefore, how generalizable the results are. Using a case study based evaluation,
we might increase the insights into the problem, but the case study might be
not representative. Therefore, we choose mostly external case studies, which are
used in various approaches such as [20, 22, 40]. Additionally, the maintenance
case study (the running example) is based on a scenario from our industrial
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partners in a previous research project [2]. These external case studies and the
industrial one lower the risk of the representativeness. However, the results so far
only indicate the functional correctness of the analyses and not the correctness
of the approach in general. Therefore, we plan to address this in the future and
investigate further case studies and scenarios.
Construct Validity: In our case, this is whether the metrics are appropriate
for the intended goal. For Q1 and Q2, we use the JC. It is also used in similar
approaches, such as [13]. Its main restriction is that it cannot differentiate the
order between elements. However, in our cases, as discussed in Section 6.1, the
order is not relevant. Additionally, for Q1 and Q2, we consider correctness as
that the analysis output is equal to the reference output and this is the intended
goal for the metric. Therefore, we consider the risk for the metrics to be low.
Reliability: This describes whether other researchers can reproduce the results
later. By using statistical metrics we avoid subjective interpretation and therefore
can increase reproducibility. Additionally, our dataset [42] allows other researchers
to verify the results.

6.4 Limitations

For our approach, we need an architectural model to annotate the system policies.
While this is not always true, there exist reengineering approaches, such as
Kirschner et al. [21] , which help to create one from existing software.

Regarding the dynamic changes of context attributes, we specify that they are
at least foreseeable during design time so that they can be expressed in the policies.
This is similar to our definition of dynamic changes [39]. Context attributes or
scenarios which are not considered during runtime cannot be analyzed.

7 Related Work

We list related approaches regarding our attack propagation in Walter et al. [40].
Here, we focussed on approaches regarding the scenario analysis. We categorized
the related work in access control models, access control policy analyses and
model-driven confidentiality analyses.
Access Control Models: Role-based access control (RBAC) [10] considers the
role for the access decision. However, usually, the role is the only context that
is considered. Organisation-based access control (OrBAC) [19] was developed
for complex access control policies within an organization and supports multiple
different contexts [7]. However, the industrial application is currently very limited.
ABAC [15] also considers the context for access decision. ABAC is often described
as a dynamic access control approach. XACML [43] is an implementation of
ABAC.
Access Control Policy Analyses: Jabal et al. [16] analyze various policy
analysis approaches. Margrave [11] is a XACML based verification and change-
impact analysis. It uses binary decision trees to decide whether a user can perform
certain operations or determine the impact of a policy change. In contrast to our
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approach, they do not consider the software architecture or misusage scenarios.
Alberti et al. [1] analyze a modified RBAC model with additional properties,
which can be seen as context properties. One analysis aspect from them is the
delegation of RBAC policies. Our approach does not consider the delegation, but
we support different scenarios and misusage based on the software architecture.
Another XACML based analysis is developed by Turkmen et al. [38]. They
internally use satisfiability modulo theories (SMT) to analyze different access
control properties such as a change impact and attribute hiding [38]. Overall, there
exists different policy analyses approach. However, so far they do not support
the scenario-based analysis based on the software architecture. Nevertheless, the
XACML based approaches can be used in combination with our access control
analysis since XACML files could be used as a universal exchange format.
Model-driven Confidentiality Analyses Various approaches for model-driven
confidentiality analyses exist [28]. We focus here on the most relevant for us.
UMLsec [18] is a security extension for UML. It can analyze various security
properties such as secure exchange and secure communication. However, they
do so far not consider a fine-grained access control model as it is necessary for
our running example. Another security extension for UML is SecureUML [24]. It
uses an RBAC policy model that can be extended by OCL statements to support
context properties. Additionally, it also supports an automatic policy analysis [4].
In contrast, we can consider misusage scenarios in our analysis, and our modeling
closely follows an industrial standard which eases the modeling. Data-centric
Palladio [33] is a dataflow-based security analysis for the Palladio approach [31].
It provides different analyses such as information flow or access control. However,
our extension is defined on the service declaration and not on data objects,
and they do not support misusage scenarios. Another dataflow information flow
analysis is SecDFD [37]. In contrast, we support misusage scenarios and work on
the software architecture. Gerking et al. [12] present a confidentiality analysis
based on timed automatons to analyze the real-time properties of a system. The
iFlow approach [20] is a confidentiality analysis for information flow by using
UML profiles. In contrast to both previous mentioned ones, we focus more on
access control and misusage scenarios.

8 Conclusion & Future Development

In this paper, we first presented our tool for an attack propagation [40]. The tool
can help software architects to build more secure systems by providing potential
attack paths, which can be broken by introducing mitigation strategies. Secondly,
we introduced our approach for a scenario-based access control analysis based
on the software architecture. It extends, the access control metamodel from our
attack propagation tool and enables software architects to analyze the intended
usage and misusage scenarios against the modeled software architecture and
the specified software architecture. Our evaluation indicates, that we can detect
access violations for system calls and deduce whether scenarios are possible based
on the access control decision.
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In the future, we want to extend our attack propagation approach by con-
sidering advanced mitigation strategies. Additionally, we plan to develop a new
security analysis using our metamodel, such as an attack surface analysis and
apply both our existing analyses in more case studies. Besides adding new func-
tionality, we also plan to improve the documentation and usability. Here, our
focus is on better editor support and error handling. Another open point is the
scalability of our analyses. We want to investigate whether we can improve the
runtime behavior for more extensive systems.
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