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ABSTRACT High-quality images acquired from medical devices can be utilized to aid diagnosis and
detection of various diseases. However, such images can be very expensive to acquire and difficult to
store, and the process of diagnosis can consume significant time. Automatic diagnosis based on artificial
intelligence (AI) techniques can contribute significantly to overcoming the cost and time issues. Pre-trained
deep learning models can present an effective solution to medical image classification. In this paper,
we propose two suchmodels, ResNext101_32×8d andVGG19 to classify two types of brain tumor: pituitary
and glioma The proposed models are applied to a dataset consisting of 1,800 MRI images comprising
in two classes of diagnoses; glioma tumor and pituitary tumor. A single-image super-resolution (SISR)
technique is applied to the MRI images to classify and enhance their basic features, enabling the proposed
models to enhance particular aspects of the MRI images and assist the training process of the models. These
models are implemented using PyTorch and TensorFlow frameworks with hyper-parameter tuning, and data
augmentation. Experimentally, receiver operating characteristic curve (ROCC), the error matrix, Precision,
and Recall are used to analyze the performance of the proposed model. Results obtained demonstrate that
VGG19 and ResNext101_32 × 8d achieved testing accuracies of 99.98% and 100%, and loss rates of
0.0120 and 0.108, respectively. The F1-score, Precision, Recall, and the area under the ROC for VGG19
were 99.89%, 99.90%, 99.89%, and 100%, respectively, while for the ResNext101_32 × 8d they were all
100%. The proposed models when applied to MRI images to provide a quick and accurate approach to
distinguishing between patients with pituitary and glioma tumors, and could aid doctors and radiologists in
the screening of patients with brain tumors.

INDEX TERMS Single image super-resolution, visual geometry group (VGG)-19, ResNext101_32 × 8d,
brain tumor classification, magnetic resonance imaging (MRI), medical image analysis.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiankang Zhang .

I. INTRODUCTION
An important issue in medicine is classification of brain
tumors [1], [2] to decide on treatment type. This is a
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challenging issue because tumor cells are heterogeneous by
nature. Doctors, of course, are important in the diagnosis
of this disease, but would benefit from a helpful tool to
aid rapid diagnosis [3]. Today, diagnostic systems based on
computer-aided technology provide an effective means for
diagnosing brain tumors via magnetic resonance imaging
(MRI) [4]. MRI is the most common technique used for
classifying brain tumors, because of its high image qual-
ity [5]. Artificial intelligence (AI) is also being considered
as a key enabler to assist in resolving issues around
brain tumor classification. In particular, the development of
high-performance deep learning models (DLMs) with high
levels of accuracy would be a significant step towards a fast,
high-precision method for detection and diagnosis of brain
tumors in patients.

Machine learning and deep learning models are being
utilized to classify and diagnose brain tumors [6], but, the
low accuracy of existing models is a challenge that needs
to be addressed [7]. Deep convolutional neural networks
(CNNs) are playing an effective role in detecting the presence
of brain tumors and diagnosing tumor type via medical
imaging using MRI, which has been used to successfully
detect patients infected with brain tumors. However, a dis-
advantage of these networks is the long time required to
train the models [8]. Low accuracy can be significantly
improved by using pre-trained DLMs, such as VGG [9],
DenseNet [10], ResNet [11], GoogLeNet [12], AlexNet [13],
MobileNet [14], and EfficientNet [15] which can also
reduce training time. Speech recognition [16] language
modeling [17], human activity recognition [18], and image
processing [19] are already making good use of such models.
Pre-trained models are more convenient since they require
less training time. However, achieving a sufficiently high
accuracy in classifying brain tumors remains a significant
challenge.

This paper reports on implementing ResNext101_32 × 8d
and VGG19 models to enhance the accuracy of detection
and classification of brain tumor using hyper-parameter
optimization. These two models are based on a transfer
learning process, and have the advantage of architectural
simplicity, which can reduce computational cost (training
time). The models were tested and trained on a dataset
available in the Kaggle repository. In addition, a data
augmentation technique was employed on the dataset used
in order to overcome its deficiency of the available medical
images.

The primary contributions of this paper are:
• Implementation of robust ResNext101_32 × 8d and
VGG19 to distinguish between glioma and pituitary
brain images/cases for fast andmore accurate diagnoses;

• Using ResNext101_32 × 8d and VGG19 with
hyper-parameter optimization to successfully achieve
substantially greater test accuracy for a graphics
processing unit (GPU);

• Applying a single image super-resolution (SISR) tech-
nique for the two models based on a generative

adversarial network (GAN) algorithm to improve the
resolution of the MRI images;

• Evaluating the performance of the models with alterna-
tive evaluation measures based on an assessment of the
quality of images in a dataset of 1,800 MRI images of
the brain;

• Improving VGG19 accuracy by using k-fold cross-
validation;

• Comparing the results achieved by the proposed mod-
els for the MRI image classification with different
state-of-the-art models.

The remainder of this paper is as follows: Section II presents a
brief review of similar work. Section III introduces the theo-
retical background to transfer learning. Section IV presents
the proposed DLMs, dataset description, and performance
metrics utilized. Section V presents the experimental results.
The results are discussed in Section VI. Section VII offers
conclusions and suggestions for further work.

II. RELATED WORK
The literature contains reports of a number of DL models for
classifying brain tumors using MRI images of the brain [20],
[21], [22], [23], but a satisfactory level of accuracy has not
always been achieved. In [20], Afshar, et al., introduced
a capsule neural network method to classify brain tumor
diseases. This model was applied on a 3,064-image dataset
and had an 86.56% accuracy. In [21], the same authors
proposed a CNN model enhanced by a genetic algorithm
(GA) to recognize brain tumors and applied the model to
a dataset of 600 different images, with the best accuracy
achieved is 94.2%. Saxena et al., [22] applied three models,
ResNet-50, Inception-V3, and VGG-16, to a set of just over
250 images, divided into 183 for training, 50 for validation,
and 20 for testing. The respective accuracies for Inception-
V3, VGG-16 and ResNet-50 were 55%, 90%, and 95%.
Zhou et al., [23] presented a combined DenseNet-Long
ShortTermory model for identifying brain tumors and tested
the model on a set of data comprising: 708 meningioma,
930 pituitary, and 1,426 glioma patients. The model achieved
a 92.13% accuracy.

Researchers [24], [25], [26], [27], and [28] presented
machine and deep learning architectures to detect brain
tumors in patients. In [24], Cheng et al., introduced an
SVM model and attained a 91.28% accuracy with a dataset
of 1,426 glioma and 930 pituitary images. A model using
CNN architecture was applied to a dataset of 3,064 MRI
images [25] and attained 84.19% accuracy. Kaplan et al., [26]
applied a k-nearest neighbor (KNN)model with nLBP feature
extraction approach, and achieved 95.56% accuracy. Pashaei
et al., [27] implemented a CNN model with an extreme
learning machine (ELM) method and trained using 70%
of a dataset that contained 3,064 brain tumor cases. The
model was then used to assess the other 30% and attained
an accuracy of 93.68%. In [28], Zacharaki et al., proposed
SVM-KNN models for brain tumor classification, which
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were applied to a dataset of 102 MRI images, achieving an
overall accuracy of 85%.

Kurup et al., [29] utilized the architecture of a CapsNet
model based on three classes to predict the presence of
brain tumors. It applied capsule neural networks to a set of
data comprising 3,170 images with an accuracy of 92.6%.
In [30], Das et al., applied a CNN for brain tumor detection
with a dataset containing three classes of 1,426 glioma,
708 meningioma, and 930 pituitary cases. The accuracy and
precision achieved were 94.39% and 93.33%, respectively.
Ullah et al., [31] proposed to classify brain tumors usingMRI
images via an artificial neural network (ANN), and attained
a testing accuracy of 95.80%. In [32], Huang et al., used a
CNN to classify brain tumors and attained an overall accuracy
of 95.49%. In [33], Kalaiselvi et al., diagnosed brain tumors
using a CNN with 96.00% accuracy. Li et al., [34] used a
hidden Markov model (HMM) for real-time classification of
brain tumors and achieved an accuracy of 96.88%. Noreen et
al., [35] introduced two models: Xception and Inception-V3,
and used 3,064 images to achieve accuracies of 93.79% and
94.34%, respectively.

Rehman et al. [36] classified microscopic brain tumors
using a 3D CNN. This model was applied to the BraTS
datasets, using the k-fold cross-validation method, achieving
a 96.67% accuracy. In [37], Rehman et al., implemented
GoogLeNet, VGGNet, and AlexNet models, utilized 3,064
images, and classified three types of tumors. Sharif et al., [38]
presented an InceptionV3 model for brain tumor recognition,
with an achieved 93.7% accuracy. In [39], Muzammil et al.,
proposed a multimodal image fusion algorithm for diagnoses
using MRI images. It was applied with a convolutional
sparse coding method which used the entropy theorem to
assess the performance of the algorithm. Maqsood et al., [40]
investigated brain tumor detection using U-NET CNN and
fuzzy logic algorithms, but did not quote a success rate. Their
literature review showed that despite significant research into
detecting the presence of glioma or pituitary tumors in the
brain via MRI images, improvements more accurate methods
are still needed.

III. BACKGROUND FOR TRANSFER LEARNING
Transfer learning is a machine learning technique whereby
a model trained for one purpose is subsequently used for
another. The weights from the pre-trained model are applied
as a starting point for training using a different dataset for a
different issue. A significant advantage of transfer learning
is a faster training/learning process. Another advantage is
achieving higher performance with less data due to the
weights obtained from the previous training being used.
A higher performance can be achieved by the addition of a
fully connected layer to the existing model.

Transfer learning is usually associated with relatively
small datasets, such as biomedical images. If a DLM is
trained ab initio, the training process requires a large
amount of data and time. Thus, it is convenient to utilize a

pre-trained model and fine-tune its performance to accelerate
the training process. There are many successful pre-trained
CNN models used in the classification of medical images,
including ResNext101_32 × 8d and VGG19 [41], which
were pre-trained using the ImageNet dataset, which consists
of 1.3 × 106 RGB images of 224 × 224 pixels and
with 1000 classes. It is proposed to use VGG19 and
ResNext101_32 × 8d as pre-trained DLMs for transfer
learning to classify brain tumor types.

IV. METHODOLOGY
ResNext101_32× 8d and VGG19 models are employed here
to classify two categories of brain tumors and were applied
to a dataset consisting of 1,800 MRI brain images. These
models were chosen due to their robust performance and to
be convenient for processing spatial data [42].

A. THE PROPOSED SISR TECHNIQUE WITH
RESNEXT101_32 × 8dI
In this work, before classification by the ResNext101_32×8d
model, a SISR technique was applied to the chosen MRI
brain tumor images. Fig. 1 illustrates the architecture of the
SISR technique with ResNext101_32× 8d model. The SISR
is based on a GAN algorithm to produce high-resolution
images. The SISR consists of two phases: the first is the
generator, and the second is the discriminator. The generator
comprises an input layer with a shape of 64 × 64 × 3 and a
kernel size of 3, followed by an up-sampling block containing
a convolutional layer and a Parametric Rectified Linear Unit
(PReLU) layer, this is followed by a residual block which
repeats every sixteen iterations and comprises: a convolu-
tional layer, a Batch-normalization layer, a PReLU layer,
another convolutional layer, another Batch-normalization
layer, and an Add layer. These are followed by three layers:
convolutional, Batch-normalization, and Add, followed by
two blocks Convolutional, Lambda, and PReLU. Finally, the
output layer is activated by a sigmoid activation function.

Every convolutional layer (conv-layer_has 3 × 3 kernels
and 64 filters. The discriminator model comprises an input
layer, a convolutional layer, and a ReLU layer, followed
by seven repeated blocks containing a convolutional layer,
a Batch-normalization layer, and a ReLU, this is followed
by a block that includes a flatten layer, a dense layer, and
ReLU, this block is repeated three times. Next, there is a
dense layer and an output layer with a sigmoid activation
function. The dimensions of the high-resolution (HR) images
are 256 × 256 × 3 and the low-resolution (LR) images are
generated from the high-resolution images. The LR images
have dimensions of 64 × 64 × 3. So, the HR is divided
by a factor of 4 in order to obtain the dimensions of the
LR images. For the SISR technique, only 1700 images were
used from the three thousand MRI images available due
to the generator model used in the training process being
slow. The images were normalized to the range from 1 to
−1. 1,550,659 trainable parameters were available for the
generator model-based SISR technique.
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FIGURE 1. The workflow of the proposed SISR technique with ResNext101_32 × 8d model.

The ResNext101_32 × 8d model consists of 344 layers
including: 104 batch normalization layers, 104 conv-layers,
100 ReLU layers, 33 bottleneck layers, a single max-pooling
layer (MPL), a single adaptive average layer, and one linear
layer. The input MRI images have equal width and height of
224 pixels. A binary cross-entropy loss function was used
with the ResNext101_32 × 8d, to estimate the difference
between predicted and true values, with the loss function
calculated using Eq. (1), with y the true output label, and ŷ
the predicted label, and N represents the number of classes.
An Adam algorithm was used as an optimizer. A batch size
of 16 was used to train the ResNext101_32× 8d model, with
10 training epochs, and a 0.0001 learning rate. The overall
trainable parameters for the ResNext101_32×8d model were
86,746,434.

loss = −[ylog
(
ŷ
)
+ (1 − y) log

(
1 − ŷ

)
] (1)

B. THE PROPOSED SISR TECHNIQUE WITH VISUAL
GEOMETRY (VGG)-19
In this work, a SISR technique was also used on the MRI
brain tumor images before classification by VGG19. Fig. 2

displays the architecture of the proposed VGG19 model,
which comprises 19 layers: three fully connected layers and
sixteen 2-D conv-layers, each of which is followed by a 2-D
MPL. Training VGG19 takes less time than other pre-trained
models while also having high classification accuracy.

As previously, the input MRI images have equal width
and height of 224 pixels. First, a 2-D convolutional layer
was applied separately to each input image, with a ReLU
activation function to extract spatial features. This layer has
64 filters, a kernel with 3 × 3 matrix shape, followed by
another convolutional layer with 64 filters with a ReLU
function. To make the convolution output less complex an
MPL with a 2 × 2 matrix, carried out a downsampling
procedure.
Third, there were two conv-layers having 128 filters,

a kernel with a 3 × 3 matrix, and utilizing a ReLU function.
These added layers enable the VGG19 to discern higher-level
features that might have been missed in the previous conv-
layers. Fourth, an MPL with a 2 × 2 pool size is followed
by four 2-D conv-layers having a configuration of 256 filters,
a kernel with a 3 × 3 matrix, followed by an MPL and then
four 2-D conv-layers having a configuration of 512 filters
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FIGURE 2. The proposed VGG19 model architecture.

with an MPL. Fifth, four more 2-D conv-layers having a
configuration of 1024 filters, followed by anMPL. Sixth, two
fully connected layers are configured with 4096 neurons and
a ReLU activation function, followed by a fully connected
layer with 1000 neurons. Finally, the output is reduced to
just two classes by the application of a softmax activation
function.

The difference between predicted and true values for
the VGG19 was obtained using a binary cross-entropy loss
function, with the loss function calculated using Eq. (1), with
N the number of classes, y the true output label, and ŷ the
predicted label. Again an Adam algorithm was used as an
optimizer [43]. It was found that a batch size of 30 with
50 training epochs were best to train the VGG19 model for
classification of brain tumors. The total number of trainable
parameters for this model was 2,325,568. Table 1 presents a
summary of the layers for the VGG19 model.

Fig. 3 shows the workflow for the proposed VGG19model.
There are six steps, the first was uploading the MRI images
dataset used, which were separated into images for testing
and training. The second step was pre-processing the MRI
images i.e., image normalization. The third step was to define
the number of training epochs. The fourth was the training
of the model using the designated MRI images via a fitting
function. The fifth step was to test the prediction capacity of
the VGG19 model using the MRI test images. The final step
was to evaluate the performance of the model using different
metrics on the MRI test images.

C. DATASET DESCRIPTION
Fig. 4 shows four of the MRI brain images from the
dataset supplied by the Kaggle repository and used for
classification [44]. There were 1,800 MRI brain images of
two classes, 900 glioma tumors and 900 pituitary tumors.
Each image was resized into 224 × 224 pixels, and
then normalized by rescaling the pixels from [0, 255] to

TABLE 1. The summary of the layers of the Vgg19 model.

[0, 1]. To minimize over-fitting, for VGG19, three data
augmentation techniques were used to increase the original

55586 VOLUME 11, 2023



S. Mohsen et al.: Brain Tumor Classification Using Hybrid SISR Technique

FIGURE 3. The workflow of the VGG19.

dataset of glioma and pituitary images: rotation, width shift,
and height shift. Each image was randomly rotated by 10◦,
with shifts in the width by up to 0.1, and shifts in the height
by up to 0.1. Thus, the number of images in the dataset was
increased by a factor of three.

Three data augmentation techniques were also used for the
ResNext101_32 × 8d model: rotation, horizontal flip, and
vertical flip. Each image was randomly rotated by 45◦, with
flips in the horizontal or vertical by up to 0.5.

The datasets were divided, the training sets were 75% for
the VGG19 model and 85% for the ResNext101_32 × 8d
model. Thus the corresponding test sets used to assess the
two models were, respectively, 25% and 15% of the datasets.

D. EVALUATION METRICS
In this work, several well-known evaluation metrics were
used to analyze model performance [45], [46]: Accuracy,
Precision, Recall, F1-score, and the area under the receiver
operating characteristic curve (ROCC). The ROCC is ameans
of comparing the accuracy of different classification models,
to demonstrate the ability of a test to correctly identify those
images with a tumor. The ROCC is a graph of the True
Positive Rate (TPR - the images that were correctly diagnosed
as having a tumor as a proportion of all images that did show a
tumor) against the False Positive Rate (FPR – the images that
were incorrectly diagnosed as having a tumor as a proportion
of all images that did not show a tumor). The ranges for both
TPR and FPR are between 0.0 and 0.1.

If TP = number of diseased samples correctly identified,
TN = number of healthy samples correctly identified,

FIGURE 4. Four samples of brain MRI images from the dataset used:
(a) and (c) Glioma Tumors, (b) and (d) Pituitary Tumors.

FN = the number of samples that were diseased but falsely
diagnosed as healthy, and FP = the number of samples that
were healthy and falsely diagnosed as diseased. Using these
metrics, the total number of images in the dataset is (TP +

TN + FP + FN), and the total number correctly identified is
(TP + TN).
Accuracy of the model is the ratio of images accurately

identified to the total number of images, see Eq. (2). Precision
is the ratio of the number of images correctly diagnosed in
a particular class, e.g., TP, to the total number of images
diagnosed as in that class (TP+FP), see Eq. (3). Recall
or sensitivity, is the ratio of number of images correctly
diagnosed (TP), to the total number of correctly identified
MRI images of both classes (TP+FN), see Eq. (4). It is the
probability of a positive test if the patient has a glioma tumor.

F1-score, or balanced F1-measure, is the harmonic mean of
the Recall and Precision weighted by a factor of 2, see Eq. (5).
The F1-score includes both FN and FP, so it can sometimes
be a more useful metric than Accuracy.

AUC is the area under the ROCC, see Eq. (6). Note: 0
≤ AUC value ≤ 1 with higher values of AUC implying a
model can successfully differentiate between different classes
of MRI images. It follows that a model with a larger area
under the ROCC, ismore accurate than amodel with a smaller
area.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(2)

Precision =
TP

TP+ FP
(3)
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Recall =
TP

TP+ FN
(4)

F1 −Measure = 2 ×
Precision× Recall
Precision+ Recall

(5)

AUC =

∫ 1

0
TPRd(FPR) (6)

In this work, the metrics used to evaluate the performance
of the SISR technique based on the GAN algorithm are [47]:
MSE (mean squared error), MS-SSIM (multiscale structural
similarity index measure), PSNR (peak signal-to-noise ratio),
and SSIM (structural similarity index measure) [48], [49],
[50], [51], [52]. These metrics are calculated using Eqs. (7),
(8), (9), and (10).

MSE =
1
n

∑n

k=1

(
ir (k) − iy (k)

)2 (7)

PSNR = 10log10
MAX2

i

MSE
(8)

SSIM =

(
2µirµiy + c1

) (
2 oiriy + c2

)(
µ2
ir + µ2

iy + c1
) (

o2ir + o2iy + c2
) (9)

MS − SSIM =
1
nm

n−1∑
p=0

m−1∑
j=0

SSIM (10)

V. EXPERIMENTAL RESULTS
Python in a Google Colab environment, with P100 GPU
and 25 GB RAM memory was used to implement the
proposed models.

FIGURE 5. Training and validation accuracy curves for VGG19.

Fig. 5 presents the training/learning and validation accu-
racies obtained for VGG19. The blue line symbolizes the
training accuracy, which increases with increase in the
number of epochs and approaches 100% after 50 epochs. The
brown curve shows the validation accuracy, commencing at
97.56% and rising to 99.89% after 50 epochs. The training
stopped at 50 epochs because the learning curve started to
overfit. The number of training epochs was tuned for the
highest training/ validation accuracy.

FIGURE 6. Training and validation loss curves for VGG19.

Fig. 6 shows the training/ validation loss curves for
the VGG19 model, where the score of 0.0 would indicate
perfect learning with no mistakes. Both losses continuously
decreased as the number of epochs increased with the training
loss reaching 0.0030 after 50 epochs, and validation loss
commencing at 0.110 and declining to 0.0120.

FIGURE 7. The error matrix for VGG19.

Figs. 7 and 8 present the error and normalized error
matrices obtained from use of the VGG19. This matrix is
used to evaluate model performance when classifying two
classes, here using the MRI test dataset and comparing the
predicted/true class outputs. The dark purple blocks on the
matrix in Fig. 7 represent classification accuracy, while the
values outside the blocks represent error values. Here, the
error matrix shows, respectively, 129 and 141 true positives
for the two classes of tumor, glioma, and pituitary. The
normalized error matrix for VGG19 shows classification
accuracy of 1.0 (100%) for glioma and pituitary classes, with
zero classification error in both cases. The VGG19 model
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FIGURE 8. The normalized error matrix for VGG19.

performance contained no errors. The total number of glioma
and pituitary tumors which taken for the testing error matrix
is 270.

TABLE 2. Classification of precision, recall, and F1-score for the Vgg19
model.

Table 2 presents the F1-score, Precision, and Recall for
VGG19, by which to assess its performance for the dataset
utilized. The values for F1-score, Precision, and Recall for
the glioma and pituitary classes were, respectively, 99.92%
and 99.86%, 99.07% and 99.74%, and 99.78% and 99.00%.
Themacro-average is determined by computing an evaluation
metric independently for each class and then taking the mean.
For the F1-score, Precision and Recall the respective macro-
averages were: 99.89%, 99.90%, and 99.89%. We note, see
Table 2, that the corresponding weighted averages had the
same values.

Fig. 9 shows histograms for the glioma and pituitary
images for VGG19. Precision-recall and ROCCs are pre-
sented in Figs. 10 and 11. Precision-recall curves present
the precision rate as a function of the recall rate. Fig. 10
shows the precision-recall curves for VGG19 for both glioma
and pituitary classes. The values of the areas under the
precision-recall curves for both classes are 1.00 or 100%,

FIGURE 9. Histograms of Glioma and Pituitary images.

FIGURE 10. Precision-recall curves for VGG19.

FIGURE 11. ROC curves for VGG19.

giving the corresponding values of the macro-average for
both precision and recall of 1.00.

Fig. 11 shows the ROCC for VGG19, and it can be seen
that the values of the areas for both classes are 1.00 or 100%,
meaning the macro-average ROCC area is also 1.00. These
results imply that VGG19 doesn’t cause errors.
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TABLE 3. Performance of the Vgg19 model for different k-fold
cross-validations.

Table 3 presents performance data for the proposed
VGG19 model using k-fold cross-validation, where k rep-
resents the number of equal partitions into which the data
is divided. Here k = 5, one for validation and four for
training. The model was trained five times using the different
partitions, each timewith an epoch number of 50. The average
loss rate and accuracy rate for the model were 0.0113 and
99.35% respectively. Therefore, VGG19 achieved a high
performance when using 5-cross-validation, avoiding bias in
the results by using a suitable allocation of test and training
datasets.

FIGURE 12. Training and validation accuracy curves for
ResNext101_32 × 8d.

Training and validation accuracy for the ResNext101_32×

8d model are shown in Fig. 12. The training accuracy
increased with increase in number of epochs and achieved
98.88% after 10 epochs. The validation accuracy commenced
at 93.75% and increased to 99.60% after 10 epochs.

Fig. 13 shows the loss rate curves for ResNext101_32×8d
using the validation and training data sets. The numerical
value of the loss rate diminished as the number of epochs

FIGURE 13. Training and validation loss curves for ResNext101_32 × 8d.

grew, after 10 epochs the value for the training data set had
reached 0.0289 and 0.0121 for the validation data set.

FIGURE 14. The error matrix for ResNext101_32 × 8d.

Fig. 14 shows the errormatrix obtained usingResNext101_
32 × 8d. The dark purple blocks show the classification
accuracy. Here, the error matrix shows, respectively, 128 and
142 true positives for the two classes of tumor: glioma, and
pituitary. The normalized error matrix for ResNext101_32×

8d is illustrated in Fig. 15. It has a classification accuracy
of 1.0 ‘‘100%’’ for glioma and pituitary classes, with zero
classification errors.

Table 4 presents F1-score, Precision, and Recall metrics
for ResNext101_32 × 8d, by which to assess its relative
performance for the dataset used. For both the glioma and
pituitary classes, the F1-score, Precision, and Recall were all
100%, as were the macro-averages and weighted averages.

Fig. 16 presents the precision-recall curves for ResNext101
_32 × 8d for both glioma and pituitary. The values of
areas under the precision-recall curves for both classes
are 1.00 or 100%. Therefore, the macro-average precision-
recall curve area is 1.00. Fig. 17 shows the ROCCs for
ResNext101_32×8d, and, again, the values of the areas under
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FIGURE 15. The normalized error matrix for ResNext101_32 × 8d.

TABLE 4. Classification of precision, recall, and F1-score for the proposed
ResNext101_32 × 8d model.

FIGURE 16. Precision-recall curves for ResNext101_32 × 8d.

the curves for both classes are 1.00 or 100%, indicating that
ResNext101_32 × 8d doesn’t generate errors.

Figs. 18, 19, and 20 show the results for the SISR
technique. Fig. 18(a), Fig. 19(a) and Fig. 20(a) illustrate,
respectivelt, a high-resolution, low-resolution and super-
resolution imagese. Fig.s 18(b), 19(b), and 20(b) show
the histograms for these images. It is clear that there are
differences in the resolution of the images.

VI. DISCUSSION
The results presented above show that the ResNext101_32×

8d and VGG19 models have a very high accuracy with low
loss rate when trained and tested. Precision-recall curves,
error matrices, and ROCCs demonstrated that the proposed
models can accurately classify brain tumors.

FIGURE 17. ROC curves for ResNext101_32 × 8d.

TABLE 5. Comparison of the accuracy of proposed and previous models.

The performance of both models in terms of their training
and validation accuracy curves are shown in Figs 5 and
12. Figs 6 and 13 show the model performance, in terms
of loss rates, reached 0.0120 and 0.0108 for VGG19 and
ResNext101_32 × 8d, respectively. Figs 7, 8, 14, and 15
present error rate distribution for the two classes and show
that the models perform well. Figs 18, 19, and 20 show the
image quality obtained using the SISR process.

Table 5 is a comparison of the accuracy achieved by the
VGG19 and ResNext101_32 × 8d models with previously
published results. We see that the testing accuracies of the
proposed models are noticeably higher than those achieved
by the models listed in references [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34],
and [35].
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FIGURE 18. Results of high-resolution images: (a) High-Resolution MRI image, (b) Histogram of high-resolution image.

FIGURE 19. Results of low-resolution images: (a) Low-Resolution MRI image, (b) Histogram of low-resolution image.

The higher performance achieved is due to batch and kernel
sizes, the fine-tuning of the models’ hyper-parameters, loss
activation functions, optimizer type, pool size, number of
neurons utilized in the conv-layers, and number of training
epochs.

For VGG19, setting the number of training epochs to
50, and batch size to 30, and using a softmax activation
function with kernel and pool sizes of the convolutional
and max-polling layers adjusted to 3 × 3 and 2 × 2 filters,
respectively, VGG19 achieved a test accuracy of 99.89%.

However, when the batch size was changed to 64, the
training epochs reconfigured to 40, with a sigmoid activation
function, and kernel and pool sizes of the convolutional
and max-polling layers set to 5 × 5 and 3 × 3 filters,
respectively, the VGG19 testing accuracy reached only
95.78%. We conclude that the parametric settings can
significantly enhance the results.

A GridSearchCV method was used to automatically
compute the optimum values of the hyper-parameters to
ensure the models achieved optimal performance.
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FIGURE 20. Results of super-resolution images: (a) Super-Resolution MRI image, (b) Histogram of super-resolution image.

VII. CONCLUSION
This paper reports the application of ResNext101_32×8d and
VGG19 DLMs to classify patients with glioma and pituitary
tumors based on brain MRI images. The models were trained
and assessed using a dataset of 900 each of glioma and
pituitary images. In addition, a single image super-resolution
(SISR) technique was applied to the MRI images to improve
their resolution before classification using ResNext101_32×

8d and VGG19. The SISR is based on a GAN algorithm
and evaluated using MS-SSIM, PSNR, and SSIM metrics.
The MS-SSIM was 96.39%, the PSNR was 29.30 dB,
and the SSIM rate was 0.847. Experimental assessment
of the accuracy of the VGG19 and ResNext101_32 × 8d
models, showed the accuracy realized was 99.89% and 100%
respectively, with respective test loss rates of 0.0120 and
0.0108.

The error matrix, F1-score, Precision, Recall, area under
the precision-recall curve, and the ROCC have been
presented and the models’ performances evaluated. The
VGG19 model’s F1-score was 99.89%, its precision score
was 99.90%, and the achieved recall was 99.89%. The
corresponding precision-recall curves for the VGG19, for
both glioma and pituitary tumors was 100%. The area under
the ROCC is 100% for both classes for the VGG19.

The ResNext101_32 × 8d model’s F1-score, precision,
and recall were all 100%. The achieved areas under the
ROC and precision-recall curves were 100% for both classes
glioma tumor and pituitary tumor. Models such as these
assist specialist doctors by providing a fast identification of
patients with brain tumors, which makes these models useful

tools for rapid screening and providing support for medical
diagnoses.

The hyper-parameters of both ResNext101_32 × 8d and
VGG19 i.e., batch and kernel sizes, fine-tuning the models’
hyper-parameters, loss activation functions, optimizer type,
pool size, number of neurons used in the conv-layers and
number of training epochs. were found to substantially impact
the accuracy of the results. Best performance depends on
achieving the optimal settings for these parameters.

The obtained results demonstrate that the pre-trained
ResNext101_32 × 8d and VGG19 models achieved high
performance when classifying brain tumors. To assess the
performance of VGG19 in terms of testing accuracy and loss
5-fold cross-validation was used. Both the ResNext101_32×

8d andVGG19models can be applied toMRImedical images
to speed up diagnosis for the benefit of both patients and
doctors.

Future work should include applying the models proposed
here to more brain MRI images, possibly also adding other
pre-trained DLMs, such as ResNet-18 and AlexNet, to the
utilized dataset.
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