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Abstract

A proper edge‐coloring of a graph is an interval

coloring if the labels on the edges incident to any

vertex form an interval, that is, form a set of

consecutive integers. The interval coloring thickness

θ G( ) of a graph G is the smallest number of interval

colorable graphs edge‐decomposing G. We prove that

θ G o n( ) = ( ) for any graph G on n vertices. This

improves the previously known bound of ∕ n2 5 , see

Asratian, Casselgren, and Petrosyan. While we do not

have a single example of a graph with an interval

coloring thickness strictly greater than 2, we construct

bipartite graphs whose interval coloring spectrum has

arbitrarily many arbitrarily large gaps. Here, an

interval coloring spectrum of a graph is the set of all

integers t such that the graph has an interval coloring

using t colors. Interval colorings of bipartite graphs

naturally correspond to no‐wait schedules, say for

parent–teacher conferences, where a conversation

between any teacher and any parent lasts the same

amount of time. Our results imply that any such

conference with n participants can be coordinated in

o n( ) no‐wait periods. In addition, we show that for any

integers t and T , t T< , there is a set of pairs of parents

and teachers wanting to talk to each other, such that

any no‐wait schedules are unstable—they could last t
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hours and could last T hours, but there is no possible

no‐wait schedule lasting x hours if t x T< < .

KEYWORD S

edge‐decomposition, interval coloring, no‐wait, schedule

1 | INTRODUCTION

Asratian and Kamalian [5, 6] introduced the notion of interval colorability of graphs. We say
that a graphG V E= ( , ) is interval colorable if there is an edge‐coloring →c E: such that for
any vertex x , the multiset of colors incidents to x , that is, ∈c xy xy E{ ( ) : } forms a set of
consecutive integers, in other words an interval of integers. The respective coloring is called an
interval coloring. In particular, an interval coloring is a proper coloring, that is, there are no two
adjacent edges having the same color.

Interval colorings are applied in scheduling—for example, in case of teacher–parent
conferences or machine‐jobs assignments. In the former case one wants to schedule meetings
between a parent and a teacher for given parent–teacher pairs such that each such meeting
lasts the same amount of time and there is no waiting time between the meetings for any of the
parents and any of the teachers.

Interval colorable graphs include all trees. In addition, all regular bipartite graphs are
interval colorable since by Kőnig's theorem they are edge decomposable into perfect matchings.
On the other hand, any graph of Class 2 is not interval colorable, where a graph is of Class 2 if
its edge‐chromatic number is greater than its maximum degree, GΔ( ). For example, a triangle is
such a graph. Indeed, otherwise considering the labels in an interval coloring modulo GΔ( )

gives a proper edge‐coloring using at most GΔ( ) colors. Interval colorings for special classes of
graphs and related problems were considered, see, for example, [2–4, 6, 7, 9–13, 16–21, 24, 25].

Let ∈c G c e e E G( ) = { ( ) : ( )} be the set of colors used on G by a coloring c. It is easy to see
that for a connected graph G, and an interval coloring c, c G( ) is a set of consecutive integers.
Here, we shall assume that all considered graphs are connected. Moreover, we assume that all
objects considered are finite.

If there is an interval coloring of a graph G such that c G t| ( )| = , we say that G is t‐interval
colorable. Let the interval coloring spectrum of G, denoted by S G( ), be the set of all integers t
such that G is t‐interval colorable. Note that S G( ) might be empty. The interval coloring
thickness of a graph G, denoted θ G( ), is the smallest integer k such that the graph can be edge‐
decomposed into k interval colorable graphs. In the language of parent–teacher conferences,
having an interval coloring thickness of the respective graph equal to x implies that one can
schedule the conference in x days with no waiting time for anyone during any of these x days.
Let θ n( ) be the largest interval coloring thickness of an n‐vertex graph. Interval coloring
thickness was considered for several special classes of graphs and bounded in terms of various
graph parameters, [2]. Most notably ≤θ G γ G( ) ( ), where γ G( ) is the arboricity ofG, that is, the
minimum number of forests edge‐decomposing G. The following result gives best‐known
bounds on θ n( ).

Theorem 1 (Asratian, Casselgren, and Petrosyan [2]). For any integer ≥n 3,
≤ ≤ ∕ θ n n2 ( ) 2 5 .
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Here, we improve the upper bound:

Theorem 2. θ n o n( ) = ( ).

To prove this result we employ the Regularity Lemma of Szemerédi, a version presented in
Diestel [15], and a result by Alon, Rödl, and Ruciński [1] showing an existence of dense regular
subgraphs in ε‐regular pairs.

In addition, we show that the spectrum could have large gaps of large sizes. Here, a gap of a
set of integers S is a maximal nonempty set X of consecutive integers, such that ∩ ∅X S = ,

S Xmin < min , and S Xmax > max . For example, a set {2, 3, 6, 7} has one gap {4, 5} of size 2.

Theorem 3. For any natural numbers k and d there is a graphG such that the spectrum
S G( ) has exactly k gaps of size at least d each.

This theorem is proved by giving an explicit construction of such a graph that in turn is built
of parts from a construction by Sevastianov [22]. In [22], see also a translation [23], a
construction of a graph with a single but arbitrarily large gap in its interval coloring spectrum is
given. In the language of parent–teacher conferences, this result implies for example that there
could be such a set of parent–teacher pairs willing to talk to each other so that one can schedule
an optimal no‐wait conference lasting 5 h, but if the school secretary does not manage to find
an optimal scheduling, the only other option for a no‐wait conference would require at
least 105 h.

We shall give necessary definitions and preliminary results for the upper bound on interval
coloring thickness in Section 2 and for the gaps in the interval coloring spectrum in Section 3.
The main results are proved in Section 4. For some results in this paper, see also a bachelor
thesis of the second author, M. Zheng [25].

2 | DEFINITIONS AND PRELIMINARY RESULTS

For standard graph theoretic notions we refer the reader to the book by Diestel [15]. We shall
denote the number of vertices and the number of edges in a graph G by G| | and  G ,
respectively. We shall need some standard terminology for using the Regularity Lemma. For a
graphG, let X and Y be disjoint vertex sets and ε > 0. We defineG X Y[ , ] to be a bipartite graph
with parts X and Y containing all edges of G with one endpoint in X and another in Y . Let
 X Y, be the number of edges in G X Y[ , ] and the density d X Y( , ) of X Y( , ) to be

 
d X Y( , ) =

X Y

X Y

,

| |
. Let δ X Y δ G X Y( , ) = ( [ , ]), be the minimum degree of G. For a vertex x , we

denote the neighborhood of x by N x( ) and the degree of x by xdeg( ).
A pair X Y( , ) is an ε‐regular pair in G or more precisely a d ε( , )‐regular pair if X and Y are

disjoint vertex sets in G and ≤d d A B ε| − ( , )| for all ⊆ ⊆A X B Y, with ≥ ≥A ε X B ε Y| | | |, | | | |,
and d d X Y= ( , ). We call an ε‐regular pair X Y( , ) in G a super ε‐regular pair in G if
X Y| | = | | and

≥δ X Y d X Y ε X( , ) ( ( , ) − )| |.

A bipartite graph G′ with parts X and Y is called a super d ε( , )‐regular graph if X Y( , ) is
super ε‐regular pair in G′ with density d.

AXENOVICH and ZHENG | 3
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A vertex‐set partition ∪ ⋯∪V V V=k0 for a graph G V E= ( , ) is an ε‐regular partition if

1. ≤V ε V| | | |0 ,
2. ⋯V V V| | = | | = = | |k1 2 ,
3. All but at most εk2 of the pairs V V( , )i j for ≤ ≤i j k1 < are ε‐regular.

Theorem 4 (Szemerédi's Regularity Lemma, Diestel [15]). For every ε > 0 and every
integer ∈m there is an ∈M such that every graph of order at leastm has an ε‐regular
partition ∪ ⋯ ∪V Vk0 with ≤ ≤m k M .

Lemma 5 (Alon, Rödl, and Ruciński [1]). Let G′ be a bipartite super d ε( , )‐regular graph
with parts of size n each and let d ε> 2 . Then G′ contains a spanning k‐regular subgraph,
where  k d ε n= ( − 2 ) .

The following standard lemma shows that an ε‐regular pair contains a large super
ε‐regular pair.

Lemma 6. Let X Y( , ) be a d ε( , )‐regular pair in a graph G with d ε> 4 and
X Y n| | = | | = . Then, there are sets ⊆ ⊆X X Y Y′ , ′ such that X Y ε n| ′| = | ′| > (1 − ) and
X Y( ′, ′) is a super ε3 ‐regular pair in G with density d′ where ≥d d ε′ − .

Proof. Let

∈ ∩ ≥

∈ ∩ ≥

X x X N x Y d ε Y

Y y Y N y X d ε X

˜ = { : | ( ) | ( − )| |} and

˜ = { : | ( ) | ( − )| |}.

Note that X ε X| ˜ | > (1 − )| |. Otherwise, let ⧹X X X= ˜
2 and observe that any vertex in

X2 has less than d ε( − ) neighbors in Y , thus d X Y d ε( , ) < ( − )2 , a contradiction to
ε‐regularity since ≥X εn| |2 . A similar argument holds for Ỹ .

Let ⊆ ⊆X X Y Y′ ˜ , ′ ˜ such that X Y X Y| ′| = | ′| = min{| ˜ |, | ˜ |}. Then X Y| ′| = | ′| =

n ε X ε n′ > (1 − )| | = (1 − ) . Note that for ∕ε < 1 2 we have n εn′ > . We shall show that
X Y( ′, ′) satisfies the minimum degree and regularity conditions of a super‐regular pair.
Let d d X Y′ = ( ′, ′). By ε‐regularity of X Y( , ), we have ≤d d ε′ + . Moreover, from

the definition of X ′ we have ≥ ≥ ≥δ X Y d ε n εn d ε n d ε n( ′, ′) ( − ) − = ( − 2 ) ( ′ − 3 )

d ε n( ′ − 3 ) ′. Now, consider ⊆ ⊆A X B Y′, ′, such that ≥A ε X| | 3 | ′| and ≥B ε Y| | 3 | ′|.
Observe that ≥A ε X ε ε n εn| | 3 | ′| > 3 (1 − ) > . Similarly, B εn| | > . Then, by ε‐regularity of
X Y( , ), we obtain that

≤ ≤ ≤d X Y d A B d X Y d X Y d A B d X Y ε ε| ( ′, ′) − ( , )| | ( ′, ′) − ( , )| + | ( , ) − ( , )| 2 3 .

Thus, X Y( ′, ′) is a ε3 ‐regular pair with density ≤ ≤d ε d d ε− ′ + and minimum
degree ≥δ X Y d ε n( ′, ′) ( ′ − 3 ) . □

Theorem 7. For every γ , ∕ γ1 2 > > 0, there exists ∈M such that every graph G

contains a subgraph G′ with ≤θ G M( ′) and ≤   G G γ G− ′ | |2.

4 | AXENOVICH and ZHENG
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Proof. Let ∕ γ1 2 > > 0 be arbitrary. Choose ε > 0 sufficiently small and ∈m

sufficiently large such that ≤( )ε γ+ 11 + .
m

ε1

2 2
By Szemerédi's Regularity Lemma, see

Theorem 4, there exists ∈M such that every graph of order at leastm has an ε‐regular
partition ∪ ⋯ ∪V Vk0 with ≤ ≤m k M . Now, let G be a graph of order ∈n . If n m< ,
we have that ≤ ≤θ G n M( ) using an upper bound in Theorem 1. Thus, we may assume
that ≥n m. By our choice of M , we know that G has an ε‐regular partition ∪ ⋯ ∪V Vk0

with ≤ ≤m k M . Let Vℓ = | |1 . We shall define a subgraph G′ of G corresponding to
regular pairs of sufficiently high density.

For each pair V V( , )i j , ≤ ≤i j k1 < , we shall define a graph Gi j, . Let di j, be the density
of V V( , )i j . If d ε> 7i j, and V V( , )i j is an ε‐regular pair, consider G V V[ , ]i j and apply
Lemmas 5 and 6 to it. Let Gi j, be a subgraph of G V V[ , ]i j that is qi j, ‐regular on at least

ε2(1 − )ℓ vertices and ≥q d ε ε n( − − 2(3 ))i j i j, , . Note that since Gi j, is bipartite and

regular, it is interval colorable. Note also that Gi j, contains most of the edges of G V V[ , ]i j .
We shall make this statement more precise below. If a pair V V( , )i j is not ε‐regular or has
density at most ε7 , let Gi j, be an empty graph. Let

∪
≤ ≤

G G′ = .
i j k

i j
1 <

,

We shall show first that ≤θ G M( ′) . For that let c be a proper edge‐coloring of a
complete graph with vertex set k{1, …, } using colors from k{1, …, } and let, for
∈s k{1, …, },

∪
≤ ≤

G G= .s
i j k c ij s

i j
1 < , ( )=

,

Since Gs is the vertex‐disjoint union of interval colorable graphs, Gs is itself interval
colorable, for all ∈s k{1, …, }. Since ≤ ≤G G′ = s k s1 , we have that ≤ ≤θ G k M( ′) .

We will bound the number of edges from G that are not in G′. We call a pair V V( , )i j ,
≠i j, nontrivial if ≠i 0 and ≠j 0. We have that    G G x x x x− ′ = + + +1 2 3 4, where

• x1 is the number of edges in non‐ε‐regular pairs or with exactly one endpoint in V0,
• x2 is the number of edges induced by Vi 's for ≤ ≤i k0 ,
• x3 is the number of edges in nontrivial ε‐regular pairs with density at most ε7 , and
• x4 is the number of edges in nontrivial ε‐regular pairs with density greater than ε7 that
are not in G′.

Note that ⋯ ≤ ∕V V n kℓ = | | = = | |k1 and ≤V εn| |0 . Moreover, the maximum number
of edges in G V V[ , ]i j is at most ∕n k( )2, for ≤ ≤i j k1 < . Since there are at most εk2

nontrivial pairs that are non‐ε‐regular and at most ≤V V G V ε ε n| ( ) − | (1 − )0 0
2 edges

with exactly one endpoint in V0, we have

≤ ⋅ ≤


 


x εk

n

k
εn n εn εn+ ( − ) 2 .1

2
2

2

AXENOVICH and ZHENG | 5
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In addition,

≤
∕

≤


 


 






x

εn
k
n k εn n

k2
+

2

( )

2
+
2

2

2 2

and

≤ ∕ ≤


 


x

k
ε n k εn

2
7 ( )

7

2
.3

2 2

Finally, for x4, note that for a pair with parts of size ℓ each and with density d ε> 7 ,
the number of edges that are not in G′ is at most ⋅d d εℓ − ( − 7 )2

⋅ ≤ ≤ ( )ε εl ε(ℓ(1 − )) 10 10
n

k
2 2

2
. Thus

≤ ∕ ≤


 


x

k
ε n k εn

2
10 ( ) 5 .4

2 2

Therefore,

≤

≤

≤

   
















G G x x x x

ε
ε

k
ε ε n

m
ε

ε
n

γn

− ′ = + + +

2 +
2
+

1

2
+
7

2
+ 5

1

2
+ 11 +

2

.

1 2 3 4

2
2

2
2

2

This concludes the proof. □

3 | CONSTRUCTION OF A GRAPH WITH A GIVEN
INTERVAL COLORING SPECTRUM

3.1 | Construction and properties of the graph F b T( , )

For positive integers b D, , where ≤b D, let T D= + 25 and the graph F F b T= ( , ) be
formed by a union of five complete bipartite graphs with pairs of parts v v V({ , ′}, )0 , v v V({ , }, )r r ,
v v V({ , }, )l l , u u U({ , }, )r r , u U({ }, )d , as well as additional vertices w w,l r and edges

w v w v w v w v w x w y xu′, ′, , , , ,l r l l r r l r , where ∈y Ur . Here the vertices x v v v v u u w, , ′, , , , , ,l r r l and
wr are distinct and not contained in any of the pairwise disjoint sets V V V U U, , , , ,l r l r0 and Ud.
Moreover V D| | = + 120 , V V| | = | | = 7l r , U D b| | = − + 2r , and U b| | =d . We refer to the edges
incident to Ud as pendant. See Figure 1.

As a part of a larger construction, Sevastianov [22] proved the interval coloring properties of
F . Here we include the arguments for completeness. The following lemma claims that the
interval colorings of F are very rigid. Depending on the smallest label used on F , the colors of
certain edges are fixed. For integers q i j, , , ≤i j, we shall denote the interval of integers

6 | AXENOVICH and ZHENG
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q i q i q j{ + , + + 1, …, + } as q i j+ [ , ] and call it a shift of an interval i j[ , ]. Moreover, for ≤i j

let i j j i−[ , ] = [− , − ].

Lemma 8 (Sevastianov [22]). For any positive integers b and D, where ≤b D and D is
even, the graph F F b T= ( , ) is planar, bipartite, and interval colorable for T D= + 25.
Moreover, for any interval coloring c of F the following properties hold:

1. c F c T( ) = + [0, ]1 , for some integer c1,
2. ∈c w v c c T( ) { + 8, + − 8}l l 1 1 ,
3. if c w v c( ) = + 8l l 1 , then the set of colors on the pendant edges is c b+ 11 + [1, ]1 ; if

c w v c T( ) = + − 8l l 1 , then the set of colors on the pendant edges is c T b+ − 11 − [1, ].1

Remark. The lemma implies that in any interval coloring of F F b T= ( , ) the number of
colors used is T + 1, the colors of the pendant edges form an interval of b numbers either
starting with the first 13th number used on F or ending with the last 13th number used
on F . For example, ifT = 37, b = 2, and for an interval coloring c of F , c F( ) = {3, …, 40},
then the set of colors of the pendant edges is either {15, 16} or {27, 28}.

FIGURE 1 Graph F b T( , ). [Color figure can be viewed at wileyonlinelibrary.com]

AXENOVICH and ZHENG | 7

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.23003 by K

arlsruher Inst F. T
echnologie, W

iley O
nline L

ibrary on [17/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


Proof. To see that F is interval colorable, one can give an explicit coloring c as follows.
We denote by c U z( , ) a set of colors on edges incident to a set of verticesU and a vertex z.
Let c v w( ) = 9l l , c w v( ′) = 10l , c w x( ) = 11l , c xu( ) = 12, c uy D( ) = + 14,
c yu D( ) = + 15r , c yw D( ) = + 16r , c v w D( ′ ) = + 17r , c v w D( ) = + 18r r , and

c U u b

c V v

c V v

c V v D D D

c V v D D D

c V v D D D D D

c V v D D D D D

c U u D D b

c U u D D b

( , ) = {13, 14, …, 12 + },

( , ) = {1, …, 7},

( , ) = {2, …, 8},

( , ) = { + 26, + 25, …, + 20},

( , ) = { + 25, + 24, …, + 19},

( , ) = {8, 9, 10, 11, 12, …, + 15, + 16, + 17, + 18, + 19},

( , ′) = {7, 8, 9, 12, 11, …, + 16, + 15, + 18, + 19, + 20},

( , ) = { + 14, + 13, …, 13 + },

( , ) = { + 15, + 14, …, 14 + }.

d

l

l l

r

r r

r

r r

0

0

Note that for this iterative pattern at V0, one needs D to be even. The pattern for
c V v( , ′)0 is built based on c V v( , )0 by splitting the corresponding ordered set into
consecutive subsets of order 3, 2, 2, …, 2, and 3. The sets are ordered according to the
order of appearance of the respective edges in Figure 1 from left to right. For the parts of
order 2 in c V v( , )0 , the respective sets in c V v( , ′)0 are obtained by flipping the elements.
For example, 11, 12 corresponds to 12, 11. For the sets of order 3 in the beginning and the
end of the list, a shift of labels is used. As a result, the labels 10 and D + 17 are missing
from c V v( , ′)0 . However, they are present on other two edges incident to v′. The respective
vertices in V0 are incident to two edges labeled by consecutive integers:

D D(8, 7), (9, 8), (10, 9), (11, 12), (12, 11), …, ( + 19, + 20).
The main idea of the remaining proof is an observation that in an interval coloring of a

graph the difference between the labels on two edges incident to a vertex z is less than
the degree of z. Note that the degree of the vertex v in F is D + 26. Assume first that
there is an edge e labeled 1 incident to v and that 1 is the smallest label at v. Then there is
an edge e′ incident to v and labeled D + 26.

Claim. Either e is incident to Vl and e′ is incident to Vr or e′ is incident to Vl and e is
incident to Vr .

To prove the claim, note first that e and e′ cannot both be incident to the same set
V V, l0 , or Vr . Indeed, otherwise we consider two edges e1 and e′1 adjacent to e and e′,
respectively, and incident to a vertex r that is v v′, l, or vr , respectively. Then the labels of
e1 and e′1 are at most 2 and at least D + 25, respectively, contradicting the fact that the
degree of r is at most D + 14.

Now, assume that e is incident toV0 and e′ is incident toVl. Consider a shortest path P
joining noncommon endpoints of e′ and e and avoiding v. It has length 4 and passes
through vertices of degrees D2, 8, 3, + 14, and 2, respectively. The respective labels
on the edges of P are at least D + 25, D D+ 25 − 7, + 25 − 7 − 2, and
D D+ 25 − 7 − 2 − ( + 13), respectively. The label on the edge of P incident to e is at
least 3, a contradiction since it must be at most 2. By a similar argument, it is impossible

8 | AXENOVICH and ZHENG
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for e and e′ to be incident to V0 and Vr , to Vl and V0, or to Vr and V0, respectively. This
proves the claim.

Assume first that e is incident to Vl and e′ is incident to Vr .
To prove part 2 of the lemma, consider a path P′ joining noncommon endpoints of e′ and e

and passing through u. Recall that u Ddeg( ) = + 3. The path P′ has eight edges, with the
second and next to last edges being v wl l and w vr r , respectively. As before, the labels on
consecutive edges of P′ have labels at most D D D D2, 9, 11, 12, 14 + , 16 + , 18 + , 25 + ,
respectively. Since the label of the last edge is exactly D + 25, we see that all the edges of P′
have exactly the labels listed: D D D D2, 9, 11, 12, 14 + , 16 + , 18 + , 25 + . So, c w v( ) = 9l l

and c w v D( ) = + 18r r .
To prove part 3 of the lemma, consider vertices x and y. Because of the properties of P′

we see that c yu D( ) = 15 +r . Since c xu( ) = 12, c uy D( ) = 14 + , and u Ddeg( ) = + 3, all
other labels on edges incident to u are greater than 12 and less than D14 + . As the labels
on edges incident to ur form an interval, the largest label on an edge incident to ur is
therefore D15 + , such that the interval is D D b15 + , 14 + , …, 14 + . This implies that
labels on edges incident to u and Ur form an interval of D b− + 2 integers with the
largest one D14 + . Thus, edges incident toUd get labels forming an interval of b integers
with the smallest integer in the interval equal to 13.

Finally, we have seen that c F D( ) = {1, …, + 26}.
If e is incident toVr , a similar to the above argument gives that the edges incident toUd

have labels forming an interval of b integers ending with D14 + . In this case we have the
roles of w v,r r and w v,l l swapped, so c w v D( ) = + 18l l and c w v( ) = 9r r . As before,
c F D( ) = {1, …, + 26}. So, this establishes the lemma in the case when c = 11 .

If ∪ ∪ ≠c V V V v cmin ( , ) = 1l r 0 1 , consider an interval coloring c′ defined by
c z c z c′( ) = ( ) − + 11 , ∈z V F( ), that is, done by an appropriate label shift. Now, we
have that ∪ ∪c V V V vmin ′( , ) = 1l r 0 and we can apply the above considerations. □

3.2 | Construction and properties of the graph k dF( , )

For positive integers k d, where d is even and ≥d 24, let F F k k d= ( , 3 + 1)0
2 . Note that there are

k pendant edges in F0. Further, let F F jdk= (1, 2 + 1)j , j k= 1, …, . Note that each Fj has a single
pendant edge, j k= 1, …, . Let k dF( , ) be formed by first considering pairwise vertex disjoining
copies of F F F, , …, k0 1 and then identifying the jth pendant edge of F0 with a pendant edge of Fj
such that the vertex of degree one of the jth pendant edge of F0 is identified with the vertex of
degree greater than one in the pendant edge of Fj, j k= 1, …, . See Figure 2 for an illustration.

Lemma 9. For any positive integers k d, , ≥d 24, the graph k dF F= ( , ) is interval
colorable and has exactly k gaps, each of size at least d, in its interval coloring spectrum.

Proof. Assume without loss of generality that d is even. Since the Fj's are interval
colorable, one can create an interval coloring of each Fj, j k= 1, …, , such that the
pendant edge gets an arbitrary assigned value by shifting the labels appropriately. So,
consider an arbitrary interval coloring of F0 and then consider interval colorings of
F F, …, k1 such that the colors of the pendant edges equal the colors of the corresponding
pendant edges of F0. This gives an interval coloring of F.

AXENOVICH and ZHENG | 9
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Let T T T+ 1, + 1, …, + 1k0 1 be the number of colors used in interval colorings of
F F, …, k0 , respectively. Let c be an interval coloring of F, assume without loss of generality
that c F T( ) = {1, …, + 1}0 0 . Note that c restricted to respective copies of F F F, , …, k0 1 is an
interval coloring. Instead of saying “a copy of Fj,” we just say Fj for the rest of the proof.
We know from Lemma 8 that there are k pendant edges in F0 whose set of colors is either

k{13, 14, …, 12 + } or T T T k{( + 1) − 12, ( + 1) − 13, …, ( + 1) − 11 − }0 0 0 .
Assume that the pendant edges of F0 get the colors k13, 14, …, 12 + . The situation

when pendant edges in F0 get colors T T T k( + 1) − 12, ( + 1) − 13, …, ( + 1) − 11 −0 0 0 is
completely symmetric resulting in the same number of colors used on F as in the
respective configuration when the pendant edges of F0 get the colors k13, 14, …, 12 + .
Lemma 8 implies that for each j k= 1, …, , the pendant edge of Fj either gets the 13th
color of c F( )j or the last 13th such color. We say that in the former case Fj is of type 1
under c and in the latter case Fj is of type 2 under c.

If Fj is of type 1 under c, ⊆c F c F( ) ( )j 0 since T T k> +j0 . If Fj is of type 2 under c,
∈c F c Fmax ( ) ( )j 0 and c Fmin ( )j must take one of the values on the interval

T T k[− + 25, − + 24 + ]j j , depending on whether the pendant edge of Fj is identified
with the edge of color 13, 14, …, or k12 + , respectively.

If ∈j k[1, ] is the largest index for which Fj is of type 2, then any such interval
coloring of F uses t colors for ∈t T T k T T[ + − 22 − , + − 23]j j0 0 . Moreover, for any t in
this interval there is a corresponding interval coloring of F. Observe that for any
∈j k[1, ], there is an interval coloring of F such that Fj is of type 2 and each Fi is of type 1

for ∈ ⧹i k j[1, ] { }. Thus, ∪ S T T T k T TF( ) = { + 1} [ + − 22 − , + − 23]j
k

j j0 =1 0 0 . Since
T jdk= 2 + 1j , ∈j k[1, ], we see that the interval coloring spectrum has k gaps of sizes at
least ≥dk k d2 − − 23 . □

4 | PROOFS OF THE MAIN RESULTS

Proof of Theorem 2. Let ∕γ0 < < 1 2 andM be the constant guaranteed by Theorem 7. Let
G be a graph on n vertices. Then, by Theorem 7,G is a union of two graphsG′ andG″, where

FIGURE 2 Graph k dF( , ).

10 | AXENOVICH and ZHENG
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≤θ G M( ′) and ≤ G γn″ 2. By a result by Dean, Hutchinson, and Scheinermann [14], the
arboricity of any graph is at most ∕ e 2 , where e is the number of edges in that graph. Since
the interval coloring thickness is at most the arboricity, we have ≤θ G γn( ″) . In particular,
for large enough n, we have that ≤ ≤θ G M γn γn( ) + 2 . This implies in particular that
θ n o n( ) = ( ). □

Proof of Theorem 3. This theorem follows immediately from Lemma 9 using a
construction of the graph k dF( , ). □

Remark. After this paper has been accepted for publication, Axenovich et al. [8] proved
that ≤ ≤∕ ∕n θ n nlog( ) ( )o o1 3− (1) 5 6+ (1) and conjectured that θ n n( ) = o (1) .
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