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The prediction of groundwater nitrate concentration’s response to geo-

environmental and human-influenced factors is essential to better restore

groundwater quality and improve land use management practices. In this

paper, we regionalize groundwater nitrate concentration using di�erent machine

learning methods (Random forest (RF), unimodal 2D and 3D convolutional neural

networks (CNN), and multi-stream early and late fusion 2D-CNNs) so that the

nitrate situation in unobserved areas can be predicted. CNNs take into account not

only the nitrate values of the grid cells of the observation wells but also the values

around them. This has the added benefit of allowing them to learn directly about

the influence of the surroundings. The predictive performance of the models

was tested on a dataset from a pilot region in Germany, and the results show

that, in general, all the machine learning models, after a Bayesian optimization

hyperparameter search and training, achieve good spatial predictive performance

compared to previous studies based on Kriging and numerical models. Based on

the mean absolute error (MAE), the random forest model and the 2DCNN late

fusion model performed best with an MAE (STD) of 9.55 (0.367) mg/l, R2 = 0.43

and 10.32 (0.27) mg/l, R2 = 0.27, respectively. The 3DCNN with an MAE (STD)

of 11.66 (0.21) mg/l and largest resources consumption is the worst performing

model. Feature importance learning from themodelswas used in conjunctionwith

partial dependency analysis of the most important features to gain greater insight

into the major factors explaining the nitrate spatial variability. Large uncertainties

in nitrate prediction have been shown in previous studies. Therefore, the models

were extended to quantify uncertainty using prediction intervals (PIs) derived from

bootstrapping. Knowledge of uncertainty helps the water manager reduce risk and

plan more reliably.
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spatial prediction, groundwater, convolutional neural networks, regionalization, random

forest model, feature engineering

Frontiers inWater 01 frontiersin.org

https://www.frontiersin.org/journals/water
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://www.frontiersin.org/journals/water#editorial-board
https://doi.org/10.3389/frwa.2023.1193142
http://crossmark.crossref.org/dialog/?doi=10.3389/frwa.2023.1193142&domain=pdf&date_stamp=2023-07-13
mailto:divas.karimanzira@iosb-ast.fraunhofer.de
https://doi.org/10.3389/frwa.2023.1193142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frwa.2023.1193142/full
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Karimanzira et al. 10.3389/frwa.2023.1193142

1. Introduction

According to the EU Nitrates Directives, based on data from

2012 to 2015, a quarter of the groundwater bodies in the EU have

a poor chemical status, with ∼13% primarily contaminated by

nitrate above 50 mg/l (EC, 2018). From 2016 to 2018, there was

only a slight improvement, according to the report of the BMU

for 2020 (BMU and BMEL, 2020). Groundwater management is

a difficult task because groundwater processes are slow and the

impact of anthropogenic activities and contaminants from the

surface sometimes appears only in the long term. As a result,

the EU Water Framework Directive (WFD) recommends that

environmental measures be implemented to prevent groundwater

nitrate pollution in the first place and thus contribute to

aquifer quality (Directive 2006/118/EC, 2006; Alcalá and Custodio,

2015). This means that risk-prone areas for contamination from

anthropogenic sources (e.g., agriculture) should be identified using

models, making the modeling and prediction of groundwater

nitrate, even in unmeasured areas, a critical management task

for environmental planning. Implementing such models can

be a significant agri-environmental measure with far-reaching

implications for aquifer planning.

Sustainable groundwater management is only possible if

environmental agencies, groundwater managers, and land users

cooperate and work together in a finger-pointing information

system. The groundwater managers should be able to pinpoint

influencing factors such as land use as a cause for an increase

in nitrate concentration so that the farmers, on the other hand,

can reduce excessive fertilization of crops, generating surplus

nutrient flow that ends up polluting the groundwater system. This

is only possible if the groundwater managers have decision tools

to spatially predict the nitrate concentration. On one hand, there

is a lot of research going on in the field of modeling nitrate in

groundwater bodies, mainly on the basis of geostatistical methods

such as kriging (Wriedt et al., 2019), numerical models (Nguyen

and Dietrich, 2018), and tree-based models such as the random

forest (Breiman, 2001; Knoll et al., 2020; Mandal et al., 2023;

Sarkar et al., 2023) and gradient boost regression trees (Friedman,

2002). Breiman (2001) showed that the random forest model gives

an opportunity for support to water managers and authorities in

developing strategies for measures to reduce nitrate inputs into

the groundwater. On the other hand, an in-depth comparison of

new methods of machine learning, such as tree-based models and

convolutional neural networks for spatial nitrate prediction, is not

yet available.

The spatial distribution of geo-environmental variables

such as elevation, hydraulic conductivity, percolation rate, soil

composition, and land use and management variables (e.g.,

fertilizer applied on the farms) may affect the groundwater nitrate

concentration through material and water transportation

phenomena. Therefore, the spatial distribution of geo-

environmental and management variables is vital in the process

of predicting groundwater nitrate concentration. The interaction

effects, however, between these explanatory variables exhibit a

non-linear dependency on the spatial structures. Alagha et al.

(2014) showed that the groundwater nitrate concentration is

strongly influenced by the observation well’s previous nitrate

concentration, land cover, groundwater recharge, and soil nitrogen

load in the well’s vicinity, which means spatial dependency.

Several studies on the modeling of nitrates in groundwater using

machine learning (mainly the random forest method) have

been conducted. For example, Mendes et al. (2016), Ouedraogo

et al. (2018) and Sarkar et al. (2022) applied random forest

regression to model groundwater nitrate concentration. Boosted

regression trees have been successfully used to fit machine learning

models for predicting groundwater nitrate (Ransom et al., 2017,

2022; Knoll et al., 2020). Although attempts have been made to

incorporate information about an observation’s surroundings

into the predictor variables of a random forest model, this

information still lacks a spatial reference. There has been some

development in models that consider spatial structures for

improving the modeling of interaction effects between influencing

and response variables; for example, Plant (2012) used geostatistical

semivariograms while performing linear regressions. However,

using geostatistical semivariograms means that the interaction

effects in the neighborhoods are based only on distance rather than

on the spatial attributes of the data. Therefore, some methods and

efforts to extract and account for relevant spatial features from the

data are required as a solution to overcome this limitation.

There are mainly two options that can be used to include

spatial features in a tree-based model, such as the random forest

model. One, the columns of the machine learning data can be

extended with a spatial lag, and two, extra features (e.g., buffer

distances to corner and center coordinates of raster extent) can

be engineered and included in the data. Another possibility is

to include coordinates in the model. Unfortunately, this makes

the model location-specific and reduces its transferability to other

regions (Chen et al., 2020).

Convolutional neural networks (CNNs) have the structure

and power to automatically extract spatial features from complex

systems. Because of this, they are widely used and indispensable

in machine vision applications. Spatial features make a significant

part of target object identification in images. Therefore, extensive

studies with CNNs have been performed in this field, for example,

the Single Shot multi-box Detector (SSD) (Liu et al., 2016), the

“You Only Look Once (YOLO)” (Redmon et al., 2016), and the

region-based convolutional neural network (R-CNN) family for

object detection in images (Girshick, 2015). In Barbosa et al.

(2020) different CNN structures were set up to learn relevant

features in the spatial distribution of input data for crop yield

prediction. It was shown that encoding spatial features led to better

performance in the prediction. There have been some studies in

the prediction of soil properties using CNNs, for example, in Ng

et al. (2019), Wadoux (2019), and Padarian et al. (2019) but to

the best knowledge of the authors of this study, no work on the

use of CNNs for learning relevant spatial features from various

geo-environmental and human-influenced factors and modeling

their interaction effects as a regression problem in the field of

groundwater nitrate concentration prediction exists.

Processes influencing groundwater nitrate concentration are

quite complex, and the modeling and estimations are subject to

uncertainties that need to be quantified. Koch et al. (2019) have

shown that nitrate prediction is associated with large uncertainties.

A few studies that consider uncertainty quantification have been
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conducted. For example, in their study on estimating groundwater

nitrate concentration using machine learning methods, Rahmati

et al. (2019) and Knoll et al. (2019) investigated methods

of quantifying uncertainty, and their results showed that the

evaluation of both the model itself as well as its uncertainty

is essential. In their study on modeling nitrates using boosted

regression trees, Ransom et al. (2017) applied bootstrapping, and

Koch et al. (2019) wrote an extension of the random forest

model with geostatistical analysis in order to assess uncertainties.

Basically, most authors create prediction intervals (PIs) to quantify

uncertainty for regression problems (Hüllermeier and Waegeman,

2019). PIs offer upper and lower bounds on the value of a data point

for a given confidence value. PIs can be created based on ensemble

modeling by carrying out multiple runs of the regression problem

and deriving the PI from the prediction variance in a post-hoc

manner or using special architectures such as the quality definition

(QD) (Pearce et al., 2018).

In this study, we compare different methods of machine

learning for making spatial predictions of nitrate concentration

in groundwater based on gridded covariates such as geo-

environmental and human-influenced factors. We assume that

the response of nitrate concentration at an observation point

depends on contextual inputs, i.e., the spatial structure of the

observed geo-environmental and human-influenced factors around

it. We use the ability of CNNs to extract spatial features from

the influencing factors and link them to the response variable.

Unimodal 2DCNN and 3DCNN (Tran et al., 2015), early fusion

and late fusion CNN structures (Padarian et al., 2019; Wang

et al., 2020), are implemented and investigated for this application.

Furthermore, we compare the results to an enhanced random forest

model with engineered features to include spatial information. The

rationale for choosing the RF model for comparison is that its

applicability to groundwater nitrate prediction has been proven

in many studies, e.g., Mendes et al. (2016) and Ouedraogo et al.

(2018). Raster and response point data from a pilot region are

used to test the performance of the different model structures. An

ensemble of models is generated using Bayesian optimization for

uncertainty studies. Greater insight into the model’s predictions

is given by feature importance and partial dependence analysis.

Besides knowing the spatial distribution of nitrate in groundwater

in ungauged regions, groundwater managers would also like to

study scenarios of what happens under certain circumstances to

improve the system. To the best of our knowledge, this has been

neglected in literature. Therefore, it is possible to use the developed

models to conduct scenario studies.

This work contributes to the machine learning community

as follows:

• Use of CNNs to predict the spatial distribution of nitrate

concentration in groundwater.

• Application of leave-one-out encoding to ensure that every

data row in the dataset becomes related to the response

variable after the encoding.

• Utilize different fusion techniques in CNNs to combine

heterogeneous modalities and information from

different sources.

• Feature engineering was performed, whereby the coordinate

grid raster images were generated and added to the

explanatory variable stack for the tree-based method.

• Feature importance and partial dependence analysis provide

more insight into model predictions.

• Uncertainty quantification for CNN-based methods using

prediction intervals and specific value prediction.

The rest of the paper will describe the study area, data, and

methods developed in Section 2. In Section 3, the results and

discussions will follow, and the paper will be closed with some

conclusions, limitations, and future work.

2. Materials and methods

2.1. Study area and available data

Baden-Wuerttemberg (BaWü) is a state in southwestern

Germany, east of the Rhine, with a border to France (Figure 1). It

extends over an area of about 35,752 square kilometers and has a

population of about 11.07 million, according to the 2019 census.

It has one of the largest continuous forest areas, the Black Forest,

which spreads westward and has important agricultural areas in the

upper Rhine Valley with orchards and vineyards. Its hydrogeology

is characterized by different aquifers, including highly productive

porous and fractured aquifers in the west at the border with France

(upper Rhine Valley) as well as the southeastern part (Molasse

basin). The rest comprises mainly of karstified aquifers and less

productive fractured aquifers in the center. About 479 million

m3 of groundwater are extracted in the region. The state office

for the environment operates the state-wide monitoring network

for groundwater, which consists of about 2,200 water quality

measuring points. Every year, data on groundwater quality and

quantity are recorded and evaluated. This data can be viewed at the

website of the Baden-Württemberg State Office for Environment,

Measurements, and Nature Conservation (LUBW).

There have been some studies about spatial nitrate prediction

in the region by the LUBW in 2016, and hence, the results of the

2016 groundwater monitoring programme of the Landesanstalt für

Umwelt Baden-Württemberg (LUBW) will serve as a comparison

of our methods. The LUBW investigated 1,755 monitoring sites

in 2016. The regionalization was done with 1,697 sites using the

method SIMCOP-BW (based on copulas; Bárdossy and Li, 2008).

The study showed that nitrate concentration shows high spatial

variability, and the SIMCOP-BWmethod was not able to represent

small spatial differences.

In order to understand the rationale for the selection of

the predictor variables used in the models, a brief introduction

to groundwater nitrate and relevant processes is given in the

following: Nitrate contamination of groundwater bodies is a

common problem in Germany. Nitrogen is essential for plants,

which is why mineral fertilizers based on potassium, calcium,

sodium, or ammonium nitrate from agriculture are usually

the main source of nitrogen surpluses in the underground.

Precipitation (atmospheric nitrogen deposition) is another
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FIGURE 1

The study area of Baden-Württemberg (BaWü). Generalized hydrogeological map of Baden-Württemberg, southwest Germany, showing karst aquifer

systems and locations (Source: Goldscheider and Goeppert, 2009).

important nitrogen source that includes both anthropogenic

and natural components (e.g., Galloway et al., 2008). It is

also the primary driving force for nitrate leaching in soil and

transport through the vadose zone into groundwater, where

complex attenuation processes occur. Aquifer and soil properties

and biochemical conditions determine nitrate transport in the

direction of groundwater flow and important nitrate removal

processes such as denitrification, which occurs only under

anaerobic conditions and when denitrifying bacteria as well

as reducing agents are present (Rivett et al., 2008). Especially

highly productive sedimentary aquifers often show initially high

availability but limited amounts of such reactive material; hence,

the nitrate removal potential of such aquifers over time is strongly

limited. A solid estimation of the nitrate concentration is ideally

based on data and proxies that describe all of these factors, such as

land use patterns, fertilizer data, weather and climate conditions,

topography, groundwater levels, underground properties (depth

to groundwater, hydraulic conductivity, effective porosity, etc.),

and biochemical conditions (pH, temperature, oxygen (O2)

concentration, iron (Fe), organic content, etc.). However, some of

these data are either unknown or unavailable, which is especially

a problem in the case of data on fertilizer application, presumably

the main source of nitrate input. Other important data (e.g.,

biochemical conditions) are only pointwise measurements without

the potential for solid regionalization to use them as spatial

predictor variables.

Based on this background, the predictors and the data used for

the studies are summarized in Table 1. The nitrate concentration

data was taken from the LUBW annual groundwater data catalog

and measured from 1,566 monitoring wells in the upper aquifer.

The most recent measured values from the years 2016 to 2019 were

used for the study. Table 1 shows the data type, the resolution of the

data, and its source. The main source of the data was the Federal

Institute for Geosciences and Natural Resources (BGR) in Hanover

and the German Federal Agency for Cartography and Geodesy

(BKG). This provided most of the hydrogeological data, such as

hydrological units, soil units, surface geology, etc.

Land use and cover are the principle sources of groundwater

contamination with nitrates. Especially the information on

nitrogen fertilizer load is not directly available, but it is closely

related to land use. Farms, industries, and animal distribution

statistics are very important covariates that can explain nitrate

sources. The CORINE Land Cover (Copernicus Land Monitoring

Service) Dataset was applied for this purpose. Furthermore,

to improve the data, it was combined with the land use

maps from Preidl et al. (2020) and data from Sentinel 2
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TABLE 1 Summary of the data used as predictor variables and nitrate concentration as response variable.

Parameter (variable
name)

Description Data period Resolution[m] Reference

Hydrogeological units
(huek_250_he)

Hydrogeological Map of Germany 1:250,000
(HÜK250). Hydrogeological characteristics
of the upper continuous aquifers

- 30 (BGR and SGD, 2021)

Soil units (swr1000_250) Soil Map of Germany 1:200,000 (BÜK200)
Information on soil type, soil type, spruce
rock at a scale 1:200,000

- 30 (BGR and SGD, 2020)

Percolation rates (buek_1000_lba) Mean Annual Rate of Percolation from the
Soil in Germany.

30 (BGR and SGD, 2003)

Land cover classes (clc5_2018) CORINE Land Cover 2018, min mapping
unit: 5 ha (CLC5), Germany.

2018 30 (BKG and SGD, 2021)

Standardized soil units
(buek_200_bodtyp)

Soil Map of the Federal Republic of Germany
1:1,000,000 (BÜL1000).

- 30 (BGR and SGD, 2013)

Surface geology (gk_1000) Geological Map of Germany 1:1,000,000
(GK1000)

- 30 (BGR and SGD, 2002)

Hydrogeological regions (hyraum) Hydrogeological spatial structure of
Germany (HYRAUM), regions with similar
hydrogeological characteristics

- 30 (BGR and SGD, 2015)

Land cover (preidl) Land cover classification map of Germany’s
agricultural area based on Sentinel-2A data
from 2016

2016 20 (Preidl et al., 2020)

Soil organic matter contents
(humus_1000)

Organic matter contents in top soils of
Germany 1:1,000,000 (HUMUS1000OB)

2007 30 (BGR and SGD, 2007)

Crop types (crop_typ) National-scale crop type maps for Germany
from combined time series of Sentinel-1,
Sentinel-2 and Landsat 8 data (2017, 2018
and 2019)

2019 10 (Blickensdörfer et al., 2021)

Land cover (mundialis) Germany 2019–Land cover classification
based on Sentinel-2 data

2019 10 (Riembauer et al., 2021)

NDVI index (NDVI) MODIS/Terra Vegetation Indices 16-Day L3
Global 250m SIN Grid (250m 16 days NDVI)

2019 230 (Didan, 2021)

Stream distance (stream_dist) Distances to the nearest surface water body
derived from the global river width and depth
database, calculated from Andreadis et al.
(2013).

- 100 (Andreadis et al., 2013)

Nitrate Nitrate concentration form the LUBW
annual groundwater data catalog

2019 LUBW annual groundwater
data catalog

(Riembauer et al., 2021). The crop type data, which indicates the

amount of nitrate fertilizer required, was derived from national

scale crop type map for Germany based on a combined time

series of sentinel-1, sentinel-2, and Landsat 8 data (2017, 2018

and 2019) (Blickensdörfer et al., 2021). Moreover, NDVI data

were used to account for more information on vegetation state.

The geological unit, aquifer, and soil type determine how fast

the nitrates can be transported through them. Together with the

percolation rate, which is determined by precipitation, evaporation

and surface conditions, they are primary covariates that influence

how fast nitrate is transported into the ground from the surface.

Furthermore, the organic matter content of the soil is also used

as an explanatory variable to account for biochemical reaction

processes in the soil. Another important variable is the distance to

the nearest surface water body, which can influence groundwater

quality through surface water–groundwater exchange. This data

was derived from the global river width and depth database,

Andreadis et al. (2013). The list is the result of a broader screening

of variables, based on possible influence on groundwater nitrate

(from our conceptual understanding of the relevant processes),

availability, as well as some preliminary tests. Data, which were

originally in vector format, were rastered in a 30m resolution. For

the CNNmodels, where a common grid of the same resolution and

origin is required, the data were further rastered on a common grid

of 100 m.

Some statistics of the groundwater nitrate concentration

data collected from 1,566 monitoring sites in the area of

study are shown in Figure 2. As indicated by the skew

of 1.5, the data distribution is quite imbalanced. Lower

values of nitrate are more common compared to the higher

values above 50 mg/l, which makes it very difficult for

learning methods.
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FIGURE 2

Frequency density of the nitrate concentration from 1,566 measuring sites (mean from 2016 to 2019).

FIGURE 3

Methodology: from data preparation to regionalization and uncertainty quantification.

2.2. Methodology

Our methodological approach is shown in Figure 3. Firstly, in

step 1—data preprocessing: machine learning data is generated

from the raster data by performing a spatial query and encoding

(if a categorical variable) the values at the locations of the nitrate

observation points. Secondarily, the machine learning models are

created, trained, and validated with the data from step 1 using

10-fold cross validation. Optionally, uncertainties are quantified

using bootstrapping. Each observation point is evaluated, and

the importance of the feature is calculated. Finally, the nitrate

concentration is regionalized for the whole model area by iterating
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over all grid cells of the input variables. All these steps of

the methodological approach will be described in detail in the

following sections.

2.2.1. Data preprocessing
Both tree-based machine learning methods and CNNs require

data for regionalization in a certain format. Data is available in

the form of raster files for the predictor variables and as a point

shape file for the groundwater nitrate, i.e., the response variable.

The first step was data preprocessing and preparation according to

the requirements of each machine learning method (tree-based or

image-based, i.e., CNN). The interquartile range (IQR) method was

applied to the response variable to remove outliers with values of 1.5

times the IQR above the 75% quartile.

In practice, a single groundwater observation well is usually

described as a point with coordinates (x, y) and the corresponding

nitrate value. Other data are represented by a vector of pixel values

from multiple covariate raster images at the same location. For the

tree-based methods, the usual approach is that the raster maps of

the covariates are stacked together and the values at x and y are

extracted for each covariate. Although accurately representing an

observation with a point can be beneficial, it does not take into

account surrounding information, which can be useful, e.g., to

account for transport processes or spatial uncertainties in the input

data. Some authors use a simple approximation by taking a buffer

around the observation well and taking the mean or majority of all

the raster values in the buffer, e.g., Knoll et al. (2019). We tested this

approach with different buffer sizes for the random forest model,

but without any significant improvement in the results.

In this paper, we first perform feature engineering to encode

the spatial position, whereby raster images for coordinate grids X

and Y (see Figure 4A), distances to corner and center coordinates

of the raster extent, are generated and added to the stack of the

covariates (see Figure 4B). Finally, the stack is intersected to get the

common pixels, where data is available for all raster images. Next,

raster values are extracted at the training point locations to create

machine learning data. The random forest model directly utilizes

this data for training.

For the CNNs, a more realistic and different approach is taken

to include spatial context. CNNs work on images, hence they

automatically include information about the vicinity of (x,y) and

fully leverage the spatial context of a nitrate observation. The vector

of covariates (An) is replaced in this case by a 3D array with

dimension (h × w × n), where w and h are the width and height

in pixels of a window centered at point (P), as shown in Figure 5A.

Without a doubt, the area of the covariates influencing the

occurrence of nitrate has a limited extent. Finding this hypothetical

zone of effect is therefore crucial. This would in turn considerably

reduce the size of the inputs supplied to the CNN model as well

as the training time. There are many ways of finding the zone of

influence, e.g., variogramming and spatial correlation analysis, as

illustrated in Padarian et al. (2019). In this paper, the size of the

window for cropping the explanatory raster images is estimated in

two steps: first, using a variogram to find a rough estimate, and then

setting different window sizes around the rough estimate as model

hyperparameters and testing their effects on the prediction results

using Bayesian optimization to get the best window size. Such a

variogram shows the correlation between two spatial data points

over distance, i.e., it is a function of variance over distance. The

variogram included the averaged variability from all the covariates

in order to calculate the zone that best correlates with the response

data. Therefore, for the spatial model, the original raster files

of the covariates are cropped according to the zone around the

observation point, as illustrated in Figure 5B, and put together

along with the response variable to make a sample (Figure 5C).

In this way, a dataset containing an array of cropped explanatory

raster images with their corresponding response values is obtained.

If we want to utilize all the observation points available, we will

run into a problem at the borders with the points that are less than

half the zone distance from the edges. Therefore, all the points that

fulfilled this condition are removed from the dataset.

2.2.2. Encoding categorical predictor variables
Most images of the raster variables applied, e.g., for land cover,

hydrogeological unit or soil type are categorical and therefore

require encoding. Three types of encoders (label, target, and

leave-one-out) are implemented and tested. Firstly, the categorical

predictors are label encoded, as that is the obvious encoding

technique for images. The authors are aware of the limitations

of label encoding, which can cause bias in the data since it

uses number sequencing. Therefore, for the pilot region and the

available data, some tests to see the effect of label encoding

were conducted. Ten datasets are formed in which the number

sequencing for the encoding was randomized. The tests showed

that, for this specific data, there was no significant difference in the

results of the prediction observed.

The second and third encoding techniques used were simple

target encoding and leave-one-out-encoding, which is another type

of target encoder. This type of encoder computes the mean target

x̂ki of category k of an observation i as with the naive target encoder,

but the difference is that the observation j is removed from the

dataset as follows:

x̂ki =

∑

j6=i

(

yj = (xj == k)
)

− yi
∑

j6=i xj == k
(1)

This can be easily realized by the following calculations. The

mean of a category is computed with:

v =
1

Nc

∑

j∈C

yj (2)

where v is the target-encoded value for all samples having category

C, NC is the number of samples having category C, and j ∈ C

indicates all the samples which have category C.

Based on the leave-one-out target encoding, the count of

samples having category C (NC) is computed, and then the sum of

the target values of those categories are computed separately:

Sc =
∑

j∈C

yj (3)
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FIGURE 4

Engineered features (A) coordinate grids X and Y, (B) euclidean distances.

Then, the mean target value for samples having category C,

excluding the effect of sample i, can be computed with

vi =
SC − yi
NC − 1

(4)

By using a leave-one-out scheme, target data leakage is also

prevented. The centers p(x, y) of the extracted patches of categorical

variables are aligned with their target values and used for encoding

in convolutional neural network data. A comparison of the label

and the leave-one-out encoding techniques showed that the leave-

one-out encoding performed better and was more reliable in this

case. The advantage of the leave-one-out encoding in this case

is that it helps to learn useful variations of the data instead of

just splitting it by large categorical variables and ensures that

every row of data in the dataset becomes related to the response

variable after the encoding. This is not the case with the original

categorical variable, which may be related to the output only in

an indirect, latent manner. Furthermore, the interactions between

the predictor variables and the response variable are by definition

represented too.

2.2.3. Random forest model
The tree-based model was based on the random forest

algorithm designed by Leo Breiman, which combines the results

of several decision trees (Breiman, 2001). The random forest is an

extremely random tree regressor, which is different from standard

decision trees (DTs) in the way they are built. When looking for the

best split to separate the samples of a node into two groups, random

splits are drawn for each of the randomly selected features, and the

best split among those is chosen. According to the data structure

described in the data processing section, the RF model was

realized according to how the spatial information was incorporated.

Coordinate grids as engineered features were generated and added

to the raster stack. The RF was implemented and optimized in

Python using Bayesian Optimization (Pedregosa et al., 2011). A

grid of hyperparameter ranges was defined, a random sample was

taken from the grid, and a K-Fold CV was performed with each

combination of values. The random forest model’s parameters

(max_depth, max_features, min_samples_leaf, min_samples_split,

and n_estimators) were tuned during cross validation.

2.2.4. Convolutional neural network based
models

It is very important to find an appropriate way of fusing

heterogeneous information to obtain an optimal response

using CNNs. In literature, there are several ways of combining

such information using CNNs: unimodal (LeCun et al., 2015;

Tran et al., 2015); and fusion networks (Baltrusaitis et al.,

2019; Zeng et al., 2019). Both exhibit different performances

for different tasks. Therefore, in our work, we implemented

the unimodal and fusion architectures, extended them for

multi-task learning, and tested them for our groundwater

nitrate prediction. The final structure and hyperparameters

of the CNNs are obtained using Bayesian optimization

(BayesOpt) (Fernando et al., 2014). Convolutional neural

networks must have their architecture specified in order to

be trained. Options for the training process include learning

rate, window size, and L2 regularization strength. It can
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FIGURE 5

(A) Spatial context in the vicinity of a nitrate observation well (P) for n number of explanatory raster variables. (B) Crops of raster images at the

observation wells by a window of size h×w and (C) cropped images representing n di�erent input variables at the same point marked by the red

square.

be highly challenging and time-consuming to choose and

tune hyperparameters. A good approach for improving the

hyperparameters of deep learning-based regression models is

Bayesian optimization (Fernando et al., 2014). The advantage

of Bayesian optimization is that it can be used to optimize

non-differentiable, discontinuous, and time-consuming

functions. Besides the specification of the neural network

architecture and deciding the options of the training algorithm,

Bayesian optimization is also used to select the most important

predictor variables.

The first two CNN architectures are unimodal networks based

on 2D (Bengio and Lecun, 1997) or 3D convolution (Tran et al.,

2015) have the structure as shown in Figure 6. Hereafter, they

will be called 2DCNN and 3DCNN, respectively. In a unimodal

network such as 2DCNN or 3DCNN, there is no fusion at all,

the inputs are stacked together to form a multi-channel image.
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We stacked our input raster images into channels to create a

h× w×(n Channels) input structure, which goes into the common

layers. These initial common layers are there to extract features that

are common to all the target depth ranges for nitrate prediction.

For the common layers, nfilters1@3x3 filters were applied with no

padding and a stride of 1 in the first convolutional layer with ReLu

activation. As in most networks, this was followed by a 2x2 max-

pooling layer with a stride of 2 and a dropout layer of dropout

rate dropoutrate. This is again fed into the second convolutional

layer where nfilters2@3x3 are used. Next the outputs of the second

convolutional layer are led through individual depth branches,

flattened to a 1-D array and fed to three fully connected ReLU

layers with nnodes neurons each. Finally, outputs are connected to

a fully connected layer of size 1 with a linear activation function,

which are consequently the final prediction for the individual

target depths.

In fusion networks, the different modalities run in different

stream, and the results are aggregated in some way (Figures 7A, B).

Depending on where the fusion takes place, they are named early

(Figure 7A), intermediate or late fusion (Figure 7B). In late fusion,

there is a unimodal network for every explanatory variable and at

the end, the results are combined using some form of aggregation

strategy, e.g., summation, weighted averaging and voting. This has

some advantages that one can use some sophisticated classifiers

for each modality, as well as the use of simple pooling operators

and attention mechanisms (Valada et al., 2020) to combine the

prediction scores of each stream. This is very practical, that is why

the late fusion is used predominantly (Simonyan and Zisserman,

2014). The disadvantage is that you might not take advantages of

correlation which might exists between the covariates variables.

This architecture of late fusion starts with multi-streaming for

the individual channels. For each stream, the common layers of

the different depths start like in the previous network with a

2D convolutional layer with nfilters1@3x3 filters with stride of 1,

followed by a 2x2 max-pooling layer with of stride 2 and a dropout

layer of dropout rate droputrate. This is again fed into the second

2D convolutional layer where nfilters2@3x3 filters are used. After

the second convolutional layer, a fully connected ReLu layer with

nnodes neurons is added to each stream, led through individual

depth branches, flattened to a 1-D array and fed to three fully

connected ReLU layers. Finally, outputs are connected to a fully

connected layer of size 1 with a linear activation function, which

corresponds to the final prediction for each target depth. The late

fusion model will hereafter be called 2DCNN-LF.

If one needs to take advantages of the correlations between

the explanatory variables, it is required to process them together,

and here we come to early fusion concept (Sun et al., 2017).

Each modality is considered independently in the extraction of

features. The disadvantage here is that the input modalities need

to be synchronized so that they can be processed together. For this

architecture, the individual raster images are fed in as M image

inputs and each input is fed into its own 2D convolutional layer

with nfilter1@3x3 filters having a stride of 1. The convolutional

layer, as in the previous architecture, is followed by a 2x2 max-

pooling layer with of stride 2 and a dropout layer of dropout

rate dropoutrate. This is again fed into the second convolutional

layer, where nfilter2@3x3 are used. The outputs of the second 2D

convolutional layer are then flattened, concatenated, and fed to

the independent branches with three fully connected ReLU layers.

Finally, for each branch, outputs are connected to a fully connected

layer of size 1 with a linear activation function, which corresponds

to the final prediction for each target depth. The early fusion model

will hereafter be called 2DCNN-EF.

For all models, the Adam optimizer is used for training.

Aside from the parameters number of filters (nfilterx),

dropoutrate,windowsize, the learning rate was also set as a

hyperparameter to be determined by the Bayesian algorithm

during cross validation for each model.

2.2.5. Model explanation
For environmental managers, water authorities and water

suppliers, it is of practical relevance to know the relationships

between the covariates and the model predictions so that they are

able to set up measures for improving the groundwater quality. To

provide a better understanding of the data and model predictions,

feature importance learning and partial dependence analysis of the

models were performed in this paper. Feature importance provides

a technique to find the best subset of input features by assigning

scores to input features on the basis of their contributions in

predicting a response variable. Redundancy in machine learning

models causes inefficiency in training and introduces unnecessary

noise to the models. For the RF model, feature importance is

provided as a model result, and for the CNN models, Bayesian

model selection was applied, whereby the features were provided

as a variable to be optimized. Partial dependence analysis is a

technique that provides insights into the marginal effect that one

or two input features have on the predictions. By plotting partial

dependences, the relationship between the response variable and

an input feature can be shown, whether it is linear, monotonic, or

more complex in nature.

2.2.6. Uncertainty analysis
The dataset is based on the mean values over a long period

of time; hence there are several outliers which can influence the

conditional mean. To have useful model skill and reliable results,

prediction intervals (PI) should be derived to determine the model

uncertainty. PI is defined based on p-quantiles as the interval

from the lower (PIL =
1−p
2 ) to the upper limit PIu =

1+p
2 ) of

the predictions, in which the true value is expected with a high

probability (p). For the models RF, 2DCNN, 3DCNN, 2DCNN-EF,

and 2DCNN-LF, the uncertainty is presented as p=0.10 prediction

interval from several bootstrapping runs. The upper and the lower

bounds (PIL) of the confidence band is computed as

PIL = x± 1.645
√

σ
2 +MSE. (5)

x is the mean and σ
2is the variance of the N-bootstrap runs,

and MSE is the mean squared error of the fitted models.

The bootstrapping procedure follows two steps: 1) computing

a population of statistics e.g., mean squared error and then 2)

calculating the confidence interval. A population of statistics is

created by running the Bayesian optimization for hyperparameter

search 100 times. Each time a new model with different

hyperparameters is found and its metrics (MSE and variance)
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FIGURE 6

Unimodal CNN architectures for predicting groundwater nitrate concentration based on either 2D or 3D convolution.

calculated. In the second step, the confidence interval is calculated

using the resulting statistics.

Several statistical measures such as themean prediction interval

width (MPIW) in Equation 6 and the prediction interval coverage

probability (PICP) in Equation 7 can be used to evaluate the

uncertainty of the model (Rahmati et al., 2019). The PICP for p

gives the proportion of observed values (yi) within the estimated

PI (Dogulu et al., 2015).

MPIW =
1

n

n
∑

i=1

(

PIui − PIli

)

(6)

PICP =
1

n

n
∑

i=1

C, where C =

{

1&
(

PIui > yi > PIli

)

0&otherwise
(7)

2.3. Experiments and performance
evaluation

For the experiments, the models are implemented in Python

3.10 (Van Rossum and Drake Jr, 1995) with Kera (Chollet, 2015)

and Tensorflow v2.0 (Abadi et al., 2016). A CPU computer was

used for both training and inference. The five models (RF, 2DCNN,

3DCNN, 2DCNN-EF, and 2DCNN-LF) are trained, validated and

tested using known nitrate concentrations at monitoring sites. The

latest available measured values at the monitoring sites of the

period from 2016 to 2019 are used for this purpose. Firstly, all the

nitrate data is cleaned removing outliers, and then preprocessed

as described in Section 2.2.1 for RF and CNN conformity. The

categorical variables are target encoded using the leave-one-out-

encoder as described in Section 2.2.3.

For the random forest model (RF), Bayesian optimization

with cross validation is applied for hyperparameter search,

and the following parameters are found: max_depth =

70, min_samples_leaf = 4, min_samples_split = 10, and

n_estimators= 100.

Bayesian optimization is also used for tuning and selection

of the hyperparameters of the CNN models (2DCNN, 3DCNN,

2DCNN-EF, and 2DCNN-LF). 10-fold cross-validation is used

during the Bayesian optimization, where the data is randomly

partitioned into 10 subsets. The model fitted to the remaining 9

subsets is then validated using each subset in turn. In this way,

models with better generalizability could be established. Several

runs per model could be executed to produce an ensemble of

models (every run produces a different parameter combination).

In the following assessments, the best ensemble member of

each model type is selected for comparison. In the real-world

application, the ensemble members are aggregated to get a median

spatial prediction to consider model uncertainty. For each CNN

model type, the optimization parameters included the window size,

input features, batch size, learning rate, number of nodes in the

layers, and the number of layers.

To evaluate the performance of the various models, a consistent

comparison scheme is required. A good comparison objective is

one that represents the average prediction error of the models

in terms of unit nitrate concentration. The most commonly used

metrics to express this are the mean absolute error (MAE) equation

8, the mean squared error (MSE) equation 9, the coefficient of

determination (R2) equation 10, the standard deviation (stddev)

equation 11, and the model bias equation 15. The MAE gives a

very good idea of the prediction accuracy, but it does not show

whether or not the model tends to overestimate or underestimate

the predictions. This is where the bias comes into play. It allows for

the evaluation of prediction accuracy as well as whether the model

tends to overestimate or underestimate the values of the variable of

interest. The better the prediction, the closer the bias is to zero. It

should be noted that the bias does not account for the variability

of the predictions. On this issue, a useful metric is the MSE. It

provides an indication regarding the dispersion or variability of

the prediction accuracy. Therefore, these metrics were used in

combination to evaluate the performance in terms of accuracy of

the models in this paper.

MAE =

∑n
i=1

∣

∣ŷi − yi
∣

∣

n
, (8)

MSE =

∑n
i=1 (ŷi − yi)

2

n
, (9)

R2 = 1−

∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − yi)

2 , (10)

Bias =

∑n
i=1 (ŷi − yi)

n
, (11)

where n is the number of observations, yi is the value of the ith

observation in the validation/test dataset, yi is the mean value of

the validation/test dataset and ŷi is the predicted value for the

ith observation.

The quality of the PIs produced by the models were evaluated

using the mean prediction interval width (MPIW) and the
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FIGURE 7

CNN Fusion networks (A) early fusion and (B) late fusion.

prediction interval coverage probability (PICP). Thesemetrics were

described in Section 2.2.5 by equations 6 and 7, respectively. The R2

gives us the proportion of the variance in the dependent variable

that is predictable from the independent variables and indicates

the covariance in the model’s prediction. The bias is an indicator

for the average difference between the measured and predicted

groundwater nitrate values, and the variance gives the degree of

spread of the predictions.

3. Results

The models were evaluated on their performance based on six

metrics (MAE, STDdev, R2, Bias, and where appropriate, PICP

and MPIW) after the Bayesian optimization with 10-fold cross

validation, and the results are shown in Table 2. The training and

inference times of the different models are also listed in the table as

a proxy for complexity of the model.
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TABLE 2 Validation results of own the models compared to the results of a previous study of the LUBW in Bárdossy and Li (2008) of the model

SIMCOP-BW.

Model 2DCNN 2DCNN-EF 2DCNN-LF 3DCNN RF SIMCOP-BW
Bárdossy and Li (2008)

MAE (std) (mg/l) 11.37 (0.36) 10.88 (0.22) 10.32 (0.27) 11.66 (0.21) 9.57 (0.39) 13.94

MSE 229.85 205.45 197.97 251.82 168.59 -

RMSE 15.16 14.03 13.98 15.72 12.98 -

R2 0.23 0.24 0.27 0.18 0.43 -

Bias −0.62 −1.87 −0.57 −2.27 0.36 -

PICP 0.87 0.87 0.88 0.89 0.89 -

MPIW(mg/l) 48.3 51.02 53.4 43.8 53.3

Training time (s) 55.56 32.8 23.74 3,967.73 23.05 -

Inference time (s) 0.28 0.44 0.46 3.36 0.23 -

Bold indicates best performing model.

The RF best performed with MAE of 9.57 mg/l. The 2DCNN-

LF had the best MAE of all CNN models with 10.32 mg/l and

standard deviation of 0.27 mg/l. The other models 2DCNN-

EF, 2DCNN and 3DCNN were also in the same performance

region with 10.67 mg/l, 11.37 mg/l and 11.66 mg/l, respectively.

In terms of R2, the RF model with 0.43 outperformed the best

CNN model with 0.27 significantly. This can be due to the fact

that the resolution of the common grid of the input rasters for

the CNN was quite large with 100m. The difference between

the 2DCNN and the 3DCNN can be explained by the fact that

even though the 3DCNN has an extra dimension that enables the

convolution with the filters input-wise, unlike element-wise in the

2DCNN, and can transport the nonlinear information better, it

adds unnecessary tunable parameters that make it more difficult to

define the model structure. The difference between the early fusion

model 2DCNN-EF and the late fusion model 2DCNN-LF shows us

that the non-linear interactions between the inputs play a very big

role because the early fusion focuses more on the more complex

interaction between the covariates and the late fusion focuses more

on the feature extraction from the covariates. The time differences

for training and inferring the different models are in alignment

with their complexity, which is arranged in descending order as

follows: 3DCNN, 2DCNN, 2DCNN-EF, 2DCNN-LF, and RF. High

uncertainties in the models are confirmed by the mean predictive

interval width (MPIW) in the range of 43–54 mg/l in all the

models. The prediction interval coverage probability (PICP) of

0.87–0.89 for the nitrate concentration correspond to α = 0.10,

which is a very good indication that the uncertainty assessment

using bootstrapping was successful. Similar studies on estimation

of groundwater nitrate concentration, e.g., in Ransom et al. (2017),

Knoll et al. (2019), Koch et al. (2019), Rahmati et al. (2019) show

similar uncertainty results.

Scatterplots of the nitrate predictions by the models are shown

in Figures 8A–E. Scatterplots provide insight into the degree of

fitness of themodels, themodel bias, and the variance of predictions

shown in Table 2. The clouds of all the models’ predictions show

scatter, particularly in the high values, which is consistent with the

positive and negative biases of the models with the 2DCNN-LF and

the RF models having the lowest biases of −0.57 mg/l and 0.36

mg/l, respectively (Table 2). The 3DCNN model has less scatter in

the predictions compared with the other model (Figure 8B), which

is expressed by the slightly lower prediction variance of 0.21 mg/l

(Table 2).

After training, the models were used to predict the nitrate

concentration for the whole grid, including unknown regions. For

the CNN-based methods, a sliding window of the size determined

by the Bayesian optimization algorithm is run through all the raster

cells to produce a target dataset, with each sample containing the

N explanatory raster. In this way, a map of nitrate prediction can

be produced.

The regionalization results of the CNN models, and RF

model are shown as raster maps in Figures 9A–E. Please note

the difference maximal values of the color bars. It can be

seen that all the methods produce similar, plausible results for

regionalization (with slight differences), which is in accordance

with results of former studies as well as correspond to our

conceptual understanding. If the sampling locations are overlaid

on the prediction surface, the spatial pattern of the observed

nitrate concentration concurs very well with the predictions (data

not shown). Higher nitrate concentrations are identified in the

northern region, where most of the agricultural activities are

conducted, and in some regions with porous aquifers. The lowest

groundwater nitrate concentration is identified appropriately in

the regions with karstified aquitards, e.g., in the Black Forest

region, where fewer human influences such as agricultural activities

are occurring. High nitrate concentrations can also be found in

the middle Neckar-Taube-Gäuplatten, near the southern edge of

the Black Forest in the northern part of the Swabian Keuper-

Lias Plains, in the middle of the Donau-Iller-Platte and the

bordering northern part of the Voralpien Huegel and Moorland,

in the southern and northern parts of the Oberrhein-Tieflands,

and in the north of the Odenwaldes. These areas are also

mentioned as having high nitrate concentrations in the LfU

report 2001.

Compared to the RF and the SIMCOP-BW (see, Bárdossy

and Li, 2008), methods, the CNN models produce uniform

regionalization images, as can be seen in Figures 9C–F. In the image

of RF (Figure 9A), there are some unnatural artifacts edging the
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FIGURE 8

Measured vs. predicted groundwater nitrate concentrations for (A) RF, (B) 2DCNN, (C) 3DCNN (D) 2DCNN-EF, and (E) 2DCNN-LF models. The red

line represents the ideal predictions and the blue lines, the regression line of the point cloud.

dark green area. The RF, 2DCNN, 3DCNN models get the peaks

much better than the fusion networks.

The RF and the 2DCNN models were used for feature

analysis using partial dependence of model predictions to the

input features. The importance table and the partial dependency

plots of the most important variables are shown in Figures 10,

11, respectively. Looking at the importance table in Figure 10,

results show that groundwater nitrate concentration is dependent

on the combination of several factors, including soil, hydrology,

geomorphology, and land cover or use. The results obtained are

in alignment with the results of previous studies, e.g., Knoll et al.

(2019), Ouedraogo et al. (2019), and Ransom et al. (2022). The

models show that the soil units (“buek_200_lba”), soil type (“buek-

200-bodtyp”), distance from streams or rivers (“StreamDist”),

geology (“gk_1000”), NDVI (“NDVI”), land cover (“clc5_2018”),

and land use (“Mundialis”) are the most crucial covariates for

the nitrate prediction. Unfortunately, land management data

(types of crops and how much fertilizer is used by the farmers)

is not available; such features would definitely improve the

results significantly.

Partial dependence plots (PDP) for all the most important

variables are shown in Figure 11. All the models show similar

relationships, as can be seen. Low values of “buek-1000-lba,”

showing undeveloped land areas like in the region of the Black

Forest where there are no fertilizers and manure additions,

are associated with lower nitrate concentrations. The nitrate

concentration gradually increases from these areas to areas of

agricultural use with orchards and vineyards, and then gets even

higher in areas of urban use. Therefore, the soil units “buek-

1000-lba” have a positive correlation with the groundwater nitrate

concentration. A positive correlation can also be seen between

“buek-200-bodtyp” and nitrate concentration; poorly drained soils

such as clays are associated with low nitrate concentration,

while in more sandy areas, nitrate concentration is high while

cropping is more intense, like in the edges of the Black Forest

in the vineyards. Nitrate concentration is low in areas with

fewer anthropogenic effects, as denoted by low values of “clc5-

2018” and “Mundialis,” and high in areas of intensive agriculture,

which shows a direct dependence of nitrate concentration on land

cover and land use. The opposite relationship applies between

“NDVI” and nitrate concentration. Low nitrate concentrations

are predicted in areas with high “NDVI,” such as the Black

Forest, so there is an inverse relationship between NDVI and

groundwater nitrate concentration. Even though the percolation

rate is not classified as being of high importance, there is a

direct positive correlation between the percolation recharge (“swr-

1000_250_filled”), humus content (“Humus_1000”), and nitrate

concentration. High percolation rates allow for higher nitrate

leaching and, therefore, a higher nitrate concentration in the

groundwater. Higher humus content in soils is favorable for

agricultural activities and therefore associated with higher nitrate

from fertilization.
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FIGURE 9

Regionalization results of the (A) RF, (B) 2DCNN, (C) 3DCNN (D) 2DCNN-EF, and (E) 2DCNN-LF models.

FIGURE 10

Ranking of the importance of the input features. The names are defined in Table 1.

Two-way partial dependence plots for two covariates are

illustrated in Figure 12. It is clear that the soil type “buek-

200-bodtyp” interacts with the percolation rate “buek_1000_lba,”

showing that groundwater nitrate is dependent on the joint

influences of the two covariates. The interactions between these two

covariates are obvious. Based on the leave-one-out target encoding,
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FIGURE 11

Partial dependence plots of important input variables.

for lower values of “buek-200-bodtyp,” i.e., rock and poorly drained

soils such as clay, the nitrate concentration is nearly independent

of the soil type, whereas with decreasing values, i.e., sandy

soils, the relationship becomes stronger and the percolation rate

(buek_1000_lba) increases. Another two-way partial dependence

plot of the input variable geological units (“gk_1000”) and the

percolation rate (“buek-1000-lba”) is illustrated in Figure 12. The

nitrate concentration increases when both variables increase, which

is in alignment with the leave-one-out target encoding applied

here. Both covariates have, for all their values, a consistent direct

relationship with predicted nitrate concentration, as can be seen in

the single plots in Figure 11. There is no significant evidence that

“buek-1000-lba” is interacting with “gk_1000.” The interactions

between “gk_1000” (category: unconfined aquifers) and land use

with anthropogenic presence, nitrate fertilizers from agriculture,

and livestock correlate with high groundwater nitrate, whereas in

areas with “gk_1000” (category: impervious layers), there is less

nitrate leaching. The plot of the humus “Humus_1000” vs. land

use shows the interactions between them. Humus and arable land

in land use are positively correlated with nitrate concentration due

to fertilization.

Figure 13 shows a plot of the uncertainty band width of

the different models for the regionalization. The plots show the

high uncertainty of the predictions, and the comparison between

Figures 9, 13 shows the same behavior that the uncertainties

increase with the amount of the groundwater nitrate concentration.

It can also be seen that the models which perform poor in

terms of specific value prediction are the ones which can tolerate

uncertainties much better as indicated by the uncertainty band

width. In this respect the 3DCNN model (Figure 13C) is more

robust and has the least band width.

4. Discussion

For comparison and positioning of the results in general, there

have been previous studies for regionalization on nitrate in the

study area that can be used, and their results are also listed in

Table 2. Firstly, the study performed by Bárdossy and Li (2008)

with the model SIMCOP-BW shows an MAE of 13.94 mg/l. Our

study’s models produce significantly better results, with an MAE

of <11.70 mg/l by the worst model. However, it must be admitted

that the results are not directly comparable, due to the different

database [slightly more and partly different model sampling sites

and an average higher nitrate values in the study of Bárdossy

and Li (2008)]. The studies on uncertainty is in alignment with

similar previous studies on estimation of groundwater nitrate

concentration, e.g., in Ransom et al. (2017), Knoll et al. (2019),

Koch et al. (2019), Rahmati et al. (2019).
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FIGURE 12

Two-way partial dependence plots of humus, geological surface units, soil type and land cover and land use.

The different results of the CNN architectures can be explained

by their different data processing mechanisms. The unimodal

2DCNN convolves a M × M kernel with the n-stream inputs

to linearly combine the inputs element by element at the first

convolutional layer. In this way, no possible nonlinear interactions

between the covariates are taken into consideration, and the

complete information of the individual streams is not preserved

and passed on to the fully connected layers. The 3DCNN deals with

this limitation by convolving the filter input-wise due to its extra

dimension. Thereby, the information from the different streams is

preserved and transported to the fully connected layers. However,

the output of its first convolutional layer increases with the number

of inputs, which leads to unnecessary tunable parameters in the

network and lower data use efficiency. On the other hand, the

fusion networks address these two issues of the 2DCNN and

3DCNN networks by convolving the inputs independently with the

filters set for each one. When comparing the LF and EFmodels, it is

reasonable to say that LF focuses on better feature extraction from

inputs, while EF can model more complex interactions between

variables. In addition, by reducing the dimension of each input

before combining them, the LF model becomes easier to train,

leading to higher data efficiency.

5. Conclusion

In this paper, different types of machine learning models were

developed and applied to solve the problem of regionalization

of nitrate concentration in groundwater. The models included

a random forest model as a baseline model, and several more

elaborated CNN models, namely, a 2DCNN, a 3DCNN, a 2DCNN

based on an early fusion technique, and a 2DCNN based on

a late fusion technique. Spatial information was included in

the random forest model by extending the feature inputs with

engineered features based on spatial information such as the

distance matrix, whereas spatial autocorrelation was included in

the CNN models via model immanent characteristics. The input

data included spatially continuous information on soil, geology,

hydrogeology, and landuse/landcover, as well as plant activity.

Most of the predictor variables are categorical, therefore, several

encoding techniques were tested for their performance, and the

best results were found with the leave-one-out encoding. This was

applied to all categorical input raster images.

It could be shown that convolutional neural networks, with

their ability to extract spatial features and explicitly take spatial

information from explanatory variables around observations, are

an intuitive way to perform spatial prediction, even though the

random forest model produced comparatively the best result. It

was important to show the effectiveness and data efficiency of the

different CNN setups (2D/3D convolution, early or late fusion)

for groundwater nitrate concentration estimation. Hyperparameter

tuning and selection are very difficult tasks for CNNs. Therefore,

Bayesian optimization with 10-fold cross-validation was used to

automatically find the parameters, which included the features,

the window size, and others. The visualization of the spatial

variability of groundwater nitrate concentration, the interpretation

Frontiers inWater 17 frontiersin.org

https://doi.org/10.3389/frwa.2023.1193142
https://www.frontiersin.org/journals/water
https://www.frontiersin.org


Karimanzira et al. 10.3389/frwa.2023.1193142

FIGURE 13

Uncertainty band width for the di�erent models obtained from bootstrapping as described previously. (A) RF, (B) 2DCNN, (C) 3DCNN, (D) 2DCNN-EF

and (E) 2DCNN-LF model.

of the importance of the covariates, and the analysis of the partial

dependence plots can provide water and environmental managers

with valuable information for understanding local areas that are

susceptible and vulnerable to nitrate leaching in terms of land

use, land management, and geomorphology. Furthermore, nitrate

prediction is associated with uncertainties, as several previous

studies have shown. Therefore, all the models were extended

to quantify uncertainty using prediction intervals (PIs) using

bootstrapping and the results of the models are in alignment with

that of similar previous studies. Quantifying uncertainty offers

several benefits for water managers, such as the reduction of risk

and the ability to plan in a more reliable manner.

The predictive performance of the models was tested on a

dataset from a pilot region in Germany, the State of Baden-

Württemberg and the results show that, in general, all the machine

learning models achieve plausible and good spatial predictive

performance compared to the results of a previous study in this

region, in which the SIMCOP-BW model (Bárdossy and Li, 2008)

was used and produced an MAE of 13.9 mg/l. Based on the mean

absolute error, the 2DCNN-LF and the random forest models

performed the best with an MAE of 10.32 mg/l and 9.55 mg/l,

respectively, and the worst model was the 3DCNN with an MAE of

11.66 mg/l. High model uncertainties were found in groundwater

nitrate prediction as measured by the MPIW between 43 and 54

mg/l and PICP between 0.87 and 0.89. This confirms the results

from previous studies, e.g., Koch et al. (2019) study that the

uncertainties associated with spatial nitrate prediction are large.

The different CNN setups (2D/3D convolution, early or late fusion)

for groundwater nitrate concentration estimation showed that

there are a lot of non-linear interactions between the inputs, as the

unimodal and early fusion models, which all focus on the complex

relationships between the inputs, performed best among the CNN

models. The results of the CNN network comparison cannot be

generalized to other application fields because different results exist

in other references. For example, fusion networks performed better

than unimodal networks in Barbosa et al. (2020) application of

the CNN network to soil prediction, and the early fusion strategy

performed best in Gadzicki et al. (2020) application. Hence, the

decision of which strategy to use unimodal, early fusion, or late

fusion should be made application specific.

The quality of machine learning models is largely determined

by the quality of the input data. As a result, there is potential

for future improvement by using higher resolution raster data,

particularly for land use, as well as data that better depict

nitrogen fertilizers application more accurately. In this paper,

a 2-dimensional regionalization process was performed, but in

the future, 3D regionalization will be aspired for when nitrate

concentrations are available at different depths. Another limitation

of this study is that seasonal changes cannot be assessed. A further

study with more focus on spatio-temporal changes in groundwater

nitrate prediction is desirable, but up to date fails on the availability

of nitrate data with a meaningful temporal resolution. Despite
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having good performance in specific value prediction, the models

described in this paper, produce poor uncertainty estimates. Since

overly confident yet incorrect predictions may be harmful, precise

uncertainty quantification is integral for practical applications of

such networks. To this end, we propose in the next paper a

2DCNN-QD (the 2DCNN uncertainty quality definition), which

not only automatically learns complex dependencies between

different variables and uses them to regionalize nitrate in

unobserved areas but also models the uncertainty of predictions.
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