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ABSTRACT

Proponents of explainable AI have often argued that it constitutes an essential path towards algo-
rithmic fairness. Prior works examining these claims have primarily evaluated explanations based
on their effects on humans’ perceptions, but there is scant research on the relationship between
explanations and distributive fairness of AI-assisted decisions. In this paper, we conduct an empir-
ical study to examine the relationship between feature-based explanations and distributive fairness,
mediated by human perceptions and reliance on AI recommendations. Our findings show that ex-
planations influence fairness perceptions, which, in turn, relate to humans’ tendency to adhere to
AI recommendations. However, our findings suggest that such explanations do not enable humans
to discern correct and wrong AI recommendations. Instead, we show that they may affect reliance
irrespective of the correctness of AI recommendations. Depending on which features an explanation
highlights, this can foster or hinder distributive fairness: when explanations highlight features that
are task-irrelevant and evidently associated with the sensitive attribute, this prompts overrides that
counter stereotype-aligned AI recommendations. Meanwhile, if explanations appear task-relevant,
this induces reliance behavior that reinforces stereotype-aligned errors. These results show that
feature-based explanations are not a reliable mechanism to improve distributive fairness, as their
ability to do so relies on a human-in-the-loop operationalization of the flawed notion of “fairness
through unawareness”. Finally, our study design provides a blueprint to evaluate the suitability of
other explanations as pathways towards improved distributive fairness of AI-assisted decisions.

1 Introduction

AI-based systems are commonly used for informing decision-making in consequential areas, where they provide
human decision-makers with decision recommendations. The human is then tasked to decide whether to adhere to
this recommendation or override it. Researchers, policy makers, and activists have expressed concern over the risk
of algorithmic bias resulting in unfair decisions. As a response, many have advocated for the need for explanations,
under the assumption that they can enable humans to mitigate algorithmic bias. For instance, in a recent Forbes
article [48], it is claimed that “companies [in financial services and insurance] are using explainable AI to make sure
they are making fair decisions about loan rates and premiums.” Others have claimed that explanations “provide a more
effective interface for the human in-the-loop, enabling people to identify and address fairness and other issues” [25].
However, there is often ambiguity regarding what it means for the human to mitigate bias, and a lack of evidence
studying whether this is possible. In this paper, we posit that when concerned with distributive fairness, the central
mechanism that should be studied is the type of reliance1 fostered by the explanations and its effect on disparities in
AI-assisted decisions.

Our work In this work, we examine the effects of feature-based explanations on people’s ability to enhance dis-
tributive fairness, mediated by fairness perceptions and reliance on AI recommendations. To empirically study this,

1We use reliance as an umbrella term for people’s behavior of adhering to or overriding AI recommendations [53].
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we conduct a randomized online experiment and assess differences in perceptions and reliance behavior when partici-
pants see and do not see explanations, and when these explanations indicate the use of sensitive features in predictions
vs. when they indicate the use of task-relevant features. We operationalize this in the context of occupation prediction,
for which we train two AI models with access to different vocabularies. We randomly assign participants to one of
two groups and ask them to predict whether bios belong to professors or teachers: for one group, recommendations
come from an AI model that uses gendered words for predicting occupations, whereas in the other group the AI model
uses task-relevant words. Both AI models provide the same recommendations, and their distribution of errors is in
line with societal stereotypes and the expected risks of bias characterized in previous research [21]. Participants in
both conditions are provided with explanations that visually highlight the most predictive words of their respective AI
models. We also include a baseline condition where no explanations are shown. We test for differences in perceptions
and reliance behavior across conditions, and measure gender disparities for different types of errors.

Findings and implications First, we do not observe any significant differences in decision-making accuracy across
conditions, i.e., participants did not make more (or less) accurate decisions in the conditions with explanations com-
pared to the baseline without explanations. Since participants were incentivized to make accurate predictions, this
implies that explanations did not enable them to make better decisions w.r.t. accuracy.

Second, no condition improved participants’ likelihood to override mistaken vs. correct AI recommendations, but
conditions did affect the likelihood to override recommendations conditioned on the predicted occupation: we see that
participants in the gendered condition overrode more AI recommendations to counter existing societal stereotypes
(e.g., by predicting more women to be professors), irrespective of whether the prediction was correct. Simultaneously,
when explanations highlight only task-relevant words, reliance behavior reinforced stereotype-aligned decisions; e.g.,
by predicting more men to be professors, even when they are teachers.

This, third, has implications for distributive fairness: by prompting reliance behavior that either counters or rein-
forces societal stereotypes embedded in AI recommendations, (i) explanations that highlight gendered words led
to a decrease in error rate disparities (i.e., fostering distributive fairness), whereas (ii) explanations that highlight
task-relevant words led to an increase in error rate disparities (i.e., hindering distributive fairness). These findings em-
phasize the need to differentiate between improved distributive fairness that is driven by a shift in the types of errors
vs. improvements that are driven by humans’ ability to override mistaken AI recommendations.

Fourth, we confirm prior works’ findings by observing that people’s fairness perceptions are significantly lower when
explanations highlight gendered words compared to task-relevant words, and empirically show that people override
significantly more AI recommendations when their fairness perceptions are low. However, we observe that perceptions
solely relate to the quantity of overrides and do not correlate with an ability to discern correct and wrong AI recom-
mendations. Hence, fairness perceptions are only a meaningful proxy for distributive fairness when it is desirable to
override the AI based on its use of sensitive features. However, prior research has shown that the idea of “fairness
through unawareness” is neither a necessary nor sufficient condition for distributive fairness [4, 19, 26, 50, 67, 73].

2 Background

In this section, we provide background on our work and review related literature on explanations, reliance, and fairness.

2.1 Explanations of AI

Goals of explanations AI systems are becoming increasingly complex and opaque, and researchers and policymak-
ers have called for explanations to make AI systems more understandable to humans [32, 55, 65]. Apart from the
central aim of facilitating human understanding, prior research has formulated a wealth of different desiderata that ex-
planations are to provide, most of which center one or more different types of stakeholders of AI systems [28, 55, 78].
For instance, system designers might be interested in facilitating trust in their systems through explanations, whereas
a regulator likely wants to assess a system’s compliance with moral and ethical standards [55]. Different goals may
sometimes be impossible to accomplish simultaneously [96]. Relevant to our work are several desiderata that concern
explanations as an alleged means for better and fairer AI-assisted decision-making [1, 25]; we speak to this in more
detail in § 2.2 and § 2.3. For a comprehensive overview of different aims of explanations, we refer the reader to Langer
et al. [55] and Lipton [59].

Types of explanations The scientific literature distinguishes explanations that aim at explaining individual predic-
tions (local explanations) from those that aim at explaining the general functioning of an AI model (global explana-
tions) [40]. However, it has been argued that combining local explanations can also lead to an understanding of global
model behavior [62]. So-called local model-agnostic explanations, such as LIME [82] or SHAP [61], have gained
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popularity in the literature [1]. When applied to text data, these methods can generate a highlighting of important
words for text classification. In this work, our focus is on these feature-based explanations, and we use LIME in our
experiments, due to its popularity in the literature as well as in practice [9, 31, 34].

Criticism of explanations Most desiderata for explanations are insufficiently studied or met with inconclusive or
seemingly contradictory empirical findings [15, 23, 55]. A major line of criticism stems from the fact that explanations
can mislead people: Chromik et al. [17] discuss situations where system designers may create interfaces or misleading
explanations to purposefully deceive more vulnerable stakeholders like auditors or decision-subjects; e.g., through
adversarial attacks on explanation methods [24, 54, 79, 95]. In the extreme case of placebic explanations (i.e., ex-
planations that convey no information about the underlying AI), Eiband et al. [30] find that people may exhibit levels
of trust similar to “real explanations”. This shows that the sheer presence of explanations can increase people’s trust
in AI. Even in the absence of any malicious intents, Ehsan and Riedl [29] highlight several challenges arising from
unanticipated negative downstream effects of explanations, such as misplaced trust in AI, or over- or underestimating
the AI’s capabilities. In the context of fairness, feature-based explanations may or may not highlight the usage of sen-
sitive information (e.g., on gender) by an AI system, which has been shown to be an unreliable indicator of a system’s
actual fairness [4, 19, 26, 50, 67, 73]. We address this in more detail in § 2.3 due to its importance for our work.

2.2 Explanations and (appropriate) reliance

Effects on accuracy It has been argued that explanations are an enabler for better AI-assisted decision-making [5,
25, 34, 49, 80]. A recent meta-study [85] on the effectiveness of explanations, however, implies that explanations in
most empirical studies did not yield any significant benefits w.r.t. decision-making accuracy; e.g., in [2, 35, 60, 66,
103]. On the other hand, Lai and Tan [51] find that explanations greatly enhance decision-making accuracy for the
case of deception detection. An accuracy increase through explanations may, however, solely be due to (i) an overall
increase in adherence to a high-accuracy AI, or (ii) an overall decrease in adherence to a low-accuracy AI.

Effects on reliance In the context of AI-assisted decision-making, appropriate reliance is typically understood as the
behavior of humans of overriding wrong AI recommendations and adhering to correct ones [71, 87]. Humans’ ability
to override mistaken recommendations has also been referred to as corrective overriding [33]. When considering the
role of explanations in fostering appropriate reliance, it has been claimed that “transparency mechanisms also function
to help users learn about how the system works, so they can evaluate the correctness of the outputs they experience
and identify outputs that are incorrect” [80]. Empirical evidence, however, is less clear: several studies have found
that explanations can be detrimental to appropriate reliance [6, 12, 53, 77, 86, 100], when they increase or decrease
humans’ adherence to AI recommendations regardless of their correctness. These phenomena are commonly referred
to as over- or under-reliance [87].

Conflation of reliance and trust Many studies have treated reliance and trust interchangeably [53], sometimes call-
ing reliance a “behavioral trust measure” [69]. However, definitions of trust are often inconsistent [46, 57, 69], which
makes empirical findings challenging to compare. More importantly, trust and reliance are different constructs [53]:
reliance is the behavior of adhering to or overriding AI recommendations, whereas trust is a subjective attitude regard-
ing the whole system, which builds up and develops over time [70, 81, 101]. It has been argued that trust may impact
reliance [27, 57, 92], but trust is not a sufficient requirement for reliance when other factors, such as time constraints,
perceived risk, or self-confidence, impact decision-making [33, 57, 83]. In our work, we directly measure participants’
reliance behavior and do not assume an equivalence between reliance and trust.

2.3 Explanations and fairness

Goal of promoting algorithmic fairness It is known that AI systems can issue predictions that may result in dis-
parate outcomes or other forms of injustices for certain socio-demographic groups—especially those that have been
historically marginalized [8, 13, 22, 45]. When AI systems are used to inform consequential decisions, it is important
that a human can override problematic recommendations. To that end, the literature has often framed explanations as
an important pathway towards improving algorithmic fairness [5, 20, 25, 55]. Grounded on the organizational justice
literature [18, 36], researchers distinguish different notions of algorithmic fairness, among which are (i) distributive
fairness, which refers to the fairness of decision outcomes [102], and (ii) procedural fairness, which refers to the
fairness of decision-making procedures [58]. Distributive fairness is typically measured in terms of statistical metrics
such as parity in error rates across groups [7, 16]; which is closely related to notions like equalized odds or equal
opportunity [41]. Importantly, there is no conclusive evidence showing that explanations lead to fairer decisions, and
it remains unclear how explanations may enable this [55].
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Fairness perceptions Prior work at the intersection of fairness and explanations has primarily focused on assessing
how people perceive the fairness of AI systems [53, 90, 97]. Empirical findings are mostly inconclusive, stressing
that fairness perceptions depend on many factors, such as the explanation style [10, 25], the amount of information
provided [91], the use case [3], user profiles [25], or the decision outcome [93]. Surprisingly, few works have examined
downstream effects of fairness perceptions on AI-assisted decisions. Our work complements prior studies by centering
distributive fairness and how it relates to fairness perceptions.

Perceptions and sensitive features A series of prior studies have found that knowledge about the features that an AI
model uses influences people’s fairness perceptions [37, 38, 39, 67, 76, 99]. This type of information is, e.g., conveyed
by feature-based explanations like LIME. Specifically, people tend to be averse to the use of what is considered
sensitive information, e.g., gender or race [19, 37, 38, 39, 67, 76, 91]. Interestingly, people’s perceptions towards these
features change after they learn that “blinding” the AI to these features can lead to worse outcomes for marginalized
groups. Similarly, it has been shown that people’s perceptions towards the inclusion of sensitive features switch when
they are told that this inclusion makes an AI model more accurate [37] or equalizes error rates across demographic
groups [42]. In fact, it is known that prohibiting an AI model from using sensitive information is neither a necessary
nor sufficient requirement for fair decision-making [4, 19, 26, 50, 67, 73], and that there exist several real-world
examples where the inclusion of sensitive features can make historically disadvantaged groups like Black people or
women better off [19, 64, 75, 94]. In this work, we build upon these findings on the interplay of fairness perceptions
and sensitive features. Concretely, we assess differences in reliance behavior when participants see explanations that
highlight task-relevant vs. sensitive features, and derive implications for distributive fairness.

3 Study design

In this section, we outline our study design. First, we introduce the task and dataset for our study, then we explain the
experimental setup, and, finally, the data collection process.

3.1 Task and dataset

Task Automating parts of the hiring funnel has become common practice of many companies; especially the sourc-
ing of candidates online [11, 84]. An important task herein is to determine someone’s occupation, which is a prerequi-
site for advertising job openings or recruiting people for adequate positions. This information may not be readily avail-
able in structured format and would, instead, have to be inferred from unstructured information found online. While
this process lends itself to the use AI-based systems, it is susceptible to gender bias and discrimination [11, 21, 84].
De-Arteaga et al. [21] show that these biases can manifest themselves in error rate disparities between genders, and
that error rate disparities are correlated with gender imbalances in occupations. For instance, women surgeons are
significantly more often misclassified than men surgeons because the occupation surgeon is heavily men-dominated.
Similar disparities occur, among others, for professors and teachers. Interestingly, the disparate impact on people per-
sists when the AI model does not consider explicit gender indicators (e.g., pronouns) [21]. Such misclassifications in
hiring have tremendous repercussions for affected people because they may be systematically excluded from exposure
to relevant opportunities. In our study, we instantiate an AI-assisted decision-making setup where participants see
short textual bios and are asked—with the help of an AI recommendation—to predict whether a given bio belongs to
a professor or a teacher. Professors are historically a men-dominated occupation, whereas teachers have been mostly
associated with women [65].2

Dataset We use the publicly available BIOS dataset, which contains approximately 400,000 online bios for 28
different occupations from the Common Crawl corpus, initially created by De-Arteaga et al. [21].3 This data set has
been used in other human-AI decision-making studies as well, such as the ones by Liu et al. [60] or Peng et al. [74].
For each bio in the dataset we know the gender of the corresponding person and their true occupation. Gender is based
on the pronouns used in the bio, and a limitation of this dataset is that it only contains bios that use “she” or “he” as
pronouns, excluding bios of non-binary people. We only consider bios that belong to professors and teachers, which
leaves us with 134,436 bios, out of which 118,215 belong to professors and 16,221 to teachers. In line with current
demographics and societal stereotypes [65, 104, 105], we have more men (55%) than women (45%) bios of professors
and more women (60%) than men (40%) bios of teachers.

2See also [104, 105] on current demographic statistics for professors and teachers in the US.
3The code that reproduces the dataset can be found at https://github.com/Microsoft/biosbias.
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Task-relevant condition Gendered condition

Figure 1: Exemplary bio. A bio of a woman professor, both in the task-relevant (left) and the gendered (right)
condition.

Figure 2: Illustration of our experimental setup. Participants are randomly assigned to one of three conditions. In
each condition, they first complete the task of predicting occupations from 14 short bios, and complete a demographic
survey. In the conditions with explanations, participants are also asked about their fairness perceptions after completing
the task.

3.2 Experimental setup

General setup Participants see 14 bios one by one, each including the AI recommendation as well as an explanation
highlighting the most predictive words. We also include a baseline condition without explanations. The crux of our
experimental design is that we assign participants to conditions where they see recommendations and explanations
either from (i) an AI model that uses task-relevant features, or (ii) an AI model that uses gendered (i.e., sensitive)
features. An exemplary bio including explanations is depicted in Figure 1. Note that the AI predictions and explana-
tions stem from actual AI models that agree in their predictions for the 14 bios shown to participants; we outline the
construction of these models later in this section as well as in § A.

Participants in each condition first complete the task of predicting occupations for 14 bios, and—if assigned to a con-
dition with explanations—answer several questions regarding their fairness perceptions. Since the baseline condition
does not provide any cues regarding the AI’s decision-making procedures, we do not ask about perceptions there.
Finally, participants provide some demographic information. A summary of our general setup in illustrated in Fig-
ure 2. Note that we ask about fairness perceptions after the task is completed, so as to prevent these questions from
moderating reliance behavior [14]. Given that distinguishing professors and teachers based on their bios can be at
times ambiguous and not everyone may be familiar with the differences, we also ask at the beginning of our question-
naires what participants consider the difference between professor and teacher to be. Additionally, after completing
the task, we ask participants an open-ended question on what information they relied on when differentiating profes-
sor and teacher. This way, we were able to confirm—both quantitatively and qualitatively—that participants thought
consistently about this distinction between conditions.

5



PREPRINT

Table 1: Overview of the six types of scenarios employed in our study. Our study includes 14 bios, consisting of
three scenarios of types WTT, WPT, MTP, and MPP, respectively, and one scenario each of types WPP and MTT.

Gender of bio True occupation AI recommendation AI correct? Acronym #Bios

Woman Teacher Teacher 3 WTT 3
Woman Professor Teacher 7 WPT 3
Woman Professor Professor 3 WPP 1

Man Teacher Teacher 3 MTT 1
Man Teacher Professor 7 MTP 3
Man Professor Professor 3 MPP 3

Table 2: Different types of reliance on AI recommendations. We distinguish four types of reliance in AI-assisted
decision-making: humans can adhere to or override correct AI recommendations, or they can adhere to or override
wrong AI recommendations.

Human adherence to AI Human overriding of AI

AI correct Correct adherence Detrimental overriding
AI wrong Detrimental adherence Corrective overriding

Task completion Figure 1 shows the interface that participants in the task-relevant as well as the gendered condition
see during the completion of the task. Explanations involve a dynamic highlighting of important words for either AI
model (task-relevant and gendered); and they also indicate whether certain words are indicative of professor (blue)
or teacher (orange). Lastly, the color intensity shows the importance of a given word in the AI’s prediction. This
interface is similar to related studies on AI-assisted text classification [52, 60, 87]. Participants in the task-relevant
and the gendered condition are confronted with 14 bios similar to the one in Figure 1, whereas participants in the
baseline condition are shown the same set of bios without highlighting of words, and the AI prediction without color
coding. Recall that the AI recommendations are identical across conditions. For each instance, participants are asked
to make a binary prediction about whether they believe that a given bio belongs to a professor or a teacher. We
incentivize accurate predictions through bonus payments (see § 3.3).

In order to be able to assess differences in reliance behavior across conditions, participants see a mix of cases where the
AI is correct and where it is wrong. More specifically, we distinguish six types of scenarios that make up the 14 bios
that participants see—they are summarized in Table 1. We distinguish these scenarios based on three dimensions: (i)
gender of the person associated with a bio; (ii) true occupation of that person; (iii) AI recommended occupation. We
show 3 cases each of correctly recommended women teachers (WTT) and men professors (MPP), as well as 3 cases
of wrongly recommended women professors (WPT) and men teachers (MTP). Note that our focus is on scenarios
where the AI recommendations are in line with gender stereotypes. To preempt the misconception that the AI always
recommends teacher for women and professor for men, we also include one case each of correctly recommended
woman professor (WPP) and correctly recommended man teacher (MTT). In the light of recent findings from Kim
et al. [47], we include the WPP and MTT scenarios early on in our questionnaires. Precisely, we randomize the order
in which participants see the 14 bios, with the restriction that the WPP and MTT scenarios are shown among the first
five. We do not consider scenarios where women teachers are classified as professors, or where men professors are
classified as teachers, because our focus is on the errors that are more likely to occur in practice [21].

In our assessment of reliance behavior, we distinguish four cases, as depicted in Table 2. We refer to cases where
humans adhere to correct AI recommendations as correct adherence, to cases where humans adhere to wrong rec-
ommendations as detrimental adherence, to cases where humans override correct recommendations as detrimental
overriding, and to cases where humans override wrong recommendations as corrective overriding. This taxonomy is
similar to the one proposed by Liu et al. [60] for trust; however, we want to stress the difference between trust and
reliance (see § 2.2).

Fairness perceptions To measure fairness perceptions, we provide a brief introduction and then ask participants’
agreement with three statements, measured on 5-point Likert scales from 1 (“Fully disagree”) to 5 (“Fully agree”). We
operationalize this in our questionnaires similar to Colquitt and Rodell [18] as follows:

6



PREPRINT

The questions below refer to the procedures the AI uses to predict a person’s occupation. Please rate your agreement
with the following statements.

1. The AI’s procedures are free of bias.

2. The AI’s procedures uphold ethical and moral standards.

3. It is fair that the AI considers the highlighted words for predicting a person’s occupation.

Note that items (1) and (2) are taken from the procedural justice construct of Colquitt and Rodell [18] and slightly
rephrased to fit our case of AI-assisted decision-making. These items have been frequently used in other human-AI
studies, e.g., [10, 63, 88, 89]. Colquitt and Rodell [18] propose up to eight measurement items for procedural justice
in the organizational psychology context; however, several of these items are not applicable here. Instead, we amend
our questionnaires by a third item (3) that is more tailored to our experimental setup. Since item (3) is more explicit
and we want to avoid priming, we ask (3) last and without possibility to modify responses for (1) and (2) retroactively.
To obtain a single measure of fairness perceptions per participant, we eventually average ratings across the three items
per participant; and we also confirm scale reliability in § 4.3.

Task-relevant and gendered classifiers We provide intuition for how we constructed the AI models that generate
recommendations and explanations in the task-relevant and gendered conditions. We defer a detailed explanation to
§ A. The general idea is to train two classifiers with access to mutually disjoint vocabularies as predictors. The task-
relevant vocabulary consists of words that appear on average—for both men and women—more often in professor or
teacher bios than in any of the 26 remaining occupations in the BIOS dataset. The resulting vocabulary consists of
words such as faculty, kindergarten, or phd. The gendered vocabulary, on the other hand, consists of words that are
most predictive of gender, which includes, apart from gender pronouns and words such as husband and wife, words
like dance, art, or engineering, which are not evidently gendered but highly correlated with the sensitive attribute.
Finally, we train two logistic regression models4 on a balanced set of professor and teacher bios, and we employ the
TextExplainer from LIME [82] to generate dynamic explanations with highlighting of predictive words.

Selection of bios Recall that participants see 14 bios as outlined in Table 1. These bios are taken from a random
holdout set that our two classifiers make predictions on. Specifically, we choose bios that are reasonably similar in
length and where both classifiers yield the same predicted occupation as well as similar prediction probabilities. We
also require that these predictions probabilities for a bio must not be too high, which aims at eliminating bios that are
“too easy” to classify. The authors then manually screened the remaining contenders to settle on the final 14 bios. The
whole selection process is described in more detail in § B.

3.3 Data collection

Our study has received clearance from an institutional ethics committee. Participants were recruited via Prolific—a
crowdworking platform for online research [68]. We required participants to be at least 18 years of age, and to be
fluent in English. We also sampled approximately equal amounts of men and women; no other pre-screeners were
applied. After consenting to the terms of our study, participants were then randomly and in equal proportions assigned
to one of our three conditions and asked to complete the respective questionnaire. Overall, we recruited 600 lay
people through Prolific. At the time of taking the survey, 13.5% of participants were 18–24 years old, 32.6% were
25–34 years old, 21.3% between 35–44, 13.8% between 45–54, 11.3% between 55–64, and 7.6% were older than
65. Regarding gender, 49.2% identified as women, 48.0% as men, and 1.8% identified as non-binary / third gender,
or preferred not to say. 8.0% of participants are of Spanish, Hispanic, or Latinx ethnicity; and the majority (78.4%)
considered their race to be White or Caucasian, followed by Black or African American (7.0%) and Asian (6.1%).
For their participation, participants were paid on average £10.58 (approximately $12.70 at the time the study was
conducted) per hour, excluding individual bonus payments of £0.05 per correctly predicted occupation. Participants
took on average 10:12min (baseline), 12:51min (task-relevant), and 12:27min (gendered) to complete the survey.

4 Results and analysis

We first present results on the effects of explanations on accuracy as well as overriding behavior. Then, we examine
how reliance behavior translates to distributive fairness. Finally, we assess the role of fairness perceptions.

4We use logistic regression to ensure that explanations are faithful to the underlying model.
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Figure 3: Accuracy by condition.
Accuracy is slightly lower when ex-
planations are provided, compared
to the baseline. Error bars in all bar
plots represent standard errors.

Figure 4: Overrides by condition.
Overrides are higher in the gendered
condition vs. task-relevant and the
baseline.

Figure 5: Overriding behavior.
Both corrective (green border) and
detrimental (red border) overrides
are highest in the gendered condi-
tion.

4.1 Effects of explanations on accuracy and overriding behavior

Effects on accuracy First, we examine how accuracy may be different between the baseline and the conditions
with explanations, task-relevant and gendered. Mean accuracies5 per condition are Mbase = 59.49% (SDbase =
13.11), Mrel = 56.94% (SDrel = 13.86), and Mgen = 57.96 (SDgen = 14.30), as shown in Figure 3.6 Recall
that participants were incentivized through bonus payments to accurately predict occupations. This suggests that
explanations did not aid AI-assisted decision-making when measured in terms of accuracy.

Effects on overriding behavior In Figures 4 and 5, we see that participants in the gendered condition overrode
more AI recommendations than in the task-relevant condition and the baseline. From Figure 5 we further conclude
that both corrective and detrimental overrides are highest in the gendered condition, with detrimental overrides be-
ing significantly higher than in the task-relevant condition and the baseline. We interpret this increase in overrides
further in § 4.2. In the task-relevant condition, we see that overall overrides are lowest across conditions (Figure 4),
with corrective overrides being significantly lower than the baseline (Figure 5). Overall, we conclude that people’s
reliance behavior is affected by how the AI explains its recommendations; notably, people overrode AI recommenda-
tions significantly more often when explanations highlight features that are evidently associated with gender. Across
conditions, we also infer from Figure 5 that participants generally performed more corrective than detrimental over-
rides, and that the ability to perform corrective vs. detrimental overrides did not improve through the provision
of explanations.

4.2 Interplay between explanations, reliance, and distributive fairness

Accuracy by gender Consistent with our findings at the aggregated level (see Figure 3), we do not observe any
accuracy improvements through explanations over the baseline in Figure 6, neither for men nor women bios. We
see that accuracy for men and women bios is approximately equal in the baseline condition, and that accuracy in the
task-relevant condition is relatively lower for women bios, whereas in the gendered condition it is relatively lower for
men, compared to the baseline. This means that both in the task-relevant and the gendered condition, explanations
did not enable people to improve decision-making accuracy, neither for men nor women bios.

Types of overrides by gender and occupation When looking at effects of explanations on overriding behavior by
gender in Figures 7 and 8, no intervention improved participants’ ability to perform corrective vs. detrimental overrides
of AI recommendations, neither for men nor women bios. This is consistent with our findings at the aggregate level
(see Figure 5). Notably, we see that in the gendered (Figure 7) and the task-relevant (Figure 8) condition detrimental
overrides increase over the baseline, whereas corrective overrides remain unchanged.

From Figures 7 and 8 we also see that participants generally overrode more recommendations for women than men
bios. However, this is not due to gender: we show that there are more overrides for men teachers predicted by the AI

5We use M as a shorthand for mean, and SD for standard deviation. We also use the subscripts base, rel, and gen to refer to
the baseline, task-relevant, and gendered conditions, respectively.

6In figures we provide standard errors as error bars, where we compute the measure of interest (e.g., accuracy) for each individual
participant in a given condition, then compute the standard deviation across all participants in that condition, and divide the result
by the square root of the number of participants in that condition.
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Figure 6: Accuracy by condition
and gender of bio. Explanations
do not increase accuracy for either
men or women bios. Task-relevant
explanations decrease accuracy for
women; gendered explanations de-
crease accuracy for men.

Figure 7: Overriding behavior for
men bios. Task-relevant explana-
tions decrease both corrective and
detrimental overrides for men bios,
compared to the baseline; whereas
gendered explanations only increase
detrimental overrides.

Figure 8: Overriding behavior for
women bios. Gendered explana-
tions increase both corrective and
detrimental overrides over the base-
line; task-relevant explanations in-
crease detrimental overrides.

model as teachers than for women professors predicted as professors (see Figures 14 and 15 in § C). Together, these
results suggest that people were overall more prone to do promoting7 overrides; which means that participants
overrode AI recommendations more often when someone was suggested to be a teacher vs. a professor.

Importantly, people’s likelihood to override conditioned on gender and predicted occupation did vary across condi-
tions. By virtue of our study design, we are able to observe stereotype-countering8 corrective overrides, and both
stereotype-aligned and stereotype-countering detrimental overrides. As explained in § 3.2, the motivation for this
design is our focus on studying whether explanations allow humans to correct for stereotype-aligned wrong AI pre-
dictions, which would be the most frequent errors of an occupation prediction model that exhibits gender bias [21].
We see that in the task-relevant condition, people perform fewer corrective overrides for men and the same amount
for women in comparison to the baseline, as shown in Figures 7 and 8. Meanwhile, in the gendered condition partici-
pants perform more corrective overrides for women and the same amount of such overrides for men. This means that
participants in the gendered condition were more likely to perform stereotype-countering corrective overrides
than in the baseline, while participants in the task-relevant condition were less likely to do so.

As for detrimental overrides, we see that they increase in the gendered condition for both men and women bios,
compared to the baseline (Figures 7 and 8). Considering that we do not observe differences in stereotype-aligned
detrimental overrides between conditions (Figures 14 and 15 in § C), we infer that people in the gendered condition
performed more stereotype-countering detrimental overrides, by predicting more men to be teachers and women to be
professors. It is noteworthy that when contrasting corrective and detrimental overrides, we observe that no condition
improved participants’ ability to make stereotype-countering corrective overrides vs. stereotype-countering
detrimental overrides. In the gendered condition, this means that participants became more likely to override an
AI recommendation when it predicted that a woman is a teacher, irrespective of her true occupation. Overall, we
observe reliance behavior in the gendered condition that counters societal stereotypes, whereas in the task-
relevant condition people tend to rely on AI recommendations in a way that reinforces stereotypes. We elaborate
on the implications of this for distributive fairness below.

Implications for distributive fairness We now examine how the observed reliance behavior relates to distributive
fairness w.r.t. disparities in errors between men and women. First, we note that in the baseline condition, people tend
to make more errors that promote men vs. women (58.9% vs. 39.9% in Figure 9), and demote women more than men
(41.3% vs. 21.9% in Figure 10). Note that in the case of men, promoting behavior is stereotype-aligned, whereas
in the case of women such behavior is stereotype-countering; and vice versa for demoting behavior. The resulting
absolute error rate disparities between men and women for the baseline are, hence, 19.0% (promotions) and 19.3%
(demotions), as depicted in Figure 11. From the previous paragraph we know that people in the task-relevant condition
showed a tendency of reinforcing stereotypes, meaning that promotions of men increased more than those of women,
which increased disparities in promotions even further over the baseline (Figure 11, left). Similarly, demotions of
men decreased much more than demotions of women, leading to increased disparities in demotions over the baseline

7We assume here that the occupation of professor is associated with a higher societal status than that of teacher. Hence,
promoting refers to predicting someone to be a professor, whereas demoting means to predict someone to be a teacher.

8Recall that societal stereotypes typically associate men with being professors and women with being teachers [65].
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Figure 9: Bios wrongly classified
by humans as professor. Pro-
motions increase for both men and
women bios in the task-relevant con-
dition, compared to the baseline; and
they only increase for women bios in
the gendered condition.

Figure 10: Bios wrongly classi-
fied by humans as teacher. In the
gendered condition, demotions in-
crease for men bios and decrease for
women bios, compared to the base-
line; and they only decrease for men
bios in the task-relevant condition.

Figure 11: Disparities in error
rates across gender. Gendered ex-
planations decrease both disparities
in promotions (teacher → profes-
sor) and demotions (professor →
teacher) between genders, compared
to the baseline; task-relevant expla-
nations increase disparities.

(Figure 11, right). In conclusion, we note that people’s stereotype-aligned reliance behavior in the task-relevant
condition exacerbated existing disparities in the baseline condition and, hence, hindered distributive fairness.

In the gendered condition, on the other hand, people countered stereotypes, meaning that promotions of women
increased more than for men, reducing existing disparities (Figure 11, left). The most drastic reduction in disparities
happens for demotions (Figure 11, right), since demotions increased for men and decreased for women (Figure 10).
This results in a reduction of disparities in demotions from 19.3% (baseline) to 9.7% (gendered condition). Hence,
people’s stereotype-countering reliance behavior in the gendered condition mitigated existing disparities and,
hence, fostered distributive fairness. It is important to stress that while disparities in error types decreased in the
gendered condition compared to the baseline, this was mostly due to a shift in the types of errors, as opposed to an
increased ability to override mistaken AI recommendations.

4.3 The role of fairness perceptions

Effects of explanations on fairness perceptions Recall that we measure three items regarding fairness perceptions
on 5-point Likert scales, ranging from 1 (unfair) to 5 (fair), see § 3.2. We confirm good scale reliability at a Cronbach’s
alpha [98] value of 0.77. We then take the average of the three item ratings for each participant to obtain a single
measure of fairness perceptions. From Figure 12, we see that participants in the task-relevant and gendered conditions
have significantly different perceptions of fairness towards the AI model. Concretely, we observe Mrel = 3.53
(SDrel = 0.85) in the task-relevant condition, and Mgen = 2.54 (SDgen = 0.98) in the gendered condition. This
means that people who are shown a highlighting of task-relevant words perceived the underlying AI as fairer than
people who were shown gendered words as being important for given AI recommendations. Overall, we confirm prior
works’ findings and conclude that the AI system was perceived as significantly less fair when explanations point
at the use of sensitive features compared to cases where explanations point at task-relevant features.

Relationship of fairness perceptions with overriding behavior When we look at people’s overriding behavior
as a function of their fairness perceptions, we find an overall strong negative relationship (p = 1.10 × 10−11) be-
tween fairness perceptions and overriding of AI recommendations, i.e., participants overrode the AI more often when
their fairness perceptions were lower. Concretely, we see that people overrode on average 52% of AI recommendations
when their fairness perceptions were lowest, and only 31% when their fairness perceptions were highest. This negative
relationship is consistent in both the task-relevant and the gendered condition, and it also persists when we disentan-
gle corrective and detrimental overrides at the aggregate level. Figure 13 shows the relationship of overrides—both
corrective, detrimental, and total—as a function of fairness perceptions for the gendered condition. Dots represent
mean values of overrides for a given level of perceptions, and lines are OLS regressions fitted on the original data.
All slopes in Figure 13 are significantly negative (total: p = 1.97× 10−7; corrective: p = 9.18× 10−5; detrimental:
p = 1.53 × 10−4). We observe that as participants overrode more AI recommendations in the gendered condition,
the rates at which corrective and detrimental overrides increase are approximately equal—in other words, the ratio
of corrective to detrimental overrides is constant across perceptions. Overall, we conclude that people’s fairness
perceptions are associated with their reliance behavior in a way that low perceptions relate to more overrides
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Figure 12: Distribution of fairness perceptions. Fair-
ness perceptions are higher in the task-relevant condition
compared to the gendered condition. Fairness percep-
tions are averages of three items measured on 5-point
Likert scales, resulting in values between 1 (“unfair”)
and 5 (“fair”) with 0.33 increments.

Figure 13: Overrides over perceptions (gendered).
Significant negative relationship between fairness per-
ceptions and overrides, both corrective and detrimental,
as well as overall. Ratio of corrective to detrimental over-
rides is independent of fairness perceptions.

than high perceptions. However, both corrective and detrimental overrides increased as fairness perceptions
decreased. This implies that perceptions are not an indicator of people’s ability to perform corrective vs. detrimental
overrides, but tend to only be associated with the quantity of overrides.

5 Discussion and conclusion

In this work, we holistically examined the relationship between feature-based explanations and distributive fairness
through people’s reliance behavior. We also studied the interplay between these and fairness perceptions, which
have been the focus of prior work when assessing fairness in AI-assisted decision-making. Our findings suggest that
feature-based explanations can have different effects on people’s perceptions, their reliance behavior, and distributive
fairness—depending on whether they highlight the use of task-relevant words or words that are proxies for sensitive at-
tributes. Specifically, we observe that for the task of occupation classification, a highlighting of gendered words leads
to lower fairness perceptions, which are associated with more overrides of AI recommendations. On the other hand,
when task-relevant words are highlighted this leads to higher fairness perceptions, which translate to fewer overrides.
In no case, however, do we observe that explanations improve people’s ability to perform corrective vs. detrimental
overrides, compared to a scenario with no explanations. Finally, we show that feature-based explanations can im-
prove or hinder distributive fairness by fostering shifts in errors that counter or reinforce stereotypes: in the gendered
condition, participants displayed stereotype-countering reliance behavior, while in the task-relevant condition, they
displayed stereotype-aligned behavior. In both these cases, the respective reliance behavior affected both corrective
and detrimental overrides. This means that the conditions affected the likelihood to perform an override conditioned
on the predicted occupation and a bio’s associated gender, but with no relationship to the true occupation. For instance,
the gendered condition fostered more overrides of AI recommendations when a woman was predicted to be a teacher,
irrespective of whether this prediction was correct; meanwhile, in the task-relevant condition participants were less
likely to override recommendations where a man was predicted to be a professor, irrespective of his true occupation.

Our study setup assigned participants to either the gendered or the task-relevant condition; i.e., participants saw either
only explanations with highlighting of gendered words or task-relevant words. We made this choice because we
wanted to measure perceptions of fairness, but eliciting perceptions at an instance level could lead people to anchor
their decisions to their expressed perceptions (or vice versa), which would compromise external validity. Assigning
people to different conditions enabled us to measure perceptions at the aggregate level. In practice, an AI model
might sometimes highlight only sensitive features, sometimes only task-relevant features, and at other times a mix
of both. Future work that studies how instance-level perceptions relate to aggregate-level perceptions, and how these
interdependencies shape reliance behavior could complement our findings. While our study design does not explicitly
account for this, even if perceptions vary at the instance level, our findings suggest that reliance would depend on
the inclusion of sensitive features, which research has shown to be an unreliable signal for assessing algorithmic
fairness [4, 26, 50, 54, 67, 73, 79]. In particular, previous research has shown that “fairness through unawareness”, i.e.,
the exclusion of information that is evidently indicative of a person’s demographics, is neither necessary nor sufficient
for an algorithm to be procedurally fair [54, 67, 79] or to not display bias in terms of distributive fairness [4, 26, 50, 73].
Our work complements these works by showing that feature-based explanations may foster stereotype-aligned reliance
behavior, therefore hindering distributive fairness in AI-assisted decisions.
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A main argument of our work is that claims around explanations fostering distributive fairness must directly measure
the impact of explanations on fairness metrics of AI-assisted decisions, which depend on humans’ reliance behavior.
To this end, our study constitutes a blueprint that can be used to evaluate other types of explanations. Crucially, our
research shows that the mechanism through which reliance behavior affects metrics of fairness matters. In particular,
we show that distributive fairness may improve even in the absence of an enhanced ability to perform corrective
overrides. In other words, the presence of explanations may drive a change in fairness metrics by fostering over-
or under-reliance for certain types of cases. This finding may be particularly important from a design and a policy
perspective, since a common motivation when providing humans with discretionary power to override decisions is an
expectation that they will be able to correct for an AI system’s mistakes [32, 33].

These findings also have implications for the interpretation of studies focused on perceptions of fairness [97]. Our
work shows that fairness perceptions have no bearing on people’s ability to correctively override AI recommendations.
Instead, our study results suggest that low fairness perceptions are associated with more overrides of AI recommenda-
tions, irrespective of their correctness. This may still lead to improvements in distributive fairness but does not indicate
that humans differentiate between correct and wrong AI recommendations. This is important as perceptions are often
used as proxies for trust and reliance [97].

Previous work has emphasized that interpretability is not a monolithic concept, and the design of explanations should
always be grounded on a concrete objective that it helps advance [59]. Our work emphasizes the importance of
designing explanations with the explicit purpose of enabling people to rely on AI recommendations in a way that
enhances distributive fairness, and it casts doubt over the reliability of popular explainability approaches to advance
this goal. To this point, novel findings from ethnographic work studying the use of AI have the potential to inform
alternative designs of explanations. For instance, Lebovitz et al. [56] study the adoption of AI in three healthcare
domains and emphasize the importance of interrogation practices, which are practices used by humans to relate
their own knowledge to AI’s predictions. Other works have studied interventions that help humans reason over the
information that is and is not available to the algorithm [43, 44]. Future studies should explore whether explanations
of the broader socio-technical system better enable humans to perform corrective overrides that foster distributive
fairness.
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Puri, José MF Moura, and Peter Eckersley. Explainable machine learning in deployment. In Proceedings of the
2020 Conference on Fairness, Accountability, and Transparency, pages 648–657, 2020.

12

http://www.fairmlbook.org


PREPRINT

[10] Reuben Binns, Max Van Kleek, Michael Veale, Ulrik Lyngs, Jun Zhao, and Nigel Shadbolt. ‘It’s reducing a
human being to a percentage’; Perceptions of justice in algorithmic decisions. In Proceedings of the 2018 CHI
Conference on Human Factors in Computing Systems, pages 1–14, 2018.

[11] Miranda Bogen and Aaron Rieke. Help wanted: An examination of hiring algorithms, equity, and bias. Upturn,
7, 2018.

[12] Adrian Bussone, Simone Stumpf, and Dympna O’Sullivan. The role of explanations on trust and reliance in
clinical decision support systems. In 2015 International Conference on Healthcare Informatics, pages 160–169.
IEEE, 2015.

[13] Maarten Buyl, Christina Cociancig, Cristina Frattone, and Nele Roekens. Tackling algorithmic disability dis-
crimination in the hiring process: An ethical, legal and technical analysis. In 2022 ACM Conference on Fairness,
Accountability, and Transparency, pages 1071–1082, 2022.

[14] Stephen Chaudoin, Brian J Gaines, and Avital Livny. Survey design, order effects, and causal mediation analy-
sis. The Journal of Politics, 83(4):1851–1856, 2021.

[15] Valerie Chen, Q Vera Liao, Jennifer Wortman Vaughan, and Gagan Bansal. Understanding the role of human
intuition on reliance in human-AI decision-making with explanations. arXiv preprint arXiv:2301.07255, 2023.

[16] Alexandra Chouldechova. Fair prediction with disparate impact: A study of bias in recidivism prediction
instruments. Big Data, 5(2):153–163, 2017.

[17] Michael Chromik, Malin Eiband, Sarah Theres Völkel, and Daniel Buschek. Dark patterns of explainability,
transparency, and user control for intelligent systems. In IUI Workshops, volume 2327, 2019.

[18] Jason A Colquitt and Jessica B Rodell. Measuring justice and fairness. 2015.
[19] Sam Corbett-Davies and Sharad Goel. The measure and mismeasure of fairness: A critical review of fair

machine learning. arXiv preprint arXiv:1808.00023, 2018.
[20] Arun Das and Paul Rad. Opportunities and challenges in explainable artificial intelligence (XAI): A survey.

arXiv preprint arXiv:2006.11371, 2020.
[21] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs, Alexandra Choulde-

chova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai. Bias in bios: A case study of semantic
representation bias in a high-stakes setting. In Proceedings of the Conference on Fairness, Accountability, and
Transparency, pages 120–128, 2019.

[22] Maria De-Arteaga, Stefan Feuerriegel, and Maytal Saar-Tsechansky. Algorithmic fairness in business analytics:
Directions for research and practice. Production and Operations Management, 2022.

[23] Hans de Bruijn, Martijn Warnier, and Marijn Janssen. The perils and pitfalls of explainable AI: Strategies for
explaining algorithmic decision-making. Government Information Quarterly, 39(2):101666, 2022.

[24] Botty Dimanov, Umang Bhatt, Mateja Jamnik, and Adrian Weller. You shouldn’t trust me: Learning models
which conceal unfairness from multiple explanation methods. In SafeAI @ AAAI, 2020.

[25] Jonathan Dodge, Q Vera Liao, Yunfeng Zhang, Rachel KE Bellamy, and Casey Dugan. Explaining models:
An empirical study of how explanations impact fairness judgment. In Proceedings of the 24th International
Conference on Intelligent User Interfaces, pages 275–285, 2019.

[26] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through aware-
ness. In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pages 214–226,
2012.

[27] Mary T Dzindolet, Scott A Peterson, Regina A Pomranky, Linda G Pierce, and Hall P Beck. The role of trust
in automation reliance. International Journal of Human-Computer Studies, 58(6):697–718, 2003.

[28] Upol Ehsan and Mark O Riedl. Human-centered explainable AI: Towards a reflective sociotechnical approach.
In International Conference on Human-Computer Interaction, pages 449–466. Springer, 2020.

[29] Upol Ehsan and Mark O Riedl. Explainability pitfalls: Beyond dark patterns in explainable AI. arXiv preprint
arXiv:2109.12480, 2021.

[30] Malin Eiband, Daniel Buschek, Alexander Kremer, and Heinrich Hussmann. The impact of placebic explana-
tions on trust in intelligent systems. In Extended Abstracts of the 2019 CHI Conference on Human Factors in
Computing Systems, pages 1–6, 2019.

[31] Radwa ElShawi, Youssef Sherif, Mouaz Al-Mallah, and Sherif Sakr. Interpretability in healthcare: A compara-
tive study of local machine learning interpretability techniques. Computational Intelligence, 37(4):1633–1650,
2021.

13



PREPRINT

[32] European Union. General Data Protection Regulation. 2016. URL https://eur-lex.europa.eu/eli/
reg/2016/679/oj.

[33] Riccardo Fogliato, Maria De-Arteaga, and Alexandra Chouldechova. A case for humans-in-the-loop: Decisions
in the presence of misestimated algorithmic scores. Available at SSRN 4050125, 2022.

[34] Leilani H Gilpin, David Bau, Ben Z Yuan, Ayesha Bajwa, Michael Specter, and Lalana Kagal. Explaining
explanations: An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference
on Data Science and Advanced Analytics (DSAA), pages 80–89. IEEE, 2018.

[35] Ben Green and Yiling Chen. The principles and limits of algorithm-in-the-loop decision making. Proceedings
of the ACM on Human-Computer Interaction, 3(CSCW):1–24, 2019.

[36] Jerald Greenberg. A taxonomy of organizational justice theories. Academy of Management Review, 12(1):9–22,
1987.
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and Kevin Baum. What do we want from explainable artificial intelligence (XAI)? A stakeholder perspective
on XAI and a conceptual model guiding interdisciplinary XAI research. Artificial Intelligence, 296:103473,
2021.

[56] Sarah Lebovitz, Hila Lifshitz-Assaf, and Natalia Levina. To engage or not to engage with AI for critical
judgments: How professionals deal with opacity when using AI for medical diagnosis. Organization Science,
33(1):126–148, 2022.

[57] John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human Factors, 46
(1):50–80, 2004.

[58] Min Kyung Lee, Anuraag Jain, Hea Jin Cha, Shashank Ojha, and Daniel Kusbit. Procedural justice in algorith-
mic fairness: Leveraging transparency and outcome control for fair algorithmic mediation. Proceedings of the
ACM on Human-Computer Interaction, 3(CSCW):1–26, 2019.

[59] Zachary C Lipton. The mythos of model interpretability: In machine learning, the concept of interpretability is
both important and slippery. Queue, 16(3):31–57, 2018.

[60] Han Liu, Vivian Lai, and Chenhao Tan. Understanding the effect of out-of-distribution examples and interactive
explanations on human-AI decision making. Proceedings of the ACM on Human-Computer Interaction, 5
(CSCW2):1–45, 2021.

[61] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. Advances in Neural
Information Processing Systems, 30, 2017.

[62] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin, Bala Nair, Ronit Katz,
Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. From local explanations to global understanding with
explainable AI for trees. Nature Machine Intelligence, 2(1):56–67, 2020.

[63] Frank Marcinkowski, Kimon Kieslich, Christopher Starke, and Marco Lünich. Implications of AI (un-)fairness
in higher education admissions: The effects of perceived AI (un-)fairness on exit, voice and organizational
reputation. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 122–
130, 2020.

[64] Sandra G Mayson. Bias in, bias out. The Yale Law Journal, 128, 2018.
[65] JoAnn Miller and Marilyn Chamberlin. Women are teachers, men are professors: A study of student percep-

tions. Teaching Sociology, pages 283–298, 2000.
[66] Menaka Narayanan, Emily Chen, Jeffrey He, Been Kim, Sam Gershman, and Finale Doshi-Velez. How do

humans understand explanations from machine learning systems? An evaluation of the human-interpretability
of explanation. arXiv preprint arXiv:1802.00682, 2018.

[67] Julian Nyarko, Sharad Goel, and Roseanna Sommers. Breaking taboos in fair machine learning: An experi-
mental study. In Equity and Access in Algorithms, Mechanisms, and Optimization, pages 1–11. 2021.

[68] Stefan Palan and Christian Schitter. Prolific.ac – A subject pool for online experiments. Journal of Behavioral
and Experimental Finance, 17:22–27, 2018.

[69] Andrea Papenmeier, Dagmar Kern, Gwenn Englebienne, and Christin Seifert. It’s complicated: The relationship
between user trust, model accuracy and explanations in AI. ACM Transactions on Computer-Human Interaction
(TOCHI), 29(4):1–33, 2022.

[70] Raja Parasuraman and Victor Riley. Humans and automation: Use, misuse, disuse, abuse. Human Factors, 39
(2):230–253, 1997.

[71] Samir Passi and Mihaela Vorvoreanu. Overreliance on AI: Literature review. Technical report, Microsoft
Research, 2022.

[72] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[73] Dino Pedreshi, Salvatore Ruggieri, and Franco Turini. Discrimination-aware data mining. In Proceedings of
the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 560–568,
2008.

15



PREPRINT

[74] Andi Peng, Besmira Nushi, Emre Kiciman, Kori Inkpen, and Ece Kamar. Investigations of performance and
bias in human-AI teamwork in hiring. arXiv preprint arXiv:2202.11812, 2022.

[75] Emma Pierson, Camelia Simoiu, Jan Overgoor, Sam Corbett-Davies, Daniel Jenson, Amy Shoemaker, Vignesh
Ramachandran, Phoebe Barghouty, Cheryl Phillips, Ravi Shroff, et al. A large-scale analysis of racial disparities
in police stops across the United States. Nature Human Behaviour, 4(7):736–745, 2020.

[76] Angelisa C Plane, Elissa M Redmiles, Michelle L Mazurek, and Michael Carl Tschantz. Exploring user percep-
tions of discrimination in online targeted advertising. In Proceedings of the 26th USENIX Security Symposium,
pages 935–951, 2017.

[77] Forough Poursabzi-Sangdeh, Daniel G Goldstein, Jake M Hofman, Jennifer Wortman Wortman Vaughan, and
Hanna Wallach. Manipulating and measuring model interpretability. In Proceedings of the 2021 CHI Confer-
ence on Human Factors in Computing Systems, pages 1–52, 2021.

[78] Alun Preece, Dan Harborne, Dave Braines, Richard Tomsett, and Supriyo Chakraborty. Stakeholders in ex-
plainable AI. arXiv preprint arXiv:1810.00184, 2018.

[79] Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and Zachary C Lipton. Learning to deceive
with attention-based explanations. arXiv preprint arXiv:1909.07913, 2019.

[80] Emilee Rader, Kelley Cotter, and Janghee Cho. Explanations as mechanisms for supporting algorithmic trans-
parency. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–13,
2018.

[81] John K Rempel, John G Holmes, and Mark P Zanna. Trust in close relationships. Journal of Personality and
Social Psychology, 49(1):95, 1985.

[82] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “Why should I trust you?” Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1135–1144, 2016.

[83] Victor Riley. Operator reliance on automation: Theory and data. In Automation and Human Performance:
Theory and Applications, pages 19–35. CRC Press, 2018.

[84] Javier Sánchez-Monedero, Lina Dencik, and Lilian Edwards. What does it mean to ‘solve’ the problem of
discrimination in hiring? Social, technical and legal perspectives from the UK on automated hiring systems. In
Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pages 458–468, 2020.

[85] Max Schemmer, Patrick Hemmer, Maximilian Nitsche, Niklas Kühl, and Michael Vössing. A meta-analysis
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A Construction of task-relevant and gendered classifiers

Here, we explain in more detail how we constructed the AI models that we use for generating recommendations and
explanations in the task-relevant and gendered conditions.

LetW := {w1, . . . , wn} be the set of n words that occur most often across the set of all bios. We chose n = 5000,
i.e.,W contains the top-5000 most occurring words, after removal of (manually defined) stop words. We inferredW
from applying a CountVectorizer [72]. In trial runs, we found that increasing n beyond 5000 does not significantly
change the classifiers’ predictions. We then constructed two logistic regression classifiers, AIrel and AIgen, with
access to mutually disjoint vocabularies: task-relevant words (Wrel ⊂ W) and gendered words (Wgen ⊂ W).

Task-relevant vocabulary We performed the following steps to construct the task-relevant vocabularyWrel:

1. For all i ∈ {1, . . . , n}, compute the average occurrence of word wi ∈ W in bios of men and women

professors and teachers. We call the results ŵP,m
i , ŵP,w

i , ŵT,m
i , and ŵT,w

i , where we use P, T and m,w as a
shorthand for the respective occupations and genders. We also compute ŵ•

i as the average occurrence of wi

for any other occupation • that is not professor or teacher.

2. For given gender g ∈ {m,w}, check whether ŵP,g
i > ŵ•

i or ŵT,g
i > ŵ•

i for all other occupations •, i.e.,
whether the average of word wi in professor or teacher bios of gender g is greater to the average in any other
occupation. If this condition is met, add wi toWg

rel, the set of task-relevant words for gender g.
3. ComputeWm

rel ∩Ww
rel =Wrel as the set of words that are task-relevant for both genders.

After completing steps (1)–(3), we obtain the task-relevant vocabularyWrel of 543 words, including faculty, kinder-
garten, or phd, among others.
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Gendered vocabulary Denote |Bo,g| the amount of bios of occupation o ∈ {P, T} and gender g ∈ {m,w}. We
perform the following steps to construct the gendered vocabularyWgen:

1. Sample equal amounts of bios for men and women professors and teachers. Since min{|Bo,g|} = |BT,m| =
6440, randomly sample 6440 bios for each combination of occupation and gender.

2. Extract features from bios by applying a CountVectorizer with TF-IDF weighting [72].
3. Train a logistic regression to predict gender from the extracted features.
4. Compute the importance of each (weighted) feature based on the absolute magnitude of their corresponding

regression coefficient, and sort the resulting list of words by importance.
5. Include the top-5% most important words inWgen as the set of words that are highly predictive of gender. We

choose the threshold of 5% so as to exclude words that are spuriously correlated with gender (e.g., towards).

After completing steps (1)–(5), we obtain the gendered vocabulary Wgen of 214 words, which include—apart from
gender pronouns and words such as husband and wife—words like dance, art, or engineering, which are not evidently
gendered.

Deploying the classifiers Having established our vocabulariesWrel andWgen, we proceed by training two logistic
regression models on a balanced set of bios containing 50% professors and 50% teachers. Denote |BP | and |BT |
the amounts of bios of occupations P and T . Since |BT | = 16, 221 < |BP |, we randomly sample 16,221 bios of
professors, while preserving the gender distribution from the original data. This yields a dataset of 32,442 bios, 50%
of which we use as a holdout set. We separate a relatively large holdout set because we will eventually use a specific
subset of these bios in our questionnaires (see § B). The resulting classifiers achieve F1 scores of 0.87 (AIrel) and 0.77
(AIgen). For generating dynamic explanations with highlighting of predictive words, we employ the TextExplainer
from LIME [82].

B Selection of bios

Pre-selection As outlined in § 3.2, participants are confronted with 14 bios of professors and teachers. We impose
a series of constraints to select which bios from the holdout set we include in the questionnaires. In particular, for a
given bio to be included in our questionnaires, we require it to satisfy the following:

• Both models AIrel and AIgen must yield the same predicted occupation for the bio.
• The prediction probabilities of AIrel and AIgen towards either occupation must be at most 20% different.

This ensures that both models are comparably certain in their predictions for the given bio.
• The prediction probabilities of AIrel and AIgen towards either occupation must be at most 80%. This aims

at eliminating a large share of bios that are “too easy” to classify.
• To avoid any confounding effects of bios’ length on people’s behavior, we only consider bios of length

between 50 and 100 words.

Enforcing these constraints on bios from the holdout set leaves us with 690 eligible bios (out of 16,221). In a next
step, we decide on the final set for our questionnaires.

Final selection The authors jointly screened these 690 bios and ruled out those that are trivial (e.g., because humans
would easily be able to tell the occupation) or otherwise not suitable (e.g., because of misspellings or excessive use of
jargon). We also discarded bios where explanations would highlight too few or too many words, or where the number
of highlighted words was significantly different between the task-relevant and the gendered condition. This filtering
narrows down the set of eligible bios to 38. The authors then independently screened the resulting 38 bios including
the corresponding explanations, and assigned a rating of green (“in favor of using it”), yellow (“indifferent”), or red
(“in favor of discarding it”), based on both a bio’s content as well as the associated explanation, favoring bios that
were non-trivial but that contained enough information to make a correct prediction. We then decided on the final set
of 14 bios based on majority vote, taking into account the required composition of scenarios, as outlined in Table 1 in
§ 3.2.
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C Overrides of correct anti-stereotypical AI recommendations

Figures 14 and 15 show participants’ overriding behavior for cases where AI recommendations are correct and anti-
stereotypical; i.e., correctly suggesting men to be teachers (MTT) and women to be professors (WPP). We see that
across conditions, overrides are much higher for the MTT case than for the WPP case. Together with the findings
from § 4 this suggests that participants were more prone to override AI recommendations whenever they suggested
someone to be a teacher vs. a professor.

Figure 14: Overrides for MTT. Overrides of AI rec-
ommendations that correctly predict a man teacher to
be a teacher.

Figure 15: Overrides for WPP. Overrides of AI rec-
ommendations that correctly predict a woman profes-
sor to be a professor.
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