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We present a framework that resums threshold-enhanced logarithms,
originating from soft-virtual and next-to-soft virtual (NSV) contributions
in colour-singlet productions, to all orders in perturbation theory. The nu-
merical impacts for these resummed predictions are discussed for the inclu-
sive Drell–Yan di-lepton process up to next-to-next-to-leading logarithmic
accuracy, restricting to only diagonal partonic channels.
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1. Introduction

Performing higher-order predictions in perturbative QCD involves com-
plex Feynman loop integrals and many-body phase-space integrals. Due to
the complexity in the computations, it is a general practise to look for alter-
native approaches by taking certain approximations. One good alternative
is expanding the perturbative series around the production threshold, de-
fined in terms of partonic scaling variable z = Q2

ŝ ≈ 1, where Q denotes the
invariant mass of the final-state system produced in the partonic reactions
with their centre-of-mass energy ŝ. Such an expansion also helps to under-
stand the logarithmic structure in higher-order perturbative results. The
leading term in the expansion, often called soft-virtual (SV) corrections, in-
volves contributions from soft gluon emissions along with the Feynman loop
corrections. At the production threshold, these soft gluon emissions result
in large logarithms of the form of

( lnj(1−z)
1−z

)
+
, j ≥ 0, which needs to be re-

summed in order to get reliable predictions. The resummation framework
for the SV logarithms is well-known [1–6] to the third order in logarithmic
accuracy, thanks to the numerous efforts along this direction.

Recently, there have been numerous efforts to study the structure of
next-to-leading term in the threshold expansion, with the form of lnj(1 −
z), j ≥ 0 and their resummation to all orders in perturbation theory [7–14].
These contributions are called next-to-SV (NSV) logarithms. In [15, 16], we
propose for the first time a framework to study the resummation of NSV
logarithms beyond leading logarithmic (LL) accuracy for the colour singlet
productions, restricting to only diagonal partonic channels. In the present
article, we report on the numerical impacts of the NSV logarithms to third
order in logarithmic accuracy for the Drell–Yan di-lepton process at the
LHC.

2. Next-to-soft virtual framework

In the QCD-improved parton model, the differential invariant-mass dis-
tributions for a heavy colourless final states produced in hadron collisions
take the form of a convoluted integral:

dσ

dQ

(
q2, τ

)
= σ(0)

1∫
τ
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z
Φ̃ab
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z
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F

)
∆ab

(
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F, z
)
, (2.1)

where σ(0) is the Born cross section. The partonic flux Φ̃ab is defined to be

Φ̃ab
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z
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)
=
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)
fb
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zy
, µ2

F

)
, (2.2)
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with the factorisation scale µF and the incoming parton distribution function
fc. Also, τ = q2/S is the hadronic scaling variable with hadronic center-of-
mass energy S and a, b = q, q, g refer to incoming partonic states. The ∆ab is
the perturbatively calculable coefficient functions, which can be decomposed
according to their singular behaviour

∆ab(q
2, µ2

F, z) = δab∆
SV
aa

(
q2, µ2

F, z
)
+∆NSV

ab

(
q2, µ2

F, z
)
+∆reg

ab

(
q2, µ2

F, z
)
.

(2.3)
Each of these terms is perturbatively expanded in terms of the renormalised
strong coupling constant as = g2s /16π

2. For J = SV, NSV, reg, we have
∆

(J)
ab (q2, µ2

F, z) =
∑∞

i=0 a
i
s(µ

2
R)∆

J,(i)
ab (q2, µ2

R, µ
2
F, z) , where µR refers to renor-

malisation scale. The first term in (2.3) is the SV correction, which gets

contributions from distributions of the form of
{
δ(1− z),

(
lnk(1−z)

1−z

)
+

}
with

k ≥ 0. The second term comprises lnk(1− z) , k ≥ 0,

∆
NSV,(i)
ab (z) =

2i−1∑
k=0

∆
reg,(i)
ab,k lnk(1− z) . (2.4)

The rest are regular terms of the form of (1− z)k, k > 0, when z → 1.
The z-space coefficients in the above SV and NSV contributions involve

convolutions, which are convenient to perform in the Mellin N -space. The
soft limit z → 1 in z-space corresponds to the large N limit in the Mellin
space. These large logarithms with as produce O(1) terms at every order in
as, spoiling the truncation of perturbative series. Performing resummation
resolves this by reorganising the series in terms of ω = 2as(µ

2
R)β0 lnN at

every order. The well-known formula for the SV resummation reads [1, 2]:

lim
N→∞

ln∆SV
cc,N = ln g̃c0(as

(
µ2
R

)
) + lnNgc1(ω) +

∞∑
i=0

ais
(
µ2
R

)
gci+2(ω) , (2.5)

where ∆cc,N =
∫ 1
0 dzzN−1∆cc(z). In (2.5) the resum coefficients gci (ω) are

universal and g̃c0(as(µ
2
R)) collect N independent terms. Inclusion of succes-

sive terms in the expansion predicts the leading-logarithms (LL), next-to-LL
(NLL), next-to-NLL (NNLL), and so on to all orders in as. Including these
higher logarithmic corrections improves the fixed-order results.

Following the formalism described in [15–18], we systematically resum
NSV logarithms for the inclusive Drell–Yan di-lepton process, restricting
to only the diagonal channels. In addition to threshold logN , we include
the O(1/N) terms in the large-N limit, in order to resum SV and NSV
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logarithms. Similar to the SV case in (2.5), the NSV resum formula reads

lim
N→∞

ln∆NSV
cc̄,N =

1

N

∞∑
i=0

ais
(
µ2
R

) (
ḡci+1(ω) +

i∑
k=0

hcik(ω) lnk N
)
, (2.6)

with NSV resum coefficients ḡqi (ω) and hqik(ω). These coefficients for the
Drell–Yan process to NNLL are presented in the appendices of [17]. In
order to avoid double counting threshold logarithms, we finally match the
resummed results in the N -space to the fixed order corrections

σNnLO+NnLL
N = σNnLO

N + σ(0)
∑
ab

c+i∞∫
c−i∞

dN

2πi
(τ)−Nδabfa,N

(
µ2
F

)
fb,N

(
µ2
F

)
×
(
∆cc̄,N

∣∣∣
NnLL

−∆cc̄,N

∣∣∣
tr NnLO

)
, (2.7)

where σNnLO
N is the Mellin moment of dσ/dQ to the nth order in as. Also,

NnLL denotes the SV+NSV resummation, while NnLL refers to the resum-
mation of only SV logarithms.

3. Phenomenology

The numerical setup we use for our study is detailed in [17]. In brief,
we choose the center-of-mass energy of 13 TeV at LHC with MMHT2014
parton densities, the as is evolved to µR in MS-scheme and the electro-
weak parameters are chose to be: Z-boson mass = 91.1876 GeV and width
= 2.4952 GeV, sin2 θW = 0.22343 and the fine structure constant α = 1/128.

We begin with comparing fixed order corrections to the NSV resummed
predictions, using the “K-factor” defined by K (Q) = dσ

dQ

/
dσLO

dQ at µR =

µF = Q . It is clear from Fig. 1 (left panel) that the resummed predictions
improve the fixed order results. Quantitatively, for example at Q = 2000
GeV, the inclusion of NLL enhances the NLO by 5.2% and NNLL modifies
NNLO by 1.2%. Further, the NLO+NLL curve is closer to NNLO, indicat-
ing that the inclusion of higher logarithms mimics the entire second-order
contributions.

To further see the effects of NSV logarithms in particular, we compare
them against SV resummed results in the right panel of Fig. 1. In higher
orders, both SV and NSV resum results are found to be closer, accounting
for the better perturbative convergence upon including NSV effects.
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Fig. 1. K-factors (left) up to the NNLO+NNLL level at the central scale Q = µR =

µF and (right) for SV and NSV comparison.

To assess the impact of renormalisation and factorisation scales, we esti-
mate the error using the canonical 7-point variation, with 1

2 ≤
(µR

Q , µF
Q

)
≤ 2,

excluding the extreme points (0.5,2) and (2,0.5). This is depicted in Fig. 2,
where the resummed results are found to be not much improved. The rea-
son could be due to the lack of an off-diagonal counter part, which will be
evident in subsequent analysis.

Fig. 2. 7-point scale variation of the resummed results for the central scale choice
(µR, µF) = (1, 1)Q for 13 TeV LHC.

In order to have a better understanding, we study the µF and µR scale
variations separately as a function of τ in Fig. 3. The error band due to the
µF variation has close resemblance to those of 7-point scales, suggesting that
the uncertainty is largely due to µF variations. This is sensible, since the µF

scales compensate between different partonic channels, which is not possible
in this case due to the lack of off-diagonal resummed results. This is further
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emphasised by the µR-variation plot, where the partonic channels do not
mix. We see the predictions are less sensitive to the µR scale as expected.
This essentially hints towards the importance of off-diagonal resummation,
which requires further study.

Fig. 3. µF scale variation (left) of the resummed results with µR held fixed and µR

scale variation (right) with µF held fixed at Q for 13 TeV LHC.
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