
Finding Optimal Diverse Feature Sets

with Alternative Feature Selection

Jakob Bach
Karlsruhe Institute of Technology (KIT), Germany

jakob.bach@kit.edu

Abstract

Feature selection is popular for obtaining small, interpretable, yet
highly accurate prediction models. Conventional feature-selection meth-
ods typically yield one feature set only, which might not suffice in some
scenarios. For example, users might be interested in finding alternative
feature sets with similar prediction quality, offering different explanations
of the data. In this article, we introduce alternative feature selection
and formalize it as an optimization problem. In particular, we define
alternatives via constraints and enable users to control the number and
dissimilarity of alternatives. Next, we analyze the complexity of this op-
timization problem and show NP-hardness. Further, we discuss how to
integrate conventional feature-selection methods as objectives. Finally,
we evaluate alternative feature selection with 30 classification datasets.
We observe that alternative feature sets may indeed have high prediction
quality, and we analyze several factors influencing this outcome.

Keywords: feature selection, alternatives, constraints, mixed-integer program-
ming, explainability, interpretability, XAI

1 Introduction

Motivation Feature-selection methods are ubiquitous for a variety of rea-
sons. By reducing dataset dimensionality, they lower the computational cost
and memory requirements of prediction models. Next, models may generalize
better after removing irrelevant and spurious predictors. Finally, prediction
models may become simpler [61], improving interpretability.

Most conventional feature-selection methods only return one feature set [11].
These methods optimize a criterion of feature-set quality, e.g., prediction per-
formance. However, besides the optimal feature set, there might be other, dif-
ferently composed feature sets with similar quality. Such alternative feature sets
are interesting for users, e.g., to obtain several diverse explanations. Alterna-
tive explanations can provide additional insights into predictions, enable users
to develop and test different hypotheses, appeal to different kinds of users, and
foster trust in the predictions [50, 108].

1

ar
X

iv
:2

30
7.

11
60

7v
1

 [
cs

.L
G

]
 2

1
Ju

l 2
02

3

https://orcid.org/0000-0003-0301-2798
mailto:jakob.bach@kit.edu

Problem statement This article addresses the problem of alternative feature
selection, which we informally define as follows: Find multiple, sufficiently differ-
ent feature sets that optimize feature-set quality. We provide formal definitions
in Section 3.2. This problem entails an interesting trade-off: Depending on how
different the alternatives should be, one might have to compromise on quality.
In particular, a stronger dissimilarity requirement might require selecting more
low-quality features in the alternatives.

Two points are essential for alternative feature selection, which we both
address in this article. First, one needs to formalize and quantify what an alter-
native feature set is. In particular, users should be able to control the dissim-
ilarity of alternatives and hence the aforementioned quality trade-off. Second,
one needs an approach to find alternative feature sets efficiently. Ideally, the
approach should be general, i.e., cover a broad range of conventional feature-
selection methods, given the variety of the latter [15, 61].

Related work While finding alternative solutions has already been addressed
extensively in the field of clustering [9], there is a lack of such approaches for
feature selection. Only a few feature-selection methods target at obtaining mul-
tiple, diverse feature sets [11]. In particular, techniques for ensemble feature
selection [92, 96] and statistically equivalent feature subsets [56] produce multi-
ple feature sets but not optimal alternatives. These approaches do not guarantee
the diversity of the feature sets, nor do they let users control diversity. In fields
related to feature selection, the goal of obtaining multiple, diverse solutions has
been studied as well, e.g., for subspace clustering [42, 72], subgroup discov-
ery [59], subspace search [102], or explainable-AI techniques [2, 49, 71, 91] like
counterfactuals. These approaches are not directly applicable or easily adapt-
able to feature selection, and most of them provide limited or no user control
over alternatives, as we will elaborate in Section 4.

Contributions Our contribution is fourfold.
First, we formalize alternative feature selection as an optimization problem.

In particular, we define alternatives via constraints on feature sets. This ap-
proach is orthogonal to the feature-selection method itself so that users can
choose the latter according to their needs. This approach also allows integrat-
ing other constraints on feature sets, e.g., to capture domain knowledge [6, 32].
Finally, this approach lets users control the search for alternatives with two
parameters, i.e., the number of alternatives and a dissimilarity threshold.

Second, we analyze the computational complexity of this optimization prob-
lem. We show NP-hardness, even for a simple notion of feature-set quality.

Third, we discuss how to solve this optimization problem. To that end, we
describe how to integrate different categories of conventional feature-selection
methods in the objective function of the optimization problem.

Fourth, we evaluate alternative feature selection with comprehensive exper-
iments. In particular, we use 30 classification datasets from the Penn Machine
Learning Benchmarks (PMLB) [82, 90] and five feature-selection methods. We

2

focus our evaluation on the feature-set quality of the alternatives relative to our
user parameters. We publish all our code1 and experimental data2 online.

Experimental results We observe that several factors influence the quality
of alternatives, i.e., the dataset, feature-selection method, notion of feature-set
quality, and parameters for searching alternatives. As expectable, feature-set
quality tends to decrease with the number of alternatives and the dissimilar-
ity threshold for alternatives. Thus, these parameters allow users to control
the trade-off between dissimilarity and quality of alternatives. Also, even no
valid alternative may exist if the parameter values are too strict. Computa-
tionally, a sequential search for multiple alternatives was significantly faster
than a simultaneous one while yielding a similar quality. Finally, we observe
that the prediction performance of feature sets may only weakly correlate with
the quality assigned by feature-selection methods. In particular, seemingly bad
alternatives regarding the latter might still be good regarding the former.

Outline Section 2 introduces notation and fundamentals. Section 3 describes
and analyzes alternative feature selection. Section 4 reviews related work. Sec-
tion 5 outlines our experimental design, while Section 6 presents the experimen-
tal results. Section 7 concludes. Appendix A contains supplementary materials.

2 Fundamentals

In this section, we introduce basic notation (cf. Section 2.1) and review different
methods to measure the quality of feature sets (cf. Section 2.2).

2.1 Notation

X ∈ Rm×n stands for a dataset in the form of a matrix. Each row is a data
object, and each column is a feature. F = {f1, . . . , fn} is the corresponding set
of feature names. We assume that categorical features have already been made
numeric, e.g., via one-hot encoding. X·j ∈ Rm denotes the vector representation
of the j-th feature. y ∈ Y m represents the prediction target with domain Y ,
e.g., Y = {0, 1} for binary classification or Y = R for regression.

In feature selection, one makes a binary decision sj ∈ {0, 1} for each feature,
i.e., either selects it or not. The vector s ∈ {0, 1}n combines all these selection
decisions and yields the selected feature set Fs = {fj | sj = 1} ⊆ F . The
function Q(s,X, y) returns the quality of such a feature set. Without loss of
generality, we assume that this function should be maximized.

1https://github.com/Jakob-Bach/Alternative-Feature-Selection
2https://doi.org/10.35097/1623

3

https://github.com/Jakob-Bach/Alternative-Feature-Selection
https://doi.org/10.35097/1623

2.2 Measuring Feature (Set) Quality

There are different ways to evaluate feature-set quality Q(s,X, y). We only give
a short overview here; see [15, 61, 81] for comprehensive studies and surveys
of feature selection. A conventional categorization of feature-selection methods
distinguishes between filter, wrapper, and embedded methods [36].

Filter methods Filter methods evaluate feature sets without training a pre-
diction model. Univariate filters assess each feature independently. They often
assign a score to each feature, e.g., the absolute Pearson correlation or the mu-
tual information between a feature and the prediction target. Such methods
ignore potential interactions between features, e.g., redundancies. In contrast,
multivariate filters evaluate feature sets as a whole. Such methods often combine
a measure of feature relevance with a measure of feature redundancy. Examples
include CFS [37, 38], FCBF [115], and mRMR [85].

Wrapper methods Wrapper methods [52] evaluate feature sets by training
prediction models with them and measuring prediction quality. They employ
a generic search strategy to iterate over candidate feature sets, e.g., genetic
algorithms. Feature-set quality is a black-box function in this search.

Embedded methods Embedded methods train prediction models with built-
in feature selection, e.g., decision trees [13] or random forests [12]. Thus, the
criterion for feature-set quality is model-specific. For example, tree-based mod-
els often use information gain or the Gini index to select features during training.

Post-hoc feature-importance methods Apart from conventional feature
selection, there are various methods that assess feature importance after training
a model. These methods range from local explanation methods like LIME [87]
or SHAP [63] to global importance methods like permutation importance [12]
or SAGE [20]. In particular, assessing feature importance plays a crucial role in
the field of machine-learning interpretability [14, 68].

3 Alternative Feature Selection

In this section, we present the problem and approaches for alternative feature
selection. First, we define the overall structure of the optimization problem,
i.e., objective and constraints (cf. Section 3.1). Second, we formalize the notion
of alternatives via constraints (cf. Section 3.2). Third, we discuss different
objective functions corresponding to different feature-set quality measures from
Section 2.2. In particular, we describe how to solve the resulting optimization
problem (cf. Section 3.3). Fourth, we analyze the computational complexity of
the optimization problem (cf. Section 3.4).

4

3.1 Optimization Problem

Alternative feature selection has two goals. First, the quality of an alternative
feature set should be high. Second, an alternative feature set should differ from
one or more other feature set(s). There are several ways to combine these two
goals in an optimization problem:

First, one can consider both goals as objectives, obtaining an unconstrained
multi-objective problem. Second, one can treat feature-set quality as objective
and enforce alternatives with constraints. Third, one can consider being alter-
native as objective and constrain feature-set quality, e.g., with a lower bound.
Fourth, one can define constraints for both, feature-set quality and being alter-
native, searching for feasible solutions instead of optimizing.

We stick to the second formulation, i.e., optimizing feature-set quality sub-
ject to being alternative. This formulation has the advantage of keeping the
original objective function of feature selection. Thus, users do not need to spec-
ify a range or a threshold on feature-set quality but can control how alternative
the feature sets must be instead. We obtain the following optimization problem
for a single alternative feature set Fs:

max
s

Q(s,X, y)

subject to: Fs being alternative
(1)

In the following, we discuss different objective functions Q(s,X, y) and suitable
constraints for being alternative. Additionally, many feature-selection methods
also limit the feature-set size |Fs| to a user-defined value k ∈ N, which adds a
further, simple constraint to the optimization problem.

3.2 Constraints – Defining Alternatives

In this section, we formalize alternative feature sets. First, we discuss the base
case where an individual feature set is an alternative to another one (cf. Sec-
tion 3.2.1). Second, we extend this notion to multiple alternatives, considering
sequential and simultaneous search methods (cf. Section 3.2.2).

Our notion of alternatives is independent of the feature-selection method.
We provide two parameters, i.e., a dissimilarity threshold τ and the number of
alternatives a, allowing users to control the search for alternatives.

3.2.1 Single Alternative

We consider a feature set an alternative to another feature set if it differs suf-
ficiently. Mathematically, we express this notion with a set-dissimilarity mea-
sure [19, 26]. These measures typically assess how strongly two sets overlap
and relate this to their sizes. E.g., a well-known set-dissimilarity measure is the
Jaccard distance, which is defined as follows for the feature sets F ′ and F ′′:

dJacc(F
′, F ′′) = 1− |F

′ ∩ F ′′|
|F ′ ∪ F ′′|

= 1− |F ′ ∩ F ′′|
|F ′|+ |F ′′| − |F ′ ∩ F ′′|

(2)

5

In this article, we use a dissimilarity measure based on the Dice coefficient:

dDice(F
′, F ′′) = 1− 2 · |F ′ ∩ F ′′|

|F ′|+ |F ′′|
(3)

Generally, we do not have strong requirements on the set-dissimilarity mea-
sure d(·). Our definitions of alternatives only assume symmetry, i.e., d(F ′, F ′′) =
d(F ′′, F ′), and non-negativity, i.e., d(F ′, F ′′) ≥ 0, though one could adapt them
to other conditions as well. In particular, the dissimilarity measure does not
need to be a metric but can also be a semi-metric [110] like dDice(·).

We leverage the set-dissimilarity measure for the following definition:

Definition 1 (Single alternative). Given a symmetric, non-negative set-dissimi-
larity measure d(·) and a dissimilarity threshold τ ∈ R≥0, a feature set F ′ is an
alternative to a feature set F ′′ (and vice versa) if d(F ′, F ′′) ≥ τ .

The threshold τ controls how alternative the feature sets must be and de-
pends on the dataset as well as user preferences. In particular, requiring strong
dissimilarity may cause a significant drop in feature-set quality. Some datasets
may contain many features of similar utility, thereby enabling many alternatives
of similar quality, while predictions on other datasets may depend on a few key
features. Only users can decide which drop in feature-set quality is acceptable
as a trade-off for obtaining alternatives. Thus, we leave τ as a parameter. In
case the set-dissimilarity measure d(·) is normalized to [0, 1], like the Dice dis-
similarity or Jaccard distance, the interpretation of τ is user-friendly: Setting
τ = 0 allows identical alternatives, while τ = 1 implies zero overlap.

If the choice of τ is unclear a priori, users can try out different values and
compare the resulting feature-set quality. One systematic approach is a binary
search: Start with the mid-range value of τ = 0, i.e., 0.5 for τ ∈ [0, 1]. If the
quality of the resulting alternative is too low, decrease τ to 0.25, i.e., allow more
similarity. If the quality of the resulting alternative is acceptably high, increase
τ to 0.75, i.e., check a more dissimilar feature set. Continue this procedure till
an alternative with an acceptable quality-dissimilarity trade-off is found.

When implementing Definition 1, we can leverage the following proposition:

Proposition 1 (Linearity of constraints for alternatives). Using the Dice dis-
similarity (cf. Equation 3), one can express alternative feature sets (cf. Defini-
tion 1) with 0-1 integer linear constraints.

Proof. We re-arrange terms in the Dice dissimilarity (cf. Equation 3) to get rid
of the quotient of set sizes:

dDice(F
′, F ′′) = 1− 2 · |F ′ ∩ F ′′|

|F ′|+ |F ′′|
≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1− τ

2
· (|F ′|+ |F ′′|)

(4)

6

Next, we express set sizes in terms of the feature-selection vector s:

|Fs| =
n∑

j=1

sj

|Fs′ ∩ Fs′′ | =
n∑

j=1

s′j · s′′j

(5)

Finally, we replace each product s′j · s′′j with an auxiliary variable tj , bound by
additional constraints, to linearize it [69]:

tj ≤s′j
tj ≤s′′j

1 + tj ≥s′j + s′′j

tj ∈{0, 1}

(6)

Combining Equations 4, 5, and 6, we obtain a set of constraints that only involve
linear expressions of binary decision variables. In particular, there are only
sum expressions and multiplications with constants but no products between
variables. If one feature set is known, i.e., either s′ or s′′ is fixed, Equation 5 only
multiplies variables with constants and is already linear without Equation 6.

Given a suitable objective function, which we discuss later, linear constraints
allow using a broad range of solvers. As an alternative formulation, one could
also encode such constraints into propositional logic (SAT) [103].

If the set sizes |F ′| and |F ′′| are constant, e.g., user-defined, Equation 4
implies that the threshold τ has a linear relationship to the maximum number of
overlapping features |F ′∩F ′′|. This correspondence eases the interpretation of τ
and makes us use the Dice dissimilarity in the following. In contrast, the Jaccard
distance exhibits a non-linear relationship between τ and the overlap size, which
follows from re-arranging Equation 2 in combination with Definition 1:

dJacc(F
′, F ′′) = 1− |F ′ ∩ F ′′|

|F ′|+ |F ′′| − |F ′ ∩ F ′′|
≥ τ

⇔ |F ′ ∩ F ′′| ≤ 1− τ

2− τ
· (|F ′|+ |F ′′|)

(7)

Further, if |F ′| = |F ′′|, as in our experiments, the Dice dissimilarity (cf. Equa-
tion 4) becomes identical to several other set-dissimilarity measures [26]. The
parameter τ then directly expresses which fraction of features in one set needs
to differ from the other set and vice versa, which further eases interpretability:

dDice(F
′, F ′′) ≥ τ ⇔ |F ′ ∩ F ′′| ≤ (1− τ) · |F ′| = (1− τ) · |F ′′| (8)

Thus, if users are uncertain how to choose τ and |F ′| is reasonably small, they
can try out all values of τ ∈ {i/|F ′|} with i ∈ {1, . . . , |F ′|}. In particular, these
|F ′| unique values of τ suffice to produce all possible results that one could
obtain with an arbitrary τ ∈ (0, 1].

7

Sequential search Simultaneous search

Alternative i Summed

Decision variables s n (a+ 1) · n (a+ 1) · n
Linearization variables t 0 0 a·(a+1)·n

2

Alternative constraints i a·(a+1)
2

a·(a+1)
2

Linearization constraints 0 0 3·a·(a+1)·n
2

Table 1: Size of the optimization problem by search method, for a alternatives
(a+ 1 feature sets overall) and n features.

3.2.2 Multiple Alternatives

If users desire multiple alternative feature sets rather than only one, we can
determine these alternatives sequentially or simultaneously. The number of
alternatives a ∈ N0 is a parameter to be set by the user. The overall number of
feature sets is a + 1 since we deem one feature set the ‘original’ one. Table 1
compares the sizes of the optimization problems for these two search methods.

Sequential alternatives With sequential search, users obtain several alter-
natives iteratively, with one feature set per iteration. We constrain this new set
to be an alternative to all previously found ones, which are given in the set F:

Definition 2 (Sequential alternative). A feature set F ′′ is an alternative to a
set of feature sets F (and vice versa) if F ′′ is a single alternative (cf. Definition 1)
to each F ′ ∈ F.

One could also think of less strict constraints, e.g., requiring only the average
dissimilarity to all previously found feature sets to pass a threshold τ . However,
definitions like the latter may allow some feature sets to overlap heavily or even
be identical if other feature sets are very dissimilar. Thus, we require pairwise
dissimilarity in Definition 2. Combining Equation 1 with Definition 2, we obtain
the following optimization problem for each iteration of the search:

max
s

Q(s,X, y)

subject to: ∀F ′ ∈ F : d(Fs, F
′) ≥ τ

(9)

The objective function remains the same as for a single alternative (|F| = 1),
i.e., we only optimize the quality of one feature set at once. Thus, the number of
variables in the optimization problem is independent of the number of alterna-
tives a. Instead, we solve the optimization problem repeatedly; each alternative
only adds one constraint to the problem. The first, ‘original’ feature set is the
same as in conventional feature selection without constraints for alternatives.
As we always compare only one variable feature set to existing, constant fea-
ture sets, we also do not need to introduce auxiliary variables as in Equation 6.

8

Thus, we expect the runtime of sequential search to scale well with the num-
ber of alternatives. Further runtime gains may arise if the solver keeps a state
between iterations and can warm-start.

However, as the solution space becomes narrower over iterations, feature-set
quality can deteriorate with each further alternative. In particular, multiple
alternatives from the same sequential search might differ significantly in their
quality. As a remedy, users can decide after each iteration if the feature-set
quality is already unacceptably low or if another alternative should be found.
In particular, users do not need to define the number of alternatives a a priori.

Simultaneous alternatives With simultaneous search, users obtain multi-
ple alternatives at once, so they need to decide on the number of alternatives
beforehand. We use pairwise dissimilarity constraints again:

Definition 3 (Simultaneous alternatives). A set of feature sets F contains si-
multaneous alternatives if each feature set F ′ ∈ F is a single alternative (cf. Def-
inition 1) to each other set F ′′ ∈ F, F ′ ̸= F ′′.

Combining Equation 1 with Definition 3, we obtain the following optimiza-
tion problem for a+ 1 feature sets:

max
s(0),...,s(a)

agg
i∈{0,...,a}

Q(s(i), X, y)

subject to: ∀i1, i2 ∈ {0, . . . , a}, i1 ̸= i2 : d(Fs(i1) , Fs(i2)) ≥ τ
(10)

In contrast to the sequential case (cf. Equation 9), we need to introduce further
decision variables and modify the objective function here. The operator agg(·)
defines how to aggregate the feature-set qualities of the alternatives. In our
experiments, we consider the sum as well as the minimum to instantiate agg(·),
which we refer to as sum-aggregation and min-aggregation. The latter explic-
itly fosters balanced feature-set qualities. Appendix A.1 discusses these two
aggregation operators and additional ideas for balancing qualities in detail.

Runtime-wise, we expect simultaneous search to scale worse with the num-
ber of alternatives than sequential search, as it tackles one large optimization
problem instead of multiple smaller ones. In particular, the number of decision
variables increases linearly with the number of alternatives a. Also, for each
feature and each pair of alternatives, we need to introduce an auxiliary variable
if we want to obtain linear constraints (cf. Equation 6 and Table 1).

In contrast to the greedy procedure of sequential search, simultaneous search
optimizes alternatives globally. Thus, the simultaneous procedure should yield
the same or higher average feature-set quality for the same number of alterna-
tives. Also, the quality can be more evenly distributed over the alternatives,
as opposed to the dropping quality over the course of the sequential procedure.
However, increasing the number of alternatives still has a negative effect on the
average feature-set quality. Further, as opposed to the sequential procedure,
there are no intermediate steps where users could interrupt the search.

9

3.3 Objective Functions – Finding Alternatives

In this section, we discuss how to find alternative feature sets. In particular,
we describe how to solve the optimization problem from Section 3.1 for the
different categories of feature-set quality measures from Section 2.2. We distin-
guish between white-box optimization (cf. Section 3.3.1), black-box optimization
(cf. Section 3.3.2), and embedding alternatives (cf. Section 3.3.3).

3.3.1 White-Box Optimization

If the feature-set quality function Q(s,X, y) is sufficiently simple, one can tackle
alternative feature selection with a suitable white-box solver. We already showed
that our notion of alternative feature sets results in 0-1 integer linear constraints
(cf. Proposition 1). We now discuss several feature-selection methods with ob-
jectives that admit formulating a 0-1 integer linear problem. Appendix A.2 de-
scribes feature-selection methods we did not include in our experiments.

Univariate filter feature selection For univariate filter feature selection,
the objective function is linear by default. In particular, these methods decom-
pose the quality of a feature set into the qualities of the individual features:

Quni(s,X, y) =

n∑
j=1

q(X·j , y) · sj (11)

Here, q(·) typically is a bivariate dependency measure, e.g., mutual informa-
tion [55] or the absolute value of Pearson correlation, to quantify the relationship
between one feature and the prediction target.

For this objective, Appendix A.3 specifies the complete optimization prob-
lem, including the constraints for alternatives. Appendix A.4 describes how
to potentially speed up optimization by leveraging the monotonicity of the ob-
jective. Appendix A.6 proposes heuristic search methods, while we use exact
optimization in our experiments.

Instead of an integer problem, one could formulate a weighted partial maxi-
mum satisfiability (MaxSAT) problem [5, 60], i.e., a weighted Max One prob-
lem [47]. In particular, Equation 11 is a sum of weighted binary variables,
and the constraints for alternatives can be turned into SAT formulas with a
cardinality encoding [99] for the sum expressions.

Post-hoc feature importance From the technical perspective, one can also
insert values of post-hoc feature-importance scores into Equation 11. For ex-
ample, one can pre-compute permutation importance [12] or SAGE scores [20]
for each feature and use them as q(X·j , y). However, such post-hoc importance
scores often evaluate the usefulness of each feature in the presence of other fea-
tures. Thus, the importance scores of different features are not independent of
each other, violating the implicit assumption behind Equation 11. For example,
a feature might show high post-hoc importance if another feature is present,

10

due to feature interaction, but low importance else. Equation 11 cannot express
such conditional importance but requires one overall quality value for each fea-
ture. Re-calculating feature importance for each possible alternative feature set
is infeasible. In practice, one can still use Equation 11 with importance scores
only computed on the full dataset X, i.e., with all features being present. While
such an approach might not represent importance in feature subsets faithfully,
it can serve as a heuristic nevertheless.

FCBF The Fast Correlation-Based Filter (FCBF) [115] bases on the notion
of predominance: Each selected feature’s correlation with the prediction target
must exceed a user-defined threshold as well as the correlation of each other
selected feature with the given one. While the original FCBF uses a heuristic
search to find predominant features, we propose a formulation as a constrained
optimization problem to enable a white-box optimization for alternatives:

max
s

QFCBF(s,X, y) =

n∑
j=1

q(X·j , y) · sj

subject to: ∀j1, j2 ∈ {1, . . . , n}, j1 ̸= j2, (∗) : sj1 + sj2 ≤ 1

with (∗): q(X·j1 , y) ≤ q(X·j2 , X·j1)

(12)

We drop the original FCBF’s threshold parameter on feature-target correlation
and maximize the latter instead, as in the univariate-filter case. This change
could produce large feature sets that contain many low-quality features. As
a countermeasure, one can constrain the feature-set sizes, as we do in our ex-
periments. Additionally, one could also filter out the features with low tar-
get correlation before optimization. Further, we keep FCBF’s constraints on
feature-feature correlation. In particular, we prevent the simultaneous selection
of two features if the correlation between them is at least as high as one of the
features’ correlation to the target. As the ‘with’-condition in Equation 12 does
not depend on the decision variables s, one can check whether it holds before
optimization and add the corresponding linear constraint on s only if needed.

mRMR Minimal Redundancy Maximum Relevance (mRMR) [85] combines
two criteria, i.e., feature relevance and feature redundancy. Relevance corre-
sponds to the dependency between features and prediction target, which should
be maximized, as for univariate filters. Redundancy corresponds to the depen-
dency between features, which should be minimized. Using a bivariate depen-
dency measure q(·), the objective is maximizing the following difference between
relevance and redundancy:

QmRMR(s,X, y) =

∑n
j=1 q(X·j , y) · sj∑n

j=1 sj
−

∑n
j1=1

∑n
j2=1 q(X·j1 , X·j2) · sj1 · sj2

(
∑n

j=1 sj)
2

(13)
If one knows the feature-set size

∑n
j=1 sj to be a constant k, the denominators of

both fractions are constant, so the objective leads to a quadratic-programming

11

problem [80, 89]. If one additionally replaces each product terms sj1 · sj2 ac-
cording to Equation 6, the problem becomes linear. However, there is a more
efficient linearization [76, 78], which we use in our experiments:

max
s

QmRMR(s,X, y) =

∑n
j=1 q(X·j , y) · sj

k
−

∑n
j=1 zj

k · (k − 1)

subject to: ∀j1 : Aj1 =
∑
j2 ̸=j1

q(X·j1 , X·j2) · sj2

∀j : zj ≥M · (sj − 1) +Aj

∀j : zj ∈ R≥0

with indices: j, j1, j2 ∈ {1, . . . , n}

(14)

Here, Aj1 is the sum of all redundancy terms related to the feature with index j1.
Thus, one can use one real-valued auxiliary variable zj for each feature instead
of one new binary variable for each pair of features. Since redundancy should be
minimized, zj assumes the value of Aj with equality if the feature with index j
is selected (sj = 1) and is zero else (sj = 0). To that end, M is a large positive
value that deactivates the constraint on zj if sj = 0.

Since Equation 14 assumes the feature-set size k ∈ N to be user-defined
before optimization, it requires fewer auxiliary variables and constraints than
the more general formulation in [76, 78]. Further, following [80], we set the
self-redundancy terms q(X·j , X·j), to zero and thereby exclude them from the
objective. Thus, the redundancy term uses k ·(k−1) instead of k2 for averaging.

3.3.2 Black-Box Optimization

If feature-set quality has no closed-form expression, one has to treat it as a black-
box function when searching for alternatives. This situation applies to wrap-
per feature-selection methods, which use prediction models to assess feature-set
quality. One can optimize such black-box functions with search heuristics that
systematically iterate over candidate feature sets. However, search heuristics
often assume an unconstrained search space and may propose candidate feature
sets that are not alternative enough. We see four ways to address this issue:

Enumerating feature sets Instead of using a search heuristic, one may enu-
merate all feature sets that are alternative enough. E.g., one can iterate over
all feature sets and sort out those violating the constraints or use a solver to
enumerate all valid alternatives directly. Both approaches are usually very in-
efficient, as there can be a vast number of alternatives.

Sampling feature sets Instead of considering all possible alternatives, one
can also sample a limited number. E.g., one could sample from all feature sets
but remove samples that are not alternative enough. However, if the number
of valid alternatives is small, this approach might need many samples. One
could also sample with the help of a solver. However, uniform sampling from

12

Algorithm 1: Greedy Wrapper for alternative feature selection.

Input: Dataset X with n features, Prediction target y,
Feature-set quality function Q(·),
Constraints for alternatives Cons,
Maximum number of iterations max iters

Output: Set of feature-selection decision vectors S = {s(0), . . . , s(a)}
1 S ← Solve(Cons) // Initial alternatives

2 iters← 1 // Number of iterations = solver calls

3 if S = ∅ then return ∅ // No valid alternatives exist

4 j1 ← 1 // Indices of features to be swapped

5 j2 ← j1 + 1
6 while iters < max iters and j1 < n do

7 S′ ← Solve(Cons ∪ {¬s(i)j1
,¬s(i)j2

| i ∈ {0, . . . , a}}) // Try swap

8 iters← iters+ 1
9 if S′ ̸= ∅ and Q(S′, X, y) > Q(S,X, y) then // Swap if improved

10 S ← S′

11 j1 ← 1 // Reset swap-feature indices

12 j2 ← j1 + 1

13 else if j2 < n then // Try next swap; advance one index

14 j2 ← j2 + 1

15 else // Try next swap; advance both indices

16 j1 ← j1 + 1
17 j2 ← j1 + 1

18 return S

a constrained space is a computationally hard problem, possibly harder than
determining if a valid solution exists or not [28].

Multi-objective optimization If one phrases alternative feature selection
as a multi-objective problem (cf. Section 3.1), there are no hard constraints
anymore, and one could apply a standard multi-objective black-box search pro-
cedure. However, we chose to analyze a different problem formulation.

Adapting search One can adapt an existing search heuristic to consider the
constraints for alternatives. One idea is to prevent the search from producing
feature sets that violate the constraints or at least make the latter less likely, e.g.,
with a penalty in the objective function. Another idea is to ‘repair’ feature sets
in the search that violate constraints, e.g., replacing them with the most similar
feature sets satisfying the constraints. Such solver-assisted search approaches
are common in search procedures for software feature models [34, 41, 109]. One
could also apply solver-based repair to sampled feature sets.

13

Greedy wrapper For wrapper feature selection in our experiments, we pro-
pose a method that falls into the category adapting search. In particular, we
adopt a greedy hill-climbing strategy [52] that observes constraints, as displayed
in Algorithm 1. First, the algorithm uses a solver to find one solution that is
alternative enough, given the current constraints (Line 1). Thus, it has a valid
starting point and can always return a solution unless there are no valid solu-
tions at all. Next, it tries ‘swapping’ two features, i.e., selecting the features if
they were deselected or deselecting them if they were selected (Line 7). For si-
multaneous search, we swap the affected two features in each alternative feature
set. This swap might violate cardinality constraints as well as constraints for
alternatives. Thus, the algorithm calls the solver again to find a solution s′ con-
taining this swap and satisfying the other constraints. If such a solution s′ exists
and its quality Q(s′, X, y) improves the current solution, the algorithm contin-
ues from the new solution and tries again to swap the first and second feature
(Lines 10–12). Else, it attempts to swap the next pair of features (Lines 13–17).
In particular, we only evaluate one solution per swap before moving on rather
than enumerating all valid solutions containing the swap.

The algorithm terminates if no swap leads to an improvement or a fixed
number of iterations max iters is reached (Line 6). Due to its heuristic nature,
the algorithm might get stuck in local optima rather than yielding the global
optimum. In particular, max iters only is an upper bound on the iteration
count since the algorithm can stop earlier. We define the iteration count as
the number of calls to the solver, i.e., attempts to generate feature sets. This
number also bounds the number of prediction models trained. However, we only
train a model for valid solutions, and not all solver calls may yield one.

3.3.3 Embedding Alternatives

If feature selection is embedded into a prediction model, there is no general
approach for finding alternative feature sets. Instead, one would need to embed
the search for alternatives into model training as well. Thus, we leave the
formulation of specific approaches open for future work. E.g., one could adapt
the training of decision trees to not split on a feature if the resulting feature set
of the tree was too similar to a given feature set. As another example, there are
various formal encodings of prediction models, e.g., as SAT formulas [75, 94,
114], where ‘training’ already uses a solver. In such representations, one may
directly add constraints for alternatives.

3.4 Computational Complexity

In this section, we analyze the time complexity of alternative feature selection.
In particular, we study the scalability regarding the number of features n ∈ N,
feature-set size k ∈ N and number of alternatives a ∈ N0. Section 3.4.1 discusses
exhaustive search for arbitrary feature-selection methods, while Section 3.4.2
examines univariate feature qualities. Section 3.4.3 summarizes key results.

14

3.4.1 Exhaustive Search for Arbitrary Feature-Selection Methods

An exhaustive search over the entire search space is the arguably simplest though
inefficient approach to finding alternative feature sets. This approach provides
an upper bound for the time complexity of a runtime-optimal search algorithm.
In this section, we assume unit costs for elementary arithmetic operations like
addition, multiplication, and comparison of two numbers.

Conventional feature selection In general, the search space of feature se-
lection grows exponentially with n, even without alternatives. In particular,
there are 2n− 1 possibilities to form a single non-empty feature set of arbitrary
size. For a fixed feature-set size k, there are

(
n
k

)
= n!

k!·(n−k)! ≤ nk solution

candidates. In an exhaustive search, we iterate over these feature sets:

Proposition 2 (Complexity of exhaustive conventional feature selection). Ex-
haustive search for one feature set of size k from n features has a time complexity
of O(nk) without the cost of evaluating the objective function.

Evaluating the objective means computing the quality of each solution can-
didate so that we can determine the best feature set in the end. The cost of this
step depends on the feature-selection method but should usually be polynomial
in n. Even better, since feature-set quality typically only depends on selected
features rather than unselected ones, this cost may be polynomial in k ≪ n.

If we assume k ≪ n, k ∈ O(1), i.e., k being a small constant, indepen-
dent from n, then the complexity in Proposition 2 is polynomial rather than
exponential in n. This assumption makes sense for feature selection, where one
typically wants to obtain a small feature set from a high-dimensional dataset.
However, the exponent k may still render an exhaustive search practically in-
feasible. In terms of parameterized complexity, the problem resides in class XP
since the runtime term has the form O(f(k) · ng(k)) [25], here with parameter k
and functions f(k) = 1, g(k) = k.

Sequential search Like conventional feature selection, sequential search for
alternatives (cf. Definition 2) finds a single feature set at once. However, not all
size-k feature sets are valid anymore. In particular, the constraints for alterna-
tives put an extra cost on each solution candidate. Constraint checking involves
iterating over all existing feature sets and features to compute the dissimilarity
between sets (cf. Equation 19). This procedure entails a cost of O(a ·n) for each
new alternative and O(a2 ·n) for the whole sequential search with a alternatives.
Combining this cost with Proposition 2, we obtain the following proposition:

Proposition 3 (Complexity of exhaustive sequential search). Exhaustive se-
quential search for a ∈ N alternative feature sets of size k from n features has
a time complexity of O(a2 · nk+1) without the cost of evaluating the objective
function.

Thus, the runtime resides in the parameterized complexity class XP with
the parameter k and remains polynomial if k ∈ O(1) and a ∈ O(nc), c ∈ O(1).

15

Simultaneous search Simultaneous search (cf. Definition 3) enlarges the
search space since it optimizes a + 1 feature sets at once. Thus, an exhaus-
tive search over size-k feature sets iterates over O(nk·(a+1)) solution candidates.
Including the cost of constraint checking, we arrive at the following proposition:

Proposition 4 (Complexity of exhaustive simultaneous search). Exhaustive
simultaneous search for a ∈ N alternative feature sets of size k from n features
has a time complexity of O(a2 · nk·(a+1)+1) without the cost of evaluating the
objective function.

The scalability with n is worse than for sequential search since the number
of alternatives appears in the exponent now, except for a special case discussed
in Appendix A.5.1. Proposition 4 also assumes that the constraints do not use
linearization variables (cf. Equations 6 and 20), which would enlarge the search
space even further. Finally, the complexity remains polynomial in n if a and k
are small and independent from n, i.e., a · k ∈ O(1):

Proposition 5 (Parameterized complexity of simultaneous search). Simulta-
neous search for a ∈ N alternative feature sets of size k from n features resides
in the parameterized complexity class XP for the parameter a · k.

3.4.2 Univariate Feature Qualities

Motivation While the assumption a · k ∈ O(1) ensures polynomial runtime
for arbitrary feature-selection methods, the optimization problem can still be
hard without this assumption. In the following, we derive complexity results for
univariate feature qualities (cf. Equation 11 and Appendix A.3). This feature-
selection method has the arguably simplest objective function, i.e., a feature
set’s quality equals the sum of its constituent features’ qualities. This sim-
plicity eases the transformation from and to well-known NP-hard problems.
Appendix A.5.2 discusses related work on these problems in detail.

Min-aggregation with complete partitioning We start with three as-
sumptions, which we will drop later: First, we use a dissimilarity threshold
of τ = 1, i.e., zero overlap of feature sets. Second, all features must be part of
one set. Third, we analyze simultaneous search with min-aggregation (cf. Equa-
tion 16). We call the combination of the first two assumptions, which implies
n = (a + 1) · k, a complete partitioning. This scenario differs from the one for
which we made polynomial-runtime claims in Section 3.4.1.

A key factor for the hardness of partitioning is the number of solutions:
There are

{
n
a

}
ways to partition a set of n elements into a non-empty subsets, a

Stirling number of the second kind [31], which roughly scale like an/a! [70], i.e.,
exponential in n for a fixed a. Even if the subset sizes are fixed, the scalability
regarding n remains bad since it bases on a multinomial coefficient.

Our complete-partitioning scenario is a variant of the Multi-Way Number
Partitioning problem: Partition a multiset of n integers into a subsets such

16

that the sums of all subsets are as equal as possible [54]. One problem formu-
lation, called Multiprocessor Scheduling in [30], minimizes the maximum
subset sum: The goal is to assign tasks with different lengths to a fixed number of
processors such that the maximum processor runtime is minimal. Multiplying
task lengths with −1, one can turn the minimax problem of Multiproces-
sor Scheduling into the maximin formulation of simultaneous search with
min-aggregation: The tasks become features, the negative task lengths become
univariate feature qualities, and the processors become feature sets. Since Mul-
tiprocessor Scheduling is NP-complete, even for just two partitions [30],
our problem is NP-complete as well:

Proposition 6 (Complexity of simultaneous search with min-aggregation, com-
plete partitioning, and unconstrained feature-set size). Assuming univariate fea-
ture qualities, a dissimilarity threshold τ = 1, unconstrained feature-set sizes,
and all n features have to be selected, simultaneous search for alternative feature
sets with min-aggregation is NP-complete.

Since the assumptions in Proposition 6 denote a special case of alternative
feature selection, we directly obtain the following, more general proposition:

Proposition 7 (Complexity of simultaneous search with min-aggregation). Si-
multaneous search for alternative feature sets with min-aggregation is NP-hard.

While Proposition 6 allowed arbitrary sets sizes, there are also existing par-
titioning problems for constrained k, e.g., called Balanced Number Parti-
tioning or K-Partitioning. K-Partitioning with a minimax objective is
NP-hard [4] and can be transformed into our maximin objective as above:

Proposition 8 (Complexity of simultaneous search with min-aggregation, com-
plete partitioning, and constrained feature-set size). Assuming univariate fea-
ture qualities, a dissimilarity threshold τ = 1, desired feature-set size k, and all
n features have to be selected, simultaneous search for alternative feature sets
with min-aggregation is NP-complete.

Min-aggregation with incomplete partitioning We now allow that some
features may not be part of any feature set while we keep the assumption of
zero feature-set overlap. The problem of finding such an incomplete partitioning
still is NP-complete in general (cf. Appendix A.5.3 for the proof):

Proposition 9 (Complexity of simultaneous search with min-aggregation, in-
complete partitioning, and constrained feature-set size). Assuming univariate
feature qualities, a dissimilarity threshold τ = 1, desired feature-set size k, and
not all n features have to be selected, simultaneous search for alternative feature
sets with min-aggregation is NP-complete.

Min-aggregation with overlapping feature sets The problem with τ < 1,
i.e., set overlap, also is NP-hard in general (cf. Appendix A.5.3 for the proof):

17

Proposition 10 (Complexity of simultaneous search with min-aggregation,
τ < 1, and constrained feature-set size). Assuming univariate feature quali-
ties, a dissimilarity threshold τ < 1, and desired feature-set size k, simultaneous
search for alternative feature sets with min-aggregation is NP-hard.

Sum-aggregation In contrast to the previous NP-hardness results for min-
aggregation, sum-aggregation (cf. Equation 15) with τ = 1 admits polynomial-
time algorithms (cf. Appendix A.5.3 for the proof):

Proposition 11 (Complexity of search with sum-aggregation and τ = 1). As-
suming univariate feature qualities and a dissimilarity threshold τ = 1, the
search for alternative feature sets with sum-aggregation has a time complexity of
O(n) for a complete partitioning of n features and O(n · log n) for an incomplete
partitioning.

This feasibility result applies to sequential and simultaneous search, an arbi-
trary number of alternatives a, and arbitrary feature-set sizes. The key reason
for polynomial runtime is that sum-aggregation does not require balancing the
feature sets’ qualities. Thus, τ = 1 allows many solutions with the same objec-
tive value. While at least one of these solutions also optimizes the objective with
min-aggregation, most do not. Hence, it is not a contradiction that optimizing
with min-aggregation is considerably harder.

3.4.3 Summary

We showed that simultaneous search for alternative feature sets is NP-hard in
general (cf. Proposition 7). We also placed it in the parameterized complexity
class XP (cf. Proposition 5), having a and k as the parameters that drive the
hardness of the problem. For univariate feature qualities and min-aggregation,
we obtained more specific NP-hardness results for (1) complete partitioning,
i.e., τ = 1 and (a + 1) · k = n (cf. Proposition 8), (2) incomplete partitioning,
i.e., (a + 1) · k < n (cf. Proposition 9) and (3) feature set overlap, i.e., τ <
1 (cf. Proposition 10). In contrast, we also inferred polynomial runtime for
univariate feature qualities, sum-aggregation, and τ = 1 (cf. Proposition 11).

4 Related Work

In this section, we review related work from the fields of feature selection (cf. Sec-
tion 4.1), subgroup discovery (cf. Section 4.2), clustering (cf. Section 4.3), sub-
space clustering and subspace search (cf. Section 4.4), and explainable artificial
intelligence (cf. Section 4.5). To the best of our knowledge, searching for opti-
mal alternative feature sets in the sense of this paper is novel. However, there
is literature on optimal alternatives outside the field of feature selection. Also,
there are works on finding multiple, diverse feature sets.

18

4.1 Feature Selection

Conventional feature selection Most feature-selection methods only yield
one solution [11], though some exceptions exist. Nevertheless, none of the fol-
lowing approaches searches for optimal alternatives in our sense.

[97] proposes a genetic algorithm that iteratively updates a population of
multiple feature sets. To foster diversity, the algorithm’s fitness criterion does
not only consider feature-set quality but also a penalty on feature-set overlap in
the population. However, users cannot control the admissible overlap, i.e., there
is no parameter comparable to τ . In contrast, the genetic algorithm’s parameter
for the population size corresponds to the number of alternatives.

[27] employs multi-objective genetic algorithms to obtain prediction models
with different complexity and diverse feature sets. However, the two objectives
are prediction performance and feature-set size, while diversity only influences
the genetic selection step under particular circumstances.

[73] clusters features and forms alternatives by picking one feature from each
cluster. However, they do this to reduce the number of features for subsequent
model selection and model evaluation, not as a guided search for alternatives.

Ensemble feature selection Ensemble feature selection [92, 96] combines
feature-selection results, e.g., obtained by different feature-selection methods or
on different samples of the data. Fostering diverse feature sets might be a sub-
goal to improve prediction performance, but it is usually only an intermediate
step. This focus differs from our goal of finding optimal alternatives.

[113] obtains feature sets or rankings on bootstrap samples of the data.
Next, an aggregation strategy creates one or multiple diverse feature sets. The
authors propose using k-medoid clustering and frequent itemset mining for the
latter. While these approaches allow to control the number of feature sets, there
is no parameter for their dissimilarity. Also, aggregation builds on bootstrap
sampling instead of being allowed to form arbitrary alternatives.

[62] builds an ensemble prediction model from classifiers trained on different
feature sets. To this end, a genetic algorithm iteratively evolves a population
of feature sets. Diversity is one of multiple fitness criteria, with the Hamming
distances quantifying the dissimilarity of feature sets. However, since feature
diversity is only one of several objectives, users cannot control it directly.

[35] computes feature relevance separately for each class and then combines
the top features. This procedure can yield alternatives but does not enforce
dissimilarity. Also, the number of alternatives is fixed to the number of classes.

Statistically equivalent feature sets Approaches for statistically equiva-
lent feature sets [11, 56] use statistical tests to determine features or feature sets
that are equivalent for predictions. E.g., a feature may be independent of the
target given another feature. A search algorithm conducts multiple such tests
and outputs equivalent feature sets or a corresponding feature grouping.

Our notion of alternatives differs from equivalent feature sets in several as-
pects. In particular, building optimal alternatives from equivalent feature sets

19

is not straightforward. Depending on how the statistical tests are configured,
there can be an arbitrary number of equivalent feature sets without explicit
quality-based ordering. Instead, we always provide a fixed number of alterna-
tives. Also, our alternatives need not have equivalent quality but should be
optimal under constraints. Further, our dissimilarity threshold allows control-
ling overlap between feature sets instead of eliminating all redundancies.

Constrained feature selection We define alternatives via constraints on
feature sets. There already is work on other kinds of constraints in feature
selection, e.g., for feature cost [83], feature groups [116], or domain knowledge [6,
32]. These approaches are orthogonal to our work, as such constraints do not
explicitly foster optimal alternatives. At most, they might implicitly lead to
alternative solutions [6]. Further, most of the approaches are tied to particular
constraint types, while our integer-programming formulation also supports such
constraints besides the ones for alternatives. [6] is an exception in that regard
since it models feature selection as a Satisfiability Modulo Theories (SMT)
optimization problem, which admits our constraints for alternatives as well.

4.2 Subgroup Discovery

[59] presents six strategies to foster diversity in subgroup set discovery, which
searches for interesting regions in the data space, i.e., combinations of condi-
tions on feature values, rather than only selecting features. Three strategies
yield a fixed number of alternatives, and the other three a variable number.
The strategies become part of beam search, i.e., a heuristic search procedure,
while we mainly consider exact optimization. Also, the criteria for alternatives
differ from ours. The strategy fixed-size description-based selection prunes sub-
groups with the same quality as previously found ones if they differ by at most
one feature-value condition. In contrast, we require dissimilarity independent
from the quality, have a flexible dissimilarity threshold, and support simulta-
neous besides sequential search for alternatives. Another strategy, variable-size
description-based selection, limits the total number of subgroups a feature may
occur in but does not constrain subgroup overlap per se. The four remaining
strategies in [59] have no obvious counterpart in our feature-selection scenario.

4.3 Clustering

Finding alternative solutions has been addressed extensively in the field of clus-
tering. [9] gives a taxonomy and describes algorithms for alternative clustering.
Our problem definition in Sections 3.1 and 3.2 is, on a high level, inspired by
the one in [9]: Find multiple solutions that maximize quality while minimiz-
ing similarity. [9] also distinguishes between singular/multiple alternatives and
sequential/simultaneous search. They mention constraint-based search for al-
ternatives as one of several solution paradigms. Further, feature selection can
help to find alternative clusterings [101]. Nevertheless, the problem definition
for alternatives in clustering and feature selection is fundamentally different.

20

First, the notion of dissimilarity differs, as we want to find differently composed
feature sets while alternative clustering targets at different assignments of data
objects to clusters. Second, our objective function, i.e., feature-set quality, re-
lates to a supervised prediction scenario while clustering is unsupervised.

Two exemplary approaches for alternative clustering are COALA [7] and
MAXIMUS [8]. COALA [7] imposes cannot-link constraints on pairs of data
objects rather than constraining features: Data objects from the same cluster in
the original clustering should be assigned to different clusters in the alternative
clustering. In each step of its iterative clustering procedure, COALA compares
the quality of an action observing the constraints to another one violating them.
Based on a threshold on the quality ratio, either action is taken. MAXIMUS [8]
employs an integer program to formulate dissimilarity between clusterings. In
particular, it wants to maximize the dissimilarity of the feature-value distribu-
tions in clusters between the clusterings. The output of the integer program
leads to constraints for a subsequent clustering procedure.

4.4 Subspace Clustering and Subspace Search

Finding multiple useful feature sets plays a role in subspace clustering [42, 72]
and subspace search [29, 79, 102]. These approaches strive to improve the re-
sults of data-mining algorithms by using subspaces, i.e., feature sets, rather
than the full space, i.e., all features. While some subspace approaches only con-
sider individual subspaces, others explicitly try to remove redundancy between
subspaces [72, 79] or foster subspace diversity [29, 102]. In particular, [42] sur-
veys subspace-clustering approaches yielding multiple results and discusses the
redundancy aspect. However, subspace clustering and -search approaches differ
from alternative feature selection in at least one of the following aspects:

First, the objective differs, i.e., definitions of subspace quality deviate from
feature-set quality in our scenario. Second, definitions of subspace redundancy
may consider dissimilarity between projections of the entire data, i.e., data ob-
jects with feature values, into subspaces, while our notion of dissimilarity purely
bases on binary feature-selection decisions. Third, controlling dissimilarity in
subspace approaches is often less user-friendly than with our parameter τ . E.g.,
dissimilarity might be a regularization term in the objective rather than a hard
constraint, or there might not be an explicit control parameter at all.

4.5 Explainable Artificial Intelligence (XAI)

In the field of XAI, alternative explanations might provide additional insights
into predictions, enable users to develop and test different hypotheses, appeal to
different kinds of users, and foster trust in the predictions [50, 108]. In contrast,
obtaining significantly different explanations for the same prediction might raise
doubts about how meaningful the explanations are [43]. Finding diverse expla-
nations had been studied for various explainers, e.g., for counterfactuals [21,
44, 67, 71, 91, 105], criticisms [49], and semifactual explanations [2]. There are

21

several approaches to foster diversity, e.g., ensembling different kinds of expla-
nations [98], considering multiple local minima [105], using a search algorithm
that maintains diversity [21], extending the optimization objective [2, 49, 71],
or introducing constraints [44, 67, 91]. The last option is similar to the way we
enforce alternatives. Of the various mentioned approaches, only [2, 67, 71] in-
troduce a parameter to control the diversity of solutions. Of these three works,
only [67] offers a user-friendly dissimilarity threshold in [0, 1], while the other
two approaches employ a regularization parameter in the objective.

Despite similarities, all the previously mentioned XAI techniques tackle dif-
ferent problems than alternative feature selection. In particular, they provide
local explanations, i.e., target at prediction outcomes for individual data objects
and build on feature values. In contrast, we are interested in the global predic-
tion quality of feature sets. For example, counterfactual explanations [33, 100,
104] alter feature values as little as possible to produce an alternative prediction
outcome. In contrast, alternative feature sets might alter the feature selection
significantly while trying to maintain the original prediction quality.

5 Experimental Design

In this section, we describe our experimental design. We give a brief overview of
its goal and components (cf. Section 5.1) before elaborating on the components
in detail. In particular, we describe evaluation metrics (cf. Section 5.2), methods
(cf. Section 5.3), datasets (cf. Section 5.4), and implementation (cf. Section 5.5).

5.1 Overview

We conduct experiments with 30 binary-classification datasets. Our evaluation
focuses on the trade-off between feature-set quality and obtaining alternative
feature sets. We compare five feature-selection methods, representing different
notions of feature-set quality. Also, we train prediction models with the result-
ing feature sets and analyze prediction performance. To find alternatives, we
consider simultaneous as well as sequential search. We systematically vary the
number of alternatives and the dissimilarity threshold for alternatives.

5.2 Evaluation Metrics

Feature-set quality We evaluate feature-set quality with two metrics. First,
we report the objective value Q(s,X, y) of the feature-selection methods, which
guided the search for alternatives. Second, we train prediction models with the
found feature sets. We report prediction performance in terms of the Matthews
correlation coefficient (MCC) [64]. This coefficient is insensitive to class im-
balance, reaches its maximum of 1 for perfect predictions, and is 0 for random
guessing. We conduct stratified five-fold cross-validation to analyze how well
feature selection and prediction models generalize. The search for alternatives
and model training are limited to the training data.

22

Runtime We consider two metrics related to runtime.
First, we analyze the optimization time. For white-box feature-selection

methods, we measure the total runtime of solver calls. We exclude the time
for computing feature qualities and feature dependencies for the objective since
one can compute these values once per dataset and then re-use them in each
solver call. For Greedy Wrapper, we measure the runtime of the entire black-box
optimization procedure involving multiple solver calls and model trainings.

Second, we examine the optimization status, which can take four values. If
the solver finished before reaching a timeout, it either found an optimal solution
or proved the problem infeasible, i.e., no solution exists. If the solver reached its
timeout, it either found a feasible solution whose optimality it could not prove
or found no valid solution though one might exist, so the problem is not solved.

5.3 Methods

We compare several approaches for making predictions (cf. Section 5.3.1), fea-
ture selection (cf. Section 5.3.2), and searching alternatives (cf. Section 5.3.3).

5.3.1 Prediction

As prediction models, we use decision trees [13] and random forests with 100
trees [12]. Both these models admit learning complex, non-linear dependencies
from the data. We leave the hyperparameters of the models at their defaults,
except for using information gain instead of Gini impurity as the split criterion,
to be consistent with our parametrization of filter feature-selection methods.

Note that tree models also carry out feature selection themselves, i.e., they
are embedded approaches. Thus, they might not use all features from the al-
ternative feature sets. However, this is not a problem for our study. We are
interested in which performance the models achieve if they are limited to certain
feature sets, not if and how they use each feature from these sets.

5.3.2 Feature Selection (Objective Functions)

We search for alternatives under different notions of feature-set quality as the
objective function. We choose five well-known feature-selection methods that
are easy to parameterize and cover the different categories from Section 2.2
except embedded, as explained in Section 3.3.3. One method (Greedy Wrapper)
requires black-box optimization, while the other four are white-box.

With each feature-selection method, we select k ∈ {5, 10} features, thereby
obtaining small feature sets. We enforce the desired k with a simple constraint
in optimization, using the feature-set-size expression from Equation 5.

Filter feature selection We evaluate three filter methods, all using mutual
information [55] as the dependency measure q(·). This measure allows to capture
arbitrary dependencies rather than, e.g., just linear correlations. MI denotes a
univariate filter (cf. Equation 11), while FCBF (cf. Equation 12) and mRMR

23

(cf. Equation 14) are multivariate. Since mutual information has no fixed up-
per bound, we normalize per dataset and cross-validation fold to improve the
comparability of feature-set quality. For FCBF and MI, we normalize the indi-
vidual features’ qualities such that selecting all features yields a quality of 1 and
selecting no feature yields a quality of 0. For mRMR, we min-max-normalize
all mutual-information values to [0, 1], so the overall objective is in [−1, 1].

Wrapper feature selection As a wrapper method, we employ the hill-
climbing strategy Greedy Wrapper from Algorithm 1. We set max iters to
1000. To evaluate feature-set quality within the wrapper, we apply a strati-
fied 80:20 holdout split and train decision trees. Q(s,X, y) corresponds to the
prediction performance in terms of MCC on the 20% validation part.

Post-hoc feature importance As a post-hoc importance measure, we use
model-based feature importance provided by scikit-learn. Again, we use a de-
cision tree as the model. There, importance expresses a feature’s contribution
towards optimizing the split criterion of the tree, for which we choose informa-
tion gain. These importances are normalized to sum up to 1 by default. We
plug the importances into Equation 11, i.e., treat them like univariate filter
scores. The interpretation is different, though, since the scores originate from
trees trained with all features rather than assessing features in isolation.

5.3.3 Alternatives (Constraints)

Competitors We only evaluate approaches for searching alternatives that
we proposed in this article. As discussed in Section 4, approaches from related
work pursue different objective functions, operate with different notions of alter-
natives, and may only work for particular feature-selection methods. All these
points prevent a meaningful comparison of these approaches to ours. E.g., a fea-
ture set considered alternative in related work might violate our constraints for
alternatives. Further, within our own approaches, we can still put the feature-set
quality into perspective by comparing alternatives to each other.

Search parametrization We employ sequential (cf. Equation 9) and simul-
taneous (cf. Equation 10) search for alternatives. For the latter, we use sum-
aggregation (cf. Equation 15) and min-aggregation (cf. Equation 16) in the
objective. We evaluate a ∈ {1, . . . , 10} alternatives for sequential search and
a ∈ {1, . . . , 5} for simultaneous search due to the higher runtime of the latter.
For the dissimilarity threshold τ , we analyze all possible sizes of the feature-set
overlap in the Dice dissimilarity (cf. Equations 3 and 8). Thus, for k = 5, we
consider τ ∈ {0.2, 0.4, 0.6, 0.8, 1}, corresponding to an overlap of four to zero
features. For k = 10 we consider τ ∈ {0.1, 0.2, . . . , 1}. We exclude τ = 0, which
would allow returning duplicate feature sets.

24

Optimization All searches for alternatives rely on solvers. With Greedy
Wrapper as the feature-selection method, the search procedure is heuristic and
might not cover the entire search space. There, the solver only assists in find-
ing valid solutions but does not optimize. For the white-box feature-selection
methods, the solver exactly solves the underlying optimization problems. Thus,
given sufficient solving time, these alternatives are globally optimal.

Timeout We employ a solver timeout to make a large-scale evaluation feasi-
ble and to account for the high variance of solver runtime, even for optimization
problems of the same size. In particular, we grant each solver call 60 s multi-
plied by the number of feature sets. Thus, sequential search conducts multiple
solver calls with 60 s timeout, while simultaneous search conducts one solver
call with proportionally more time. The summed timeout for a fixed number of
alternatives is the same for both search methods. For 84% of the feature sets
in our evaluation, the solver finished before the timeout.

5.4 Datasets

We evaluate alternative feature selection on the Penn Machine Learning Bench-
marks (PMLB) [82, 90]. To harmonize evaluation, we only consider binary-
classification datasets, though alternative feature selection also works for re-
gression and multi-class problems. We exclude datasets with less than 100 data
objects since they might entail a high uncertainty when assessing feature-set
quality. Otherwise, the number of data objects should not systematically im-
pact the feature-set quality and is unimportant for our evaluation. Also, we
exclude datasets with less than 15 features to leave some room for alternatives.
Next, we exclude one dataset with 1000 features, which would dominate the
overall runtime of the experiments. Finally, we manually exclude datasets that
seem duplicated or modified versions of other datasets from the benchmark.

Consequently, we obtain 30 datasets with 106 to 9822 data objects and 15
to 168 features. The datasets contain no missing values. Categorical features
have an ordinal encoding by default. Table 2 lists these datasets.

5.5 Implementation and Execution

We implemented our experimental pipeline in Python 3.8, using scikit-learn [84]
for machine learning and the solver SCIP [10] via the package OR-Tools [86]
for optimization. A requirements file in our code specifies the versions of all
packages. The experimental pipeline parallelizes over datasets, cross-validation
folds, and feature-selection methods, while solver calls and model training are
single-threaded. We ran the pipeline on a server with 128 GB RAM and an
AMD EPYC 7551 CPU, having 32 physical cores and a base clock of 2.0 GHz.
The parallelized pipeline run took 255 hours, i.e., about 10.6 days.

25

Dataset m n

backache 180 32
chess 3196 36
churn 5000 20
clean1 476 168
clean2 6598 168
coil2000 9822 85
credit a 690 15
credit g 1000 20
dis 3772 29
G Epistasis 2 Way 20atts 0.1H EDM 1 1 1600 20
G Epistasis 2 Way 20atts 0.4H EDM 1 1 1600 20
G Epistasis 3 Way 20atts 0.2H EDM 1 1 1600 20
G Heterogeneity 20atts 1600 Het 0.4 0.2 50 EDM 2 001 1600 20
G Heterogeneity 20atts 1600 Het 0.4 0.2 75 EDM 2 001 1600 20
hepatitis 155 19
Hill Valley with noise 1212 100
horse colic 368 22
house votes 84 435 16
hypothyroid 3163 25
ionosphere 351 34
molecular biology promoters 106 57
mushroom 8124 22
ring 7400 20
sonar 208 60
spambase 4601 57
spect 267 22
spectf 349 44
tokyo1 959 44
twonorm 7400 20
wdbc 569 30

Table 2: Datasets from PMLB used in our experiments. m denotes the number
of instances and n the number of features. Dataset names starting with ‘G ’ ac-
tually start with ‘GAMETES ’; we truncated them to reduce the table’s width.

26

6 Evaluation

In this section, we evaluate our experiments. In particular, we discuss the
parametrization for searching alternatives: the search method (cf. Section 6.1),
number of alternatives a (cf. Section 6.2), and dissimilarity threshold τ (cf. Sec-
tion 6.3). Section 6.4 summarizes key findings. Additionally, Appendix A.7
contains results for further dimensions of our experimental design.

6.1 Search Methods for Alternatives

Variance in feature-set quality As expected, the search method influences
how much the training-set objective value Q varies between alternatives found
within each search run. Figure 1a visualizes this result for MI as the feature-
selection method and k = 5. In particular, the quality of multiple alternatives
found by sequential search usually varies more than for simultaneous search. For
simultaneous search, min-aggregation yields considerably more homogeneous
feature-set quality than sum-aggregation. These findings apply to all white-box
feature-selection methods but not the heuristic Greedy Wrapper.

As Figures 1c and 1e show, the variance of feature-set quality differs consid-
erably less between the search methods on the test set, for the objective value as
well as prediction performance. In particular, alternatives found by simultane-
ous search do not have considerably more homogeneous test feature-set quality
than for sequential search. This effect might result from overfitting: Even if
training feature-set quality is similar, some alternatives might generalize better,
i.e., lose less quality on the test set than others. Thus, the variance in test
feature-set quality caused by overfitting could alleviate the effect on variance
caused by the search method.

Average value of feature-set quality While obtaining alternatives of ho-
mogeneous quality can be one goal of simultaneous search, the main selling point
compared to sequential search would be alternatives of higher average quality.
However, we found that simultaneous search is not clearly better than sequential
search in that regard. In particular, Figure 1b compares the distribution of the
mean training-set objective in search runs with MI as feature-selection method
and k = 5. We observe that all search methods yield very similar distributions of
feature-set quality. The other four feature-selection methods also do not show a
general quality advantage of simultaneous search. At most, simultaneous search
tends to develop a slight advantage with a growing number of alternatives for
MI, as visible in Figure 1b, and Model Gain.

The test-set objective value in Figure 1d and the test-set prediction per-
formance in Figure 1f also exhibit the negligible quality difference between the
search methods. As Figure 2a displays, the variation in prediction performance
caused by other dimensions of the experimental design, e.g., dataset, dissimilar-
ity threshold τ , etc., exceeds the variation due to the search methods.

Finally, Figure 2b displays the difference in feature-set quality between se-
quential and simultaneous search compared on each search setting separately,

27

1 2 3 4 5
Number of alternatives a

0.0
0.1
0.2
0.3

 o
f Q

tra
in

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(a) Standard deviation of training-set ob-
jective value within search runs.

1 2 3 4 5
Number of alternatives a

0.0
0.2
0.4
0.6
0.8
1.0

M
ea

n
of

 Q
tra

in

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(b) Mean of training-set objective value
within search runs.

1 2 3 4 5
Number of alternatives a

0.0
0.1
0.2
0.3

 o
f Q

te
st

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(c) Standard deviation of test-set objec-
tive value within search runs.

1 2 3 4 5
Number of alternatives a

0.0

0.2

0.4

0.6
M

ea
n

of
 Q

te
st

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(d) Mean of test-set objective value with-
in search runs.

1 2 3 4 5
Number of alternatives a

0.0
0.1
0.2
0.3

 o
f M

CC
tre

e
te

st

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(e) Standard deviation of test-set predic-
tion performance within search runs.

1 2 3 4 5
Number of alternatives a

0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
ea

n
of

 M
CC

tre
e

te
st

sim. (min)
sim. (sum)

seq.

Se
ar

ch

(f) Mean of test-set prediction perfor-
mance within search runs.

Figure 1: Feature-set quality over the number of alternatives a, by search
method for alternatives and evaluation metric. Results with MI as feature-
selection method and k = 5. Y-axes are truncated to improve readability.

28

seq.
sim. (min)

sim. (sum)

Search

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(a) Test-set prediction performance.

Qtrain Qtest MCCtree
test

Metric

0.3
0.2
0.1
0.0
0.1
0.2
0.3

D
iff

er
en

ce
 s

im
. v

s.
 s

eq
.

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(b) Difference in quality between simulta-
neous (sum-aggregation) and sequential
search by evaluation metric. Y-axis is
truncated to improve readability.

Figure 2: Feature-set quality by feature-selection method and search method
for alternatives. Results with k = 5 and a ∈ {1, 2, 3, 4, 5}.

i.e., each combination of dataset, dissimilarity threshold τ , etc. The figure again
shows little variation in quality between the search methods except for Greedy
Wrapper feature selection. In particular, the quality difference is usually close
to zero, apart from a few outliers. Additionally, the figure highlights that out-
liers can occur in both directions: While simultaneous search can yield better
feature sets in some scenarios, sequential search can be better in others.

Optimization status One reason why simultaneous search fails to consis-
tently beat sequential search quality-wise is that search results can be subop-
timal. For Greedy Wrapper, the search is heuristic per se and does not cover
the entire search space. For all feature-selection methods, the solver can time
out. Table 3 shows that simultaneous search has a higher likelihood of timeouts
than sequential search, likely due to the larger size of the optimization problem
(cf. Table 1). In particular, for up to five alternatives and k = 5, all sequen-
tial searches for FCBF, MI, and Model Gain finished within the timeout, i.e.,
yielded the optimal feature set or ascertained infeasibility, while mRMR had
about 9% timeouts. In contrast, for simultaneous search with sum-aggregation,
all feature-selection methods experience timeouts: Roughly 2-3% of the searches
for FCBF, MI, and Model Gain, and 67% of the searches for mRMR found a
feasible solution but could not prove optimality. Such timeout-affected simul-
taneous solutions can be worse than optimal sequential solutions. The opti-
mization status not solved, i.e., not finding a feasible solution without proving
infeasibility, did not occur in the displayed results. Min-aggregation instead
of sum-aggregation in simultaneous search exhibits more timeouts for MI and

29

Selection Search Optimization status

Infeasible Feasible Optimal

FCBF seq. 66.39% 0.00% 33.61%
FCBF sim. (min) 73.07% 1.73% 25.20%
FCBF sim. (sum) 73.07% 2.19% 24.75%
MI seq. 1.97% 0.00% 98.03%
MI sim. (min) 4.67% 9.60% 85.73%
MI sim. (sum) 4.67% 3.17% 92.16%
Model Gain seq. 1.97% 0.00% 98.03%
Model Gain sim. (min) 4.67% 5.55% 89.79%
Model Gain sim. (sum) 4.67% 1.92% 93.41%
mRMR seq. 1.95% 8.67% 89.38%
mRMR sim. (min) 4.67% 49.04% 46.29%
mRMR sim. (sum) 4.67% 67.39% 27.95%

Table 3: Frequency of optimization statuses (cf. Section 5.2) by feature-
selection method and search method for alternatives. Results with k = 5,
a ∈ {1, 2, 3, 4, 5}, and excluding Greedy Wrapper, which uses the solver for
satisfiability checking rather than optimizing. Each row adds up to 100%.

Model Gain but less for FCBF and mRMR. Still, sequential search incurs fewer
timeouts for all these four feature-selection methods.

Finally, note that the fraction of timeouts strongly depends on the number
of alternatives a, as Table 4 displays: For simultaneous search with k = 5 and
sum-aggregation, roughly 8% of the white-box searches timed out for a = 1 but
20% for a = 3 and 30% for a = 5. While we grant simultaneous searches propor-
tionally more time for multiple alternatives, the observed increase in timeouts
suggests that runtime increases super-proportionally, as we analyze next.

Optimization time The actual optimization times also speak in favor of se-
quential search. As Table 5 shows, the mean optimization time of sequential
search is lower for all five feature-selection methods. In particular, the dif-
ference between sequential and simultaneous search is up to three orders of
magnitude for the four white-box feature-selection methods. Further, FCBF,
MI, and Model Gain experience a dramatic increase in optimization time with
the number of alternatives a in simultaneous search, as Table 6 displays. In
contrast, the runtime increase is considerably less for sequential search, which
shows an approximately linear trend with the number of alternatives.

Based on all results described in this section, we focus on sequential search in
the following. In particular, it was significantly faster than simultaneous search
while yielding similar feature-set quality.

Another interesting question for practitioners is how the runtime relates to n,
the number of features in the dataset. One would expect a positive correlation
since the optimization problem’s instance size increases with n. Roughly speak-

30

a Optimization status

Infeasible Feasible Optimal

1 16.10% 7.57% 76.33%
2 17.50% 13.43% 69.07%
3 20.00% 20.40% 59.60%
4 27.00% 21.47% 51.53%
5 28.23% 30.47% 41.30%

Table 4: Frequency of optimization statuses (cf. Section 5.2) by number of
alternatives a. Results from simultaneous search with sum-aggregation, k = 5,
and excluding Greedy Wrapper. Each row adds up to 100%.

Selection Optimization time

Seq. Sim. (min) Sim. (sum)

FCBF 0.22 s 11.91 s 13.09 s
Greedy Wrapper 54.23 s 61.10 s 63.45 s
MI 0.03 s 48.25 s 25.39 s
Model Gain 0.03 s 30.91 s 19.98 s
mRMR 34.12 s 157.87 s 189.76 s

Table 5: Mean optimization time by feature-selection method and search
method for alternatives. Results with k = 5 and a ∈ {1, 2, 3, 4, 5}.

ing, this trend appears in our experimental data indeed. However, the observed
trend is rather noisy, particularly for simultaneous search, and some higher-
dimensional datasets even show lower average runtimes than lower-dimensional
datasets. This result indicates that several other factors than n influence run-
time. Besides factors related to the datasets and experimental design, the heuris-
tics used by the solver may also cause the runtime to fluctuate considerably.

6.2 Number of Alternatives a

Feature-set quality For sequential search, the training-set objective value
has to decrease with the number of alternatives, at least for the feature-selection
criteria optimized exactly. In particular, each found feature set constrains the
optimization problem further. Figures 3a and 3c illustrate this trend for MI -
based feature selection. Since feature-set quality varies between datasets (cf. Ap-
pendix A.7.1), we additionally normalize feature-set quality here. In particular,
we analyze the relative development of feature-set quality within each search
run for alternatives. First, we shift the range of all evaluation metrics to [0, 1]
since prediction performance and the objectives of Greedy Wrapper and mRMR
have the range [−1, 1] without this shift. Second, we max-normalize feature-set
quality for each search of alternatives, i.e., the highest feature-set quality in

31

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 Q
ua

lit
y

Metric Qtrain Qtest MCCtree
test

(a) Max-normalized, infeasible feature sets excluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 Q
ua

lit
y

Metric Qtrain Qtest MCCtree
test

(b) Max-normalized, infeasible feature sets assigned a quality of 0.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 Q
ua

lit
y

Metric Qtrain Qtest MCCtree
test

(c) Min-max-normalized, infeasible feature sets excluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
al

iz
ed

 Q
ua

lit
y

Metric Qtrain Qtest MCCtree
test

(d) Min-max-normalized, infeasible feature sets assigned a quality of 0.

Figure 3: Feature-set quality, normalized per search run for alternatives, over
the number of alternatives, by evaluation metric and normalization method.
Results from sequential search with MI as feature-selection method and k = 5.

32

a Optimization time

FCBF Wrapper MI Model Gain mRMR

1 0.52 s 25.94 s 0.03 s 0.02 s 44.99 s
2 0.95 s 39.44 s 0.09 s 0.08 s 118.80 s
3 3.26 s 56.52 s 0.31 s 0.27 s 208.90 s
4 14.02 s 86.13 s 3.84 s 3.59 s 258.40 s
5 46.71 s 109.20 s 122.69 s 95.94 s 317.69 s

Table 6: Mean optimization time by number of alternatives and feature-selection
method. Results from simultaneous search with sum-aggregation and k = 5.

the search run is set to 1, and the other qualities are scaled accordingly. Fig-
ure 3a shows that multiple alternatives may have a similar quality, as the median
training-set objective value remains relatively stable over the alternatives and
is above 0.8 even for the tenth alternative. For comparison, Figure 3c uses
min-max normalization, i.e., the worst of the alternatives gets 0 as objective.
This figure makes the decrease in quality over the alternatives more visible. In
particular, this figure highlights that the training-set objective value decreases
most from the original feature set to the first alternative but less beyond.

Additionally, Figures 3a and 3c show that the test-set objective value also
drops most to the first alternative. However, this decrease is less prominent than
on the training set, and there is no clear trend beyond the first few alternatives.
In particular, alternatives can even have a higher test-set objective value than
the original feature set due to overfitting. Similar findings hold for test-set
prediction performance. Overall, these results indicate that alternative feature
sets fulfill their purpose of being different solutions with similar quality.

Optimization status The prior observations refer to the quality of the found
feature sets. However, the more alternatives are desired, the likelier an infeasible
optimization problem is (cf. Table 4). For example, MI -based feature selection
in sequential search always finds an original feature set. However, with k = 5,
the problem is infeasible in 2% of the cases for the third alternative, 12% for the
fifth, and 17% for the tenth. Increasing the feature-set size k or having lower
dataset dimensionality n naturally causes more infeasible solutions, as fewer
features become available for alternatives. Thus, even if the quality of found
feature sets remains relatively stable for more alternatives, valid alternatives
may simply not exist. Figures 3b and 3d show the same data as Figures 3a
and 3c but with the quality of infeasible feature sets set to zero, i.e., the theo-
retical minimum after we shifted the value ranges of evaluation metrics. In these
figures, the downward trend of feature-set quality over the alternatives becomes
slightly more prominent, particularly for many alternatives. This trend also
depends on the dissimilarity threshold τ , which we analyze in the next section.

33

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
tra

in

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(a) Training-set objective value. Infeasi-
ble feature sets excluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
tra

in

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(b) Training-set objective value. Infeasi-
ble feature sets assigned a quality of 0.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(c) Test-set prediction performance. In-
feasible feature sets excluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(d) Test-set prediction performance. In-
feasible feature sets assigned a quality
of 0.

Figure 4: Mean of feature-set quality, max-normalized per search run for al-
ternatives, over the number of alternatives, by feature-selection method and
evaluation metric. Results from sequential search with k = 5.

34

Influence of feature-selection method While we discussed MI before, the
decrease in objective value over the number of alternatives occurs for all feature-
selection methods in our experiments, as Figure 4a displays. The strength of
the decrease varies between the feature selection methods. For example, Greedy
Wrapper and mRMR show little effect of increasing the number of alternatives,
while MI and Model Gain exhibit the strongest effect. As Figure 4b displays,
the quality decrease becomes more prominent if one sets the quality of infeasible
feature sets to zero. Further, for the test-set prediction performance shown in
Figure 4c, no feature-selection method exhibits a strong decrease over the num-
ber of alternatives, unless we account for infeasible feature sets (cf. Figure 4d).

6.3 Dissimilarity Threshold τ

Feature-set quality As Figure 5a shows for MI as the feature-selection
method, the decrease in the objective value Q over the number of alternatives
strongly depends on the dissimilarity threshold τ . We use results with k = 10
instead of k = 5 here to show more distinct values of τ . For a low dissimilarity
threshold, e.g., τ = 0.1, the objective value barely drops over the number of
alternatives. In contrast, the objective value decreases significantly for a high
dissimilarity threshold, e.g., τ = 1. This trend is expected since a higher τ con-
strains the feature selection more. As Figure 5c displays, this phenomenon also
holds for the test-set objective value, though the dependency on τ is lower there.
The effect of τ on prediction performance exhibits an even less clear trend, as
visualized in Figure 5e. This result underlines our previous observations that
the objective value is only partially indicative of prediction performance.

Optimization status Similar to our analysis for the number of alternatives
(cf. Section 6.2), one needs to consider that setting τ too high can make the
optimization problem infeasible. In particular, a higher dissimilarity threshold
increases the likelihood that no feature set is alternative enough. Figure 6
visualizes the fraction of valid feature sets over the number of alternatives and
dissimilarity threshold τ . Figures 5b, 5d, and 5f account for infeasible feature
sets by setting their feature-set quality to zero. Compared to Figures 5a, 5c,
and 5e, the decrease in feature-set quality is noticeably stronger. In contrast,
if only considering valid feature sets, the mean quality can increase over the
number of alternatives, as visible in Figure 5a for τ = 1.0 or in Figure 4a for MI
and Model Gain. This counterintuitive phenomenon can occur because some
datasets run out of valid feature sets sooner than others, so the average quality
may be determined for different sets of datasets at each number of alternatives.

Influence of feature-selection method The impact of τ on feature-set
quality varies between feature-selection methods, as Figure 7a shows. Besides
MI, the objective value of Model Gain strongly depends on τ as well. In con-
trast, the remaining three feature-selection methods exhibit little influence of τ
on feature-set quality unless one also accounts for infeasible feature sets (cf. Fig-
ure 7b). For Greedy Wrapper, this outcome may be explained by the heuristic,

35

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 Q

tra
in 0.2

0.4

0.6

0.8

1.0

(a) Training-set objective value, max-
normalized. Infeasible feature sets ex-
cluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
tra

in 0.2

0.4

0.6

0.8

1.0

(b) Training-set objective value, max-
normalized. Infeasible feature sets as-
signed a quality of 0.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
te

st 0.2

0.4

0.6

0.8

1.0

(c) Test-set objective value, max-norma-
lized. Infeasible feature sets excluded.

0 1 2 3 4 5 6 7 8 9 10
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
te

st 0.2

0.4

0.6

0.8

1.0

(d) Test-set objective value, max-norma-
lized. Infeasible feature sets assigned a
quality of 0.

0 1 2 3 4 5 6 7 8 910
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

0.2

0.4

0.6

0.8

1.0

(e) Test-set prediction performance, min-
max-normalized. Infeasible feature sets
excluded.

0 1 2 3 4 5 6 7 8 910
Number of alternative

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

0.2

0.4

0.6

0.8

1.0

(f) Test-set prediction performance, min-
max-normalized. Infeasible feature sets
assigned a quality of 0.

Figure 5: Mean of feature-set quality, normalized per search run for alternatives,
over the number of alternatives and dissimilarity threshold τ , by evaluation
metric and normalization method. Results from sequential search with MI as
feature-selection method and k = 10.

36

0 1 2 3 4 5 6 7 8 910
Number of alternative

0%

20%

40%

60%

80%

100%
Va

lid
 fe

at
ur

e
se

ts 0.2

0.4

0.6

0.8

1.0

(a) Feature-set size k = 5.

0 1 2 3 4 5 6 7 8 910
Number of alternative

0%

20%

40%

60%

80%

100%

Va
lid

 fe
at

ur
e

se
ts 0.2

0.4

0.6

0.8

1.0

(b) Feature-set size k = 10.

Figure 6: Fraction of optimization runs yielding a valid feature set over the
number of alternatives and dissimilarity threshold τ , by feature-set size k. Re-
sults from sequential search with MI as feature-selection method.

inexact search procedure. For FCBF, the additional constraints on feature-
feature correlation (cf. Equation 12) may alleviate the effect of τ . For mRMR,
the low influence of τ matches the low influence of the number of alternatives.
For this feature-selection method, alternatives tend to vary little in their ob-
jective value. Finally, the test-set prediction performance does not vary con-
siderably over τ for any feature-selection method, as Figure 7c displays. Only
considering infeasible feature sets results in decreased prediction performance
(cf. Figure 7d).

6.4 Summary

Datasets (cf. Appendix A.7.1) Generally, feature-set quality strongly de-
pended on the dataset. Thus, an analysis of alternative feature sets should be
dataset-specific or appropriately normalize quality, as we did.

Feature-set quality metrics (cf. Appendix A.7.2) Different notions of
feature-set quality exhibited different trends in our experiments, so one should
choose a notion of feature-set quality carefully. In particular, the objective
function of feature-selection methods might disagree with the prediction perfor-
mance of the corresponding feature sets. Further, we observed overfitting, i.e.,
a gap between training-set quality and test-set quality, also for simple objective
functions, though to a lesser extent than for prediction performance.

Feature-selection methods (cf. Appendix A.7.3) Among the feature-
selection methods, Model Gain resulted in the best prediction performance on
average, though the simple univariate MI also turned out competitive. Greedy
Wrapper and mRMR required high optimization times, while our constraint-
based version of FCBF yielded many infeasible solutions. Finally, selecting
k = 10 instead of k = 5 features yielded only a slight improvement in prediction

37

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
tra

in

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(a) Training-set objective value. Infeasi-
ble feature sets excluded.

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 Q
tra

in

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(b) Training-set objective value. Infeasi-
ble feature sets assigned a quality of 0.

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(c) Test-set prediction performance. In-
feasible feature sets excluded.

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(d) Test-set prediction performance. In-
feasible feature sets assigned a quality
of 0.

Figure 7: Mean of feature-set quality, max-normalized per search run for al-
ternatives, over the dissimilarity threshold τ , by feature-selection method and
evaluation metric. Results from sequential search with k = 10.

38

performance for all feature-selection methods, so one might stick to smaller
feature-set sizes if such a setting benefits interpretability for users.

Search methods for alternatives (cf. Section 6.1) Simultaneous search,
particularly with min-aggregation, considerably reduced the variance of the
training-set objective value over alternatives compared to sequential search, as
we desired. However, results were less clear on the test set and when consider-
ing prediction performance to measure feature-set quality. Further, the average
quality of alternatives was similar to sequential search. In addition, the latter
was considerably faster and led to less solver timeouts, particularly when in-
creasing the number of alternatives. Also, sequential search allows users to stop
searching after each alternative instead of requiring the number of alternatives
to be specified beforehand. Thus, we recommend using sequential search.

Number of alternatives a (cf. Section 6.2) Feature-set quality decreased
most from the original feature set to the first alternative but less beyond. The
strength of this decrease depended on the feature-selection method. There usu-
ally were several alternatives of similar quality, if such valid alternatives existed
at all. In particular, the frequency of infeasible solutions increased with a due
to more constraints. Finally, the quality decrease was more prominent on the
training than on the test set.

Dissimilarity threshold τ (cf. Section 6.3) A higher dissimilarity thresh-
old caused a stronger decrease in feature-set quality in terms of objective value
for the feature-selection methods MI and Model Gain. This result shows that
users can control a trade-off between quality and dissimilarity. However, re-
sults regarding prediction performance and for the other three feature-selection
methods were less clear. In any case, a higher τ naturally caused more infeasible
solutions, which users should be aware of.

7 Conclusions and Future Work

In this section, we summarize our work (cf. Section 7.1) and give an outlook on
potential future work (cf. Section 7.2).

7.1 Conclusions

Feature-selection methods are a valuable tool to foster interpretable predic-
tions. Conventional feature-selection methods typically yield only one feature
set. However, users may be interested in obtaining multiple, sufficiently diverse
feature sets of high quality. Such alternative feature sets may provide alternative
explanations for predictions from the data.

In this article, we defined alternative feature selection as an optimization
problem. We formalized alternatives via constraints that are independent of

39

the feature-selection method, can be combined with other constraints on fea-
ture sets, and allow users to control diversity according to their needs. We an-
alyzed the complexity of this optimization problem and proved NP-hardness,
even for simple notions of feature-set quality. Further, we discussed how to in-
tegrate different categories of conventional feature-selection methods. Finally,
we evaluated alternative feature selection with 30 classification datasets and five
feature-selection methods. We compared two search methods for alternatives
and varied the number of alternatives as well as the threshold for alternatives.

7.2 Future Work

Feature selection (objective function) One could search for alternatives
with other feature-selection methods than the five we analyzed. In particular, we
implemented only one procedure to find alternatives for wrapper feature selec-
tion (cf. Section 3.3.2). Embedded feature selection, which we did not evaluate,
would also need adapted search procedures for alternatives (cf. Section 3.3.3).

Alternatives (constraints) One could vary the definition of alternatives,
e.g., the set-dissimilarity measure (cf. Section 3.2.1), the quality aggregation for
simultaneous alternatives (cf. Appendix A.1), or the overall optimization prob-
lem (cf. Section 3.1). While we made general and straightforward decisions for
each of these points, particular applications might demand other formalizations
of alternatives. E.g., one could use soft instead of hard constraints.

Computational complexity Appendix A.5.4 discusses how one could extend
our complexity analysis of alternative feature selection (cf. Section 3.4).

Runtime Our experiments (cf. Section 6.1) and theoretical analyses (cf. Sec-
tion 3.2.2) revealed that simultaneous search scales poorly with the number of
alternatives. One could conceive a more efficient problem formulation. Further,
one could limit the solver runtime and take the intermediate results once the
timeout is reached. We already used a fixed timeout in our experiments, but
studying the exact influence of timeouts on feature-set quality is an open topic.
Next, one could use a different solver, e.g., one for non-linear optimization, so
the auxiliary variables from Equation 6 become superfluous. Finally, one could
employ a heuristic rather than an exact search method (cf. Appendix A.6).

Datasets Our evaluation used datasets from various domains (cf. Section 5.4).
While we could uncover several general trends, the existence and quality of
alternatives naturally depend on the dataset. Thus, practitioners could use our
generic search methods for alternatives in domain-specific case studies.

Acknowledgments This work was supported by the Ministry of Science,
Research and the Arts Baden-Württemberg, project Algorithm Engineering for
the Scalability Challenge (AESC).

40

A Appendix

In this section, we provide supplementary materials. Section A.1 discusses ag-
gregation operators for the objective of simultaneous search (cf. Equation 10).
Section A.2 discusses additional objective functions for multivariate filter fea-
ture selection (cf. Section 3.3.1). Section A.3 provides complete definitions of
the alternative-feature-selection problem (cf. Section 3.2) for the univariate ob-
jective (cf. Equation 11). Section A.4 proposes how to speed up optimization
for the univariate objective (cf. Equation 11). Section A.5 complements the
complexity analysis (cf. Section 3.4). Section A.6 proposes search heuristics
for the univariate objective (cf. Equation 11). Section A.7 contains additional
evaluation results (cf. Section 6).

A.1 Aggregation Operators for Simultaneous Search

In this section, we discuss operators to aggregate the feature-set quality of mul-
tiple alternatives in the objective of simultaneous search (cf. Equation 10).

Sum-aggregation The arguably simplest way to aggregate the qualities of
multiple feature sets is to sum them up, which we call sum-aggregation:

max
s(0),...,s(a)

a∑
i=0

Q(s(i), X, y) (15)

While this objective fosters a high average quality of feature sets, it does not
guarantee that the alternatives have similar quality:

Example 1 (Sum-aggregation). Consider n = 6 features with univariate feature
qualities (cf. Equation 11) q = (9, 8, 7, 3, 2, 1), feature-set size k = 3, number
of alternatives a = 2, and dissimilarity threshold τ = 0.5, which permits an
overlap of one feature between sets here. Sequential search yields the selection
s(0) = (1, 1, 1, 0, 0, 0), s(1) = (1, 0, 0, 1, 1, 0), and s(2) = (0, 1, 0, 1, 0, 1), with
a summed quality of 24 + 14 + 12 = 50. One simultaneous-search solution
consists of the feature sets s(0) = (1, 1, 0, 1, 0, 0), s(1) = (1, 0, 1, 0, 1, 0), and
s(2) = (0, 1, 1, 0, 0, 1), with a summed quality of 20 + 18 + 16 = 54. Another
simultaneous-search solution is s(0) = (1, 1, 0, 0, 0, 1), s(1) = (1, 0, 1, 0, 1, 0), and
s(2) = (0, 1, 1, 1, 0, 0), with a summed quality of 18 + 18 + 18 = 54.

This example allows several insights. First, sequential search yields worse
quality than simultaneous search here, i.e., 50 vs. 54. Second, the feature-set
qualities of the sequential solution, i.e., 24, 14, and 12, differ significantly. Third,
simultaneous search can yield multiple solutions whose feature-set quality is
differently balanced. Here, the feature-set qualities in the second simultaneous-
search solution, i.e., 18, 18, and 18, are more balanced than in the first, i.e., 20,
18, and 16. However, both solutions are equally optimal for sum-aggregation.

41

Min-aggregation To actively foster balanced feature-set qualities in simul-
taneous search, we propose min-aggregation in the objective:

max
s(0),...,s(a)

min
i∈{0,...,a}

Q(s(i), X, y) (16)

In the terminology of social choice theory, this objective uses an egalitarian rule
instead of a utilitarian one [74]. Note that optimizing the objective with either
sum-aggregation or min-aggregation does not necessarily optimize the other. We
already showed a solution optimizing sum-aggregation but not min-aggregation
(cf. Example 1). In the following, we demonstrate the other direction:

Example 2 (Min-aggregation). Consider n = 6 features with univariate feature
qualities (cf. Equation 11) q = (11, 10, 6, 5, 4, 1), feature-set size k = 3, number
of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits an
overlap of one feature between sets here. One solution optimizing the objective
with min-aggregation is s(0) = (1, 1, 0, 0, 1, 0) and s(1) = (1, 0, 1, 1, 0, 0), with a
summed quality of 25 + 22 = 47. Another solution is s(0) = (1, 1, 0, 0, 0, 1) and
s(1) = (1, 0, 1, 1, 0, 0), with a summed quality of 22 + 22 = 44.

While both solutions have the same minimum quality, only the first solution
optimizes the objective with sum-aggregation. In particular, min-aggregation
permits reducing the quality of sets above the minimum of all sets.

From the technical perspective, Equation 16 has the disadvantage of be-
ing non-linear regarding the decision variables s(0), . . . , s(a). However, we can
linearize it with one constraint per feature set and an auxiliary variable Qmin:

max
s(0),...,s(a)

Qmin

subject to: ∀i ∈ {0, . . . , a} : Qmin ≤ Q(s(i), X, y)

Qmin ∈ R

(17)

As we maximize Qmin, this variable will implicitly assume the actual minimum
value ofQ(s(i), X, y) with equality since the solution would not be optimal other-
wise. This situation relieves us from introducing further auxiliary variables that
are usually necessary when linearizing maximum or minimum expressions [69].

Further approaches for balancing quality Min-aggregation provides no
control or guarantee of how much the feature-set qualities will actually dif-
fer between alternatives since it only incentives high quality for all sets. One
can alleviate this issue by adapting the objective or constraints. First, related
work on number partitioning also uses other objectives for balancing [54, 57]
(cf. Section A.5.2). E.g., one could minimize the difference between maximum
and minimum feature-set quality. Second, one could use sum-aggregation but
constrain the minimum or maximum quality of sets, or the difference between
the qualities. However, such constraint-based approaches introduce one or sev-
eral parameters bounding feature-set quality, which are difficult to determine a
priori. Third, one could treat balancing qualities as another objective besides

42

maximizing the summed quality. One can then optimize two objectives simul-
taneously, filtering results for Pareto-optimal solutions or optimize a weighted
combination of the two objectives. In both cases, users may need to define an
acceptable trade-off between the objectives. It is an open question if a solution
always exists that jointly optimizes min- and sum-aggregation. If yes, then op-
timizing a weighted combination of the two objectives would also optimize each
of them on its own, assuming positive weights.

A.2 Further Objectives for Multivariate Filter Methods

While Section 3.3.1 already addressed FCBF and mRMR as multivariate filter
feature-selection methods, we discuss the objectives of CFS and Relief here.

CFS Correlation-based Feature Selection (CFS) [37, 38] follows a similar prin-
ciple as mRMR but uses the ratio instead of the difference between a relevance
term and a redundancy term for feature-set quality. Using a bivariate depen-
dency measure q(·) to quantify correlation, the objective is as follows:

QCFS(s,X, y) =

∑n
j=1 q(X·j , y) · sj√∑n

j=1 sj +
∑n

j1=1

∑n
j2=1
j2 ̸=j1

q(X·j1 , X·j2) · sj1 · sj2
(18)

One can square this objective to remove the square root in the denominator [78].
Nevertheless, the objective remains non-linear in the decision variables s since
it involves a fraction and multiplications between variables. However, one can
linearize the objective with additional variables and constraints [77, 78], allowing
to formulate alternative feature selection for CFS as a linear problem.

Relief Relief [51, 88] builds on the idea that data objects with a similar value
of the prediction target should have similar feature values, but data objects
that differ in their target should differ in their feature values. Relief assigns a
score to each feature by sampling data objects and quantifying the difference
in feature values and target values compared to their nearest neighbors. We
deem Relief to be multivariate since the nearest-neighbor computations involve
all features instead of considering them independently. However, the resulting
feature scores can directly be put into the univariate objective (cf. Equation 11)
to obtain a linear problem. One can also use Relief scores in CFS to consider
feature redundancy [37, 38], which the default Relief does not.

A.3 Complete Specifications of the Optimization Problem
for the Univariate Objective

In this section, we provide complete specifications of the alternative-feature-
selection problem for sequential and simultaneous search. In particular, we

43

combine all relevant definitions and equations from Section 3. We use the ob-
jective of univariate filter feature selection (cf. Equation 11). The correspond-
ing feature qualities q(·) are constants in the optimization problem. We use
the Dice dissimilarity (cf. Equation 8) to measure feature-set dissimilarity for
alternatives. The dissimilarity threshold τ ∈ [0, 1] is a user-defined constant.
Further, we assume fixed, user-defined feature-set sizes k ∈ N.

Sequential alternatives In the sequential case, only one feature set Fs is
variable in the optimization problem, while the existing feature sets Fs̄ ∈ F
with their selection vectors s̄ are constants.

max
s

Quni(s,X, y) =

n∑
j=1

q(X·j , y) · sj

subject to: ∀Fs̄ ∈ F :

n∑
j=1

sj · s̄j ≤ (1− τ) · k

n∑
j=1

sj = k

s ∈ {0, 1}n

(19)

Simultaneous alternatives In the simultaneous case, all feature sets are
variable. a ∈ N0 denotes the number of alternatives, which corresponds to
the number of feature sets minus one. Next, we introduce auxiliary variables
to linearize products between variables (cf. Equation 6). Finally, we use sum-
aggregation (cf. Equation 15) in the objective here.

max
s(0),...,s(a)

∑
i

Quni(s
(i), X, y) =

∑
i

∑
j

q(X·j , y) · s(i)j

subject to: ∀i1 ∀i2 :
∑
j

t
(i1,i2)
j ≤ (1− τ) · k

∀i1 ∀i2 ∀j : t
(i1,i2)
j ≤ s

(i1)
j

∀i1 ∀i2 ∀j : t
(i1,i2)
j ≤ s

(i2)
j

∀i1 ∀i2 ∀j : 1 + t
(i1,i2)
j ≥ s

(i1)
j + s

(i2)
j

∀i :
∑
j

s
(i)
j = k

∀i : s(i) ∈ {0, 1}n

∀i1 ∀i2 : t(i1,i2) ∈ {0, 1}n

with indices: i ∈ {0, . . . , a}
i1 ∈ {1, . . . , a}
i2 ∈ {0, . . . , i1 − 1}
j ∈ {1, . . . , n}

(20)

44

A.4 Pre-Selection for the Univariate Objective

In this section, we describe how to potentially speed up the optimization of
the univariate objective (cf. Equation 11) by pre-selection if the user-defined
feature-set sizes k and the number of alternatives a are small.

The univariate objective is monotonic in the features’ qualities q(X·j , y) and
the selection decisions sj . In particular, the objective cannot decrease when
selecting more features or replacing a feature with another of higher quality for
a fixed feature-set size. Sum-aggregation (cf. Equation 15) and min-aggregation
(cf. Equation 16) for simultaneous search are monotonic as well.

Thus, assuming (a+1) ·k < n, it suffices to use the (a+1) ·k highest feature
qualities when searching for an optimal solution out of a+1 feature sets. Due to
monotonicity, the remaining feature qualities cannot improve the objective, so
one can drop them before optimization. We call this step pre-selection. While
there might also be optimal solutions using the dropped features, their objective
value cannot be higher than with pre-selection. For example, such solutions can
arise in case of multiple identical qualities or for min-aggregation in the objective
(cf. Example 2). Also, the optimal solution might not contain all pre-selected
features, i.e., pre-selection over-approximates the set of selected features.

One can conduct pre-selection before using a solver or any other search
mechanism, e.g., exhaustive search. The latter generally has polynomial runtime
regarding n assuming small, constant a and k, i.e., a·k ∈ O(1) (cf. Section 3.4.1).
With pre-selection, the pure search cost would even become independent from n,
i.e., O(1) under that assumption. However, one would need to determine the
highest feature qualities first, e.g., by sorting all qualities in O(n · log n) or
iteratively determining the maximum quality in O((a+ 1) · k · n).

A.5 Computational Complexity

In this section, we provide details for our analysis of computational complexity
(cf. Section 3.4). In particular, we discuss a special case of exhaustive simulta-
neous search (cf. Section A.5.1), outline related work (cf. Section A.5.2), provide
proofs (cf. Section A.5.3), and describe future work (cf. Section A.5.4).

A.5.1 A Special Case of Exhaustive Simultaneous Search

The complexity of exhaustive simultaneous search is lower than in Proposition 4
for the special case 0 < τ · k ≤ 1, i.e., if feature sets need to differ in only one
feature. There, each feature set is an alternative to each other unless both
sets are identical. Thus, each set of a + 1 distinct feature sets constitutes a
valid solution, and further constraint checking is unnecessary. Hence, instead of
iterating over sets of feature sets, one can iterate over individual feature sets and
maintain a buffer containing the a+1 feature sets with the highest quality. For
each feature set iterated over, one needs to determine if its quality is higher than
the lowest feature-set quality in the buffer and replace it if yes. This procedure
has a runtime of O((a+1) ·nk) without the cost of evaluating the objective. I.e.,

45

unlike in Proposition 4, the number of alternatives a is not part of the exponent
anymore, and the cost corresponds to the search for one feature set times the
cost of updating the buffer. For large a, one can implement the buffer as a heap,
thereby reducing the linear factor regarding a to a logarithmic one.

A.5.2 Related Work

In this section, we discuss related work on NP-hard problems that resemble
alternative feature-selection with univariate feature qualities (cf. Equation 11),
providing background for Section 3.4.2.

Integer programming The univariate objective and several other feature-
selection methods allow us to phrase alternative feature selection as a 0-1 integer
linear program (cf. Section 3.3.1). Integer Programming is NP-complete in
general, even for binary decision variables [30, 45]. Thus, alternative feature se-
lection with a white-box objective suitable for Integer Programming resides
in NP. However, it could still be easier since alternative feature selection only
uses particular constraint types instead of expressing arbitrary integer linear
problems. Vice versa, the membership in NP based on Integer Program-
ming assumes a particular encoding of alternative feature selection, i.e., each
constraint is stored separately and counts towards the problem’s input size. If
we instead define the input size only as the number of features n or the to-
tal encoding length of the objective function plus parameters a, k, and τ , the
problem could be harder than NP, e.g., for a high number of alternatives. In
particular, increasing the number of alternatives would increase the encoding
length logarithmically but the cost of constraint checking quadratically.

Multi-way number partitioning / multiprocessor scheduling The lit-
erature provides different formulations of Multi-Way Number Partitioning
and Multiprocessor Scheduling. In particular, different objectives for-
malize the notion of balanced subset sums and can lead to different optimal
solutions [54, 57]. The maximin formulation we use for min-aggregation in si-
multaneous search is one such notion.

There are several exact algorithms to solve Multi-Way Number Parti-
tioning, e.g., using branch-and-bound approaches that might have exponential
runtime [39, 95, 107]. For a fixed number of partitions, the problem is weakly
NP-complete since it admits pseudo-polynomial algorithms [30, 53]. Such algo-
rithms run in polynomial time if the input numbers are bounded to a particular
size known in advance. Since our feature qualities typically are real numbers,
one would need to scale and discretize them to apply such an algorithm. Also,
for an arbitrary number of partitions, the problem is strongly NP-complete, so
no pseudo-polynomial algorithm can exist unless P = NP [30].

However, NP-completeness does not exclude the existence of approximation
routines that run in polynomial time and have a guaranteed quality relative to
the optimal solution. For example, [1, 24, 112] present such algorithms for

46

the maximin formulation of Multi-Way Number Partitioning, which cor-
responds to our objective with min-aggregation. In particular, [1, 112] describe
polynomial-time approximation schemes (PTAS), which can provide a solution
arbitrarily close to the optimum. However, the runtime depends on the desired
approximation ratio and can grow exponentially the more precision is desired.
Unless P = NP, the strong NP-completeness of the problem prevents the exis-
tence of a fully polynomial-time approximation scheme (FPTAS), which would
only polynomially depend on the precision of approximation [1, 112]. However,
an FPTAS does exist for each fixed number of partitions [93]. Further, besides
approximations, the problem also has polynomial-time exact algorithms if cer-
tain parameters of the problem are fixed, e.g., the number of unique numbers to
be partitioned or the largest number [66]. Thus, the problem is fixed-parameter
tractable (FPT) for an appropriate definition of ‘parameter’.

Balanced number partitioning / k-partitioning While the previous ap-
proaches considered sets of arbitrary sizes, there are number-partitioning prob-
lems with constrained k as well, e.g., called Balanced Number Partitioning
orK-Partitioning. The problem formulations differ in their objective and car-
dinality constraints, e.g., if equalities or inequalities are used.

For the minimax objective, [4, 65, 117] propose heuristic algorithms, some
with approximation guarantees. [4] also provides a bound of the objective value
relative to the unconstrained case. Further, there is a PTAS for each fixed set
size k [65]. Finally, the problem exhibits a polynomial-time exact algorithm for
k = 2 [22, 23] and an FPTAS for k = n/2 [111].

One can also loosen the cardinality constraints by requiring ≤ k instead of
= k. Further, the cardinality k might vary between partitions. This generalized
problem is strongly NP-hard but has heuristics running in polynomial time [46].
In particular, [17] provides an efficient PTAS (EPTAS).

As another problem formulation, [18, 40, 58] use a maximin objective as we
do. This objective was rarely addressed in combination with cardinality con-
straints in the literature [58]. Also, all these three references use ≤ k constraints
instead of = k. Again, this problem is strongly NP-hard [40], but [18, 40, 58]
propose approximation algorithms, partly with quality guarantees.

Other partitioning problems There are other NP-complete problems that
partition elements into non-overlapping subsets [30]. E.g., Partition [45] asks
if one can partition a set of elements with positive integer weights into two sub-
sets with the same subset sum. 3-Partition [30] demands a partitioning into
three-element subsets with an identical, predefined subset sum of the elements’
positive integer weights. In contrast to these two problems, we do not require
alternative feature sets to have the same quality.

Bin covering Bin Covering [3] distributes elements with individual weights
into bins such that the number of bins is maximal and the summed weights in

47

each bin surpass a predefined limit. [57] noted a relationship between Multi-
Way Number Partitioning and Bin Covering, which may improve solution
approaches for either problem [106, 107]. In our case, we could maximize the
number of alternatives such that each feature set’s quality exceeds a threshold.

Multiple knapsack Simultaneous search with sum-aggregation, τ = 1, and
univariate feature qualities is a special case of the Multiple Knapsack prob-
lem [16]. The latter involves knapsacks, i.e., sets with individual capacities, and
elements with individual weights and profits. The goal is to assign elements to
knapsacks such that the summed profit of selected elements is maximal. Each
element can be assigned to at most one knapsack, and the weights of all ele-
ments in the knapsack must not violate its capacity. This problem is strongly
NP-complete in general, though it exhibits a PTAS [16]. However, our problem
is a special case where the feature qualities act as profits, the feature-set sizes
are capacities, and each feature has a weight of 1. These uniform weights enable
the polynomial-runtime result stated in Proposition 11.

A.5.3 Proofs

In this Section, we provide proofs for propositions from Section 3.4.2.

Proof of Proposition 9

Proof. Let an arbitrary problem instance I of the complete-partitioning problem
be given and the feature-set size k be fixed. We add one feature f ′ to I and keep
a, k, and τ as before, obtaining an instance I ′ of the incomplete-partitioning
problem since one feature will not be selected. We choose the quality q′ of f ′

to be lower than the quality of all other features in I. Since the univariate
objective with min-aggregation is monotonically increasing, selecting feature f ′

in the solution of I ′ does not have any benefit since f ′ would replace a feature
with higher quality. If f ′ is not selected, then this solution of I ′ also solves I.
However, if the qualities of the resulting alternatives are not equal, f ′ might
be chosen in a set that does not have the minimum quality of all sets since
only the latter determines the overall objective value (cf. Example 2). In that
case, we replace f ′ with the remaining feature that was not selected instead; the
objective value remains the same, and the solution becomes valid for I. Thus,
in any case, we can easily transform a solution for I ′ to a solution for I.

This argument shows that an algorithm for incomplete partitioning can solve
arbitrary complete-partitioning problem instances with negligible computational
overhead. Thus, a polynomial-time algorithm for incomplete partitioning could
also solve complete partitioning polynomially. However, the latter problem type
is NP-complete (cf. Proposition 8), so incomplete partitioning has to be NP-
hard. Since checking a solution for incomplete partitioning needs only polyno-
mial time, we obtain membership in NP and thereby NP-completeness.

48

Proof of Proposition 10

Proof. Let an arbitrary problem instance I of the complete-partitioning problem
be given and the feature-set size k be fixed. We create another instance I ′

by adding a new feature f ′ and increasing the feature-set size to k′ = k + 1.
Further, we set τ ′ = (k′ − 1)/k′, thereby allowing an overlap of at most one
feature between feature sets. Also, we choose f ′ to have a considerably higher
quality q′ than all other features. The goal is to force the selection of f ′ in all
feature sets such that any other solution would be worse, no matter which other
features are selected. One possible choice is q′ =

∑n
j=1 qj+ε, with ε ∈ R>0 being

a small positive number, or, if the qualities are integers, ε = 1. This quality q′

of f ′ is higher than of any feature set not containing it. Thus, a solution for I ′

contains f ′ in each feature set while the remaining features are part of exactly
one feature set. Hence, we remove f ′ to get feature sets of size k = k′ − 1 that
constitute an optimal solution for the original problem instance I.

This transformation shows how an algorithm for instances with τ < 1 can
help solve arbitrary problem instances with τ = 1. Given the NP-completeness
of the latter problem, we obtain NP-hardness of the former.

Adding the proposed f ′ with a high quality q′ enlarges the size of the problem
instance. However, the transformation from I to I ′ still runs in polynomial time
and increases the input size by at most a fixed factor. In particular, encoding
a problem instance involves n feature qualities and the values of a, k, and τ .
Assuming the feature qualities in I have an average encoding size of c ∈ R, the
overall quality encoding has the size c · n. As q′ roughly equals the sum of all
feature qualities, its encoding size is upper-bounded by c·n if we disregard ϵ. The
change of k and τ is negligible for the encoding size. In consequence, the input
size of I ′ is at most roughly double the size of I. If we explicitly stored all the
constraints instead of only the relevant parameters, we would obtain a similar
result: Besides adding q′ to the objective, all constraints would accommodate
one new feature, independent of its quality, increasing their encoding size from
O(n) to O(n+ 1), i.e., less than double.

One can extend the reduction above from τ ′ = (k′−1)/k′ to all other τ > 0.
In particular, for a fixed feature set-size k, there is only a finite number of
τ values leading to different set overlaps, i.e., τ = {1/k, . . . , (k − 1)/k}. The
highest overlap except τ = 0 requires creating an instance I ′ with τ ′ = 1/k from
an instance with τ = 1. For this purpose, k2−k features need to be added since
τ ′ = k/k′ = k/(k+ k2 − k) = 1/k. I.e., k out of k′ = k2 features need to form a
complete partitioning, while the remaining k2−k features occur in each feature
set and will be removed after solving I ′. The maximum number of features to
be added is polynomial in k and thereby also polynomial in n.

Proof of Proposition 11

Proof. For a complete partitioning, we must use each of the n features exactly
once. How we distribute the features among sets does not change the objec-
tive value, which is the sum of all n qualities in any case. We only need to

49

ensure that each feature set satisfies cardinality constraints if the latter exist.
Thus, ‘searching’ for alternatives amounts to iterating over the features once to
assigning them to the feature sets. Hence, the time complexity is O(n).

For an incomplete partitioning, we use the monotonicity of the univariate
objective with sum-aggregation (cf. Section A.4) and order the features decreas-
ingly by their individual quality. Next, we pick features without replacement
until we have the desired number of alternatives with the desired feature-set
sizes. Again, assigning features to sets does not matter for the objective value.
Due to the quality-based sorting, the time complexity is O(n · log n). If only
a small fraction of features is used, one might slightly improve complexity by
iteratively picking the maximum instead of sorting all qualities.

A.5.4 Future Work

In this section, we outline future work on alternative feature selection from the
complexity-theory perspective, supplementing the Sections 3.4 and 7.2.

Scenarios of alternative feature selection Our prior complexity analyses
focused on special cases of alternative feature selection. E.g., while we obtained
NP-hardness for min-aggregation with feature-set overlap (cf. Proposition 10),
an analysis of sum-aggregation with overlap is open, even for sequential search.
Sum-aggregation admits polynomial runtime for τ = 1 (cf. Proposition 11), but
this result might not extend to τ < 1. In particular, τ < 1 increases the number
of solution candidates, which could negatively affect the runtime.

Further, our complexity analyses mostly assumed univariate feature quali-
ties. Other feature-selection methods can reside in different complexity classes.

Complexity classes For analyzing other scenarios of alternative feature se-
lection, several questions spring to mind. First, one could establish a complexity
result like NP-hardness or membership in P. In the former case, there might be
pseudo-polynomial approaches or (F)PTAS. As a first step in that direction, we
show membership in complexity class APX under certain conditions (cf. Propo-
sition 13), i.e., there are polynomial-time algorithms yielding constant-factor
approximations. One might attempt to tighten the quality bounds we derived.
Further, there might be efficient exact or approximate algorithms for certain
types of problem instances, e.g., satisfying additional assumptions regarding
feature-set quality or the parameters k, a, and τ . Finally, while we placed
alternative feature selection in class XP (cf. Proposition 5), one might prove
membership or hardness for more specific parameterized complexity classes.

Related problem formulations We only focused on the optimization prob-
lem of alternative feature selection until now. Another interesting question is
how many alternatives exist for a given n, k, and τ , regardless of their quality.
Also, given the number of alternatives as well, it would be interesting to have
an exact or approximate estimate for the number of valid solutions for alterna-
tive feature selection, i.e., sets of feature sets. While both these estimates are

50

straightforward for τ = 1, allowing arbitrary τ poses a larger challenge. Finally,
one could re-formulate alternative feature selection similar to Bin Covering
(cf. Section A.5.2) and analyze this problem in detail.

A.6 Heuristic Search for the Univariate Objective

In this section, we propose heuristic search methods for the univariate objec-
tive (cf. Equation 11 and Section A.3), complementing the exact, solver-based
search methods that we evaluate in our experiments (cf. Section 6.1). The
proposed heuristics may be faster than exact optimization at the expense of
lower feature-set quality. In particular, we describe Greedy Replacement Search
(cf. Section A.6.1), Greedy Balancing Search (cf. Section A.6.2), and Greedy
Depth Search (cf. Section A.6.3). The second search method is simultaneous,
while the other two are sequential. All three heuristics leverage that the uni-
variate objective sums up the individual qualities qj of selected features and
does not consider interactions between features.

A.6.1 Greedy Replacement Search

Greedy Replacement Search is our first heuristic for alternative feature selection
with the univariate objective. This heuristic conducts a sequential search.

Algorithm Algorithm 2 outlines Greedy Replacement Search. We start by
sorting the features decreasingly based on their qualities qj (Line 1). For a fixed
feature-set size k, a dissimilarity threshold τ , and using the Dice dissimilarity
(cf. Equation 3), one subset with ⌊(1 − τ) · k⌋ features can be contained in all
alternatives without violating the dissimilarity threshold (cf. Equation 8). Thus,
our algorithms indeed selects the ⌊(1−τ)·k⌋ features with highest quality in each
alternative s(·) (Lines 2–7). We fill the remaining spots in the sets by iterating
over the alternatives and remaining features (Lines 8–15). For each alternative,
we select the ⌈τ · k⌉ highest-quality features not used in any prior alternative,
thereby satisfying the dissimilarity threshold. We continue this procedure until
we reach the desired number of alternatives a or until there are not enough
unused features to form further alternatives (Line 9).

Example 3 (Algorithm of Greedy Replacement Search). With n = 10 features,
feature-set size k = 5, and τ = 0.4, each feature set must differ by ⌈τ · k⌉ = 2
features from the other feature sets. The original feature set s(0) consists of the
top k = 5 features regarding quality qj . The first alternative s(1) consists of
the top ⌊(1− τ) · k⌋ = 3 features plus the sixth- and seventh-best feature. The
second alternative s(2) consists of the top three features plus the eighth- and
ninth-best one. The algorithm has to stop at i = 2 since there are not enough
unused features to form further alternatives in the same manner.

In general, i-th alternative consists of the top ⌊(1− τ) · k⌋ features plus the
features k + (i− 1) · ⌈τ · k⌉+ 1 to k + i · ⌈τ · k⌉ in descending quality order.

51

Algorithm 2: Greedy Replacement Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(·)

1 indices← sort indices(q, order=descending) // Order by qualities

2 s← {0}n // Initial selection for all alternatives

3 feature position← 1 // Index of index of current feature

4 while feature position ≤ ⌊(1− τ) · k⌋ do
5 j ← indices[feature position] // Index feature by quality

6 sj ← 1
7 feature position← feature position+ 1

8 i← 0 // Number of current alternative

9 while i ≤ a and i ≤ n−k
⌈τ ·k⌉ do

10 s(i) ← s // Select top ⌊(1− τ) · k⌋ features

11 for ← 1 to ⌈τ · k⌉ do // Select remaining ⌈τ · k⌉ features

12 j ← indices[feature position]

13 s
(i)
j ← 1

14 feature position← feature position+ 1

15 i← i+ 1

16 return s(0), . . . , s(i)

Complexity Sorting the qualities of n features (Line 1) has a complexity of
O(n · log n). Next, the algorithm iterates over the features and processes each
feature at most once. In particular, after selecting a feature in an alternative,
feature position increases by 1. The maximum value of this variable depends
on a and k (Line 9) but cannot exceed the total number of features n. For each
feature position, the algorithm accesses the arrays indices and s(i) (Lines 11–
14). Further, each alternative s(i) gets initialized as the selection s of the top
⌊(1 − τ) · k⌋ features (Line 10), which the algorithm only needs to determine
once before the main loop (Lines 2–7). Each of these array operations runs in
O(n) or faster. Combining the cost per feature position with the number of
feature positions, the overall time complexity is O(n2), i.e., polynomial in n.

Quality While not optimizing exactly, Greedy Replacement Search still offers
an approximation guarantee relative to exact search methods:

Proposition 12 (Approximation quality of Greedy Replacement Search). As-
sume non-negative univariate feature qualities of n features, a ∈ N0 alternatives,
a dissimilarity threshold τ , desired feature-set size k, and k + a · ⌈τ · k⌉ ≤ n.
Under these conditions, Greedy Replacement Search reaches at least a fraction

52

of ⌊(1−τ)·k⌋
k of the optimal objective values of the optimization problems for (1)

sequential search, (2) simultaneous search with sum-aggregation, and (3) simul-
taneous search with min-aggregation.

Proof. In the univariate objective, the quality of a feature set is the sum of
the qualities of the contained features. Greedy Replacement Search includes
the ⌊(1 − τ) · k⌋ highest-quality features in each alternative of size k, while
the remaining ⌈τ · k⌉ features may have an arbitrary quality. In comparison,
the single, i.e., unconstrained, optimal feature set of size k contains the top k
features, which are the union of the top ⌊(1− τ) · k⌋ features and the next-best
⌈τ ·k⌉ features. Due to quality sorting, each of the next-best ⌈τ ·k⌉ features has
at most the quality of each of the top ⌊(1 − τ) · k⌋ features. Hence, assuming
non-negative qualities, each alternative yielded by Greedy Replacement Search
has at least a quality of ⌊(1− τ) · k⌋/k relative to the single optimal feature set
of size k. Next, the single optimal feature set of size k upper-bounds the quality
of any individual feature set of size k found by any search method. Thus, the
bound also applies to the minimum and sum of qualities over feature sets.

In particular, Greedy Replacement Search yields a constant-factor approxi-
mation for the three optimization problems (cf. Equation 9 and 10) mentioned in
Proposition 12. The condition k+a·⌈τ ·k⌉ ≤ n describes scenarios where Greedy
Replacement Search can yield all desired alternatives, i.e., does not run out of
unused features. As the heuristic has polynomial runtime, alternative feature
selection lies in the complexity class APX [48] under the specified conditions:

Proposition 13 (Approximation complexity of alternative feature selection).
Assume non-negative univariate feature qualities of n features, a ∈ N0 al-
ternatives, a dissimilarity threshold τ , desired feature-set size k, and k + a ·
⌈τ · k⌉ ≤ n. Under these conditions, the optimization problems of alterna-
tive feature selection with (1) sequential search, (2) simultaneous search with
sum-aggregation, and (3) simultaneous search with min-aggregation reside in
the complexity class APX .

For τ = 1, Greedy Replacement Search even yields the same objective val-
ues as sequential search and simultaneous search with sum-aggregation since it
becomes identical to a procedure we outlined in our complexity analysis earlier
(cf. Proposition 11). In contrast, the following example shows that the heuristic
can be worse than exact sequential search for as few as a = 2 alternatives:

Example 4 (Quality of Greedy Replacement Search vs. exact search). Consider
n = 6 features with univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set
size k = 2, number of alternatives a = 2, and dissimilarity threshold τ = 0.5,
which permits an overlap of one feature between sets here. Sequential search and
simultaneous search, for min- and sum-aggregation, yield the selection s(0) =
(1, 1, 0, 0, 0, 0), s(1) = (1, 0, 1, 0, 0, 0), and s(2) = (0, 1, 1, 0, 0, 0), with a summed
quality of 17 + 16 + 15 = 48. Greedy Replacement Search yields the selection
s(0) = (1, 1, 0, 0, 0, 0), s(1) = (1, 0, 1, 0, 0, 0), and s(2) = (1, 0, 0, 1, 0, 0), with a
summed quality of 17 + 16 + 12 = 45.

53

While the first two feature sets are identical between exact and heuristic
search, the quality of s(2) is lower for the heuristic (12 vs. 15). In particular, by
always selecting the top ⌊(1−τ) ·k⌋ features, the heuristic misses out on feature
sets only involving the next-best features.

For min-aggregation in the objective, a = 1 alternative already suffices such
that the heuristic may be worse than exact search:

Example 5 (Quality of Greedy Replacement Search vs. min-aggregation).
Consider n = 6 features with univariate feature qualities q = (9, 8, 7, 3, 2, 1),
feature-set size k = 3, number of alternatives a = 1, and dissimilarity thresh-
old τ = 0.5, which permits an overlap of one feature between sets here. Simul-
taneous search with min-aggregation yields the selection s(0) = (1, 1, 0, 0, 1, 0)
and s(1) = (1, 0, 1, 1, 0, 0), with a quality of min{19, 19} = 19. Greedy Replace-
ment Search and sequential search yield the selection s(0) = (1, 1, 1, 0, 0, 0) and
s(1) = (1, 0, 0, 1, 1, 0), with a quality of min{24, 14} = 14. Simultaneous search
with sum-aggregation may yield either of these two solutions or the selection
s(0) = (1, 1, 0, 1, 0, 0) and s(1) = (1, 0, 1, 0, 1, 0) with the same summed quality.

In particular, Greedy Replacement Search does not balance feature-set qual-
ities since it is a sequential search method. We alleviate this issue with the
heuristic Greedy Balancing Search (cf. Section A.6.2).

Limitations Proposition 12 and Examples 4, 5 already showed the potential
quality loss of the heuristic compared to an exact search for alternatives. Fur-
ther, Greedy Replacement Search only works as long as some features have not
been part of any feature set yet, i.e., k+ a · ⌈τ · k⌉ ≤ n. Once the heuristic runs
out of unused features, one would need to switch the search method. Thus, to
obtain a high number of alternatives a, the following conditions are beneficial
for the heuristic: The number of features n should be high, the feature-set size k
show be low, and the dissimilarity threshold τ should be low. These conditions
align well with typical feature-selection scenarios where k ≪ n.

Another drawback is that Greedy Replacement Search assumes a very sim-
ple structure of the optimization problem. If the objective function becomes
more complex than a sum of univariate qualities, quality-based feature ordering
may be impossible or suboptimal. Further, Greedy Replacement Search can-
not accommodate additional constraints on feature sets, e.g., based on domain
knowledge. Finally, the heuristic assumes the same size k for all feature sets.

Given the limitations of Greedy Replacement Search and the low optimiza-
tion time for exact sequential search with the univariate objective (cf. Table 5),
we do not evaluate this heuristic in our experiments in Section 6.

A.6.2 Greedy Balancing Search

Greed Balancing Search modifies Greedy Replacement Search to obtain more
balanced feature-set qualities with a simultaneous search procedure.

54

Algorithm 3: Greedy Balancing Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(0), . . . , s(a)

1 if ⌈τ · k⌉ · a+ k > n then
2 return ∅
3 indices← sort indices(q, order=descending) // Order by qualities

4 for i← 0 to a do // Initial selection for all alternatives

5 s(i) ← {0}n

6 feature position← 1 // Index of index of current feature

7 while feature position ≤ ⌊(1− τ) · k⌋ do // Select top features

8 j ← indices[feature position] // Index feature by quality

9 for i← 0 to a do // Same features in all alternatives

10 s
(i)
j ← 1

11 feature position← feature position+ 1

12 for i← 0 to a do
13 Q(i) ← 0 // Relative quality of each alternative

14 while feature position ≤ ⌈τ · k⌉ · a+ k do // Fill all positions

15 Qmin ←∞ // Find alternative with lowest quality

16 imin ← −1
17 for i← 0 to a do

18 if Q(i) < Qmin and
∑n

j=1 s
(i)
j < k then // Check cardinality

19 Qmin ← Q(i)

20 imin ← i

21 j ← indices[feature position] // Index feature by quality

22 s
(imin)
j ← 1 // Add to lowest-quality, non-full alternative

23 Q(imin) ← Q(imin) + qj // Update quality of that alternative

24 feature position← feature position+ 1

25 return s(0), . . . , s(a)

55

Algorithm Algorithm 3 outlines Greedy Balancing Search. First, we check
whether the algorithm should terminate early, i.e., whether the number of fea-
tures n is not high enough to satisfy the desired user parameters k, a, and τ
(Line 1). Next, we select the first ⌊(1 − τ) · k⌋ features in each alternative like
in Greedy Replacement Search (cf. Algorithm 2), i.e., we pick the features with
the highest quality qj (Lines 3–11).

For the remaining spots in the alternatives, we use a Longest Processing
Time (LPT) heuristic (Lines 12–24). Such heuristics are common for Multi-
processor Scheduling and Balanced Number Partitioning problems [4,
18, 58] (cf. Section A.5.2). In particular, we continue iterating over features by
decreasing quality. We assign each feature to the alternative that currently has
the lowest summed quality Q(i) and whose size k has not been reached yet. We
continue this procedure until all alternatives have reached size k (Line 14).

Example 6 (Algorithm of Greedy Balancing Search). Consider n = 6 features
with univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set size k = 4,
number of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits
an overlap of two features between sets here. The features with qualities 9
and 8 become part of both feature sets, s(0) and s(1) (Lines 3–11). At this
point, both alternatives have the same relative quality Q(0) = Q(1) = 0, i.e.,
Q(i) in the algorithm ignores the quality of the shared features. Now the LPT
heuristic becomes active (Lines 12–24). The feature with quality 7 is added to
s(0), which causes Q(0) > Q(1) (i.e., 7 > 0). Thus, the feature with quality 3
is added to s(1). As Q(0) > Q(1) (i.e., 7 > 3) still holds, the feature with
quality 2 becomes part of s(1) as well. Because s(1) has reached size k = 4,
the feature with quality 1 is added to s(0), even if the latter still has a higher
quality (i.e., 7 > 5). Now both alternatives have reached their desired size and
n = 6 = ⌈0.5 ·4⌉·1+4 = ⌈τ ·k⌉·a+k (Line 14). Thus, the algorithm terminates.
The solution consists of s(0) = (1, 1, 1, 0, 0, 1) and s(1) = (1, 1, 0, 1, 1, 0).

Complexity Like Greedy Replacement Search, Greedy Balancing Search has
an upfront cost of O(n · log n) for sorting feature qualities (Line 3) and then
iterates over O(n) feature positions. For each feature position, the algorithm
iterates over a alternatives and conducts a fixed number of array operations in
O(n). Thus, the overall complexity of Greedy Balancing Search is O(a · n2).

Quality Greed Balancing Search selects the same features as Greedy Replace-
ment Search and only changes their assignment to the feature sets. Thus, the
summed feature-set quality remains the same, while the minimum feature-set
quality may be higher due to balancing. Hence, the quality guarantee of Greedy
Replacement Search (cf. Proposition 12) holds here as well:

Proposition 14 (Approximation quality of Greedy Balancing Search). Assume
non-negative univariate feature qualities of n features, a ∈ N0 alternatives, a
dissimilarity threshold τ , desired feature-set size k, and k + a · ⌈τ · k⌉ ≤ n.
Under these conditions, Greedy Balancing Search reaches at least a fraction of

56

⌊(1−τ)·k⌋
k of the optimal objective values of the optimization problems for (1)

sequential search, (2) simultaneous search with sum-aggregation, and (3) simul-
taneous search with min-aggregation.

For the objective with min-aggregation, Greedy Balancing Search can even
be better than exact sequential search, as Example 5 shows, where the heuristic
would yield the same solution as simultaneous search with min-aggregation.
However, the heuristic can also be worse than sequential and simultaneous
search, as Example 4 shows, where Greedy Balancing Search would yield the
same solution as Greedy Replacement Search.

Limitations Greedy Balancing Search shares several limitations with Greedy
Replacement Search, e.g., it may be worse than exact search, assumes univariate
feature qualities, and does not work if the number of features n is too low relative
to k, a, and τ . In the latter case, Greedy Balancing Search yields no solution
due to its simultaneous nature, while Greedy Replacement Search yields at least
some alternatives. However, if running out of features is not an issue, Greedy
Balancing Search has the advantage of more balanced feature-set qualities.

A.6.3 Greedy Depth Search

Greedy Depth Search is a sequential search heuristic that generalizes Greedy
Replacement Search and allows to obtain more than n−k

⌈τ ·k⌉ alternatives.

Algorithm Algorithm 4 outlines Greedy Depth Search. As in the other two
heuristics, we start by sorting the features decreasingly according to their qual-
ities qj (Line 1). However, instead of keeping the same ⌊(1− τ) · k⌋ features in
each alternative and only replacing the remaining ones, we now allow all features
to be replaced. In particular, we may exhaustively iterate over all feature sets,
depending on the number of alternatives a. Thus, we maintain not only one
feature position as before but a length-k array of the feature positions for the
current feature set (Lines 2–4). This array represents feature indices regarding
the sorted qualities and is sorted increasingly, which prevents evaluating the
same feature set, only with different feature order, multiple times.

In the main loop of the algorithm, we find alternatives sequentially (Lines 7–
24). For each potential alternative, we select the features based on the position
array (Lines 8–11). We check the resulting feature set against the constraints for
alternatives (Line 12) and only store it if it is valid. This check was unnecessary
in the other two heuristics, which only formed valid alternatives by design.

Next, we update the feature positions for the next potential alternative
(Lines 14–24). First, we try to replace the lowest-quality feature in the cur-
rent feature set by advancing one position in the sorted qualities. This step
may not be possible, as the feature set may already contain the feature with the
overall lowest quality, i.e., position n in the array of sorted qualities (Line 17). In
this case, we try to replace the second-lowest-quality feature in the current fea-
ture set by advancing its position. If this action is impossible as well, we iterate

57

Algorithm 4: Greedy Depth Search for alternative feature sets.

Input: Univariate feature qualities qj with j ∈ {1, . . . , n},
Feature-set size k,
Number of alternatives a,
Dissimilarity threshold τ

Output: List of feature-selection decision vectors s(·)

1 indices← sort indices(q, order=descending) // Order by qualities

2 feature positions← {0}k // Indices of indices of features

3 for p← 1 to k do // Start with top k features

4 feature positions[p]← p // Ordered by qualities as well

5 i← 0 // Number of current alternative

6 has next solution← true
7 while i ≤ a and has next solution do
8 s(i) ← {0}n
9 for p← 1 to k do // Select k features, indexed by quality

10 j ← indices[feature positions[p]]

11 s
(i)
j ← 1

12 if is valid alternative(s(i), {s(0), . . . , s(i−1)}) then
13 i← i+ 1 // Else, s(i) overwritten in next iteration

14 p← k // Update feature positions, starting with last

15 while p ≥ 1 do
16 position← feature positions[p]
17 if position < n+ p− k then // Position can be increased

18 for ∆p ← 0 to k − p do // Also update later positions

19 feature positions[p+∆p]← position+∆p + 1

20 p← −1 // Position update finished

21 else // Position cannot be increased

22 p← p− 1 // Also update at least one prior position

23 if p = 0 then // Updating positions further would violate n
24 has next solution← false

25 return s(0), . . . , s(i)

58

further over positions in the current feature set by increasing quality (Line 22).
Once we find a feature position that we can increase, we also advance all sub-
sequent, i.e., lower-quality, positions accordingly. Hence, the feature positions
remain sorted by decreasing quality (Lines 18–19).

We repeat the main loop until we reach the desired number of alternatives a
or until we cannot update any feature position without exceeding the number
of features n, i.e., we cannot form another alternative (Lines 7 and 23).

Example 7 (Algorithm of Greedy Depth Search). Consider n = 6 features with
univariate feature qualities q = (9, 8, 7, 3, 2, 1), feature-set size k = 4, number
of alternatives a = 1, and dissimilarity threshold τ = 0.5, which permits an
overlap of two features between sets here. Note that the features are already
ordered by quality here, i.e., indices = (1, 2, 3, 4, 5, 6) (Line 1). Next, the algo-
rithm initializes feature positions = (1, 2, 3, 4) (Line 2–4). s(0) contains these
k features, i.e., s(0) = (1, 1, 1, 1, 0, 0). Given that there are no other alternatives
yet, this feature set is valid (Line 12)) and the algorithm moves on to i = 1.

For forming s(1), the position-update step (Lines 14–24) first tries to only
replace the lowest-quality feature in the alternative, i.e., feature positions =
(1, 2, 3, 5) and feature positions = (1, 2, 3, 6). However, neither of these fea-
ture sets constitutes a valid alternative regarding s(0). Thus, the algorithm at-
tempts to replace the feature with the second-lowest quality as well, evaluating
feature positions = (1, 2, 4, 5) and feature positions = (1, 2, 4, 6). However,
the overlap with s(0) is still too large. The next value is feature positions =
(1, 2, 5, 6), which yields the valid alternative s(1) = (1, 1, 0, 0, 1, 1).

Greedy Replacement Search would terminate now since the options for re-
placing the ⌈τ · k⌉ = 2 lowest-quality features are exhausted. In contrast,
Greedy Depth Search attempts to replace the third-lowest-quality feature, start-
ing with feature positions = (1, 3, 4, 5). This feature set is not a valid alterna-
tive, and neither are the subsequent sets with feature positions = (1, 3, 4, 6),
feature positions = (1, 3, 5, 6), etc. After more iterations, the algorithm also re-
places the highest-quality feature, starting with feature positions = (2, 3, 4, 5).
Eventually, the algorithm reaches feature positions = (3, 4, 5, 6), which yields
the valid alternative s(2) = (0, 0, 1, 1, 1, 1). After obtaining s(2), there is no valid
update of the feature positions left (Line 23). Thus, the algorithm terminates.

Complexity The runtime behavior differs from the other two heuristics. In
particular, Greedy Replacement Search has the same runtime cost between sub-
sequent alternatives since it directly creates valid alternatives by design. In con-
trast, Greedy Depth Search iterates over all possible feature sets, and the runtime
between valid alternatives may vary. For each values of feature positions, the
algorithm creates a feature selection in O(k ·n) (Lines 8–11), checks constraints
in O(a · n) (Line 12), and updates the position array in O(k2) (Lines 14–24).
However, there are O(nk) potential feature positions, and Greedy Depth Search
may exhaustively iterate over them. This cost is comparable to exhaustive con-
ventional feature selection (cf. Proposition 2) and exhaustive sequential search

59

(cf. Proposition 3). Unlike the latter, the search does not restart for each alter-
native, i.e., it only considers each feature set once instead of a+ 1 times.

On the positive side, Greedy Depth Search can yield more alternatives than
Greedy Replacement Search with its O(n2) cost or Greedy Balancing Search with
its O(a ·n2) cost. Nevertheless, in scenarios where the latter two are applicable,
i.e., k + a · ⌈τ · k⌉ ≤ n, they have a lower cost than Greedy Depth Search. In
particular, Greedy Depth Search needs O(n⌈τ ·k⌉) iterations to cover the options
for replacing the worst ⌈τ · k⌉ features in size-k feature sets, which is the search
space of the other two heuristics. In particular, the cost disadvantage relative to
the other two heuristics grows with the dissimilarity threshold τ . As a remedy,
one may use Greedy Replacement Search for as many alternatives as possible
and then continue with Greedy Depth Search, initializing the feature positions
(Line 2–4) based on the results of the former heuristic.

Quality Greedy Depth Search initially yields the same solutions as Greedy
Replacement Search. Thus, Greedy Depth Search also yields a constant-factor
approximation of the optimal solution in case k + a · ⌈τ · k⌉ ≤ n (cf. Proposi-
tion 12). The quality analysis becomes more involved for further alternatives
since these do not contain all top ⌊(1 − τ) · k⌋ features anymore, on which our
proof of Proposition 12 builds. Thus, we leave this analysis open for future
work. The quality of alternatives may not even be monotonically decreasing
anymore, as the following example shows:

Example 8 (Non-monotonic quality of Greedy Depth Search). Consider n =
4 features with univariate feature qualities q = (9, 8, 7, 1), feature-set size k = 2,
number of alternatives a = 3, and dissimilarity threshold τ = 0.5, which permits
an overlap of one feature between sets here. Greedy Depth Search yields the
the selection s(0) = (1, 1, 0, 0), s(1) = (1, 0, 1, 0), s(2) = (1, 0, 0, 1), and s(3) =
(0, 1, 1, 0), with the corresponding feature-set qualities 17, 16, 10, and 15.

Limitations Like Greedy Balancing Search and Greedy Replacement Search,
Greedy Depth Search assumes univariate feature qualities and may be worse than
exact search. As a sequential procedure, it does not balance the alternatives’
qualities. It may yield more alternatives than the former two heuristics but has
a higher and more variable runtime.

A.7 Evaluation

In this section, we evaluate experimental results not covered in Section 6. In par-
ticular, we cover three experimental dimensions not stemming from the search
for alternatives: datasets (cf. Section A.7.1), feature-set-quality metrics (cf. Sec-
tion A.7.2), and feature-selection methods (cf. Section A.7.3).

A.7.1 Datasets

Naturally, feature-set quality depends on the dataset, and several effects could
occur. For example, the distribution of feature-set quality in a dataset may be

60

0.0 0.2 0.4 0.6
Relative feature-set size k/n

0.0
0.2
0.4
0.6
0.8
1.0

Q
tra

in

Feature-set size k 5 10
(a) Training-set objective value.

0.0 0.2 0.4 0.6
Relative feature-set size k/n

0.0
0.2
0.4
0.6
0.8
1.0

M
CC

tre
e

te
st

Feature-set size k 5 10
(b) Test-set prediction performance.

Figure 8: Feature-set quality in datasets over feature-set size k relative to di-
mensionality n, by feature-set size k and evaluation metric. Results from the
original feature sets of sequential search with MI as feature-selection method.

relatively uniform or relatively skewed. Further, datasets with more features n
give way to more alternative feature sets. At the same time, the feature quality
can be spread over more features than for lower-dimensional datasets, making
it harder to compose a small high-quality feature set. Indeed, our experiments
show a broad variation of feature-set quality over the datasets. Figure 8 depicts
the relationship between datasets and the quality of the original, i.e., uncon-
strained, feature set in sequential search. To account for the varying dataset
dimensionality, we put the ratio between feature-set size k and dimensionality n
on the x-axis, which measures relative feature-set sizes. As Figure 8a displays,
the objective of the univariate feature-selection method MI approximately in-
creases linearly with k/n. However, there still is variation exclusively caused by
the dataset rather than its dimensionality. Further, the quality of a prediction
model, i.e., decision trees, does not exhibit any trend but varies strongly between
datasets, as Figure 8b visualizes. This variation justifies our normalization of
feature-set quality when analyzing alternatives in Sections 6.2 and 6.3.

A.7.2 Feature-Set Quality Metrics

Prediction models and overfitting As one can expect, random forests have
a higher average prediction performance than decision trees. Further, both
model types exhibit overfitting, i.e., there is a gap between training-set and test-
set performance. In particular, over all experimental settings, both model types
have a mean training-set MCC around 0.85-0.86 (median: 1.0). In contrast,
decision trees have a mean MCC of 0.47 (median: 0.53) on the test set, while
random forests have a slightly higher mean MCC of 0.52 (median: 0.61). I.e.,
prediction performance is significantly worse on the test set than on the training
set. The existence of overfitting makes sense as we do not regularize, i.e., limit
the growth of the trees or prune them after training.

As another comparison, Figure 9a shows the distribution of the difference
between training and test feature-set quality, again over all experimental set-

61

Q MCCtree MCCforest

Metric

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Tr
ai

n-
te

st
 d

iff
er

en
ce

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(a) Training-test difference in feature-set
quality by feature-selection method. Y-
axis is truncated to improve readability.

Q
tra

in

Q
te

st

M
CC

tre
e

tra
in

M
CC

tre
e

te
st

M
CC

fo
re

st
tra

in

M
CC

fo
re

st
te

st

Qtrain

Qtest

MCCtree
train

MCCtree
test

MCCforest
train

MCCforest
test

1 0.53 0.26 0.28 0.24 0.29

0.53 1 0.3 0.29 0.28 0.31

0.26 0.3 1 0.25 0.98 0.33

0.28 0.29 0.25 1 0.23 0.66

0.24 0.28 0.98 0.23 1 0.3

0.29 0.31 0.33 0.66 0.3 1

(b) Correlation between evaluation met-
rics, averaged over datasets, cross-valida-
tion folds, and feature-selection methods.

Figure 9: Feature-set quality by evaluation metric. Results from all search runs.

tings. Once more, we observe that training feature-set quality is usually higher,
i.e., the difference shown in the figure is greater than zero. However, this phe-
nomenon does not invalidate our analysis of how feature-set quality develops
over alternatives. The optimization objective Q, which Figure 9a also depicts,
shows overfitting for all feature-selection methods as well, though to a lesser
extent than prediction performance. Thus, Section 6 considers the training and
test set for the objective value, but only the test set for prediction performance.

Correlation between evaluation metrics Figure 9b shows the Spearman
correlation between different evaluation metrics over all experimental settings:
First, we compute the correlation between metrics for each combination of
dataset, cross-validation fold, and feature-selection method. Second, we average
the correlation values over these three experimental dimensions. This two-step
procedure accounts for the different objectives of feature-selection methods and
the normalization of quality per dataset and cross-validation fold in some objec-
tives (cf. Section 5.3.2). The plot shows that the performance of decision trees
and random forests is highly correlated. Thus, we only report MCC of decision
trees in Section 6, which are the simpler model type and always consider all
features during training rather than randomly sampling them.

Figure 9b also shows that the correlation between training and test feature-
set quality is only moderate for the optimization objective Q and weak for
prediction performance in terms of MCC. This result might be caused by over-
fitting, whose strength may depend on the experimental settings. Further, the
correlation between optimization objective Q and prediction MCC is only weak
to moderate as well. I.e., the objective of feature selection is only partially in-

62

5 10
Feature-set size k

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

M
CC

tre
e

te
st

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(a) Test-set prediction performance.

Qtrain Qtest MCCtree
test

Metric

0.6
0.4
0.2
0.0
0.2
0.4
0.6

D
iff

er
en

ce
 k

=1
0

vs
. k

=5

MI
FCBF
mRMR

Model Gain
Greedy Wrapper

Se
le

ct
io

n

(b) Difference in feature-set quality be-
tween k = 10 and k = 5 by evaluation
metric. Y-axis is truncated to improve
readability.

Figure 10: Feature-set quality by feature-selection method and feature-set size k.
Results from the original feature sets of sequential search.

dicative of prediction performance since the former might use a simplified quality
criterion. Among the five feature-selection methods, Greedy Wrapper has the
highest correlation between training-set objective value and test-set MCC, with
a value of 0.48. Since this feature-selection method uses prediction performance
in its objective, a comparatively high correlation is expected. On the other
end of the spectrum, mRMR exhibits a correlation of -0.05 between training-set
objective value and test-set MCC. This filter method penalizes the correlation
between features in its objective. However, redundant features may not hurt
prediction performance in decision trees, even if they do not improve it.

A.7.3 Feature-Selection Methods

Prediction performance As the five feature-selection methods employ dif-
ferent objective functions Q, comparing absolute objective values between them
does not make sense. However, we can analyze the prediction performance of
the obtained feature sets. Figure 10a compares a decision tree’s test-set MCC
on the original feature sets of sequential search between feature-selection meth-
ods. On average, Model Gain is the best feature-selection method: The mean
test-set MCC of decision trees is 0.53 for Model Gain, 0.49 for Greedy Wrap-
per, 0.47 for MI, 0.46 for mRMR, 0.43 for FCBF. In particular, the univari-
ate, model-free method MI keeps up surprisingly well with more sophisticated
methods. Thus, the analyses of alternative feature sets in Section 6 focus on MI
while still discussing the remaining feature-selection methods. The overall best
feature-selection method, Model Gain, uses the same objective function as MI

63

but obtains its feature qualities from a prediction model rather than a bivariate
dependency measure, which might boost its performance.

While Greedy Wrapper uses actual prediction performance to assess feature-
set quality, its heuristic nature might prevent better results: This method only
evaluates a fraction of all feature sets, while the other feature-selection methods
optimize globally. In particular, Greedy Wrapper performed 629 iterations on
average (median: 561) to determine the original feature sets of sequential search.
However, the number of possible feature sets is much higher, e.g., already 215 =
32768 for the lowest-dimensional datasets in our evaluation (cf. Table 2).

FCBF ’s results may be taken with a grain of salt: Over all experimental
settings, 89% of feature sets for FCBF were infeasible, i.e., no solution satisfied
the constraints. In contrast, this figure only is 18% for MI. Even the original
feature set in sequential search is infeasible in 71% of the cases for FCBF but
never for the other feature-selection methods. In particular, the combination of
feature-correlation constraints in our formulation of FCBF (c.f. Equation 12)
with a feature-set-cardinality constraint, i.e., enforcing a feature-set size k, may
make the problem infeasible, especially if k gets larger.

Influence of feature-set size k As expected, larger feature sets usually
exhibit a higher feature-set quality than smaller feature sets in our experiments.
However, the increase in quality with k is not proportional, and there might even
be a decrease. As Figure 10b shows for the original feature sets of sequential
search, MI and Model Gain exhibit an increase of the training-set objective
value Qtrain from k = 5 to k = 10, i.e., the difference depicted in Figure 10b
is positive. As these objectives are monotonic in the set of selected features,
a decrease in the training-set objective value is impossible. In contrast, the
heuristic Greedy Wrapper does not necessarily benefit from more features. The
latter insight also applies to mRMR, which normalizes its objective with the
number of selected features and penalizes feature redundancy. For FBCF, the
fraction of feasible feature sets changes considerably from k = 5 to k = 10,
so one cannot directly compare the overall quality between these two settings.
As Figure 10b also displays, the benefit of larger feature sets is even less clear
for prediction performance. In particular, all feature-selection methods except
FCBF show a median difference in test-set MCC close to zero when comparing
k = 5 to k = 10. Thus, Section 6 focuses on smaller feature sets, i.e., k = 5.

References

[1] Noga Alon et al. “Approximation schemes for scheduling on parallel machines”.
In: J. Sched. 1.1 (1998), pp. 55–66. doi: 10.1002/(SICI)1099-1425(199806)1:
1<55::AID-JOS2>3.0.CO;2-J.

[2] André Artelt and Barbara Hammer. “Even if ...” – Diverse Semifactual Expla-
nations of Reject. arXiv:2207.01898 [cs.LG]. 2022. url: https://arxiv.org/
abs/2207.01898.

64

https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://doi.org/10.1002/(SICI)1099-1425(199806)1:1<55::AID-JOS2>3.0.CO;2-J
https://arxiv.org/abs/2207.01898
https://arxiv.org/abs/2207.01898

[3] Susan F. Assmann et al. “On a Dual Version of the One-Dimensional Bin
Packing Problem”. In: J. Algorithms 5.4 (1984), pp. 502–525. doi: 10.1016/
0196-6774(84)90004-X.

[4] Luitpold Babel, Hans Kellerer, and Vladimir Kotov. “The k-Partitioning Prob-
lem”. In: Math. Methods Oper. Res. 47.1 (1998), pp. 59–82. doi: 10.1007/
BF01193837.

[5] Fahiem Bacchus, Matti Järvisalo, and Ruben Martins. “Maximum Satisfiabil-
ity”. In: Handbook of Satisfiability. 2nd ed. IOS Press, 2021. Chap. 24, pp. 929–
991. doi: 10.3233/FAIA201008.

[6] Jakob Bach et al. “An Empirical Evaluation of Constrained Feature Selection”.
In: SN Comput. Sci. 3.6 (2022), pp. 1–25. doi: 10.1007/s42979-022-01338-z.

[7] Eric Bae and James Bailey. “COALA: A Novel Approach for the Extraction
of an Alternate Clustering of High Quality and High Dissimilarity”. In: Proc.
ICDM. Hong Kong, China, 2006, pp. 53–62. doi: 10.1109/ICDM.2006.37.

[8] Eric Bae, James Bailey, and Guozhu Dong. “A clustering comparison measure
using density profiles and its application to the discovery of alternate cluster-
ings”. In: Data Min. Knowl. Disc. 21.3 (2010), pp. 427–471. doi: 10.1007/
s10618-009-0164-z.

[9] James Bailey. “Alternative Clustering Analysis: A Review”. In: Data Cluster-
ing: Algorithms and Applications. 1st ed. CRC Press, 2014. Chap. 21, pp. 535–
550. doi: 10.1201/9781315373515.

[10] Ksenia Bestuzheva et al. The SCIP Optimization Suite 8.0. Tech. rep. Zuse
Institute Berlin, Germany, 2021. url: http://nbn-resolving.de/urn:nbn:
de:0297-zib-85309.

[11] Giorgos Borboudakis and Ioannis Tsamardinos. “Extending greedy feature se-
lection algorithms to multiple solutions”. In: Data Min. Knowl. Disc. 35.4
(2021), pp. 1393–1434. doi: 10.1007/s10618-020-00731-7.

[12] Leo Breiman. “Random Forests”. In: Mach. Learn. 45.1 (2001), pp. 5–32. doi:
10.1023/A:1010933404324.

[13] Leo Breiman et al. Classification and Regression Trees. 1st ed. Wadsworth,
1984. doi: 10.1201/9781315139470.

[14] Diogo V. Carvalho, Eduardo M. Pereira, and Jaime S. Cardoso. “Machine
Learning Interpretability: A Survey on Methods and Metrics”. In: Electronics
8.8 (2019). doi: 10.3390/electronics8080832.

[15] Girish Chandrashekar and Ferat Sahin. “A survey on feature selection meth-
ods”. In: Comput. Electr. Eng. 40.1 (2014), pp. 16–28. doi: 10 . 1016 / j .

compeleceng.2013.11.024.

[16] Chandra Chekuri and Sanjeev Khanna. “A Polynomial Time Approximation
Scheme for the Multiple Knapsack Problem”. In: SIAM J. Comput. 35.3 (2005),
pp. 713–728. doi: 10.1137/S0097539700382820.

[17] Lin Chen et al. “An Efficient PTAS for Parallel Machine Scheduling with Ca-
pacity Constraints”. In: Proc. COCOA. Hong Kong, China, 2016, pp. 608–623.
doi: 10.1007/978-3-319-48749-6_44.

65

https://doi.org/10.1016/0196-6774(84)90004-X
https://doi.org/10.1016/0196-6774(84)90004-X
https://doi.org/10.1007/BF01193837
https://doi.org/10.1007/BF01193837
https://doi.org/10.3233/FAIA201008
https://doi.org/10.1007/s42979-022-01338-z
https://doi.org/10.1109/ICDM.2006.37
https://doi.org/10.1007/s10618-009-0164-z
https://doi.org/10.1007/s10618-009-0164-z
https://doi.org/10.1201/9781315373515
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://doi.org/10.1007/s10618-020-00731-7
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.3390/electronics8080832
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1007/978-3-319-48749-6_44

[18] Shi Ping Chen, Yong He, and Guohui Lin. “3-Partitioning Problems for Max-
imizing the Minimum Load”. In: J. Comb. Optim. 6 (2002), pp. 67–80. doi:
10.1023/A:1013370208101.

[19] Seung-Seok Choi, Sung-Hyuk Cha, and Charles C. Tappert. “A Survey of Bi-
nary Similarity and Distance Measures”. In: J. Syst. Cybern. Inf. 8.1 (2010),
pp. 43–48. url: http://www.iiisci.org/Journal/pdv/sci/pdfs/GS315JG.
pdf.

[20] Ian Covert, Scott M. Lundberg, and Su-In Lee. “Understanding Global Feature
Contributions With Additive Importance Measures”. In: Proc. NeurIPS. Vir-
tual conference, 2020, pp. 17212–17223. url: https://proceedings.neurips.
cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf.

[21] Susanne Dandl et al. “Multi-Objective Counterfactual Explanations”. In: Proc.
PPSN. Leiden, The Netherlands, 2020, pp. 448–469. doi: 10.1007/978-3-030-
58112-1_31.

[22] Mauro Dell’Amico, Manuel Iori, and Silvano Martello. “Heuristic Algorithms
and Scatter Search for the Cardinality Constrained P ||Cmax Problem”. In: J.
Heuristics 10 (2004), pp. 169–204. doi: 10.1023/B:HEUR.0000026266.07036.
da.

[23] Mauro Dell’Amico and Silvano Martello. “Bounds for the cardinality con-
strained P ||Cmax problem”. In: J. Sched. 4.3 (2001), pp. 123–138. doi: 10.
1002/jos.68.

[24] Bryan L. Deuermeyer, Donald K. Friesen, and Michael A. Langston. “Schedul-
ing to Maximize the Minimum Processor Finish Time in a Multiprocessor Sys-
tem”. In: SIAM J. Algebraic Discrete Methods 3.2 (1982), pp. 190–196. doi:
10.1137/0603019.

[25] Rodney G. Downey, Michael R. Fellows, and Ulrike Stege. “Parameterized
Complexity: A Framework for Systematically Confronting Computational In-
tractability”. In: Contemporary Trends in Discrete Mathematics: From DI-
MACS and DIMATIA to the Future. Štǐŕın Castle, Czech Republic, 1997,
pp. 49–99. doi: https://doi.org/10.1090/dimacs/049/04.

[26] Leo Egghe. “New Relations Between Similarity Measures for Vectors Based on
Vector Norms”. In: J. Am. Soc. Inf. Sci. Technol. 60.2 (2009), pp. 232–239.
doi: 10.1002/asi.20949.

[27] Christos Emmanouilidis et al. “Selecting Features in Neurofuzzy Modelling
by Multiobjective Genetic Algorithms”. In: Proc. ICANN. Edinburgh, United
Kingdom, 1999, pp. 749–754. doi: 10.1049/cp:19991201.

[28] Stefano Ermon, Carla Gomes, and Bart Selman. “Uniform Solution Sampling
Using a Constraint Solver As an Oracle”. In: Proc. UAI. Catalina Island, CA,
USA, 2012, pp. 255–264. url: https://www.auai.org/uai2012/papers/160.
pdf.

[29] Edouard Fouché, Florian Kalinke, and Klemens Böhm. “Efficient subspace
search in data streams”. In: Inf. Syst. 97 (2021). doi: 10.1016/j.is.2020.
101705.

[30] Michael R. Garey and David S. Johnson. Computers and Intractibility: A Guide
to the Theory of NP-Completeness. 24th ed. W. H. Freeman and Company,
2003. url: https://www.worldcat.org/title/440655898.

66

https://doi.org/10.1023/A:1013370208101
http://www.iiisci.org/Journal/pdv/sci/pdfs/GS315JG.pdf
http://www.iiisci.org/Journal/pdv/sci/pdfs/GS315JG.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7bf0b7c1a86d5eb3be2c722cf2cf746-Paper.pdf
https://doi.org/10.1007/978-3-030-58112-1_31
https://doi.org/10.1007/978-3-030-58112-1_31
https://doi.org/10.1023/B:HEUR.0000026266.07036.da
https://doi.org/10.1023/B:HEUR.0000026266.07036.da
https://doi.org/10.1002/jos.68
https://doi.org/10.1002/jos.68
https://doi.org/10.1137/0603019
https://doi.org/https://doi.org/10.1090/dimacs/049/04
https://doi.org/10.1002/asi.20949
https://doi.org/10.1049/cp:19991201
https://www.auai.org/uai2012/papers/160.pdf
https://www.auai.org/uai2012/papers/160.pdf
https://doi.org/10.1016/j.is.2020.101705
https://doi.org/10.1016/j.is.2020.101705
https://www.worldcat.org/title/440655898

[31] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics: A Foundation for Computer Science. 2nd ed. Addison-Wesley, 1994.
url: https://www.worldcat.org/title/1085703509.

[32] William Christopher Groves. “Toward Automating and Systematizing the Use
of Domain Knowledge in Feature Selection”. PhD thesis. University of Min-
nesota, 2015. url: https://hdl.handle.net/11299/175444.

[33] Riccardo Guidotti. “Counterfactual explanations and how to find them: litera-
ture review and benchmarking”. In: Data Min. Knowl. Disc. (2022), pp. 1–55.
doi: 10.1007/s10618-022-00831-6.

[34] Jianmei Guo and Kai Shi. “To Preserve or Not to Preserve Invalid Solutions in
Search-Based Software Engineering: A Case Study in Software Product Lines”.
In: Pro. ICSE. Gothenburg, Sweden, 2018, pp. 1027–1038. doi: 10 . 1145 /

3180155.3180163.

[35] D. S. Guru et al. “An alternative framework for univariate filter based feature
selection for text categorization”. In: Pattern Recognit. Lett. 103 (2018), pp. 23–
31. doi: 10.1016/j.patrec.2017.12.025.

[36] Isabelle Guyon and André Elisseeff. “An Introduction to Variable and Feature
Selection”. In: J. Mach. Learn. Res. 3.Mar (2003), pp. 1157–1182. url: https:
//www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf.

[37] Mark A. Hall. “Correlation-based Feature Selection for Machine Learning”.
PhD thesis. University of Waikato, Hamilton, New Zealand, 1999. url: https:
//www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf.

[38] Mark A. Hall. Correlation-based Feature Selection of Discrete and Numeric
Class Machine Learning. Tech. rep. University of Waikato, Hamilton, New
Zealand, 2000. url: https://hdl.handle.net/10289/1024.

[39] Mohamed Haouari and Mahdi Jemmali. “Maximizing the minimum completion
time on parallel machines”. In: 4OR 6 (2008), pp. 375–392. doi: 10.1007/
s10288-007-0053-5.

[40] Yong He et al. “k-Partitioning Problems for Maximizing the Minimum Load”.
In: Comput. Math. Appl. 46.10-11 (2003), pp. 1671–1681. doi: 10.1016/S0898-
1221(03)90201-X.

[41] Christopher Henard et al. “Combining Multi-Objective Search and Constraint
Solving for Configuring Large Software Product Lines”. In: Proc. ICSE. Flo-
rence, Italy, 2015, pp. 517–528. doi: 10.1109/ICSE.2015.69.

[42] Juhua Hu and Jian Pei. “Subspace multi-clustering: a review”. In: Knowl. Inf.
Sys. 56.2 (2018), pp. 257–284. doi: 10.1007/s10115-017-1110-9.

[43] Sarthak Jain and Byron C. Wallace. “Attention is not Explanation”. In: Proc.
NAACL-HLT. Minneapolis, MN, USA, 2019, pp. 3543–3556. doi: 10.18653/
v1/N19-1357.

[44] Amir-Hossein Karimi et al. “Model-Agnostic Counterfactual Explanations for
Consequential Decisions”. In: Proc. AISTATS. Virtual conference, 2020, pp. 895–
905. url: https://proceedings.mlr.press/v108/karimi20a.html.

[45] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Com-
plexity of Computer Computations. Plenum Press, 1972, pp. 85–103. doi: 10.
1007/978-1-4684-2001-2_9.

67

https://www.worldcat.org/title/1085703509
https://hdl.handle.net/11299/175444
https://doi.org/10.1007/s10618-022-00831-6
https://doi.org/10.1145/3180155.3180163
https://doi.org/10.1145/3180155.3180163
https://doi.org/10.1016/j.patrec.2017.12.025
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
https://www.jmlr.org/papers/volume3/guyon03a/guyon03a.pdf
https://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf
https://www.cs.waikato.ac.nz/~ml/publications/1999/99MH-Thesis.pdf
https://hdl.handle.net/10289/1024
https://doi.org/10.1007/s10288-007-0053-5
https://doi.org/10.1007/s10288-007-0053-5
https://doi.org/10.1016/S0898-1221(03)90201-X
https://doi.org/10.1016/S0898-1221(03)90201-X
https://doi.org/10.1109/ICSE.2015.69
https://doi.org/10.1007/s10115-017-1110-9
https://doi.org/10.18653/v1/N19-1357
https://doi.org/10.18653/v1/N19-1357
https://proceedings.mlr.press/v108/karimi20a.html
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

[46] Hans Kellerer and Vladimir Kotov. “A 3/2-approximation algorithm for ki-
partitioning”. In: Oper. Res. Lett. 39.5 (2011), pp. 359–362. doi: 10.1016/j.
orl.2011.06.005.

[47] Sanjeev Khanna, Madhu Sudan, and David P. Williamson. “A Complete Classi-
fication of the Approximability of Maximization Problems Derived from Boolean
Constraint Satisfaction”. In: Proc. STOC. El Paso, TX, USA, 1997, pp. 11–20.
doi: 10.1145/258533.258538.

[48] Sanjeev Khanna et al. “On Syntactic Versus Vomputational Views of Approx-
imability”. In: SIAM J. Comput. 28.1 (1998), pp. 164–191. doi: 10.1137/
S0097539795286612.

[49] Been Kim, Rajiv Khanna, and Oluwasanmi Koyejo. “Examples are not Enough,
Learn to Criticize! Criticism for Interpretability”. In: Proc. NIPS. Barcelona,
Spain, 2016. url: https://proceedings.neurips.cc/paper/2016/file/
5680522b8e2bb01943234bce7bf84534-Paper.pdf.

[50] Mi-Young Kim et al. “A Multi-Component Framework for the Analysis and
Design of Explainable Artificial Intelligence”. In: Mach. Learn. Knowl. Extr.
3.4 (2021), pp. 900–921. doi: 10.3390/make3040045.

[51] Kenji Kira and Larry A. Rendell. “The Feature Selection Problem: Traditional
Methods and a New Algorithm”. In: Proc. ML. Aberdeen, Scotland, UK, 1992,
pp. 129–134. url: https://www.aaai.org/Papers/AAAI/1992/AAAI92-
020.pdf.

[52] Ron Kohavi and George H. John. “Wrappers for feature subset selection”. In:
Artif. Intell. 97.1-2 (1997), pp. 273–324. doi: 10.1016/S0004-3702(97)00043-
X.

[53] Richard E. Korf. “Multi-Way Number Partitioning”. In: Proc. IJCAI. Pasadena,
CA, USA, 2009, pp. 538–543. url: https://www.ijcai.org/Proceedings/
09/Papers/096.pdf.

[54] Richard E. Korf. “Objective Functions for Multi-Way Number Partitioning”.
In: Proc. SoCS. Atlanta, GA, USA, 2010, pp. 71–72. doi: https://doi.org/
10.1609/socs.v1i1.18172.

[55] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating
mutual information”. In: Phys. Rev. E 69.6 (2004). doi: 10.1103/PhysRevE.
69.066138.

[56] Vincenzo Lagani et al. “Feature Selection with the R Package MXM: Discover-
ing Statistically Equivalent Feature Subsets”. In: J. Stat. Software 80.7 (2017),
pp. 1–25. doi: 10.18637/jss.v080.i07.

[57] Alexander Lawrinenko. “Identical Parallel Machine Scheduling Problems: Struc-
tural patterns, bounding techniques and solution procedures”. PhD thesis.
Friedrich-Schiller-Universität Jena, 2017. url: https://nbn-resolving.org/
urn:nbn:de:gbv:27-dbt-20170427-0956483.

[58] Alexander Lawrinenko, Stefan Schwerdfeger, and Rico Walter. “Reduction cri-
teria, upper bounds, and a dynamic programming based heuristic for the max–
min ki-partitioning problem”. In: J. Heuristics 24 (2018), pp. 173–203. doi:
10.1007/s10732-017-9362-9.

68

https://doi.org/10.1016/j.orl.2011.06.005
https://doi.org/10.1016/j.orl.2011.06.005
https://doi.org/10.1145/258533.258538
https://doi.org/10.1137/S0097539795286612
https://doi.org/10.1137/S0097539795286612
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5680522b8e2bb01943234bce7bf84534-Paper.pdf
https://doi.org/10.3390/make3040045
https://www.aaai.org/Papers/AAAI/1992/AAAI92-020.pdf
https://www.aaai.org/Papers/AAAI/1992/AAAI92-020.pdf
https://doi.org/10.1016/S0004-3702(97)00043-X
https://doi.org/10.1016/S0004-3702(97)00043-X
https://www.ijcai.org/Proceedings/09/Papers/096.pdf
https://www.ijcai.org/Proceedings/09/Papers/096.pdf
https://doi.org/https://doi.org/10.1609/socs.v1i1.18172
https://doi.org/https://doi.org/10.1609/socs.v1i1.18172
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.18637/jss.v080.i07
https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20170427-0956483
https://nbn-resolving.org/urn:nbn:de:gbv:27-dbt-20170427-0956483
https://doi.org/10.1007/s10732-017-9362-9

[59] Matthijs van Leeuwen and Arno Knobbe. “Diverse subgroup set discovery”.
In: Data Min. Knowl. Disc. 25.2 (2012), pp. 208–242. doi: 10.1007/s10618-
012-0273-y.

[60] Chu Min Li and Felip Manya. “MaxSAT, Hard and Soft Constraints”. In:
Handbook of Satisfiability. 2nd ed. IOS Press, 2021. Chap. 23, pp. 903–927.
doi: 10.3233/FAIA201007.

[61] Jundong Li et al. “Feature Selection: A Data Perspective”. In: ACM Comput.
Surv. 50.6 (2017), pp. 1–45. doi: 10.1145/3136625.

[62] Kai Liu and Jin Tian. “Subspace Learning with an Archive-Based Genetic
Algorithm”. In: Proc. IEEM. Bangkok, Thailand, 2018, pp. 181–188. doi: 10.
1007/978-981-13-3402-3_20.

[63] Scott M. Lundberg and Su-In Lee. “A Unified Approach to Interpreting Model
Predictions”. In: Proc. NIPS. Long Beach, CA, USA, 2017. url: https://
proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-

Paper.pdf.

[64] Brian W. Matthews. “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme”. In: Biochim. Biophys. Acta - Protein Struct.
405.2 (1975), pp. 442–451. doi: 10.1016/0005-2795(75)90109-9.

[65] Wil Michiels et al. “Computer-assisted proof of performance ratios for the
Differencing Method”. In: Discrete Optim. 9.1 (2012), pp. 1–16. doi: 10.1016/
j.disopt.2011.10.001.

[66] Matthias Mnich and René van Bevern. “Parameterized complexity of machine
scheduling: 15 open problems”. In: Comput. Oper. Res. 100 (2018), pp. 254–
261. doi: 10.1016/j.cor.2018.07.020.

[67] Kiarash Mohammadi et al. “Scaling Guarantees for Nearest Counterfactual
Explanations”. In: Proc. AIES. Virtual conference, 2021, pp. 177–187. doi:
10.1145/3461702.3462514.

[68] Christoph Molnar, Giuseppe Casalicchio, and Bernd Bischl. “Interpretable Ma-
chine Learning – A Brief History, State-of-the-Art and Challenges”. In: Proc.
XKDD. Ghent, Belgium, 2020, pp. 417–431. doi: 10.1007/978-3-030-65965-
3_28.

[69] MOSEK ApS. MOSEK Modeling Cookbook : Mixed integer optimzation. Ac-
cessed: 2022-10-18. 2022. url: https://docs.mosek.com/modeling-cookbook/
mio.html.

[70] L. Moser and M. Wyman. “Stirling numbers of the second kind”. In: Duke
Math. J. 25.1 (1958), pp. 29–43. doi: 10.1215/S0012-7094-58-02504-3.

[71] Ramaravind K. Mothilal, Amit Sharma, and Chenhao Tan. “Explaining Ma-
chine Learning Classifiers through Diverse Counterfactual Explanations”. In:
Proc. FAT*. Barcelona, Spain, 2020, pp. 607–617. doi: 10.1145/3351095.
3372850.

[72] Emmanuel Müller et al. “Relevant Subspace Clustering: Mining the Most Inter-
esting Non-Redundant Concepts in High Dimensional Data”. In: Proc. ICDM.
Miami Beach, FL, USA, 2009, pp. 377–386. doi: 10.1109/ICDM.2009.10.

[73] Inga M. Müller. “Feature selection for energy system modeling: Identification
of relevant time series information”. In: Energy AI 4 (2021). doi: 10.1016/j.
egyai.2021.100057.

69

https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.1007/s10618-012-0273-y
https://doi.org/10.3233/FAIA201007
https://doi.org/10.1145/3136625
https://doi.org/10.1007/978-981-13-3402-3_20
https://doi.org/10.1007/978-981-13-3402-3_20
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/10.1016/j.disopt.2011.10.001
https://doi.org/10.1016/j.disopt.2011.10.001
https://doi.org/10.1016/j.cor.2018.07.020
https://doi.org/10.1145/3461702.3462514
https://doi.org/10.1007/978-3-030-65965-3_28
https://doi.org/10.1007/978-3-030-65965-3_28
https://docs.mosek.com/modeling-cookbook/mio.html
https://docs.mosek.com/modeling-cookbook/mio.html
https://doi.org/10.1215/S0012-7094-58-02504-3
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1109/ICDM.2009.10
https://doi.org/10.1016/j.egyai.2021.100057
https://doi.org/10.1016/j.egyai.2021.100057

[74] Roger B. Myerson. “Utilitarianism, Egalitarianism, and the Timing Effect in
Social Choice Problems”. In: Econometrica 49.4 (1981), pp. 883–897. doi: 10.
2307/1912508.

[75] Nina Narodytska et al. “Learning Optimal Decision Trees with SAT”. In: Proc.
IJCAI. Stockholm, Sweden, 2018, pp. 1362–1368. doi: 10.24963/ijcai.2018/
189.

[76] Hai Nguyen, Katrin Franke, and Slobodan Petrović. “Optimizing a Class of
Feature Selection Measures”. In: Proc. DISCML. Vancouver, BC, Canada,
2009. url: https://www.researchgate.net/publication/231175763.

[77] Hai Thanh Nguyen, Katrin Franke, and Slobodan Petrović. “Improving Ef-
fectiveness of Intrusion Detection by Correlation Feature Selection”. In: Proc.
ARES. Krakow, Poland, 2010, pp. 17–24. doi: 10.1109/ARES.2010.70.

[78] Hai Thanh Nguyen, Katrin Franke, and Slobodan Petrović. “Towards a Generic
Feature-Selection Measure for Intrusion Detection”. In: Proc. ICPR. Istanbul,
Turkey, 2010, pp. 1529–1532. doi: 10.1109/ICPR.2010.378.

[79] Hoang Vu Nguyen, Emmanuel Müller, and Klemens Böhm. “4S: Scalable Sub-
space Search Scheme Overcoming Traditional Apriori Processing”. In: Proc.
Big Data. Santa Clara, CA, USA, 2013, pp. 359–367. doi: 10.1109/BigData.
2013.6691596.

[80] Xuan Vinh Nguyen et al. “Effective Global Approaches for Mutual Information
Based Feature Selection”. In: Proc. KDD. New York, NY, USA, 2014, pp. 512–
521. doi: 10.1145/2623330.2623611.

[81] Uchechukwu F. Njoku et al. “Wrapper Methods for Multi-Objective Feature
Selection”. In: Proc. EDBT. Ioannina, Greece, 2023, pp. 697–709. doi: 10.
48786/edbt.2023.58.

[82] Randal S. Olson et al. “PMLB: a large benchmark suite for machine learn-
ing evaluation and comparison”. In: Biodata Min. 10 (2017). doi: 10.1186/
s13040-017-0154-4.

[83] Pavel Pacĺık et al. “On Feature Selection with Measurement Cost and Grouped
Features”. In: Proc. SSPR /SPR. Windsor, ON, Canada, 2002, pp. 461–469.
doi: 10.1007/3-540-70659-3_48.

[84] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J.
Mach. Learn. Res. 12.85 (2011), pp. 2825–2830. url: http : / / jmlr . org /

papers/v12/pedregosa11a.html.

[85] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature Selection Based on
Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-
Redundancy”. In: IEEE Trans. Pattern Anal. Mach. Intell. 27.8 (2005), pp. 1226–
1238. doi: 10.1109/TPAMI.2005.159.

[86] Laurent Perron and Vincent Furnon. OR-Tools. Accessed: 2022-10-18. Google,
2022. url: https://developers.google.com/optimization/.

[87] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ““Why Should I
Trust You?” Explaining the Predictions of Any Classifier”. In: Proc. KDD. San
Francisco, CA, USA, 2016, pp. 1135–1144. doi: 10.1145/2939672.2939778.

[88] Marko Robnik-Šikonja and Igor Kononenko. “An adaptation of Relief for at-
tribute estimation in regression”. In: Proc. ICML. Nashville, TN, USA, 1997,
pp. 296–304. url: https://www.researchgate.net/publication/2635627.

70

https://doi.org/10.2307/1912508
https://doi.org/10.2307/1912508
https://doi.org/10.24963/ijcai.2018/189
https://doi.org/10.24963/ijcai.2018/189
https://www.researchgate.net/publication/231175763
https://doi.org/10.1109/ARES.2010.70
https://doi.org/10.1109/ICPR.2010.378
https://doi.org/10.1109/BigData.2013.6691596
https://doi.org/10.1109/BigData.2013.6691596
https://doi.org/10.1145/2623330.2623611
https://doi.org/10.48786/edbt.2023.58
https://doi.org/10.48786/edbt.2023.58
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1186/s13040-017-0154-4
https://doi.org/10.1007/3-540-70659-3_48
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1109/TPAMI.2005.159
https://developers.google.com/optimization/
https://doi.org/10.1145/2939672.2939778
https://www.researchgate.net/publication/2635627

[89] Irene Rodriguez-Lujan et al. “Quadratic Programming Feature Selection”. In:
J. Mach. Learn. Res. 11.49 (2010), pp. 1491–1516. url: http://jmlr.org/
papers/v11/rodriguez-lujan10a.html.

[90] Joseph D. Romano et al. PMLB v1.0: An open source dataset collection for
benchmarking machine learning methods. arXiv:2012.00058v3 [cs.LG]. 2021.
url: https://arxiv.org/abs/2012.00058v3.

[91] Chris Russell. “Efficient Search for Diverse Coherent Explanations”. In: Pro.
FAT*. Atlanta, GA, USA, 2019, pp. 20–28. doi: 10.1145/3287560.3287569.

[92] Yvan Saeys, Thomas Abeel, and Yves Van de Peer. “Robust Feature Selec-
tion Using Ensemble Feature Selection Techniques”. In: Proc. ECML PKDD.
Antwerp, Belgium, 2008, pp. 313–325. doi: 10.1007/978-3-540-87481-2_21.

[93] Sartaj K. Sahni. “Algorithms for Scheduling Independent Tasks”. In: J. ACM
23.1 (1976), pp. 116–127. doi: 10.1145/321921.321934.

[94] André Schidler and Stefan Szeider. “SAT-based Decision Tree Learning for
Large Data Sets”. In: Proc. AAAI. Virtual conference, 2021, pp. 3904–3912.
doi: 10.1609/aaai.v35i5.16509.

[95] Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt. “Optimal Multi-
Way Number Partitioning”. In: J. ACM 65.4 (2018), pp. 1–61. doi: 10.1145/
3184400.

[96] Borja Seijo-Pardo et al. “Ensemble feature selection: Homogeneous and het-
erogeneous approaches”. In: Knowl.-Based Syst. 118 (2017), pp. 124–139. doi:
10.1016/j.knosys.2016.11.017.

[97] Umair F. Siddiqi, Sadiq M. Sait, and Okyay Kaynak. “Genetic Algorithm for
the Mutual Information-Based Feature Selection in Univariate Time Series
Data”. In: IEEE Access 8 (2020), pp. 9597–9609. doi: 10.1109/ACCESS.2020.
2964803.

[98] Wilson Silva, Kelwin Fernandes, and Jaime S. Cardoso. “How to produce com-
plementary explanations using an Ensemble model”. In: Proc. IJCNN. Bu-
dapest, Hungary, 2019. doi: 10.1109/IJCNN.2019.8852409.

[99] Carsten Sinz. “Towards an Optimal CNF Encoding of Boolean Cardinality
Constraints”. In: Proc. CP. Sitges, Spain, 2005, pp. 827–831. doi: 10.1007/
11564751_73.

[100] Ilia Stepin et al. “A Survey of Contrastive and Counterfactual Explanation
Generation Methods for Explainable Artificial Intelligence”. In: IEEE Access
9 (2021), pp. 11974–12001. doi: 10.1109/ACCESS.2021.3051315.

[101] Vinh Thanh Tao and JongHyeok Lee. “A Novel Approach for Finding Alter-
native Clusterings Using Feature Selection”. In: Proc. DASFAA. Busan, South
Korea, 2012, pp. 482–493. doi: 10.1007/978-3-642-29038-1_35.

[102] Holger Trittenbach and Klemens Böhm. “Dimension-based subspace search
for outlier detection”. In: Int. J. Data Sci. Anal. 7.2 (2019), pp. 87–101. doi:
10.1007/s41060-018-0137-7.

[103] Felix Ulrich-Oltean, Peter Nightingale, and James Alfred Walker. “Selecting
SAT Encodings for Pseudo-Boolean and Linear Integer Constraints”. In: Proc.
CP. Haifa, Israel, 2022, 38:1–38:17. doi: 10.4230/LIPIcs.CP.2022.38.

71

http://jmlr.org/papers/v11/rodriguez-lujan10a.html
http://jmlr.org/papers/v11/rodriguez-lujan10a.html
https://arxiv.org/abs/2012.00058v3
https://doi.org/10.1145/3287560.3287569
https://doi.org/10.1007/978-3-540-87481-2_21
https://doi.org/10.1145/321921.321934
https://doi.org/10.1609/aaai.v35i5.16509
https://doi.org/10.1145/3184400
https://doi.org/10.1145/3184400
https://doi.org/10.1016/j.knosys.2016.11.017
https://doi.org/10.1109/ACCESS.2020.2964803
https://doi.org/10.1109/ACCESS.2020.2964803
https://doi.org/10.1109/IJCNN.2019.8852409
https://doi.org/10.1007/11564751_73
https://doi.org/10.1007/11564751_73
https://doi.org/10.1109/ACCESS.2021.3051315
https://doi.org/10.1007/978-3-642-29038-1_35
https://doi.org/10.1007/s41060-018-0137-7
https://doi.org/10.4230/LIPIcs.CP.2022.38

[104] Sahil Verma, John Dickerson, and Keegan Hines. Counterfactual Explanations
for Machine Learning: A Review. arXiv:2010.10596 [cs.LG]. 2020. url: https:
//arxiv.org/abs/2010.10596.

[105] Sandra Wachter, Brent Mittelstadt, and Chris Russell. “Counterfactual Ex-
planations without Opening the Black Box: Automated Decisions and the
GDPR”. In: Harv. J. Law Technol. 31.2 (2017), pp. 841–887. url: https:
/ / jolt . law . harvard . edu / assets / articlePDFs / v31 / Counterfactual -

Explanations- without- Opening- the- Black- Box- Sandra- Wachter- et-

al.pdf.

[106] Rico Walter and Alexander Lawrinenko. “Lower bounds and algorithms for
the minimum cardinality bin covering problem”. In: Eur. J. Oper. Res. 256.2
(2017), pp. 392–403. doi: 10.1016/j.ejor.2016.06.068.

[107] Rico Walter, Martin Wirth, and Alexander Lawrinenko. “Improved approaches
to the exact solution of the machine covering problem”. In: J. Sched. 20 (2017),
pp. 147–164. doi: 10.1007/s10951-016-0477-x.

[108] Danding Wang et al. “Designing Theory-Driven User-Centric Explainable AI”.
In: Proc. CHI. Glasgow, UK, 2019. doi: 10.1145/3290605.3300831.

[109] Jules White et al. “Automated diagnosis of feature model configurations”. In: J.
Syst. Software 83.7 (2010), pp. 1094–1107. doi: 10.1016/j.jss.2010.02.017.

[110] Wallace Alvin Wilson. “On Semi-Metric Spaces”. In: Am. J. Math. 53.2 (1931),
pp. 361–373. doi: 10.2307/2370790.

[111] Gerhard J. Woeginger. “A comment on scheduling two parallel machines with
capacity constraints”. In: Discrete Optim. 2.3 (2005), pp. 269–272. doi: 10.
1016/j.disopt.2005.06.005.

[112] Gerhard J. Woeginger. “A polynomial-time approximation scheme for max-
imizing the minimum machine completion time”. In: Oper. Res. Lett. 20.4
(1997), pp. 149–154. doi: 10.1016/S0167-6377(96)00055-7.

[113] Adam Woznica, Phong Nguyen, and Alexandros Kalousis. “Model Mining for
Robust Feature Selection”. In: Proc. KDD. Beijing, China, 2012, pp. 913–921.
doi: 10.1145/2339530.2339674.

[114] Jinqiang Yu et al. “Learning Optimal Decision Sets and Lists with SAT”. In:
J. Artif. Intell. Res. 72 (2021), pp. 1251–1279. doi: 10.1613/jair.1.12719.

[115] Lei Yu and Huan Liu. “Feature Selection for High-Dimensional Data: A Fast
Correlation-Based Filter Solution”. In: Proc. ICML. Washington DC, USA,
2003, pp. 856–863. url: https://aaai.org/Papers/ICML/2003/ICML03-
111.pdf.

[116] Ming Yuan and Yi Lin. “Model selection and estimation in regression with
grouped variables”. In: J. R. Stat. Soc.: Ser. B (Stat. Methodol.) 68.1 (2006),
pp. 49–67. doi: 10.1111/j.1467-9868.2005.00532.x.

[117] Jilian Zhang, Kyriakos Mouratidis, and HweeHwa Pang. “Heuristic Algorithms
for Balanced Multi-Way Number Partitioning”. In: Proc. IJCAI. Barcelona,
Spain, 2011, pp. 693–698. doi: 10.5591/978-1-57735-516-8/IJCAI11-122.

72

https://arxiv.org/abs/2010.10596
https://arxiv.org/abs/2010.10596
https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf
https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf
https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf
https://jolt.law.harvard.edu/assets/articlePDFs/v31/Counterfactual-Explanations-without-Opening-the-Black-Box-Sandra-Wachter-et-al.pdf
https://doi.org/10.1016/j.ejor.2016.06.068
https://doi.org/10.1007/s10951-016-0477-x
https://doi.org/10.1145/3290605.3300831
https://doi.org/10.1016/j.jss.2010.02.017
https://doi.org/10.2307/2370790
https://doi.org/10.1016/j.disopt.2005.06.005
https://doi.org/10.1016/j.disopt.2005.06.005
https://doi.org/10.1016/S0167-6377(96)00055-7
https://doi.org/10.1145/2339530.2339674
https://doi.org/10.1613/jair.1.12719
https://aaai.org/Papers/ICML/2003/ICML03-111.pdf
https://aaai.org/Papers/ICML/2003/ICML03-111.pdf
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-122

	Introduction
	Fundamentals
	Notation
	Measuring Feature (Set) Quality

	Alternative Feature Selection
	Optimization Problem
	Constraints – Defining Alternatives
	Single Alternative
	Multiple Alternatives

	Objective Functions – Finding Alternatives
	White-Box Optimization
	Black-Box Optimization
	Embedding Alternatives

	Computational Complexity
	Exhaustive Search for Arbitrary Feature-Selection Methods
	Univariate Feature Qualities
	Summary

	Related Work
	Feature Selection
	Subgroup Discovery
	Clustering
	Subspace Clustering and Subspace Search
	Explainable Artificial Intelligence (XAI)

	Experimental Design
	Overview
	Evaluation Metrics
	Methods
	Prediction
	Feature Selection (Objective Functions)
	Alternatives (Constraints)

	Datasets
	Implementation and Execution

	Evaluation
	Search Methods for Alternatives
	Number of Alternatives
	Dissimilarity Threshold
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Aggregation Operators for Simultaneous Search
	Further Objectives for Multivariate Filter Methods
	Complete Specifications of the Optimization Problem for the Univariate Objective
	Pre-Selection for the Univariate Objective
	Computational Complexity
	A Special Case of Exhaustive Simultaneous Search
	Related Work
	Proofs
	Future Work

	Heuristic Search for the Univariate Objective
	Greedy Replacement Search
	Greedy Balancing Search
	Greedy Depth Search

	Evaluation
	Datasets
	Feature-Set Quality Metrics
	Feature-Selection Methods

