
Archive of Applied Mechanics
https://doi.org/10.1007/s00419-023-02472-7

ORIGINAL

Felix Ernesti · Matti Schneider

Accounting for weak interfaces in computing the effective
crack energy of heterogeneous materials using the composite
voxel technique

Received: 30 November 2022 / Accepted: 21 June 2023
© The Author(s) 2023

Abstract We establish a computational methodology to incorporate interfaces with lower crack energy than
the surrounding phases when computing the effective crack energy of brittle composite materials. Recent
homogenization results for free discontinuity problems are directly applicable to the time-discretized Francfort-
Marigomodel of brittle fracture in the anti-plane shear case, and computational toolswere introduced to evaluate
the effective crack energy on complex microstructures using FFT-based solvers and a discretization scheme
based on a combinatorially consistent grid. However, this approach only accounts for the crack resistance per
volume and is insensitive to the crack resistance of the interface which is expected to play a significant role
by considerations from materials science. In this work we introduce a remedy exploiting laminate composite
voxels. The latter were originally introduced to enhance the accuracy of solutions for elasticity problems on
regular voxel grids. We propose an accurate approximation of the effective crack energy of a laminate with
weak interface where an explicit solution is available. We incorporate this insight into an efficient algorithmic
framework. Finally, we demonstrate the capabilities of our approach on complex microstructures with weak
interfaces between different constituents.

Keywords FFT-based homogenization · Effective crack energy · Composite voxel technique · Maximum
flow · Weak interfaces

1 Introduction

Griffith [1] laid the foundations of modern fracture mechanics [2] by introducing an energetic criterion for the
quasi-static propagation of a crack in a brittle medium. He considered a linear elastic, isotropic structure with
a pre-existing crack subjected to an incrementally increasing load. In his model the crack will propagate if the
energy release rate reaches a critical value, the so-called crack resistance.

A different perspective was taken by Irwin [3] who concentrated on the r−1/2-singularity of the stress field
in the r -vicinity of the crack tip. For three different crack modes he identified a fracture criterion dependent on
the prefactors of the singular terms, the so-called stress intensity factors. In his model a crack will propagate
if these stress intensity factors reach a critical value, the so-called fracture toughness. It can be shown that
the criteria of Griffith and Irwin are actually equivalent for homogeneous isotropic materials [4], i.e., they
can be converted into each other. A third approach to classic linear elastic fracture mechanics is given by the
J-integral [5,6], which uses the divergence theorem to evaluate the energy release rate by a line integral in two
dimensions and a surface integral in three dimensions, enclosing the crack tip in either cases.

Subsequently, extensions to homogeneous and anisotropic materials were proposed [7–10]. Furthermore,
nonlinear effects were incorporated to model small plastic effects near the crack tip [11]. In particular, the work

F. Ernesti · M. Schneider (B)
Karlsruhe Institute of Technology (KIT), Institute of Engineering Mechanics, Karlsruhe, Germany
E-mail: matti.schneider@kit.edu

http://orcid.org/0000-0001-7017-3618
http://crossmark.crossref.org/dialog/?doi=10.1007/s00419-023-02472-7&domain=pdf


F. Ernesti, M. Schneider

of Dugdale et al. [12], who accounted for elasto-plastic material behavior, laid the foundations for cohesive
fracture models [13,14]. Moreover, some early works on brittle fracture of heterogeneous materials investigate
the crack behavior at the interface, i.e., whether an evolving crack penetrates the interface [15,16] or is deflected
at the interface [17,18].

To deal with complex geometries, computational methods for fracture mechanics were introduced, see
Sedmak [19] for a recent overview. For instance, extended finite element methods [20,21] were introduced
to account for the jump in the displacement field within a finite element context. Furthermore, cohesive zone
elements [22] were considered which allow to implement specific traction-separation laws [23].

Merely 25 years ago, Francfort and Marigo proposed a variational approach to fracture [24] based on
Griffith’s crack criterion [1]. For a domain � ⊂ R3 and given stiffness tensor (field) C as well as crack
resistance (field) γ , the Francfort-Marigo model is based on the functional

FM(u, S) = 1

2

∫
�\S

∇su : C(x) : ∇su dx +
∫
S
γ (x) dA, (1.1)

where u : � → R3 denotes the displacement field which is assumed to be continuous except for across
the crack surface S. For prescribed boundary conditions and in a time-incremental framework, the Francfort-
Marigo model seeks minimizers of the functional (1.1) under the constraint that the crack surface is not
allowed to shrinkwhich prevents thematerial from healing. The Francfort-Marigomodel naturally accounts for
heterogeneousmaterials and an anisotropic stiffness tensor. Furthermore, the authors discuss how to incorporate
a direction dependent crack resistance as well. Existence of solutions of the Francfort-Marigo were proven
recently [25,26] based on global energy minimization. Although quite a few numerical methods for finding
these minimizers were introduced [27–30], the most widely studied approach employs the phase-field model of
brittle fracture [31] which was inspired by the Ambrosio-Tortorelli approximation [32] of the Mumford-Shah
functional [33]. The latter coincides with the Francfort-Marigo model in the case of anti-plane shear and a
single load step except for the irreversibility constraint. The phase-field approach models the crack surface as
a smeared interface of width � in terms of a scalar damage variable D : � → R. The energy functional reads

PF(u, D) = 1

2

∫
�

(1 − D)2∇su : C : ∇su dx + 1

2

∫
�

γ

(
D2

�
+ �‖∇D‖2

)
dx . (1.2)

In the quasi-static setting, minimizers u and D of this functional are sought for each time step. Passing to the
limit of vanishing crack-width parameter � → 0 in the phase field model recovers the Francfort-Marigo model
in the sense of �-convergence. To account for irreversibility in numerical computations, different numerical
approaches were pursued [34–36].

Phase-field models for brittle fracture permit to treat both crack nucleation as well as crack propagation
in a unified framework and do not require to pre-select the crack path a priori. However, the original model
had a few shortcomings which where investigated by subsequent works. A first flaw in the original model
was the inability to distinguish tensile and compressive stress/strain states. Tension-compression splittings of
the elastic energy [37–39] offer an elegant way to overcome this issue. Extensions of the phase-field crack
model to incorporate an anisotropic crack resistance, e.g., following the theoretical result of Focardi [40] for
Mumford-Shah functionals [33], were investigated based on a second order tensor formulation [41–44]. More
complex types of anisotropy may be considered in the framework of higher-order phase-fields using fourth
order tensor formulations [45–48].

Similar to the Francfort-Marigo model, phase-field fracture models naturally account for heterogeneous
materials [49–51]. Of particular interest to this work are contributions which specifically account for interface
effects. Yoshioka et al. [52] considered interfaces of finite thickness, selecting the parameters for the crack
energy in such a way that the resulting fracture energy of the phase field in the interface is equivalent to the
energy of a sharp crack following the interface. Other approaches incorporated weak interfaces by combining
cohesive zone elements at the interface with phase field fracture [53,54]. Apart from using finite element and
finite difference discretizations, phase-field fracture models may also be integrated into FFT-based microme-
chanics [55], see the pioneering work of Chen et al. [56], where cohesive zone elements are considered at the
interface which they implement using the composite voxel approach [57–59].

Multi-scale methods [60] permit to account for micro-heterogeneous materials in simulations on the com-
ponent scale. Homogenization results provide a mathematically rigorous way to provide such a scale transition
between the microscopic and the component scale. In the context of fracture mechanics, Braides et al. [61]
proved such a homogenization result for Mumford-Shah type functionals [33] and in the context of periodic
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homogenization, i.e., where both the stiffness tensor field and the crack resistance field are periodic with a
period which is sent to zero in the process of homogenization. The setting of the Mumford-Shah functional
arises as a special case of the Francfort-Marigo model under anti-plane shear loading. Moreover, the result
of Braides et al. [61] considers a single time step only, i.e., does not account for irreversibility. To state the
result, consider the functional (1.1) under anti-plane shear loading with periodic material parameters C and γ
of periodicity η. Braides et al. [61] showed that this functional �-converges for η → 0 to the homogeneous
functional

FMhom(u, S) = 1

2

∫
�

∇su : Ceff : ∇su dx +
∫
S
γ eff(n) dA (1.3)

with effective stiffnessCeff and effective crack energy γ eff, a scalar function of the normal n to the crack surface
S. In addition to this homogenization result, Braides et al. [61] established explicit formulas for both effective
quantities. The effective stiffness may be computed via well-established homogenization methods of linear
elasticity [62,63] by solving the elastic cell problem [64]. The formula for the effective crack energy is given
by the periodic, γ -weighted minimum cut through one period of the structure [65,66]. Particularly surprising
about this result is the fact that the homogenization formulas for the stiffness and the crack resistance decouple,
i.e., are completely independent from each other. In particular, the stiffness tensor field does not influence the
effective crack energy and vice versa. Interestingly, this decoupling is no longer valid if certain degenerations
of the stiffness and the crack energy are permitted, leading to what is called high-contrast energies in the
mathematical literature [67,68].

Over the past 20 years, several extensions to the homogenization result of Braides et al. were published.
Giacomini-Ponsiglione [69] proved that a similar homogenization result holds for the Francfort-Marigo model
under anti-plane shear loading specifically accounting for the irreversibility constraint. Recently, Cagnetti et
al. [70] demonstrated that essentially the same conclusions can be drawn for the case of random materials
as in the periodic setting, i.e., they showed that the �-limit has the form (1.3) and that appropriate corrector
formulae holds for both the effective stiffness and the effective crack energy. In a different direction, Friedrich
et al. [71] lifted the restriction to anti-plane shear for the two-dimensional setting.

These analytical results were complemented by approaches to compute the effective crack energy. Schnei-
der [72] introduced an FFT-based solver for the minimum cut problem which relied on a duality result by
Strang [73]. To deal with artifacts in the solution fields and the accompanying convergence problems, the
authors [74] established a novel solver and discretization method resulting in superior performance both in
accuracy as well as in computation time. Furthermore, extensions to anisotropic materials [75] were pro-
posed. For two-dimensional matrix-inclusion composite, the problem of finding a minimum cut through the
microstructure simplifies (at least for some cases) to finding shortest paths through the microstructure. Inspired
by the pioneering work of Jeulin [76–78] Ernesti et al. [79] used fast marching methods [80,81] to compute
the effective crack energy. Similarities to limit load analysis [82] were pointed out by Michel-Suquet [83] who
investigated this problem using FFT-based methods. Furthermore, they proposed a semi-analytical solution
for the effective crack energy of a two-phase laminate.

Contributions

The work at hand takes a closer look at interface properties in the context of the effective crack energy of a
microstructure[72,75,83]. Originally, the effective crack energy arises naturally from homogenization results
in the periodic [61] and the stochastic setting [70]. We revisit primal and dual formulations in section 2.1.
These results account for the crack resistance in the bulk phases only. However, for a number of composite
materials, like fiber-reinforced materials it is well known that the adhesion between the individual phases is
crucial for the effective strength of the resulting material.

To take a closer look at interface properties, we follow the traditional route and introduce a small positive
parameter δ and thicken the interface between the different phases to an interphase whose thickness is pro-
portional to δ. Assigning a crack resistance to this interphase, we are interested in the limit of the effective
crack energy as δ goes to zero. For a two-phase laminate, see Sect. 2.2, we obtain an analytic expression for
the effective flow set which differs from a pure bulk laminate provided the crack resistance of the introduced
interphase is strictly lower than the bulk crack resistances.

Comparing this observation to weak elastic interfaces [84], we notice that a different scaling of the inter-
phase properties is natural to obtain an appropriateweak interphase. Indeed, if we repeated the previous exercise
with an elastic three-phase laminate, and set C3 ≡ Cint for a fixed stiffness Cint assigned to the interphase,
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its influence would vanish in the limit δ → 0. Rather, a scaling C3 ≡ δCint is necessary to introduce weak
interface effects [84], more precisely a spring-type weak interface.

Physically speaking, the interpretation of weak elastic interfaces and weak interfaces in the context of the
effective crack resistance is thus completely different. For elastic interfaces to be weak, the elastic stiffness of
the interphase needs to become infinitesimally soft, as present, for instance, in an adhesive material. For the
crack resistance, in contrast, no such degeneration is necessary to result in interface effects.

However, both weak interfaces share the same interpretation: they arise not only from homogenization but
in the limit as two different parameters, the correlation length in homogenization and the interface thickness
related to the interphase property, tend to zero.

After identifying the need to consider a more general and robust definition of the effective crack energy,
we provide such an extension in Sect. 2.3 following the work of Baldi [85] on weighted functions of bounded
variation (BV). We demonstrate that the extended definition encompasses the previously identified limit lam-
inate naturally and provide a simplified approximation of the flow set which is convenient for numerics, see
Sect. 2.4.

These theoretical developments are complemented by an associated numerical technique. More precisely,
we extend the combinatorial continuous maximum flow discretization (CCMF) [74], which we revisit in
Sect. 3.1, to account for weak interfaces in terms of the composite voxel technique [57,86], more precisely
laminate composite voxels [58,59,87]. The composite-voxel approach, originally formulated for voxel-based
computational micromechanics, introduces specific constitutive laws in voxels which are intersected by the
interface between bulk materials. Within these composite voxels, instead of the material response of a single
material, the material behavior of a laminate with an appropriate normal and suitable volume fractions of the
present materials is used to account for the heterogeneity of the material within the voxel. The original purpose
of the composite voxel method was to enhance the accuracy of FFT-based methods which enables the use of
a coarser grid and thus reduces the overall computational cost.

We mimic the composite-voxel strategy in the context of the effective crack energy by using appropriate
laminates in the composite voxels. Moreover, we account for the weak interface by using the effective crack
energy of a laminate with weak interface based on the previously developed (semi-)analytical description.
The integration into the CCMF-framework is discussed in Sect. 3.2. The CCMF-discretization is complemented
by an efficient solver framework [75] based on the alternating direction method of multipliers (ADMM),
see Sect. 3.3. To handle composite voxels, it is necessary to project onto the effective flow set of laminates
efficiently. Such a procedure is described in Sect. 3.4.

We investigate the proposed methods for complex computational examples in Sect. 4.
Notation: We denote the absolute value of a real number q with |q| = √

q2 and write

‖v‖ =
√√√√ n∑

i=1

v2i (1.4)

for the norm of a vector in Rn .

2 The effective crack energy of a microstructure

2.1 The effective crack energy with bulk crack resistance

Suppose a cuboid domain Y ⊂ Rd in d dimensions (d = 2, 3) is given, together with a periodic scalar field
γ : Y → R of crack resistances, which we assume to be Lebesgue measurable and to obey the bounds

γ − ≤ γ (x) ≤ γ +, x ∈ Y, (2.1)

for positive numbers γ ± independent of x ∈ Y . For a prescribed mean crack normal ξ̄ ∈ Sd−1, the effective
crack energy [72,74] in direction ξ̄ is defined as follows

γ eff(ξ̄ ) = inf
p∈W 1,1

# (Y )

1

|Y |
∫
Y

γ (x)
∥∥ξ̄ + ∇ p(x)

∥∥ dx, (2.2)

where the infimum is taken over all functions p which are integrable together with their gradient. Here and in
the following, we restrict to periodic functions and denote the corresponding function spaces with a #-symbol.
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Intuitively, the fact that the integrand in the expression (2.2) grows linearly in the gradient of the field p
fosters the minimizers to concentrate on a surface, i.e., a minimal surface weighted by the crack resistance γ .
In particular, it appears evident that the minimum of the variational problem (2.2) is not attained in the class
W 1,1

# (Y ). Rather, it is imperative to work with functions of bounded variation p ∈ BV#(Y ), i.e., Lebesgue-
integrable functions p ∈ L1(Y ), s.t. the total variation

Var(p) = sup

{∫
Y
p div v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), ‖v(x)‖ ≤ 1, x ∈ Y

}
(2.3)

is finite. Any function p ∈ W 1,1
# (Y ) is also a BV function, and we have the identity

Var(p) = ‖∇ p‖L1 . (2.4)

The functions of bounded variation form a Banach space under the natural norm

‖p‖BV = ‖p‖L1 + Var(p). (2.5)

Moreover, the total variation (2.3) is lower semicontinuous w.r.t. L1-convergence. A key property of BV-
functions is that their gradient defines a vector-valued Radon measure, i.e., they represent a rather general
class of functions which admit a reasonable calculus. We refer to Evans-Gariepy [88, §5] for further details.

The problem at hand (2.2) may be interpreted as a weighted version of the total variation in view of the
equivalence (2.4). The term inside the infimum of the minimum cut problem (2.2) may be extended to all
BV#(Y ) functions based on the identity

∫
Y

γ (x)
∥∥ξ̄ + ∇ p(x)

∥∥ dx = sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ L2(Y ;Rd),

‖v(x)‖ ≤ γ (x), a.e. x ∈ Y

}
.

(2.6)

valid for p ∈ W 1,1
# (Y ) and established via integration by parts. Leveraging the compactness and lower

semicontinuity properties of the BV space, one obtains the representation

γ eff(ξ̄ ) = min
p∈BV#(Y )

sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ L2(Y ;Rd),

‖v(x)‖ ≤ γ (x), a.e. x ∈ Y

}
.

(2.7)

Let us return to the BV-formulation of the minimum-cut problem (2.7),

γ eff(ξ̄ ) = inf
p∈BV#(Y )

sup
v∈L2(Y ;Rd ), ‖v‖≤γ

−
∫
Y

ξ̄ · v − p div v dx, (2.8)

and discuss a dualization technique introduced by Strang [73] which is of vital importance to compute the
effective crack energy (2.2) numerically.

We change the order of minimization and maximization, assuming that this operation is permitted,

γ eff(ξ̄ ) = sup
v∈L2(Y ;Rd ), ‖v‖≤γ

inf
p∈BV#(Y )

−
∫
Y

ξ̄ · v − p div v dx

= sup
v∈L2(Y ;Rd ), ‖v‖≤γ

(
−
∫
Y

ξ̄ · v dx − sup
p∈BV#(Y )

−
∫
Y
p div v dx

)
.

(2.9)

The identity

sup
p∈BV#(Y )

−
∫
Y
p div v dx =

{
0, div v = 0,

+∞, otherwise, (2.10)
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implies the representation

γ eff(ξ̄ ) = max
div v = 0, ‖v‖≤γ

−
∫
Y

ξ̄ · v dx (2.11)

of the effective crack energy. The problem (2.11) is called maximum-flow problem due to the divergence con-
straint characterizing incompressible flow fields. It maximizes the average flow under a point-wise constraint
on the length of the flow vector.

In fact, Michel-Suquet [83] pointed out that the maximum-flow problem (2.11) may be conveniently recast
in the form

γ eff(ξ̄ ) = max
v̄∈Veff

v̄ · ξ̄ (2.12)

with the set of attained average flows

Veff =
{
−
∫
Y

v dx

∣∣∣∣ v ∈ L2(Y ;Rd), div v = 0, ‖v(x)‖ ≤ γ (x), a.e. x ∈ Y

}
. (2.13)

To reveal the potential advantage of using the maximum-flow formulation (2.11), notice that the original
minimum-cut problem (2.2) involves an integrand that is homogeneous of degree one. In particular, the func-
tional is not differentiable at the origin. In contrast, the maximum-flow problem involves a linear objective
function, a linear constraint encoding incompressibility and the point-wise norm constraint which may be
recast in the form of quadratic constraints

‖v(x)‖2 − γ (x)2 ≤ 0, x ∈ Y. (2.14)

In particular, the formulation (2.11) is amenable to classical techniques of differentiable optimization [89,90].

2.2 The effective crack energy of a two-phase laminate with a weak interface

The purpose of this section is to investigate weak interfaces in microstructures for the example of a laminate,
i.e., a material which is layered in a specific direction n and which contains a number K of different phases.
Michel-Suquet [83,AppendixA] provided an analytical expression for the effective flow set (2.13) of laminates.
More precisely, they considered the case of two phases. However, their arguments carry over directly to the
case of K phases with volume fractions φi and crack resistances γi . Notice that the unit normal vector n permits
to decompose any vector v ∈ Rd uniquely into n-parallel and n-transverse parts

v = v‖ + v⊥ with v‖ = (n · v) n and n⊥ = v − (n · v) n. (2.15)

Then, the effective flow set of a K -phase laminate is given by

Veff =
{

v̄ ∈ Rd
∣∣∣∣ ‖v̄‖‖ ≤ K

min
i=1

γi , ‖v̄⊥‖ ≤
K∑
i=1

φi

√
γ 2
i − ‖v̄‖‖2

}
. (2.16)

Let us use this result to study a two-phase laminate with a weak interface, see Fig. 1b. To do so, we will actually
study an interphase problem and take an appropriate limit. More precisely, suppose three crack resistances
γi (i = 1, 2, 3) are given, together with a volume fraction φ ∈ (0, 1) of the first phase. For the parameter
δ ∈ (0,min(φ, 1 − φ)), we consider a three-phase laminate with volume fractions

φ1 = φ − δ/2, φ2 = 1 − φ − δ/2, φ3 = δ (2.17)

and corresponding crack resistances γi (i = 1, 2, 3). The setup is illustrated in Fig. 1a.
For any fixed value δ > 0, the effective flow set takes the form

Veff
δ =

{
v̄ ∈ Rd

∣∣∣∣ ‖v̄‖‖ ≤ 3
min
i=1

γi , ‖v̄⊥‖ ≤ (φ − δ/2)
√

γ 2
1 − ‖v̄‖‖2

+ (1 − φ − δ/2)
√

γ 2
2 − ‖v̄‖‖2 + δ

√
γ 2
3 − ‖v̄‖‖2

}
.

(2.18)
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Fig. 1 Illustration of two- and three-phase laminates with unit normal n

In the limit δ → 0, we obtain the effective flow set

Veff
0 =

{
v̄ ∈ Rd

∣∣∣∣ ‖v̄‖‖ ≤ 3
min
i=1

γi , ‖v̄⊥‖ ≤ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ)

√
γ 2
2 − ‖v̄‖‖2

}
. (2.19)

In case the crack resistance γ3 of the interphase exceeds the bulk crack resistances, i.e., the inequality

γ3 ≥ γi , i = 1, 2, (2.20)

holds, the effective flow set (2.19) coincides with the effective flow set (2.16) of a two-phase laminate with
bulk crack resistances γ1 and γ2. On the other hand, if the crack resistance γ3 ≡ γ int of the interphase is strictly
lower than the bulk crack resistances

γ3 ≡ γ int < min(γ1, γ2), (2.21)

the effective limiting flow set (2.19) will feature an additional restriction on the parallel part v̄‖ compared to
the effective flow set (2.16) of a two-phase laminate with bulk crack resistances γ1 and γ2. In particular, the
two sets do not coincide, and a distinct interface effect is noticable. Put differently, the limiting effective crack
resistance takes the reduced interface crack resistance γ int, as shown in Fig. 1b, into account.

2.3 The effective crack energy with a weak interface

The previous section revealed that the notion of the effective crack energy as discussed in Sect. 2.1 is insensitive
to interface effects. The purpose of this section is to show that this defect is not intrinsic to the minimum
cut/maximum flow problems but easily repaired by choosing the proper framework.

Recall from Sect. 2.1 that the minimum cut problem (2.2)

γ eff(ξ̄ ) = inf
p∈W 1,1

# (Y )

1

|Y |
∫
Y

γ (x)
∥∥ξ̄ + ∇ p(x)

∥∥ dx, (2.22)

could be interpreted as a weighted total variation problem. However, due to the appearance of the weight γ in
the integral, interface crack resistances do not matter. Indeed, the Lebesgue integral of a function is impervious
to values on a set of Lebesgue measure zero, e.g., on a (sufficiently regular) surface.
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Baldi [85] studied functions of bounded variationw.r.t. a general positiveweight functionω.More precisely,
she considered a locally integrable weight functionω ∈ L1

#, loc(Y ), belonging to theMuckenhoupt A1(Y )-class
of weight functions [91,92], i.e., functions which are characterized by the inequality

ω(x) ≥ c−
∫
Br (x)

ω(y) dy, (2.23)

valid for almost every x ∈ Y and a universal constant c > 0. Here, Br (x) denotes the ball of radius r around
x ∈ Y in the Y -periodic distance and the symbol −

∫
refers to the mean integral. For such a weight function ω,

Baldi [85] defines the weighted total variation

Var(p; ω) = sup

{∫
Y
p div v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), ‖v(x)‖ ≤ ω(x), x ∈ Y

}
(2.24)

in complete analogy to the unweighted case (2.3). Please notice that the constraint of the flow field v in the
definition (2.24) is pointwise everywhere, not pointwise almost everywhere.

The corresponding set of weighted BV functions BV#(Y ;ω) consists of (classes of) functions p : Y → R,
which are integrable w.r.t. the ω-weighted Lebesgue measure, i.e., which satisfy the condition

∫
Y
p(x) ω(x) dx < ∞ (2.25)

and whose weighted total variation (2.24) is finite. Similar to their unweighted counterparts, the weighted BV
functions form a Banach space w.r.t. the norm

‖p‖BV,ω = ‖p ω‖L1 + Var(p;ω), (2.26)

s.t. the weighted total variation (2.24) is lower semicontinuous w.r.t. ω-weighted L1-convergence. Moreover,
existence of ω-weighted minimal surfaces can be established. We refer to Baldi [85] for details.

Let us revisit the weighted minimum-cut problem (2.2). We would like to use the crack resistance γ as a
suitable weight ω. Notice, for a start, that the upper and lower bounds (2.1) imply that the crack resistance γ
defines an element of the Muckenhoupt A1(Y )-class of weight functions due to the estimate

γ (x) ≥ γ − ≥ γ −

γ + −
∫
Br (x)

γ (y) dy. (2.27)

Thus,wemay consider the space BV#(Y ; γ ) to be a reasonable candidate to containminimizers of theminimum
cut problem. Then, we may consider the effective crack resistance

γ eff(ξ̄ ) = min
p∈BV#(Y )

sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), ‖v(x)‖ ≤ γ (x), x ∈ Y

}
, (2.28)

wherewe used that the assumptions (2.1) imply that theweighted and unweighted BV -spaces actually coincide,
for instance evident from the norm equivalence

γ −‖p‖BV ≤ ‖p‖BV,γ ≤ γ +‖p‖BV . (2.29)

Let us compare the novel formulation (2.28) with the previous formulation (2.7)

γ eff
prev(ξ̄ ) = min

p∈BV#(Y )
sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ L2(Y ;Rd), ‖v(x)‖ ≤ γ (x), a.e. x ∈ Y

}
, (2.30)

where we attached a subindex prev to be able to distinguish the two formulations. The difference between the
defintions (2.28) and (2.30) is that the constraint ‖v(x)‖ ≤ γ (x) is enforced everywhere for the former and
almost everywhere for the latter. In particular, the estimate

γ eff(ξ̄ ) ≤ γ eff
prev(ξ̄ ), ξ̄ ∈ Rd , (2.31)

follows by a mollification argument.
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However, some care has to be taken. Baldi [85, Lemma 3.1] points out that one may assume without loss
of generality that the weight function ω is lower semicontinuous, i.e., it satisfies the condition

ω(x) ≤ lim inf
k→∞ ω(xk) (2.32)

for any sequence (xk) in Y converging to a point x ∈ Y as k → ∞. Indeed, for any weight function ω, consider
the lower semicontinuous envelope

ω∗(x) = sup

{
‖v(x)‖

∣∣∣∣ v ∈ C1(Y ;Rd), ‖v(x)‖ ≤ ω(x), x ∈ Y

}
. (2.33)

Then, theBV spaces BV (Y ;ω) and BV (Y ;ω∗) coincide [85, Lemma3.1]. By a similar argument, one observes
that the identity

sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), ‖v(x)‖ ≤ ω(x), x ∈ Y

}

= sup

{
−
∫
Y

ξ̄ · v − p div v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), ‖v(x)‖ ≤ ω∗(x), x ∈ Y

} (2.34)

holds for any p ∈ BV#(Y ).
With this remark at hand, one observes that the two formulations (2.28) and (2.33) may both be represented

in Baldi’s formulation. Indeed, starting from a given crack resistance field γ , the interface-aware formulation
(2.28) arises by considering the weight

ω = γ ∗, (2.35)

involving the lower semicontinuous envelope (2.33). In contrast, the original approach (2.30) emerges by
setting

ω = Mγ (2.36)

in terms of the Hardy-Littlewood maximal function

Mγ (x) = sup
r>0

−
∫
Br (x)

γ (y) dy, x ∈ Y. (2.37)

Indeed, for any weight γ in the Muckenhoupt A1(Y )-class, the function Mγ is lower semicontinuous, an
element of A1(Y ) and coincides with the function γ almost everywhere, see Baldi [85, §1] for a discussion.

Let us put this observation into a physical perspective. Suppose we have a two-phase medium comprising
two disjoint domains Y1 and Y2 whose union covers the cell, with associated constant values of crack resistance
γ1 = γ2. A priori, the crack resistance of the interface I = Y1 ∩ Y2 is not uniquely defined. However, the
previous discussion entails that the only consistent extension on the interface satisfies the condition

γ (x) ≤ min(γ1, γ2), x ∈ I. (2.38)

Indeed, suppose the crack resistance γ would be higher in a neighborhood of x ∈ I . Then, one may displace
a crack through the interface at x , represented by a surface, a little bit to either side of the interface and use
the lower value min(γ1, γ2). As this displacing shift can be as small as desired, such an elevated value γ (x)
cannot be perceived upon relaxation.

If only the bulk values γ1 and γ2 are prescribed, relaxing the minimum-cut problem (2.28) via its lower
semicontinuous envelope (2.33) automatically determines the crack resistance of the interface

γ (x) = min(γ1, γ2), x ∈ I. (2.39)

Interestingly, the theory (2.28) developed by Baldi [85] permits the interface to have a lower, yet positive crack
resistance. Such weak interfaces are of primary interest for the article at hand.

With similar arguments as inSect. 2.1 for bulk crack resistances,weobtain themaximumflowrepresentation

γ eff(ξ̄ ) = max
div v = 0, ‖v‖≤γ

−
∫
Y

ξ̄ · v dx (2.40)
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of the effective crack energy. Also, the convenient form

γ eff(ξ̄ ) = max
v̄∈Veff

v̄ · ξ̄ (2.41)

holds with the set of attained average flows

Veff =
{
−
∫
Y

v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), div v = 0, ‖v(x)‖ ≤ γ (x), x ∈ Y

}
, (2.42)

where the overline refers to the set-theoretic closure.

2.4 A simplified approximation of a two-phase laminate with weak interface

The purpose of this section is twofold. On the one hand, we would like to show that the effective crack energy
of a two-phase laminate with weak interface according to the new definition (2.28) coincides with the limit
(2.19) of a three-phase laminate with vanishing interphase, as derived in Sect. 2.2. On the other hand, we will
derive a simplified approximation of the flow set (2.19) of a two-phase laminate with weak interface that is
amenable to efficient numerical treatment.

Suppose a two-phase laminate with a weak interface is given, see Fig. 1b. More precisely, we consider the
first phase Y1 to occupy a volume fraction of φ ∈ [0, 1], whereas the second phase Y2 comprises the remaining
volume 1 − φ. The direction of lamination n is given in terms of a unit vector in Rd .

We assume that the two bulk phases are endowed with crack resistances γi (i = 1, 2), whereas the interface
I = Y1 ∩Y2 is characterized by a crack resistance γ int. Thus, the local crack resistance field is given explicitly
in the form

γ (x) =
⎧⎨
⎩

γ1, x ∈ Y1,
γ2, x ∈ Y2,

γ int, x ∈ I.
(2.43)

The function γ is lower semicontinuous provided the interface crack resistance γ int does not exceed both bulk
resistances, i.e., the inequality

γ int ≤ min(γ1, γ2) (2.44)

holds. To determine the effective crack energy of such a laminate we followMichel-Suquet [83] and determine
the set of realized average flows (2.42)

Veff =
{
−
∫
Y

v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), div v = 0, ‖v(x)‖ ≤ γ (x), x ∈ Y

}
. (2.45)

Then, the following representation

Veff =
{
v̄ ∈ Rd

∣∣∣∣ ‖v̄‖‖ ≤ γ int, ‖v̄⊥‖ ≤ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ)

√
γ 2
2 − ‖v̄‖‖2

}
(2.46)

may be deduced, which coincides with the limit (2.19) of the flow set of a three-phase laminate with vanishing
interphase thickness. To maintain a fluid reading experience, the derivation is outsourced into Appendix A.

With a more effective computational resolution in mind, we will also consider the following simplification.
Instead of the admissible flow set (2.46), we consider the following simplification

Vsimp =
{
v̄ ∈ Rd

∣∣∣∣ ‖v̄‖‖ ≤ γ int, ‖v̄‖ ≤ φ γ1 + (1 − φ) γ2

}
, (2.47)

which is motivated by considering the case of a homogeneous laminate with weak interface, i.e., the case
γ1 = γ2.

It is readily seen that the set inclusion
Veff ⊆ Vsimp (2.48)
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Fig. 2 Effective crack energy of a laminate (2.46) and relative error of the approximation (2.47) in polar plots where the normal
direction corresponds to 0o

holds via the original definition (2.42) of the admissible flow set. Indeed, as any admissible flow field v satisfies
the constraints

‖v(x)‖ ≤ γi , x ∈ Yi , i = 1, 2, (2.49)

volume averaging leads to the second inequality

‖v̄‖ ≡
∥∥∥∥−
∫
Y

v dx

∥∥∥∥ ≤ −
∫
Y

‖v‖ dx = φ −
∫
Y1

‖v‖ dx + (1 − φ) −
∫
Y2

‖v‖ dx ≤ φ γ1 + (1 − φ) γ2 (2.50)

in the definition of the simplified admissible flow set (2.47). We investigated the difference between the exact
laminate (2.46) and the approximation (2.47) numerically using the ECOS solver [93] for quadratic cone
problems. An exemplary solution for the effective crack energy of a laminate with direction n = ex is shown
as a polar plot in Fig. 2a. We chose the parameters φ = 0.5, γ1 = γ , γ2 = 10 γ and γ int = 0.5 γ .

Weobserve that the exact solution is almost indistinguishable from the approximation.This is also quantified
by the relative error, see Fig. 2b which is below 1% for the investigated material properties. We would also
like to highlight that the error vanishes completely both in lamination direction n and perpendicular to this
direction.

3 Computational framework

3.1 The combinatorial consistent maximum flow discretization

To solve the maximum flow problem (2.40)

γ eff(ξ̄ ) = max
div v = 0, ‖v‖≤γ

−
∫
Y

ξ̄ · v dx (3.1)

on a given unit cell Y = [0, L1] × [0, L2] × [0, L3], it is necessary to select an appropriate discretization
scheme together with a suitable solution method. Due to the complexity of industrially used microstructures,
discretizations on regular voxel grids [62,63] have been demonstrated to lead to powerful and computationally
efficient schemes for a variety of physical problems [55, §5].

However, it is not uncommon that such regular grid based discretizations lead to oscillations in the vicinity
of material interfaces [55, §2]. Thus, it does not come as a surprise that these traditional techniques, e.g., based
on trigonometric polynomials [62,63], do not show optimal performance for the maximum flow problem (3.1)
due to the appearance of the pointwise constraint on the flow field.
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Fig. 3 Illustration of the CCMF discretization and a two-phase microstructure

The combinatorial consistent maximum flow (CCMF) discretization [74,94] was introduced as a remedy,
building upon the advantages of finite-volume discretizations. More precisely, let us consider a voxel discretiza-
tion YN with Ni (i = 1, 2, 3) voxels in each coordinate direction and cubic voxels with the edge length h,
i.e., the identity h = Li/Ni holds for i = 1, 2, 3. Notice that we restrict to the physically relevant dimension
d = 3, but typically use d = 2 for visualization.

In the classical setting of scalar bulk crack resistances, we suppose that a crack resistance γ is given for each
voxel, see Fig. 3a. Then, the CCMF discretization associates flow degrees of freedom to the faces of the voxels,
i.e., each voxel has six (d = 3) resp. four (d = 2) adjacent flow variables to account for. Notice that the flow
variables and the crack resistances live on different grid points, see Fig. 3a for two and Ernesti-Schneider [74,
Fig. 4] for three dimensions. These flow variables are not independent, as each face is shared by two adjacent
voxels. For this reason, we attach the flow variables to a specific voxel. This procedure is not unique, and we
use the association ⎛

⎝ vx
vy
vz

⎞
⎠ [i, j, k] =

⎛
⎝ vx ((i + 1/2)h, jh, kh)

vy(ih, ( j + 1/2)h, kh)
vz(ih, jh, (k + 1/2)h)

⎞
⎠ (3.2)

for each voxel with integer coordinates [i, j, k]. Then, we may express the incompressibility constraint by the
equation

div− v = 0 (3.3)

with the divergence operator

(
div− v

)
[i, j,k] = vx [i, j,k] − vx [i−1, j,k] + vy [i, j,k] − vy [i, j−1,k] + vz [i, j,k] − vz [i, j,k−1], (3.4)

where we consider the indices to by (N1, N2, N3)-periodic. The discrete incompressibility condition (3.3)
ensures the balance of in- and outflow for each voxel, as usual for finite-volume methods.

To discretize the maximum flow problem (3.1), it remains to discretize the pointwise constraint

‖v(x)‖ ≤ γ (x), x ∈ Y. (3.5)
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Recall that the crack resistance γ is associated to each voxel, whereas the flow field lives on the voxel faces,
see Fig. 3a. Therefore, we use the operator A, defined for each voxel [i, j, k] by

A(v)[i, j, k] = 1√
2

⎛
⎜⎜⎜⎜⎜⎝

vx [i, j,k]
vy [i, j,k]
vz [i, j,k]

vx [i−1, j,k]
vy [i, j−1,k]
vz [i, j,k−1]

⎞
⎟⎟⎟⎟⎟⎠

. (3.6)

The operator A collects the flows on all six faces of the voxel and multiplies them with a normalization
factor [74]. With this operator at hand, the CCMF discretization replaces the constraint (3.5) by the voxel-wise
condition

‖A(v)[i, j, k]‖ ≤ γ [i, j, k]. (3.7)

In view of the definition (3.6), the latter condition may also be written in explicit form

vx [i, j,k]2 + vy [i, j,k]2 + vz [i, j,k]2 + vx [i−1, j,k]2 + vy [i, j−1,k]2 + vz [i, j,k−1]2 ≤ 2 γ [i, j, k]2. (3.8)

The original constraint (3.5) features three terms in the norm on the left hand side, the CCMF discretization
involves six terms on the left hand side of the constraint (3.8). To ensure consistency for homogeneous flows,
a factor two needs to be included into the right hand side. To retain a formal similarity of the CCMF-constraint
(3.7) with the non-discretized equivalent (3.5), the prefactor 1/

√
2 is included in the definition (3.6) of the

A-operator.
With these operators at hand, we may write down the discrete maximum flow problem in the form

γ eff
N (ξ̄ ) = max

div− v = 0, A(v)∈CN

1

N1N2N3

∑
i, j,k

v[i, j,k] · ξ̄ (3.9)

with the constraint set

CN =
{
w : YN → R6

∣∣∣∣ ‖w[i, j, k]‖ ≤ γ [i, j, k] for all (i, j, k) ∈ YN

}
. (3.10)

3.2 Combinatorial consistent maximum flow and composite voxels

To account for weak interfaces (2.40) in the CCMF discretization, we take a second look at the maximum flow
problem (3.9)

γ eff
N (ξ̄ ) = max

div− v = 0, A(v)∈CN

1

N1N2N3

∑
i, j,k

v[i, j,k] · ξ̄ (3.11)

by writing the constraint set (3.10) in the form

CN =
{
w : YN → R6

∣∣∣∣w[i, j, k] ∈ V[i, j, k] for all (i, j, k) ∈ YN

}
(3.12)

with the flow set

V[i, j, k] =
{
w ∈ R6

∣∣∣∣ ‖w‖ ≤ γ [i, j, k]
}

(3.13)

associated to the voxel with index [i, j, k]. In this formulation (3.11)-(3.12), more general, in particular non-
isotropic, flow sets V[i, j, k] may be considered naturally for computing the effective crack energy. Such an
idea was already exploited for locally anisotropic crack resistance [75]. To account for weak interfaces, we
make use of the composite voxel method [57,86], which was originally introduced to improve the accuracy of
FFT-based computational micromechanics on regular grids.

Let us consider a two-phase microstructure comprising a matrix material with embedded inclusions, see
Fig. 3b. For FFT-based computational micromechanics, the microstructure is typically encoded by a color field
given on this voxel image. Each color uniquely identifies the phase, and the color of each voxel determines to
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Fig. 4 Subvoxeling approach and substitute laminate

which phase the corresponding voxel belongs to. For the two-phase microstructure shown in Fig. 3b, color 1
corresponds to the matrix and color 2 encodes the inclusions.

For the composite voxel method, one assumes that a voxel image with a much finer resolution is given.
Based on this representation, a third color is introduced for voxels which are not homogeneous in this fine-scale
representation, see Fig. 4a.

The classical composite voxel method in mechanics [57–59] assumes the interface between the materials
to be accurately described by a linear surface within the voxel and furnishes the composite voxel with the
effective mechanical properties of an equivalent laminate, see Fig. 4b. More precisely, based on the finely
resolved voxel image, estimates for the volume fractions of the phases and for the normal of the interface
between the phases is computed. Following Kabel et al. [57,59], we evaluate the volume fractions of the
individual phases via quadrature on the fine grid. The unit normals are computed by normalizing the vector
pointing from the centroid of one phase to the center of the composite voxel.

Thus, we end up with three phases: the sets Y N
1 and Y N

2 of matrix and inclusion voxels and the composite
voxel phase Y N

3 , where for each voxel with indices (i, j, k) the volume fraction φ[i, j, k] of phase 1 and the
unit normal n[i, j, k] are available.

For use in the maximum flow problem (3.11), we furnish any composite voxel (i, j, k) ∈ Y N
3 with the flow

set

V3[i, j, k] =
{
w ∈ R6

∣∣∣∣ ‖w‖ ≤ φ[i, j, k] γ1 + (1 − φ[i, j, k]) γ2 and |w · n[i, j, k]CCMF| ≤ γ int
}

, (3.14)

based on the approximation (2.47) of the equivalent laminate (2.46) and where we defined nCCMF ∈ R6 by

nCCMF = 1√
2

(n1, n2, n3, n1, n2, n3)
T for n = (n1, n2, n3)

T ∈ R3. (3.15)

Together with the definitions

Vc =
{
w ∈ R6

∣∣∣∣ ‖w‖ ≤ γc

}
, c = 1, 2, (3.16)

for the isotropic phases, we may formulate the maximum flow problem (3.11) & (3.12) with weak interface
by defining the local flow sets

V[i, j, k] =
⎧⎨
⎩

V1, (i, j, k) ∈ Y N
1 ,

V2, (i, j, k) ∈ Y N
2 ,

V3[i, j, k], (i, j, k) ∈ Y N
3 .

(3.17)

Notice that sets V1 and V2 both correspond to spheres of radius γ1 and γ2. The set V3[i, j, k] describes an
anisotropic shape of a sphere with radius φ[i, j, k] γ1 + (1 − φ[i, j, k]) γ2 and spherical caps removed, see
Fig. 5a. This contrasts with the investigation [75] where ellipsoidal flow sets were used to model an anisotropic
crack resistance.
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3.3 The ADMM solver for the maximum flow problem

In this section, we recall the alternating direction method of multipliers (ADMM) solver tailored to solving
the maximum flow problem (3.11) & (3.12)

γ eff
N (ξ̄ ) = max

div− v = 0, A(v)∈CN

1

N1N2N3

∑
i, j,k

v[i, j,k] · ξ̄

with CN =
{
w : YN → R6

∣∣∣∣w[i, j, k] ∈ V[i, j, k] for all (i, j, k) ∈ YN

}
.

(3.18)

The corresponding discrete minimum cut problem is derived similarly to both the isotropic case [74, Sec. 3.1]
and the ellipsoidal case [75, Sec. 3.1], i.e., we obtain the problem

γ eff
N (ξ̄ ) = min

ξ∈Kξ̄

1

N1N2N3

∑
i, j,k

γ CCMF[i, j,k] (ξ [i, j, k]) (3.19)

with the voxel-wise (1-homogeneously extended) crack resistance

γ CCMF[i, j,k](ξ) = sup
w∈V[i, j,k]

w · ξ, ξ ∈ R6, (3.20)

and the set Kξ̄ of compatible fields

Kξ̄ =
{
ξ : YN → R6

∣∣∣∣ there is some φ : YN → R, s.t. A∗ξ = ξ̄ + ∇+φ

}
(3.21)

with the discrete forward gradient operator∇+ and the left inverse A∗ of A, i.e., characterized by the condition
A∗A = Id.

We solve the discrete maximum flow problem using the alternating direction method of multipliers
(ADMM) [95,96], first introduced into FFT-based methods by Michel et al. [97,98]. To derive the algorithm,
we first define the two convex functions

f (ξ) = ιKξ̄
(ξ ) and g(ξ) = 1

N1N2N3

∑
i, j,k

γ CCMF[i, j,k] (ξ [i, j, k]), (3.22)

where the function ιKξ̄
refers to the indicator function of the set (3.21). The problem (3.19) may be written

equivalently as
f (ξ) + g(ξ) −→ min

ξ
. (3.23)

We transform this minimization problem into a constrained program

f (ξ) + g(e) −→ min
ξ=e

(3.24)

and investigate the augmented Lagrangian function

Lρ(ξ, e, v) = f (ξ) + g(e) + 〈v, ξ − e〉 + ρ

2
‖ξ − e‖2 . (3.25)

Here, ρ > 0 denotes a penalty factor and the flow field v : YN → R6 corresponds to the Lagrange multiplier
for the constraint ξ = e. We use the damped ADMM recursion with adaptive penalty parameter and damping
factor δ [74, Sec. 3.2] which reads

ξ k+1/2 = argminξ Lρk (ξ, ek, vk),

ξ k+1 = 2(1 − δ)ξ k+1/2 − (1 − 2δ)ek,

ek+1 = argmine Lρk (ξ k+1, e, vk),

vk+1 = vk + ρk (ξ k+1 − ek+1).

(3.26)
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Fig. 5 Domain V3 and orthogonal projectors

Following the same section, line 1 and 3 may expressed explicitly

ξ k+1/2 = PKξ̄

(
ek − 1

ρk
vk
)

,

ξ k+1 = 2(1 − δ)ξ k+1/2 − (1 − 2δ)ek,

ek+1 =
[
vk + ρk ξ k+1 − PC

(
vk + ρk ξ k+1

)]
/ρk,

vk+1 = vk + ρk (ξ k+1 − ek+1),

(3.27)

using the orthogonal projectors PKξ̄
and PC onto the sets Kξ̄ and CN (where we suppress the dependence on

the discretization parameter N ).
The projection PKξ̄

onto the compatibility set is efficiently computed using FFT [74, eq. (33)], whereas
the projection onto the constraint set PC may be evaluated for each voxel independently

PC(w)[i, j, k] = PV[i, j,k](w[i, j, k]) ≡ argminv∈V[i, j,k] ‖v − w[i, j, k]‖ (3.28)

by projecting onto the corresponding flow set.

3.4 The laminate projection problem

To use ADMM for solving the minimum cut/maximum flow problem, evaluating orthogonal projectors
(3.28) onto the sets Vc (c = 1, 2, 3) in equation (3.17) is required. In the isotropic case, the set Vc describes a
sphere with radius γc (c=1,2), and the projection proceeds via rescaling the norm if necessary.

For a fixed composite voxel (i, j, k), i.e., for the set V3 ≡ V3[i, j, k], the following projection problem
needs to be solved. Given a vector w ∈ R6, we seek a vector v ∈ R6 solving the problem

‖v − w‖2 → min‖v‖≤γ̄ and |v·n|≤γint
. (3.29)

For sake of readability, we set γ̄ = φ γ1 + (1 − φ) γ2, suppress the dependence on the voxel (i, j, k) for both
the volume fraction and the normal, and omit the superscript CCMF for the normal, as well.

This projection problem may be interpreted as follows. The first constraint describes a sphere with radius
γ̄ . The second constraint introduces two half-planes, described by v ·n ≤ γint and v ·n ≥ −γint. Hence, the set
we project onto is a sphere where two spherical caps were removed, see Fig. 5a. To project onto this set, see
Fig. 5a, which has a piecewise smooth surface, we distinguish three cases and follow a geometric argument.
First, we decompose the vector w in a normal part w‖ = (n · w) n and a tangential part w⊥ = w − w‖. Based
on the three vectors w, w‖ and w⊥ we describe three cases which characterize the domain outside of V3, see
Fig. 5b.
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• Domain DI is described via the conditions

‖w‖‖ > γint and ‖w⊥‖ <

√
γ̄ 2 − γ 2

int. (3.30)

In this case, only the normal part of w has to be reduced.
• Domain DII is given by the constraint

‖w‖‖ > γ int and
√

γ̄ 2 − γ 2
int ≤ ‖w⊥‖ ≤ ‖w‖‖

γint

√
γ̄ 2 − γ 2

int (3.31)

and is dependent on the relation between w⊥ and w‖.
• Domain DIII is defined via the constraints

‖w‖ > γ̄ and ‖w⊥‖ >
‖w‖‖
γint

√
γ̄ 2 − γ 2

int. (3.32)

Based on the decomposition

R6 = V3 ∪ DI ∪ DII ∪ DIII, (3.33)

the projection onto the set V3 is readily achieved by the projectors PI, PII and PIII valid for their respective
domains

PI(w) = γ int

‖w‖‖w‖ + w⊥, (3.34)

PII(w) = γ int

‖w‖‖w‖ +
√

γ̄ 2 − γ int2

‖w⊥‖ w⊥, (3.35)

PIII(w) = γ

‖w‖w. (3.36)

In domain I, only the normal part of w is scaled, whereas the tangential part remains the same. In domain II
and the displayed quarter of the planar domain in Fig. 5b, all points are projected onto the same point.

Thus, the projector PV3 reads

PV3(w) =

⎧⎪⎨
⎪⎩

PI(w), w ∈ DI ,
PII(w), w ∈ DI I ,
PIII(w), w ∈ DI I I ,

w, otherwise.

(3.37)

4 Computational examples

4.1 Setup

We implemented the governing equations (3.27) into an in-house FFT-based micromechanics solver written in
Python with Cython extensions and we parallelized the code using OpenMP. We used the CCMF discretization
and the damped alternating direction method of multipliers with an adaptive parameter strategy [74]. We used
a damping factor of δ = 0.25 and the averaging adaptivity approach proposed by Lorenz-Tran-Dinh [99].
We solved the governing equations up to a tolerance of 10−4, measured via the convergence criterion [74, eq.
(36)]. The simulations were performed on a desktop computer with 32GB RAM and 6 cores of each 3.7GHz.
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Fig. 6 Rotated square microstructure, minimum cut and error versus resolution

4.2 Investigations on multi-grid convergence

As a first step we investigate multi-grid convergence of our approach on a two-dimensional structure
containing a rotated square shown in Fig. 6a. The square inclusion is located in the center of the microstructure,
has a edge length of L/2, where L denotes the length of the microstructure, and is rotated by 45 degrees.
The discretized composite voxel structures of N × N pixels were generated via downsizing a (16N ) × (16N )
image, see Fig. 6b for the discretized structure with N = 128. We consider a crack resistance γ for the matrix
material, 3 γ for the inclusion and γ int = 0.5 γ in the interface. The resulting minimum cut for ξ̄ = ey for
N = 128 is shown in Fig. 6c. Due to the material contrast between the interface and both the inclusion and
the matrix, it is energetically more favorable for the cut to follow the interface. Due to the symmetry of the
structure, two cuts are equally likely. The effective crack energy may be computed exactly from the geometry
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Table 1 Material parameters for the polycrystalline microstructure and the effective crack energy for ξ̄ = ex

γ int/γ γ eff/γ

0.5 0.881
0.25 0.553

Fig. 7 A polycrystalline microstructure

and the interface crack resistance via

γ eff/γ =
{

(1 − 1/
√
2) + γ int/γ γ int ≤ γ /

√
2

1 else
(4.1)

In the first case the cut follows the interface of the inclusion whereas for γ int > γ/
√
2 the cut is a straight

line passing the inclusion. Using the exact solution, we may compute the relative error for each resolution and
study multi-grid convergence. We compare our composite voxel approach with a naive method of inserting
voxels at the interface with isotropic crack resistance γ int, i.e., assuming V3 = {v ∈ R6|‖v‖ ≤ γ int} within
the composite voxels. A comparison of the error is shown in Fig. 6d. We see that even for a low resolution of
162 pixels the composite voxel approach yields an error below 1%. Furthermore, multi-grid convergence is
observed upon refinement and the accuracy of the composite voxel approach is one magnitude higher than the
naive approach of inserting single voxels with a lower crack resistance. Even for the finest resolution of 1282

pixels the naive approach does not reach the accuracy of the composite voxel approach of the coarsest grid of
162 pixels.

4.3 A polycrystalline microstructure with weak interfaces

Next, we consider a polycrystalline brittle material with weak interfaces between the grains. The individual
grains are considered to be isotropic with crack resistance γ . The interface is considered weaker with crack
resistance γ int, modeled via composite voxels. Notice that in this case, where the crack resistance on each
side of the interface is equal, the simplified laminate problem is equal to the original laminate problem and
thus the affiliated projector computes the exact laminate projection. The microstructure under consideration
contains 15 grains, see Fig. 7 and was generated as Laguerre tesselations [100] with a uniform grain size
distribution, i.e., each grain takes up 6.67% of the total volume. The composite voxel image of resolution 2563

was generated via downsizing a 10243 microstructure. We consider two different interface crack resistances,
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Fig. 8 Polycrystalline microstructure and minimum cut for different interface crack resistances

see Tab. 1 for the material parameters and the resulting effective crack energies for ξ̄ = ex . Figure 8a shows
the minimum cut for γ int = 0.5 γ . We notice two sections of this minimum cut. In some section it follows
the interface between the grains, whereas in others it cuts a grain in a straight line. This contrasts with Fig. 8b
which depicts the minimum cut for γ int = 0.25 γ . In this case the cut is entirely restricted to the interface.
In the first case the effective crack energy compared to the crack resistance of the grains is reduced by 12%,
whereas the second case shows a reduction of 45%.

4.4 A fiber reinforced composite

As our final example, we consider the microstructure of a fiber reinforced composite shown in Fig. 9a
which was generated using sequential addition and migration [101,102]. All fibers are of equal length and
diameter with an aspect ratio of 10 and a total volume fraction of 30%. The fiber orientation tensor of second
order [103] was chosen as diag(0.6, 0.2, 0.1). In order to accurately resolve the surface of the fibers, we chose
a resolution of 20 voxels per fiber diameter in the composite voxel image, see Fig. 9b, resulting in a 2563

structure. The composite voxel image was generated by downsizing a 10243 microstructure. We set the crack
resistance of the matrix material to γ and the crack resistance of the fibers to 10 γ . Furthermore, we vary the
interface crack resistance ranging from 10−3 γ to γ . The effective crack energy in the favored fiber direction
for varying interface crack resistance is shown in Fig. 9c. We notice a reduction of the effective crack energy as
the interface crack resistance decreases. If the interface is 90% weaker than the matrix material, the effective
crack energy will be reduced by 19%. However, even for an almost vanishing interface crack resistance, the
observed effective crack energy is higher than the matrix crack resistance. In other words, a toughening of the
material due to cylindrical inclusions is observed even in the presence of a weak interface.

Figure 9d–f show the cut surfaces with mean normal ex for γ int = γ , γ int = 0.5 γ and γ int = 0.1 γ .
We notice that for a lower interface crack resistance the overall surface is less smooth and adapts closer to
the interface. In particular, for a lower interface crack resistance, the effect of fiber pullout becomes more
prominent.

5 Conclusion

In this work we studied the effective crack energy of microstructured materials with a weak interface between
the constituents. As a first step, we established the solution for minimum cut/maximumflow for a laminate with
a weak interface. Due to a challenging numerical treatment of the resulting model, we proposed a simplified
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Fig. 9 Fiber microstructure, influence of the interface crack resistance and minimum cut

model that returns similar results. Taking this simplifiedmodel,we followedKabel et al. [57,59]who introduced
laminate composite voxels to FFT-basedmicromechanics.We used their approach, combinedwith our laminate
formula for the effective crack energy, to equip the interfaces in complex microstructures with a lower crack
resistance and computed the effective crack energy of the composite. We investigated multi-grid convergence
in comparison to a naive approach, i.e., setting the crack resistance in interface voxels to a lower value. In a
consecutive study we investigated polycrystalline materials with isotropic grains of a higher crack resistance
than the interface. We noticed that above a certain threshold the resulting minimum cut is entirely restricted
to the interface. Last but not least, we computed the effective crack energy of a complex fiber reinforced
composite material with weak interfaces. We investigated the influence of the crack resistance of the interface
and found that even for an almost vanishing crack resistance, a toughening of the effective crack energy in
contrast to the matrix material may be observed.

Our approach establishes the use for composite voxels in FFT-base micromechanics for computing the
effective crack energy. Originally introduced to ensure high accuracy in computing effective properties while
reducing the overall computational cost, we proposed a way to use them to implement a different material
behavior at the interface, similar to Chen et al. [56] for phase-field fracture. In a consecutive step, we may
combine the proposed approach with a minimum cut/maximum flow formula for locally anisotropic crack
resistances [75]. This may require a laminate formula with an anisotropic crack resistance for the bulk phases
of the laminate.
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A characterization of the flow set for a two-phase laminate with a weak interface

The purpose of this appendix is to demonstrate that in the case of a two-phase laminate with local crack
resistance (2.43)

γ (x) =
⎧⎨
⎩

γ1, x ∈ Y1,
γ2, x ∈ Y2,

γ int, x ∈ I,
(A.1)

the flow set (2.42)

Veff =
{
−
∫
Y

v dx

∣∣∣∣ v ∈ C1
#(Y ;Rd), div v = 0, ‖v(x)‖ ≤ γ (x), x ∈ Y

}
(A.2)

coincides with the set (2.46)

Vcand =
{
v̄ ∈ Rd

∣∣∣∣ ‖v̄‖‖ ≤ γ int, ‖v̄⊥‖ ≤ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ)

√
γ 2
2 − ‖v̄‖‖2

}
. (A.3)

We use the superscript cand to emphasize that this set is a candidate for representing the flow set (A.2).
Before we start our investigation, let us remark that both sets Veff and Vcand are closed sets with non-empty
interior. In particular, we may neglect the set closure in the definition (A.2).
To show the equivalence Veff = Vcand, we first show that the candidate set (A.3) is a superset of the admissible
flow set (A.2) for the crack resistance (A.1).
Due to the translation invariance of a laminate perpendicular to the lamination direction n, any flow field v
defining an element of the admissible flows to be averaged in equation (A.2) may be assumed to depend on n ·x
only. Moreover, the divergence constraint implies that the field v‖ is actually homogeneous, i.e., the equation
v‖ = v̄‖ holds for −

∫
Y v dx = v̄. Then, we notice the estimate

‖v̄‖‖2 ≤ ‖v̄‖‖2 + ‖v(x)⊥‖2 = ‖v(x)‖2 ≤ γ (x)2 for all x ∈ Y. (A.4)

Thus, we obtain the inequality
‖v̄‖‖ ≤ min

x∈Y γ (x) ≡ γ int (A.5)

by assumption (2.44). Moreover, the constraint

‖v(x)‖2 ≡ ‖v̄‖‖2 + ‖v(x)⊥‖2 ≤ γ 2
i , x ∈ Yi , (A.6)

implies the bound

‖v(x)⊥‖ ≤
√

γ 2
i − ‖v̄‖‖2, x ∈ Yi . (A.7)

Taking into account the triangle inequality for integrals, averaging yields the estimate

‖v̄⊥‖ ≤ −
∫
Y

‖v(x)⊥‖ dx ≤ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ)

√
γ 2
2 − ‖v̄‖‖2. (A.8)

http://creativecommons.org/licenses/by/4.0/
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Thus, we have shown the inclusion of the candidate set (A.3) in the admissible flow set (A.2).
Showing the converse is a bit more subtle. Let v̄ be an element of the interior of the set Vcand, i.e., the vector
v̄ satisfies the strict inequalities

‖v̄‖‖ < γ int (A.9)

and

‖v̄⊥‖ < φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ)

√
γ 2
2 − ‖v̄‖‖2. (A.10)

Let us assume that φ < 1. In case φ = 1, a completely analogous argument applies utilizing the γ1-term
instead of the γ2-term.

Assuming φ < 1, we notice that the term
√

γ 2
2 − ‖v̄‖‖2 is positive due to the strict inequality (A.9) and the

ordering γ int ≤ γ2. Thus, we find a sufficiently small δ > 0, s.t. the inequality

‖v̄⊥‖ ≤ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ − δ)

√
γ 2
2 − ‖v̄‖‖2 (A.11)

holds. In particular, we obtain the bound

‖v̄⊥‖ ≤ ρ for ρ ≡ φ

√
γ 2
1 − ‖v̄‖‖2 + (1 − φ − δ)

√
γ 2
2 − ‖v̄‖‖2 + δ

√
(γ int2) − ‖v̄‖‖2. (A.12)

Then, we define the local flow field

v(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v̄‖ +
√

γ 2
1 −‖v̄‖‖2

ρ
v̄⊥, x ∈ Y1,

v̄‖ +
√

γ 2
2 −‖v̄‖‖2

ρ
v̄⊥, x ∈ Y2\Iδ,

v̄‖ +
√

(γ int)2−‖v̄‖‖2
ρ

v̄⊥, x ∈ Iδ,

(A.13)

where Iδ is a uniformly thickened neighborhood of the interface I with volume δ. The field v is incompressible
and its average equals v̄. Moreover, the constructed field satisfies the constraints, e.g.,

‖v(x)⊥‖2 = γ 2
i − ‖v̄‖‖2

ρ2 ‖v̄⊥‖2 ≤ γ 2
i − ‖v̄‖‖2, (A.14)

i.e., the condition

‖v(x)‖2 ≡ ‖v̄‖‖2 + ‖v(x)⊥‖2 ≤ γ 2
i for x ∈ Y1 ∪ Y2\Iδ. (A.15)

Arguing similarly for x ∈ Iδ , we obtain

‖v(x)‖2 ≤ (γ int)2, (A.16)

which is actually stronger than the condition

‖v(x)‖2 ≤ γ 2
2 (A.17)

required for x ∈ Y2 ∩ Iδ . Thus, we have constructed a suitable flow field v, and v̄ is an element of the flow set
(A.2). Some care should be taken, as the definition (A.2) of the flow set actually involves sufficiently smooth
flow fields. Such a smooth flow field may be constructed via a standard mollification argument.
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