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1. Introduction

Proteins are complex macromolecules that play a critical role in biology. They are made up
of long polypeptide chains of aminoacid residues that fold into a unique three-dimensional
structure.[1] This folding is driven by a complex network of van der Waals interactions,
electrostatic, steric, and hydrophobic origin. Despite the fact that only twenty naturally
occurring amino acids are involved in the production of proteins, they can have many
different sizes, shapes, and biological functions, making them the most diverse biological
macromolecules. Proteins serve a variety of functions in the body, including acting as

Figure 1.1.: Illustration of the various sizes and shapes that proteins can adopt. Part
of this illustration was adapted from a public domain source under the Attribution-
ShareAlike 3.0 Unported (CC BY-SA 3.0) license.

structural building blocks, molecular machines for synthesizing new molecules, and nutrient
transporters.[2] They are also used in a variety of biotechnology applications, including
food, agriculture, and pharmaceuticals.[3, 4] The production of pharmaceutically important
recombinant proteins (biopharmaceuticals) has become easier with the advancement of
recombinant DNA technology. The therapeutic proteins show promise in a variety of
clinical treatments, including vaccines, hormones, growth factors, enzymes, blood factors,
cytokines, and anticoagulants.[5, 6] Despite their potential, protein processing remains

1



2 PhD Thesis

a challenge due to their chemical and physical instability. Protein solutions are prone
to aggregation or precipitation, which is one of the major processing challenges.[7] The
development of new bioprocessing technologies will be critical in overcoming these issues
and paving the way for new applications.

Protein properties such as solubility, aggregation, precipitation, and crystallization are
primarily driven by protein-protein interactions (PPIs),[8, 9, 10] which are modulated
by the nature of proteins as well as solution properties such as ionic strength, pH, and
temperature.[11, 12] PPIs can be classified into specific and nonspecific interactions. Weak
noncovalent interactions, such as attractive van der Waals and hydrophobic interactions,
as well as attractive or repulsive electrostatic interactions, govern nonspecific interactions.
The balance of repulsive and attractive forces experienced by macromolecules in solution
determines the stability of protein solutions.[11, 12] Specific PPIs are more directional and
powerful, regulating processes such as oligomerization, specific recognition, substrate to
enzyme binding, and macromolecular self-assembly. Theoretical models can be extremely
useful in understanding protein dispersity and phase behavior, as well as in reducing and
directing experimental effort to design new processing technologies.

1.1. Modeling Techniques for Understanding Proteins

PPIs are the primary driving force behind many cellular biological processes such as signal
transduction, transport, metabolism, and transcription.[13, 14] Understanding PPIs is
therefore important from both a fundamental biology standpoint and for designing new
therapies once the molecular level of diseases is elucidated. Furthermore, understanding
PPIs is necessary for rational design of biotechnology applications and protein processing.
As a result, efforts were made to develop experimental techniques for characterising PPIs;
however, these techniques are still limited, time consuming, and incapable of providing a
complete atomistic level description.[15, 16] The experimental determination of PPIs is
further complicated by the fact that proteins can take on a wide range of shapes, posing new
challenges and increasing complexity. As a result, modelling of PPIs is critical for bridging
the gap between macroscopically measured experimental observables and microscopic
structure function relationships.[17] Molecular dynamics (MD) simulations are powerful
tools for simulating the movement of biomacromolecules, investigating various processes,
and studying protein structure and function.[18, 19] MD simulations frequently employ
an all-atom representation of proteins, allowing for a detailed representation of molecular
systems and providing insight into the atomistic origins of various macroscopic phenomena.
However, the main limitation of MD simulations is that they are computationally quite
expensive; as a result, simulated systems are small, and simulations can only be carried out
for a few hundred nanoseconds or several microseconds depending on computational power.

Many biochemical processes, on the other hand, are much slower and occur on much longer
time scales ranging from milliseconds to seconds. Many coarse-grained force fields have
been developed to allow for the simulation of larger systems over longer timescales.[20]
These force fields allow for faster simulations by reducing the number of degrees of freedom,
but at the expense of reduced accuracy. Furthermore, accelerated MD techniques were
developed to simulate rare events that are normally inaccessible to conventional MD.[21]
Despite these advances, MD simulations still cannot capture all macroscopic processes.
Aside from system size and simulation timeline (typically in range up to 100 ns and 1 ms),
another limitation of these techniques is the accuracy of force fields, which are a set of
parameter and equations for use in molecular mechanics simulations parametrized on a
limited number of examples to reproduce specific experimental values. As a result, applying
the force fields to different systems may result in larger error. Because the majority of
simulated atoms in MD simulations are solvent molecules, continuum models that average
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out the effective solvent interaction and model a solvent-like continuum were developed.[22]
These models are more computationally efficient while providing comparable accuracy.
Using implicit solvent models[22] based on Poisson-Boltzman theory[23, 24, 25, 26] or
more simplified Born models are two examples.[27, 28] Furthermore, Brownian dynamics
simulations that treat proteins as rigid molecules and implicitly model the solvent were
reported.[29]

Proteins, on the other hand, can be modelled by mean field colloidal theories, which treat
proteins as simplified uniform shapes (usually spherical) and ignore protein dynamical
behavior. The most commonly used model is based on DLVO (Derjaguin, Landau, Verwey,
and Overbeek) theory,[30] which models PPIs as a sum of repulsive electric double-layer
forces and attractive ven der Waals interactions.[31] These models were successful in
explaining some general colloidal properties of protein solutions, but they were ineffective
in differentiating specific protein systems due to their omission of structural details.[32, 33]
Given the large number of proteins that can participate in a variety of processes, there is
no ideal method for modeling PPIs. Multiscale models that take advantage of different
levels of theory are frequently required.

1.2. Virus-Like Particles Based on Hepatitis B Core Proteins: A Promising
Tool for Therapeutic Applications

Virus-like particles (VLPs) have emerged as a widely accepted technology in recent decades,
particularly as vaccines, among many possible protein-based therapeutics.[34, 35] Many are
already in use as commercial medical products, while others are in various stages of clinical
research. VLPs are nanoparticles formed by self-assembly of viral capsid coat proteins that
have high morphological similarity to natural viruses but lack the natural viral genome and
are thus noninfectious. Currently, over 110 viral proteins from 35 different viral families
have been shown to assemble into VLPs.[36] VLPs can be expressed recombinantly in a wide
range of bacterial, yeast, and insect host systems. Because of their inherent immunogenicity
and ability to encapsulate therapeutic nucleic acids, VLPs are also excellent candidates
for next-generation vaccines or nanocarriers for targeted drug delivery.[37, 35, 38, 39, 40]
VLPs can be engineered to efficiently target specific tissues, penetrate cells, and deliver
therapeutic agents at the desired site of action while requiring much lower doses than
traditional oral therapies would require. VLPs have the potential to replace currently
used liposomal or polymer-based nanoparticles for targeted drug delivery due to their
low toxicity.[35] Furthermore, VLPs are being researched for use in gene therapies to
treat cancer or genetic disorders such as mitochondrial disorders and Parkinson’s disease.
Chemotherapeutic drugs, siRNA, RNA aptamers, proteins, and peptides can all be packed
and delivered by VLPs.[41, 42, 43, 44] Furthermore, VLP properties can be further tailored
by introducing surface modifications or inserting epitope sequences, providing additional
design flexibility in the pursuit of new therapies.[35]

VLPs based on hepatitis B virus (HBV) core proteins are especially good candidates for
next-generation VLP therapeutics agents because they can self-assemble in almost all
expression systems.[45] HBV is a small DNA virus from the Hepadnaviridae family, with
an internal protein capsid composed of core proteins (Cp) and a lipid envelope containing
other types of proteins.[45] HBV infection continues to be a major cause of transient and
chronic liver disease worldwide, with over 360 million people chronically infected and one
million deaths per year.[46] A virus capsid is a protein shell made up of viral structural
proteins that encapsulates and protects a virus’s genome. Two different types of HBV
based VLPs can be produced from viral proteins: using the core antigen protein (HBcAg,
also known as Cp) which form the internal capsid, or using the surface antigen (HBsAg),
which requires lipids to spontaneously assemble into nanoparticles, with the first being
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the more common. Several HbsAg VLP-based vaccines, including Recombivax HB and
Engerix-B, have been approved for use in humans to treat hepatitis HBV infection.[45]
Aside from that, HBV-based VLPs are being intensively investigated as promising nucleic
acid nanocarriers for use in nucleic acid-based therapeutics.[45, 35, 47] The mature HBV
capsid is made up of 120 dimers of Cp that form an icosahedral structure with T = 4
quasi-symmetry, while a smaller fraction of capsids (5%) have T = 3 symmetry, which is
formed by 90 copies of dimers.[45, 48] These two capsids have overall diameters of 36 nm
and 32 nm, respectively, as shown on Figure 1.2. The core Cp protein has 183 amino acids
and exists in solution as a homodimer.[49] It is made up of a rigid assembly domain (1-140
aa) and a flexible C-terminal region (150-183 aa).[50] A hinge peptide at 141-149 aa links
these domains and it can perform morphogenic functions.[45, 51] The C-terminal (C-ter)
domain contains multiple positively charged arginine residues that allow negatively charged
nucleic acids to bind.[52] Unlike the assembly domain, which has a stable tertiary structure
and is responsible for the capsid’s surface charge, the C-ter has no defined tertiary structure,
making it extremely flexible.[50] During the HBV life cycle, it is mostly found in the capsid
interior, but it can also be found on the capsid’s outer surface penetrating through pores
formed by the pentamers of Cp dimers.[53] Cp dimers can self-assemble in vitro, resulting
in capsids with indistinguishable morphology from natural capsids. Full length Cp183
dimers can assemble at higher ionic strengths (>=0.25 M), which are required to overcome
the strong electrostatic repulsion caused by the positively charged C-ter domain.[47] Apart
from natural Cp183 dimers, truncated proteins can also be assembled, as long as the
truncation is less than 140 aa. The distribution of T = 3 and T = 4 isomorphic capsid
structures is influenced by the truncation point, with longer proteins favouring the T = 4
configuration.[45, 52] Cp149 dimers truncated at residue 149 form only 5% of T=3 capsids,
whereas Cp140 capsid proteins form 85% of T=3 capsids. Further C-terminal residue
deletions inhibit capsid protein assembly, and Cp139 dimers are unable to aggregate into
VLPs. In vitro assembly begins with a slow nucleation step (formation of a trimer of dimers),
followed by a rapid elongation phase.[54, 49] Weak hydrophobic interactions at dimer-dimer
interfaces drive assembly, which is balanced by electrostatic repulsion.[55, 56] These weak
interactions reduce the possibility of mis-assembly, because they allow incorrectly bound
subunits to dissociate and reassemble correctly.[57, 58, 59] The assembly is allosterically
controlled, and its efficiency is typically modulated by changes in solution conditions such
as pH, temperature, or increasing ionic strength, which reduces electrostatic repulsions
between dimers (and possibly also induces conformational change of Cp into assembly
active state). 5.1. Recombinantly expressing Cp in host cells (for example, Escherichia
Coli), followed by cell lysis and purification, is a common method for producing HBV
VLPs.[60, 61, 62] After being expressed in the host cell, Cp2 dimers spontaneously assemble
into capsids encapsulating random nucleic acids from host cells.[63, 60] Thus, it is critical to
obtain purified dimers that are free of host nucleic acids and other impurities. Precipitation
and disassembly are two key components of the purification stages that are essential for
removing encapsulated contaminants and enhancing structural integrity. To encapsulate
the therapeutic cargo, purified Cp2 dimers are mixed with therapeutic nucleic acids and
then reassembled into capsids.[47, 64, 60] VLPs made of wild-type Cp183 proteins, as well
as variants with a few replaced amino acids, have previously been demonstrated.[65, 66, 67]
Purification of these systems, however, is difficult due to the low solubility of the Cp183
construct.[47] As a result, HBV VLPs made of Cp with shorter nucleic acid binding regions
are being studied for effective nucleic acid loading.[65, 66] It has been reported that different
nucleic acid binding lengths can affect HBcAg VLP capsid stability, as well as the phase
behavior and purification process of HBcAg VLPs. Factors influencing the purification
process, such as encapsulated nucleic acids or general Cp protein properties, are critical
to the effective large-scale production of VLPs for nucleic acid delivery. For this, protein-
protein and protein-nucleic acid interactions, which influence the disassembly and assembly
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Figure 1.2.: Structure of HBV capsid of a) T=4 and b) T=3 symmetry, along with c)
structure of core protein dimer

processes during the VLP preparation, have to be better understood.

1.3. Motivation and Thesis Outline

Given the broad range of processes in which proteins can participate, there is no universally
ideal method for simulating these processes and modeling the protein interactions that
drive them. The primary objective of this thesis is to develop and apply computational
models to investigate protein-protein interactions and their impact on the stability of
protein solutions. Specifically, we aim to explore factors that contribute to the stability of
a wide range of proteins, as well as to analyze the stability of virus-like particles composed
of the core proteins of hepatitis B viruses. By simulating these systems and analyzing
the resulting data, we aim to better understand the underlying mechanisms governing
protein stability and provide insights into strategies for enhancing protein stability in
biopharmaceutical applications. To improve computational efficiency, we use coarse-grained
representations of proteins and a range of theoretical levels, from mean-field continuum
theories to advanced techniques like accelerated molecular dynamics with free energy
calculations. Our approach aims to accurately capture the complex behavior of protein-
protein interactions and elucidate the underlying mechanisms governing protein stability.
This research contributes to the development of more efficient and effective computational
tools for investigating protein systems, with potential applications in the biopharmaceutical
industry and beyond.

The structure of this thesis is as follows. Chapter 2 provides a concise overview and
literature review of the theory that serves as the foundation for the development of new
models (outlined in Chapters 3 and 4) and for the recapturing of existing methods used to
study protein dimerization and assembly processes. While not an exhaustive review of all
aspects of the theory, Chapter 2 offers a comprehensive explanation of the fundamental
concepts required to understand the results presented in this thesis. It provides readers
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with a clear understanding of the theoretical framework employed in our research and its
significance in elucidating the underlying mechanisms governing protein stability.

In Chapter 3, we introduce a novel developed computational model called the xDLVO-CG
model, which predicts the stability of protein solutions and the dependence on pH of
solution and salt concentration by calculating second osmotic virial coefficients. The second
virial coefficients serve as a measure of the effective interaction between two proteins
in solution, and the xDLVO-CG model is based on the extended DLVO theory, which
includes a new term for ion-protein dispersion interactions. To model protein interactions,
the xDLVO-CG model uses a coarse-grained representation that is shape-based, allowing
for the consideration of anisotropic protein-protein interactions. By employing a shape-
based coarse-grained representation, the model eliminates or reduces the need for fitting
experimental data. We have validated the xDLVO-CG model with experimental data for
several benchmark proteins and demonstrated its potential for predicting the stability of a
wide range of proteins. Moreover, we have used the model to compute osmotic second virial
coefficients for hepatitis B virus core protein dimers, providing insights into the stability
and phase behavior of these complexes under different conditions.

Chapter 4 introduced an enhanced model for predicting protein solution stability called
the xDLVO-CGhybr model. This new model builds upon the xDLVO-CG model from
the Chapter 3 by incorporating a hybrid approach to calculate the electrostatic potential
of mean force. At short protein separations, the Poisson-Boltzmann theory is applied to
all-atom structures of proteins, while at larger separations, the Debye-Hückel theory is
applied to coarse-grained structures for accurate calculation. Additionally, a coarse-grained
Lennard-Jones potential was introduced and parametrized from all-atom potentials. This
improved model was tested on six different proteins and demonstrated enhanced accuracy
in predicting second osmotic virial coefficients when compared to the xDLVO-CG model.

Chapter 5 of the thesis explores the molecular dynamics of beta-lactoglobulin proteins and
fragments of hepatitis B capsids using an accelerated technique called umbrella sampling.
The study aims to investigate the free energy of beta-lactoglobulin dimerization and the
free energy of dissociation of trimers of dimers of hepatitis B core proteins. To increase
computational efficiency, a coarse-grained SIRAH force field is utilized, which retains the
positions of backbone atoms while preserving high structural details of protein structure.
The study investigates a delicate dependence of the monomer-dimer equilibrium of beta-
lactoglobulin on the pH and ionic strength of the solution. Furthermore, our research on
hepatitis B capsids focuses on the stability of trimers of dimers through the attachment of
DNA to core proteins. We aim to investigate the dependency of the free energies of trimer
binding on the length of the C-terminus side of the core protein. Additionally, we examine
the influence of the attachment of nucleic acid molecules as an additional stabilizing factor
for the trimers of dimers. This research has implications for understanding the main factors
contributing to stability and processability of VLP capsids.

Chapter 6 provides a summary of the key outcomes of this thesis, presenting the main
findings and conclusions drawn from the research. The chapter also highlights the strengths
and successes of the theoretical tools used throughout this work, including the xDLVO-CG
and xDLVO-CGhybr models, and the SIRAH force field in combination with umbrella
sampling. Furthermore, the chapter identifies areas that require further improvement and
investigation can be made to enhance the accuracy and applicability of the models.



2. Theoretical Background

2.1. The Second Osmotic Virial Coefficient: A Measure of Protein-Protein
Interactions

The effective intermolecular interactions that occur between protein molecules determine
protein solubility and propensity to aggregate in a solution. Therefore, it is necessary to have
theoretical tools that can estimate these interactions and compare them to experimental
observations. The second osmotic virial coefficient B22, which is defined by the virial
equation of state, is a widely-used thermodynamic quantity for estimating protein-protein
interactions.[68, 69, 70] Specifically, B22 defines the difference between the osmotic pressure
of a solution and that of an ideal solution, and it can be expressed using the following
equation:

Π = RTcp( 1
MW

+ B22cp + B3c2
p + ...) (2.1)

where Π is the osmotic pressure, cp denotes the protein concentration (in mass units), R
the gas constant, T the absolute temperature, and MW the molecular weight of the protein.
The equation 2.1 offers a molecular interpretation of B22, in which positive values of B22
correspond to repulsive protein interactions. This leads to osmotic pressure higher than
that of an ideal gas. Conversely, if B22 is negative, the overall interactions are attractive.

When two solutions with differing solute concentrations are separated by a semipermeable
membrane, the solvent molecules will tend to diffuse spontaneously from the region of
higher solvent potential (i.e., an area with lower solute concentration) to the region of
lower solvent potential, in order to balance out the solute concentrations on both sides of
the membrane. The osmotic pressure can be defined as the minimum pressure required
to prevent the pure solvent from spontaneously crossing a semipermeable membrane and
flowing into the solution when the two are in contact. The equation that calculates the
osmotic pressure of a solution can be derived in analogy to the ideal gas equation of state,
which was originally developed for monoatomic gases and assumes that intermolecular
potential is negligible.[71] In reality, most solutions do not behave ideally, especially at
higher solute concentrations where solute-solute interactions become significant and cannot
be disregarded, thus osmotic pressure is modelled by virial expansion.[71]

McMillan-Mayer used statistical thermodynamics concepts to derive an exact relationship
between intermolecular potential and osmotic pressure virial expansion. Specifically, by
integrating out the solvent degrees of freedom, the grand canonical partition function for a
solution was reduced to one with an effectively solute-only form.[71, 69] In the effective
solute grand partition function, the total effective solute potential can be decomposed into
components that are mean force potentials for isolated groups of one, two, three, and so on
solute molecules.[71] This allowed for an expansion of osmotic pressure in powers of solute
concentration, analogous to the virial expansion of gas pressure in powers of density. The

7
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relationship between the effective interaction potential between two molecules in solution,
W22 and the osmotic second virial coefficient can be expressed using the following formula:

B22 = 1
2

NA
M2

W

∫ ∞

0
(1 − e

− W22(r)
kBT )4πr2dr (2.2)

where r is the intermolecular distance between two molecules, NA is the Avogadro constant
and kB is the Boltzmann constant. The equation 2.2 shows that if the intermolecular
potential W22(r) is known, it is possible to compute the second virial coefficient as a function
of temperature. The function f(r), which appears within the brackets of equation 2.2, is
commonly referred to as the Mayer f-function, named after Mayer who first recognized its
significance.

Higher virial Nth virial coefficients can be calculated by analogy using the interactions of N
molecules in a volume V. For example, the third virial coefficient B3 describes the system’s
effective three-body interactions. Thus, the nonideal N-body problem can be reduced to
a series of one-body, two-body, three-body problems, and so on. Only the second virial
coefficient influences the total deviation of osmotic pressure in diluted protein solution, so
higher body interactions can be ignored.[71]

Although initially derived for globular molecules, the equation 2.2 can be extended to
encompass molecules of arbitrary shape, regardless of whether they are spherical or not,[71,
69] according to:

B22 = 1
2

NA
M2

∫
Ω1

∫
Ω1

∫ ∞

0
(1 − e

− W22(r,Ω1,dΩ2)
kBT )4πr2drdΩ1dΩ2 (2.3)

W22(r, Ω1, Ω2) represents the effective interaction potential (potential of mean force, PMF)
between two proteins as a function of intermolecular center-of-mass distance r and relative
orientation Ω1 and Ω2. Equation 2.3 takes into account the PMF for all possible orientations
of the proteins with respect to each other, including the angular variables and intermolecular
distances.

2.2. Fundamentals of DLVO Theory

DLVO theory, developed in the 1940s by Derjaguin and Landau and by Verwey and
Overbeek,[30, 72, 31] explains the stability of colloidal dispersions through an interplay be-
tween attractive van der Waals forces WvdW (r) and repulsive electrostatic forces Wel(r).[31]
The van der Waals force is attractive and depends on the distance between the particles,
while the electrostatic force is repulsive and depends on the surface charge of the parti-
cles and the ionic strength of the surrounding medium. DLVO theory assumes that the
electrostatic double layer forces and the van der Waals forces are independent and can be
simply summed to obtain the total interparticle forces between two colloidal particles, as
described by the following equation:

W22(r) = WvdW (r) + Wel(r) (2.4)

The DLVO theory was successful in explaining an essential physics of colloidal phenomena,
including coagulation, flocculation, and surface tension for colloidal particles of various
shapes and sizes.[72] While DLVO theory has been successful in describing the stability of
colloidal systems at intermediate and large interparticle distances, it becomes less accurate
at shorter separations due to the presence of non-DLVO forces, such as hydration forces,
depletion forces and so on.[32, 72] Moreover, DLVO theory does not account for the effects



Chapter 2. Theoretical Background 9

of ion-specific interactions, such as ion pairing or Hofmeister effects, which can significantly
influence the stability and behavior of colloidal systems.[33]

DLVO theory has also been used to model protein interactions and calculate second osmotic
virial coefficients, where proteins are typically represented as ideal spheres. B22 in aqueous
protein solutions can be calculated using the DLVO model as a function of pH, salt type,
salt concentration, and temperature.[?] The DLVO model, however, has several limitations,
such as proteins being represented by a simplified spherical shape which limits its ability
to model proteins with more complex shapes. Moreover, PPIs can involve other types
of interactions beyond electrostatic repulsion and van der Waals attraction. As a result,
several extended DLVO models with additional interactions have been reported.[73, 74]

2.2.1. Extension to xDLVO Theory

The most commonly used model for calculating B22 coefficients of proteins is the extended
DLVO (xDLVO) model,[?, 75] which includes an additional term for osmotic attraction
depletion. In particular, the xDLVO model incorporates a hard sphere potential Whs(r), a
dispersion potential Wdisp(r), an electrostatic potential Wel(r), and an osmotic attraction
potential Wosm(r):

W22(r) = Whs(r) + Wdisp(r) + Wel(r) + Wosm(r) (2.5)

The hard sphere potential is used to describe repulsive forces between proteins at short
distances due to their excluded volume:

WHS(r) =
{

0, r > 2(Rp + σ)
∞, r ≤ 2(Rp + σ),

(2.6)

where Rp is the protein’s spherical radius and σ is the thickness of the water layer surrounding
the protein surface (estimated as 0.1 nm ).

The dispersion potential, which describes the attractive forces resulting from electromag-
netic quantum fluctuations between molecules, has been calculated using the Hamaker
formula.[76] This formula is derived by the integration of the attractive component of the
Lennard-Jones potential, which is also referred to as London dispersion forces, between
two homogeneous spheres:

Wdisp(r) = −AH

12

[
(2Rp)2

r2 − (2Rp)2 + (2Rp)2

r2 + 2 ln(1 − (2Rp)2

r2

]
,

r > 2(Rp + σ)
(2.7)

Here, AH is the Hamaker constant for the system of proteins, solvent, and salt, which is
usually determined by fitting from experimentally measured B22 values and, in some cases,
theoretical models. Despite its widespread use, the Hamaker formula has some limitations,
particularly in systems where the geometry and composition of the particles are complex or
heterogeneous. In these cases, more sophisticated theoretical and computational methods
may be required to accurately predict the dispersion forces between the particles. Nonethe-
less, the Hamaker formula remains a valuable tool for understanding the fundamental
physics of intermolecular interactions in a wide range of physical and biological systems.

Electrostatic interactions are particularly important in colloidal systems, and the stability of
such systems can be altered by adding salt, which modifies the strength of the electrostatic
interactions. When charged particles are placed in a solution containing electrolytes, they
are surrounded by a diffuse cloud of counter-ions and co-ions, known as the electrical
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double layer. This double layer plays a crucial role in determining the strength and range
of the electrostatic interactions between the particles, as shown in Figure 2.2. As similarly
charged particles approach each other, their double layers begin to overlap, resulting in a
net repulsive force that prevents their contact. The magnitude of this repulsion depends
on the surface charge density and the ionic strength of the surrounding medium.

Figure 2.1.: Illustration of the repulsion between two particles caused by the overlap of
their electrical double layers. As similarly charged particles approach each other, their
double layers begin to overlap, resulting in a net repulsive force that prevents their contact.
The magnitude of the repulsion depends on the surface charge density and the ionic
strength of the surrounding medium. Reprinted with permission from [72]. Copyright
2001 Elsevier Science Ltd.

Electrostatic interactions in the xDLVO model are calculated using Debye-Hückel theory,
which accounts for electrostatic potential screening in the presence of electrolytes:[77]

Wel(r) = Z2e2 exp(κ(2Rp − r))
4πε0εrr(1 + κRp

2 )2
, r > 2(Rp + σ), (2.8)

where ϵr is relative permittivity, Z is protein charge, and κ is the inverse Debye length
given by:

κ =
√

2NAe2I

ε0εrkBT
(2.9)

Debye-Hückel theory is a mathematical model that describes the screening of electrostatic
potentials in the presence of electrolytes. This theory is based on the assumption that
the ions in solution are point charges and the resulting electrostatic potential is computed
solving the linear Poisson Boltzmann equation, which takes into account the effects of ionic
concentration, temperature, and solvent dielectric constant. Debye-Hückel theory allows
the calculation of the electrostatic potential in the electrical double layer as a function
of distance from the particle surface, taking into account the concentration and valence
of the electrolyte ions. The Debye length is a measure of the thickness of the electrical
double layer that forms around colloidal particles in a solution, and it determines the range
over which the electrostatic interaction has effect. It is defined as the distance over which
the electrostatic potential decreases by a factor of e from its value at the particle surface.
Limitation of Debye-Hückel theory theory is that the equation 2.8 cannot accurately account
for the effect of electrolytes at ionic strengths greater than 0.1 M.
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Figure 2.2.: Schematic representation of the attractive osmotic depletion potential. The
large blue spheres represent proteins, while the small purple spheres represent salt ions.
The yellow region represents the excluded volume between the proteins, where ions are
excluded due to steric hindrance. The depletion force arises due to the resulting decrease
in ion concentration in this region, which leads to a local difference in osmotic pressure
and a corresponding attractive force between the proteins. Adapted with permission from
[78]. Copyright 2002 American Physical Society.

The osmotic depletion potential is a non-electrostatic and non-van der Waals force that arises
in solutions containing non-adsorbing polymers or other molecules. The depletion force
was first theoretically described by Asakura and Oosawa in 1954,[79] and it is particularly
strong when colloidal particles or proteins are immersed in polymer solutions. This effect
is often used to induce flocculation or phase separation of colloid particles or proteins. In
protein solutions with higher ionic strengths, the osmotic depletion potential can become
significant, making its inclusion in the extended DLVO theory essential. When two protein
surfaces are brought closer together, the gap between them can become smaller than the
diameter of salt ions, leaving only space for solvent molecules in between. This reduction
in available space results in a decrease in configurational entropy, causing salt ions to be
excluded. As a result, an osmotic pressure gradient is created between the interstitial space
and the surrounding solution, causing colloidal particles to be pushed into contact with one
another. This phenomenon is illustrated in Figure 2.2. The osmotic attraction potential
can be calculated using the following formula:[79]

Wosm(r) = −4πkB

3 Tr3
23ρ3(1 − 3r

4r23
+ r3

16r3
23

), 2(Rp + σ) ≤ r ≤ 2r23 (2.10)

where r23 = Rp +R3 +σ is the sum of mean hydrated radius of a protein Rp, the salt R3 and
the water layer σ, while ρ3 is the salt density. This force has a magnitude on the order of
the osmotic pressure of the macromolecule solution and a range on the order of the diameter
of the macromolecules. The strength and range of this force depend on salt concentration
and ion size. The range of the force increases with the size of non-adsorbed species (ions or
molecules), which is why the effect is particularly strong in polymer solutions.

Furthermore, various modifications to the xDLVO model were introduced in order to model
interactions in protein solutions containing mixtures of more than one excipient or in
the presence of polymer (by adding PRISM potential to total potential of mean force
which describes equilibrium properties of polymer solutions).[73, 74] The xDLVO model
is capable of modeling and predicting second osmotic coefficients for a variety of protein
systems, as well as fitting experimental data and extracting Hamaker constants and other
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parameters.[3] This model, however, models protein as a a simple sphere, whereas many
proteins have irregular non-globular shapes. Finally, another significant limitation of the
xDLVO theory is that it does not account for ion specificity, which is known to influence
protein interactions in solution (i.e. Hofmeister series).[33, 80]

2.3. Poisson-Boltzman theory

The Poisson-Boltzmann (PB) equation is used for calculating electrostatic potential in a
biomolecular system by using a continuum model of the surrounding solvent and counterion
environment.[25, 26, 81] It takes into account the shape and charge distribution of the protein
and is used for various purposes, including biomolecular structural analysis, pKa calculations,
and modeling of processes where global electrostatic properties are crucial.[23, 82, 83, 84]
The full PB equation can be derived starting from the Poisson equation, which is used to
calculate the electric potential for a given charge distribution:[23]

∆ · ϵ(x)∆ϕ(x) = ρ(x) , x ∈ Ω, where ϕ(x) = g(x) for x ∈ ∂Ω (2.11)

where ϕ(x) denotes the dimensionless electrostatic potential produced by a charge distri-
bution ρ(x) in a polarizable continuum with a dielectric constant ϵ(x). This equation is
solved in a finite domain Ω with Dirichlet boundary conditions, where a fixed potential
g(x) is applied on the boundary ∂Ω.[81, 23]

In a biomolecular system, there are two types of charges: fixed charges ρf (x) , which are
associated with proteins, and mobile charges ρm(x) , representing the counterions found in
the surrounding electrolyte. Interior of protein is described by a fixed charge distribution,
ρf (x), where M partial atomic charges are represented by delta functions:

ρf (x) = 4πe2
c

kBT

M∑
i=1

Qiδ(x − xi) (2.12)

where xi and Qi are the coordinates and partial charges of each atom, respectively.[23]

The mobile counterion charges ρm(x), which surround the protein in a continuous manner,
are modeled using a Boltzmann distribution:

ρm(x) = 4πe2
c

kBT

m∑
j

cjqje−[qjϕ(x)+Vj(x)] (2.13)

where m is the number of counterion species, cj and qj are their bulk concentrations and
charges, and Vj is the steric potential preventing steric clash with protein.[24]

For a 1:1 electrolyte, the equation 2.13 can be simplified to:

ρm(x) = κ2 sinh ϕ(x) (2.14)

where κ is a coefficient that describes ion accessibility and is affected by ionic strength.[23]

When equations 2.12 and 2.13, which describe the charge distribution of proteins and
counterions, are incorporated into the Poisson equation 2.11, the resulting equation becomes
a complete nonlinear Poisson-Boltzmann equation:

−∆ · ϵ(x)∆ϕ(x) + κ2 sinh ϕ(x) = 4πe2
c

kBT

M∑
i=1

qiδ(x − xi) , for x ∈ Ω,

where ϕ(x) = g(x) for x ∈ ∂Ω
(2.15)
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11
Figure 2.3.: Illustration of key terms in the Poisson–Boltzmann equation. (A) Dielec-
tric permittivity (ϵ(x)) exhibits a sharp transition across the solvent-accessible surface,
with the interior of the biomolecule having a significantly lower permittivity than the
surrounding environment. (B) The ion-accessibility parameter (κ(x)) correlates with the
bulk ionic strength outside the ion-accessible biomolecular surface. (C) Biomolecular
charge distribution is represented by point charges located at the center of each atom
within the biomolecule. Reprinted with permission from [81]. Copyright 2008 Elsevier
Inc.

Figure 2.3 is provided to illustrate the terms that are involved in the PB equation. Aside
from the partial charge distribution described by Equation 2.12, atomic positions and radii
are also included in the coefficients ϵ(x) and κ(x). The dielectric constant is discontinuous
along the biomolecular surface, taking solute dielectric values inside the protein and bulk
solvent values outside the surface, and modeling crossing between dielectric interfaces should
be given special attention. Various models can be used to represent the dielectric function
ϵ(x), such as discontinuous transitions at the molecular surface, smooth spline-based
definitions, and Gaussian-based descriptions.[85]

Assuming that sinh ϕ(x) can be approximated as ϕ(x), the complex full nonlinear PB
Equation 2.15 can be simplified into a linearized form that is comparatively easier to solve:

−∆ · ϵ(x)∆ϕ(x) + κ2ϕ(x) = 4πe2
c

kBT

M∑
i=1

qiδ(x − xi) , for x ∈ Ω,

where ϕ(x) = g(x) for x ∈ ∂Ω
(2.16)

Linearization of Equation 2.15 provides the most accurate results when the nonlinear
contributions of sinh ϕ(x) can be disregarded, which is typically the case for small electro-
static potential values.[23] Analytical solutions to the PB equation are limited to a few
simple cases, and for complex biomolecules like proteins, numerical solutions based on finite
difference methods are employed. This involves mapping the macromolecule and a region
of the surrounding solvent onto a cubic grid, with each grid point assigned values for the
charge density, dielectric constant, and ionic strength.[24]

After solving the PB equation (2.15 or 2.16) to determine the electrostatic potential ϕ(x),
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the free energy can be computed by integrating the potential over the domain of interest:

G(ϕ) =
∫

Ω

[
ρf ϕ − ϵ

2(∆ϕ)2 − κ2(cosh ϕ − 1)
]

dx (2.17)

In Equation 2.17, the first term represents the energy required to insert the protein charges
into the electrostatic potential, and can be interpreted as the energy of interaction between
the fixed charges. The numerical solution of the PB equation, however, also yields significant
"self-energy" terms that indicate the energy of charge interaction on its own.[24, 82] The
"self-energy" terms are eliminated by performing reference computations using the same
discretization (mesh spacing) and subtracting the results from the numerical solution The
second term in Equation 2.17 represents the energy of polarization in the dielectric medium,
while the third term represents the energy of the mobile charge distribution and can be
interpreted as the excess osmotic pressure of the system.[23]

Despite its success in modeling and elucidating electrostatic phenomena in biomolecular
interactions, the PB theory is still approximate and has several limitations, particularly for
highly charged systems or higher ionic strengths.[86, 87, 88] One of the main approximations
in the PB theory is the mean-field approach used to treat ions, which assumes that each
ion is surrounded by a uniform cloud of counterions and coions. This approach ignores
counterion correlations and fluctuations, which are especially important in highly charged
systems such as DNA and RNA.[23] As a result, the PB theory can underestimate the
repulsive electrostatic interactions between highly charged particles and lead to incorrect
predictions of the behavior of charged biomolecules in solution.[87] Regardless of these
approximations, the PB model remains a useful tool for describing basic solvation behavior
and can be applied to a variety of biomolecular systems. It can be applied to a variety of
biomolecular systems, such as protein-ligand binding, protein-protein interactions, and ion
channels.[84]

2.4. Molecular dynamics

MD is a powerful simulation method that allows us to gain insights into the movements and
behavior of atoms and molecules.[18, 19] By using sophisticated computational techniques,
MD can provide a detailed picture of chemical, physical, or biological processes and their
structure-to-function relationships. Unlike many experimental techniques, which may not
be able to access processes on atomistic scales, MD can provide us with an unprecedented
level of detail. This is especially important in fields such as materials science, biophysics,
and chemistry, where a deep understanding of the underlying molecular processes is essential.
With MD, researchers can explore the intricate dynamics of individual molecules, uncovering
the underlying mechanisms that govern their behavior. The first computer simulation of a
liquid was carried out over 60 years ago at the Los Alamos National Laboratories in the
United States. This groundbreaking research was performed on the Los Alamos computer,
known as "MANIAC" which was one of the most powerful computers of its time.[19] This
was the first Monte-Carlo simulation, and represented molecules as idealised geometries
like spheres and disks. In 1957, the first MD simulation was performed, which simulated
a system of hard spheres. It wasn’t until 1964, several years later, that the simulation
of more complex systems, such as Lennard-Jones particles, became possible.[19] Since
then, computational power has significantly increased enabling simulating larger and more
sophisticated systems.

MD is a computational technique that models the behavior of atoms and molecules in
a system over time. This deterministic approach adheres to the principles of classical
mechanics and involves integrating Newton’s equations of motion to track the movements
of a group of atoms as they interact with one another.[18, 19] During these simulations,
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discrete time steps are utilized, with each step typically lasting around one femtosecond
(fs). At each time step, the force Fi acting on each atom is calculated according to the
following equation:

Fi = − ▽ri U(r1, ..., rN ) = ṗi (2.18)

In this equation, the symbols ri and pi represent the Cartesian coordinates and momenta,
respectively, of atom i. The term U(r1, ..., rN ) refers to the potential energy of the system,
which is a function of the positions of all atoms in the system.

These forces are used to update the positions and velocities of each atom according to
Newton’s second law:

ṙi = pi

mi
(2.19)

where mi denotes mass of atom i.

A simulated system can be represented by a set of particle positions and momenta. The
Hamiltonian, denoted as H, represents the total energy of a system of N atoms and is
expressed as the sum of the kinetic and potential energy functions:

H(q, p) = K(p) + U(q) (2.20)

Here, q and p are sets of generalized coordinates and momenta that describe the positions
and velocities of each atom in the system, respectively:

q = (q1, q2, ..., qN )
p = (p1, p2, ..., pN )

(2.21)

The kinetic energy function, K(p), is dependent only on the momenta, while the potential
energy function, U(q), is dependent only on the positions of the atoms.

Given the knowledge of the potential energy and coordinates of a system, Equation 2.18
can be employed to compute the forces experienced by each atom. At each time step,
3N position coordinates and 3N momenta must be calculated for a system of N atoms,
resulting in a set of 6N first-order differential equations that need to be solved numerically.
By recalculating the forces using the updated coordinates, a trajectory that follows the
temporal evolution of the system can be obtained.[18, 19]

2.4.1. Finite Difference Methods for Accurate Time Integration in Molec-
ular Dynamics Simulations

The finite-difference approach is a widely used method for solving ordinary differential
equations, including equations 2.18 and 2.19. This is achieved through integration algorithms
that use finite difference methods to divide time into discrete time-steps δt. With information
about the particles’ positions and derivatives at a given time, these algorithms can accurately
predict their positions at a later time t + δt. The timestep δt is chosen to preserve system
dynamics and energy, and should be shorter than the fastest movement in molecules, which
is usually the atomic vibrations. An ideal integration algorithm for MD simulations should
possess several key qualities. Firstly, it should be efficient and capable of using a relatively
long timestep to speed up the simulation process. Additionally, it should accurately
reproduce the classical trajectory of the particles, while also satisfying the conservation
laws for energy and momentum.[19, 18] By meeting these criteria, the integration algorithm
can produce reliable and accurate results while minimising computational resources. So
far, various algorithms have been developed and used for MD simulations, including the
Verlet, Leapfrog, and Velocity Verlet algorithms, among others.[89, 90, 91, 19]
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The Verlet algorithm[89] is based on a Taylor expansion of the particle coordinate r(t) with
respect to time:

ri(t + δt) = r(t) + ∆tv(t) + δt2

2 a(t) + O(δt3)

ri(t − δt) = r(t) − ∆tv(t) + δt2

2 a(t) + O(δt3)
(2.22)

where v(t) and a(t) denote particle velocity and acceleration at a given time. When we
subtract the expansion of ri(t + δt) from the expansion of ri(t − δt) and rearrange the
resulting expression, we obtain:

ri(t + δt) = 2r(t) − ri(t − δt) + δt2a(t) + O(δt4) (2.23)

The Verlet algorithm has limitations because it doesn’t directly calculate velocities (as
shown in equation 2.23). Although velocities are not required for computing the time
evolution of a system, they are often necessary to calculate the kinetic energy, which is
needed to evaluate whether the total energy of the system is conserved.

As a solution, the Velocity Verlet scheme was developed, which directly calculates velocities.
In this scheme, positions are computed using a half-step approach, as demonstrated by:

v(t + δt

2 ) = v(t) + δt

2 a(t)

ri(t + δt) = r(t) + ∆tv(t + δt

2 )

v(t + δt) = v(t + δt

2 ) + δt

2 a(t + δt)

(2.24)

The Velocity Verlet scheme is a reliable and straightforward method that has several
advantages. It is numerically stable and convenient to use, as well as being precisely
reversible in time. Moreover, if conservative forces are present, the scheme is guaranteed to
conserve linear momentum.[19]

Exact solutions for long timescales in MD simulations are unattainable with integration
algorithms. However, accurate solutions are only necessary for relevant timescales when
calculating time correlation functions. The primary aim of molecular dynamics simulations
is generating states sampled from the microcanonical ensemble. Although exact classical
trajectories are not essential for this purpose, conserving energy is critical to ensure the
trajectories remain on the appropriate constant-energy hypersurface. Deviations from this
hypersurface can compromise the accuracy of the results, affecting the correct ensemble
averages.[19]

2.4.2. Statistical ensembles

MD simulations provide valuable information about the microscopic behavior of atomic and
molecular systems, including their positions, velocities, and other properties. However, to
understand the macroscopic behavior of these systems and compare simulation results with
experimental data, the principles of statistical mechanics must be applied. An important
goal of MD simulations is to obtain meaningful and reliable results that can be compared
with experimental observations. To achieve this, simulations must adhere to the ergodic
hypothesis.[19, 71] Since it is impractical to visit all possible states of a system in a finite
simulation time, we must sample relevant properties over a sufficient duration. If a system
is ergodic, the time average of a property over a long simulation time is equivalent to its
ensemble average.[71] This means that we can obtain reliable macroscopic information
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Figure 2.4.: Visual representation of the three statistical ensembles frequently utilized in
molecular dynamics simulations: NVE, NVT, and NPT. Adapted from a public domain
source under the Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) license.

about the system from the microscopic MD simulations, as long as the simulations are
conducted under appropriate conditions and for a sufficient duration.

In statistical mechanics, the properties of a system are studied in terms of its ensemble, which
represents all possible microstates of the system. Different ensembles are used to describe
the system under different conditions, such as fixed energy, volume, or temperature.[71] In
MD simulations, three commonly used ensembles are the microcanonical (NVE), canonical
(NVT), and isothermal-isobaric (NPT) ensembles, as shown of Figure 2.4. The micro-
canonical ensemble describes a system that is isolated and maintains a constant energy.
In MD simulations, the equations of motion are modified to conserve energy. In the NVT
ensemble, the system is allowed to exchange energy with a heat bath, while the total
number of particles and volume remain constant.[92, 93] To simulate this ensemble, the
Hamiltonian is modified to include a heat bath and the equations of motion are modified
to maintain constant temperature. The NPT ensemble describes a system with constant
temperature, volume, and pressure.[94] To simulate this ensemble, the Hamiltonian is
modified to include a barostat, which maintains the desired pressure, and a thermostat,
which maintains constant temperature. Commonly used thermostats in MD simulations
include Velocity Rescaling, Nosé-Hoover and Langevin thermostats, along with barostats
such as Berendsen, Parrinello-Rahman, and Nosé-Hoover barostats.[92, 94, 95, 93]

2.4.3. Periodic boundary conditions

In MD simulations, only a small number of molecules can be used in calculations due to
computational limitations, typically placed in a simulation box. However, this presents a
problem because molecules on the surface of the simulation box experience different forces
than those in the bulk. To address this issue, periodic boundary conditions (PBCs) are
used.[19] PBCs create an infinite lattice by replicating the simulation box throughout space.
As a molecule moves in the original box (colored by grey on Figure 2.5), its periodic image
in neighbouring boxes moves the same way. If a particle exits the simulation box on one
side, it re-enters the box from the opposite side, as if it were entering from the periodic copy
of the simulation box. This ensures that the simulation box effectively becomes an infinite
lattice, which can be used to accurately simulate bulk properties of the material.[19]

The minimum image convention is an important concept related to PBCs, which dictates
that a particle interacts only with the closest periodic images of other molecules, as
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Figure 2.5.: Visual representation of the periodic boundary conditions used in molecular
dynamics. For simplicity a two-dimensional periodic system is shown. Original box is
depicted by grey colour, while replicated boxes are denoted by letters A, B and so on.
Adapted with permission from [19]. Copyright 2017 Oxford University Press.

illustrated by the dashed rectangle in Figure 2.5. Furthermore, to optimize computational
performance, particle interactions are considered only if the distance between them is
smaller than a cutoff radius (depicted by a sphere in Figure 2.5). The cutoff radius must
not exceed half of the simulation box to ensure that a particle interacts with only one
image of any given particle.[19]

2.4.4. Force field

In context of MD simulations, a force field is a set of functional forms used to describe
the potential energy of a collection of atoms, both within and between molecules. These
functions and parameters are derived from experimental studies and from accurate quantum
mechanical calculations.[19, 96, 97] MD simulations are then used to compare calculated
properties with experimental results, allowing for refinement of the parameters. This process
ensures that the force fields developed are transferable and can be applied to many different
molecules.[19] As a result, individual force fields are regularly updated and extended to
ensure their accuracy and relevance. Some force fields are specialised for certain types of
molecules, such as proteins, lipids, or polymers, while others are more general and can be
used for a wide range of systems.[97, 96]

While force fields may differ in their functional forms, the majority of force fields, including
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those utilized in this thesis, can be described by the following expression:

U =
∑

bonds

1
2kb(r − r0)2 +

∑
angles

1
2ka(θ − θ0)2 +

∑
torsion

Un

2 [1 + cos(nΦ + δ)]

+
∑
LJ

4ϵij [(σij

rij
)12 − (σij

rij
)6] +

∑
el

qiqj

4πϵrij

(2.25)

The bonded interactions (bonds, angles, and torsions) are described by the first three
terms in Equation 2.25. The first term, which represents the sum over of all bonds with an
equilibrium bond-length r0 and bond force constant kb, applies to each pair of chemically
connected atoms. Some force fields use a more realistic functional form, such as the Morse
potential, or simply fix the bonds at their equilibrium values. The second term, represents
the sum oover all bond angles for each set of three connected atoms, where θ, θ0 and ka

denote angle, reference angle and angle constant respectively. The third term represents
the sum over all torsions involving four connected atoms, where Un denote the dihedral
force constant, and Φ , n and δ are the dihedral angle, the order constant, and the reference
dihedral angle respectively. The final two terms in the equation represent the non-bonded
interactions, the Lennard-Jones and the electrostatic interactions. Here, rij is the distance
between atoms i and j, ϵij is the potential well-depth of the interaction, and σij is the
distance at which the potential becomes zero and qi, qj are atom charges.

In real physical systems, the interactions between three or more molecules, known as many-
body potentials, can have a substantial impact on the properties of liquids. Unfortunately,
due to computational constraints, these non-additive terms are often not included in force
fiels, and the pair potentials used are considered as effective pair potentials that account for
all many-body effects. This approximation can lead to situations where the effective pair
potential required to reproduce experimental results may vary with changes in temperature,
density, and other factors, even the true two-body potential should remain constant.[19]

2.4.4.1. Coarse grained force fields

Due to limitations in computational resources, all-atom MD simulations are still only
capable of modelling a relatively small number of systems for processes occurring on short
time scales, despite the progress made in the field. As a solution to these limitations,
researchers are constantly developing coarse-grained (CG) models that bypass the need
for full atom representation of molecules.[20, 98] In this approach, groups of atoms are
combined into a single ’virtual atom,’ or bead, reducing the number of particles and explicit
pairs required to calculate energy and force within a simulation box.[19] This results in a
significant reduction in computational time. Furthermore, the use of a coarser representation
of molecules increases the characteristic length scale of the system. This allows for the use
of longer timesteps, effectively covering more real time in the simulation. This approach
is particularly relevant for simulating large biomolecular systems, such as proteins, which
undergo a variety of processes occurring over a wide range of time scales, ranging from
nanoseconds to hours or longer, as illustrated in Figure 2.6. Given the significant surge in
experimental data that requires interpretation, the development of CG models for proteins
has become imperative.[98]

Nearly half a century ago, the initial CG protein models were proposed, but it wasn’t
until more recently that they gained widespread usage. In 2013, Michael Levitt, Ariel
Warshel, and Martin Karplus were jointly awarded the Nobel Prize in Chemistry for
their early achievements in developing multiscale models for complex chemical systems,
including the crucial use ofv CG modeling to investigate large biomolecular systems such
as proteins.[99, 100, 101, 102] Some examples of commonly used CG models for proteins
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Figure 2.6.: Application of molecular modeling at different levels of resolution, including
quantum, all-atom, coarse-grained, and mesoscale, showing approximate ranges of time
scales and system sizes (lengths). Reprinted with permission from [20]. Copyright 2016
American Chemical Society.

include Martini,[103] UNRES,[104] PRIMO,[105] and the SIRAH force field,[106] which
will be discussed in greater detail in Chapter 2.4.4.2 of this thesis. CG force fields can differ
in their level of structural detail they provide, but a significant advantage of using them is
the ability to retrieve higher resolution information through the performance of CG MD
simulations. This allows for the recovery of full-atom resolution details, despite the initial
use of a simplified CG model. The design of force fields for CG models is guided by the

Figure 2.7.: Illustration the difference between all-atom and coarse-grained models in
terms of the energy landscapes they generate, enabling more efficient exploration of the
energy space. Reprinted with permission from [20]. Copyright 2016 American Chemical
Society.

chosen level of resolution and underlying philosophy. The force field can be parametrized
to reproduce reference all-atom MD simulations, or it can be estimated through statistical
analysis of the structural and dynamic features observed in databases of experimental
structures.[20, 19] Compared to all-atom force fields, CG force fields tend to "smoothen"
the energy surface, which reduces the likelihood of becoming trapped in free energy minima.
This smoothing occurs because in CG models, multiple atoms are typically grouped together
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into a single bead, which can lead to an averaging of the energetic interactions between
atoms.[20] This effect is illustrated in Figure 2.7, highlighting the advantage of using CG
force fields in the study of complex biomolecular systems. Coarse-graining can affect the
balance between entropy and enthalpy in a system by reducing the number of degrees of
freedom. This can lead to a differences compared to all-atom models, even though the
total free energy difference may still be accurately reproduced.

2.4.4.2. SIRAH Force Field

The SIRAH (Southamerican Initiative for a Rapid and Accurate Hamiltonian) is a CG force
field capable of accurately modeling a range of complex biomolecules including proteins,[106,
107] DNA,[108, 109] lipids,[110] water,[111] and ions.[111] The SIRAH force field is a
top-down approach to modeling biomolecules that is parametrized to fit their structural
characteristics. By using a classical Hamiltonian to evaluate molecular interactions, similar
to those found in commonly used atomistic models (represented by equation 2.25), it can
be easily integrated with a range of popular MD software packages.[112] In summary,
interactions between bonds and angles are described using harmonic terms, for example
1
2kb(r − r0)2 , which involve reference force constants kb and an equilibrium bond length
r0. Dihedrals, on the other hand, are represented using Fourier expansions. The non-
bonded contributions are taken into account using Coulomb and 12-6 Lennard-Jones terms.
The Lorentz-Berthelot combination rule is applied to all atom-type pairs, unless specified
otherwise. In those cases, specific Lennard-Jones parameters are set. Finally, the 1-4
nonbonded interactions are scaled using the AMBER scaling factor.[107, 106] The SIRAH
force field uses uniform masses of 50 amu for each bead, allowing for a time step of 20 fs to
be used in molecular simulations. The all-atom to CG mapping method relies on physical
and chemical intuition to simplify complex systems by reducing the number of atoms used
and positioning CG beads based on the location of real atoms. The following paragraphs
explains how this process is utilized for water, proteins, and DNA.

WT4 Model for Water

The accurate treatment of solvent effects is crucial for the successful modeling of biomolecular
processes. The SIRAH force field employs a CG model for water called WatFour or
WT4.[111] The model is designed to mimic transient water clusters that occur in pure water
as a result of hydrogen bonding between water molecules, as depicted in Figure 2.8. One
WT4 molecule consists of four beads that are linked together, each of which carries a partial
charge. As a result, each WT4 bead corresponds to eleven water molecules. The bond
stretching constant between beads was set to mimic the interaction strength of hydrogen
bonds. The weak bonds present in WT4 molecules impart structural flexibility, causing
deviations from the ideal tetrahedral configuration, a phenomenon that is observed in real
water. The structure of WT4 is modeled using two types of beads, one "oxygen-like" with a
negative charge (-0.41e) and the other "hydrogen-like" with a positive charge (0.41e). These
beads mimic the charge distribution and hydrogen bond network observed in clusters of
water molecules.[108] This unique configuration allows WT4 to generate its own dielectric
permittivity, which is crucial in molecular simulations. Additionally, CG electrolytes are
used to account for the effects of ionic strength and osmotic pressure. The WT4 model
is capable of reproducing the more detailed tetrahedral organization of water through
noncovalent interactions. The model parameters were optimized to reproduce bulk water
properties, including density and diffusion coefficients, at physiological relevant temperature
conditions in the range from 278 to 328 K.[111] The WT4 solvent model is also capable of
accurately replicating important electrolytic properties such as screening, osmotic pressure,
Bjerrum and Debye lengths. This results in correct concentration profiles, ion specificity,
and local conformational changes that are observed in high-resolution X-ray structures of
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Figure 2.8.: Illustration of the WT4 model used to represent water molecules in the
SIRAH force field a) MD snapshot of a typical arrangement of water molecules in bulk.
Water molecules tend to cluster together in irregular tetrahedral shapes. b) The positions
of oxygen atoms at the corners of the tetrahedrons from panel A are highlighted using
red beads. c) The structural organization of WT4 in bulk solution, as captured by a
MD snapshot. d) The geometry of the WT4 molecule, with the white and red beads
representing H-like and O-like beads with partial charges 0.41a and -0.41e, respectively.
Reprinted with permission from [111]. Copyright 2010 American Chemical Society.

DNA. In addition, the WT4 model supports CG/MM hybrid simulations, which provide a
powerful tool for studying complex systems.[111] With this approach, regions of interest
(i.e. DNA) can be described in full atomistic detail, while solvent can be represented in a
CG resolution.

CG Model for Ions

The SIRAH force field is capable of modeling three different ionic species at the CG level,
namely NaW+, KW+, and ClW-.[111] This provides a useful tool for simulating systems
that involve these ions, such as ion channels or electrolyte solutions. The CG ions are
designed to incorporate both ions and water molecules in their first solvation shell, which
typically consists of approximately six water molecules. The bead masses are set to the
sum of the ion mass and the mass of water molecules, and van der Waals parameters
were chosen to match the first minima of the radial distribution function of hydrated ions
obtained from experimental data, such as neutron diffraction experiments.

CG Model for Proteins

The SIRAH CG model for proteins and peptides is always used in combination with
an explicit solvent of WT4 molecules to address several common limitations of CG force
fields.[106, 107] These include the use of a uniform dielectric constant, the lack of long-range
interactions, and the need to use constraints to maintain secondary structure. In the SIRAH
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force field, proteins are mapped onto a CG representation by treating the peptide bonds with
a relatively high level of detail, while side chains are modeled at a lower level of structural
resolution. This approach allows for a more efficient simulation of large protein systems,
while still capturing the essential features of protein structure and function. The backbone
representation of the peptide bonds, which retains the positions of the nitrogen(N), α
carbon(Cα), and oxygen atoms(O), provides an unbiased description of the conformational
space explored by peptides and proteins, without imposing any specific secondary or
tertiary structure, as shown on Figure 2.9. The use of partial charges on each bead can
approximately account for the formation of hydrogen bond-like interactions.[107, 111] This
helps to stabilize the formation of α-helices and β-sheets without the need for ad hoc
constraints. In addition, the van der Waals interactions within backbone beads are set
to the same values as those in the AMBER99 force field. This ensures that the protein
structure achieves the appropriate level of compaction during the formation of α-helices
and β-sheets. Assigning dihedral angles between four neighboring beads establishes a direct
relationship with all-atom dihedrals.

Figure 2.9.: CG mapping scheme of protein backbone. CG beads, colored in red, have
been positioned on the atoms of Cα, N, and O, represented by gray circles. The tick
lines denote connectivity, while the primary dihedral angles at the CG level have been
highlighted. Adapted with permission from [106]. Copyright 2015 American Chemical
Society.

The current version of SIRAH includes both neutral and charged termini. Charged termini
are created by placing a charge of +1 or -1 on the N- or O-terminal beads. The topology
of the CG side chains follows the principle of representing interaction points based on
the characteristics of each residue (see Figure 2.10). Hydrophobic amino acid residues,
such as Val, Ile, Leu, and Met, are mapped to a single CG bead with zero net charge.
Aromatic side chains are mapped to either three (Phe, His, and Tyr) or five beads on a
plane (Trp). The beads of polar and charged side chains correspond to charged groups or
hydrogen bond acceptors/donors. To ensure the "L" chirality of amino acids, improper
dihedral angles are applied to both the backbone and side-chain beads. Furthermore, to
enforce the planarity of the tryptophan side chain, two additional improper dihedrals are
used. The force field parameters for proteins in the SIRAH model have been updated to
the 2.0 version in order to improve the accuracy of the structural descriptors such as such
as root mean square deviations, solvent accessible surface, radius of gyration and native
contacts.[107] To achieve this, the charges, van der Waals, and dihedral parameters were
adjusted in an ad hoc manner. The angular force constants were adjusted to increase
side-chain flexibility, and the non-bonded interactions were improved to better capture the
hydrophilicity/hydrophobicity of both side-chains and backbone, as well to model cation pi
interactios. The use of more terms in Fourier expansions for torsion potentials improved
backbone torsion angles and enabled modelling of parallel and anti-parallel β-sheets.[107]
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Figure 2.10.: SIRAH CG representation of amino acids. Each amino acid is presented
using its one-letter code, all-atom heavy atoms, CG representation, bead names, partial
charges, and vdW parameters. Only hydrogen atoms that are used for the CG mapping
are shown, and the numbers near the atoms indicate the corresponding CG bead positions.
The CG beads are colored based on their charge (negative, red; positive, blue). Adapted
with permission from [106]. Copyright 2015 American Chemical Society.

CG Model for DNA

The CG model for DNA uses six beads to represent each nucleotide, while still preserving
the important Watson-Crick recognition that occurs in the chemistry of DNA.[108, 109] The
CG model can faithfully replicate experimental structures, capture the dynamic breathing
of DNA, and accurately depict the various conformational transitions that occur within
the molecule. The CG model defines four distinct coarse-grained bases (dax, dtx, dcx,
and dgx) that correspond to the all-atom nucleotides.[109] This mapping is illustrated
in Figure 2.11 and ensures that the fundamental interactions between nucleotides are
maintained, thus preserving the overall "chemical sense" of the system. In the CG model,
the phosphate sugar backbone is represented with less detail than the Watson-Crick pairs,
as the latter are modeled with a higher level of specificity to accurately capture their
interactions. The phosphate groups in the nucleotides are depicted as px beads that occupy
the same position as the corresponding phosphorus atoms. Additionally, the bead kx is
placed at the position of the C5’ atom to establish the 5’-3’ direction of each DNA strand.
This allows for the formation of the major and minor grooves in the CG model. The kn
bead (where kn can be ka, kt, kc, or kg) is located at the position of the C1’ atom. To
maintain the molecular specificity between the two DNA strands, the superatoms that
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Figure 2.11.: SIRAH CG representation of amino acids. The circular symbols indicate
the positions of elements that are retained in the CG representation. Adapted with
permission from [109]. Copyright 2010 American Chemical Society.

participate in Watson-Crick interactions in the CG model are placed in the same position
as their corresponding atoms.[109] This approach ensures that the all-atom Watson-Crick
hydrogen bonds are preserved as two-point electrostatic interactions in the CG model. This
model The CG model described in this scheme has been shown to accurately replicate
key features of DNA, including solvation spines, electrolyte specificity, and cation-driven
narrowing of the minor groove.has been shown to accurately replicate key features of DNA,
including solvation spines, electrolyte specificity, and cation-driven narrowing of the minor
groove.[108]

2.5. Accelerated Molecular Dynamics Techniques

Simulating rare events is a challenging task that requires specialised techniques. A simple
definition of a rare event is a transition from one region of phase space to another, typically
separated by a high energy barrier as depicted in Figure 2.12 At equilibrium, one state may
be significantly more stable than the other, in which case the less stable state can be referred
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to as being thermodynamically metastable.[19, 21] The goal of simulating rare events is to
study the rate of conversion from one state to another, as well as the possible paths that the
system takes in a suitable set of reaction coordinates. Examples of rare events include the
conformational changes of biomolecules, chemical reactions, crystallization, and numerous
other phenomena across a variety of fields.[19] Simulating rare events is difficult due to the
long residence periods in each state, which can exceed the maximum practical length of a
simulation. This challenge is particularly pronounced in large, high-dimensional systems
containing multiple metastable minima and saddle points. In the field of computational
science, calculating free-energy differences is essential because they determine the driving
force behind a process. However, rare events can take too long to simulate, making their
study infeasible without accelerated MD techniques.[19, 21]

Figure 2.12.: The free energy as a function of a single reaction coordinate, F(q), for a
system with two minima labeled A and B. The two minima are separated by a maximum.
Adapted with permission from [19]. Copyright 2017 Oxford University Press.

The canonical partition function Q for a system in the NVT ensemble is obtained by
integrating over the entire phase space, as shown in the following equation:

Q =
∫

e
U(r)
kbT dN r (2.26)

where E(r) and N denote potential energy and number of degrees of freedom in system.

The Helmholtz free energy A and the canonical partition function Q are related through
the equation:

A = 1
kbT

ln Q (2.27)

The transition between two states can be characterized using a reaction coordinate (ξ),
which can take on any order parameter, including changes in the Hamiltonian.[113] Typically,
geometric properties such as distance, angle, torsion, or the difference between root mean
square deviations from two reference states are used to define ξ.[19, 113] Once the reaction
coordinate ξ is defined, the probability distribution of the system along ξ can be calculated
by integrating out all degrees of freedom except for ξ:

Q(ξ) =
∫

δ[ξ(r) − ξ]e
U(r)
kbT dN r∫

e
U(r)
kbT dN r

(2.28)
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Here, Q(ξ)dξ can be interpreted as the probability of finding the system within a small
interval of width dξ centered at ξ. Using the definition of the canonical partition function
and the probability distribution along the reaction coordinate, the free energy can be
calculated as:

A(ξ) = 1
kbT

ln Q(ξ) (2.29)

where A(ξ) is basically a PMF.[113] In MD simulations, it is often not feasible to directly
calculate equations 2.28 and 2.29. However, according to the ergodic hypothesis, the
ensemble average Q(ξ) can be approximated by the time average P (ξ). P (ξ) represents the
normalized frequency or histogram of the system being found at specific ξ values during
MD runs. However, due to the limited duration of MD simulations, it may not be possible
to explore all parts of the reaction coordinate ξ, particularly in regions that correspond to
barriers between local minima.[113] Accelerated MD techniques are necessary to efficiently
sample rare events and obtain full probability distributions. In order to drive a system
over an energy barrier, one can either modify the energy expression to reduce the barrier
or restrict the sampling space to the reaction coordinate.[19]

2.5.1. Umbrella Sampling

Umbrella sampling (US), is a biased MD method used to determine free energy along
a reaction coordinate.[113, 114] US is a technique used to investigate rare events in
computational chemistry by calculating free energy differences along a reaction pathway.
It involves applying a bias potential along a reaction coordinate, which can be a one- or
multi-dimensional variable that describes the progress of the reaction, to guide a system
from one thermodynamic state to another. To simulate intermediate steps along the
reaction pathway, multiple windows are created, each of which is associated with a specific
value of the reaction coordinate. In each window, a biasing potential is applied to force
the system to remain at that particular value of the reaction coordinate. MD simulations
are performed at each window to collect statistics on the system’s behavior and calculate
the free energy associated with each window. The biasing potential utilized in US ensures
that the system visits all parts of the reaction coordinate, including regions that would be
rarely sampled with conventional MD simulations, such as rare events. The data collected
from individual windows in US can be combined to obtain an overall free energy landscape.
To obtain an unbiased free energy difference, the effects of the biased potentials should be
be removed.[113, 115]

A bias potential wi(ξ) is introduced in window i to constrain the reaction coordinate ξ at
a specific value, as expressed in the following equation:

U b(r) = U b(r) + wi(ξ) (2.30)

The biased potential energy, U b(r), and the unbiased potential energy, U b(r), correspond
to the biased and unbiased states, respectively.[113] The bias potential, wi(ξ), is commonly
represented as a quadratic equation, as shown in the following expression:

wi(ξ) = xw

2 (ξ − ξi)2 (2.31)

where xw is the force constant and ξ and ξi are the current and reference value of reaction
coordinate respectively. Configurations that are far from the reference position ii will
bear a larger weights, and the energy function U b(ξ) will be inclined towards a specific
conformation that is relevant, albeit with a non-Boltzmann distribution.[113] Ideally, the
bias potential is chosen in a way that enables uniform sampling across the complete range
of the reaction coordinate, ξ. Selecting a bias potential that is either too strong or too weak
can result in non-overlapping distributions between the windows. As a result, the optimal
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bias potential is determined to be wopt = A(ξ), although the function A(ξ) is not known
beforehand. This means that selecting the appropriate bias potential requires knowledge of
the system’s characteristics and properties.

The relation between unbiased and biased probability at window i can be obtained as
following:

P u
i (ξ) = P b

i (ξ)e
ωi(ξ)
kbT

〈
e

−ωi(ξ)
kbT

〉
(2.32)

Here, P b
i (ξ) is obtained from the of MD simulations of the biased system, while ωi(ξ) is

given analytically.

The free energy profile at window i can be determined as following:

Ai(ξ) = −kbT ln(P b
i (ξ)) − ωi(ξ) + Fi (2.33)

where Fi = −kbT ln
〈

e
−ωi(ξ)

kbT

〉
.

This derivation is accurate, and the only assumption made is that the sampling conducted
in each window is sufficient.[115] The free-energy curves Ai(ξ) from each window can be
combined to obtain a global free-energy curve, A(ξ), using techniques for estimating Fi

which arise from the introduction of bias.

Several techniques have been proposed to estimate unknown Fi coefficients and determine
unbiased probability distribution, but the most commonly used method is weighted his-
togram analysis (WHAM).[116, 115] The overall distribution is determined by computing
a weighted mean of the individual window distributions, as described in the following
equation:

P u(ξ) =
windows∑

i

pi(ξ)P u
i (ξ) (2.34)

The weights pi(ξ) are determined with the aim of minimizing the statistical error of P U (ξ)

The equations for WHAM can be summarized as follows:

P u(ξ) =
∑Nwind

i=1 ni(ξ)∑Nwind
i=1 Nie

Fi−ωi(ξ)
kbT

Fi = kbT ln

∑
ξbins

P u(ξ)e
−ωi(ξ)

kbT


(2.35)

Here, the symbol Nwind represents the number of simulations, and ni(ξ) corresponds to
the number of counts in the histogram bin that is associated with the value ξ.[113, 116]

The variables P u(ξ) and Fi are not known and are determined iteratively by equation
2.35 in a self-consistent manner. Once the convergence criterion is met, the most accurate
estimation of the unbiased probability distribution P u(ξ) can be obtained, which in turn
can be used to compute the PMF. WHAM allows for the calculation of free energies
associated with arbitrary perturbations added to a reference potential in a self-consistent
manner, and it can be extended to multiple temperatures or multidimensional reaction
coordinates.[116, 113]



3. xDLVO-CG Model: A Tool for
Understanding Protein-Protein
Interactions

3.1. Introduction
1 PPIs play a crucial role in determining the solubility, aggregation, precipitation, and
crystallization behavior of protein solutions. Understanding PPIs is crucial for many
biotechnological processes,[3, 4] but measuring and controlling them experimentally can be
challenging. In order to design effective biotechnological processes, it is important to have a
comprehensive understanding of the effective PPIs, as well as how environmental conditions
such as pH, temperature, and ionic strength can impact the stability and phase behavior
of protein solutions.[11, 12] Having this knowledge can help to develop stable protein
formulations, prevent unwanted aggregation, and fabricate desired self-assembly constructs
while reducing uncontrolled aggregation. Effective PPIs in solution are determined by weak
nonspecific interactions, including steric repulsion, van der Waals, hydrophobic interactions,
and long- or short-ranged electrostatic repulsion and attraction. The solubility of molecules
is determined by their solid-liquid equilibrium, which is influenced by the interactions
between the dissolved molecules themselves and also with the solvent.[118] The deviation
of osmotic pressure from that of an ideal solution can provide insights into the interactions
between dissolved molecules, and these interactions are quantified by virial coefficients
(see Equation 2.1). The second virial coefficient, B22, is particularly important in diluted
systems as it provides information about the average two-body interactions between protein
molecules. The osmotic second virial coefficient, B22, can estimate PPIs in diluted protein
solutions, characterising the non-specific protein binding capacity and stickiness.[119] It has
been used to semi-quantitatively characterise protein solubility,[120, 121, 122, 123, 124, 125]
phase behaviour,[126, 127, 128, 129] and crystallization.[68, 120, 122, 130, 129, 4] Positive
B22 values indicate repulsion interactions and correspond to good protein solubility, while
negative values indicate attractive interactions and protein aggregation.

Several studies have shown that there is a thermodynamic connection between the solubility
(S) of a protein and its B22 coefficients.[120, 125] With the help of the measured B22
coefficient, it is possible to calculate the protein’s solubility using the following formula:

B22 = −∆µ

RT

1
2MwS

− ln S

2MwS
(3.1)

where ∆µ is defined as the difference between the standard chemical potentials of the
protein in two different states. Specifically, it refers to the difference between µo

p in solution
and µo

p in the crystal.
1The majority of the content presented in this chapter is based on the work published in Ref. [117], which

has been modified and restructured to align with the format of thesis. Author contributions are stated
in the ’List of Publications’ section at the end of the thesis.
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As a result, numerous semi-empirical models have been developed, which utilize adjustable
parameters instead of ∆µ. This is because determining ∆µ can be challenging, whereas
using adjustable parameters provides greater adaptability in modeling protein solubility.[130,
131, 124] George and Wilson established a quantitative link between the optimal conditions
for protein crystallization and the value of B22.[70] They identified a narrow range of
B22 in which crystallization occurs.[121, 120, 132] Subsequently, several studies have
investigated the relationship between protein crystallization and B22, and have found that
crystallization usually happens when B22 is below 0.0001. Conversely, if B22 is excessively
negative (meaning it is attractive), it leads to the formation of amorphous precipitates
instead of crystals.

The osmotic second virial coefficient can be measured experimentally using various tech-
niques, including membrane osmometry, static light scattering, cloud-point measurements,
fluorescence anisotropy, self-interaction chromatography, and sedimentation equilibrium
experiments.[127, 133, 134, 135] Despite their usefulness, the experimental techniques for
measuring the osmotic second virial coefficient have certain limitations. For example, they
can be time-consuming and require large quantities of protein samples, which restricts
the range of experimental conditions that can be screened. Additionally, the measured
values are often influenced by the experimental setup and cannot reveal details about
specific terms that contribute to overall average protein interactions. Consequently, there
is a need for theoretical models that can explore a wide range of solution conditions and
complement experimental efforts.[136, 137] The B22 coefficient can be theoretically cal-
culated using formula 2.3 (as explained in Chapter 2), provided that the PMF is known.
The calculation of the B22 coefficient has involved various computational methods and
representations of protein structure. Monte Carlo simulations and Mayer sampling have
been used,[138, 139] with the Mayer sampling[140, 141, 142, 143, 144, 126] as well as MD
simulations computing radial distribution functions or PMFs.[145, 146, 147] The counting
of all configurations in which proteins interact has also been utilized.[144] These tech-
niques have been applied to protein structures ranging from all-atom to low-resolution, CG
models.[148, 149, 145, 147, 146] Apart from those computationally costly techniques, one
commonly used theoretical model for calculating B22 coefficients is based on the DLVO
theory (or xDLVO theory as described in Chapter 2), which represents proteins as ideal
spheres.[30] However, while this model can effectively capture the dependence of B22 on
salt concentrations,[3, ?] the resulting model parameters are often physically unrealistic
and may not be easily transferable to different proteins. Furthermore, proteins experience
other types of interactions beyond electrostatic repulsion and van der Waals interactions,
which are not accounted for in this model. Therefore, the use of more sophisticated models
that account for more realistic representations of protein shape and interactions is necessary
to obtain more accurate B22 values.

To address this issue, we developed an extended xDLVO-CG model, which includes a CG rep-
resentation of proteins and an additional ion-protein dispersion interaction term.[117] This
model has been tested on four different proteins: lysozyme(LYZ), subtilisin(Subs), bovine
serum albumin(BSA), and immunoglobulin(IgG1) and demonstrated semi-quantitative
agreement with experimental values, without the need for fitting to experimental B22 values.

3.2. Methods

3.2.1. xDLVO-CG Model - Theoretical Framework

The xDLVO-CG model aims to improve upon the spherical protein approximation by
incorporating a more accurate representation of protein shapes. This is achieved through
the use of CG representations of proteins, which allows for a more realistic modeling of
protein shape. The example of CG representation of LYZ protein is shown on Figure 3.1.
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Figure 3.1.: Shape-based coarse-grained model of proteins, shown for lysozyme (PDB
code 4nhi) represented by 5 CG beads per protein unit. Adapted with permission from
[117]. Copyright 2021 Royal Society of Chemistry.

Furthermore, the interaction potentials utilized in the model are adapted from the xDLVO
model, which is described in greater detail in Chapter 2. To enhance the accuracy further,
the model includes an additional potential term, the ion-protein dispersion potential
(as explained in Section 3.2.5). This term accounts for the impact of specific ions on
protein salting out, as observed in the well-known Hofmeister series. The total interaction
potential between two proteins, W22(r), is calculated as the sum of several contributing
potential terms, including electrostatic, dispersion (Hamaker or Lennard-Jones), osmotic,
and ion-protein interactions, as described by the following equation:

W22(r) =
{

Wel(r) + Wdisp(r) + Wosm(r) + W disp
i−pr(r)

Wel(r) + WLJ(r) + Wosm(r) + W disp
i−pr(r)

(3.2)

Further details on each of these potential terms are discussed below.

3.2.2. Electrostatic Interactions

Electrostatic interactions between the proteins were calculated using the Debye-Hückel
equation,[77] which is represented by the following formula:

Wel(r) =
N1∑
i=1

N2∑
j=1

ZiZje2 exp (κ(dij − rij))
4πε0εrr(1 + κdij

4 )2
, rij > dij + 2σ (3.3)

Here, the variable r represents the distance between two proteins’ centers of mass. The
total number of beads in each protein is denoted by N1 and N2, respectively. The initial
distance between bead i of the first protein and bead j of the second protein (as per the
crystal structure) is represented by dij , whereas rij denotes the current distance between
beads during protein pulling. The value σ stands for the thickness of the water layer on
the protein surface, which is estimated to be approximately 0.1 nm.[150]) Zi and Zj denote
the charge of CG beads of protein units.

The influence of the low dielectric core, which can lead to short-range image-charge-based
repulsion of charged polyelectrolyte chains adsorbed on spherical substrates [151], was not
taken into account. For ion-protein electrostatics, the image repulsion is minimal, with
only slight contributions noticeable at low salt concentrations, without affecting the B22
values. Furthermore, image-charge-based repulsion is negligible at moderate ionic strengths,
consistent with previous research in this field [152] [153].
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3.2.3. Dispersion Interactions

The dispersion potential Wdisp(r) describing the attractive van der Waals forces between
proteins was calculated using two different approaches. The first approach involved the use
of the Hamaker equation (3.4), which describes the van der Waals interaction between two
ideal spheres. This equation is derived by summing the London forces over infinitely small
volumes between the two spheres, taking into account the polarizability of the molecules
and the refractive index of the medium between the spheres [76], and can be calculated
according to:

Wdisp(r) = −
N1∑
i=1

N2∑
j=1

AH

12
1

N1N2

[
dij

r2
ij − d2

ij

+
d2

ij

r2
ij

+ 2 ln(1 −
d2

ij

r2
ij

)
]

,

rij > dij + 2σ

(3.4)

The Hamaker constant, represented by AH , can be measured through various techniques
or estimated using the relation (3.5):

AH = π2λq1q2, (3.5)

It is described by the London-van der Waals constant, λ, and the atom densities of the
interacting bodies q1 and q2. The London-van der Waals constant is obtained by measuring
the polarizabilities and characteristic absorption frequencies of the solute and is related to
the refractive indices[154].

Table 3.1 provides a list of the Hamaker constants, denoted as AH , utilized in this study.

Table 3.1.: The values of the Hamaker constant, AH , utilized in the calculation of the
dispersion potential based on equations (2.7) and (3.4). The values for LYZ, BSA, Subs
and IgG1 were obtained from literature sources[155, 125, 156, 157].

.
Protein Conditions AH [kBT]

LYZ All pH and salts 8.0
BSA All pH and salts 3.0
Subs NaCl 5.1
Subs NaSCN 6.8
IgG1 All pH and salts 3.0

In an attempt to find a parameter-free substitute for the Hamaker equation, the Lennard-
Jones (LJ) potential was implemented. This approach, labeled xDLVO-CG(LJ), does not
require experimentally measured values of AH and can be expressed as follows:

WLJ(r) =
N1∑
i=1

N2∑
j=1

εij

(σij

rij

)12

−
(

σij

rij

)6
 (3.6)

The Lennard-Jones parameters of each bead, εi and σi, were assigned according to Arkhipov
et al. as implemented in the shape-based coarse-grained (SBCG) builder in VMD.[158] The
interaction strength of each bead was assigned based on the hydrophobic solvent accessible
surface area (SASA) for the protein domain represented by a bead, which can be expressed
as follows:

εi = εmax

(
SASAhydroph

i

SASAtotal
i

)2

(3.7)



Chapter 3. xDLVO-CG Model: A Tool for Understanding Protein-Protein Interactions33

Here, εmax is the interaction constant (often taken as 10 kcal/mol), while SASAihydroph and
SASAitotal are the hydrophobic and the total SASA of a bead i. For the B22 calculations
in this Chapter, εmax of 10 kcal/mol and 2 kcal/mol were used for the small protein (LYZ)
and other proteins (Subs, BSA, IgG1), respectively.

The LJ radius for each CG bead was determined as the radius of gyration of the corre-
sponding atoms, increased by a constant value of 0.1 nm to simulate the atoms at the
edge of the bead. The LJ parameters for each bead pair were obtained using standard
combination rules based on the bead’s hydrophobic solvent accessible surface area (SASA).
The LJ interaction strength between a pair of beads is primarily determined by their SASA,
with a stronger interaction between two hydrophobic beads. The LJ parameters between
specific bead pairs were calculated using the following combination rules:

εij = √
εiεj , σij = 0.5 (σi + σj) (3.8)

Here, εij represents the interaction strength between beads i and j, while σij is the LJ
radius between them.

3.2.3.1. The Effect of Hamaker vs. Lennard-Jones Potentials on Calculated
B22 Values

Several expressions are available to calculate dispersion interactions between proteins based
on continuum models. The Hamaker constant, AH , is commonly used as an adjustable
parameter in (x)DLVO models and is fitted to experimental data at different pH and salt
conditions. While AH can be calculated using McLachlan’s formulation of Lifshitz’s van
der Waals forces, which accounts for excess polarizability in a dielectric medium,[159]
this approach is less widely used. The resulting B22 coefficients obtained using the fitted
AH show good agreement with experiments. However, these adjustments to AH include
error compensations arising from the incorrectly modelled electrostatic, osmotic, and
ion-protein dispersion terms. In this study, xDLVO-CG was validated using Hamaker
constants previously reported (Table 3.1 without changing their values at different salt
and pH conditions (two AH used only for Subs). The approach showed good correlations
between the calculated and experimental B22, as discussed in more details in Section
3.3. However, with the aim was to introduce the protein solubility model using standard
potential energy functions without designed fitting to the experimental data points, an
attempt was made to replace Hamaker dispersion interactions in the total PMF by the
Lennard-Jones interactions , parameterized according to Arkhipov et al.[160], as described
in Section 3.2.3. The dispersion potentials for LYZ at pH 7 and Subs at pH 5.5 are
shown in Fig.3.2. The strength of the dispersion interactions, introduced by the Hamaker
constant, decreases faster than in the case of the LJ interactions. This results in stronger
binding of the proteins in the LJ potential model and a small shift of the calculated second
virial coefficients towards negative values (see the right panel in Fig.3.2). Overall, the
potential depth and the corresponding center of mass (COM) distance of the most attractive
interactions between the proteins are similar in both cases, resulting in B22 coefficients in
the range of the reported experimental data. Analysis of the B22 changes as a function of
the sampled protein-protein structures indicates higher sensitivity of the PMF with LJ,
which arises from the fact that all bead-bead dispersion interactions were parametrized
based on the chemical composition of the residues included in a CG bead, and not by
uniform values of the Hamaker constant.
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Figure 3.2.: Dispersion potentials for LYZ (upper panel) and Subs (lower panel) rep-
resented by the Hamaker constant (in blue), and by the Lennard-Jones potential (in
red). The corresponding B22 coefficients for LYZ at pH 7 and Subs at pH 5.5 using both
potentials are shown on the right panel. Adapted with permission from [117]. Copyright
2021 Royal Society of Chemistry. The experimental data, labeled as ’Quigley 2015’ and
’Pan 2002’ were taken from [127, 125].

3.2.4. Osmotic Potential

The attractive interaction between proteins due to ion exclusion from the protein interspace
at short distances[79] was computed using equation:

Wosm(r) = −
N1∑
i=1

N2∑
j=1

1
N1N2

4πkB

3 TD3
ijρ3(1 − 3rij

4Dij
+

r3
ij

16D3
ij

),

dij + 2σ ≤ rij ≤ 2Dij

(3.9)

Here, the radius of a hydrated salt, R3, is the sum of the hydrated anion and cation radii,
and ϱ3 is the salt density. Dij is defined as the sum of dij , the distance between two CG
beads, and R3 and σ. The hydrated anion and cation radii values were taken from Marcus
et al.[161] (as shown in Table 3.2.5).

3.2.5. Ion-protein Dispersion Interactions

The nature of the salt used has an impact on PPIs, which is reflected in the value of
B22.[129] The Hofmeister series describe the propensity of certain salt ions to cause protein
precipitation, and is related to the interactions between the ions and the protein[162, 163].
Despite their importance, these interactions are not considered in most solubility models,
including (x)DLVO. However, Ninham and his colleagues have shown that incorporating
ion-macroion dispersion interactions into the PMF leads to more accurate modeling of
salt effects[164, 165, 166]. This effect is significant even for monovalent ions of similar size,
and modifies the dependence of B22 on ionic strength. To account for these interactions, a
new term representing the ion-protein dispersion potential was added to the total PMF in
xDLVO-CG. Since the size of cations and anions is much smaller than that of proteins,
their interactions with proteins can be approximated as the interaction of a small point
charge with an infinite plane:[166, 167]

W disp
i−pr = −Bi−pr

r3 (3.10)

where Bi−pr is the characteristic ion-protein dispersion coefficient, which depends on
the polarizability of both the ion and the protein.[164] The total ion-protein dispersion
energy is then obtained by summing the contributions from all individual ion-protein
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interactions, while accounting for the non-uniform distribution of ions around the protein.
The distribution of charges is determined by the Boltzmann distribution, which leads to
attraction of ions of opposite charge towards the protein surface and repulsion of ions of
the same charge. The number of ions in a spherical shell around the protein is given by

Figure 3.3.: A continuum model of ion-protein dispersion interactions is illustrated.
Rp and D denote the protein radius and maximum thickness of a shell when ion-protein
interactions are taken into account. Adapted with permission from [117]. Copyright 2021
Royal Society of Chemistry.

cbulk exp (−zϕ(r)/r) dV , where dV = 4πr2dr is the shell volume, z is the charge of an anion
or a cation. The electrostatic potential ϕ(r) felt by an ion at a distance r from the protein
center is approximated by equation (2.8). To obtain the total ion-protein dispersion, the
contributions of all ions in the spherical shell are integrated:

W disp
i−pr(r) = −4πBa

∫ RP +D

RP +σ

cb exp (−zaϕ(r)/(kBT ))
r

dr

−4πBc

∫ RP +d

RP +σ

cb exp (−zcϕ(r)/(kBT ))
r

dr

(3.11)

The variables used in the equation are defined as follows: Rp represents the radius of the
protein, σ represents the thickness of the water layer surrounding the protein, D represents
the maximum thickness of a shell at which ion-protein interactions are considered (as shown
in Figure 3.3, and Ba and Bc represent the dispersion coefficients for anions and cations,
respectively. The value of D was chosen to be 1 nm, while the anion- and cation-protein
dispersion coefficients, Ba and Bc, were obtained from previous studies[166, 164] and are
presented in the Table 3.2.5.

3.2.5.1. Impact of Including Ion-protein Dispersion Interactions Term

xDLVO model typically considers the influence of salts on PPIs through osmotic and
electrostatic potentials. The electrostatic potentials calculated by Debye-Hückel theory
are unable to distinguish between salts of the same valency. On the other hand, the
osmotic attraction potential utilizes hydrated salt radii as input, which are only slightly
different between different salts. However, since the radii of hydrated monovalent salts
are similar, the osmotic term alone cannot explain the observed salt-dependence of the
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Table 3.2.: The values of the hydrated salt radii, R3, utilized in the calculation of
the osmotic potential based on equations (2.10) and (3.9), as well as the ion-protein
dispersion coefficients, Bi−pr, used in the calculation of the ion-protein dispersion potential
according to equation (3.11). The values of R3 and Bi−pr were obtained from references
[161, 166, 164].

Salt R3 [nm] Ion Bi−pr · 10−50[J · m3]
NaCl 0.442 Na+ 0.454
KCl 0.436 K+ 1.888
NaI 0.464 Cl− 3.574

NaSCN 0.460 I− 4.440
SCN− 10.000

osmotic second virial coefficients B22 of proteins. The Hamaker constant, which describes
London-van der Waals interactions between charge-neutral proteins and should not depend
on ionic strength,[76, 154] is usually fitted to experimental data to recover the trends
according to the Hofmeister series, which reduces predictive power of models. The ion-
protein dispersion interaction, which depends on the properties of salt ions and not the
protein type, is responsible for promoting attractive PPIs.[168] The impact of including
ion-protein dispersion in the xDLVO-CG model can be demonstrated by the resulting B22
coefficients for LYZ and Subs, which are shown in Figure 3.4, with and without ion-protein
interactions. The omission of the ion-protein dispersion term in the calculation of B22
values results in limited differentiation between different salts and fails to replicate the
marked differences observed in experimental data. In contrast, the ion-protein dispersion
term in the PMF differentiates the salting out efficiency of ions and induces stronger
separation between the data obtained using different salts, leading to better correlation
with experiments. The model also agrees with the Hofmeister series trend, i.e., Cl− < I−

< SCN−, where thiocyanate anion is known as a strong salting out agent causing protein
precipitation. This is due to the higher ion-protein dispersion coefficients of SCN−, which
is 2.8 times larger than in the case of Cl−,[164] resulting in stronger ion-protein dispersion
interactions. The model is consistent with observations that I− ions show stronger salting
out efficiency of LYZ than Cl−, indicating the model’s agreement with the Hofmeister
series trend.[80, 169] These results highlight the importance of accounting for ion-protein
dispersion interactions in accurately predicting protein-protein interactions.

3.2.6. Shape Based Coarse Grained Model for Proteins

To account for the anisotropic nature of protein interactions and the variety of configurations
that contribute to the average PMF, a shape-based coarse-grained (SBCG) model of proteins
was used, which was constructed from the corresponding all-atom structures. To validate
the model, four proteins were selected - LYZ, Subs, BSA, and IgG1 - and experimental
and theoretically computed B22 data were compared. All-atom structures of these proteins
(PDB codes 4nhi, 4f5s, 1ndu, and 1mco, respectively) were obtained, which contained all
the necessary residues and had at least two identical proteins in the unit cell. Additionally,
the effects of pH were incorporated by using the PROPKA method,[170, 171] which was
implemented in the PDB2PQR web server,[172, 173] to add hydrogen atoms at the desired
pH. The all-atom structures of these proteins (PDB codes 4nhi, 4f5s, 1ndu, and 1mco,
respectively) were obtained, which contain all the necessary residues and have at least
two identical proteins in the unit cell. A shape-based model with a self-organising neural
network topology building algorithm was used to map all-atom structures of proteins to
CG representations,[160] as implemented in the VMD program (version 1.9.3).[174] The
learning algorithm was initialised with two variables, ϵ and λ, and the starting and final
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Figure 3.4.: The change in the calculated B22 coefficients after adding the ion-protein
dispersion interactions term to the potential of mean force of LYZ at pH 4.5 (upper panel)
and Subs at pH 5.5 (bottom panel). The B22 values calculated using xDLVO-CG are
represented with solid curves, while the results from xDLVO-CG without ion-protein
interactions are marked with dotted dashed curves. The experimental B22 coefficients are
denoted with colored circles. Adapted with permission from [117]. Copyright 2021 Royal
Society of Chemistry. The experimental data, labeled as ’Quigley 2015’ and ’Quigley
2015b’ respectively represent the first moment and maximum peak dynamic light scattering
measurements taken from [127]. Data labeled as ’Pan 2003,’ were obtained from [125] for
each respective pH.

values of ϵ and λ were set to 0.3 and 0.05, and 20 and 0.01, respectively. Each CG bead
represented approximately 500 atoms of a given protein, resulting in 5, 10, 20, and 40 CG
beads for LYZ, Subs, BSA, and IgG1 (see Figure 3.1 and 3.11), respectively. The CG beads
were placed at the COM of the atoms they represented, and their charges were calculated
as the sum of the partial charges of the atoms within each bead, determined by PROPKA.

3.2.6.1. Impact of Coarse-Graining Size on Results

Several mapping schemes were evaluated and compared to determine the optimal coarse-
graining size for the calculation of B22 values. The mapping schemes included a 500-to-1
mapping, a 300-to-1 mapping, a 200-to-1 mapping, and a 150-to-1 mapping, as shown on
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Figure 2.3 The results indicate that the choice of coarse-graining size had little impact on
the calculated B22 values, with the 500-to-1 mapping scheme producing similar results to
the 150-to-1 mapping scheme. Moreover, using the 500-to-1 mapping scheme reduced the
computational cost of calculating B22 by over 80%, from 57.76 minutes to 7.7 minutes for
one relative orientation of BSA. Based on these findings, the 500-to-1 mapping scheme was
chosen as the optimal coarse-graining size for all proteins.

Figure 3.5.: The effect of coarse-graining size: the number of atoms per CG bead, on
calculated B22 values for BSA at pH 7.4 in NaCl solution. Reprinted with permission
from [117]. Copyright 2021 Royal Society of Chemistry.

3.2.7. Protein-protein sampling scheme
Equation 2.3 states that the total B22 coefficient is dependent on the protein-protein
interactions at different orientations, and therefore requires the sampling of diverse protein
configurations to calculate accurately. Two sampling schemes were utilized in this study.
The first involves sampling of the PPIs by pulling the protein along a linear trajectory
outwards from the crystal structure up to a distance of R0 + 30 nm. The other scheme
employs a statistical sampling approach over the configuration space to sample protein
pair interactions for relevant relative arrangements. In this approach, the initial crystal
structure of the protein is used, with the first protein kept fixed at position (x1, y1, z1),
while the second protein is moved uniformly around the first one on the fixed distance r0.
The radial sampling of the second protein is performed by varying the (θ, ϕ, r) coordinates
in the spherical coordinate system with the center at (x1, y1, z1). Ten values of θ, ϕ
angles were taken uniformly from θ = [0, 2π] and v = [−1, 1] → ϕ = − arccos(v) intervals,
which resulted in 83 unique starting configurations (including the protein position in the
crystal). In addition, the second protein was subsequently rotated by five different angles[

π
3 , 2π

3 , π, 4π
3 , 5π

3

]
around (x − x2), (y − y2) or (z − z2) axis, respectively. These resulted in

16 differently rotated structures, therefore, in the total amount of different starting protein
configurations of 83·16(=1328). From these starting configurations, again the protein was
pulled along a linear trajectory outwards, up to a distance of R0+30 nm, along the line
connecting the respective center-of-mass. All configurations were checked for possible steric
overlap, and overlapping structures were excluded from further calculations. The total
PMF is obtained by averaging all angular orientations defined by the starting structures,
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resulting in the PMF as a function of the COMs of proteins: W22(r, Ω1, Ω2) → W22(r).
The second osmotic coefficient as a function of ionic strength is calculated by numerical
integration of the averaged PMF at different salt conditions according to equation (2.3).

3.3. Results

The xDLVO-CG model was validated by calculating the osmotic second virial coefficient
for four proteins with varying sizes, shapes, and physicochemical properties. The choice
of proteins was based primarily on the availability of experimental measurements of B22,
although a literature survey revealed significant variations in the experimental B22 values
for the same protein under similar solution conditions, often due to the use of different
measurement techniques. The computed B22 results were compared to the experimental
B22 values from several reports. Additionally, the xDLVO-CG model was compared with
other theoretical models for B22 calculations, including a spherical xDLVO model that
replicated the model reported in Ref. [175] and FMAPB2, an all-atom model for B22
calculations in implicit solvent.[147] FMAPB2, which provides higher structural resolution
compared to spherical or CG models, was evaluated using a publicly available web-server
(http://pipe.rcc.fsu.edu/fmapb2).

3.3.1. Lysozyme

LYZ is a small protein with a globular shape which has been extensively studied in various
scientific investigations and has found practical applications as an antibacterial agent.
Figure 3.6a and 3.6b depict the calculated B22 coefficients for LYZ as a function of ionic
strength at two different pH values of 4.5 and 7. The calculated values were compared
to the experimentally measured values. [127, 176, 177, 133, 178, 123] The B22 values for
LYZ are positive at lower ionic strengths, indicating that the effective interactions are
repulsive, resulting in stable solutions. However, as the ionic strength increases, the B22
values decrease towards negative values, and at approximately 0.23 M NaCl at pH 4.5,
the B22 value crosses the zero point. This indicates a switch from repulsive to attractive
interactions, which may lead to protein aggregation. For LYZ at pH 4.5 and 10 mM NaCl,
the electrostatic potential is approximately 5 times stronger than the dispersion potential.
This dominance of repulsive interactions at 10 mM NaCl results in a positive B22 value, as
shown in Figure 3.6. The increase in salt concentration permits opposite charge screening,
reducing the strong electrostatic repulsion between the equally charged protein species.
This reduction in electrostatic repulsion allows the attractive dispersion interactions to be
more pronounced, inducing molecule self-assembly. As seen in Figure 3.6c, the Wel value
significantly decreases with an increase in NaCl concentration, indicating the reduction in
electrostatic repulsion, so the Wdisp interactions become more prominent. The influence
of osmotic and ion-protein interactions is relatively low, but it becomes more significant
at higher ionic strengths where protein salting out can occur. Eventually, this leads to a
strong attraction between LYZ molecules, as indicated by the increasingly negative PMF
shown in Figure 3.6d. Furthermore, the B22 values for LYZ are slightly more negative at
pH 7 compared to pH 4.5, and the crossing point occurs at around 0.18 M NaCl instead of
0.23 M NaCl. This behavior is attributed to the fact that the protein charge at pH 7 is
reduced from +11e to +9e, requiring fewer counterions to screen the electrostatic repulsion
between LYZ protein pairs and making the propensity to aggregation more favorable.
The data obtained from the xDLVO-CG model correlates well with experimental data for
B22 values of LYZ, which between themselves show some discrepancies due to differences
in the experimental methodology.[127, 176, 177, 133, 178, 123, 179] Interestingly, using
a single starting protein-protein configuration from the crystal led to results that were
nearly identical to those obtained via the sampling protocol, likely due to the globular
and symmetrical shape of LYZ with low charge anisotropy. The xDLVO model accurately
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Figure 3.6.: a) The B22 coefficients for LYZ at pH 4.5 and b) pH 7 with varying NaCl
concentrations computed using xDLVO-CG, xDLVO(spherical model), and FMAPB2
(all-atom representation). The data labeled with a dashed blue curve indicates that
the xDLVO-CG calculation was performed for only one relative orientation (based on
the crystal structure), otherwise the B22 coefficients were calculated for the sampled
configurations. The experimental data is represented by colored circles. c) The change
in each potential (as given by Equations 3.3-3.11) for LYZ at pH 4.5 as a function of
NaCl concentration. d) The total PMF at pH 4.5 as a function of NaCl concentration.
Adapted with permission from [117]. Copyright 2021 Royal Society of Chemistry. The
experimental data, labeled as ’Quigley 2015’ and ’Quigley 2015b’ respectively represent
the first moment and maximum peak dynamic light scattering measurements taken from
[127]. Data labeled as ’Johnson 2009,’ ’Le Brun 2010,’ ’Valente 2005,’ ’Teske 2004,’ and
’Tessier 2002’ were taken from [176, 123, 177, 133, 178]

predicts B22 values of LYZ owing to its spherical shape, but it tends to overestimate
values at higher ionic strengths. Meanwhile, the FMAPB2 model, which employs an
all-atom protein representation, provides similar results to the xDLVO-CG model but has
a higher computational cost. Calculating B22 values using xDLVO-CG and FMAPB2 takes
approximately 1.85h (for 100 salt concentrations) and 4 h (for one salt concentration),
respectively. The xDLVO-CG model agrees well with experimental data also at other pH
values (pH 3, pH 5, and pH 8), as shown in Figure 3.7. However, at pH 3 and 300mM
NaCl, both xDLVO and xDLVO-CG models exhibit larger deviations from experimental
data, as observed in the left histogram of Figure 3.7. Kalyuzhnyi et al. reported similar
observations when they explicitly accounted for all interacting species in the model. Both
Kalyuzhnyi et al. and this study reported overestimation of calculated B22 at pH values
greater than 7 for lysozyme at pH 8, possibly due to ion-specific effects that the model
cannot currently account for.[180]

In summary, LYZ protein behavior in solution is highly dependent on the ionic strength
and pH values. With an increase in salt concentration, the PPIs become attractive through
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Figure 3.7.: The B22 values for LYZ at pH 3, pH 5 and pH 8 computed using xDLVO-CG.
Two sampling methods were used: 4nhi, which refers to calculations for proteins from
the crystal, and xDLVO-CG with orientational sampling. The results were compared to
those obtained using xDLVO with the protein approximated as a sphere. Adapted with
permission from [117]. Copyright 2021 Royal Society of Chemistry. Experimental data
labeled as ’Quigley 2015,’ ’Tessier 2002,’ and ’Wanka 2011’ were taken from [127, 178, 179],
respectively.

dispersion interactions, leading to aggregation. The behavior is more pronounced at higher
pH values, as the protein charge is higher, resulting in a stronger screening of electrostatic
repulsion.

3.3.2. Validation on Nonspherical Proteins

LYZ is a compact protein that has a spherical shape, making it easy to use xDLVO theory
to predict its solubility or likelihood to aggregate. However, predicting the solubility of
non-spherical proteins like Subs, BSA, and IgG1 using xDLVO theory is more challenging.
Therefore, we validated the accuracy of the xDLVO-CG model for these three proteins.
Figure 3.8 shows a simplified representation of the proteins using CG models, where the
protein monomers used to sample PPIs are colored blue and red, respectively.

Figure 3.8.: The coarse-grained models of a) subtilisin, b) bovine serum albumin, and
c) immunoglobulin type 1 employed in the xDLVO-CG model to calculate the osmotic
second virial coefficients. The cartoon representation of the all-atom structure of the
proteins is also included to ensure clarity.
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3.3.2.1. Subtilisin

Subs is the digesting enzyme used in commercial application as an an engineered variant
(called properase). There is a scarcity of experimental data for the second virial coefficients
of Subs, with measurements only being done at pH 5.5 for properase variant.[125] Therefore,
B22 was calculated as a function of ionic strength in the presence of 0-1 M NaCl, as
illustrated in Figure 3.9. Significant differences between calculations made with xDLVO
and FMAPB2 in comparison to xDLVO-CG were observed for the B22 data of Subs at pH
5.5. The B22 crossing point, indicating a shift between attractive and repulsive interactions,
was shifted to the lower ionic strengths in xDLVO and showed stronger increase of attractive
PPIs towards aggregation. This was caused by the representation of the charge distribution
by an uniform sphere in xDLVO, whereas the protein has significant anisotropy, which
xDLVO-CG better represents. B22 from xDLVO, with the experimentally fitted Hamaker

Figure 3.9.: The B22 coefficients for Subs at pH 5.5 as a function of NaCl concentration
calculated using the xDLVO-CG, xDLVO, and FMAPB2 models. Circles represent
experimental data. Reprinted with permission from [117]. Copyright 2021 Royal Society
of Chemistry. The experimental data, labeled as ’Pan 2003’ were obtained from [125].

constant of 5.1 kBT, matched the experimental B22 at 500 mM NaCl (-1.83·10−4 and -
1.78·10−4 mol·mL/g2, respectively), but this was the only data point that matched. Another
parameter set for xDLVO was used to calculate B22 by Pan et al.[125]. The charge of
Subs was calculated using the MacroDox program and the Hamaker constant was fitted to
achieve nearly quantitative agreement between the experimental measurements and their
xDLVO. The protein charge they obtained was higher by 2.7-3.5e (i.e., was +8.7 - +9.42e
depending on salt concentration) than that obtained using PROPKA (+6e). Since there is
no information about the Subs charge from experimental measurements, the protonation
schemes used in either approach cannot be validated. B22 calculated using FMAPB2 was
shifted far to the negative B22 range, deviating far from the experimental B22 values. To
accurately predict the behavior of Subs at higher pH levels, we conducted calculations
based on the protein’s properties at pH 7. At this pH, the positive charge of the protein
decreased from +6 to +4, which had a significant impact on its aggregation potential (as
shown in Figure 3.10). The decrease in positive charge resulted in stronger aggregation,
indicating that Subs may be more prone to clumping and precipitation under alkaline
conditions. These findings highlight the importance of understanding the pH-dependent
behavior of proteins like Subs, particularly in applications where they may be exposed to
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Figure 3.10.: The B22 coefficients for Subs at pH NaSCN as a function of NaCl
concentration calculated using the xDLVO-CG model. Reprinted with permission from
[117]. Copyright 2021 Royal Society of Chemistry.

varying pH environments.

3.3.2.2. Bovine Serum Albumin

The BSA protein belongs to serum albumins that can bind to a variety of substances,
including drugs, nutrients, and metals, making them useful in clinical, pharmaceutical, and
biochemical applications. The B22 calculations of BSA at pH 6.2 and 7.4 were performed
and compared with experimental values reported in various references[134, 135, 181, 182],
as shown on Figure 3.11. xDLVO-CG reproduces the main trends of the experimental data
at lower ionic strength and with the correct trends using sampling of various protein relative
orientations. The BSA charge calculated using PROPKA deviates from experimental values,
especially at pH 6.2, so H++ protonation was used instead[183], resulting in a slightly
better charge estimate. Both protonation schemes underestimate the BSA charge, leading
to larger discrepancies between calculated B22 and experimental data.[184]) In addition
to the discrepancies between calculated and experimental B22 values, the experimental
data itself is also inconsistent. Different studies have reported different measured values,
leading to further uncertainty in the interpretation of the results. This may be due to
variations in experimental conditions, such that different experimental techniques or data
analysis methods may contribute to the variability in reported values. Therefore, careful
consideration and comparison of experimental data from multiple sources is necessary for
a comprehensive understanding of PPIs in case of BSA. The calculated B22 values using
FMAPB2 show a positive shift, similar to the observations for LYZ. However, the B22
values obtained using FMAPB2 are consistent with the findings reported by Qin et al. [147].
xDLVO fails to reproduce the B22 coefficients at salt concentrations above 100 mM NaCl,
even with a better estimate of the total charge. The accuracy of xDLVO results is strongly
influenced by the choice of protein radius. For BSA, the experimentally determined radius
varies between 3.5-4.1 nm depending on pH and ionic strength[185]. However, using two
different radii in xDLVO calculations still failed to capture the experimental trends for B22.
The aforementioned results highlight the limitations of xDLVO in accurately predicting
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Figure 3.11.: The B22 coefficients for BSA at a) pH 6.2 and b) pH 7.4 as a function
of NaCl concentration calculated using the xDLVO-CG, xDLVO, and FMAPB2 models.
Circles represent experimental data. Adapted with permission from [117]. Copyright 2021
Royal Society of Chemistry. The experimental data labeled with ’Ma 2015’ were taken
from [135], while the data labeled with ’Ersch 2016,’ ’Park 2009,’ and ’Moon 2000’ were
taken from [134, 181, 182], respectively.

PPIs, as even small variations in the protein radius, along with other parameters, can
significantly impact the predicted behavior.

3.3.2.3. Human Immunoglobulin Type I

The complexity of proteins plays a critical role in determining protein-protein interactions
and the accuracy of computational approaches under various conditions. The challenges
presented by complex proteins are particularly evident in the case of IgG1, which is
a member of the monoclonal antibody group and has a unique T-shape. Monoclonal
antibodies play a critical role in the immune system’s defense by recognizing and binding
to specific antigens. The pharmaceutical industry is still facing difficulties in preparing
stable formulations of monoclonal antibodies, making the calculation of B22 values for IgG1
an essential tool for developing more stable formulations. Several studies have investigated
the use of extended DLVO theory to model the second virial coefficients of monoclonal
antibodies under different solution conditions and protein concentrations. These studies
include those by Calero Rubio et al. [140, 141, 142], Roberts et al. [119], and Singh et al.
[186]. In most cases, the models used a direct parametrization from experimental data
and various levels of coarse-graining [140]. Figure 3.12 depicts the calculated B22 values
for IgG1 as a function of NaCl concentration and at three different pH values (pH 5, 5.75,
and 6.5), and compared them with experimental values reported in Ref[187]. These values
provide insight into the behavior of IgG1 and can aid in the development of more stable
formulations. IgG1 is a highly charged protein with charge +56e, +48e, and +27e at pH
5, 5.75, and 6.5, respectively. Therefore, the values of B22 are more positive compared to
LYZ. The developed xDLVO-CG method was able to reproduce the main experimental
trends in the B22 values of IgG1, despite representing the large protein using only 40 CG
beads that mimicked its basic shape and charge anisotropy (as shown in Figure 3.8c). The
CG representation of IgG1 was found to be a critical factor that affected the calculated B22
values, as a simpler spherical-based model like xDLVO failed to replicate the experimental
trends of non-globular proteins without using parameters fitted from experiments. The
all-atom FMAPB2 model yielded similar B22 values to xDLVO-CG at lower ionic strengths
(as marked in red in Figure C.7), but deviated towards more positive values at higher ionic
strengths. Since no B22 experiments have been conducted at higher ionic strengths, it is
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Figure 3.12.: The calculated osmotic second virial coefficients for IgG1 at pH 5, 5.75,
and 6.5 using xDLVO-CG compared with experimental data, which is represented by
colored circles. Adapted with permission from [117]. Copyright 2021 Royal Society of
Chemistry. The experimental data, labeled as ’Roberts 2014 (pH 5)’, ’Roberts 2014 (pH
5.75)’ and ’Roberts 2014 (pH 6.5)’ were taken from [187].

more challenging to compare the models. Furthermore, it was observed that the effect of pH
change could be semi-quantitatively modeled with xDLVO-CG (as shown in Figure 3.12),
which provides opportunities for further improvements. The calculated values of B22 suggest
that IgG1 exhibits preferred attractive interactions at higher pH values. This behavior
can be attributed to the higher protein charge observed at lower pH, which promotes the
solubilization of IgG1 monomers in solution. The variation in the electrostatic potential
between IgG1 protein pairs with respect to changes in pH is depicted in Figure 3.13. This
figure illustrates how alterations in pH can affect the electrostatic interactions between
IgG1 molecules, which can have significant implications for the stability and aggregation
propensity of these proteins. The B22 values can serve as a valuable tool for understanding
the behavior of IgG1 in different solution conditions, which can aid in the development of
more stable formulations for this important class of monoclonal antibodies.

3.3.3. Analyzing Intermolecular Interactions in HBV Core Protein Dimers
with xDLVO-CG Calculations

Using xDLVO-CG calculations, we analyzed the intermolecular interactions between HBV
core protein dimers, which drive the assembly and stability of the dimer of dimers, and
indirectly the formation of the whole capsid structures.

The formation of HBV VLPs involves various intermolecular interactions, with electrostatic
forces often being the most significant. To gain a better understanding of the PPIs between
core protein homodimers (Cp2) of HBV with different sequence lengths, xDLVO-CG
calculations were performed on six different Cp2 with varying C-ter lengths. The lengths
and charges of six different Cp proteins are shown in Table 3.3.

The shortest Cp2149 dimer was represented by 10 beads in the CG representation, whereas
the longest Cp2183 dimer was represented by 12 beads. Figure 3.14 shows the calculated
B22 coefficients obtained from the xDLVO-CG calculations performed on the Cp2 dimers.
As far as we know, there are no existing experimental measurements of the second osmotic
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Figure 3.13.: Electrostatic potential between IgG1 proteins at pH 5, pH 5.75 and pH
6.5 and 10 mM NaCl calculated by xDLVO-CG model

Table 3.3.: The charges of core proteins per one Cp monomer, truncated at different
positions of the C-ter

.

Cp, aa Charges
149 -7
154 -3
157 -2
164 1
167 4
183 8

virial coefficients for Cp2 core protein dimers that can be used to compare with the values
calculated using the xDLVO-CG model. The B22 coefficients, calculated using xDLVO-CG
model, for Cp2164, Cp2157, and Cp2154 show a fast decrease with the increase of ionic
strength due to their low charge states (see charges of Cp monomers in Table 3.3. This
indicates that the PPIs between these proteins are more attractive in nature compared to
other dimers. It is known that the assembly of Cp2149, which lacks the flexible C-terminus
chain, is highly influenced by ionic strength and only occurs in specific salt conditions.
The calculated B22 values reveal a preference for attractive PPIs in solutions with NaCl
concentrations higher than 0.15 M. Similar observations were made previously for capsid
formation from the Cp149 assembly domain. The strongest repulsion interactions, requiring
high ionic strength solutions, are observed for Cp2183, which has a highly positively charged
C-ter (+15 charged per single Cp). This allows for strong binding with oppositely charged
species, such as nucleic acids, facilitating self-assembly and further capsid or VLP formation.
Note that the charges shown in Table 3.3 are calculated for the entire core protein, including
the contributions from the assembly domain and C-ter. To investigate the intermolecular
interactions between Cp proteins with varying core protein lengths, Figure 3.15 displays
the changes in electrostatic potential between the Cp proteins as a function of core protein
length. The figure clearly illustrates the correlation between the calculated B22 coefficients
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Figure 3.14.: a) Shape-based CG model of Cp2149 dimer superimposed on its all-atom
structure (red and blue chains). The flexible C-terminal (residues 150aa to 183aa) of the
full length Cp2183 is shown in cyan for illustration purposes. b) B22 coefficients calculated
for full length HBV core protein dimers (Cp2183) and truncated dimers (Cp2149, Cp2154,
Cp2157, Cp2164, Cp2167).

Figure 3.15.: Electrostatic potential between Cp proteins of different core protein length
at pH 7 and 10 mM NaCl calculated by xDLVO-CG model

and the extent of electrostatic repulsion among Cp dimers. It shows that Cp dimers
with higher repulsion exhibit more positive values of B22 coefficients, indicating a strong
relationship between these two factors. This observation underscores the importance of
considering electrostatic interactions when designing and engineering Cp proteins, as these
interactions can significantly impact their stability and functionality. These findings provide
insights into the molecular interactions underlying the formation of HBV capsids, which
may have implications for the development of new technological processes for HBV VLP
processing.
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3.4. Conclusion

This Chapter presents our developed xDLVO-CG model that calculates osmotic second
virial coefficients (B22) for proteins based on pH, ionic strength, and protein type. The
xDLVO-CG model predicts protein solution stability and salt-induced dependencies, and
complements experimental measurements of B22, providing insight into protein solubility as
a function of colloidal PPIs. The model is derived from the extended DLVO theory and it
includes a new term for ion-protein dispersion interactions derived and uses a shape-based
coarse-grained representation to account for anisotropic PPIs. This approach reduces or
eliminates the need for fitting experimental B22 data, which may accelerate investigations
of protein processing conditions in pharmaceutical and food industries. The xDLVO-CG
model has a unified CG protein mapping scheme, which improves transferability among
proteins of different shapes and characteristics, and it does not require special model
adjustments for different proteins. The model calculates B22 by integrating the PMF
over many configurations, including electrostatic, dispersion, osmotic, and ion-protein
dispersion interactions. The xDLVO-CG model agrees with experimental measurements of
B22 coefficients for lysozyme, subtilisin, bovine serum albumin, and human immunoglobulin
type 1 at different solution conditions. The model is transferable to larger, irregular, and
non-spherical proteins, but due to difficulty to correctly compute the charge of proteins, it
may result in deviations from experimental data. However, the model is still more accurate
than regular xDLVO models, and with further improvements in electrostatic and solvent
effects and better dispersion terms, it has the potential to better predict B22 coefficients
without the need for time-consuming experiments. The developed computational scheme
can also be adjusted for calculating aqueous stability of other colloidal particles, but requires
a special CG parameterization scheme. In addition to its application to several benchmark
proteins such as lysozyme, subtilisin, bovine serum albumin, and immunoglobulin type 1,
the xDLVO-CG model has also been used to compute the osmotic second virial coefficients
for hepatitis B virus core protein dimers. This specific application of the xDLVO-CG model
to the hepatitis B virus core protein dimers showcases its potential to be applied to a
wide range of proteins and provides further validation of its accuracy and reliability in
predicting protein stability under different environmental conditions. The results of these
calculations can also contribute to a better understanding of the behavior of the hepatitis B
virus core protein dimers in solution, which is of significant importance in the development
of processing conditions of HBV VLPs.



4. xDLVO-CGhybr Model: Hybrid
Method for Protein-Protein
Interactions with Poisson Boltzmann
and Extended DLVO Theory

4.1. Introduction

1 Chapter 3 introduced the xDLVO-CG model, a computational approach aimed at as-
sessing protein protein interactions by calculating B22 coefficients. This model combines
the extended xDLVO theory, which describes the stability of colloidal suspensions, with
theCG approach, which simplifies the representation of macromolecules. Chapter 3 pro-
vides an extensive elaboration on the significance of PPIs in aqueous solutions for both
fundamental science and technological applications. These interactions play a crucial role
in determining the stability and solubility of proteins in solution, as well as whether they
undergo aggregation or crystallization.[11, 127] The state of proteins in solution is primarily
governed by weak, nonspecific interactions that can be influenced by various factors, such
as pH, ionic strength, and solvent composition. Understanding these interactions and
their dependencies is essential for designing and developing effective strategies to control
protein stability and prevent undesirable aggregation or precipitation, which can signifi-
cantly impact the performance and shelf-life of protein-based products.[189, 7, 190, 123]
In this context, B22 coefficients serve as a valuable tool for assessing the net effective
interactions of proteins in solution. The xDLVO-CG model has demonstrated the ability
to compute B22 coefficients with reasonable agreement with experimental values, albeit
with some discrepancies observed for large, irregularly-shaped proteins. Therefore, there
is still room for improvement in the xDLVO-CG model to better model the potential of
mean force and achieve a closer agreement with experimental values, particularly for large
and irregularly-shaped proteins. The central focus of improving the xDLVO-CG model
was to modify the electrostatic potential term to enhance its accuracy in modeling PPIs.
Electrostatic interactions play a crucial role in PPIs, as the protonation states of amino
acids are influenced by the pH of the solution and the protein environment.[191] Proteins
exhibit a wide range of forms and charge anisotropy, which can significantly impact various
physicochemical processes. Changing the salt concentration is a common method used to
modulate PPIs in solution, as it weakens repulsive electrostatic interactions. However, previ-
ous theoretical studies on B22 modeling have mostly relied on simplified continuum models
based on Debye-Hückel theory, which is an approximation that has not been adequately
tested to represent biomolecular electrostatics in context of calculating second osmotic
virial coefficients. Some attempts have been made to go beyond Debye-Hückel theory, such

1The majority of the content presented in this chapter is based on the work published in Ref. [188], which
has been modified and restructured to align with the format of thesis. Author contributions are stated
in the perspective journal article.
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as creating a modified Poisson-Boltzmann method that incorporates ion-specific effects on
spherically represented proteins,[164, 192, 193] using a fast multipole method solved by
boundary element method on a residue level coarse grained structure,[194] and proposing
the extended Debye-Hückel continuum model for better modeling solvation dynamics.[195]
Due to computational constraints, some researchers have used the PB theory to solve
electrostatic potential between atomistically represented proteins with the goal of com-
puting B22, but only on a limited number of relative protein orientations.[69] Despite the
importance of accurately modeling electrostatic effects in biomolecular systems, insufficient
effort has been made in the context of B22 computations. While explicit solvent models
offer accurate modeling of biomolecular electrostatic effects, they are computationally
expensive. Furthermore, using all-atom MD to calculate B22 using free energy techniques
yields values that are far from experimental values, and LJ interactions need to be weakened
by factors of approximately 0.1 to achieve a good match with experiments. The xDLVO-CG
model provided reasonably accurate calculations for B22 coefficients, but showed some
discrepancies for proteins that are large and irregularly-shaped. Although this model is
computationally efficient, it may not capture all the molecular-level details that higher
resolution models can account for. To address this issue, we introduce the xDLVO-CGhybr
model, which improves accuracy by modifying the electrostatic potential term of PMF.
This model employs a hybrid approach that combines PB theory and Debye-Hückel theory
to accurately calculate the electrostatic contribution to the total interaction potential,
regardless of protein size and shape. Moreover, we introduce a CG Lennard-Jones potential
that matches reference all-atom potentials for precise prediction of PPIs. We validate our
model on six different proteins with varying complexity and shape, and show improved
predictions of B22 values.

4.2. Methods

4.2.1. xDLVO-CGhybr Model: Interaction Potential Calculation

In the xDLVO-CGhybr model, the interaction potential denoted as W (r) is computed by
summing up the electrostatic, dispersion, osmotic, and ion-protein potential terms between
pairs of proteins. The resulting equation for the interaction potential is:

W22(r) =
{

Wel(r) + Wdisp(r) + Wosm(r) + W disp
i−pr(r)

Wel(r) + WLJ(r) + Wosm(r) + W disp
i−pr(r)

(4.1)

The xDLVO-CGhybr model employs the same four interaction potential terms as the
previously reported xDLVO-CG model. However, the electrostatic and dispersion potentials,
which are the first two terms in the potential function, have undergone modifications in
xDLVO-CGhybr. The nature of these modifications will be discussed in detail below.
The remaining two potential terms, namely osmotic depletion and ion-protein potential,
have remained unaltered and will be briefly elaborated upon. For a more comprehensive
explanation of these terms, please refer to Chapter 3. In the xDLVO-CGhybr model,
potential terms are computed between proteins that are represented using a CG resolution.
However, for electrostatic interactions that occur at short protein separations, full all-atom
structures are used. This is in contrast to the xDLVO-CG model, which only utilized CG
structures.

4.2.2. Electrostatic Interactions

The xDLVO-CGhybr model utilizes a hybrid approach to determine the electrostatic
interaction energy between two proteins. The model applies the Poisson-Boltzmann
equation to all-atom protein structures to compute the electrostatic interaction energy for
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short protein separations up to R0 + 2nm, where R0 represents the initial center-of-mass
distance. Brief overview of PB theory[24, 23, 83, 82] is given in Section 2.3 in Chapter 2.
For larger separations, the Debye-Hückel model is used,[77] which is calculated using a CG
representation of the protein structures:

Wel(r) =
{

EP B(r), r ≤ Ro + 2nm

EDB(r), r > R0 + 2nm
(4.2)

This method enables the efficient calculation of interaction potential while retaining essential
molecular-level details. When proteins are located in close proximity to each other, the
electrostatic interaction energy is obtained by calculating the difference between the
total electrostatic free energy of the protein complex and the electrostatic energies of the
individual, separated proteins:

EP B(r) = Gcomplex(r) − GP rot1(r) − GP rot2(r) (4.3)

The term G represents the electrostatic free energy obtained through the use of an iterative
solver. For more information on the computational details of these calculations, please
refer to Section 4.2.7.

When the distance between proteins exceeds R0 +2nm, a computationally efficient approach
for calculating electrostatic interactions can be achieved through the use of the Debye-Hückel
model applied to CG protein structures. The relevant equations are as follows:

Wel(r) =
N1∑
i=1

N2∑
j=1

ZiZje2 exp (κ(Rbi + Rbj − rij))
4πε0εrr(1 + κ(Rbi+Rbj)

4 )2
, rij > dij + 2σ (4.4)

Rbi and Rbj are bead radii defined differently in this work and assumed to be equal to the
radius of gyration of the atoms that comprise each bead. r is the COM distance between
two proteins, N1 and N2 are the total number of beads, dij is the starting distance between
bead pairs, rij is the current bead bead distance during protein translation, σ is the length
of the water layer around a protein (0.1 nm), εrr is the relative permittivity, Zi and Zj are
bead charges, and κ is the inverse Debye length is calculated as follows:

κ =
√

2NAe2I

ε0εrkBT
(4.5)

where I stands for ionic strength, NA stands for the Avogadro number, kB stnds for the
Boltzmann constant, and T stands for absolute temperature.

4.2.2.1. Integrating Poisson-Boltzmann and Debye-Hückel Approaches

A hybrid calculation scheme based on PB and Debye-Hückel theory is used to improve
the electrostatic part of the potential of mean force. PB calculations are performed on
all-atom structures at short COM distances, while Debye-Hückel calculations are performed
on CG structures at larger COM distances. The electrostatic binding energy calculated
by PB and Debye-Hückel theory for IgG1 and BPTI is shown in Figure 4.1 as a function
of COM distances. When the energies obtained by these two methods were compared, it
was observed that the largest differences were observed at the initial COM distances, while
the energies were relatively similar at larger protein separations. At short COM distances,
the energies obtained by the Debye-Hückel model were smaller by a factor of three to five
than the values obtained by PB theory. This conclusion applies to all proteins studied
where a smooth transition from PB to Debye-Hückel potential was observed. The Debye-
Hückel equation represents the analytical solution to the PB equation for the interaction
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of two homogeneously charged spheres of equal radius and is used as an approximation
in other cases. Various approximate solutions of PB equations have been investigated
on test molecules or geometric shapes, and their findings show that these models are
more accurate at larger intermolecular distances. The larger deviation between these two

Figure 4.1.: Comparison of calculated electrostatic energy of interactions between a)
BPTI and b) IgG1 proteins by solving Poisson-Boltzmann structure on full all-atom
structure and by using Debye-Huckel on coarse-grained structures. The vertical dashed
orange line indicates COM distance (at Ro+2nm) where electrostatic potential in xDLVO-
CGhybr is switched from Poisson Boltzman to Debye-Hückel model.

models at short separations is expected because specific residue-residue interactions can be
better described by all-atom protein representation and PB theory. At the protein-protein
interface, the effective dielectric constant can shift from the solvent to the protein interior.
As a result, these residues effectively interact as if they belong to the same protein within
its low dielectric environment, resulting in a higher charge-charge interaction than if they
were placed in a solvent medium. These residues become solvated and begin to feel the
dielectric environment of the solvent as protein-protein separation increases.[196] The effects
of dielectric discontinuity become significant only at separations less than Debye length.
The dielectric constant is determined by rolling the solvent probe radius, according to
computational methods for numerically solving PB equations. Furthermore, proteins are
large molecules whose electrostatic interactions are heavily influenced by their shape and
charge distribution. The energy of polarisation due to dielectric interface (second term in
Equation 2.17) is highly dependent on protein shape, with partial atomic charges placed
near the protein surface contributing the most. These and many other factors can all
significantly contribute to the total interaction energy. A hybrid approach was chosen as
a compromise between computational speed and accuracy because solving PB equations
for protein systems, particularly when calculating second osmotic virial coefficients, is
computationally expensive, where electrostatic interactions must be evaluated for a wide
range of starting orientations, COM distances, and salt concentrations. It is demonstrated
that this method can still provide reasonably accurate modeling of electrostatic effects while
also improving predictions of second osmotic coefficients (see Section 4.3). Therefore, it can
be concluded that electrostatic interactions are important in determining overall protein
interactions, and accurate modelling of electrostatic interactions is critical in determining
overall PPIs in solution.

4.2.3. Dispersion Interactions
In the xDLVO-CGhybr model, the dispersion interactions between proteins are calculated
through either the Hamaker potential or the Lennard-Jones potential. The Hamaker
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potential, which arises from electromagnetic quantum fluctuations,[197, 198, 159] describes
the attraction forces between molecules. It is calculated by integrating the London dispersion
forces between two homogeneous spheres[76] and is represented by the following equation:

WHam(r) = −
N1∑
i=1

N2∑
j=1

AH

12
1

N1N2

[
dij

r2
ij − d2

ij

+
d2

ij

r2
ij

+ 2 ln(1 −
d2

ij

r2
ij

)
]

, rij > dij + 2σ (4.6)

Furthermore, the dispersion interactions between proteins were also calculated based on
the Lennard-Jones potential, represented by following equation:

WLJ(r) =
N1∑
i=1

N2∑
j=1

εij

(σij

rij

)12

−
(

σij

rij

)6
 , rij > dij + 2σ (4.7)

Here, εij and σij represent the respective Lennard-Jones parameters for each bead pair. The
equations used in this study are identical to those in our previously reported xDLVO-CG
model. However, unlike in our previous work where LJ parameters were derived using
a simplified method implemented in the coarse-grain builder in VMD, in this study, the
parameters were directly parametrized from all-atom LJ potentials (as described in Section
4.2.8.

4.2.3.1. Modeling Dispersion Interactions: Comparing Hamaker and Lennard-
Jones Potentials

The interaction between two molecules, as proposed by the Lifshitz theory of van der Waals
forces,[197] is rooted in the dipole field created by quantum fluctuations. This results in
mutual polarisation between molecules and with the solvent, giving rise to net attractive
dispersion interactions. This results in mutual polarization between molecules and the
solvent, creating net attractive dispersion interactions. The Lifshitz theory provides a
rigorous theoretical framework for calculating Hamaker constants; however, this approach is
practically challenging as it necessitates knowledge of full refractive indices spectra.[198, 154]
Consequently, Hamaker constants fitted from experiments are more commonly used. In
addition, other approaches can be also used, such as scaling the LJ potential, which is
known to result in overly attractive interactions.[146]

Figure 4.2.: Impact on using Lennard-Jones or Hamaker potential on calculated B22
coefficients for a) BPTI at pH 4.9 b) IgG1 at pH 6.5. The experimental data labeled as
’Farnum 1999’, ’Roberts 2014’ and ’Le Bruin’ were taken from [199, 187, 200].

Our approach uses LJ potentials scaled to match the depth of interaction of Hamaker
potential, with AH obtained from literature. While both approaches give similar B22 values
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(as shown on Figure 4.2), Hamaker potential is more convenient to use while Lennard-Jones
potential can better model anisotropy of dispersion interactions. As it will be shown in
Section 4.3, accurately evaluating electrostatic interactions is crucial for improving the
overall predictive power of the model, while the choice between Hamaker or LJ potentials
has less impact.

4.2.4. Osmotic Depletion Potential

The osmotic potential is a type of attractive interaction between two proteins that occurs
due to the exclusion of ions from the interstitial space between them over short distances.
This exclusion causes a local osmotic pressure imbalance, leading to the additional attractive
interaction between proteins.[79] The osmotic attraction potential Wosm(r) is determined
using the following equation:

Wosm(r) = −
N1∑
i=1

N2∑
j=1

1
N1N2

4πkB

3 TD3
ijρ3(1 − 3rij

4Dij
+

r3
ij

16D3
ij

),

dij + 2σ ≤ rij ≤ 2Dij

(4.8)

where R3 is the mean hydrated radius of the salt (the sum of anion and cation radii), ρ3 is
the salt density, and Dij is defined as Dij = dij + R3 + σ.

4.2.5. Ion-protein Dispersion Interactions

The protein-ion potential describes the total dispersion interaction between the protein
and all ions in its vicinity. The protein is represented as an ideal sphere with the charge Z,
and ions are distributed non-uniformly around it using the Boltzmann distribution. The
total potential is calculated by integrating the contribution of each ion according to:[117]

W disp
i−pr(r) = −4πBa

∫ RP +D

RP +σ

cb exp (−zaϕ(r)/(kBT ))
r

dr

−4πBc

∫ RP +d

RP +σ

cb exp (−zcϕ(r)/(kBT ))
r

dr

(4.9)

In this equation, Ba and Bc are ion-macroion dispersion coefficients that describe the
interaction between the protein and anion and cation ions, respectively, as found in the
literature. Rp refers to the protein radius, and D represents the thickness of the spherical
shell around the protein, which is taken as 1 nm. The charges of the cations and anions are
denoted by zc and za, respectively, while cb represents the bulk salt concentration. Finally,
ϕ(r) represents the electrostatic potential around a protein sphere that carries a charge Z.

4.2.6. Mapping Proteins into Coarse-Grained Structures and Computa-
tional Details of xDLVO-CGhybr Calculations

The all atom structures of proteins were taken from the protein data bank with the codes
1bpi, 3rn3, 2cga, 3nwk, 4f5s and 1mco for bovine trypsin inhibitor (BPTI), ribonuclease
A (RbnA), chymotrypsinogen (ChymA), concanavalin A (ConcA), bovine serum albumin
(BSA) and human immunoglobulin type I (IgG1) respectively. The chosen PDB structures
were checked to see if they contained the missing residues, and if so, the Swiss Model
program was used to model them. The PROPKA method (version 3.3)[170, 171] and the
PDB2PQR online web server[172, 173] were used to assign the protonation states of protein
residues at the desired pH. The protonated all-atom structures were then mapped into the
CG representation (with about 500 atoms per bead) using a SBCG model[160] implemented
in the VMD program (version 1.9.3).[174] The centre of each bead was placed in the
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corresponding atoms’ COM, and the bead radius was assigned to the radius of gyration and
charge as a sum of partial charges. The PMF was calculated by adding interactions between
the corresponding bead pairs from each protein pair using Equations 4.1 to 4.9. The
PMF and B22 were calculated using in-house code, and B22 was determined by numerical
integration of the PMF over various protein-protein orientations using Equation 2.3. The
procedure described in Section 3.2.7 was used to sample protein-protein orientations, except
that due to higher computational costs, PMF was determined over fewer protein-protein
configurations, i.e. by starting from 83 starting radial positions. For each possible starting
configuration, the PMF was determined by translating proteins over a vector connecting the
COMs of two protein pairs up to a distance of R0 + 2nm, where R0 is the initial distance
between two proteins.

4.2.7. Poisson-Boltzmann Calculations: Computational Details

PB calculations on all-atom protein structures were performed using an APBS (Adaptive
Poisson-Boltzmann Solver).[24, 201] First, all-atom protein structures from the PDB were
protonated using the Propka method (as described in Section 4.2.6). The CHARMM
force field was used to assign partial charges and Van der Waals radii to the atoms. The
linearized finite difference PB equation was solved using APBS. Using this method, the
equation is first solved on a coarse grid (with fewer grid points) with large dimensions (grid
lengths). The solution is then used to calculate the Dirichlet boundary conditions for a
smaller region of interest with a finer grid. Three calculations are required to determine the
electrostatic energy of interaction between two proteins: one of the protein-protein complex
and one of each of the two proteins separated from each other. The electrostatic interaction
energy is calculated as the difference between the complex’s electrostatic energy and the
electrostatic energies of the separated proteins (See Equation 4.3). The APBS calculations
were performed at 20 different monovalent salt concentrations ranging from 10 mM to 1M
NaCl. The radii of sodium and chloride were set to 2.0 and 2.23, respectively. One of the
proteins was kept fixed in space for each calculation at a specific salt concentration, while
another protein was translated along the vector connecting their centers of mass, increasing
the distance by one Å in each step. The second protein was moved up to R0 + 2nm from
its starting COM distance R0, and APBS calculations were performed at each intermediate
distance. This allowed to calculate the electrostatic binding energy of protein complexes
at various ionic strengths. In each APBS calculation, the number of grid points, the
length of the coarse grid and the fine mesh domain lengths were set by the internal APBS
script, depending on the size of each studied protein pair. Multiple Debye-Hückel boundary
conditions were used, and the molecular surface definition was "smoothed" using 9-point
harmonic averaging,[85] with the solvent probe radius set to 1.4 Å and the solvent density
set to 10 quadrature points per Å2. The cubic B-spline discretization was used to map
protein charges to the grid. The internal dielectric constant of all proteins studied was
set to 4.0, while the external dielectric constant was set to 78.4 (the dielectric constant
of water medium). To obtain the electrostatic binding energy of the protein complex for
a specific COM distance or ionic strength, six lpbe calculations were required for each
separate calculation (two of complex, first protein, or second protein respectively). To
ensure proper cancellation of self-solvation energies, all calculations were performed with
the same grid spacing.

4.2.8. Lennard Jones Parameters for Coarse-Grained Model

Each bead was assigned its Rmin parameter (Rmin = 21/6σ), which was chosen to be equal
to the radius of gyration of the atoms that make up each bead, and epsilon was fitted to
match the all-atom LJ potential. The all-atom LJ potential was computed by translating
proteins over vector connections COMs of protein pairs, beginning with five distinct relative
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orientations. The potentials were calculated using GROMACS[202] tools (gmx energy) and
CHARMM36m potential parameters,[203] after assigning protonation states according to
Propka and constructing a translation trajectory using GROMACS tools. It was assumed
that the all-atom LJ potential was the same for all pH, as a small number of different
hydrogens did not have a significant impact on the final potential. Next, the CG Lennard
Jones potential was adjusted to match the all-atom potential, with the epsilon parameters
variable and the sigma parameters fixed. A least squares algorithm was used for the fitting
process. The interaction parameters between different beads were determined using Lorentz
Berthelot combining rules. Finally, the depth of the CG LJ potential was scaled to match
the depth of the Hamaker dispersion potential, as LJ parameters are parametrized for
vacuum and their effective interaction in a solvent medium is smaller in magnitude

4.3. Results and discussions

To validate the model, we conducted calculations on six different proteins with varying sizes
and shapes: BPTI, RbnA, ChymA, ConcA, BSA andIgG1, shown on 4.3. The structures
and shapes of these proteins are depicted in Figure 4.3, along with their corresponding
electrostatic maps. We utilized the Hamaker constant as the only adjustable parameter in
our model, which was obtained from the literature or assigned a general value of 5kbT based
on the fundamental Lifshitz theory of electrodynamic forces. We compared the results of
our calculations to the B22 values obtained from previously published experimental data.
To facilitate comparison, we also computed B22 values using an xDLVO-CG model,[117]
an FMAPB2 model,[147] and a standard xDLVO model.[204, ?] The FMAPB2 model uses
an all-atom protein representation in combination with an implicit solvent model and is
publicly available on a web server (https://pipe.rcc.fsu.edu/fmapb2/). The xDLVO model
represents proteins as ideal charged spheres and uses the charge obtained from Propka and
the experimentally determined hydrodynamic radius from literature.

4.3.1. Calculation of B22 Coefficients for Small and Medium-Sized Proteins

4.3.1.1. Bovine Pancreatic Trypsin Inhibitor

BPTI is a small protein with an ellipsoid shape, consisting of 58 residues with a molecular
mass of 6.5 kDa. In physiological conditions, it binds with high affinity to trypsin and other
digestive proteases, inhibiting digestive enzymatic activity. Naturally occurring in various
plants, such as soybeans, legumes, and grains, BPTI plays a role in a self-defense mechanism.
Figure 4.4 shows the calculated B22 coefficients for BPTI at pH 4.9, in comparison with
xDLVO-CG,[117] FMAPB2,[147] and xDLVO models.[?] The calculated values at low and
medium salt concentrations are positive and decrease towards negative with an increase
in ionic strength. Theoretical B22 data points are crossing zero at approximately 0.42
M, following a similar trend of decrease as the experimental data.[199] At pH 4.9, the
protein has a relatively high charge for its small size (+6 according to the Propka method).
Moreover, Figure B.2 shows that all but one protein bead are positively charged without
a significant protein region bearing negative charge, with only one bead bearing charge
-0.06. This uniform local charge distribution contributes to high electrostatic repulsion,
requiring an intermediate salt concentration to screen electrostatic interactions and shift
protein-protein interactions from repulsive to attractive ones. Calculated values of B22
coefficients show nearly quantitative agreement with experimental results of Farnum et
al.,[199] who performed static light experiments to measure the experimental B22 values.
To the best of our knowledge, no other experimental B22 measurements were performed
on BPTI protein. In comparison, the xDLVO-CG model gives B22 values that are shifted
negatively compared to the experimental ones and it crosses zero at a lower ionic strength
of 0.36 M. B22 values calculated with FMAPB2 correlate with xDLVO-CGhybrid results
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Figure 4.3.: All-atom structures of six proteins are presented alongside their correspond-
ing electrostatic maps. Panel (a) depicts the Bovine trYpsin inhibitor (BPTI) at pH 4.9
with a charge of +6. Panel (b) shows Ribonuclease A (RbnA) at pH 3 with a charge
of +16. Panel (c) displays Chimotripsinogen (ChymA) at pH 3 with a charge of +17.
Panel (d) illustrates Concanavalin A (ConcA) at pH 4 with a charge of +25. Panel (e)
demonstrates Bovine serum albumin (BSA) at pH 7.4 with a charge of -16. Finally, panel
(f) presents Human immunoglobulin type 1 (IgG1) at pH 6.5 with a charge of +27. The
protein surface is colored according to the electrostatic potential calculated by APBS,
with blue marking regions of excess positive charge and red marking regions of excess
negative charge. The sizes of the proteins in the illustrations are not to scale, but are
depicted for viewer convenience.
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Figure 4.4.: Calculated B22 coefficients for BPTI at pH 4.9 as a function of NaCl
concentration. The B22 values are compared with the values obtained with xDLVO-CG
(black), FMAPB2 (red) and xDLVO (orange) models and experimental results (circles).
On the left side are shown coarse-grained models of proteins superimposed on an all-atom
representation. The experimental data labeled as ’Farnum 1999’ were taken from [199].

and match the experimental data at all ionic strengths except at the lowest ionic strength
of 0.3 M. At this ionic strength, FMAPB2 model deviates, giving B22 values of -0.0000205
mol · ml/g2, while the experimentally determined value is 0.00033199 mol · ml/g2 (and
xDLVO-CGhybr gives a value of 0.000331996 mol · ml/g2). Moreover, there are slight
differences between calculations made with FMAPB2 and xDLVO-CGhybr at lower ionic
strengths below 0.4 M NaCl. FMAPB2 data crosses the 0 point at approximately 0.27 M
and gives lower B22 values in comparison to xDLVO-CGhybr and xDLVO-CG models. Given
the lack of available experimental measurements, it is challenging to judge which model
performs better at low salt conditions. The xDLVO model overestimates the B22 values
and is out of range of experimental values except at the first point. Brownian simulations
have also been employed by Mereghetti et al to calculate B22 in BPTI solutions.[205]

4.3.1.2. Ribonuclease A

Bovine pancreatic RbnA is a digestive enzyme found in the pancreas that breaks down
single stranded RNAs in food. This small protein consists of 124 amino acid residues
and has a triangular shape with a molecular mass of 13.7 kDa. Due to its small size
and ease of purification, it is frequently used in biochemical research. In fact, several
Nobel prizes have been awarded for discoveries in molecular biology that were made with
the help of this protein. Figure 4.5 displays the calculated B22 coefficients for RbnA at
different pH values (pH 3 and 4) and ionic strengths ranging from 50 mM to 1 M NaCl.
Experimentally determined B22 values at pH 3 show positive values, indicating repulsive
protein-protein interactions until a concentration of approximately 0.95 M NaCl.[206] The
second osmotic virial coefficients calculated using the xDLVO-CGhybr model follow a similar
trend of decrease and predict the repulsive nature of PPIs. The calculated data show good
agreement with experimental data at 0.1 M and 1 M NaCl. However, reproducing the non-
monotonous experimental data at pH 3 using the CG protein representation is challenging,
without considering dynamical changes on an all-atom level. As the ionic strength increases,
electrostatic screening diminishes the repulsion between proteins, resulting in negative B22
coefficients. At the highest salt concentration (1 M), the experimentally determined B22
value is −2.7110−6mol · ml/g2, while the value calculated using the xDLVO-CGhybr model
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is −2.72110−6mol · ml/g2. Although the calculated B22 value is near zero, it is insufficient
to indicate the presence of strong attractive PPIs. The B22 values calculated at pH 4 are
repulsive at almost all salt ranges and agree nearly quantitatively with experimental data,
except at the first two points at lower ionic strength. Increasing the ionic strength up to 1
M is not enough to shift PPIs towards attraction, unlike what is observed for many other
proteins. The repulsive interactions are caused by electrostatic repulsion, which occurs

Figure 4.5.: Calculated B22 coefficients for RbnA at pH 3 and pH 4 (upper and lower
panel) as a function of NaCl concentration. B22 values are compared with the values
obtained with xDLVO-CG (black), FMAPB2 (red) and xDLVO (orange) models and
experimental results (circles). The left side displays coarse-grained models of proteins
superimposed on an all-atom representation. The experimental data labeled as ’Tessier
2002’ were taken from [206].

because the RbnA has a high charge for its size. Figure B.2 indicates that positive charges
are evenly distributed throughout the protein, without significant charge anisotropy that
could reduce electrostatic repulsion. When comparing the B22 values calculated using the
xDLVO-CG model, slightly larger values are obtained at low salt concentrations (below
approximately 0.3 M). After that point, the values shift towards negative values at higher
salt concentrations, leading to larger deviations from experimental data. Similarly, the
FMAPB2 model follows a similar trend as the xDLVO-CG calculations until around 0.2
M salt concentration. However, at higher ionic strengths, the FMAPB2 values shift even
further towards negative values and deviate further from experimental data. The xDLVO
model gives data that falls outside the range of experimental values. It is shifted positively
throughout the entire range of salt concentrations, except at the highest ionic strength
where it provides a good match. To gain a deeper understanding of the observed trends in
changes of the second osmotic virial coefficients, it is essential to examine the potential of
mean force in greater detail. Figure 4.6 provides insight into how the PMF changes with the
addition of salt. At low salt concentrations, the PMF exhibits strong repulsion between the
proteins, primarily due to electrostatic interactions. As the salt concentration increases, the
ionic strength of the solution rises, leading to a screening effect that reduces the strength
of the repulsive interactions. With further increases in salt concentration, the dispersion
interactions between the proteins become more pronounced, resulting in a shift in the
dominant interactions from electrostatic to dispersion forces. The changes in the PMF with
increasing NaCl concentration reflect a complex interplay between various intermolecular
forces that govern the behavior of proteins in solution. Figure 4.6b compares the PMF
at a salt concentration of 1 M NaCl obtained using xDLVO-CGhybr and xDLVO-CG
models. The results reveal that the PB theory predicts a repulsive peak even at 1 M NaCl,
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but this peak only exists at the first five distances. However, this repulsive peak is not
significant enough to cause a major disturbance in the B22 value due to the structure of
the B22 formula (Equation 2.3). By carefully examining the PMF, we can gain a better
understanding of the underlying physics of the system and the factors that contribute to
changes in the B22 values.

Figure 4.6.: Changes of potential of mean force of BPTI at pH 4.9 (upper panel)
and RbnA at pH 3 (lower panel) with increasing NaCl concentration. Strong repulsion
between proteins, originated from electrostatic interactions, decreases with an increase of
ionic strength. When charge screening is achieved, dispersion interactions become more
pronounced. b) Comparison of PMF obtained by xDLVO-CGhybr and xDLVO-CG model

4.3.1.3. Chymotripsynogen

ChymA is a medium-sized globular protein made up of 245 residues. It is a biologically
inactive precursor of chymotrypsin, an enzyme that selectively hydrolyzes peptide bonds
formed by aromatic residues such as tyrosine, phenylalanine, and tryptophan. Figure 4.7
illustrates the calculated B22 values for Chymotrypsinogen A at pH 3 and up to 1 M NaCl
salt concentration. Our calculated values almost quantitatively match the experimental
data of Tessier and Velev,[178, 207] and semi-quantitatively match other experimental data
(of Bajaj and Pjura).[208, 209] In comparison, the data calculated using the xDLVO-CG
model are slightly negatively shifted compared to the data obtained by our new model,
but the difference slowly fades as the ionic strength increases until it reaches practically
the same value at 1 M NaCl. The FMAPB2 calculations show data that are further
shifted towards negative values, especially at higher ionic strengths. In contrast, the values
calculated by the xDLVO model are slightly positively shifted at low salt concentrations
and towards negative at high salt concentrations. Unfortunately, no experimental data were
reported for concentrations higher than 0.4 M NaCl, which makes it difficult to compare
the performance of these models at higher ionic strengts. Lund et al used Monte Carlo
simulations to study the effect of salt concentrations on B22 change in ChymA.[210] They
utilized a simplified model at the residue level and considered interaction potential based
on hard sphere, electrostatics, and Van der Waals contributions. The simulation results
were in line with experimental observations, however, the interactions between proteins
were found to be slightly more repulsive. Monte Carlo simulations have also been employed
by other researchers to calculate B22 in ChymA solutions.[69]
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Figure 4.7.: Calculated B22 coefficients for ChymA at pH 3 as a function of NaCl
concentration. B22 values are compared with the values obtained with xDLVO-CG
(black), FMAPB2 (red) and xDLVO (orange) models and experimental results (circles).
The left side displays coarse-grained models of proteins superimposed on an all-atom
representation. The experimental data labeled as ’Bajaj 2004’ and ’Pjura 2000’ were
taken from [209, 208], while ’Tessier 2002’ and ’Velev 1998’ were taken from [178, 207]

4.3.2. Large proteins

4.3.2.1. Concanavalin A

ConcA is a large protein composed of 237 amino acid residues with a molecular mass of 50
kDa and a planar shape rich in antiparallel beta sheets. It occurs naturally in jack-beans
and plays a role in carbohydrate binding. In biochemistry, ConcA is commonly used to
characterize sugar-containing molecules and to purify glyco molecules in lectin-affinity
chromatography. The protein exhibits a specific dimer-tetramer equilibrium that depends on
solution conditions, existing as a homodimer at pH lower than 7 and as a homotetramer at
pH higher than 7. We performed B22 calculations of ConcA at pH 4 and pH 5 and compared
them with experimental values reported in [127], where similar interaction chromatography
was used to measure B22 values. Since ConcA exists as a dimer at this acidic pH range,
calculations were performed between pairs of dimers. The experimental measurements
showed that ConcA exhibits attractive PPIs, which cross the zero point at approximately
0.12 M NaCl.[127] The B22 coefficients calculated by the FMAPB2 and xDLVO models
do not align with the experimental data, and they deviate from experiments significantly.
In contrast, xDLVO-CGhybr and xDLVO-CG models can reproduce the general trends of
experimental data and predict overall attractive interactions between proteins in solution.
However, the agreement between experimentally determined and theoretically determined
values was less quantitative in comparison to other proteins, which highlights the limitations
of our model. At low ionic strengths, the xDLVO-CGhybr values matched the experimental
data well, while at higher ionic strengths, the data was positively shifted compared to the
experimentally measured values. At pH 4, the xDLVO-CG values were more positive than
both the experimental and xDLVO-CGhybr values. However, at pH 5, the xDLVO-CG
model provided a nearly quantitative match with the experimentally measured data and
outperformed the xDLVO-CGhybr model. The suboptimal performance of the xDLVO-
CGhybr model for the ConcA protein could be attributed to several factors, such as the
uncertainty in the correspondence between the protein charges assigned by the Propka
method and the actual physical charges. Moreover, the protein’s ability to selectively
absorb specific ions, which can alter its effective charge, was not accounted for in this model.
The ConcA protein is also flexible and can adopt various conformations, especially in the
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Figure 4.8.: Calculated B22 coefficients for ConcA at a) pH 4 and b) pH 5 as a function
of NaCl concentration. B22 values are compared with the values obtained with xDLVO-CG
(black), FMAPB2 (red) and xDLVO (orange) models and experimental results (circles).
The left side displays coarse-grained models of proteins superimposed on an all-atom
representation. The experimental data, labeled as ’Quigley 2015’ for different pH values,
were taken from [127].

presence of divalent ions. Furthermore, computational constraints limited our model’s
evaluation of the PMF over a limited set of 83 relative protein orientations, while the B22
value should measure interactions at all possible orientations without favoring individual
conformations, which is computationally unfeasible. More advanced methods could be
used to address these limitations by assessing the most relevant relative configurations and
evaluating a larger set of relative orientations.

4.3.2.2. Bovine Serum Albumin

BSA is a member of the serum albumin family, and is known for its ability to bind
ligands, including drugs, nutrients, and metals. With a mass of 65 kDa and an irregular
shape, BSA is composed of 583 amino acid residues and a CG structure consisting of 20
beads. In this study, we conducted calculations under conditions of pH 7.4 and NaCl
ionic strength up to 1 M, and compared our results with previously reported experimental
values.[134, 135, 181] Our calculations, using the xDLVO-CGhybr model, demonstrated
improved results compared to previous calculations using the xDLVO-CG model, as shown
in Figure 4.9. Our B22 values were shifted closer to the experimental values reported by
Ma et al., and remained positive up to 1 M NaCl. While our calculated data were closer to
FMAPB2 data, FMAPB2 values deviated from the experimentally measured value at 0.2
M, whereas the xDLVO-CGhybr model performed better at capturing experimental trends
in the ionic strength range of 0.05 to 0.1 M NaCl. In contrast, at ionic strengths above 0.1
M, the spherical xDLVO model failed to reproduce B22 coefficients, with values decreasing
abruptly towards the negative range. Our findings highlight the limitations of simple
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Figure 4.9.: Calculated B22 coefficients for BSA at pH 7.4 as a function of NaCl
concentration. B22 values are compared with the values obtained with xDLVO-CG
(black), FMAPB2 (red) and xDLVO (orange) models and experimental results (circles).
The left side displays coarse-grained models of proteins superimposed on an all-atom
representation. The experimental data labeled with ’Ma 2015’ were taken from [135],
while the data labeled with ’Ersch 2016,’ ’Park 2009,’ and ’Moon 2000’ were taken from
[134, 181, 182], respectively.

spherical models like (x)DLVO in predicting the behavior of complex proteins like BSA,
as such models heavily rely on fitted parameters to achieve quantitative agreement with
experimental data. In contrast, our results suggest that the xDLVO-CGhybr model is a more
suitable approach for accurately predicting the behavior of BSA under both low and high
ionic strength conditions. This underscores the importance of developing advanced models
that incorporate the structural and dynamic complexities of proteins to better understand
their behavior in various environments. Such studies, when combined with experimental
measurements, will advance our understanding of the molecular mechanisms underlying
the ligand binding capacity of BSA and related proteins, leading to the development of
new therapeutic approaches for various diseases.
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4.3.2.3. Human Immunoglobulin Type I

IgG1 is a crucial subclass of monoclonal antibodies that play a significant role in the
immune system by recognizing and binding to specific antigens. These molecules have
extensive biotechnological and pharmaceutical importance and are frequently used in clinical
therapies. It is, therefore, essential to develop stable formulations that do not aggregate
over time. Several studies have been conducted using DLVO or xDLVO to model second
osmotic coefficients of monoclonal antibodies in different solution conditions,[140, 119]
as well as to study PPIs at higher protein concentrations.[142] These studies typically
involved the use of various levels of coarse graining, and the models are often based on direct
parametrization from experimental data. IgG1 has a molecular mass of 13.9 kDa and a
characteristic T-shaped structure, composed of 644 residues. Our calculations of IgG1 were

Figure 4.10.: Calculated B22 coefficients for IgG1 at pH 6.5 as a function of NaCl
concentration. B22 values are compared with the values obtained with xDLVO-CG (dashed
red), FMAPB2 (dashed orange) and xDLVO (green dots) models and experimental results
(circles). The left side displays coarse-grained models of proteins superimposed on an
all-atom representation. The experimental data, labeled as ’Roberts 2014’ and ’Le Bruin’
were taken from [187, 200].

performed at pH 6.5 and compared with experimental results reported in the literature,
as shown on Figure 4.10. B22 data calculated by all models were in closer agreement
with experimental values reported by Roberts[187] than by Le Brun,[200] which gave too
repulsive values. Our new model showed a clear improvement in modeling second osmotic
virial coefficients compared to the xDLVO-CG model, yielding values that were closer to the
experimentally determined ones and similar to those obtained using the all-atom FMAPB2
model. In contrast, the simplified xDLVO model yielded data that were completely outside
the experimental range, further highlighting its limited predictive power for large and
irregular proteins. Our study emphasizes the need for more rigorous theoretical approaches
to obtain more quantitative results, particularly for large and complex proteins such as
IgG1.
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4.4. Conclusion

We have developed a new xDLVO-CGhybr model that represents a significant improvement
over our previously reported xDLVO-CG model. The xDLVO-CGhybr model uses a hybrid
approach to calculate the electrostatic part of the potential of mean force, which combines
Poisson-Boltzmann theory and Debye-Hückel theory to accurately calculate the electrostatic
contribution to the total interaction potential for proteins of arbitrary size and shape.
Additionally, we introduced a coarse-grained Lennard-Jones potential that was carefully
parameterized to match the reference all-atom potentials, allowing for accurate predictions
of protein-protein interactions. To validate the accuracy of our model, we tested it on six
different proteins with varying levels of complexity and shape, including bovine pancreatic
trypsin inhibitor, ribonuclease A, chymotrypsinogen, concanavalin A, bovine serum albumin,
and human immunoglobulin type I. Our results showed that the xDLVO-CGhybr model
outperformed other theoretical models such as xDLVO and FMAPB2, giving improved
predictions of B22 values. These results demonstrate the xDLVO-CGhybr model’s potential
as a reliable tool for studying protein interactions and their behavior in solution, particularly
in the context of pharmaceutical and biotechnological applications. However, our xDLVO-
CGhybr model does have some limitations, such as assuming rigid protein structures taken
from crystal PDB databases and limited protonation schemes. Despite these limitations, our
model has been shown to correctly predict the nature of protein-protein interactions in most
cases, which is critical for predicting protein stability and solubility in solution. To further
enhance the accuracy and versatility of our model, future developments could be pursued,
such as using more advanced sampling techniques and incorporating machine learning
algorithms to improve the speed and accuracy of interaction potential computations. These
potential advances could help expand the scope of our model to predict protein interactions
in a wider range of conditions and enable more efficient exploration of parameter space to
optimize protein formulations for stability and solubility.





5. Exploring Specific Protein Interactions:
Molecular Dynamics Simulations of
Beta-Lactoglobulin and Hepatitis B
Core Proteins

5.1. Introduction

Chapter 3 and Chapter 4 introduced xDLVO-CG and xDLVO-CGhybr models, respectively,
which utilize low-resolution coarse-grained structures to assess nonspecific protein inter-
actions across a wide range of solution conditions. However, accurately modeling specific
protein-protein interactions that govern processes such as dimerization or assembly into
ordered nanostructures requires higher structural resolution models. This is due to the fact
that specific interactions are typically driven by residue-residue interactions and the forma-
tion of hydrogen bonds or salt bridges, which necessitate a more detailed representation of
the protein structure. Additionally, the use of accelerated MD techniques (as discussed
in Chapter 2) can aid in simulating these processes and evaluating the associated free
energy changes. This chapter focuses on investigating protein interactions using molecular
dynamics simulations, specifically for beta-lactoglobulin (BLG) and the Cp proteins of
HBV. To investigate these proteins, different simulation methods were used due to their
differing sizes. BLG was simulated using an all-atom MD approach, while coarse-grained
simulations were used to simulate the Cp proteins. Given that the focus of this chapter
is primarily on MD simulations of HBV core proteins, more detailed information about
BLG proteins will be provided in a subsequent section. Through this approach, we aim to
gain diverse perspectives and tackle questions that were previously unattainable with the
models used in the preceding chapters.

As described in Chapter 1, VLPs based on the HBV core Cp proteins are promising
therapeutic agents due to their ability to self-assemble in various systems.[45] These VLPs
have been investigated for use in hepatitis B infection treatment and as nucleic acid carriers
for gene therapy. HBV capsids are made of 120 dimers of core protein that form an
icosahedral structure with T=4 quasi-symmetry.[49] In vitro assembly of Cp proteins into
the VLPs is influenced by solution conditions and can be modulated by pH, temperature, or
ionic strength. Purification is necessary to remove impurities and obtain pure Cp2 dimers
that can be reassembled with therapeutic nucleic acids. In addition to VLPs made from the
naturally occurring Cp protein with 183 aminoacids (Cp183), researchers are investigating
Cp proteins with shorter nucleic acid binding regions, with the aim to improve nucleic acid
loading efficiency and facilitate the production and processing of HBV-based VLPs.[65, 63]
Until now, the most of the experimental and theoretical research thus far has been conducted
on truncated Cp proteins with 149 amino acids (Cp149), which lack a nucleic acid binding
region and cannot encapsulate nucleic acids. Extensive research has been conducted
on truncated Cp149 capsids, with experiments focused on capsid assembly, disassembly,
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stability, and preventing assembly through mutations or antivirals.[211, 212, 55, 213, 214,
215, 216, 217, 218, 219, 220] Some studies have also investigated the in vitro assembly of
empty or RNA-containing HBV capsids using full-length Cp2183 proteins, with notable
differences from truncated Cp2149 capsids.[221, 222, 66, 47] Full-length Cp2183 dimers
assemble at higher ionic strength (>0,25 M) due to strong electrostatic repulsion among
positively charged C-ter domain. Theorethical studies of HBV capsids mainly focused on
truncated Cp149 capsids, but some explored full-length capsids via thermodynamic models.
Zlotnick et al. created a thermodynamic model for HBV Cp149 capsid assembly predicting
assembly kinetics and thermodynamic parameters.[223] Molecular dynamics simulations
investigated capsid flexibility, dynamics, and sodium ion distribution in Cp149 capsids,
their structural stability with antiviral compounds, and disassembly under mechanical
stress.[224, 225, 226, 227, 228, 229, 230, 231, 232] Coarse-grained simulations explored
irreversible Cp149 capsid deformation.[160] For Cp183 capsids, thermodynamic models
were developed which used low-resolution coarse-grained structures for Cp2183 dimers and
tangentially connected charged spheres for RNA chains.[233, 234, 235, 236] These models
could predict the distribution of nucleic acids within the capsid, exposure of the C-terminal
domain, and the optimal genome size for encapsidation.

The current understanding of HBV capsid assembly or disassembly is limited by the absence
of theoretical studies on the interactions between protein-protein and protein-nucleic acids
in HBV capsids and Cp dimers, particularly as the C-ter length changes. Although extensive
research has been conducted on HBV capsid assembly, the detailed mechanisms involved
in protein-protein and protein-nucleic acid interactions during capsid formation are still
unclear. In order to address this gap, we used SIRAH coarse-grained force and umbrella
sampling simulations of Cp2 trimers to investigate the binding energy of Cp2 dimers with
different C-ter lengths (Cp2183, Cp2167, Cp2164, Cp2157, Cp2154, and Cp2149) in an
explicit solvent at physiological temperature. Additionally, we simulated Cp2 trimers in
the presence of model DNA to study how nucleic acids stabilize the capsid structure. Our
objective is to enhance our comprehension of the primary factors that drive HBV capsid
assembly and stability, and to give insights for novel experimental protocols for more
efficient production of HBV capsids.

5.2. Methods

5.2.1. System Setup and Molecular Dynamics Simulations

The all-atom structure of Cp protein was obtained from the PDB database under the code
6htx, and any missing atoms or residues were reconstructed using the Swiss-Model program.
The protein structure was modelled up to residue 183 based on the 6htx crystal structure
of Cp. To set the conformation of the flexible C-ter domain, which is not resolved in any
of the available PDB structures, the Cp dimer structure obtained by Ingemar et al. was
used.[221] They used Bayesian inference to obtain ensembles of conformations that match
experimental SAXS spectra measured in diluted conditions where Cp dimers exist in an
unassembled state. The crystallographic symmetry operations given in the PDB were then
applied to the Cp2183 dimer to obtain the structure of the whole capsid. To investigate
the effect of changing the length of the C-ter domain, truncated trimers of dimers were
obtained by in silico cutting the protein chains at desired positions. The comparison of the
total number of atoms, beads and charge of each Cp2 dimer is shown in Table 5.1. The
MD simulations were conducted using the GROMACS program,[202, 112] and the SIRAH
coarse-grained force field was used.[106] The reconstructed proteins were protonated at pH
7 using the PROPKA method[170, 171] via the PDB2PQR online web server.[172, 173]
The fully protonated all-atom structures were then mapped onto coarse-grained structures
using SIRAH tools.[237] Example of CG structure of Cp2149 dimers obtained by SIRAH
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Table 5.1.: The total number of atoms, beads and charges of Cp2 dimers, truncated at
different positions of the C-terminus

.

Cp, aa Number of atoms Number of beads Charges
149 4722 1456 -14
154 4928 1518 -6
157 5026 1550 -4
164 5276 1628 2
167 5428 1670 8
183 5952 1856 16

Figure 5.1.: Example of CG structure of Cp2149 dimers obtained by SIRAH tools. For
clarity, SIRAH CG structure is shown sumperimposed on all-attom structure (depicted
by lines representarion).

tools is shown on Figure 5.1. The coarse-grained proteins were placed in a rectangular
box and solvated using pre-equilibrated WT4 molecules from the SIRAH force field. The
WT4 molecules placed within 0.3 nm from the protein were removed to allow for relaxation
of protein side chains during minimization while resolving local water gradients in the
equilibration stage. Na and Cl ions were added to the system to achieve a concentration
of 37.5 mM, including electro-neutralising counterions. The system underwent a two-step
energy minimization, first by the steepest descent algorithm was employed for 5000 steps,
with protein backbone atoms harmonically restrained with 1000 kJ/mol·nm, and then by
of an unrestrained minimization for another 5000 steps. Equilibration was performed under
the NVT ensemble at 300 K using the V-rescale thermostat.[95] For the first 5 ns, all protein
CG beads were harmonically restrained, and in the subsequent 25 ns, only backbone beads
of proteins were weakly restrained, while solvent molecules and protein side chains were
allowed to move and relax. The final 25 ns of unrestrained production runs were performed
under NPT conditions, at 300 K and 1 bar pressure, using the V-rescale thermostat and
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Parrinello-Rahman barostat with isotropic pressure coupling.[94] A timestep of 20 fs was
used in all simulations, and the neighbour lists were updated every 10 steps. Electrostatic
interactions were calculated using Particle Mesh Ewald,[238] with a direct cutoff of 1.2 nm
and grid spacing of 0.2 nm, and van der Waals interactions were calculated with a cutoff of
1.2 nm.

5.2.2. Umbrella Sampling Simulations

US simulations were employed to simulate trimers of dimers of six different lengths at
C-terminus in order to estimate protein-protein interactions and investigate the effects of
nucleic acid interactions on trimer disassembly. The COM distance between the first two
Cp2 dimers and the third dissociated Cp2 dimer was selected as the reaction coordinate.
To create the initial configurations for the US windows, pulling simulations were performed
using the last snapshot of a production run. These pulling simulations involved moving
the Cp2 dimer away from the trimer of dimers along the vector that connects the COM
distances of the two groups, as depicted in Figure 5.2. During the pulling simulations,
the first two dimers were harmonically restrained, and a force was applied to separate the
third dimer. The pulling force used was 500 kJ/mol·nm, and the rate of pulling was 0.001
nm/ps. The US windows were asymmetrically distributed, with a spacing of 0.03 nm used
for the first 35 umbrella windows and 0.08 nm used for the remaining windows. A total of
104 US windows were generated, spanning a distance range from R0 to roughly R0 + 4nm,
where R0 represents initial COM distance. The system was equilibrated for 3.5 ns using
the NPT ensemble at 300 K and 1 bar in each window, followed by a 100 ns MD run with
a V-rescale thermostat and Parrinello–Rahman barostat under the NPT conditions.[94] In
each window, a bias harmonic potential of 1500 kJ/mol·nm was applied. The WHAM was
utilized to calculate the potential of mean force by removing the effect of applied bias.[115]
5.1.

5.2.3. Molecular Docking and MD Simulations of Cp2 Trimer-DNA Com-
plexes

In order to investigate the effect of nucleic acids on protein interactions within the Cp2
trimer, simulations were conducted with a DNA molecule (PDB code 1hw2) attached
to the trimer. The SIRAH force field and the same computational setup as previously
described were employed. It should be noted that RNA molecules could not be used
in these simulations due to the lack of force field parameters in SIRAH. The DNA
molecule was docked onto the trimer of dimers using the HDOCK web server (available
at http://hdock.phys.hust.edu.cn/).[239] The HDOCK method utilizes a hybrid docking
strategy that automatically incorporates binding interface information into traditional
global docking. This is achieved through the use of an iterative knowledge-based scoring
function.[240, 241] The top 100 docked structures with the best docking score, representing
the best binding affinity, were simulated for 50 ns using MD. The binding energy between
the DNA and the Cp2 trimers was calculated using the Molecular Mechanics Generalized
Born Surface method (MM-GBSA) method[242] and analysed with the gmmpbsa analysis
tool.[243] The binding energy between the Cp2 trimer and DNA was determined using
a single trajectory approach by subtracting the total molecular mechanics and solvation
energy of the complex from the total energy of the individual components. The best five
structures were used for umbrella sampling simulations, where the Cp2 dimer was separated
from the trimer with the DNA molecule attached in the vicinity to determine its impact
on trimer disassembly. The DNA molecule was not part of any pulling group and was not
restrained during the pulling and umbrella sampling simulations.
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Figure 5.2.: Scheme of employed umbrella sampling simulations

5.2.4. Molecular Dynamics Simulations of Beta-lactoglobulin

US simulationa were performed between BLG monomers using the CHARMM36m force
field[203] and SPC water model[244] in GROMACS (version 2019.2).[202] The BLG
monomers were aligned to the x-axis with periodic boundary conditions in a rectan-
gular box measuring 18.0 x 9.5 x 9.5 nm3. The BLG protein structures were protonated at
pH 3 and pH 7 according to the PROPKA method and PDB2PQR webserver. Sodium
and chloride ions were added to achieve 10 mM and 100 mM salt concentrations. The
systems were first minimized using the steepest descent algorithm with position restraints
on the protein heavy atoms for 30,000 steps. Equilibration was then performed under NVT
and NPT ensembles at 300 K and for 400 ps each using the Berendsen thermostat.[93]
The Berendsen weak coupling method was used to maintain pressure isotropically at 1.0
bar. The simulations were performed with a timestep of 2 fs and short-range nonbonded
interactions were cut off at 1.2 nm. The particle mesh Ewald (PME) algorithm was used
to evaluate full electrostatic interactions beyond 1.2 nm.[238] Pulling simulations were
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performed along the x-axis for 1.2 ns with a spring constant of 1000 kJ (mol nm2)−1

and a pull rate of 0.005 nm/ps, as shown on Figure 5.3. For BLG simulation at pH of
3 and a salt concentration of 100 mM sodium chloride, the spring constant was 1500 kJ
(mol nm2)−1. 5.1. The starting configurations for the US windows were taken from the

Figure 5.3.: Scheme of employed umbrella sampling simulations for Beta-Lactoglobulin.

snapshots of pulling trajectories. A sampling window spacing of 0.0625 nm was used
for COM distances shorter than 4.1 nm and 0.125 nm for distances longer than 4.2 nm,
resulting in an asymmetric distribution. A total of 61 US windows were generated, and
each window underwent equilibration using NPT ensemble at 300 K and 1 bar for 400 ps,
followed by a 20 ns MD run with NPT ensemble using the Nose-Hoover thermostat[245]
and Parrinello-Rahman barostat.[94] Analysis was performed using the WHAM.[115]

5.3. Results and Discussion
5.3.1. The Interplay of Specific and Nonspecific Interactions of Beta-

Lactoglobulin
1 Proteins are composed of diverse amino acids that give rise to both nonspecific (e.g.
electrostatic and dispersion) and specific interactions (e.g. hydrogen bonding), which play
a crucial role in determining the self-assembly and dispersity of protein systems. These
interactions can lead to the formation of larger protein aggregates and are influenced by
factors such as pH and salt concentration. BLG is a small globular protein found in milk, is
an example of a protein whose self-assembly is influenced by both nonspecific and specific
interactions. BLG exists as a monomer or dimer in diluted solutions depending on pH and
ionic strength.[247] At pH values of pH < 3 and pH > 8, BLG monomers are dominant,
while at intermediate pH values, dimers and higher oligomers occur. The pH-dependent
behavior of BLG is due to the charge states of many amino acids, which are influenced by
pH and ionic strength. The key role of electrostatic interactions in BLG’s protein-protein
interactions is due to the pH-dependent charge states of many amino acids in the protein
sequence(Figure 5.4a). However, the dimer binding site of BLG is stabilized by several
hydrogen bonds.[248, 249] Amino acids at the binding interface become positively charged
at low pH, which prevents dimer formation unless higher salt concentration is added to
neutralize the charges. Thus, at intermediate pH values, an interplay of PPIs of various
characters occurs, and BLG exists in solution as a mixture of monomers and dimers, with
ratio of species dependent on pH and salt concentration. The B22 coefficients and binding

1The content presented in this section is based on the work published in Ref. [246], which has been
modified and restructured to align with the format of thesis.
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Figure 5.4.: a) Graphical representation of the charge distribution of the BLG monomer
and dimer as a function of the solution pH. b) Coarse-grained representation of BLG
monomer (on the left) and dimer (on the right) used to calculate B22 coefficient with
xDLVO-CG. c) Change of electrostatic potential between BLG monomers at different
pH and NaCl concentration d) The osmotic second virial coefficient, B22, at different pH
3 and pH 7 and 10 mM and 100 mM Nacl, calculated for monomer–monomer (M–M),
monomer–dimer (M–D) and dimer–dimer (D–D) pairs. The calculated values were
compared with membrane osmometry measurements (green). Adapted with permission
from [246]. Copyright 2022 Royal Society of Chemistry.

energies for dynamically interacting systems were determined by combining xDLVO-CG
calculations with umbrella sampling MD simulations. The binding energy of BLG in its
dimer state was estimated as a function of pH and ionic strength, and the calculated values
were compared with experimental data obtained Uttinger et al.[246] The monomer-dimer
equilibrium constant was determined using analytical ultracentrifugation (AUC), which
allowed the exact ratio of monomers vs dimers to be determined. This information was used
to interpret membrane osmometry experiments that gave the averaged B22 of the solution.
The results, presented in Figure 5.4d, show that the calculated B22 values for BLG at
pH 3 and pH 7 and at NaCl concentrations of 10 mM and 100 mM using xDLVO-CG
are consistent with membrane osmometry measurements. The B22 values suggest that
electrostatic repulsion interactions dominate due to the total charge of BLG monomers of
+18 and -8 at pH 3 and pH 7, respectively, resulting in more positive B22 values, as shown
on Figure 5.4c. The pH dependence of B22 is noticeable, and an increase in ionic strength
promotes self-assembly towards the dimeric state. However, B22 changes slightly differently
for the monomer–monomer, monomer–dimer, and dimer–dimer cases, with more pronounced
differences at pH 3. Nonetheless, the B22 values at the measured salt concentrations do not
differ significantly, indicating an equilibrium state. The results of US calculations which
simulated dimer dissociation are presented in Figure 5.5, and show that the stability of
BLG dimers is strongly influenced by the pH and salt concentration of the solution. At pH
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Figure 5.5.: Free energy of BLG dimerization at pH 3 and pH 7 and for 10 mM and 100
mM NaCl calculated umbrella sampling simulations at 300 K and atmospheric pressure.
Adapted with permission from [246]. Copyright 2022 Royal Society of Chemistry.

7 and NaCl concentrations of 10 mM and 100 mM, the binding energy of the BLG dimer
is -8.3 kcal/mol and -6.9 kcal/mol, respectively, indicating that the dimers are relatively
stable under these conditions. These results are consistent with the experimental data
reported.[246] In contrast, at pH 3 the BLG dimers are less stable, with a binding energy of
-4.2 kcal/mol at 100 mM NaCl. The equilibrium between monomers and dimers is shifted
towards monomers compared to pH 7. At pH 3 and 10 mM NaCl, the energy of binding
is repulsive (+1.2 kcal/mol), which means that dimers are thermodynamically unstable
at these conditions. These results highlight the importance of pH and salt concentration
in determining the stability of BLG dimers, and provide insight into the mechanisms
underlying their formation and dissociation in different solution conditions.

5.3.2. Assessing the Stability of Hepatitis B Capsid Fragments using
Coarse-Grained Simulations and Free Energy Methods

The stability of HBV based VLPs is influenced by a variety of interactions, with electrostatic
forces often playing a dominant role. To investigate the PPIs between core protein homod-
imers (Cp2) of VLPs with different C-ter length and explain their self-assembly propensity
versus interactions with nucleic acids, we employed umbrella sampling simulations. For
computational efficiency, we chose to simulate a smaller capsid fragment, a trimer of Cp2
dimers (as illustrated in Figure 5.2). Experimental studies have identified the trimer of
dimers as an important intermediate nucleate formed during capsid assembly or disassembly
reactions.[217, 223] Using the umbrella sampling simulations, we calculated the free energy
of binding in a complex, specifically the separation of a Cp2 dimer from a trimer of dimers
(see Figure 5.2), with different core protein lengths considered. The addition of residues at
the C-terminus domain from Cp149 to Cp183 (as shown in Figure 5.1) changes the total
protein charge (see Table 5.1). For instance, the Cp2149 dimer has a charge of -14e, while
the Cp2183 dimer has a charge of +16e. This shift from negative to positive charge is
primarily due to the addition of positively charged arginine residues, which are abundantly
present in the flexible 150-183aa C-ter located inside the capsid.
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5.3.2.1. Steered Molecular Dynamics Simulations

In order to investigate the rare event of dimer separation, steered MD simulations were
performed by applying an external force to dissociate the dimer from the trimer of dimers.
Conventional MD simulations would require prohibitively long simulation times to observe
such an event, which motivated the use of steered MD. The force response during the pulling
of the dimer from the trimers was measured, and the results revealed that Cp2164 and
Cp2183 dimers required the highest force to dissociate, while truncated Cp2149 and Cp2154
dimers required the lowest force. These findings suggest that the length of the C-terminal
domain affects the stability of the Cp2 dimer within the trimer of dimers, with longer
C-terminal domains potentially resulting in stronger dimer interactions due to additional
stabilizing interactions between the C-terminal domains and the assembly competent core.
In addition to calculating the force response, the pulling simulations provide insights into

Figure 5.6.: a) The force response during pulling Cp2 dimer from from trimer of dimers
as a function of core protein length b) Illustration of last snapshot from steered MD upon
separating Cp2183 dimer from from trimer of dimers

the molecular-level mechanism of dimer dissociation. The force gradually built up until it
reached a maximum value at approximately 2.5 ns, at which point the force persisted at its
maximum value before gradually decreasing. This behavior corresponds to the beginning of
dimer dissociation, where fewer residues are in contact, and less force is needed to dissociate
the remaining residues. Once the dimer is fully separated from the trimer, less force is
required to pull it away, although some force is still necessary. Figure 5.6b illustrates a
snapshot of the Cp2183 system at the end of the steered MD simulation, after it has fully
separated from the trimer. By understanding the factors that influence the stability of Cp2
dimers within the trimer of dimers, this knowledge could enable researchers to engineer
VLPs with specific properties that are desirable for drug delivery and vaccine development.
The ratio of forces obtained during steered MD simulations can provide insight into the
relative stability of different structures, as more stable structures typically require greater
force to separate. However, direct comparison of force response is complicated by the
fact that each Cp2 dimer has a different mass, with heavier dimers requiring more force
to separate. Furthermore, the presence of flexible residues on the C-terminus side may
cause partial unfolding during dimer separation, requiring additional force and further
complicating direct force comparison. The next section of this chapter will present the
results of US simulations to calculate the binding energy in a quantitative manner, using
the snapshots obtained from the pulling trajectories as starting configurations for a series
of US windows.
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5.3.2.2. Free Energy of Binding from Umbrella Sampling

The results of US simulations shown in Figure 5.7 indicate that the assembly of Cp2 trimers of
different lengths is thermodynamically favorable. The PMF obtained by umbrella sampling
revealed a negative free energy difference between the assembled and dissociated states
for all six proteins, indicating that assembly is energetically favorable. Interestingly, even
though the Cp2149 trimer has a relatively high charge (-14), the protein-protein interactions
were found to be only modestly attractive. This suggests that the efficient VLP formation
of these proteins is achieved through the delicate screening of local charge repulsions at
relatively low ionic strengths. To assess the binding energy of Cp149 obtained from our
simulations, we compared it to the values reported in the literature. Unfortunately, there is
no data available for proteins of other lengths. Ceres et al. estimated the effective subunit-
subunit energy to be -3.1 kcal/mol at 0.15 M NaCl, increasing up to -4 kcal/mol at 0.7 M
NaCl by using a thermodynamic model to analyze the capsid assembly kinetics obtained
by MALLS-SEC (Multi-angle laser light scattering analysis of SEC) measurements.[59]
In a similar study, Chevreuil et al. estimated the effective subunit-subunit interaction to
be -6kbT (-3.56 kcal/mol) by fitting a theoretical model to the capsid melting curve.[212]
Other experimental studies also reported binding energies ranging from -4.15 kcal/mol at 50
mM NaCl to -5.1 kcal/mol at 500 mM NaCl.[216] It is worth noting that the experimental
values for subunit-subunit interactions refer to the effective interaction between subunits
averaged over 240 possible subunit contacts within the capsid. In contrast, in our MD
simulations, the Cp2 dimer has contacts with two other dimers within the trimer of dimers,
so the effective subunit-subunit contact is equal to half of the binding energy obtained
by US (i.e., -3.9 kcal/mol). Our simulation value is slightly more attractive than the
experimentally reported values because our simulations were performed at 37.5 mM NaCl,
while the reported experiments were conducted at 0.15 to 0.7 M NaCl. However, it should
be mentioned that we have not simulated the whole capsid, and the experimentally reported
values were obtained by thermodynamic models that do not take into account the full
atomic structure. It is also worth noting that the experimentally observed change in
subunit-subunit energy with increasing NaCl concentration (from 0.05 M to 0.7 M NaCl) is
relatively low. Overall, our simulation results indicate a favorable thermodynamic assembly
of Cp2149 trimers and shed light on the importance of screening local charge repulsions for
efficient VLP formation. Subunit-subunit interactions are fundamental to the assembly
of viral capsids. Due to the limited experimental data on subunit-subunit interaction
energies, computational simulations can provide valuable insights into these interactions.
The Cp149 proteins are the only ones for which experimental values of subunit-subunit
interaction energies are available. However, simulations have shown that positively charged
arginines at the C-terminus can significantly perturb the PPI between Cp2 dimers. This
effect is not uniform, and Cp2154 and Cp2183 trimers have lower dimer-dimer interactions
compared to Cp2149, leading to weaker attractive forces that are not sufficient to induce
efficient self-assembly into VLPs. The Cp2183 trimer, for instance, has the lowest binding
energy of all six Cp2 trimers. However, the free energy minima is still negative, indicating
weakly attractive overall PPIs. Higher ionic strengths (>0.25 M NaCl) are needed to screen
electrostatic interactions and initiate efficient VLP assembly, either without or with nucleic
acids, giving empty or nucleic acids encapsulated capsids. Over 90% full-length Cp183
capsids form empty under in vivo conditions, and low solubility for Cp2183 dimers were
reported.

In contrast, the other three Cp2 dimers with intermediate core protein lengths interact
more strongly within the trimer, stabilizing it and increasing the final trimer dissociation
energy. Cp2157 trimers are more attractive than Cp2154 trimers, with a free energy minima
of -7.4 kcal/mol. The stabilizing effect is strongest for the trimer formed from Cp2164
proteins, with a free energy minima of -10.5 kcal/mol. Previous theoretical investigations
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Figure 5.7.: Free energy change of trimer dissociation obtained by US simulations at
300 K and atmospheric pressure. US was performed on SIRAH trimers of dimers of 6
different lengths of core protein (Cp149, Cp154, Cp157, Cp164, Cp167, Cp183)

have suggested that capsids with intermediate lengths, such as Cp164, may be more stable
than Cp167 and Cp183 capsids. However, experimental works have reported solubility
issues with Cp2 dimers with intermediate lengths, indicating that processing these proteins
may be cumbersome. Weak subunit-subunit interactions promote efficient capsid growth
by enabling fast dimer exchange, which prevents kinetic traps and corrects misassembled
structures. Even small alterations in binding energy can have a significant impact on VLP
formation. Core protein allosteric modulator components that bind into Cp2149 dimer
interfaces and slightly increase the energy of interaction (from -3.1 to -4.4 kcal/mol at
0.15 M NaCl) can prevent the assembly or enhance it into aberrant structures.[250, 251]
Therefore, it is essential to understand the properties of subunit-subunit interactions to
optimize viral capsid assembly for therapeutic purposes.

5.3.2.3. Analyzing Enthalpy Terms From Molecular Dynamics Trajectories

To gain a deeper understanding of protein-protein interactions and the factors influencing
the interaction between Cp2 dimers, we performed a thorough analysis of the dynamical
change of enthalpy terms during pulling and US simulations. Our results, shown in Figure
5.8a, indicate that the magnitude of Lennard-Jones interactions becomes slightly more
attractive as the core protein length increases, with Cp164 and Cp183 proteins exhibiting
more attractive interactions at the initial COM distances. This is likely due to the longer
protein chains, which may establish more contacts and contribute to a higher magnitude of
Lennard-Jones interactions. However, the difference between Lennard-Jones interactions
is not substantial, and the trends may slightly vary across different runs. In Figure 5.8b,
we show the change in Coulomb interactions between the Cp2 dimer and the rest of the
trimer during the US simulations for different lengths of the C-ter domain. Electrostatic
interactions are one of the most critical driving forces during the assembly and disassembly
of capsids, and in this case, they are significantly modulated by the core protein length.
Cp183 and Cp149 exhibit the largest Coulomb electrostatic repulsion in the gas phase due
to their total charge among all six Cp2 trimers (-42 and +48, respectively). At the shortest
COM distances, Cp2183 exhibits a repulsive energy of approximately 3200 kcal/mol, while
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Figure 5.8.: Dynamical change of enthalpic interactions between Cp2 dimer and Cp2
dimers of dimers during US runs of a) Lennard Jones interactions b) Coulomb energy
(calculated by subtracting the total Coulomb energy of complex from energies of single
components) c) Solvation energy (calculated on all-atom structures backmapped from CG
trajectories) d) Total electrostatic contribution of binding energy (obtained by subtracting
solvation energies from Coulomb energies)

Cp2149 exhibits a lower energy of approximately 2500 kcal/mol. Compared to full-length
Cp183 proteins, Cp2167 dimers exhibit approximately three times smaller electrostatic
repulsion in the range of 1000 kcal/mol. Coulomb electrostatic repulsion is significantly
reduced for Cp2157, Cp2154, and Cp2167 trimers with intermediate lengths of the C-ter
due to their lower total charges. Among them, the Cp2164 trimer exhibits the lowest energy
of Coulomb interaction within a range of 250 kcal/mol at the shortest COM distances and
100 kcal/mol at the largest COM distances (approximately 8 nm) when the Cp2 dimer is
fully separated from the starting trimer structure. We also calculated the contribution of
solvation energy to binding by backmapping coarse-grained MD trajectories to all-atom
trajectories, and solvation energies were computed by the MM-GBSA method, as shown
in Figure 5.8c. Due to the large protein structure and high computational cost, solvation
energies were calculated using the Born model. Our results indicate that solvation energies
are more attractive for Cp2 dimers with larger total charges and larger Coulomb repulsive
interactions, such as Cp2149, Cp2167, and Cp2183. However, even though the solvation
energy can be quite attractive, the overall contribution of electrostatic obtaining energy
(obtained by subtracting solvation energies from Coulomb energies) is unfavorable for all
Cp2 dimers, as shown in Figure 5.8d. Here, Cp149, Cp154, and Cp183 proteins exhibit more
repulsive electrostatic binding energy compared to the other three dimers, which correlates
with the trends obtained with umbrella sampling. It is worth noting that there might be
uncertainty in determining solvation energy due to the use of the Born solvation model and
applying it to backmapped all-atom trajectories. However, the general conclusions remain
valid.
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5.3.2.4. Mapping Residue Contacts During Disassembly Process

To gain insight into the disassembly process of the trimer of Cp2 dimers, the US trajectories
were analyzed by focusing on the time evolution of residue-residue contacts between Cp2
dimers during the simulated disassembly process. We identified which residues from different
Cp2 dimers were in close contact in the starting crystal structure and monitored the breaking
of contacts during dimer separation from the trimer of Cp2 dimers, as well as tracked how
long specific residue-residue contacts between residues were retained during the simulation.
Residue pairs with the largest number of counts were considered hotspot interactions, as
they represent the residues that dissociate the most slowly and are therefore crucial for
overall capsid stability. These contacts are broken last during the dissociation process,
indicating their importance. Figures 5.9 and 5.10 show the contact maps of the probability

Figure 5.9.: Frequency of residue contacts between Cp2 dimers during trimer of Cp2
dissociation for a) Cp2149 b) Cp2154 c) Cp2157 d) Cp2164 dimers

of maintaining contacts between individual residues during Cp2 dimer dissociation for all
six trimers of Cp2 dimers with different core protein lengths. Although the individual maps
differ in the frequency of specific residue-residue contacts, they all share similar features.
The first ten residues that maintain contacts for the longest time are mostly uncharged
and hydrophobic, located within dimer-dimer interfaces in alpha helices through which
respective dimers come into close contact and interact. This finding is consistent with
previous studies that concluded that capsid binding is governed by hydrophobic forces
contributed by burial of apolar residues placed in subunit-subunit interfaces. Figures
5.11 and 5.12 illustrates the position of residues that maintain a high number of contacts
in blue. These residues are mostly located at the end of helical regions through which
dimers establish binding, close to the hinge region (141aa to 149aa) that serves as a linker
between the assembly domain and the nucleic acid C-ter binding domain. The inset of
pictures in Figures 5.11 and 5.12 for Cp2149 dimers and Cp2183 dimers, respectively, show
some of the most occurring individual residues. In addition to non-charged residues, some
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Figure 5.10.: Probability of maintaining residue-residue contacts during Cp2 dimer
dissociation from trimers of dimers for a) Cp2167 and b) Cp2183

charged residues establish contacts, such as positively charged ARG129 and negatively
charged ASP29. This residue-residue pair is maintained for a long time for all six trimers

Figure 5.11.: Illustration of residues which maintain contact between dimers with
highest probability for Cp2149. On the left side, the whole trimer of dimers is depicted,
with residues of high contact probability colored in blue. On the right side, relevant parts
are magnified to provide more details.

of Cp2 dimers, with Cp2183 having the second-highest number of counts. The electrostatic
attractive interaction between these two residues further contributes to dimer-dimer binding
additional stabilization apart from hydrophobic residues. For Cp2 dimers containing the
nucleic acid binding domain, some of them also establish contacts with residues of other
dimers. Residues 149 to 156, for example, might participate in maintaining contacts with
residues of other dimers, such as ARG151 and ARG152 with THR147. This probably
brings additional stabilization to the dimer-dimer binding energy because arginines are
positively charged and the Cp149 core is negatively charged. Several residues have high
contacts in common, including SER 121, THR128, TYR132, PRO134, PRO129, ILE139,
and THR147. Experimental studies have shown that some of these residues, such as
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Figure 5.12.: Illustration of residues which maintain contact between dimers with
highest probability for Cp2183. On the left side, the whole trimer of dimers is depicted,
with residues of high contact probability colored in blue. On the right side, relevant parts
are magnified to provide more details.

TYR132, are important for capsid assembly. For example, the mutation of TYR132 to ALA
in Cp2 dimers causes a deficiency in capsid assembly, although it can undergo co-assembly
if mixed with wild-type proteins.[220, 252, 253] Most of the experimental mutation studies
were performed on truncated C149 capsids; however, these results suggest that the hotspot
residues governing assembly are not significantly influenced by the addition of the nucleic
binding region at the C-terminal side.

5.3.2.5. Characterizing Binding Energies in Cp2 Trimer-DNA Complexes using
Docking and MM-PBSA Method

The fundamental biological role of viruses is to encapsulate and safeguard genetic material
within capsids. However, if HBV based VLPs are to be utilized as therapeutic delivery
agents, it is crucial to incorporate therapeutic nucleic acids into capsids. Therefore, we
conducted a study to investigate how the stability of trimers of Cp2 dimers is affected by the
attachment of nucleic acids. The stability of HBV capsids plays a critical role in assembly,
disassembly, purification steps, as well as in their ability to deliver and release cargo
effectively at the intended site in the organism. The shortest Cp2149 dimers do not possess
a nucleic acid binding region, whereas other dimers such as Cp2154, C2157, Cp2164, Cp2167,
and Cp2183 are capable of binding nucleic acids to varying degrees, with Cp2183 possessing
the full C-terminus length necessary for efficient nucleic acid binding. We performed MD
simulations of Cp2 trimer-DNA complexes to investigate the affinity of Cp for nucleic acid
binding as a function of core protein length. Even though HBV-based VLPs primarily
bind RNA molecules, we chose DNA since currently, the SIRAH force field has parameters
only for DNA molecules. However, several experimental studies have demonstrated that
HBV-based VLPs can bind negatively charged polyelectrolytes, such as RNAs, DNAs,
and negatively charged polymers, nonspecifically. First, we docked DNA to the trimer of
Cp2 (Figure 5.14 displays the top ten docked poses of the trimer-DNA complexes), and
then we used the top 100 docked complexes with the highest docking scores for 50 ns MD
simulations to enable the trimer-DNA structure to relax at a finite temperature and for the
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Figure 5.13.: The top ten docked poses of the Cp2183 trimer-DNA complexes. The
proteins are depicted in a new cartoon representation, colored in brown, while the DNA
molecule is shown in ten different positions and colored with different colors for illustrative
purposes.

Figure 5.14.: The calculated binding energy of trimer-DNA for 100 MD simulations
starting from docked DNA structures for a) Cp2154 b) Cp2157 trimers of dimers

DNA to adjust its binding position within the trimer of Cp2 dimers. We calculated the Cp2
trimer-DNA binding energy and its dependency on different C-terminus lengths using the
MM-GBSA method and a single trajectory approach. Figures 5.14, 5.15a and 5.16 show
the calculated binding energies for each of the 100 MD simulations for each C-terminus
length. The results show that, with the addition of the arginine-rich C-terminus region, the
affinity towards nucleic acids significantly increases. Specifically, Figure 5.14a illustrates
that, for Cp2154 dimers, most docked trimer-DNA complexes exhibit a repulsive binding
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Figure 5.15.: The calculated binding energy of trimer-DNA for 100 MD simulations
starting from docked DNA structures for a) Cp2164 b) Cp2167 trimers of dimers

energy ranging from +1 to +36 kcal/mol, with around half of the complexes falling within
the range of +20 kcal/mol. For Cp2157 trimer-DNA complexes, compared to Cp2154, there
is a higher proportion of complexes in the range of +10 kcal/mol, with around a quarter
of complexes being in the +10 kcal/mol range and another quarter in the +20 kcal/mol
range, and only twelve complexes exhibit attractive energy within the range of -3 to -10
kcal/mol (as shown in Figure 5.14b). With the addition of more positively charged residues
to the C-terminus domain, an increasing proportion of trimer-DNA complexes exhibit an
attractive binding energy. For instance, Figure 5.15a reveals that the Cp2164 trimer-DNA
complex has 24 complexes exhibiting an attractive binding energy ranging from -0.5 to -20
kcal/mol. The trend of a higher proportion of trimer-DNA complexes exhibiting attractive
binding energy continued with Cp2167 trimer-DNA complexes, as 41 complexes exhibited
an attractive binding energy within the range of -1 to -28 kcal/mol (Figure 5.15b). For the
Cp2183 trimer-DNA complex, only 31 trimer-DNA complexes exhibited repulsive energy,
while the majority of complexes exhibited attractive energy within the range of -1 kcal/mol
to -37 kcal/mol, as shown on Figure 5.16a. To further support this trend, Figure Figure
5.16b displays the change of binding energy over simulation time for the most attractive
trimer-DNA complex for each of the trimers of Cp2 dimers with varying C-terminus length.
Overall, these findings indicate that the overall binding energy is heavily dependent on the

Figure 5.16.: The calculated binding energy of trimer-DNA for 100 MD simulations
starting from docked DNA structures for a) Cp2183 b) Change of binding energy through-
out simulation time of the most attractive trimer-DNA complex for each of the trimers of
Cp2 dimers with different length of C-ter
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DNA binding pose, and some complexes with shorter C-termini can exhibit more attractive
binding energies compared to those with longer C-termini. For instance, the 43rd docked
complex of Cp2164 displays an energy of -18 kcal/mol, while nearly half of the Cp2183
trimer-DNA complexes have energies within the range of -10 kcal/mol. This highlights
the importance of considering the DNA binding pose and the role of the C-terminus in
determining the stability of the trimer-DNA complexes.

5.3.2.6. Impact of DNA Binding on Stability of Trimers of Cp2 Dimers

In this study, we investigated the impact of a bound DNA molecule on the stability of
trimers of Cp2 dimers. To accomplish this, we conducted US simulations in a manner
similar like in previous section, but with the DNA attached in the vicinity. We selected five
trimer-DNA complexes for each C-terminus length, which exhibited the most attractive
binding energy according to the MM-GBSA method, as the starting structures for pulling
simulations. The goal of the pulling simulations was to dissociate the Cp2 dimer from the
trimer of dimers and generate starting structures for US simulations. The US simulations
aimed to determine the effect of DNA on the energy required to separate the Cp2 dimers
from trimers of dimers. Figures 5.17, 5.18 and 5.19 illustrate the calculated free energy

Figure 5.17.: Free energy of Cp2 dimer binding obtained by US when Cp2 dimer is
dissociated from trimer in presence of DNA. The calculated free energy of separating Cp2
from Cp2 trimer by using umbrella sampling technique for a) Cp2154 b) Cp2157 where
DNA is attached to the trimer at different position.

change of Cp2 dissociation from the corresponding trimers in the presence of DNA. To
evaluate the impact of DNA on the stability of trimers of Cp2 dimers, we performed an
analysis specifically for Cp2 dimers that contained the nucleic acid binding regions Cp2154,
Cp2157, Cp2164, Cp2167, and Cp2183. As a point of comparison, we included the free
energy of Cp2 dissociation for pure Cp2 trimers without DNA attached in the vicinity,
which was previously presented in a previous Section 5.3.2.2 and is depicted by the dashed
line. The results show that DNA stabilizes Cp2 trimers, resulting in a more attractive
(negative) free energy of dissociation. Furthermore, the DNA binding pose also affects
the binding energy between Cp2 dimers in the trimer. As a result, the average binding
energy of each of the five different DNA binding poses is depicted in Figure 5.19b. It
should be noted that our simulations which produced more attractive binding energies
were mostly due to direct contact between the separated dimer and the DNA molecule.
While we selected the dimer that was farthest from the DNA for separation, in some cases
direct contact could not be avoided. This suggests that dimers have a higher propensity to
dissociate in regions with lower nucleic acid density, which is relevant since nucleic acids are
not evenly distributed around each dimer in real capsids. The degree of stabilization varies
based on the length of the binding region. For example, in the case of trimers of Cp2154
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Figure 5.18.: Free energy of Cp2 dimer binding obtained by US when Cp2 dimer is
dissociated from trimer in presence of DNA. The calculated free energy of separating
Cp2 from Cp2 trimer by using US simulationa for a) Cp2164 b) Cp2167 where DNA is
attached to the trimer at different position.

dimers, the presence of DNA results in a shift of the binding energy to values ranging from
-6 kcal/mol to -13 kcal/mol, depending on the DNA binding pose. The average binding
energy over five US simulations with different DNA binding poses is -9 kcal/mol, which is
1.65 times more attractive than the energy in the absence of DNA. Similarly, for trimers
of Cp2157 dimers, the average binding energy in the presence of DNA is approximately
-9.2 kcal/mol. Here, the stabilization factor is 1.22, as the binding energy in the absence
of DNA is slightly more attractive compared to Cp154 proteins. Notably, the average
binding energy of Cp2154 and Cp2157 dimers in the presence of DNA is 1.4 kcal/mol more
attractive than that of trimers of Cp2149, which lack nucleic acid binding regions. This is
indirectly supported by capsid disassembly experiments conducted by Valentic et al.,[63]
where Cp154 and Cp157 capsids exhibited slightly lower dimer yields compared to Cp149
capsids, suggesting that Cp154 and Cp157 capsids are more stable. The stabilization

Figure 5.19.: a) Free energy of Cp2183 dimer binding obtained by US when Cp2183
dimer is dissociated from trimer in presence of DNA b) Summary of US simulations
without (in blue) and with (in red) bonded DNA to the trimer. Results for Cp2 trimer-
DNA complex are average of five different US simulations, in which DNA was attached
to the trimer at different positions.

effect is particularly strong for trimers with longer nucleic acid binding regions, such as
Cp2164, Cp2167, and C22183. These proteins have more positively charged residues at the
C-terminus, which allows them to establish strong interactions with DNA and stabilize
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the system. For example, Cp2164 and Cp2167 dimers exhibit binding energies of -10.4
kcal/mol and -8.7 kcal/mol in the absence of DNA, while the average binding energy in the
presence of DNA is -15 kcal/mol and -16 kcal/mol, respectively. As a result, the trimers
are stabilized by a factor of 1.49 and 1.84, respectively. The strongest stabilization effect is
observed for trimers of Cp2183 dimers, where the attractive energy is 4.9 times stronger
compared to the case when DNA is not present. The efficiency of VLP (dis)assembly
depends on the complex interplay between core proteins and nucleic acids. The Cp2183
trimer displays moderately attractive dimer-dimer interactions and a strong affinity for
negatively charged DNA or RNA, resulting in the formation of an exceptionally stable
capsid. Consequently, the processing of these VLPs can be challenging. Similar effects may
also be observed in the case of Cp2164 and Cp2167 capsids. Several experimental studies
have found that Cp183 capsids, which encapsulate nucleic acids, exhibit higher stability
compared to truncated and empty Cp149 capsids. Valentic et al. reported that Cp164
and Cp167 capsids had lower disassembly yields compared to all other capsids, indicating
that they were the most stable, while Cp183 dimers showed yields within the range of
Cp154 and Cp157 capsids. Furthermore, Ma et al. demonstrated through a theoretical
model of capsid thermodynamics that Cp164 capsids were more stable than Cp183 capsids.
However, our calculations showed that Cp183 dimers had the highest binding energy in
the presence of DNA compared to other dimers, contrary to previous findings suggesting
that Cp164 should be more stable. It should be noted that our simulations did not capture
the full effects of the capsid environment due to the absence of the entire capsid structure.
Sominskaya et al. measured that capsids with different core protein lengths encapsulate
varying amounts of nucleic acids,[65] which was also supported by theoretical calculations
based on a capsid thermodynamic model, which showed that capsids are most stable with an
optimal amount of nucleic acids, while smaller or larger amounts can destabilize the capsid.
Taken together, these studies highlight the complex interplay between capsid proteins and
nucleic acids in determining the stability of viral capsids. While some capsids have been
shown to be more stable than others, the optimal amount of nucleic acids and the effects of
the capsid environment on stability are still being explored. Furthermore, our calculations
suggest that capsids with shorter nucleic acid binding regions may be more optimal for
efficient VLP production. These capsids can still bind some nucleic acids without being
over-stabilized, which may impede the ease of assembly and release of nucleic acid cargo
during VLP processing and handling.
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5.4. Conclusion

In this chapter, a molecular dynamics study was conducted on beta-lactoglobulin proteins
and fragments of hepatitis B capsids, i.e. trimers of Cp2 dimers as representative structure of
whole capsid. The study employed the accelerated molecular dynamics technique (umbrella
sampling) to investigate the free energy of beta-lactoglobulin dimerization and the free
energy of dissociation of trimers of Cp2 dimers of hepatitis B core proteins. To increase
computational efficiency, a coarse-grained SIRAH force field was utilized, which retains the
positions of backbone atoms while preserving high structural details of protein structure.
The results of the study showed a delicate dependence of the monomer-dimer equilibrium
of beta-lactoglobulin on the pH and ionic strength of the solution. In the study of the core
proteins of hepatitis B capsids, different variants of the protein were examined, beginning
with naturally occurring Cp proteins that had the full length of the nucleic acid binding
region, and then variants with gradually truncated the residues at the C-terminus until
they reached a variant that lacked a nucleic acid binding region. In addition, the study
also investigated the stabilization of trimers of Cp2 dimers through the attachment of DNA
to core proteins. This serves to attenuate the electrostatic repulsion among positively
charged C-termini, which are responsible for binding nucleic acids. The results of the
umbrella sampling simulations showed that the free energies were highly dependent on
the length of the C-terminus side of the core protein, which is further influenced by the
attachment of DNA molecules serving as an additional stabilizing factor for the trimers of
dimers. Compared to the Cp149 proteins lacking a nucleic acid binding domain, Cp183
with the full length of the C-terminus and Cp154 which contain only a small part of the
C-terminus, exhibit less attractive binding energy in the absence of nucleic acids, indicating
destabilization. In contrast, proteins with intermediate lengths of C-terminus, such as
Cp157, Cp164, and Cp167, were found to be stabilized. This is because the total charge of
the proteins decreases as one goes from the fully truncated Cp149 proteins with a charge
of -7 to the Cp183 proteins with a charge of +8. When DNA was attached to trimers of
dimers, the binding energy became more attractive with the increase in the length of the
nucleic acid binding region. This effect was most dramatic for Cp183, where the binding
energy became five times more attractive, transitioning from slightly attractive to overly
attractive energy. The study highlights the importance of the delicate balance between
protein-protein and protein-nucleic acid interactions in the stability of VLPs. The results
indicate that structures that are too stable can be difficult to process experimentally, while
structures with insufficient binding energy may not form easily.





6. Summary

Proteins are fundamental macromolecules with a vast array of functions and characteristics,
making them suitable for various biopharmaceutical applications, such as targeted drug
delivery and vaccines. Virus-like particles are a highly promising protein-based therapeutic
with strong immunogenicity, therapeutic nucleic acid encapsulation, and potential use in
gene therapy. In this thesis, we modeled protein-protein interactions using coarse-grained
protein structures and different levels of theory, ranging from computationally affordable
continuum models to nearly atomistic, high-resolution coarse-grained models combined
with accelerated molecular dynamics. Our calculations of second osmotic virial coefficients
provided insight into the effective interaction between protein solutions, a critical factor
in ensuring the overall stability of protein solutions and preventing unwanted aggregation
during biotechnological processing. Additionally, we explored the dimerization and stability
of proteins aggregates using accelerated molecular dynamics techniques.

Chapter 3 introduced a newly developed xDLVO-CG model that predicts protein solution
stability and salt-induced dependencies. Specifically, xDLVO-CG is used for calculating
second osmotic virial coefficients of proteins in solution. The model uses a shape-based
coarse-grained representation to account for anisotropic protein-protein interactions, which
reduces or eliminates the need for fitting experimental data. The model has been validated
with experimental data for several benchmark proteins and can be applied to a wide range
of proteins. The model has also been used to compute osmotic second virial coefficients for
hepatitis B virus core protein dimers, demonstrating its potential for predicting protein
stability under different conditions.

Chapter 4 presented the xDLVO-CGhybr model, which is an improvement over the xDLVO-
CG model presented in the previous chapter. The xDLVO-CGhybr model uses a hybrid
approach to calculate the electrostatic part of the potential of mean force, combining
Poisson-Boltzmann theory applied on all-atom structures of proteins at short separation and
Debye-Hückel theory applied on coarse-grained structures at larger interprotein separations
for accurate calculation. The model shows improved predictions of second osmotic virial
coefficient values compared to other models available in literature.

xDLVO-CGhybr and its predecessor xDLVO-CG are already valuable tools for calculating
second osmotic virial coefficients and studying protein interactions, but there is still much
potential for further developments to enhance their accuracy and versatility. One possible
direction is to improve the methods for fast and easy calculations of Hamaker constants by
Lifshitz theory. Additionally, machine learning approaches could be applied to calculate
electrostatic energies more quickly and accurately. In cases where protein conformational
flexibility is important, potential terms from the model could be used in Monte Carlo
simulations to sample the most relevant protein-protein orientations. This approach can
help to better capture the dynamic nature of protein interactions and improve the accuracy
of the predictions. Overall, these potential developments have the potential to enhance
the accuracy and versatility of xDLVO-CGhybr and xDLVO-CG models, which in turn
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can broaden their impact and expand their scope of applicability in pharmaceutical and
biotechnological applications.

In Chapter 5, molecular dynamics simulations investigated the free energy of beta-lactoglobulin
dimerization and the dissociation of trimers of dimers of hepatitis B core proteins. The
study revealed the delicate dependence of beta-lactoglobulin’s monomer-dimer equilibrium
on pH and ionic strength, and the complex interplay between protein-protein and protein-
nucleic acid interactions in virus-like capsid stability. The study showed that free energies
of trimers of dimers dissociation were highly dependent on the length of the C-terminus,
with intermediate proteins exhibiting the most stability. Attaching DNA to trimers of
dimers increased binding energy, especially for full-length Cp183 proteins, increasing five
times compared to the absence of nucleic acids. The simulations highlighted the importance
of balancing protein-protein and protein-nucleic acid interactions in capsid stability. These
findings have implications for the development of biopharmaceuticals and gene therapies,
where overly stable or insufficiently stable structures may be problematic. The study’s
findings underscore the potential of molecular dynamics simulations in studying protein
interactions and the behavior of virus-like capsids in different conditions, providing valuable
insights into the development of biopharmaceuticals and gene therapies.

Future studies could investigate the effect of different factors such as temperature or
solvent type on protein interactions, contributing to a more comprehensive understanding
of the behaviour of core HBV proteins in solutions. Future work can involve simulating
whole HBV capsids that encapsulate different amounts of nucleic acids. The combination
of these simulations with experiments can significantly enhance the understanding of
capsid stabilities and aid experimentalists in designing appropriate systems. Additionally,
computational studies could explore the introduction of mutations or epitope sequences,
as well as covalent modifications of core proteins, to identify optimal virus-like particle
candidates. Finally, studying the selectivity of capsids to target specific cells in the body for
releasing therapeutic cargo, and understanding the triggering of capsid disassembly in vivo
conditions to release the cargo are both essential for successful therapeutic applications.

Protein research is crucial for developing novel therapies and materials for various applica-
tions. In addition, Proteins and peptides can also serve as building blocks for new materials,
energy sources, and devices. However, efficient technological processes must be developed
to realise the full potential of proteins. A crucial step in the development of any protein
product is to ensure that protein solutions are stable and capable of long-term storage.
The world today is changing at a rapid pace, with a rapidly increasing population, leading
to new potential threats to human health, as exemplified by the recent COVID pandemic.
Consequently, the need for novel therapeutic approaches that can effectively address these
challenges becomes crucial. Virus-like particles hold great promise as future vaccines and
gene therapies. However, to turn this promise into reality, a collaborative effort between
experimental and computational researchers is essential.



7. Zusammenfassung

Proteine sind grundlegende Makromoleküle mit einer Vielzahl von Funktionen und Eigen-
schaften, die sie für verschiedene biopharmazeutische Anwendungen, wie die gezielte Abgabe
von Medikamenten und Impfstoffen, geeignet machen. Virusähnliche Partikel sind ein
vielversprechendes Therapeutikum auf Proteinbasis mit starker Immunogenität, therapeutis-
cher Nukleinsäureverkapselung und potenziellem Einsatz in der Gentherapie. In dieser
Arbeit modellierten wir Protein-Protein-Wechselwirkungen unter Verwendung grobkörniger
Proteinstrukturen und verschiedener Theorieniveaus, die von rechnerisch erschwinglichen
Kontinuumsmodellen bis zu nahezu atomistischen, hochauflösenden grobkörnigen Modellen
in Kombination mit beschleunigter Molekulardynamik reichen. Unsere Berechnungen der
zweiten osmotischen Virialkoeffizienten gaben Aufschluss über die effektive Wechselwirkung
zwischen Proteinlösungen, ein entscheidender Faktor für die Gewährleistung der Gesamt-
stabilität von Proteinlösungen und die Verhinderung unerwünschter Aggregation während
der biotechnologischen Verarbeitung. Darüber hinaus untersuchten wir die Dimerisierung
und Stabilität von Proteinaggregaten mit Hilfe beschleunigter Molekulardynamiktechniken.

In Kapitel 3 wurde ein neu entwickeltes xDLVO-CG-Modell vorgestellt, das die Stabilität
von Proteinlösungen und salzinduzierte Abhängigkeiten vorhersagt. Konkret wird xDLVO-
CG zur Berechnung der zweiten osmotischen Virialkoeffizienten von Proteinen in Lösung
verwendet. Das Modell verwendet eine formbasierte grobkörnige Darstellung, um anisotrope
Protein-Protein-Wechselwirkungen zu berücksichtigen, wodurch die Notwendigkeit der
Anpassung experimenteller Daten reduziert oder beseitigt wird. Das Modell wurde mit
experimentellen Daten für mehrere Referenzproteine validiert und kann auf eine breite
Palette von Proteinen angewendet werden. Das Modell wurde auch zur Berechnung der
zweiten osmotischen Virialkoeffizienten für Hepatitis-B-Virus-Kernproteindimere verwendet,
was sein Potenzial für die Vorhersage der Proteinstabilität unter verschiedenen Bedingungen
unter Beweis stellt.

In Kapitel 4 wurde das xDLVO-CGhybr-Modell vorgestellt, das eine Verbesserung gegenüber
dem im vorherigen Kapitel vorgestellten xDLVO-CG-Modell darstellt. Das xDLVO-CGhybr-
Modell verwendet einen hybriden Ansatz zur Berechnung des elektrostatischen Teils des
Interaktionspotentials, indem es die Poisson-Boltzmann-Theorie, die auf atomistische
Strukturen von Proteinen bei kurzen Abständen angewandt wird, und die Debye-Hückel-
Theorie, die auf grobkörnige Strukturen bei größeren Abständen zwischen den Proteinen
angewandt wird, zur genauen Berechnung kombiniert. Das Modell zeigt eine verbesserte
Vorhersage der Werte des zweiten osmotischen Virialkoeffizienten im Vergleich zu anderen
in der Literatur verfügbaren Modellen.

xDLVO-CGhybr und sein Vorgänger xDLVO-CG sind bereits wertvolle Werkzeuge für
die Berechnung von zweiten osmotischen Virialkoeffizienten und die Untersuchung von
Proteinwechselwirkungen, aber es gibt noch viel Potenzial für weitere Entwicklungen, um ihre
Genauigkeit und Vielseitigkeit zu verbessern. Eine mögliche Richtung ist die Verbesserung
der Methoden zur schnellen und einfachen Berechnung der Hamaker-Konstanten mit Hilfe
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der Lifshitz-Theorie. Außerdem könnten Ansätze des maschinellen Lernens angewandt
werden, um elektrostatische Energien schneller und genauer zu berechnen. In Fällen, in
denen die Flexibilität der Proteinkonformation von Bedeutung ist, könnten Potenzialterme
aus dem Modell in Monte-Carlo-Simulationen verwendet werden, um die wichtigsten
Protein-Protein-Orientierungen zu ermitteln. Dieser Ansatz kann dazu beitragen, die
dynamische Natur der Proteinwechselwirkungen besser zu erfassen und die Genauigkeit der
Vorhersagen zu verbessern. Insgesamt haben diese möglichen Entwicklungen das Potenzial,
die Genauigkeit und Vielseitigkeit von xDLVO-CGhybr- und xDLVO-CG-Modellen zu
verbessern, was wiederum ihre Wirkung und ihren Anwendungsbereich in pharmazeutischen
und biotechnologischen Anwendungen erweitern kann.

In Kapitel 5 wurden die freie Energie der Beta-Lactoglobulin-Dimerisierung und die Dissozi-
ation von Trimeren von Dimeren der Hepatitis-B-Kernproteine anhand Molekulardynamik-
simulationen untersucht. Die Studie zeigte die empfindliche Abhängigkeit des Monomer-
Dimer-Gleichgewichts von Beta-Lactoglobulin vom pH-Wert und der Ionenstärke sowie das
komplexe Zusammenspiel von Protein-Protein- und Protein-Nukleinsäure-Wechselwirkungen
bei der virusartigen Kapsidstabilität. Die Studie zeigte, dass die Differenz der freien Energie
der Dissoziation von Trimeren von Dimeren stark von der Länge des C-Terminus abhängen,
wobei Zwischenproteine die größte Stabilität aufweisen. Das Anhängen von DNA an
Trimere von Dimeren erhöhte die Bindungsenergie, insbesondere für Cp183-Proteine in
voller Länge, und zwar um das Fünffache im Vergleich zur Abwesenheit von Nukleinsäuren.
Die Simulationen verdeutlichen, wie wichtig das Gleichgewicht zwischen Protein-Protein-
und Protein-Nukleinsäure-Interaktionen für die Stabilität des Kapsids ist. Diese Ergebnisse
haben Auswirkungen auf die Entwicklung von Biopharmazeutika und Gentherapien, bei
denen zu stabile oder unzureichend stabile Strukturen problematisch sein können. Die
Ergebnisse der Studie unterstreichen das Potenzial von Molekulardynamiksimulationen
bei der Untersuchung von Proteininteraktionen und des Verhaltens von virusähnlichen
Kapsiden unter verschiedenen Bedingungen und liefern wertvolle Erkenntnisse für die
Entwicklung von Biopharmazeutika und Gentherapien.

Künftige Studien könnten die Auswirkungen verschiedener Faktoren wie Temperatur oder
Lösungsmitteltyp auf die Proteininteraktionen untersuchen und so zu einem umfassenderen
Verständnis des Verhaltens von HBV-Kernproteinen in Lösungen beitragen. Zukünftige
Arbeiten könnten die Simulation ganzer HBV-Kapsiden beinhalten, die unterschiedliche
Mengen an Nukleinsäuren einkapseln. Die Kombination dieser Simulationen mit Experi-
menten kann das Verständnis der Kapsidstabilität erheblich verbessern und Experimen-
tatoren bei der Entwicklung geeigneter Systeme unterstützen. Darüber hinaus könnten
Computerstudien die Einführung von Mutationen oder Epitopsequenzen sowie kovalente
Modifikationen von Kernproteinen untersuchen, um optimale Kandidaten für virusähnliche
Partikel zu identifizieren. Schließlich sind die Untersuchung der Selektivität von Kapsiden
für die Freisetzung von therapeutischen Molekülen auf bestimmte Zellen im Körper und das
Verständnis der Auslösung des Kapsidabbaus unter in vivo-Bedingungen für die Freisetzung
der Molekülen von wesentlicher Bedeutung für erfolgreiche therapeutische Anwendungen.

Die Proteinforschung ist von entscheidender Bedeutung für die Entwicklung neuer Therapien
und Materialien für verschiedene Anwendungen. Das Verständnis der Proteinmechanismen
ist angesichts der wachsenden Bevölkerung und neu auftretender Krankheiten besonders
wichtig. Proteine und Peptide können nicht nur als therapeutische Wirkstoffe, sondern
auch als Bausteine für neue Materialien, Energiequellen und Geräte dienen. Um das volle
Potenzial von Proteinen auszuschöpfen, müssen jedoch effiziente technologische Verfahren
entwickelt werden. Um diese Ziele zu erreichen, sind weitere Fortschritte aus theoretischer
und experimenteller Sicht erforderlich. Die in dieser Arbeit vorgestellten Arbeiten sowie
mögliche zukünftige Entwicklungen sind ein bemerkenswerter Schritt in Richtung dieser
Ziele. Durch die Erforschung der Eigenschaften und des Verhaltens von Proteinen können
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die Forscher ihr volles Potenzial zum Nutzen der Gesellschaft ausschöpfen.
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Appendix

A. List of Parameters in Equations

• AH : Hamaker constant

• MW : Molar mass of protein

• Rp: Protein radius

• Z: Protein charge

• T : Absolute temperature

• ϵr: Relative permitivity

• κ: Debye length

• σ: Water layer around protein

• I: Ionic strength

• R3: Salt radius

• ρ3: Salt density

• ϵij: Epsilon parameter of Lennard-Jones potential between two coarse-grained beads

• σij: Sigma parameter of Lennard-Jones potential between two coarse-grained beads

B. Coarse-Grained Structures and Their Charge Distribution of Proteins
Used in xDLVO-CG and xDLVO-CGhybr Calculations

Figure B.1.: Charge distribution over coarse grained beads for a) LYZ at pH 7 and b)
Subs at pH 5.5
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Figure B.2.: Charge distribution over CG beads for a) BPTI at pH 4.9 and b) RbnA at
pH 3

Figure B.3.: Charge distribution over coarse grained beads for ChymA at pH 3
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Figure B.4.: Charge distribution over coarse grained beads for ConcA at pH 4

Figure B.5.: Charge distribution over coarse grained beads for BSA at pH 7.4
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Figure B.6.: Charge distribution over coarse grained beads for IgG1 at pH 6.5
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C. Calculated Second Osmotic Virial Coefficients of Proteins

Figure C.7.: Second osmotic virial coefficients for IgG1 at pH 6.5 as a function of NaCl
concentration calculated using xDLVO-CG, xDLVO and FMAPB2 models in comparison
with experimental data. The experimental data, labeled as ’Roberts 2014’ and ’Le Bruin’
were taken from [187, 200].
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D. Overlap of Histograms from Umbrella Sampling Simulations of Cp
Proteins

Figure D.8.: Overlap of histograms from umbrella sampling simulations for disassembly
of trimers of a) Cp2149 and b) Cp2154 dimers

Figure D.9.: Overlap of histograms from umbrella sampling simulations for disassembly
of trimers of a) Cp2157 and b) Cp2164 dimers
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Figure D.10.: Overlap of histograms from umbrella sampling simulations for disassembly
of trimers of a) Cp2167 and b) Cp2183 dimers
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