
Journal of Object Technology | RESEARCH ARTICLE

Evaluating Model Differencing for the Consistency
Preservation of State-based Views

Jan Willem Wittler1, Timur Sağlam1, and Thomas Kühn2

1Karlsruhe Institute of Technology, Germany
2Martin Luther University Halle-Wittenberg, Germany

ABSTRACT While developers and users of modern software systems usually only need to interact with a specific part of the
system at a time, they are hindered by the ever-increasing complexity of the entire system. Views are projections of underlying
models and can be employed to abstract from that complexity. When a view is modified, the changes must be propagated
back into the underlying model without overriding simultaneous modifications. Hence, the view needs to provide a fine-grained
sequence of changes to update the model minimally invasively. Such fine-grained changes are often unavailable for views
that integrate with existing workflows and tools. To this end, model differencing approaches can be leveraged to compare two
states of a view and derive an estimated change sequence. However, these model differencing approaches are not intended to
operate with views, as their correctness is judged solely by comparing the input models. For views, the changes are derived
from the view states, but the correctness depends on the underlying model. This work introduces a refined notion of correctness
for change sequences in the context of model-view consistency. Furthermore, we evaluate state-of-the-art model differencing
regarding model-view consistency. Our results show that model differencing largely performs very well. However, incorrect
change sequences were derived for two common refactoring operation types, leading to an incorrect model state. These types
can be easily reproduced and are likely to occur in practice. By considering our change sequence properties in the view type
design, incorrect change sequences can be detected and semi-automatically repaired to prevent such incorrect model states.

KEYWORDS Model-view consistency, Model differencing, Model comparison, View-update problem, Change sequence, View-based development.

1. Introduction
Modern software systems have increased in their complexity
and model vast domain knowledge (Murer et al. 2011). With
the paradigm of model-driven engineering, this knowledge is
modeled explicitly (Kent 2002). Interacting with such com-
plex and large-scale models, especially in a collaborative and
agile way, is challenging. Whether users or developers, indi-
vidual stakeholders usually only want access to a subset of the
model to address a specific concern. Moreover, they typically
benefit from working on a subset, which hides some underly-
ing complexity and allows them to focus strictly on their task.

JOT reference format:
Jan Willem Wittler, Timur Sağlam, and Thomas Kühn. Evaluating Model
Differencing for the Consistency Preservation of State-based Views. Journal
of Object Technology. Vol. 22, No. 2, 2023. Licensed under Attribution 4.0
International (CC BY 4.0) http://dx.doi.org/10.5381/jot.2023.22.2.a4

Moreover, some stakeholders might only have limited access
to the model or might be prohibited from changing parts of it.
Projective views allow for defining perspectives on the under-
lying model, such that stakeholders can see the model from
different viewpoints (Atkinson et al. 2010). A view is pro-
jected from a model by instantiating a view type on the model
(Goldschmidt et al. 2012). Thus, a view type represents the
metamodel of the view, describing the elements and relations
the view can contain. Following these definitions, views are
projected abstractions from the entirety of the modeled infor-
mation and its complexity, making them an ideal solution to
manage how stakeholders interact with the model (Brunelière
et al. 2018; Cicchetti et al. 2019). Additionally, defining view
types ensures that the stakeholders’ access to the model can
be restricted. However, the system evolves during its use, and
model-view consistency must be retained. When the view is
modified, the changes eventually must be propagated into the

An AITO publication

http://dx.doi.org/10.5381/jot.2023.22.2.a4

underlying model to reflect the modifications. Vice versa, when
the underlying model is modified, existing views need to be
updated to be consistent with the underlying model again. The
problem of updating the underlying model upon view modi-
fication while re-generating the same view from the updated
model is called the view-update problem (Bancilhon & Spyratos
1981; Foster et al. 2005). However, as the model might already
contain new changes, propagating the entire modified view state
may override the model with outdated information from the
view. A better approach is to update the model inductively and
thus precipitated by fine-grained modifications to the view. This
is called delta-based consistency (Diskin, Xiong, Czarnecki,
Ehrig, et al. 2011) and can be implemented by means of in-
cremental model transformations (Kusel et al. 2013; Giese &
Wagner 2008). It allows updating the model without overrid-
ing any changes. However, this requires fine-grained change
sequences from the view (Kusel et al. 2013). Our work con-
siders change sequences as a sequence of any possible single
deterministic change to an EMOF-conforming model. As views
are models themselves, this definition holds for both views and
models.

In general, there are different types of views (Brunelière et
al. 2018). In this paper, we focus on projective views which rely
on an underlying model. In contrast, synthetic views form the
model by their composition, i.e. the views themselves are the
source of truth. Orthogonal to these types, state-based views
are views that do not provide change sequences upon modifi-
cation but instead only provide the modified view state. These
are, for example, views that encapsulate artifacts of existing
software applications to bridge between established software
applications and processes. These existing applications are of-
ten not designed in a model-driven way and thus do not provide
the required fine-grained change information when the view
is modified (Sağlam & Kühn 2021). Furthermore, persistent,
non-volatile unique element identifiers cannot either be assumed
– due to the existing application or the view type definition —
which makes identifying which elements of the original state
changed significantly more complex.

Fortunately, model differencing (Kolovos et al. 2009;
Stephan & Cordy 2013) can be employed to remedy this
gap (Tunjic & Atkinson 2015). When utilizing model dif-
ferencing to compare two states of the same model, i.e., the
original state and a modified one, the derived changes describe
a sequence of changes. This sequence can be considered as
correct if the original model is transformed into the modified
one by applying the sequence of changes (Cicchetti et al. 2007).
Similarity-based (Lin et al. 2007; Treude et al. 2007; Toulmé
& Inc 2006) model differencing approaches can be applied to
any models while identity-based (Alanen & Porres 2003; Farail
et al. 2006; Toulmé & Inc 2006) approaches are optimized for
models with persistent unique identifiers (Brun & Pierantonio
2008). However, these model differencing approaches are not
intended to operate with projections on models such as views.
For model differencing, the compared models are assumed to
contain all relevant information, and thus the correctness of
the derived change sequence is judged based solely on them
(Cicchetti et al. 2007). Views, in contrast, may represent only

parts of the entire system. Therefore, when leveraging model
differencing to compare view states for model-view consistency,
the assumption that all relevant information is present does
not hold anymore. Consequentially, the correctness criterion
changes. Though changes are derived from the view states, their
correctness must be determined in the context of the resulting
state of the underlying model instead of the view, as it is the
only source of all information. In summary, model differenc-
ing approaches were not designed to derive changes from view
states to restore model-view consistency. However, they are
required in order to support state-based views. Consequently, it
is unclear how well current model differencing approaches are
suitable for the consistency preservation of state-based views.
Moreover, it is unclear how correctness can be defined concern-
ing the underlying model for change sequences derived from
view states.

This paper investigates the notion of correctness for change
sequences in the context of model-view consistency. We also
aim to understand how model differencing performs when deriv-
ing differences between projective view states to restore consis-
tency with the underlying model. Thus, we make the following
contributions:

Notion of Change Sequences Correctness (C1): We propose
three properties of change sequences relevant for model-view
consistency of projective views, which serve as different notions
of correctness depending on the consistency constraint.

Evaluation of Model Differencing (C2): We evaluate how
well EMF Compare (Eclipse Foundation 2019), as state-of-the-
art model differencing tool, performs for model-view consis-
tency. We conduct a case study with realistic evolution scenarios
from the literature. We identify which cases produce incorrect
results concerning each property. This indicates the relevance
of our properties for model-view consistency.

Our results indicate that, in most cases, model differencing per-
forms very well. However, incorrect change sequences were
derived for two different common kinds of refactoring opera-
tions, which led to an incorrect model state. These types can
be easily reproduced and are likely to occur in practice. We
motivate how our introduced notions in combination with ex-
tensions to model differencing could have been used to prevent
these incorrect results. In conclusion, our notion of change
sequence correctness provides an improved understanding of
model differencing in the context of model-view consistency.

This paper is structured as follows: In section 2, we introduce
our running example of a contact tracing system to highlight
challenges arising from model-driven view-based development,
e.g., the model-view consistency problem. Then we define our
notion of correctness for change sequences in section 3. After-
ward, in section 4, we outline the case study we conducted to
evaluate the relevance and significance of our properties, using
a UML class model and Java code as views and EMF Com-
pare (Eclipse Foundation 2019) to derive changes. In section 5,
we discuss threats to the validity of our evaluation, and in sec-
tion 6, related works in the field of view-based and model-driven
development. Finally, section 7 concludes the paper.

2 Wittler et al.

2. Running Example

To illustrate the described challenges of view-based model-
driven development, Figure 1 shows an example of a contact
tracing system for disease control loosely based on the Covid-19
exposure notification APIs for mobile operating systems (Apple
Inc. 2022; Google LLC 2022). The system tracks exposure to
potentially infected users by anonymously recording encounters
using a mobile application. When a person decides to test
themselves for the disease, the testing laboratory notifies the
health authority about the test. The health authority creates
a report in a pending state for the respective user (reports).
Any user having an encounter with the affected user within a
specific time frame is added as an exposed user (exposedTo).
The laboratory updates the report with the corresponding result
when the test results are available. Lastly, users can monitor
their risk status, which is determined based on their exposure.

The example encompasses three actors, namely users, labo-
ratories, and the health authority. As the recorded data consists
of sensitive geolocation and health data, every actor should only
have access to a specific, limited amount of data. Furthermore,
health domain logic needs to be abstracted away for users to
understand their risk status. To fulfill these requirements, views
can be utilized. Every actor has access to one or multiple views
aiming at one particular purpose. For instance, the view for
the risk status of a user computes an easily understandable risk
value by aggregating all reports from users that the user was
exposed to. Other views are the list of own anonymous encoun-
ters of individual users or an overview of all encounters for the
health authority to populate reports with exposed users.

Next, we focus on the view of reports for the laboratory, de-
picted in Figure 1b. Every laboratory has a list of its diagnoses,
which corresponds internally to the reports with the laboratory’s
identifier. Accordingly, the patient and diagnosis results corre-
spond to the affected user, and the report result in the model.
As the laboratory does not need any knowledge about exposed
users, this information is not visible in the view. The view is
integrated with the existing laboratory workflow, which does not
monitor changes but only provides the modified state. To propa-
gate changes from the state-based view back to the model, the
necessary change sequence is derived using model differencing.

To highlight possible challenges of model differencing for
model-view consistency, we consider the following modifica-
tions to the laboratory view. An employee of the laboratory
enters the latest test results into the system. To increase effi-
ciency, multiple results are entered at once. For every test, the
result of the corresponding Diagnosis element is updated,
and the resultDate is initialized to the current date. Finally,
the employee confirms the changes, thus triggering the propa-
gation from the view to the model. As part of this propagation,
the difference between the initial and modified laboratory view
states is determined via model differencing. Within this process,
matching elements between the two states are collected. For
each identified match, the (potential) difference between the two
states of the element is determined and expressed in the change
sequence. If no match is found, creation, property initialization
changes, and respectively deletion changes — depending on

whether the unmatched element is contained in the modified
or initial state — are derived. In the laboratory view example,
multiple elements remain identical in the modified state and
are thus easy to match. These are all patients and all diagnoses
that either got already evaluated or are still being processed.
However, the modified diagnoses challenge model differencing
as only some properties remain unchanged. More precisely, two
out of four properties did change. Depending on the applied
model differencing algorithm, this might result in no or incor-
rect matches for some or all modified elements. Consequently,
in the absence of a match, the previous diagnosis element is
deleted, and a new diagnosis is created. For incorrect matches,
the elements are modified to match the element state of the mod-
ified view state. Depending on the degree of incorrect match,
this might even include changing the patient of a diagnosis.

While in conventional model differencing scenarios, such
deviating change sequences still result in the correct model state,
although different operations were performed for model-view
consistency, these deviations can have significant consequences.
Propagating a change sequence that resulted from an unmatched
diagnosis element — thus containing a deletion of the original
diagnosis and a recreation of the modified one — triggers the
deletion of the corresponding Report element in the model and
the recreation of such with the modified values. As a result,
the exposed users of the report are lost. This is caused by the
absence of this information in the change sequence as the view
does not represent this part of the model. Thus, the risk status
of these users is not accurate anymore. For incorrectly matched
diagnosis elements, it can even occur that reports are updated
with wrong results leading again to an incorrect risk status.

3. Change Sequence Properties
In this section, we propose the three properties actual, admis-
sible, and well-behaved for change sequences that can serve
as notions of correctness in the context of model-view consis-
tency (C1) for projective views. The set relations of the three
properties actual, admissible, and well-behaved are visualized
in the Venn diagram in Figure 2 with respect to one actual
change sequence. Henceforth, each property is individually
introduced and defined.

Commonly, the main goal of model differencing between
an initial and changed state of a model is to derive a change
sequence that is as close as possible — regarding some metric
— to the changes performed by a stakeholder (Cicchetti et al.
2007). We denote a change sequence actual if it exactly matches
those changes.

Definition 1 (Actual Change Sequence) Let M be a model.
Let M′ be its modified state. A change sequence ∆M,M′ is
actual, if it represents exactly the sequence of atomic changes
executed by the stakeholder on M to obtain M′.

While it is desirable to exactly match the actual change sequence,
in some cases, even with perfect heuristics, such is not possible.
One case might be an actual change sequence that contains
redundant changes, i.e., changes that can be removed from the
change sequence without affecting the resulting model. Since

Evaluating Model Differencing for the Consistency Preservation of State-based Views 3

AnonymousEncounter

+ date: Date

+ duration: int

User

Report

+ dateOfTest: Date

+ publishDate: Date

+ laboratoryID: ID

<<enumeration>>
ReportResult

PENDING

POSITIVE

NEGATIVE

INCONCLUSIVE

1..

encounters

result

1

users
affectedUser

exposedTo *

1

Patient

Diagnosis

+ testDate: Date

+ resultDate: Date

<<enumeration>>
DiagnosisResult

PENDING

POSITIVE

NEGATIVE

INCONCLUSIVE

result

1

patient 1

correspondences between
model and view

(a) Entire System Metamodel (b) Laboratory Results View Type
Figure 1 UML class diagram of a Contact Tracing System showcasing the underlying model (a) and a laboratory view type (b).

a view is a model itself, the admissibility property also applies
for change sequences derived between view states. In contrast
to model differencing, where a change sequence is the primary
artifact, for model-view consistency change sequences are only
a secondary artifact required to propagate changes from a view
to the model. After change propagation, the change sequence
can be discarded. This implies that the correctness of the change
propagation is not validated on the change sequence but rather
on the model. To emphasize this shift of focus, we propose the
notion of admissibility of change sequences, defined as follows:

Definition 2 (Admissible Change Sequence) Let V be a view
obtained by instantiating the view type VT on the model M.
Let V′ be its changed version obtained by applying the actual
change sequence ∆∗

V,V′ on V. Let ∆V,V′ be a change sequence
derived from V and V′. Let M′ be the updated model obtained
by propagating ∆∗

V,V′ from V to M. Then ∆V,V′ is admissible
with respect to M, if propagating ∆V,V′ from V to M produces
M′.

We denote a change sequence admissible if the updated
model obtained by propagating the sequence is equal to the
model that would have been obtained by propagating the actual
change sequence. By defining the property inductively over
the actual change sequence, it becomes independent of the rep-
resentation of the change sequence, the change propagation
mechanism, as well as the model representation. To put it suc-
cinctly, the change sequence derived from a view must only
ensure that the impact on the model reflects the actual change.
As we focus on projective views, this definition implies that not
only the model reflects the actual change but also any other view
within the system, as a projective view is completely described
by its underlying model.

Consequently, an actual change sequence is always admis-
sible with respect to itself. However, we can easily show that
not every admissible change sequence is also an actual change
sequence. Considering the contact tracing system example, a
user might locally create an interaction with a duration of two
minutes. The interaction then continues beyond the initially es-
timated two minutes and is thus updated to ten minutes. These
values are then propagated to the model. Here, the actual change

sequence consists of the initial interaction creation with a two-
minute duration and the subsequent duration modification to ten
minutes:

∆∗
V,V′ = [A=new AnonymousEncounter(),

A.date=now(),
A.duration=2, A.duration=10]

In consequence, the same model state could be obtained by only
including the last change to the duration:

∆V,V′ = [A=new AnonymousEncounter(),
A.date=now(),
A.duration=10]

This sequence would be an admissible change sequence but
not the actual one. While in this first example, the change
sequence is admissible with respect to any model, the admissi-
bility can also be context-dependent. To show this, we consider
the described problematic scenario of the laboratory view. Here,
the matching might fail and thus delete and recreate a report
element instead of modifying it. Consequently, all exposed
users are lost. However, if for the specific report there are
no exposed users, the change sequence is admissible as any
other information is present in the view and thus restored by
the change sequence even though the old element gets deleted.
Therefore, the admissibility property can be considered as a
more relaxed constraint for model-view consistency, compared
to the common requirements in model differencing, while still
guaranteeing model correctness. Depending on the context, this
relaxation can scale from excluding redundant changes of the
actual change sequence or reordering independent changes to
even replacing a set of changes with a distinct set of changes.

Regarding the view obtained from the updated model, an
admissible change sequence does not imply any constraints
on it. By definition, admissibility does not guarantee to solve
the view-update problem, i.e., that the view retrieved from the
updated model is equal to the changed view. Although not
explicitly defined, in practice one would intuitively expect this to
hold for any admissible change sequence as a correctly updated
model should project the correct view. While this is true for

4 Wittler et al.

Well-behaved Admissible
Actual

Figure 2 Venn Diagram outlining the relation between an ac-
tual change sequence and sets of admissible and well-behaved
sequences.

the most common cases, there exist edge cases. As an example,
in the contact tracing system all dates may get their seconds
value trimmed to save storage space while in the laboratory
view the seconds are preserved. In this scenario, regenerating
the laboratory view after propagating an admissible change
sequence will not produce an equal view as the date values
are different. To formalize the expectation that a changed view
remains the same after propagating the changes to the model, we
propose the notion of well-behavedness of change sequences:

Definition 3 (Well-behaved Change Sequence) Let V be a
view obtained by instantiating the view type VT on M. Let V′

be its changed version. Let ∆V,V′ be a change sequence derived
from V and V′. Let M′ be the updated model obtained by prop-
agating ∆V,V′ from V to M. Then ∆V,V′ is well-behaved, if V′′

is obtained by instantiating VT on M′ and V′′ = V′.

A change sequence is well-behaved if the clean view state
projected from the model after propagating the sequence is equal
to the modified view state from which the sequence got derived.
This definition follows the well-behavedness for (delta-)lenses,
in particular its PUTGET law (Foster et al. 2005; Diskin, Xiong,
& Czarnecki 2011). While an admissible change sequence does
not constrain the view resulting from the updated model, a well-
behaved change sequence does not constrain the updated model.
However, in contrast to admissibility, it can be immediately
observed whether a change sequence was well-behaved. This is
a significant benefit as deviations from the expected state can
directly be assessed by the stakeholder to potentially reject the
performed changes.

As already motivated and shown in Figure 2, admissibil-
ity does not necessarily imply well-behavedness. Furthermore,
there exist cases where a well-behaved change sequence is not
admissible. An example for this is the scenario described for the
laboratory view update in section 2. Here, changes to elements
of the view (element Diagnosis) can impact elements that are
not visible to the view (relation exposedTo). Without this prop-
erty, all information could be regenerated from the information
provided by the view, independent of the atomic changes of the
derived change sequence. To generalize this, well-behavedness
does not imply admissibility only in cases where changes to a
view can possibly have an impact on elements that do not affect
the view state.

In general, our new properties of well-behavedness and ad-
missibility leverage the constraints of model differencing in
model-view consistency. In particular, more change sequences
than the actual change sequence can be assumed to produce

correct results. Depending on the use case, the constraints
on model-view consistency might be to simply preserve the
changes performed on the view or to require all information in
the model to be correctly updated. The former is fulfilled by
well-behavedness, while the latter requires admissibility.

4. Case Study
The goals of our evaluation are twofold. First, we evaluate
how state-of-the-art model differencing performs in common
evolution scenarios in model-view consistency (C2). Second,
we show that our new notions of change sequence correctness
are relevant in practice. Thus, we want to assess whether our
distinction of well-behaved, admissible, and actual change se-
quences occurs in realistic scenarios. Therefore, we developed
a concept for a case study, selected relevant evolution scenarios,
and implemented the concept for one particular domain pair to
perform our evaluation on.

4.1. Method
As a framework for our evaluation, we constructed an exem-
plary case study (see Figure 3). Conceptually, we require a
state-based view that leverages model differencing to derive and
propagate changes. We call this view the scenario view. To
obtain meaningful results, the underlying model must contain
related information that is not present in the view. Otherwise,
any well-behaved change sequence would automatically be ad-
missible, as discussed in section 3. Mapping this to our running
example (section 2), the scenario view would correspond to the
laboratory results view, and the additional information missing
in the view corresponds to the exposed users. To integrate this
additional information into the model, an additional view is
provided. We modeled this additional view to record its changes
to avoid unintended interference by incorrect change sequences
with our evaluation. However, the case study could also be
instantiated with two state-based views, as this would simply
increase its complexity. For every evolution scenario of the case
study, the same test pipeline is executed:

1. the model is initially populated by propagating a modified
scenario view,

2. the model is extended with the additional information ab-
sent in the scenario view by propagating a modified addi-
tional view,

3. a modified scenario view state is provided by each evolu-
tion scenario,

4. the change sequence between the scenario view state and
the provided modified state is derived and propagated.

After the test of a scenario, the resulting model can be used to
check the change sequence properties. The well-behavedness
of the sequence is determined by comparing the scenario view
projected from the resulting model with the modified view state
provided by the evolution scenario. Its admissibility is deter-
mined by comparing the resulting model to a manually created
expected model. Finally, the derived change sequence is com-
pared to the actual change sequence. We require every actual

Evaluating Model Differencing for the Consistency Preservation of State-based Views 5

Underlying Model

(Vitruvius)

Additional
View
(Java)

Scenario
View

(UML)

V V'

Strategy

Δ
Δ

Δ

Figure 3 Overview of case study setup and its technical real-
ization.

change sequence not to contain redundant changes, as the model
differencing tools cannot derive any changes that are not vis-
ible in the modified view state. Additionally, we consider a
change sequence as actual if it contains precisely the expected
atomic changes independent of their order while still producing
the expected resulting model. Since the order of changes to,
for example, mutually independent properties is ambiguous,
no heuristics exist to resolve such ambiguity and consequently,
obtaining the correct order would require guessing. Thus, we
opted for this relaxation to avoid misleading results. Notably,
we do not check the change sequence derived in the first step
of the test pipeline. This is not done as the model is initially
empty. Thus, the derived change sequence is always expected to
yield the correct model, following similar reasoning as for jus-
tifying the need for additional information. However, to avoid
any setup mistakes, we validate the intermediate model state
obtained after the initial two setup steps by comparing it to a
manually created expected model.

4.2. Application Case
For the concrete case study, we chose the scenario view to model
a UML class diagram and the additional view to represent Java
source code. These domains were chosen as UML class dia-
grams are a standardized and widely used modeling approach,
and Java is one of the most used programming languages in
academia and industry (Ben Arfa Rabai et al. 2015). Further-
more, many semantic concepts are shared between the domains,
but the Java source code contains some additional information,
as required for our case study. In particular, we expect that for
every UML package / class / operation / parameter / attribute
there exists one equally named Java package / class / method /
parameter / property with matching containment, and vice versa.
Furthermore, element attributes like final or static as well
as attribute and parameter types should be modeled consistently.
In contrast, method bodies and property accessors are exclusive
information of the Java domain. As a reference system, all
scenarios are based on the mediastore.basic package of the
Media Store case study (Strittmatter & Kechaou 2016), which
we slightly adapted to support all of our evolution scenarios
and to integrate with the considered UML and Java consistency
relation. Its simplified UML class diagram is depicted in Fig-
ure 4. The diagram represents the expected state after the first
two pipeline steps.

Regarding the test setup, the VITRUVIUS framework (Klare
et al. 2021) is used as the foundation for the model-view con-

sistency. VITRUVIUS is a framework to preserve consistency
between individual models by using Consistency Preservation
Rules and supports the projection of views. VITRUVIUS already
provides a consistency specification for the UML and Java do-
mains satisfying our described constraints which was thus used
for our evaluation. The provided consistency specification does
not perform any input-normalization (like the date normaliza-
tion in the running example, see section 3). Consequently, we
expect every admissible change sequence to be well-behaved.
While we could have modified the consistency specification to
artificially create a scenario for an admissible, non-well-behaved
change sequence, we opted against it to preserve a realistic envi-
ronment instead of covering every edge case. Still, we maintain
that such edge cases might still exist in other domains and for
other evolution scenarios.

For model differencing, we use the state-of-the-art frame-
work EMF Compare (Eclipse Foundation 2019). EMF Compare
is a model comparison framework that supports comparing and
differencing any EMF-based models (Steinberg et al. 2009).
By default, EMF Compare supports identity- and similarity-
based matching when comparing models. The identity-based
matching uses the element’s identifier (e.g. for UML the XMI
identifier), the similarity-based matching uses a weighted com-
bination of metrics regarding the element’s name, its type, its
content, and its relation with other elements (Brun & Pieranto-
nio 2008). While identity-based matching should be favored
whenever possible due to its high precision and fast performance
(Kolovos et al. 2009), persistent unique identifiers cannot be
guaranteed when working with state-based views. Thus, we
performed our evaluation with both the default identity- and
similarity-based matching strategies of EMF Compare.

4.3. Evolution Scenarios
To obtain generalizable evolution scenarios relevant in practice,
manually created models and change sequences based on real-
istic refactoring operations were used. This was mainly done
due to two reasons. First, in preliminary tests, we detected that
especially combined modifications to elements are challeng-
ing to the model differencing framework. Second, refactoring
operations are well documented and already shown to occur
frequently in real-world scenarios (Sidhu et al. 2018; Tsantalis
et al. 2018).

Table 1 lists the considered evolution scenarios. Each sce-
nario is based on the equally named refactoring operation as
described by Sidhu et al. (2018). While these refactoring op-
erations were explicitly created for UML class diagrams, the
kinds of change can be mapped to other domains. Therefore,
Table 1 additionally lists how the evolution scenarios relate to
Java code refactorings (Tsantalis et al. 2013), model-to-model
transformation refactorings (Wimmer et al. 2012), and generic
code refactorings (Fowler 2019). Selecting evolution scenar-
ios known to occur in various domains allows us to generalize
our evaluation results beyond the scope of the two modeled
domains.

6 Wittler et al.

basic.config basic.data

EJB

-name: String

[...]

~ printProvidedInterfaces()

~ printRequiredInterfaces()

RequiredInterface

- name: String

ProvidedInterface

- name: String
Method

+ name: String

+ parametersCount: int

+ toString(): String

Config

- timestamp: int

- reconfigurable: bool

+ ejbs: EJB [*]

[...]

Metadata

+ encoding: String

Data

+ deserialize(): String

AbstractData

+ binaryData: int [1..*]

LegacyData

CurrentUser

-id: int

- firstName: String

-lastName: String

- email: String

- passwordHash: String

+ CurrentUser([...])

Figure 4 Initial state of the UML view (scenario view) in the case study of the Java and UML domains.

ID Scenario (based on Sidhu et al. (2018)) Tsantalis et al. (2013) Wimmer et al. (2012) Fowler (2019)

CMS- Change method signature - minor - 1, 2 Change Function Declaration

CMS+ Change method signature - major - 1, 2 Change Function Declaration

CH Collapse hierarchy Move Method, Move Field 5, 6, 8 Collapse Hierarchy

EAC Extract associated class Extract Method, Move Field 4, 7, 9 Extract Class

ES Extract superclass Extract Superclass 11 Extract Superclass

IC Inline class Move Method, Move Field 14, 15, 16 Inline Class

MC Move class Move Class - -

RAC Remove associated class - - -

RC- Rename class - minor Rename Class 3 -

RC+ Rename class - major Rename Class 3 -

Table 1 Evolution scenarios used in our evaluation and their corresponding literature references.

Considering the evolution scenarios themselves, we want to
exemplary describe the two change method signature (CMS-,
CMS+) scenarios. Here, the method signature of deserialize
of class Data is modified. This method is of particular interest
because it has a method body in the Java view, which is un-
available in the UML view. The particular changes are making
the method static, adding a new parameter named data of
type Data, and changing the method name to deserializeData
respectively decodeData for CMS- and CMS+. The expected
result is that the method signature is correctly updated in both
views and that the additional information (the method body) of
the Java view is preserved.

4.4. Results

The results of our evaluation are summarized in Table 2. The
identity-based strategy can derive the actual change sequence for
every evolution scenario. Hence, every derived change sequence

is, by definition, also admissible and well-behaved due to our
change specifications. These results are anticipated, as the most
complex task of model differencing — matching of elements —
becomes trivial when identifiers are utilized.

In contrast, the similarity-based strategy cannot derive the ac-
tual change sequence for any scenario. By assessing the derived
change sequences, one can observe that the similarity-based
strategy has problems correctly matching elements with very
little information. In particular, for the UML view, these are
descendants of UML associations like EAnnotation of which
multiple elements with identical properties can exist which
are only differentiated by their containing element. Since the
matching fails, the old elements are deleted, and new ones are
created, resulting in additional changes which are not present in
the actual change sequence. Nevertheless, the similarity-based
strategy still derives in eight of ten cases an admissible change
sequence. This observation emphasizes that it might be typical

Evaluating Model Differencing for the Consistency Preservation of State-based Views 7

identity-based similarity-based

ID wbv adm act wbv adm act

CMS- ✓ ✓ ✓ ✓ ✓ ×

CMS+ ✓ ✓ ✓ ✓ × ×

CH ✓ ✓ ✓ ✓ ✓ ×

EAC ✓ ✓ ✓ ✓ ✓ ×

ES ✓ ✓ ✓ ✓ ✓ ×

IC ✓ ✓ ✓ ✓ ✓ ×

MC ✓ ✓ ✓ ✓ ✓ ×

RAC ✓ ✓ ✓ ✓ ✓ ×

RC- ✓ ✓ ✓ ✓ ✓ ×

RC+ ✓ ✓ ✓ ✓ × ×

wbv = well-behaved adm = admissible act = actual

Table 2 Change sequence properties per evolution scenario.

for a change sequence not to be actual but still result in the cor-
rect model state. In our case study, this is the case because there
is no additional information linked to an EAnnotation besides
the information present in the view. As such, the incorrectly re-
generated elements recreate any information associated with the
incorrectly deleted old elements. In both two scenarios where
the change sequence is not admissible (CMS+, RC+), the under-
lying problem is that the strategy cannot identify a match for the
renamed element. As such — similar to the EAnnotation prob-
lem — the unmatched elements are deleted and replaced with
new instances. In these two scenarios, however, the incorrectly
deleted elements (Class and Method) are linked to additional
information not visible in the UML view, which is lost when
recreating the elements. It is worth noting that the distance —
with respect to some metric — between the names is critical as
the CMS- and RC- scenarios, where the elements are renamed
to a more similar name, produce admissible change sequences.
Still, the similarity-based strategy can derive a well-behaved
change sequence for every evolution scenario.

4.5. Discussion
From our results, we conclude that our distinction between ac-
tual, admissible, and well-behaved change sequences occurs in
realistic scenarios with state-of-the-art model differencing tool-
ing. Consequently, when designing view types and modifying
state-based views, the required constraints on the model view
consistency should be considered, which can be expressed in
terms of our properties. If it is sufficient that all changes are
correctly reflected in the view, i.e. that the view obtained from
the updated model is identical to the view used to update the
model, a well-behaved change sequence suffices. Exemplary
scenarios would be the Java view in our case study — as all
information of the UML view can be regenerated from Java
information — or a system where all except one view are read-

Requirement well-behaved not well-behaved

admissible rejection no feedback

not admissible validation no purpose

Table 3 Possibilities to automatically validate derived change
sequences based on required properties imposed by the view.

only. As in such a system only the one modifiable view can
provide information to the underlying model, there cannot exist
additional information besides those present in the considered
view. As the well-behavedness of a change sequence can be
automatically validated, any state-based view with this consis-
tency constraint can be integrated into a delta-based consistency
workflow without the danger of accidentally losing data by
propagating an incorrectly derived change sequence. A simple
implementation of such an integration would be to discard the
transaction of propagating changes when it is detected that the
change sequence is not well-behaved.

However, requiring only a well-behaved change sequence
might only be possible in some scenarios. For other, possibly
more complex, scenarios, like the UML view in our case study,
an admissible change sequence is required, as otherwise the
information in the model hidden in the view is lost. Since
an admissible change sequence requires the correctness of an
unknown internal model state, it can never be automatically
validated. Nevertheless, depending on the underlying model and
the view, the admissibility of a change sequence might imply
it being well-behaved. In such a case, any change sequences
that are not well-behaved and thus also not admissible can
automatically be rejected. Based on our findings, we expect
admissible implying well-behaved to be the most common case.

For scenarios where the developer detects that an admissible
and not necessarily well-behaved change sequence is required, a
fully automated approach for any domain guaranteeing correct-
ness is not possible. From our results, we see that identity-based
matching has such high precision that one might assume that
the actual change sequence is always derived from such views.
However, at least for views using a similarity-based strategy, the
constraint of deriving an admissible change sequence remains a
challenge. An overview of the degree of automatic validation
possible for given requirements on a derived change sequence is
presented in Table 3. We consider views that neither require the
change sequence to be admissible nor well-behaved to have no
purpose, as this would imply that the derived change sequence
can modify the model in any way without rejection, e.g. simply
deleting all information.

In cases where a fully automatic validation is not possible, we
envision, as a step towards a semi-automatic change sequence
validation, the pre-processing of elements to filter out elements
where the strategy is confident that it is a match. For the re-
maining elements, the user has to manually annotate matching
elements, following the approach from Müller & Rumpe (2014).
Another strategy to increase the degree of automation might be
to annotate elements at model or meta-model level using domain
knowledge, such that certain editing operations are forbidden.

8 Wittler et al.

Considering the incorrect update in our running example (sec-
tion 2) where exposed users are lost due to incorrectly matched
Diagnosis elements, annotating the view to require an admis-
sible change sequence could have prevented this. In this case,
the strategy could adapt to the increased consistency constraints,
still identify matches for all unmodified elements, and remain
the user with the task to match the few modified Diagnosis.
As the domain prohibits the deletion of Diagnosis elements
entirely, annotating the meta-model with this information could
even allow to automatically reject certain incorrect change se-
quences.

5. Threats to Validity
After highlighting our findings, we discuss how we addressed
threats to validity. We follow the guidelines of Wohlin et al.
(2012) and Runeson & Höst (2008).

5.1. Internal Validity
Regarding internal validity, there is the risk that the observed
failures result from an erroneous propagation of the changes to
the model and not from incorrectly derived change sequences.
However, we argue that this is not the case in our evaluation. We
can reproduce the incorrect change sequences by using model
differencing solely on the isolated view states, meaning without
the propagation of changes from view to the model. More-
over, while employing specialized heuristics as pre-processing
steps for the propagation of changes might help deal with faulty
change sequences, these heuristics need to be domain-specific
and designed for each view of any system. Consequently, we
argue that there cannot be a domain-independent solution for
model views. We maintain that the observed failures are not
caused by the specific implementation of the used model dif-
ferencing tool but rather conceptual issues of syntactic model
differencing itself, as EMF Compare is widely used and heavily
tested. Additionally, the execution of our evaluation is deter-
ministic and independent of any human factors, as it is based
on fully automated test cases.

5.2. External Validity
Regarding the external validity of our evaluation results, we
argue that similar results can be obtained with other models
of a different domain, as the problems shown in the change
sequence are metamodel-independent. Furthermore, we argue
that the evolution scenarios in our evaluation are relevant in
practice, as they are taken from existing literature regarding
common refactoring patterns for object-oriented software and
models (Wimmer et al. 2012; Sidhu et al. 2018; Tsantalis et
al. 2013; Fowler 2019). While it would have been possible to
employ randomly generated evolution scenarios instead, most
of the random scenarios could not be considered realistic. Thus,
we opted for a realistic and well-established set of evaluation
scenarios instead of a vast quantity of generated evaluation sce-
narios. Although we concede that our evaluation only employs
EMF Compare, we argue that it is representative of syntactic
model differencing, as it is the state-of-the-art and de facto stan-
dard tool. Other approaches also produce change sequences

that describe the difference between model states and thus are
arguably prone to the very same issues discussed in this paper.

6. Related Work
To our knowledge, no other work investigates the correctness of
derived change sequences when employing model differencing
for the model-view consistency of state-based views.

6.1. Model Differencing
Model Differencing has many applications, one of the most
common being model versioning. Our work investigates model
differencing to enable model-view consistency for state-based
views. We focus on metamodel-independent approaches as
view-based approaches need to be able to deal with multiple dif-
ferent metamodels. While model differencing has been widely
researched (Stephan & Cordy 2013; Kolovos et al. 2009), most
approaches are not designed for model views. One of the early
approaches is UMLDiff (Xing & Stroulia 2005), which pro-
vides model differencing based on custom similarity metrics.
Since these metrics are specifically designed and optimized for
UML models, their application is limited to the UML domain.
DSMDiff proposed a similar approach which rather supports
arbitrary metamodels (Lin et al. 2007).

The most widely used metamodel-independent approach and
thus the de-facto standard is EMF Compare (Brun & Pieranto-
nio 2008). It uses similarity metrics for model matching and
provides a high degree of customizability, thus allowing the
design of custom strategies. As EMF Compare itself is model-
driven, the derived changes are represented by a metamodel
which enables further use of model transformations. In this
paper, we thus base our evaluation on EMF Compare. Müller
& Rumpe (2014) extend the EMF Compare framework by al-
lowing to provide presettings that specify how certain elements
have changed. While this can resolve any incorrect matches, this
requires the knowledge of which matches need to be manually
corrected, and thus additional effort is required. Metamodel-
agnostic model differencing suffers from reduced accuracy due
to the task’s inherent complexity, which has been shown for
EMF Compare and DSMDiff by Kolovos et al. (2009). Pietsch
et al. (2013) present a set of model evolution scenarios that often
pose problems for model differencing approaches. We modeled
these scenarios as another case study for our evaluation but did
not discuss them in detail as an admissible change sequence
was always produced, independent of the matching strategy.

In contrast to the syntactic approaches like EMF Compare,
which compares the concrete or abstract syntax of models, se-
mantic model differencing compares models in terms of their
meaning by leveraging semantic matching (Maoz et al. 2011;
Maoz & Ringert 2016). Multiple approaches for semantic model
differencing have been proposed (Langer et al. 2014; Addazi
et al. 2016). Maoz & Ringert (2016) provide a framework to
relate syntactic and semantic model differences. In our work,
however, we focus on syntactic model differencing.

Evaluating Model Differencing for the Consistency Preservation of State-based Views 9

6.2. Model-View Approaches
View-based development allows to separate concerns and
achieves to provide only the required information to different
stakeholders (Cicchetti et al. 2019). The ISO standard 42010
(ISO/IEC/IEEE 42010:2011(E) 2011) provides a distinction
between projective architectural views, where the views are
projected from an underlying model, and synthetic architectural
views, where a composition of views and their relations form
the underlying model. This paper addresses projective views on
models, as defined by Atkinson et al. (2010). Query-based views
like ModelJoin (Burger et al. 2014), EMF views (Brunelière
et al. 2015), and others (Werner et al. 2019) can be generated
on the fly and their view types may change rapidly. Due to the
scope of our work, we do not address these flexible (Burger
2013) views but focus on inflexible ones. Moreover, our work
concerns editable (Atkinson et al. 2021) views.

There is a wide variety of many different model-view ap-
proaches (Brunelière et al. 2018) and multi-view modeling ap-
proaches (Cicchetti et al. 2019; Meier, Werner, et al. 2020).
Meier, Kateule, & Winter (2020) introduce an approach to
define viewpoints and views via reusable and generic opera-
tors, thus splitting the model-view transformation into parts.
Atkinson & Tunjic (2017) present a conceptual framework for
multi-dimensional views in projective modeling based on deep
modeling. We base our evaluation on VITRUVIUS (Klare et al.
2021), which is one of the latter. VITRUVIUS is based on net-
works of transformations (Stevens 2020; Martínez et al. 2017;
Gleitze et al. 2021; Klare et al. 2020; Sağlam & Klare 2021),
where multiple binary model transformations form a network,
thus keeping all models in the network consistent in a transitive
manner. Alternatively, multiary transformations (Cleve et al.
2019; Bergmann 2021) can be employed instead.

6.3. View-Update Problem
While the view-update problem originates from database engi-
neering (Bancilhon & Spyratos 1981), Foster et al. (2005, 2007)
introduce an application of the view-update problem to model
views based on the lenses framework. We relate to lenses, as our
property well-behavedness of change sequences is equivalent
to the PUTGET law for model transformations. However, we
do not require the GETPUT law, as the former is sufficient in
our case. Furthermore, our property admissibility is less re-
strictive regarding the view transformation than well-behaving
lenses. Views can be kept consistent with their underlying mod-
els through model transformations (Foster et al. 2007). To this
end, one can employ either general-purpose transformation lan-
guages or dedicated view transformation languages (Marussy et
al. 2018).

While state-based approaches estimate the modifications be-
tween two model states, delta-based (Diskin, Xiong, Czarnecki,
Ehrig, et al. 2011) approaches inductively define consistency
preservation and thus avoid regenerating one of the models if the
other is modified, which can lead to information loss due to over-
writing. Delta-lenses (Diskin et al. 2010; Diskin, Xiong, Czar-
necki, Ehrig, et al. 2011) or incremental transformations (Giese
& Wagner 2006, 2008; Leblebici et al. 2017; Beaudoux et al.
2010) can be employed for delta-based model-view consistency.

Some of the most notable works regarding incremental model-
view consistency are discussed in the following. Semeráth et al.
(2016) introduce an approach to generate delta-based backward
transformations when creating views from models via unidirec-
tional forward transformations. Debreceni et al. (2014) leverage
declarative model queries to define views automatically. The
views’ existence is entirely bound to the underlying model. Thus
views are automatically and incrementally maintained. Marussy
et al. (2018) propose an incremental view model synchroniza-
tion approach that provides a fully compositional transformation
language. It is based on delta-based views and tolerates incon-
sistencies, thus allowing for partial consistency. Furthermore,
numerous approaches allow delta-based consistency preserva-
tion for multiple models, as shown by Stünkel et al. (2021).
Examples include cross-domain consistency checking (Torres
et al. 2021) and model repair (Macedo et al. 2017). Some ap-
proaches, such as many SUM-based approaches (Meier, Werner,
et al. 2020), specifically include support for projective views.
However, all aforementioned delta-based approaches require
views to provide fine-grained changes upon modification (Kusel
et al. 2013), for example, through an observer that tracks model
changes. As such, our work can be considered an extension to
such approaches to bridge between delta-based change propaga-
tion and state-based views.

6.4. State-based Views
State-based views are views that, as opposed to delta-based
views, do not provide this fine-grained change sequence upon
modification but instead only provide the modified view state.
This is often the case when using existing tooling for views
(Sağlam & Kühn 2021). To close this gap, we investigate model
differencing to provide these change sequences, thus allowing
to leverage delta-based consistency preservation for state-based
views. The previously mentioned approaches require delta-
based views. However, we show that fine-grained changes can-
not always be derived. As such, we investigate the correctness of
derived change sequences when employing model differencing
for state-based views. We thus relate to Fritsche et al. (2018),
which study how to cope with change sequences for models that
delete and recreate elements instead of updating them. They
mitigate the issue of potentially losing information by introduc-
ing short-cut operations, which transform change sequences to
update the elements instead. In some cases, which we observed
in our case study, short-cut operations could be leveraged as
customization to EMF Compare to reduce the incorrectness of
the change sequences. Tunjic & Atkinson (2015) introduce an
approach for simplifying view type definition, using the lenses
framework for model-view consistency. Moreover, they propose
using model differencing to derive changes between view states
as part of their approach. However, to avoid the view-update
problem entirely, they restrict the view construction mechanism
and thus reduce the expressiveness of the possible views. Our
work has no restrictions to the view construction or view expres-
siveness. Their work focuses on the change propagation into
the model, thus assuming the actual change sequence is given.
They do not specify constraints on model differencing or the
derived change sequence.

10 Wittler et al.

7. Conclusion

View-based model-driven development approaches need to en-
sure the consistency of the projective views with their underly-
ing model. As one approach to model-view consistency, delta-
based consistency preservation requires views to provide fine-
grained changes upon modifications (Kusel et al. 2013). Yet,
state-based views do not provide such a change sequence but
only the modified view state. To close this gap, model differenc-
ing can be employed (Tunjic & Atkinson 2015) to derive change
sequences from view states. However, model differencing ap-
proaches were not intended to operate with views on models.
Thus, it needed to be clarified how well-suited a state-of-the-art
model differencing approach is for state-based views. To this
end, this paper makes two contributions. First (C1), we propose
three properties of change sequences for model-view consis-
tency, i.e., actual, admissible, and well-behaved, to distinguish
different notions of correctness depending on the consistency
constraints. While actual change sequences match the exact
changes of the stakeholder, admissible change sequences guar-
antee that the model is correctly updated, whereas well-behaved
change sequences ensure that the view is identical to a newly
instantiated view type from the updated model. As actual and
admissible change sequences rely on hidden information, only
well-behaved change sequences can automatically be validated.
Second (C2), we evaluated how well EMF Compare — as a
state-of-the-art model differencing tool — performs when em-
ployed for model-view consistency. We devised a realistic case
study with two views, which we edited based on realistic evolu-
tion scenarios retrieved from the literature. Our results identified
two typical evaluation scenarios for which EMF Compare pro-
duces incorrect results when using a similarity-based strategy.

In conclusion, our study supports that our distinction between
actual, admissible, and well-behaved change sequences occurs
in realistic scenarios. While the tested identity-based strategy is
always able to derive the actual change sequence, the similarity-
based strategy never derives it. However, an admissible change
sequence is derived in most cases, and a well-behaved one is
always derived. Based on these findings, a view requiring ad-
missible change sequences can be integrated into a delta-based
consistency workflow with minimal risk if it supports identity-
based matching. If only similarity-based matching is available,
a risk-free integration is only possible if the view is annotated
to require only a well-behaved change sequence. For any other
case, we envision adaptions to existing model differencing ap-
proaches to support semi-automated change derivation to avoid
accidental data loss. In future work, we plan to study projects
with available version histories to inspect differences between re-
visions and to evaluate further model differencing tools besides
EMF Compare. Additionally, we want to investigate the impact
of our properties in scenarios with concurrent edits of different
views. In sum, we conclude that in order to support state-based
views in view-based model-driven development, state-of-the-
art model differencing approaches are well-suited. However,
in cases where identity-based matching is impossible, depend-
ing on the required change sequence property, semi-automated
change derivation should be employed.

Verifiability

The implementation of VITRUVIUS (Klare et al. 2021) is avail-
able at GitHub (Vitruv Tools 2021). In addition, we provide
a dedicated reproduction package (Wittler et al. 2023), which
contains the necessary artifacts for reproducing our evaluation.

Acknowledgments

The authors would like to thank Heiko Klare for the insightful
discussions and constructive criticism of the manuscript. This
publication is partially based on the research project SofDCar
(19S21002), which is funded by the German Federal Ministry
for Economic Affairs and Climate Action. It is also funded by
the Baden-Württemberg Ministry of Science, Research and the
Arts within the InnovationCampus Future Mobility.

References

Addazi, L., Cicchetti, A., Di Rocco, J., Di Ruscio, D., Iovino,
L., & Pierantonio, A. (2016, 10). Semantic-based model
matching with emfcompare. In T. Mayerhofer, A. Pierantonio,
B. Schätz, & D. Tamzalit (Eds.), 10th workshop on models
and evolution (pp. 40–49). CEUR-WS. Retrieved from
http://www.es.mdh.se/publications/4468-

Alanen, M., & Porres, I. (2003). Difference and union of
models. In P. Stevens, J. Whittle, & G. Booch (Eds.), «uml»
2003 - the unified modeling language. modeling languages
and applications (pp. 2–17). Berlin, Heidelberg: Springer
Berlin Heidelberg. doi: 10.1007/978-3-540-45221-8_2

Apple Inc. (2022). Exposure Notification Documentation.
Retrieved from https://developer.apple.com/documentation/
exposurenotification (Accessed: 2022-11-28)

Atkinson, C., Stoll, D., & Bostan, P. (2010). Orthographic Soft-
ware Modeling: A Practical Approach to View-Based Devel-
opment. In L. Maciaszek, C. González-Pérez, & S. Jablonski
(Eds.), Evaluation of novel approaches to software engineer-
ing (Vol. 69, pp. 206–219). Berlin/Heidelberg: Springer. doi:
10.1007/978-3-642-14819-4_15

Atkinson, C., & Tunjic, C. (2017, oct). A deep view-point
language for projective modeling. Information Systems, 101,
101440. doi: 10.1109/edoc.2017.26

Atkinson, C., Tunjic, C., & Lange, A. (2021, oct). Controlling
view editability in projection-based modeling environments.
In 2021 IEEE 25th international enterprise distributed object
computing conference (EDOC) (pp. 152–161). Los Alamitos,
CA, USA: IEEE. doi: 10.1109/edoc52215.2021.00026

Bancilhon, F., & Spyratos, N. (1981, December). Update
semantics of relational views. ACM Trans. Database Syst.,
6(4), 557–575. doi: 10.1145/319628.319634

Beaudoux, O., Blouin, A., Barais, O., & Jézéquel, J.-M. (2010).
Active operations on collections. In D. C. Petriu, N. Rou-
quette, & Ø. Haugen (Eds.), Model driven engineering
languages and systems (pp. 91–105). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Ben Arfa Rabai, L., Cohen, B., & Mili, A. (2015, 10). Program-
ming language use in us academia and industry. Informatics
in Education, 14, 143–160. doi: 10.15388/infedu.2015.09

Evaluating Model Differencing for the Consistency Preservation of State-based Views 11

http://www.es.mdh.se/publications/4468-
https://doi.org/10.1007/978-3-540-45221-8_2
https://developer.apple.com/documentation/exposurenotification
https://developer.apple.com/documentation/exposurenotification
https://doi.org/10.1007/978-3-642-14819-4_15
https://doi.org/10.1109/edoc.2017.26
https://doi.org/10.1109/edoc52215.2021.00026
https://doi.org/10.1145/319628.319634
https://doi.org/10.15388/infedu.2015.09

Bergmann, G. (2021, Oct 01). Controllable and decompos-
able multidirectional synchronizations. Software and Sys-
tems Modeling, 20(5), 1735–1774. doi: 10.1007/s10270-021-
00879-w

Brun, C., & Pierantonio, A. (2008). Model differences in the
eclipse modeling framework. UPGRADE, The European
Journal for the Informatics Professional, 9(2), 29–34.

Brunelière, H., Burger, E., Cabot, J., & Wimmer, M. (2018).
A feature-based survey of model view approaches. In Pro-
ceedings of the 21th acm/ieee international conference on
model driven engineering languages and systems (p. 211).
New York, NY, USA: Association for Computing Machinery.
doi: 10.1145/3239372.3242895

Brunelière, H., Perez, J. G., Wimmer, M., & Cabot, J. (2015,
10). EMF views: A view mechanism for integrating hetero-
geneous models. In P. Johannesson, M. L. Lee, S. W. Lid-
dle, A. L. Opdahl, & Ó. Pastor López (Eds.), 34th Interna-
tional Conference on Conceptual Modeling (ER 2015) (pp.
317–325). Cham: Springer International Publishing. doi:
10.1007/978-3-319-25264-3_23

Burger, E. (2013). Flexible Views for View-Based Model-
Driven Development. In Proceedings of the 18th inter-
national doctoral symposium on components and archi-
tecture (pp. 25–30). New York, NY, USA: ACM. doi:
10.1145/2465498.2465501

Burger, E., Henß, J., Küster, M., Kruse, S., & Happe, L. (2014).
View-Based Model-Driven Software Development with Mod-
elJoin. Software & Systems Modeling, 15(2), 472–496. doi:
10.1007/s10270-014-0413-5

Cicchetti, A., Ciccozzi, F., & Pierantonio, A. (2019, 12). Multi-
view approaches for software and system modelling: a sys-
tematic literature review. Software & Systems Modeling, 18,
3207–3233. doi: 10.1007/s10270-018-00713-w

Cicchetti, A., Di Ruscio, D., & Pierantonio, A. (2007, 10).
A metamodel independent approach to difference represen-
tation. Journal of Object Technology, 6, 165–185. doi:
10.5381/jot.2007.6.9.a9

Cleve, A., Kindler, E., Stevens, P., & Zaytsev, V. (2019). Multi-
directional Transformations and Synchronisations (Dagstuhl
Seminar 18491). Dagstuhl Reports, 8(12), 1–48. doi:
10.4230/DagRep.8.12.1

Debreceni, C., Horváth, A., Hegedüs, A., Ujhelyi, Z., Ráth, I., &
Varró, D. (2014). Query-driven incremental synchronization
of view models. In Proceedings of the 2nd workshop on view-
based, aspect-oriented and orthographic software modelling
(p. 31–38). New York, NY, USA: Association for Computing
Machinery. doi: 10.1145/2631675.2631677

Diskin, Z., Xiong, Y., & Czarnecki, K. (2010). From state- to
delta-based bidirectional model transformations. In L. Tratt
& M. Gogolla (Eds.), Theory and practice of model trans-
formations (pp. 61–76). Berlin, Heidelberg: Springer Berlin
Heidelberg. doi: 10.1007/978-3-642-13688-7_5

Diskin, Z., Xiong, Y., & Czarnecki, K. (2011). From state- to
delta-based bidirectional model transformations: the asym-
metric case. Journal of Object Technology, 10, 6:1–25. doi:
10.5381/jot.2011.10.1.a6

Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F.,

& Orejas, F. (2011). From state- to delta-based bidirec-
tional model transformations: The symmetric case. In Model
driven engineering languages and systems (Vol. 6981, pp.
304–318). Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-24485-8_22

Eclipse Foundation. (2019). EMF Compare. https://www
.eclipse.org/emf/compare. (Accessed: 2022-11-28)

Farail, P., Gaufillet, P., Canals, A., LE Camus, C., Sciamma, D.,
Michel, P., . . . Pantel, M. (2006, January). The TOPCASED
project: a Toolkit in Open source for Critical Aeronautic Sys-
tEms Design. In Conference ERTS’06. Toulouse, France. Re-
trieved from https://hal.archives-ouvertes.fr/hal-02270461

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., &
Schmitt, A. (2005, January). Combinators for bi-directional
tree transformations: A linguistic approach to the view
update problem. SIGPLAN Not., 40(1), 233–246. doi:
10.1145/1047659.1040325

Foster, J. N., Greenwald, M. B., Moore, J. T., Pierce, B. C., &
Schmitt, A. (2007, May). Combinators for bidirectional tree
transformations: A linguistic approach to the view-update
problem. ACM Trans. Program. Lang. Syst., 29(3), 17–es.
doi: 10.1145/1232420.1232424

Fowler, M. (2019). Refactoring: Improving the design of exist-
ing code (Second edition ed.). Boston, MA, USA: Addison-
Wesley.

Fritsche, L., Kosiol, J., Schürr, A., & Taentzer, G. (2018).
Short-cut rules. In M. Mazzara, I. Ober, & G. Salaün (Eds.),
Software technologies: Applications and foundations (pp.
415–430). Cham: Springer International Publishing. doi:
10.1007/978-3-030-04771-9_30

Giese, H., & Wagner, R. (2006). Incremental model syn-
chronization with triple graph grammars. In Model driven
engineering languages and systems (pp. 543–557). Berlin,
Heidelberg: Springer Berlin Heidelberg.

Giese, H., & Wagner, R. (2008, 3). From model transformation
to incremental bidirectional model synchronization. Software
& Systems Modeling, 8(1), 21–43. doi: 10.1007/s10270-008-
0089-9

VITRUVIUS GitHub Organization. (2021). https://github.com/
vitruv-tools. (Accessed: 2022-11-28)

Gleitze, J., Klare, H., & Burger, E. (2021). Finding a universal
execution strategy for model transformation networks. In Fun-
damental approaches to software engineering (pp. 87–107).
Cham: Springer International Publishing. doi: 10.1007/978-
3-030-71500-7_5

Goldschmidt, T., Becker, S., & Burger, E. (2012, March). To-
wards a tool-oriented taxonomy of view-based modelling.
In E. J. Sinz & A. Schürr (Eds.), Proceedings of the mod-
ellierung 2012 (Vol. P-201, pp. 59–74). Bonn, Germany:
Gesellschaft für Informatik e.V. (GI).

Google LLC. (2022). Exposure Notifications API. Re-
trieved from https://developers.google.com/android/exposure
-notifications/exposure-notifications-api (Accessed: 2022-
11-28)

ISO/IEC/IEEE 42010:2011(E). (2011). Systems and software
engineering – architecture description. International Or-
ganization for Standardization, Geneva, Switzerland. doi:

12 Wittler et al.

https://doi.org/10.1007/s10270-021-00879-w
https://doi.org/10.1007/s10270-021-00879-w
https://doi.org/10.1145/3239372.3242895
https://doi.org/10.1007/978-3-319-25264-3_23
https://doi.org/10.1145/2465498.2465501
https://doi.org/10.1007/s10270-014-0413-5
https://doi.org/10.1007/s10270-018-00713-w
https://doi.org/10.5381/jot.2007.6.9.a9
https://doi.org/10.4230/DagRep.8.12.1
https://doi.org/10.1145/2631675.2631677
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.5381/jot.2011.10.1.a6
https://doi.org/10.1007/978-3-642-24485-8_22
https://www.eclipse.org/emf/compare
https://www.eclipse.org/emf/compare
https://hal.archives-ouvertes.fr/hal-02270461
https://doi.org/10.1145/1047659.1040325
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1007/978-3-030-04771-9_30
https://doi.org/10.1007/s10270-008-0089-9
https://doi.org/10.1007/s10270-008-0089-9
https://github.com/vitruv-tools
https://github.com/vitruv-tools
https://doi.org/10.1007/978-3-030-71500-7_5
https://doi.org/10.1007/978-3-030-71500-7_5
https://developers.google.com/android/exposure-notifications/exposure-notifications-api
https://developers.google.com/android/exposure-notifications/exposure-notifications-api

10.1109/IEEESTD.2011.6129467
Kent, S. (2002). Model driven engineering. , 286–298. doi:

10.1007/3-540-47884-1_16
Klare, H., Kramer, M. E., Langhammer, M., Werle, D.,

Burger, E., & Reussner, R. (2021). Enabling consis-
tency in view-based system development — the vitruvius
approach. Journal of Systems and Software, 171, 110815.
doi: 10.1016/j.jss.2020.110815

Klare, H., Pepin, A., Burger, E., & Reussner, R. (2020). A
Formal Approach to Prove Compatibility in Transformation
Networks (Vol. 2020; Tech. Rep. No. 3). Karlsruhe: Karlsruhe
Institute of Technology (KIT). doi: 10.5445/IR/1000121444

Kolovos, D., Di Ruscio, D., Pierantonio, A., & Paige, R. (2009,
5). Different models for model matching: An analysis of
approaches to support model differencing. In 2009 ICSE
workshop on comparison and versioning of software models
(pp. 1–6). doi: 10.1109/CVSM.2009.5071714

Kusel, A., Etzlstorfer, J., Kapsammer, E., Langer, P., Rets-
chitzegger, W., Schoenboeck, J., . . . Wimmer, M. (2013). A
survey on incremental model transformation approaches. In
Me 2013 – models and evolution workshop proceedings (pp.
4–13).

Langer, P., Mayerhofer, T., & Kappel, G. (2014). Semantic
model differencing utilizing behavioral semantics specifica-
tions. In J. Dingel, W. Schulte, I. Ramos, S. Abrahão, &
E. Insfran (Eds.), Model-driven engineering languages and
systems (pp. 116–132). Cham: Springer International Pub-
lishing. doi: 10.1007/978-3-319-11653-2_8

Leblebici, E., Anjorin, A., Fritsche, L., Varró, G., & Schürr,
A. (2017). Leveraging incremental pattern matching tech-
niques for model synchronisation. In J. de Lara & D. Plump
(Eds.), Graph transformation (pp. 179–195). Cham: Springer
International Publishing.

Lin, Y., Gray, J., & Jouault, F. (2007, 08). Dsmdiff: A differen-
tiation tool for domain-specific models. European Journal
of Information Systems - EUR J INFOR SYST , 16, 349–361.
doi: 10.1057/palgrave.ejis.3000685

Macedo, N., Jorge, T., & Cunha, A. (2017). A Feature-
based Classification of Model Repair Approaches. IEEE
Transactions on Software Engineering, 43(7), 615–640. doi:
10.1109/TSE.2016.2620145

Maoz, S., & Ringert, J. O. (2016, aug). A framework for
relating syntactic and semantic model differences. Software
and Systems Modeling, 17(3), 753–777. doi: 10.1007/s10270-
016-0552-y

Maoz, S., Ringert, J. O., & Rumpe, B. (2011). A manifesto
for semantic model differencing. In J. Dingel & A. Solberg
(Eds.), Models in software engineering (pp. 194–203). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-
642-21210-9_19

Martínez, S., Tisi, M., & Douence, R. (2017). Reactive model
transformation with atl. Science of Computer Programming,
136, 1–16. doi: 10.1016/j.scico.2016.08.006

Marussy, K., Semeráth, O., & Varró, D. (2018). Incremental
view model synchronization using partial models. In Proceed-
ings of the 21th acm/ieee international conference on model
driven engineering languages and systems (p. 323–333). New

York, NY, USA: Association for Computing Machinery. doi:
10.1145/3239372.3239412

Meier, J., Kateule, R., & Winter, A. (2020). Operator-based
viewpoint definition. In Proceedings of the 8th international
conference on model-driven engineering and software de-
velopment - modelsward, (pp. 401–408). SciTePress. doi:
10.5220/0008977404010408

Meier, J., Werner, C., Klare, H., Tunjic, C., Aßmann, U., Atkin-
son, C., . . . Winter, A. (2020). Classifying approaches for
constructing single underlying models. In Model-driven en-
gineering and software development (pp. 350–375). Cham:
Springer International Publishing. doi: 10.1007/978-3-030-
37873-8_15

Murer, S., Bonati, B., & Furrer, F. J. (2011). Managed evolu-
tion: A strategy for very large information systems (1st ed.).
Springer Berlin Heidelberg. doi: 10.1007/978-3-642-01633-
2

Müller, K., & Rumpe, B. (2014, Feb). User-Driven Adaptation
of Model Differencing Results. In Software engineering
2014 : Fachtagung des gi-fachbereichs softwaretechnik ; 25.
februar - 28. februar 2014 in kiel, deutschland / wilhelm
hasselbring ... (hrsg.) (pp. 25–29). Bonn: Ges. für Informatik.
doi: 10.13140/2.1.2796.7682

Pietsch, P., Müller, K., & Rumpe, B. (2013). Model match-
ing challenge: Benchmarks for ecore and bpmn diagrams.
Softwaretechnik-Trends, 33(2), 95–100. doi: 10.1007/s40568-
013-0061-x

Runeson, P., & Höst, M. (2008, dec). Guidelines for conduct-
ing and reporting case study research in software engineer-
ing. Empirical Software Engineering, 14(2), 131–164. doi:
10.1007/s10664-008-9102-8

Sağlam, T., & Klare, H. (2021). Classifying and avoiding com-
patibility issues in networks of bidirectional transformations.
In STAF 2021 workshop proceedings: 9th international work-
shop on bidirectional transformations. CEUR-WS. (accepted,
to appear)

Sağlam, T., & Kühn, T. (2021, oct). Towards the co-evolution
of models and artefacts of industrial tools through exter-
nal views. In 2021 ACM/IEEE international conference on
model driven engineering languages and systems companion
(MODELS-c) (p. 410-416). IEEE. doi: 10.1109/MODELS-
C53483.2021.00064

Semeráth, O., Debreceni, C., Horváth, A., & Varró, D. (2016).
Incremental backward change propagation of view models
by logic solvers*. In Proceedings of the acm/ieee 19th inter-
national conference on model driven engineering languages
and systems (p. 306–316). New York, NY, USA: Association
for Computing Machinery. doi: 10.1145/2976767.2976788

Sidhu, B. K., Singh, K., & Sharma, N. (2018). A catalogue of
model smells and refactoring operations for object-oriented
software. In 2018 second international conference on inven-
tive communication and computational technologies (icicct)
(pp. 313–319). doi: 10.1109/ICICCT.2018.8473027

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E. (2009).
Emf: Eclipse modeling framework 2.0 (2nd ed.). Addison-
Wesley Professional.

Stephan, M., & Cordy, J. R. (2013). A survey of model compar-

Evaluating Model Differencing for the Consistency Preservation of State-based Views 13

https://doi.org/10.1109/IEEESTD.2011.6129467
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1016/j.jss.2020.110815
https://doi.org/10.5445/IR/1000121444
https://doi.org/10.1109/CVSM.2009.5071714
https://doi.org/10.1007/978-3-319-11653-2_8
https://doi.org/10.1057/palgrave.ejis.3000685
https://doi.org/10.1109/TSE.2016.2620145
https://doi.org/10.1007/s10270-016-0552-y
https://doi.org/10.1007/s10270-016-0552-y
https://doi.org/10.1007/978-3-642-21210-9_19
https://doi.org/10.1007/978-3-642-21210-9_19
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1145/3239372.3239412
https://doi.org/10.5220/0008977404010408
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1007/978-3-030-37873-8_15
https://doi.org/10.1007/978-3-642-01633-2
https://doi.org/10.1007/978-3-642-01633-2
https://doi.org/10.13140/2.1.2796.7682
https://doi.org/10.1007/s40568-013-0061-x
https://doi.org/10.1007/s40568-013-0061-x
https://doi.org/10.1007/s10664-008-9102-8
https://doi.org/10.1109/MODELS-C53483.2021.00064
https://doi.org/10.1109/MODELS-C53483.2021.00064
https://doi.org/10.1145/2976767.2976788
https://doi.org/10.1109/ICICCT.2018.8473027

ison approaches and applications. In Proceedings of the 1st
international conference on model-driven engineering and
software development - volume 1: Modelsward, (pp. 265–
277). SciTePress. doi: 10.5220/0004311102650277

Stevens, P. (2020). Maintaining consistency in networks of
models: bidirectional transformations in the large. Software
and Systems Modeling, 19(1), 39–65. doi: 10.1007/s10270-
019-00736-x

Strittmatter, M., & Kechaou, A. (2016). The media store 3
case study system (Vol. 2016; Tech. Rep. No. 1). Karlsruher
Institut für Technologie (KIT). doi: 10.5445/IR/1000052197

Stünkel, P., König, H., Rutle, A., & Lamo, Y. (2021, January).
Multi-model evolution through model repair. Journal of
Object Technology, 20(1), 1:1–25. (Workshop on Models and
Evolution (ME 2020)) doi: 10.5381/jot.2021.20.1.a2

Torres, W., van den Brand, M. G. J., & Serebrenik, A. (2021,
10). A systematic literature review of cross-domain model
consistency checking by model management tools. Softw.
Syst. Model., 20(3), 897–916. doi: 10.1007/s10270-020-
00834-1

Toulmé, A., & Inc, I. (2006). Presentation of emf compare
utility. In Eclipse modeling symposium (Vol. 1).

Treude, C., Berlik, S., Wenzel, S., & Kelter, U. (2007). Dif-
ference computation of large models. In Proceedings of
the the 6th joint meeting of the european software engi-
neering conference and the ACM SIGSOFT symposium on
the foundations of software engineering - ESEC-FSE '07
(pp. 295–304). New York, NY, USA: ACM Press. doi:
10.1145/1287624.1287665

Tsantalis, N., Guana, V., Stroulia, E., & Hindle, A. (2013).
A multidimensional empirical study on refactoring activity.
In Proceedings of the 2013 conference of the center for ad-
vanced studies on collaborative research (p. 132–146). USA:
IBM Corp.

Tsantalis, N., Mansouri, M., Eshkevari, L., Mazinanian, D., &
Dig, D. (2018). Accurate and efficient refactoring detection
in commit history. In 2018 ieee/acm 40th international con-
ference on software engineering (icse) (pp. 483–494). doi:
10.1145/3180155.3180206

Tunjic, C., & Atkinson, C. (2015). Synchronization of
projective views on a single-underlying-model. In Pro-
ceedings of the 2015 joint morse/vao workshop on model-
driven robot software engineering and view-based software-
engineering (pp. 55–58). New York, NY, USA: ACM. doi:
10.1145/2802059.2802066

Werner, C., Wimmer, M., & Assmann, U. (2019, sep). A
generic language for query and viewtype generation by-
example. In 2019 ACM/IEEE 22nd international conference
on model driven engineering languages and systems compan-
ion (MODELS-c) (pp. 379–386). Los Alamitos, CA, USA:
IEEE. doi: 10.1109/models-c.2019.00059

Wimmer, M., Martínez, S., Jouault, F., & Cabot, J. (2012,
August). A catalogue of refactorings for model-to-model
transformations. Journal of Object Technology, 11(2), 2:1–
40. doi: 10.5381/jot.2012.11.2.a2

Wittler, J. W., Sağlam, T., & Kühn, T. (2023, May). Replication
package for the paper "evaluating model differencing for the

consistency preservation of state-based views".
doi: 10.5281/zenodo.7945324

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., & Wesslén, A. (2012). Experimentation in software
engineering. Berlin, Heidelberg: Springer Berlin Heidelberg.
doi: 10.1007/978-3-642-29044-2

Xing, Z., & Stroulia, E. (2005). Umldiff: An algo-
rithm for object-oriented design differencing. In Pro-
ceedings of the 20th ieee/acm international conference on
automated software engineering (p. 54–65). New York,
NY, USA: Association for Computing Machinery. doi:
10.1145/1101908.1101919

About the authors
Jan Willem Wittler is a doctoral researcher at the KASTEL –
Institute of Information Security and Dependability at Karlsruhe
Institute of Technology (KIT) since 2022. His research interests
involve managing the evolution of variant-rich cyber-physical
systems in a consistency-preserving manner and view-based
modeling. You can contact the author at research@wittler.app
or visit https://dsis.kastel.kit.edu/alumni_jan_wittler.php.

Timur Sağlam is a doctoral researcher at the KASTEL – Insti-
tute of Information Security and Dependability at Karlsruhe
Institute of Technology (KIT) since 2020. His primary research
interests involve software plagiarism and collusion detection,
particularly obfuscation attacks on structure-based plagiarism
detectors for code and modeling artifacts. Furthermore, he
is interested in the consistency preservation of models and
views, and the adoption of model-driven approaches and tools.
You can contact the author at timur.saglam@kit.edu or visit
https://dsis.kastel.kit.edu/staff_saglam.php.

Thomas Kühn is a postdoctoral researcher at the Software Engi-
neering and Programming Languages group at Martin Luther
University Halle-Wittenberg. He received his Ph.D. in 2017 at
the Dresden University of Technology. His research focuses on
new ways to model and program future software systems chal-
lenged by increased complexity, heterogeneity, rate of change,
and longevity. As a result, he investigates how software prod-
uct line engineering can be applied to systems engineering
and software language engineering. You can contact the au-
thor at thomas.kuehn@informatik.uni-halle.de or visit https://
swt.informatik.uni-halle.de/mitarbeiter/45865_3467283.

14 Wittler et al.

https://doi.org/10.5220/0004311102650277
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.1007/s10270-019-00736-x
https://doi.org/10.5445/IR/1000052197
https://doi.org/10.5381/jot.2021.20.1.a2
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1007/s10270-020-00834-1
https://doi.org/10.1145/1287624.1287665
https://doi.org/10.1145/3180155.3180206
https://doi.org/10.1145/2802059.2802066
https://doi.org/10.1109/models-c.2019.00059
https://doi.org/10.5381/jot.2012.11.2.a2
https://doi.org/10.5281/zenodo.7945324
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1145/1101908.1101919
mailto:research@wittler.app?subject=Your paper "Evaluating Model Differencing for the Consistency Preservation of State-based Views"
https://dsis.kastel.kit.edu/alumni_jan_wittler.php
mailto:timur.saglam@kit.edu?subject=Your paper "Evaluating Model Differencing for the Consistency Preservation of State-based Views"
https://dsis.kastel.kit.edu/staff_saglam.php
mailto:thomas.kuehn@informatik.uni-halle.de?subject=Your paper "Evaluating Model Differencing for the Consistency Preservation of State-based Views"
https://swt.informatik.uni-halle.de/mitarbeiter/45865_3467283
https://swt.informatik.uni-halle.de/mitarbeiter/45865_3467283

