
1. Introduction
Tracer transport in a wide range of natural porous media is characterized by behaviors that cannot be described by 
the Fickian paradigm based on constant (effective) transport coefficients. A particularly broad range of “anoma-
lous” (or “non-Fickian”) behaviors is found for transport of chemical species in structurally heterogeneous porous 
and fractured geological formations, having been observed and quantified at field and laboratory scales (Berkowitz 
et al., 2006). Non-Fickian transport often manifests in rapid breakthrough and long tailing of chemicals, reflect-
ing the wide spectrum of local fluid and transport velocities together with imperfect mixing, and it is well char-
acterized by the continuous time random walk (CTRW) framework (Scher & Lax, 1973; Scher & Montroll, 1975; 
Shlesinger, 1974). The CTRW formulation quantifies and interprets these dynamics, and it has been developed 
extensively, in particular, to analyze transport of inert (passive) chemical species (tracers) in water-saturated, 
heterogeneous rock and soil formations. While most data and analyses are available at the pore to meter scale 
(Berkowitz et al., 2006; Bijeljic et al., 2011), limited evidence points to similar behavior at larger spatial scales 
(Berkowitz & Scher, 1998; Goeppert et al., 2020). Scenarios and data over extended time scales (years), as well 
as over large spatial scales and long transport distances (kilometers), are generally unavailable, particularly for 
catchments that involve interactions among stream flow, the vadose zone, the fully saturated subsurface region, 
and vegetation. Approaches other than CTRW, though generally related in some sense to CTRW, can of course 
be considered; these include, for example, fractional derivative formulations and mobile-immobile models with 
power-law and exponential trapping times (Doerries et al., 2022; Wang & Barkai, 2020).

A related key challenge in basin scale hydrology is to account for the interplay of storage and mixing of 
time-dependent rainfall inputs within the catchment system, and the effects on the subsequent release of water 
and chemicals to the stream. While rainfall and streamflow naturally exhibit a strong lagged correlation, stream-
flow chemistry and its isotopic signature differ markedly from those of precipitation, reflecting a time-dependent 
mixture of rainfall and pre-event waters stored in subsurface compartments (Bonell et  al.,  1990; Sklash & 
Farvolden, 1979). Streamflow is hence essentially regarded as a time-dependent composition of rainfall event 
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water and different fractions of pre-event water, which reside for different times within the catchment subsurface 
(Hrachowitz et al., 2016). Stable isotopes of H and O in water, and passive chemical tracers, are used to infer 
travel time distributions of streamflow (Harman, 2015; Rodriguez et al., 2021).

Current approaches to interpret this behavior involve inverse estimation of travel time distributions by 
least-squares deconvolution (Kirchner, 2019), fitting of forward convolution models, or assignment of empirical 
age ranked storage as a state variable in combination with “StorAgeSelection (SAS)” functions for streamflow 
and evapotranspiration, to infer their respective travel time distributions (Harman, 2015; Rinaldo et al., 2015)). 
Related studies interpret catchment travel times empirically in terms of a single or several gamma distributions 
(Hrachowitz et al., 2010; Kirchner et al., 2000; Rodriguez & Klaus, 2019; Rodriguez et al., 2021), or a beta distri-
bution (van der Velde et al., 2012).

The purpose of this Letter is to study anomalous chemical transport through a catchment system as reflected in 
streamflow chemistry data, over both short and long times. To this end, we analyze a unique 36-year data set and 
extract, for the first time, an indication of CTRW-like anomalous behavior over extensive length and time scales. 
In this context, we provide a physical picture and quantitative conceptualization of chemical transport through 
catchments.

2. Background and Mathematical Development
In the following, we briefly recount relevant background on the conceptual model and spectral representation. We 
then develop the full CTRW model in the context of catchments which is applied to a unique chemical tracer data 
set from the Plynlimon experimental catchments in Wales in the next section.

2.1. Conceptual Model and Spectral Representation

For clarity, we define a hydrological catchment as a three-dimensional control volume comprising a sloping soil 
layer, with local undulations, underlain by a (usually porous and/or fractured) rock layer. Within this volume, the 
streamlines generally converge into a river network, hence ideally, the entire set of surface and subsurface runoff 
components feed an outflowing stream, with the catchment being treated as an input-output system. Rainfall may 
either run off the surface (Zehe & Blöschl, 2004), or infiltrate into partially saturated, near-surface soils, where 
it may feed evapotranspiration and/or further percolate into saturated soil-rock formations below (Kirchner & 
Allen, 2020). Each of these regions is structurally heterogeneous over a range of length scales and subject to 
anomalous transport (Beven & Germann, 1982; Jackisch et al., 2017; Wienhofer et al., 2009). Anomalous trans-
port can arise from the wide range of residence times that are caused by the time-dependent mixtures of rainfall, 
surface runoff and pre-event water fractions, and the varying concentrations of chemical species that they contain.

To quantify chemical transport behavior in such a complex system, we consider the effective travel time distri-
bution response to a pulse of rainfall over the entire area of a catchment. Thus chemical and isotopic tracers in 
precipitation enter the catchment almost simultaneously at each point on its surface. For simplicity, but maintain-
ing a realistic picture, we assume that a stream runs through the catchment. This stream acts as a collector—a line 
sink that drains the catchment—for the tracer. Typically, continuous tracer concentration measurements (tracer 
arrivals) are made at a control (gauging) point downstream, which yields a time series of tracer concentrations. As 
the travel time in the stream is very short compared to the travel time in the catchment, we consider in the follow-
ing the streambank at x = 0 as the point of reference. The travel time distribution from a (pulse) source at distance 
x to the streambank is denoted by Φ(x, t). The concentration c(t) of a chemical tracer at the streambank is then

𝑐𝑐(𝑡𝑡) =

𝑡𝑡

∫
0

𝐿𝐿

∫
0

𝑤𝑤(𝑥𝑥)Φ
(

𝑥𝑥𝑥 𝑡𝑡
′
)

𝑟𝑟
(

𝑥𝑥𝑥 𝑡𝑡 − 𝑡𝑡
′
)

𝑑𝑑𝑥𝑥𝑑𝑑𝑡𝑡
′∕

𝐿𝐿

∫
0

𝑤𝑤(𝑥𝑥)𝑑𝑑𝑥𝑥 (1)

with r(x, t) the rainfall input of a chemical tracer at position x in a hillslope of length L, and w(x) is a weight-
ing function proportional to the fraction of the drainage area that lies at distance x from the stream (Kirchner 
et al., 2001). The drainage area is assumed to be regular with w(x) = 1. We note that explicit quantification of 
evapotranspiration, and wet and dry periods, which affect water and chemical outflows in both space and time, 
is far from straightforward. Here, these effects are included in an implicit sense: the 36-year measurement period 
reflects all inputs and outputs to the system, including those of evapotranspiration.
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Chemical arrivals are sampled downstream, and can be considered an “instantaneous” integration of all chemical 
tracer arrivals, from all catchment pathways, along the entire length of the stream. The travel times within the 
stream can be neglected, because stream velocities are generally much faster than downslope subsurface transport 
velocities within the catchment. By integrating over all precipitation tracer inputs that reach the stream, we can 
determine the total flux into the stream. This flux is the first-passage time distribution (overall travel time distri-
bution) at the downstream point of measurement. Given a uniform rainfall distribution over Ω, it follows that r(x, 
t) ≈ r(t), and we can hence define for the overall travel time distribution h(t) in the entire catchment:

ℎ(𝑡𝑡) ≡ 1

𝐿𝐿

𝐿𝐿

∫
0

Φ(𝑥𝑥𝑥 𝑡𝑡)𝑑𝑑𝑥𝑥𝑑 (2)

Note that the time integral over the travel time distribution Φ(x, t) integrates to one.

Kirchner et al. (2000, 2001) originally analyzed the then-available ∼10 years of time series measurements from 
the Plynlimon catchments, comparing, in particular, time series of measurements of chloride concentration in 
rainfall to the chloride tracer concentrations in the (outlet) collector Hafren stream. In this context, a spectral 
analysis of the concentration signal in the stream was first performed; the analysis considers the Fourier transform 
c*(f) of c, defined by

𝑐𝑐
∗(𝑓𝑓 ) =

∞

∫
−∞

exp(𝑖𝑖𝑓𝑓 𝑖𝑖)𝑐𝑐(𝑖𝑖)𝑑𝑑𝑖𝑖𝑑 (3)

where f is the frequency with units of inverse time and i denotes the imaginary unit. Thus, large frequencies 
correspond to short times (high frequency fluctuations), while small frequencies correspond to long times (low 
frequency fluctuations).

The power spectrum Sc(f) is defined by

𝑆𝑆𝑐𝑐(𝑓𝑓 ) = 𝑐𝑐
∗(𝑓𝑓 )𝑐𝑐∗(𝑓𝑓 ), (4)

where the bar denotes the complex conjugate. The power spectra Sh(f) of h(t) and Sr(f) of r(t) are defined analo-
gously. Sc(f) can be written in terms of Sh(f) and Sr(f) as

𝑆𝑆𝑐𝑐(𝑓𝑓 ) = 𝑆𝑆ℎ(𝑓𝑓 )𝑆𝑆𝑟𝑟(𝑓𝑓 ). (5)

Thus, Sh(f) is obtained by division of the observed spectra of the concentration and rainfall signals. In the follow-
ing, we refer to Sh(f) as the transfer function.

Spectral analysis showed the rainfall chloride concentrations to exhibit an approximate white noise spectrum, 
while streamflow concentrations displayed a fractal 1/f 2α scaling spectrum (Kirchner et  al.,  2000), which is 
consistent with a Gamma distribution of overall travel times h(t). Kirchner et al. (2001) showed that the exponent 
α = 1/2 can be obtained from an inverse Gaussian travel time distribution Φ(x, t), which assumes that transport 
along the catchment can be characterized by a mean flow velocity and a macrodispersion coefficient. Recently, 
matrix diffusion typical of fractured aquifers was invoked as a possible explanation of the observed power-law 
scalings (Rajaram, 2021).

2.2. Continuous Time Random Walk Model

In this letter, we adopt the CTRW framework to integrate the impact of broad distributions of mass transfer times, 
typical of transport in heterogeneous media (Berkowitz et al., 2006), on the distribution of overall travel times in 
catchments. The approach is used to analyze and interpret the extensive 36-year record (1983–2019) of chloride 
tracer concentration measurements from three catchments in Plynlimon, Wales (Kirchner & Neal, 2013; Kirchner 
et al., 2000; Neal et al., 2011, 2012). The Upper Hafren, Lower Hafren, and Tanllwyth catchments have areas 
of 1.22, 3.47, and 0.916 km 2, respectively, and can be abstracted to be of roughly rectangular shape (longer in 
the upstream to downstream direction); see Neal et al. (2011) for a detailed description and map of the catch-
ments. The measurements were processed using a spectral analysis of the concentration signal in precipitation 
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and at the stream outlet, using the methods described in detail in Kirchner 
and  Neal (2013); see Supporting Information S1 for additional information.

In the development here, the catchment is assumed to be composed of hydro-
logical “compartments” of characteristic length ℓ. Each compartment j is 
characterized by a distribution ψj(t) of transition times (as distinct from 
“travel times,” which are defined differently in Section 2.1), which encodes 
the different retention and transport processes on the compartment scale. The 
compartments are assumed to be statistically independent and of uniform 
length ℓ. In this framework, the transport of a solute parcel through the catch-
ment is given by

𝑥𝑥𝑗𝑗+1 = 𝑥𝑥𝑗𝑗 + 𝓁𝓁 (6)

𝑡𝑡𝑗𝑗+1 = 𝑡𝑡𝑗𝑗 + 𝜏𝜏𝑗𝑗 . (7)

The transition times, τj, are distributed according to ψj(t). The travel times 
tn from the nth compartment toward the stream at the distance nℓ are then 
given by

𝑡𝑡𝑛𝑛 =

𝑛𝑛
∑

𝑗𝑗=1

𝜏𝜏𝑗𝑗 . (8)

Thus, the distribution Φn(t) of tn is given by the n − fold convolution of the ψj(t), which reads in Fourier space as

Φ∗
𝑛𝑛(𝑓𝑓 ) =

𝑛𝑛−1
∏

𝑗𝑗=0

𝜓𝜓
∗
𝑗𝑗
(𝑓𝑓 ). (9)

Note that this formulation accounts for the variability of travel time distributions along the hillslope. For simplic-
ity, here, we assume that ψj(t) = ψ(t) is compartment-independent. This is a reasonable assumption when the bulk 
of the water flow is in the subsurface, and when the spatial subsurface properties can be considered statistically 
stationary from watershed boundaries to the streambank.

The overall travel time distribution h(t) results from the recharge and flow from N compartments toward the 
outflow. Using Equation 9 for ψj(t) = ψ(t) in the Fourier transform of the discrete version of Equation 2, we can 
write (see Supporting Information S1 for details)

ℎ
∗(𝑓𝑓 ) =

1

𝑁𝑁

𝑁𝑁
∑

𝑛𝑛=1

𝜓𝜓
∗(𝑓𝑓 )𝑛𝑛. (10)

This geometric sum can be evaluated explicitly, which gives

ℎ
∗(𝑓𝑓 ) =

𝜓𝜓∗(𝑓𝑓 )

𝑁𝑁

1 − 𝜓𝜓∗(𝑓𝑓 )𝑁𝑁

1 − 𝜓𝜓∗(𝑓𝑓 )
. (11)

The transition times τn are assumed to be broadly distributed, characterized by the power law ψ(t) ∼ t −1−β with 
0 < β < 1. We use here the one-sided stable distribution (Nolan, 2018; Uchaikin & Zolotarev, 1999)

𝜓𝜓
∗(𝑓𝑓 ) = exp

[

−(𝑖𝑖𝑓𝑓𝑖𝑖𝓁𝓁)
𝛽𝛽
]

 (12)

with 0 < β < 1, τℓ = a0ℓ 1/β the time scale that indicates the onset of the power law, and a0 a scale parameter. The 
inverse Fourier transform of ψ*(f) decays as t −1−β for t ≫ τℓ and decreases exponentially fast toward 0 for t ≪ τℓ. 
Furthermore, transition times are shifted toward smaller values with decreasing τℓ, that is, transitions are on 
average faster. These features are illustrated in Figure 1. Note that the stable distribution Equation 12 is an oper-
ational assumption. In general, the transition time distribution is characterized by a cut-off that corresponds to 
the largest mass transfer time over a characteristic heterogeneity scale (Dentz et al., 2004). In the present context, 
this time scale would correspond, for example, to diffusion times across low permeability regions. Particularly 
with increasing depth, subsurface preferential pathways for fluid flow and tracer transport in heterogeneous and 

Figure 1. Illustration of the time-dependence of the inverse Fourier transform 
of 𝐴𝐴 exp

[

𝑖𝑖(𝑓𝑓𝑓𝑓𝓁𝓁)
𝛽𝛽
]

 for β = 0.45 with (green) τℓ = 9.38 × 10 −2 yr and (blue) 
τℓ = 2.24 × 10 −2 yr. The dash-dotted line denotes the power-law t −1−β.
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fractured rock formations can become increasingly ramified, with small frac-
tures tending to be compressed and less conductive and less weathered host 
rock having lower permeability. We thus assume here that the cut-off time is 
of the order of or larger than the largest observation time of about 30 years, 
which corresponds to characteristic molecular diffusion lengths in rock of 
∼0.3–0.7 m.

The typical compartment size ℓ may be estimated from the characteristic 
length scale of the distribution of physical aquifer heterogeneity. We assume 
here that this scale is much smaller than the hillslope length ℓ  ≪  L and 
consider in Equation 11 the scale limit N = L/ℓ → ∞ such that Nℓ = L. In this 
scale limit, we obtain for h*(f)

ℎ
∗(𝑓𝑓 ) =

1 − exp
[

−(𝑖𝑖𝑓𝑓𝑖𝑖𝐿𝐿)
𝛽𝛽
]

(𝑖𝑖𝑓𝑓𝑖𝑖𝐿𝐿)
𝛽𝛽

, (13)

where we defined τL = τℓ(L/ℓ) 1/β. The corresponding h(t) scales as

ℎ(𝑡𝑡) ∼

⎧

⎪

⎨

⎪

⎩

𝑡𝑡−1+𝛽𝛽 , 𝑡𝑡 𝑡 𝑡𝑡𝐿𝐿

𝑡𝑡−1−𝛽𝛽 , 𝑡𝑡 𝑡 𝑡𝑡𝐿𝐿;
 (14)

see also Scher et al. (2002) and the Supporting Information S1. The transfer 
function 𝐴𝐴 𝐴𝐴ℎ = ℎ

∗
(𝑓𝑓 )ℎ∗(𝑓𝑓 ) corresponding to Equation 13 is

𝑆𝑆
∗
ℎ
(𝑓𝑓 ) =

1 − 2cos
[

sin
(

𝛽𝛽𝛽𝛽

2

)

(𝑓𝑓𝑓𝑓𝐿𝐿)
𝛽𝛽

]

exp
[

−(𝑓𝑓𝑓𝑓𝐿𝐿)
𝛽𝛽cos

(

𝛽𝛽𝛽𝛽

2

)]

+ exp
[

−2cos
(

𝛽𝛽𝛽𝛽

2

)

(𝑓𝑓𝑓𝑓𝐿𝐿)
𝛽𝛽

]

(𝑓𝑓𝑓𝑓𝐿𝐿)
2𝛽𝛽

. (15)

The detailed derivations of Equations 13–15 can be found in the Supporting Information S1.

3. Results and Discussion
Fits to the data for each of the three catchments, using the explicit Equation 15, are shown in Figures 2–4. For 
comparison, corresponding fits of the spectra of the advection-dispersion equation (ADE)-based solution, with 

underlying Fickian transport are also shown. Details on the fitting method 
and performance indicators are given in the Supporting Information S1.

The data for the power spectra Sh(f) of the three catchments show similar 
behaviors. At intermediate and high frequencies, 1/yr  <  f  <  1000/yr, the 
data have a power-law tangent. With decreasing frequencies, they asymp-
tote toward 1. The two models show relatively good fits for f > 10/yr. For 
low frequencies, the ADE-based spectra converge faster toward 1 than the 
CTRW-based spectra, for which we assume that the cut-off scale is larger 
than the largest observation time.

The ADE-based spectra are fit by the time scale τc = D/v 2 between 1 and 
7 years, which is required to extend the power-law tangent f −1 to sufficiently 
low frequencies and fit the data. As outlined by Kirchner et al. (2001), this 
implies that the dispersion lengths LD = D/v are similar to the lengths of the 
hillslopes. However, as noted by Gelhar and Axness (1983), “on the order 
of 10–100 dispersion lengths of downstream displacement will be required 
before” the macrodispersion concept is strictly applicable.

The relatively low, best-fit values of β in the CTRW model indicate chem-
ical transport in a highly dispersive, heterogeneous medium, as noted from 
the spectra by Kirchner et al. (2001) and Kirchner and Neal (2013), with a 

Figure 2. Chloride spectrum and best fits of the spectra of the for Upper 
Hafren flux-weighted data: (dark orange) continuous time random walk 
model Equation 15 with β = 0.45, τL = 9.3 years; (black) ADE model with 
τc = D/v 2 = 8.2 years and Péclet number, Pe ≡ Lv/2D = 0.41, which implies 
the dispersion length LD = D/v = L/(2Pe) = 1.22L. The ADE model is defined 
in the Supporting Information S1.

Figure 3. Chloride spectrum and best fits of the spectra of the Lower Hafren 
flux-weighted data: (dark orange) continuous time random walk model 
Equation 15 with β = 0.44, τL = 9 years; (black) ADE model with τc = 9 years 
and Pe = 0.36, which implies the dispersion length LD = 1.39L.
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particularly broad range of tracer transition times through the entire catch-
ment (Berkowitz et al., 2006). This is supported by hydrogeological informa-
tion on the three catchments, which consist largely of acidic soils that overlie 
fractured mudstone and shale bedrock (Kirchner & Neal, 2013). However, 
relatively few data points are available for small frequencies, that is, large 
observation times. Furthermore, we find that Equations 13 and 11 with Equa-
tion 12 are indistinguishable for N ≥ 300. This implies that for a catchment 
length of ∼1 km, the characteristic transition length would be approximately 
3 m. Note that because we focus on the scale limit Equation 13, the char-
acteristic length scale of the compartments is much smaller than the length 
L of the hillslope; as such, the results are independent of the number of 
compartments.

To further illustrate the above, Figure  5 shows the catchment residence 
time distributions corresponding to the fitted spectrum of Sh based on 
the CTRW, and ADE models (see Supporting Information  S1), for Upper 
Hafren as shown in Figure 2. The residence time distribution corresponding 
to the CTRW model Equation  15 scales according to the behaviors given 
in Equation  14. Note that the power-law behavior at large times relies on 
the operational assumption that the cut-off scale of ψ(t) is of the order of 
or larger than  the largest observation time. The ADE-based model exhibits 
t −1/2-scaling at short times and exponential decay toward zero at large times.

The small Péclet numbers associated with the ADE formulation imply that a stable macrodispersion coefficient 
(as discussed by Gelhar and Axness (1983)) has not yet emerged after this transport distance, which implies the 
existence of preferential flow at all scales. Similarly, by its formulation, the CTRW analysis indicates that prefer-
ential flow is occurring at all length and time scales.

4. Conclusion
We investigated the occurrence of anomalous transport in a hydrological catchment, at large spatial scales and 
over long times. Using spectral analysis, we show that the behavior of long-term (36 years) time series measure-
ments of a natural passive tracer (chloride), in rainfall and runoff in a hydrological catchment, can be described 
by a CTRW approach that accounts for anomalous chemical transport behavior. The ADE spectra shown here are 
likewise indicative of anomalous transport, because they imply that subsurface permeability is heterogeneous at 

Figure 4. Chloride spectrum and best fits of the spectra of the Tanllwyth 
flux-weighted data: (red) continuous time random walk model Equation 15 
with β = 0.52, τL = 2.24 years; (black) ADE model with τc = 2.22 years and 
Péclet number, Pe = 0.58, which implies the dispersion length LD = 0.86L.

Figure 5. Travel time distribution corresponding to the power spectrum Sh(f) for Upper Hafren in Figure 2. The dark orange 
line denotes the continuous time random walk model, the black line shows the corresponding ADE model. The dashed-dotted 
lines indicate the scalings t −1+β and t −1−β, respectively, for β = 0.45.
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all scales, up to the flowpath length itself (Kirchner et al., 2001). Natural flow systems are not characterized by 
heterogeneity only at small scales, and thus do not fit the Fickian paradigm. The CTRW model is founded on the 
presence of a broad distribution of travel times, which may be characterized by a power-law regime that deter-
mines both the short and long time behaviors. CTRW provides a modeling framework to account for the impact 
of broad distributions of travel times on large scale solute transport. The ability to quantify such behavior opens 
an important path to analyzing chemical transport in hydrological catchments.

Data Availability Statement
No new datasets were generated in this study. The data on which this article is based are available in Kirchner 
et al. (2000), Neal et al. (2011), Neal et al. (2012, 2013a, 2013b) and Norris et al. (2017a), Norris et al. (2019a).
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