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Abstract

Asymptotic perturbation formulas characterize the effective behavior of waves as the volume
of the scattering object tends to zero. In this work, wave propagation is described by time-
harmonic Maxwell’s equations in free space and the corresponding scattering objects are thin
tubular objects that feature a different electric permittivity and a different magnetic permeability
than their surrounding medium. For this setting, we derive an asymptotic representation of the
scattered electric field away from the thin tubular object and use the corresponding leading order
term in a shape identification problem and for designing highly electromagnetically chiral objects.
In inverse problems, the leading order term may be used to find the center curve of a thin wire
that is supposed to emit a scattered field, which is reasonably close to a given measured field. For
the optimal design of electromagnetically chiral structures, the representation formula provides
an explicit formula for the leading order term of an asymptotic far field operator expansion. A
chirality measure, usually requiring the far field operator, will now map aforementioned leading
order term to a value between 0 and 1 dependent on the level of electromagnetic chirality of
the thin tubular scatterer. This approximation greatly simplifies the challenge to maximize the
chirality measure with respect to thin tubular objects. The fact that neither the evaluation
of the leading order term nor the calculation of corresponding derivatives require a Maxwell
system to be solved implies that the shape optimization scheme is highly efficient compared to
shape optimization algorithms that use e.g. domain derivatives. In the visible range, the metallic
nanowires obtained by our optimization scheme attain high values of electromagnetic chirality
and even exceed those attained by traditional metallic helices.

vii





Chapter 1

Introduction

1.1 Electromagnetic scattering from thin tubular structures
This thesis is about the interaction of time-harmonic electromagnetic waves with thin tubular
scattering objects and the efficient shape optimization of these structures to obtain objects with
large electromagnetic chirality.

The wave propagation is described by time-harmonic Maxwell’s equations in three-dimensional
space. An incident electric field Ei satisfying

curl curlEi − k2Ei = 0 in R3

illuminates the object and produces a scattered field Es. The wave number k is given by
k = ω

√
ε0µ0, where ω denotes the angular frequency and ε0 and µ0 denote the electric per-

mittivity and the magnetic permeability in free space, respectively. Inside the scattering object
the electric permittivity and magnetic permeability distributions ερ and µρ differ from the free
space by attaining the interior values ε1 and µ1. The interior permeability µ1 is supposed to
be positive, i.e. µ1 > 0, whereas we study permittivities with either ε1 > 0 or ε1 ∈ C with
Re(ε1) < 0 and Im(ε1) > 0. The first case corresponds to a purely dielectric scatterer, whereas
the second case covers metallic materials such as gold or silver for frequencies corresponding to
the optical range. The full Maxwell system for the total field E = Ei+Es is consequently given
by the weak formulation of

curl
(
µ−1
ρ curlE

)
− ω2ερE = 0 in R3

and the Silver–Müller radiation condition for the scattered field Es.
We consider thin tubular scattering objects, which can be described by a non self-intersecting

center curve K ⊂ R3 with finite length, a fixed cross-section D′ρ ⊂ R2 and a twist rate that
determines how the cross-section rotates as it is extruded along the center curve. Throughout
this thesis such an object will be denoted by Dρ and we call it a thin tubular scattering object.
If its size is in the range of a few nanometers (nm), we call Dρ a nanotube or nanowire. The
cross-section is supposed to be given by D′ρ = ρD′, where D′ is a bounded Lipschitz domain,
which is orthogonal to the center curve’s tangent vector for every point on K. The number
ρ > 0 in the notations Dρ and D′ρ is called the radius of the cross-section. In particular, it holds
that |Dρ| → 0 for ρ → 0. An example of such a thin tubular scattering object is visualized in
Figure 1.1. The non-circular cross-section D′ρ that is also shown in the bottom right corner,
twists along the tube’s center curve K.

We aim to derive an asymptotic model for electromagnetic wave scattering for thin tubular
scattering objects Dρ in free space that holds true as the cross-section D′ρ of Dρ shrinks to the
center curve K, i.e., as the radius ρ tends to zero. In our analysis we derive such an expansion
for the scattered field Es away from Dρ as well as for the electric far field E∞. The latter can
be understood as the unique representation of the scattered field on the unit sphere. For this

1



2 Chapter 1. Introduction

Figure 1.1: Sketch of the geometry of a thin tubular scattering object Dρ.

asymptotic expansion, the goal is to study the leading order term that is supposed to effectively
characterize the scattered electric field due to thin tubular scattering objects without solving the
full Maxwell system. In the literature, various asymptotic perturbation formulas are available
for electrostatic potentials (see e.g. [2, 29, 31, 56, 69]), elastic waves (see e.g. [11, 18, 20]) as well
as for electromagnetic waves (see e.g. [12, 13, 68]). These formulas find applications in inverse
problems such as the reconstruction of small inhomogeneities (see e.g. [9] and the references
therein) or crack-identification in homogeneous material (see e.g. [19, 69]). However, the existing
formulas for Maxwell’s equations either consider different geometries for the scatterer, or are
posed in a bounded set.

Here, we derive an asymptotic perturbation formula for scattered electric fields in free space
away from the scattering object by extending the general low-volume asymptotic representation
formula from [68] by using integral equation methods similar to [13]. We find that the leading
order term of this expansion can be written as a (scaled) line integral over the spine curveK with
an integrand featuring (i) the dyadic Green’s function of time-harmonic Maxwell’s equations in
free space, (ii) the incident field Ei and (iii) the electric and magnetic polarization tensors
denoted by Mε and Mµ. The range of integration and the polarization tensors are the signatures
of the scattering object, as they depend on the shape of both the curve K and the cross-section
D′ρ, on the twist rate of the cross-section around the curve, as well as on the material parameters
inside and outside of the scatterer. The polarization tensors can be seen as a generalization to the
particle polarizability α for a nano particle that relates the electric dipole moment p generated
by a nanoparticle to the incoming field Ei via p = αEi (see e.g. [1, pp. 152]). Similar as for the
particle polarizability α, plasmonic resonances, i.e. collective surface charge-density oscillations
on metallic nanoparticles are directly coupled to the polarization tensors. For simple cross-
sections such as circles or ellipses, the condition for the appearance of plasmonic resonances is
linked to poles in an explicit representation of Mε and Mµ. More general cross-sections require
to study the spectrum of the adjoint double layer potential, also called the Neumann–Poincaré
operator.

For the particular choice of material parameters considered throughout this thesis and for
thin tubular scatterers Dρ we study the magnetic polarization tensor for positive and the electric
polarization tensor for positive as well as for complex-valued interior permittivities having a
negative real and a positive imaginary part. In both cases, we find that for γ ∈ {ε, µ} the
tangent vector of the center curve K is an eigenvector of Mγ for a.e. point on the center curve
K. In the orthogonal complement of the space spanned by the tangent vector, this is the
plane in which the cross-section D′ρ is located, the polarization tensors can be characterized by
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using the two-dimensional polarization tensors mγ corresponding to D′ρ. This property does
not come by surprise as it has been established in [19] for straight cylindrical scatterers with a
sufficiently small but arbitrary cross-section. The asymptotic representation formula, as well as
the characterization of the polarization tensors give a straightforward model for approximating
scattered fields due to thin tubular scatterers. For the simple case, in which the cross-section is
given by an ellipse, the two-dimensional polarization tensor is explicitly known and the lowest-
order term in the asymptotic perturbation formula is explicitly computable.

We incorporate the leading order term in two efficient shape optimization algorithms, which
are the reconstruction of thin tubular dielectric and metallic wires and the maximization of
electromagnetic chirality.

1.2 Shape optimization of thin wires in electromagnetic chirality
A shape optimization problem can be understood as a minimization (or likewise maximization)
problem, described as follows: Within the set of admissible shapes Uad, find the optimal structure
D∗ ∈ Uad, for which holds that

D∗ = arg min
D∈Uad

J(D) , (1.1)

where J : Uad → R is a shape functional. This objective function often incorporates the solution
of a partial differential equation, for which D ∈ Uad acts as (or changes) the domain, on which
the partial differential equation is defined. Studies on the sensitivity of J with respect to
variations in D may lead to shape derivatives (see e.g. [117]) or topological derivatives (see e.g.
[101, 116]). Another approach in shape optimization (in particular in the context of thin wires)
relies in adding thin ligaments to the domain and to study the shape functional as the ligaments
thickness tends to zero (see [39]).

As a first shape optimization problem, we consider the inverse problem, which is to determine
the center curve of a thin tubular scatterer with a circular cross-section, given the material
parameters, a single incident plane wave and measurements of the corresponding electric far field.
In the literature, derivative-based reconstruction schemes often make use of domain derivatives.
For domain derivatives corresponding to the Helmholtz equation, we refer to e.g. [77, 78, 87],
for Maxwell’s equation see e.g. [72, 73, 74, 79]. In a different approach, the boundary integral
equation for the solution of the scattering problem is differentiated with respect to variations of
the domain. For the Helmholtz equation this has been done in e.g. [108, 110] and for Maxwell’s
equations in e.g. [71, 109]. Both of these approaches require an additional scattering problem to
be solved for every variation of the domain. In a Newton-type algorithm every iteration requires
several variations of an admissible shape (note that the current iterate is an admissible shape)
to establish a gradient and therefore, several scattering problems need to be solved.

In our approach for a reconstruction scheme, we let the forward model map the center curve
K of the wire to the leading order term of the asymptotic representation formula of the electric
far field. We use this map to derive an inexpensive Gauß-Newton scheme which does not require
a single Maxwell system to be solved. We introduce regularization terms for stabilizing the
reconstructions and provide several numerical results. Starting from a given far field pattern,
which is simulated independently by means of Bempp, both, dielectric as well as metallic thin
tubes can be reconstructed when the initial guess is close enough to the true scattering object.
A similar method for electrical impedance tomography has been considered in [69] (see also [19],
where a similar inverse problem involving thin straight cylinders is studied).

Our motivation to study electromagnetic scattering from thin wires is electromagnetic chi-
rality (em-chirality). The concept of em-chirality has been introduced to distinguish scattering
objects, materials or metamaterials from one another based on different interactions with waves
of opposite helicities. Helicity can be understood as an extension to circular polarization from
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plane waves to general fields, which solve the homogeneous time-harmonic Maxwell’s equations.
More precisely, helicity of a monochromatic field is related to the eigenvalues and eigenvectors
of the helicity operator k−1 curl (see also [49]). Since this operator has the eigenvalues ±1, one
distinguishes between fields of positive (+1) and negative (-1) helicities. A scattering object is
said to be electromagnetically achiral (em-achiral), if, in some sense, all the information that is
obtained upon illuminating the scattering object with fields of one helicity (either positive or
negative) can be reproduced by fields of the opposite helicity. If this property is not given, the
object is defined as electromagnetically chiral (em-chiral). The quantification of em-chirality is
realized by using chirality measures, which were introduced in [49] and further studied in [15]
in a mathematical framework involving the electric far field operator.

The far field operator can be associated to a scattering object and is mapped by the chirality
measure to a scalar value, which lies between zero and the total interaction cross-section of the
scattering object. An object attaining the lower bound (i.e. zero) would be em-achiral. This
class includes objects that are achiral in the classical sense, i.e., objects that are symmetric with
respect to a mirror plane. Examples include e.g. spheres, ellipsoids or tori. On the other hand, an
object attaining the upper bound of the chirality measure (i.e. the total interaction cross-section)
would be maximally em-chiral. Such an object would not scatter fields of one helicity at all, i.e.
the scatterer would be invisible with respect to fields of one helicity. It is not clear, whether
such a maximally em-chiral object exists. However, even scatterers that attain sufficiently
large measures of em-chirality would enable interesting applications in photonic metamaterials,
especially, when these chiral effects occur in the visible spectrum (see e.g. [41, 52, 60, 84, 105,
107, 112, 125]).

An approach for formulating a shape optimization scheme for finding highly em-chiral objects
might be described as follows. The shape functional J in (1.1) would map the scattering object
D to its electric far field operator and afterwards, by introducing a scaled chirality measure
(i.e. dividing the original chirality measure by the total interaction cross-section), to a value
between zero (em-achiral) and one (maximally em-chiral). This approach has a major drawback
from the numerical perspective, as the numerical approximation of the electric far field operator
corresponding to the scattering object under consideration requires the computation of several
solutions corresponding to Maxwell’s equations. To be precise, denoting by N ∈ N the degree
of the multipole expansion that is used to approximate the incident and scattered field, the
computation of the far field operator requires the solution of 2N(N + 2) Maxwell systems.
An optimization of em-chirality based on shape derivatives would require additional 2N(N +
2) solutions to Maxwell systems for every variation of the domain, resulting in a tremendous
computational effort.

In the literature, metallic helices are often studied for frequencies corresponding to the
infrared regime. It has been observed in [60] that gold helices exhibit strong chiral effects
as they show low transmittance for waves of one polarization handedness with a direction of
propagation parallel to the helix axis, while allowing for a high transmittance of the other
polarization handedness. Experimentally, an array of these helices has been observed to block
fields of one helicity while transmitting the other one, thus, acting as a broadband circular
polarizer for an exterior wavelength from around 4µm to 8µm. Further improvements on the
design of such a helix were proposed in the literature such as tapered helices, intertwined helices
or combinations of such. For an overview on these we refer to the review article [76] and the
references therein. Using the chirality measure introduced in [49], the optimizations in [61, 62]
focus on designing silver helices with a fixed circular cross-section at frequencies ranging from the
infrared regime to the optical band. The shape optimization consequently results in optimizing
four parameters that define the geometry of the helix: the radius, the pitch, the thickness and
the number of turns. While the obtained optimized silver helices achieve high chirality measures
in the infrared regime, their performance decreases significantly towards the optical frequency
band (see [61, 62]).
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Our approach to designing highly em-chiral objects relies on using the thin wire model
for approximating the far field operator. In doing so, we go beyond the search for helices by
establishing a simultaneous free-form optimization of both the center curve of the wire as well as
the rotation of the cross-section around it. This enables us to cover a wide range of thin tubular
scattering objects. In particular, we aim to design metallic nanowires for frequencies in the
optical regime that attain high values of the (normalized) chirality measure. These optimized
nano structures are supposed to serve as possible building blocks in novel three-dimensional
metamaterials (see e.g. [52, 76, 84]).

The procedure in establishing the optimization algorithm can be described as follows: We
use the leading order term of the asymptotic representation formula for approximating the elec-
tric far field operator, which provides the leading order term of a far field operator expansion.
The shape functional J from (1.1) can now be understood as a function that first maps the
thin tubular scatterer to its leading order term of this expansion and afterwards, to a normal-
ized chirality value. By using this approximation, the effort to quantify em-chirality reduces
significantly: Computationally expensive finite element or boundary element simulations are re-
placed by the computation of curve integrals over known integrands, which can be approximated
within seconds. The shape derivative with respect to the center curve and the rotation of the
thin tubular scatterer can be computed explicitly. A BFGS scheme for the shape optimization
thus does not require a single Maxwell system to be solved, neither for the evaluation of the
forward model, nor for the Fréchet derivative with respect to the center curve and rotation.

In our numerical examples we first focus on dielectric scattering objects with a circular cross-
section. The shape optimization results in helix-shaped center curves with a relatively low value
of em-chirality. Secondly, we study dual symmetric scatterers, i.e. objects, for which the electric
and magnetic fields stay a solution to Maxwell’s equation when they are transformed by a certain
duality transform. Dual symmetry implies preservation of helicity, which is a necessary condition
for an object to be maximally em-chiral. Our shape optimization yields similar structures as
for the dielectric case and the chirality measure reaches approximately half of the (theoretically
possible) upper bound. Finally, we focus on metallic nanowires with an elliptical cross-section.
We study discrete frequencies in the optical band and obtain the largest chirality values, when
both the shape of the center curve and the twist rate of the cross-section of the nanowire are
suitably optimized simultaneously, and when the frequency, where the optimization is carried
out is slightly below the plasmonic resonance frequency of the nanowire’s cross-section. In these
cases, our optimization scheme finds nanowires with non-intuitive shapes that attain more than
90% of the theoretically maximum of the chirality measure.

1.3 Outline of the thesis
In Chapter 2 we first introduce some preliminaries that we need throughout the whole thesis.
This includes function spaces and traces for bounded Lipschitz domains. Afterwards we derive
time-harmonic Maxwell’s equations from Maxwell’s equations in the time domain and study spe-
cial solutions of time-harmonic Maxwell’s equations. Then, we prove existence and uniqueness
for the particular choice of material parameters that we consider throughout this thesis.

Chapter 3 is about the asymptotic representation formula for electric fields in free space. We
give a precise definition for the scattering objectsDρ and derive the previously mentioned formula
rigorously from an asymptotic representation formula in a bounded domain. To study the leading
order term of the representation formula we focus on the polarization tensor corresponding to
a thin tubular scattering object in detail. For this purpose, we derive symmetry properties,
bounds and finally establish an explicit characterization of the polarization tensors. Moreover,
we study the two-dimensional polarization tensor of the thin tubes’ cross-section and recall that
its definition is linked to an elliptic transmission problem. We examine the plasmonic resonances
and discuss the conditions under which this phenomenon occurs for thin metallic nanotubes.
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Finally we perform numerical studies on the accuracy of the leading order term compared to a
boundary element simulation. Here, we focus on dielectric thin tubular scatterers and metallic
nanowires with a circular cross-section.

In Chapter 4 we discuss an inverse scattering problem for thin tubular objects with a circular
cross-section. The challenge is to reconstruct the center curve of a thin tubular scattering object
essentially, from observations of an electric far field pattern corresponding to a single incident
plane wave. We establish an inexpensive Gauß-Newton algorithm that incorporates the leading
order term of the asymptotic perturbation formula for the reconstruction. Furthermore, we
provide numerical examples for the identification of the center curve for dielectric thin tubes
and metallic nanowires.

Chapter 5 is about the maximization of electromagnetic chirality (em-chirality) for thin tubu-
lar scattering objects. First, we recall the definition and quantification of em-chirality for general
three-dimensional scattering objects. Afterwards we focus on the quantification of em-chirality
for thin tubular scatterers. By using the leading order term of the asymptotic perturbation for-
mula we find an explicit representation of the leading order term of a far field operator expansion
that is associated to the thin tubular scatterer. This implies a functional that maps the center
curve and a potential rotation of the cross-section around the center curve to its chirality value.
For this operator we rigorously derive the Fréchet derivative with respect to the center curve
and the rotation and establish an efficient shape optimization algorithm for designing highly
em-chiral structures and in particular, highly em-chiral metallic nanowires. We introduce penal-
ization terms for the optimization and derive the corresponding Fréchet derivatives. Finally, we
highlight numerical results achieved by the shape optimization algorithm. For dielectric, dual
symmetric and metallic thin tubular scattering objects, we study shape optimizations and exam-
ine the final structures that the optimization scheme provides by performing various parameter
scans. In Appendix A we study a few basic definitions from functional analysis.

In Appendix B we collect several useful estimates that are needed for the characterization
of the polarization tensor in Chapter 3.

Moreover, we study in Appendix C the PMCHTW formulation that we need in order to
simulate electromagnetic scattering using the boundary element library Bempp.

In Appendix D we compute derivatives of entire solutions of Maxwell’s equations. These are
needed for the shape optimization.
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• [14], together with T. Arens and R. Griesmaier,
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asymptotic perturbation formula in free space and the characterization of the polarization tensor
for dielectric materials. We extended this to metallic materials in [50]. The reconstruction of thin
tubular scattering objects in Chapter 4 was originally published in [28]. The shape optimization
for thin em-chiral structures from Chapter 5 was published in [14] and [50]. In [14] we studied
shape optimization for dielectric thin tubes with a circular cross-section and in [50] we extended
these studies to metallic nanowires with an elliptical cross-section. Appendix B was published
in [28] and Appendix D in [14].



Chapter 2

Time-harmonic Maxwell’s equations:
Well-posedness for dielectric and metallic objects

Maxwell’s equations model electromagnetic wave propagation and serve as the governing partial
differential equation for describing the scattering problems that we study in this work. In this
chapter, we consider general bounded Lipschitz domains D ⊂ R3 as potential scattering objects.
We first discuss preliminaries for studying Maxwell’s equations. This includes special functions,
spaces and traces. Afterwards, we derive time-harmonic Maxwell’s equations and show existence
and uniqueness for the particular coefficients considered in this thesis. For this aim, we use the
procedure, ideas and results from [99].

2.1 Preliminaries
We shortly summarize the mathematical framework for studying time-harmonic Maxwell’s equa-
tions. For an open set Ω ⊂ Rd with d = 2, 3 we denote by Ck(Ω) and Ck(∂Ω) the classical
function spaces of k times continuously differentiable functions on Ω and ∂Ω, respectively. The
spaces Ck0 (Ω) and Ck(Ω) are constituted by functions in Ck(Ω) that have compact support in Ω
and that have bounded and uniformly continuous derivatives up to order k on Ω, respectively.
Let B′α(0) denote the two-dimensional disc of radius α centered at the origin. Moreover, denote
by Bα(0) the three-dimensional ball of radius α centered at the origin. We recall the definition
of a three-dimensional Lipschitz domain from [88, Def. 5.1].
Definition 2.1. We define a domain Ω ⊂ R3 to be a Lipschitz domain, if there exist a finite
number of open cylinders Uj , j = 1, . . . ,m, m ∈ N of the form

Uj = {Rjx+ z(j) |x ∈ B′α(0)× (−2βj , 2βj)}

with z(j) ∈ R3 and rotations Rj ∈ R3×3 and real-valued Lipschitz-continuous functions ξj ∈
C(B′α(0)) with |ξj(x1, x2)| ≤ βj for all (x1, x2) ∈ B′α(0) such that ∂Ω ⊂ ⋃mj=1 Uj and

∂Ω ∩ Uj = {Rjx+ z(j) | (x1, x2) ∈ B′α(0), x3 = ξj(x1, x2)} ,
Ω ∩ Uj = {Rjx+ z(j) | (x1, x2) ∈ B′α(0), x3 < ξj(x1, x2)} ,
Uj \ Ω = {Rjx+ z(j) | (x1, x2) ∈ B′α(0), x3 > ξj(x1, x2)} .

Two-dimensional Lipschitz domains can be defined similarly (see e.g. [97, Def. 3.28]). The
Definition 2.1 requires the sets of cylinders Uj , j = 1, . . . ,m to cover the boundary ∂Ω. The
cross-section of the cylinder B′α(0)×{0} is mapped to a part of the boundary by using the map
ξj . Assuming without loss of generality that the height of the cylinder β is larger than the radius
α, we have Bα(0) ⊂ B′α(0)× (−2βj , 2βj). Moreover, we define the transformations

Ψ̃j(x) = Rj

 x1
x2

ξj(x1, x2) + x3

+ z(j), x = (x1, x2, x3)> ∈ Bα(0) ,

7



8 Chapter 2. Well-posedness for dielectric and metallic objects

as well as the restriction of Ψ̃j to B′α(0)

Ψj(x̃) = Rj

 x1
x2

ξj(x1, x2)

+ z(j), x̃ = (x1, x2)> ∈ B′α(0) (2.1)

(see [88, p. 228]). The functions Ψj are differentiable a.e. on B′α(0) by the Rademacher theorem
(see e.g. [45, Thm. 6, Sec. 5.8]). This implies the existence of a unit normal vector ν a.e. on the
boundary of Ω (see also [88, Rmk. A.8]). We define U ′j = Ψ̃j(Bα(0)). Then, the boundary ∂Ω is
still covered by these sets, i.e. ∂Ω ⊂ ⋃mj=1 U

′
j . Moreover,

∂Ω ∩ U ′j = {Ψ̃j(x) |x ∈ Bα(0), x3 = 0} = {Ψj(x̃) | x̃ ∈ B′α(0)} ,
Ω ∩ U ′j = {Ψ̃j(x) |x ∈ Bα(0), x3 < 0} ,
U ′j \ Ω = {Ψ̃j(x) |x ∈ Bα(0), x3 > 0} .

The transformation Ψ will be directly involved in the definition of (vector-valued) Sobolev spaces.
From now on, let Ω ⊂ R3 denote a Lipschitz domain as introduced in Definition 2.1. We denote
by Lp(Ω) for 1 ≤ p ≤ ∞ the standard Lebesgue space with norm

‖f‖Lp(Ω) =
{

(
∫
Ω |f(x)|p dx)1/p for 1 ≤ p <∞

ess supx∈Ω |f(x)| for p =∞ .
(2.2)

The space L2(Ω) is a Hilbert space with scalar product1

〈f, g〉L2(Ω) =
∫

Ω
f(x)g(x) dx for f, g ∈ L2(Ω) .

The Hilbert space L2(∂Ω) is defined analogously. For a locally integrable function u in Ω and a
multi-index α ∈ N3

0 we say that a locally integrable function v is the αth weak derivative of u
if it satisfies ∫

Ω
φ(x)v(x) dx = (−1)|α|

∫
Ω
u(x)(Dαφ)(x) dx for all φ ∈ C |α|0 (Ω)

(see e.g. [63, Sec. 7.3.] or [45, Sec. 5.2]). Further, we denote by W k(Ω) the space of k times
weakly differentiable functions. Let W k,p(Ω), for 1 ≤ p <∞, be defined by

W k,p(Ω) = {u ∈W k(Ω) |Dαu ∈ Lp(Ω) for all |α| ≤ k} ,

where the norm is given by

‖u‖Wk,p(Ω) =
( ∫

Ω

∑
|α|≤k

∣∣∣(Dαu)(x)
∣∣∣p dx

)1/p
. (2.3)

We denote by W 1,p
0 (Ω) the closure of C1

0 (Ω) with respect to the norm in (2.3) for k = 1. For
p = 2, W k,p(Ω) and W k,p

0 (Ω) become Hilbert spaces and we denote these by Hk(Ω) = W k,2(Ω)
and H1

0 (Ω) = W 1,2
0 (Ω), respectively. Often, we consider H1(Ω), where the inner product is given

by

〈u, v〉H1(Ω) = 〈u, v〉L2(Ω) + 〈∇u,∇v〉L2(Ω) . (2.4)

In order to introduce Sobolev spaces on the boundary ∂Ω we first consider a space of periodic
functions and declare the assignment of a function to this space by the decay of its Fourier

1In our notation, scalar products are always linear in the first and antilinear in the second component.
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coefficients. This follows [88, Def. 5.5]. Let Qd = (−π, π)d ⊂ Rd denote the cube in Rd for
d = 2, 3. For a scalar-valued function v ∈ L2(Qd) the Fourier series ∑n∈Zd vne

in·x with Fourier
coefficients (vn)n∈Zd ⊂ C converges to v with respect to the norm in (2.2) for p = 2. Therefore,
we identify the function v with its Fourier series and write v(x) = ∑

n∈Zd vne
in·x. For any

real-valued s ≥ 0, let Hs
per(Qd) be defined as

Hs
per(Qd) =

{
v ∈ L2(Qd)

∣∣∣ ‖v‖Hs
per(Qd) <∞

}
, with ‖v‖Hs

per(Qd) =
( ∑
n∈Zd

(
1 + |n|2

)s|vn|2)1/2
.

Indeed, ‖ · ‖Hs
per(Qd) is a norm (see [88, Def. 5.5]). The trace γ0 : H1

per(Q3) → H
1/2
per (Q2) is

introduced as the extension of γ̃0 : P(Q3) → P(Q2) defined by γ̃0(u) = u|Q2×{0}, where P(Q3)
and P(Q2) are the spaces of trigonometric polynomials defined on Q3 and Q2, respectively (see
[88, Thm. 5.7]). In order to define the operator γ0 for a Lipschitz boundary ∂Ω we need a
partition of unity {φj , j = 1, . . . ,m} (see Theorem A.1) and the transformations Ψj from (2.1).
Let f ∈ L2(∂Ω). Then, using that

∣∣∣∂Ψj
∂x1
× ∂Ψj

∂x2

∣∣∣ = (1 + |∇ξj |2)1/2 and the transformation rule
gives

‖f‖2L2(∂Ω) =
∫
∂Ω
|f(y)|2 ds =

m∑
j=1

∫
∂Ω∩U ′j

φj(y)|f(y)|2 ds

=
m∑
j=1

∫
Q2
|f̃j(x)|2(1 + |∇ξj(x)|2)1/2 dx ,

(2.5)

where

f̃j(x) =
{

(φj(Ψj(x))1/2f(Ψj(x)), x ∈ B′α(0) ,
0, x ∈ Q2 \B′α(0) ,

(2.6)

(see [88, p. 236]). Using the inequality

1 ≤
(
1 + |∇ξj(x)|2

)1/2
≤ max

j=1,...,m

(
1 + ‖∇ξj‖2L∞(Q2)

)1/2

and (2.5) shows that the norms ‖f‖L2(∂Ω) and
(∑m

j=1 ‖f̃j‖2L2(Q2)

)1/2
are equivalent. Therefore,

we find that f ∈ L2(∂Ω) if and only if f̃j ∈ L2(Q2) for all j = 1, . . . ,m (see [88, p. 236]). This
property is used to define the space H1/2(∂Ω), given by

H1/2(∂Ω) = {f ∈ L2(∂Ω) | f̃j ∈ H1/2
per (Q2) for all j = 1, . . . ,m}

with norm

‖f‖H1/2(∂Ω) =
( m∑
j=1
‖f̃j‖2

H
1/2
per (Q2)

)1/2
(2.7)

(see [88, Def. 5.8]). The choice of the partition of unity, that is used in the definition of f̃j in (2.6)
does not matter, as different choices imply equivalent norms (2.7) (see [88, Cor. 5.15]). It turns
out that the trace γ0 : C1(Ω)→ C(∂Ω), γ0u = u|∂Ω can be extended to a bounded operator from
H1(Ω) to H1/2(∂Ω). Moreover, the trace operator γ0 has a bounded right inverse that we denote
by η (see [88, Thm. 5.10]). We denote by H−1/2(∂Ω) the dual space of H1/2(∂Ω). A vector field
v ∈ (L2(Ω))3 has a variational (or weak) divergence in L2(Ω) if there is a scalar-valued function
p ∈ L2(Ω) such that ∫

Ω
v · ∇ϕ dx = −

∫
Ω
pϕ dx for all ϕ ∈ C∞0 (Ω) . (2.8)
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For the unique function p we write divv (see [88, Def. 4.16]). The space of functions that possess
a weak divergence in L2(Ω) is denoted by H(div,Ω). For u ∈ (C∞(Ω))3, the normal trace

γnu = ν · u|∂Ω , (2.9)

where ν denotes the exterior unit normal to ∂Ω, can be extended to a continuous linear map
from H(div,Ω) to H−1/2(∂Ω). Moreover, Green’s theorem holds for functions v ∈ H(div,Ω)
and ϕ ∈ H1(Ω), that is ∫

Ω
v · ∇ϕ dx+

∫
Ω

divvϕ dx =
∫
∂Ω
ϕν · v ds . (2.10)

These results are found in [99, Thm. 3.24]. We emphasize that we interpret the right hand side
of (2.10) as the dual pairing in H1/2(∂Ω)×H−1/2(∂Ω).

A vector field v ∈ (L2(Ω))3 has a variational (or weak) curl in (L2(Ω))3, if there exists a
vector field w ∈ (L2(Ω))3 such that∫

Ω
v · curlψ dx =

∫
Ω
w ·ψ dx for all ψ ∈ (C∞0 (Ω))3 .

For the unique function w we write curlv (see [88, Def. 4.16]). The space of functions that
possess a weak curl in (L2(Ω))3 is denoted by H(curl,Ω), i.e.

H(curl,Ω) =
{
v ∈

(
L2(Ω)

)3 ∣∣ curlv ∈
(
L2(Ω)

)3}
.

The inner product in H(curl,Ω) is defined by

〈u,v〉 = 〈curlu, curlv〉L2(Ω) + 〈u,v〉L2(Ω) . (2.11)

For an unbounded Ω we use the notation Hloc(curl,Ω) for the space of functions, for which the
function itself and its curl are locally in (L2(Ω))3. More precisely, a function v is said to be in
Hloc(curl,Ω) if v|Ω̃ is in H(curl, Ω̃) for all open and bounded Ω̃ ⊂ Ω. The following theorem
can be found in e.g. [88, Thm. 5.19].

Proposition 2.2. If Ω is a bounded Lipschitz domain, then (C∞(Ω))3 is dense in H(curl,Ω)
with respect to the norm in (2.11).

In order to introduce appropriate traces for functions inH(curl,Ω), we first describe periodic
Sobolev spaces of vector-valued functions (see [88, Def. 5.20]). We recall that for x ∈ Qd =
(−π, π)d and v ∈ (L2(Qd))3 the Fourier series ∑n∈Zd vne

in·x, where vn ∈ Cd denote the Fourier
coefficients of v, converges to v with respect to the norm in (L2(Qd))3. Let

T (Q2) =
{ ∑
|m|≤N

vme
im·x

∣∣∣x ∈ Q2, vm ∈ C2, N ∈ N
}

be the space of trigonometric vector polynomials. For any s ∈ R we introduce the spaces
Hs

div,per(Q2) and Hs
curl,per(Q2) as the completion of T (Q2) with respect to the norms

‖v‖Hs
div,per(Q2) =

( ∑
m∈Z2

(1 + |m|2)s
(
|vm|2 + |m · vm|2

) )1/2
,

‖v‖Hs
curl,per(Q2) =

( ∑
m∈Z2

(1 + |m|2)s
(
|vm|2 + |m× vm|2

) )1/2
,

respectively (see [88, Def. 5.20]). Here, m × a = m1a2 −m2a1 for m,a ∈ C2. For a bounded
Lipschitz domain Ω, let

L2
t (∂Ω) =

{
a ∈

(
L2(∂Ω)

)3 ∣∣ ν · a = 0 a.e. on ∂Ω
}
.
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The unit sphere in R3 is denoted by S2 and often takes the role of ∂Ω. Let {φj | j = 1, . . . ,m}
be a partition of unity (see Theorem A.1) and recall the transformation Ψj from (2.1). For
f ∈ L2

t (∂Ω) we define the functions

f̃ tj (x̃) =
{
ζj(x̃) (φj(Ψj(x̃)))1/2 F−1

j (x̃)f(Ψj(x̃)), x̃ ∈ B′α(0) ,
0, x̃ ∈ Q2 \B′α(0) ,

f̃Tj (x̃) =
{
ζj(x̃) (φj(Ψj(x̃)))1/2 F>j (x̃)f(Ψj(x̃)), x̃ ∈ B′α(0) ,
0, x̃ ∈ Q2 \B′α(0) ,

where

ζj(x̃) =
∣∣∣∣∂Ψj(x̃)
∂x1

× ∂Ψj(x̃)
∂x2

∣∣∣∣ and Fj(x̃) =
[
∂Ψj(x̃)
∂x1

∣∣∣ ∂Ψj(x̃)
∂x2

∣∣∣ ∂Ψj(x̃)
∂x1

× ∂Ψj(x̃)
∂x2

]
for x̃ ∈ B′α(0). We define the space H−1/2

div (∂Ω) and H−1/2
curl (∂Ω) as the completion of the spaces{

f ∈ L2
t (∂Ω) | f̃ tj ∈ H

−1/2
div,per(Q2), j = 1, . . . ,m

}
and{

f ∈ L2
t (∂Ω) | f̃Tj ∈ H

−1/2
curl,per(Q2), j = 1, . . . ,m

}
with respect to the norms

‖f‖
H
−1/2
div (∂Ω) =

( m∑
j=1
‖f̃ tj‖

2
H
−1/2
div,per(Q2)

)1/2
and ‖f‖

H
−1/2
curl (∂Ω) =

( m∑
j=1
‖f̃Tj ‖

2
H
−1/2
curl,per(Q2)

)1/2
,

respectively (see [88, Def. 5.23]). For v ∈ (C∞(Ω))3 we consider the tangential trace γt and the
projection on the tangential plane γT given by

γt(v) = ν × v|∂Ω and γT (v) = (ν × v|∂Ω)× ν.

Both traces γt and γT can be extended to H(curl,Ω) in such a way that the maps

γt : H(curl,Ω)→ H
−1/2
div (∂Ω) and γT : H(curl,Ω)→ H

−1/2
curl (∂Ω) (2.12)

are both linear, continuous and surjective. Moreover, for both operators, there exists a bounded
right inverse denoted by ηt : H−1/2

div (∂Ω) → H(curl,Ω) and ηT : H−1/2
curl (∂Ω) → H(curl,Ω) (see

[88, Thm. 5.24]). Following [88, Def. 5.29], for a ∈ H−1/2
div (∂Ω) and b ∈ H−1/2

curl (∂Ω), we define
the surface divergence div∂Ωa ∈ H−1/2(∂Ω) and the surface curl curl∂Ω b ∈ H−1/2(∂Ω) as the
linear bounded functionals defined by∫

∂Ω
div∂Ωaψ ds = −

∫
∂Ω
a ·
((
ν ×∇ψ̃

)
× ν|∂Ω

)
ds for all ψ ∈ H1/2(∂Ω) , (2.13a)∫

∂Ω
curl∂Ω bψ ds = −

∫
∂Ω

(
ν ×∇ψ̃|∂Ω

)
· b ds for all ψ ∈ H1/2(∂Ω) . (2.13b)

Here, ψ̃ ∈ H1(Ω) is any extension of ψ, which is defined as ψ̃ = ηψ, where η is the bounded right
inverse of the trace γ0. We emphasize that both left hand sides in (2.13) must be interpreted
as the dual pairing in H1/2(∂Ω) × H−1/2(∂Ω) and the right hand sides as the dual pairing in
H
−1/2
div (∂Ω) × H−1/2

curl (∂Ω). By Proposition 2.2, for a bounded domain Ω, the space (C∞(Ω))3

is dense in H(curl,Ω). This implies that the space {ν × u|∂Ω |u ∈ (C∞(Ω))3} is dense in
H
−1/2
div (∂Ω). For a ∈ H−1/2

div (∂Ω) we therefore find an expression for a× ν ∈ H−1/2
curl (∂Ω) that we

interpret as

a× ν = (ν × ηta)× ν|∂Ω , (2.14)
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where ηt is the bounded right inverse of γt (see also [88, Proof of Lem. 5.61]).
We introduce spherical coordinates

x = r [sin(θ) cos(ϕ) | sin(θ) sin(ϕ) | cos(θ)]> , r > 0, θ ∈ [0, π], ϕ ∈ [0, 2π) (2.15)

and define the spherical harmonics Y m
n for x̂ = x/|x| ∈ S2 by

Y m
n (x̂) =

√
2n+ 1

4π
(n− |m|)!
(n+ |m|)!P

|m|
n (cos (θ)) eimϕ for m = −n, . . . , n and n = 1, 2, . . . ,

where Pmn (t) = (1 − t2)m/2(d/dt)mPn(t) denote the associated Legendre polynomials. The
functions Pn are the Legendre polynomials (see e.g. [34, pp. 26]). The functions Y m

n form a
complete orthonormal system in L2(S2) (see e.g. [88, p. 41]). We denote by ∇S2 the surface
gradient on the unit sphere, which for a function f ∈ C1(S2) can be defined in the spherical
coordinates (2.15) by

∇S2f(θ, φ) = ∂f

∂θ
(θ, φ)θ̂ + 1

sin(θ)
∂f

∂φ
(θ, φ)ϕ̂ ,

with θ̂ = [cos(θ) cos(ϕ) | cos(θ) sin(ϕ) | − sin(θ)]>and ϕ̂ = [− sin(ϕ) | cos(ϕ) | 0]>. We define
the vector spherical harmonics by

Um
n (x̂) = 1√

n(n+ 1)
∇S2Y m

n (x̂) and V m
n (x̂) = x̂×Um

n (x̂) (2.16)

for m = −n, . . . , n and n = 1, 2, . . . . These functions form a complete orthonormal system in
L2
t (S2) (see e.g. [88, Thm. 2.46]), i.e., every function f ∈ L2

t (S2) has an expansion of the form

f(x̂) =
∞∑
n=1

n∑
m=−n

amn U
m
n (x̂) + bmn V

m
n (x̂), for x̂ ∈ S2 . (2.17)

Remark 2.3. For functions a ∈ H
−1/2
div (∂B1(0)) we interpret the expansion in (2.17) in the

following sense. The function a can be extended to H(curl, B1(0)) by using the bounded
right inverse ηt of the trace γt from (2.12). The extension u = ηta ∈ H(curl, B1(0)) can be
approximated by a sequence (uN )N ⊂ (C∞(B1(0)))3 (see Proposition 2.2) that we can write
explicitly as

uN (rx̂) =
N∑
n=1

n∑
m=−n

αmn (r)Um
n (x̂) + βmn (r)V m

n (x̂) + γmn (r)Y m
n (x̂)x̂ ,

for 0 ≤ r < 1, x̂ ∈ S2 (see [88, Thm. 5.36]). Applying the trace γt to uN (note that ν = x̂ on
S2), using the boundedness of γt and the fact that γtu = a gives that

ν × uN |∂B1(0)(x̂) =
N∑
n=1

n∑
m=−n

αmn (1)V m
n (x̂)− βmn (1)Um

n (x̂)→ a as N →∞ .

Similarly, we consider series expansions of b ∈ H−1/2
curl (∂B1(0)).

2.2 Time-harmonic Maxwell’s equations
We shortly outline how to derive time-harmonic Maxwell’s equations from the time-dependent
Maxwell’s equations. We refer to the introductory chapters in [81, 88, 96]. Let E be the
electric field in Volt/meter, H the magnetic field in Ampere/meter, D the electric displacement
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in Coulomb/meter2, B the magnetic flux density in Weber/meter2, J the current density in
Ampere/meter2 and ρ the volume charge in Coulomb/meter3. Maxwell’s equations relate the
fields E ,H,D,B,J and the scalar function ρ via

divD = ρ , curlH = J + ∂D
∂t

,

divB = 0 , curl E + ∂B
∂t

= 0 .

All of these quantities in general depend on time and space. The four fields E ,H,D,B are further
related via the equations

D = ε0E + P , H = 1
µ0
B −M , (2.18)

where P and M denote the macroscopic polarization and magnetization, respectively. The
parameters ε0 and µ0 denote the electric permittivity and magnetic permeability in free space
and they are given by

ε0 = 8.854× 10−12 F
m , µ0 = 4π × 10−7 H

m . (2.19)

As described in [102, Sec. 2.1], the relations in (2.18) are not restrictive, i.e. they can be stated
for any medium. In this work, we consider linear and isotropic media. This means that the
constitutive relations2, i.e. the relations between D, E and B,H are linear and do not depend on
the direction of E and H. Thus,

D = εE , B = µH , (2.20)

where ε and µ are scalar-valued. The equations in (2.20) are often implicitly defined by using
the electric and magnetic susceptibilities χe, χm that describe the relation between P and E and
M and H from (2.18) in terms of

P = ε0χeE , M = χmH (2.21)

(see e.g. [102, Sec. 2.3] and [96, p. 8]). Comparing (2.21), (2.20) and (2.18) gives that ε =
ε0(1 + χe) and µ = µ0(1 + χm). According to Ohm’s law, a linear approximation to the current
density J is given by J = σE +Je, where σ is the conductivity and Je denotes external source
densities. We always assume that Je = 0. If σ = 0, the material is called dielectric.

Our considerations restrict to time-harmonic fields, i.e. we consider an ansatz for the fields
as E(x, t) = Re(E(x)e−iωt), H(x, t) = Re(H(x)e−iωt) etc.. The number ω > 0 is the angular
frequency. It is connected to the frequency f via ω = 2πf . Using ε0 and µ0 as defined in
(2.19), the wave number k in free space is given by k = ω

√
ε0µ0. The corresponding wavelength

λ > 0 can be computed via λ = 2π/k = c/f , where c = (ε0µ0)−1/2 denotes the speed of light in
meter/second. Thus, the time-harmonic Maxwell’s equations read

curlE − iωµH = 0 , curlH + iω
(
ε+ iσ

ω

)
E = 0 .

For convenience, we do not consider permittivity and conductivity separately. This means that
instead of ε+ iσ/ω we only write ε, where ε ∈ C. Accordingly, a medium is said to be dielectric,
if Im(ε) = 0. This is a common procedure in the literature (see e.g. [102, Sec. 2.8]).

Before we start with the introduction to the electromagnetic scattering problem, we provide
an overview about special solutions of Maxwell’s equations and the Helmholtz equation that we

2In the literature, instead of ε and µ in (2.20) one often finds ε0ε̃ and µ0µ̃, where ε̃ and µ̃ denote a relative
permittivity and permeability (see e.g. [102, Eq. (2.11)–(2.13)]).
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use throughout this thesis. For a domain Ω ⊂ R3 we consider isotropic time-harmonic Maxwell’s
equations, which read

curlV − iωµ0W = 0, curlW + iωε0V = 0 in Ω . (2.22)

The following definition can be found in [34, p. 231] and [34, Def. 6.6]. Note the different scaling
of time-harmonic Maxwell’s equations that we consider here.

Definition 2.4. Let (V ,W ) be a pair of fields satisfying (2.22). On the one hand, for Ω = R3

the pair (V ,W ) is called an entire solution of (2.22). On the other hand, let Ω = R3 \BR(0) for
some R > 0 in (2.22). If the pair (V ,W ) additionally satisfies one of the Silver–Müller radiation
conditions

lim
|x|→∞

|x| (√ε0V × x̂+√µ0W ) = 0 or lim
|x|→∞

|x| (√µ0W × x̂−
√
ε0V ) = 0 ,

uniformly with respect to x̂ = x/|x|, then it is called a radiating solution of (2.22).

For n ∈ N, m = −n . . . , n, we define the fields

Mm
n (x) = −jn(kr)V m

n (x̂) , (2.23a)

curlMm
n (x) =

√
n(n+ 1)
r

jn(kr)Y m
n (x̂) x̂+ 1

r

(
jn(kr) + kr j′n(kr)

)
Um
n (x̂) , (2.23b)

as well as

Nm
n (x) = −h(1)

n (kr)V m
n (x̂) , (2.24a)

curlNm
n (x) =

√
n(n+ 1)
r

h(1)
n (kr)Y m

n (x̂) x̂+ 1
r

(
h(1)
n (kr) + kr h(1)

n

′(kr)
)
Um
n (x̂) , (2.24b)

where jn denote spherical Bessel functions of the first kind and degree n (see e.g. [34, Chap.
2.4]). Moreover, we denote by yn spherical Bessel functions of the second kind and degree n.
The spherical Hankel functions of the first kind of order n are defined by h(1)

n = jn + iyn. From
[34, Thm. 6.26] we find that the pair (Mm

n , (iωµ0)−1 curlMm
n ) is an entire solution to time-

harmonic Maxwell’s equations (2.22) and that the pair (Nm
n , (iωµ0)−1 curlNm

n ) is a radiating
solution to time-harmonic Maxwell’s equations (2.22) in R3 \ {0}. Moreover, for k > 0, we
introduce the fundamental solution of the Helmholtz equation given by

Φ(x,y) = eik|x−y|

4π|x− y| for x,y ∈ R3, x 6= y . (2.25)

This function satisfies

∆xΦ(x,y) + k2Φ(x,y) = −δy(x) for x,y ∈ R3

together with the Sommerfeld radiation condition in the three-dimensional space that is

lim
|x|→∞

|x| (x̂ · ∇xΦ(x,y)− ikΦ(x,y)) = 0 , (2.26)

where the limit is uniform in x̂ = x/|x| ∈ S2 and in y ∈ Y for every bounded subset Y ⊂ R3.
The matrix-valued function

G(x,y) = Φ(x,y)I3 + 1
k2∇xdivx (Φ(x,y)I3) for x,y ∈ R3 , x 6= y , (2.27)

where I3 ∈ R3×3 is the identity matrix, is called the dyadic Green’s function for Maxwell’s
equations (see e.g. [99, p. 303]) as it fulfills

curlx curlx G(x,y)− k2G(x,y) = δy(x)I3 .
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Here, the operators∇x,divx and curlx are applied columnwise. Furthermore, denoting a column
of G by g`, ` = 1, 2, 3, the pairs (g`(·,y), (iωµ0)−1 curl g`(·,y)) are radiating solutions of (2.22),
where y ∈ Y , for every bounded subset Y ⊂ R3.

It is well-known (see e.g. [34, Thm. 6.9]) that every radiating solution of (2.22) denoted by
(V ,W ) has an asymptotic expansion of the form

V (x) = eik|x|

4π |x|

(
V ∞ (x̂) +O

( 1
|x|

))
, W (x) = eik|x|

4π |x|

(
W∞ (x̂) +O

( 1
|x|

))
, (2.28)

as |x| → ∞, where x̂ = x/|x|. The fields V ∞,W∞ ∈ L2
t (S2) are called far field patterns.

Similarly, it can be seen that also (scalar valued) solutions us of the Helmholtz equation

∆us + k2us = 0 in R3 \BR(0)

for some R > 0 that additionally satisfy the Sommerfeld radiation condition from (2.26), possess
an expansion of the form

us(x) = eik|x|

4π |x|

(
u∞ (x̂) +O

( 1
|x|

))
, as |x| → ∞ ,

where x̂ = x/|x|. For the dyadic Green’s function G, we find that

G∞ (x̂,y) = e−ikx̂·y (x̂× (I3 × x̂)) , (curlx G)∞ (x̂,y) = ike−ikx̂·y (x̂× I3) (2.29)

with the curlx operator for matrix valued functions, again, to be understood columnwise (see
e.g. [99, Proof of Cor. 9.5]).

Now, we can introduce the electromagnetic scattering problem. Let the pair of incident
fields (Ei,H i) ∈ Hloc(curl,R3) be entire solutions of time-harmonic Maxwell’s equations in
homogeneous space, i.e.

curlEi − iωµ0H
i = 0 , curlH i + iωε0E

i = 0 in R3 , (2.30)

with angular frequency ω > 0, and electric permittivity ε0 and magnetic permeability µ0 in free
space defined as in (2.19). The incident fields are scattered by a bounded Lipschitz object D
as defined in Definition 2.1, which we assume to be isotropic and homogeneous. We denote its
material parameters by the constant electric permittivity ε1 and the constant magnetic perme-
ability µ1. In this work, the magnetic permeability is assumed to be positive, i.e. µ1 > 0. For
the electric permittivity we distinguish between two cases. In the first case we choose ε1 > 0.
For this choice, our setting models electromagnetic scattering from a purely dielectric object.
In the second case let ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0. These electric permittivities are
observed in the study of metallic scattering objects like silver and gold, in particular for wave-
lengths in the visible electromagnetic spectrum. We define the piecewise constant permittivity
and permeability distributions ε and µ by

ε(x) =
{
ε1 , x ∈ D ,

ε0 , x ∈ R3 \D
and µ(x) =

{
µ1 , x ∈ D ,

µ0 , x ∈ R3 \D .

We also use the notation εr = ε1/ε0 ∈ C and µr = µ1/µ0 ∈ R for the relative electric permittivity
and the relative magnetic permeability, respectively. The scattering problem is to find the total
fields (E,H) = (Ei +Es,H i +Hs) ∈ (Hloc(curl,R3))2 satisfying

curlE − iωµH = 0 , curlH + iωεE = 0 in R3 , (2.31)

together with the Silver–Müller radiation condition for the scattered fields (Es,Hs), which is

lim
|x|→∞

|x| (√µ0H
s(x)× x̂−√ε0E

s(x)) = 0 (2.32)
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uniformly with respect to all directions x̂ = x/|x| ∈ S2. From (2.28) we see that

Es (x) = eik|x|

4π |x|

(
E∞ (x̂) +O

( 1
|x|

))
, Hs (x) = eik|x|

4π |x|

(
H∞ (x̂) +O

( 1
|x|

))
, (2.33)

as |x| → ∞, where x̂ = x/|x|. The field E∞ ∈ L2
t (S2) is called electric far field pattern,

radiation pattern or simply far field of Es. The magnetic counterpart is the magnetic far field
patternH∞. It is sufficient to work only with E∞, since Z0H

∞ = x̂×E∞, where Z0 =
√
µ0/ε0

denotes the impedance in free space (see e.g. [88, Thm. 3.30]). The Maxwell system (2.31) can
be formulated in terms of the electric field E alone by

curl
( 1
µ

curlE
)
− ω2εE = 0 in R3 , (2.34)

whereas (2.32) becomes

lim
|x|→∞

|x| (curlEs(x)× x̂− ikEs(x)) = 0 , (2.35)

with the limit to be understood uniformly with respect to all directions x̂ = x/|x| ∈ S2.
Remark 2.5. In this work, Maxwell’s equations for piecewise constant parameters always need
to be understood in a weak sense. For example, E ∈ Hloc(curl,R3) is a solution to (2.34) if and
only if ∫

R3

( 1
µ

curlE · curlV − ω2εE · V
)

dx = 0 for all V ∈ H0(curl,R3) . (2.36)

Here, H0(curl,R3) denotes the space of functions that are in H(curl,R3) and have a compact
support. Note that the Silver–Müller radiation condition in (2.35) is not included in (2.36) and
must be prescribed additionally.

The radiation condition in (2.35) can be understood as a boundary condition at infinity. In
fact, uniqueness of solutions to the scattering problem (2.34) together with (2.35) (see Proposi-
tion 2.14) follows from Rellich’s lemma that we cite from [99, Lem. 9.28].

Lemma 2.6. Suppose that Es ∈ Hloc(curl,R3 \BR(0)) is a solution of Maxwell’s equations

curl curlEs − k2Es = 0 in R3 \BR(0)

and suppose that Es satisfies the Silver–Müller radiation condition (2.35). Furthermore, let
Hs = (iωµ0)−1 curlEs. If

Re
(∫

∂BR′ (0)
(x̂×Es) ·Hs ds

)
≤ 0

for all R′ > R, then Es = Hs = 0 in R3 \BR(0).

Remark 2.7. Electric permittivities ε1 with Re(ε1) < 0 and Im(ε1) > 0 are also predicted by the
Drude model. We present a short description of this model based on the works [96, 102]. We
return to (2.18) and do not apply the constitutive relations in (2.20). Following the procedure
in [102, Sec. 12.2], we denote by r the displacement of an electron, linked to a dipole moment p
via p = er, where e is the elementary charge. Then, the macroscopic polarization P from (2.18)
is given by P = np, where n is the electron density. This formula reflects the collective action
of all electric dipoles generated by single electrons. The Drude model is based on a harmonic
oscillator model. Thus, for the displacement r, we consider Newton’s equation of motion driven
by the external field E = E0e

−iωt, which reads

me
∂r2

∂t2
+meΓ

∂r

∂t
= eE0e−iωt,
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Figure 2.1: The relative permittivity of the Drude model εDrude/ε0 compared to experimental
data from [83]. Left column: Material parameters corresponding to silver. For the Drude
model we used the values ωp = 9.04eV and Γ = 21.25meV. Right column: Material parameters
corresponding to gold. For the Drude model we used the values ωp = 8.89eV and Γ = 70.88meV.

where me is the effective mass of the free electrons and Γ is a damping parameter (see e.g. [102,
Eq. 12.16]). Using the time-harmonic ansatz r(t) = r0e

−iωt yields a solution to this differential
equation given by

r0 = − e

me(ω2 + Γiω)E0.

Therefore,

P = ner = − ne2

me(ω2 + Γiω)E0e−iωt .

Using (2.18) now yields that D = εDrude(ω)E , with

εDrude(ω) = ε0

(
1−

ω2
p

ω2 + Γiω

)
, (2.37)

where the plasma frequency ωp is given by ωp = (ne2/(ε0me))1/2. The permittivity εDrude in
(2.37) is also called the dielectric function of the free electron gas (see e.g. [96, p. 11]. Different
material features different plasma frequencies ωp and damping parameters Γ. Moreover, the
values for ωp and Γ vary in the literature. For silver, typical values are e.g. ωp = 9.04eV and
Γ = 21.25meV. For gold we further find e.g. ωp = 8.89eV and Γ = 70.88meV (see e.g. [124, Tab.
1]). To obtain corresponding values in 2πHz we use the Planck relation E = ~ω, where E denotes
the photon energy, ~ denotes the reduced Planck constant and ω is the angular frequency. As
explained in [102, Ch. 12.2.2] and [96, Ch. 1.2], the Drude model provides a good approximation
to the electric permittivities of metals at low frequencies. However, at higher frequencies, the
model becomes less accurate. For more details, we refer to [96, Chap. 1.4]. In Figure 2.1 we
plot the complex dielectric function εDrude/ε0 for silver and gold against experimental data from
[83]. We find that the imaginary part of the experimental data for silver starts to deviate from
the Drude model for frequencies higher than 900THz. For gold, this deviation already starts
for frequencies around 450THz. Similar plots are also found in the literature, e.g. in [96, p. 14],
[102, p. 375] or [65, Fig. 4.4].

In the next section, we establish unique solvability of the Maxwell system (2.31) and (2.32)
following the techniques from [99, Chap. 4, 9, 10]. Doing so, we particularly consider the second
case for the electric permittivity, namely that Re(ε1) < 0 and Im(ε1) > 0, since this case is
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not explicitly covered by the techniques in [99]. However, we emphasize that this case does not
involve new methods, except for the use of the slightly different version of the Lax-Milgram
theorem from Appendix A.

2.3 The exterior Calderón operator
In order to reduce the scattering problem from (2.34) and (2.35) to a bounded domain, we study
the exterior Calderón operator. Let R > 0 be such that BR(0), the ball centered at zero with
radius R, satisfies D ⊂⊂ BR(0). For a given field on the boundary f ∈ H−1/2

div (∂BR(0)), consider
the exterior scattering problem{

curlEs − iωµ0H
s = 0,

curlHs + iωε0E
s = 0

in R3 \BR(0), ν ×Es = f on ∂BR(0) (2.38)

together with the Silver–Müller radiation condition

lim
|x|→∞

|x| (√µ0H
s(x)× x̂−√ε0E

s(x)) = 0.

This problem has a unique solution (see e.g. [88, Thm. 5.64]). We cite the following well-known
result about an expansion of the scattered fields from [99, Thm. 9.17]) without a proof.

Theorem 2.8. Let (Es,Hs) be a pair of radiating solutions of Maxwell’s equation’s for |x| > R
as introduced in Definition 2.4. Then, (Es,Hs) can be expanded using the radiating wave fields
Nm
n and curlNm

n from (2.24). If Es has the expansion

Es(x) =
∞∑
n=1

n∑
m=−n

amnN
m
n (x) + bmn curlNm

n (x) ,

then

Hs(x) =
∞∑
n=1

n∑
m=−n

−iωε0b
m
nN

m
n (x) + 1

iωµ0
amn curlNm

n (x) .

Moreover, both series (together with their classical derivatives) converge uniformly on compact
subsets of R3 \BR(0).

Theorem 2.8 shows that for |x| > R the unique solution of (2.38) can be understood classi-
cally. We study the representations in the last theorem and find by using the definitions of Nm

n

and curlNm
n from (2.24), the definitions of Um

n and V m
n from (2.16) as well as that on ∂BR(0)

it holds that ν = x̂ that

ν ×Es
∣∣
∂BR(0)(Rx̂) =

∞∑
n=1

n∑
m=−n

h(1)
n (kR)amn Um

n (x̂) + 1
R
h̃n(kR)bmn V m

n (x̂),

ν ×Hs
∣∣
∂BR(0)(Rx̂) = −iωε0

( ∞∑
n=1

n∑
m=−n

h(1)
n (kR)bmn Um

n (x̂) + 1
k2R

h̃n(kR)amn V m
n (x̂)

)
,

where h̃n(kR) = h
(1)
n (kR) + kRh

(1)
n
′
(kR). Let the field on the boundary f ∈ H−1/2

div (∂BR(0)) be
given by

f(Rx̂) =
∞∑
n=1

n∑
m=−n

αmn U
m
n (x̂) + βmn V

m
n (x̂) , x̂ ∈ S2 (2.39)
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(see also Remark 2.3). Then, the boundary condition ν ×Es = f on ∂BR(0) yields that

Es(x) =
∞∑
n=1

n∑
m=−n

αmn

h
(1)
n (kR)

Nm
n (x) + βmn R

h̃n(kR)
curlNm

n (x) , (2.40a)

Hs(x) =
∞∑
n=1

n∑
m=−n

−iωε0
βmn R

h̃n(kR)
Nm
n (x) + 1

iωµ0

αmn

h
(1)
n (kR)

curlNm
n (x) , (2.40b)

for x ∈ R3 \BR(0). We define the electric to magnetic Calderón operator

Λ : H−1/2
div (∂BR(0)) → H

−1/2
div (∂BR(0)), Λf = ν ×Hs

∣∣
∂BR(0) , (2.41)

whereHs ∈ Hloc(curl,R3\BR(0)) is the magnetic field of the unique solution to (2.38), which is
given by (2.40b). For f ∈ H−1/2

div (∂BR(0)) expanded as in (2.39), we see by comparing coefficients
that

Λf =
∞∑
n=1

n∑
m=−n

− iωε0β
m
n R

δn
Um
n + αmn δn

iωµ0R
V m
n , where δn = 1 + kRh

(1)
n
′
(kR)

h
(1)
n (kR)

. (2.42)

Remark 2.9. The functions h(1)
n (x) and h̃n(x) = h

(1)
n (x) + xh

(1)
n
′
(x) that appear in (2.40) do not

have roots on the positive real line. This is seen as follows. The Wronskian W (jn, yn) satisfies

W (jn, yn)(z) = jn(z)y′n(z)− j′n(z)yn(z) = 1
z2

for all z ∈ C\{0} and n ∈ N∪{0} (see [88, Thm. 2.27]). As introduced earlier, jn and yn denote
spherical Bessel functions of the first and second kind, respectively. Then, for real and positive
t the identity

−2i
t2

= 2i
(
yn(t)j′n(t)− jn(t)y′n(t)

)
=
(
jn(t) + iyn(t)

)(
j′n(t)− iy′n(t)

)
−
(
jn(t)− iyn(t)

)(
j′n(t) + iy′n(t)

)
= h(1)

n (t)h(1)
n
′
(t)− h(1)

n (t)h(1)
n

′(t) ,

which can be also found in [99, Eq. (9.51)], cannot hold true if either h(1)
n (t) or h̃n(t) vanish.

We cite the next result from [99, Thm. 9.21] without a proof. This proposition shows the
boundedness of the exterior Calderón operator Λ.

Proposition 2.10. For a constant C > 0 it holds that

‖Λf‖
H
−1/2
div (∂BR(0)) ≤ C‖f‖

H
−1/2
div (∂BR(0)) for all f ∈ H−1/2

div (∂BR(0)) .

Remark 2.11. The proof of Proposition 2.10 in [99, Proof of Thm. 9.21] uses that
c1n ≤ |δn| ≤ c2n for constants c1, c2 > 0 (see [99, Lem. 9.20]) and the norm

‖f‖ =
( ∞∑
n=1

n∑
m=−n

(1 + n(n+ 1))1/2|αmn |2 + (1 + n(n+ 1))−1/2|βmn |2
)1/2

where f is given as in (2.39). This norm is equivalent to ‖ · ‖
H
−1/2
div (∂BR(0)) on balls (see e.g. [88,

Thm. 5.38] and its proof).
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We define

δ̃n = 1 + iRh(1)
n
′
(iR)

h
(1)
n (iR)

, (2.43)

recall the expansion of f from (2.39) and define the bounded operator

Λ̃ : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)), Λ̃f =

√
ε0√
µ0

( ∞∑
n=1

n∑
m=−n

Rβmn

δ̃n
Um
n −

αmn δ̃n
R

V m
n

)
. (2.44)

This operator arises from replacing k = i or equivalently ω = i/√µ0ε0 in the definition of Λ
in (2.42). For this operator we cite [99, Lem. 9.22, 9.23], which we summarize in the following
lemma.

Lemma 2.12. For all n ∈ N it holds that δ̃n is real and strictly negative. Moreover,∫
∂BR(0)

Λ̃f · (f × ν) ds < 0 (2.45)

for any f ∈ H−1/2
div (∂BR(0)), f 6= 0.

We recall that we interpret the expression on the left hand side in (2.45) as the dual evaluation
inH−1/2

div (∂BR(0))×H−1/2
curl (∂BR(0)) (see also (2.14) for the interpretation of f×ν). The fact that

Λ̃ is bounded can be seen similarly as outlined by Remark 2.11 by using that −2n < δ̃n < −n
for n large enough (see [99, Proof of Lem. 9.22]). We define the space

H
−1/2
div,0 (∂BR(0)) =

{
f ∈ H−1/2

div (∂BR(0))
∣∣∣ f =

∞∑
n=1

n∑
m=−n

bmn V
m
n for some (bmn )n,m ⊂ C

}
.

This space is of particular interest, as for p ∈ H1(BR(0)) we find that ν × ∇p|∂BR(0) ∈
H
−1/2
div,0 (∂BR(0)). We cite [99, Lem. 9.24] in our next lemma.

Lemma 2.13. The operator

Λ + ikΛ̃ : H−1/2
div,0 (∂BR(0))→ H

−1/2
div (∂BR(0))

is linear, bounded and compact.

2.4 Reduction of the scattering problem to a bounded domain
The aim of this subsection is to transform the scattering problem (2.31) and (2.32) into an
equivalent problem posed on a bounded domain. For this, we need the exterior Calderón operator
that we introduced in the previous section. Subsequently, we use the Fredholm theory to prove
existence and uniqueness of solutions to this problem. We consider the artificial computational
domain BR(0) with R > 0 such that D ⊂⊂ BR(0). We repeat the proof of the general uniqueness
theorem from [99, Thm. 10.1] and emphasize that it remains true for our choice of complex-
valued ε1.

Proposition 2.14. Let ε1 > 0 or ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0. Then there is at
most one solution E = Ei +Es ∈ Hloc(curl,R3) of

curl
( 1
µ

curlE
)
− ω2εE = 0 in R3, (2.46)

together with the Silver–Müller radiation condition

lim
|x|→∞

|x| (curlEs(x)× x̂− ikEs(x)) = 0. (2.47)

uniformly with respect to all directions x̂ = x/|x|.
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Proof. Let E1 = Ei +Es
1,E2 = Ei +Es

2 ∈ Hloc(curl,R3) be two solutions of (2.46), where the
scattered fields Es

1 and Es
2 both satisfy (2.47). Defining E = E1 −E2 ∈ Hloc(curl,R3), we find

that E solves (2.46) and (2.47). The weak formulation of (2.46) in (2.36) with V = ψE, where
ψ ∈ C∞0 (R3) with ψ = 1 in BR(0) and ψ = 0 in R3 \BR′(0) with R′ > R implies that

0 =
∫
BR(0)

1
µ
| curlE|2 − ω2ε|E|2 dx+

∫
BR′ (0)\BR(0)

1
µ0

curlE · curl(ψE)− ω2ε0E · ψE dx .

Outside of BR(0) the field E is smooth and therefore partial integration and curlE = iωµ0H
yields∫

BR(0)

1
µ
| curlE|2−ω2ε|E|2 dx−iω

∫
∂BR(0)

(ν×E|∂BR(0))·((ν×H)×ν)|∂BR(0) ds = 0 . (2.48)

Taking the complex conjugate of both sides in (2.48) and considering the imaginary part gives
that

ω

∫
BR(0)

Im(ε)|E|2 dx = Re
(∫

∂BR(0)
(ν ×E|∂BR(0)) · ((ν ×H)× ν)|∂BR(0) ds

)
. (2.49)

In both cases we have that Im(ε) ≤ 0 and therefore

Re
(∫

∂BR(0)
(ν ×E|∂BR(0)) · ((ν ×H)× ν)|∂BR(0) ds

)
≤ 0.

Since (E,H) are radiating solutions of the Maxwell system, Rellich’s lemma 2.6 gives that
(E,H) vanish in R3 \BR(0). Due to the unique continuation principle in [99, Thm. 4.13] (since
ε0, µ0 > 0) the fields (E,H) vanish in R3 \ D. In particular, the right hand side of (2.49)
vanishes.

Let us now assume that Im(ε) > 0 in D. Then, the left hand side of (2.49) yields that E = 0
in D. For Im(ε) = 0 in D we proceed as in the proof of [99, Thm. 4.12]: Let x0 ∈ ∂D and let
r > 0 be sufficiently small such that the boundary ∂D divides Br(x0) into two disjoint parts.
We find that E is a weak solution of

curl
( 1
µ1

curlE
)
− ω2ε1E = 0 in D ∪Br(x0) ,

since in Br(x0) ∩ D, the field E is a solution of (2.46) and we have already shown that E
vanishes in Br(x0)∩ (BR(0) \D). Recall that E ∈ Hloc(curl,R3) by definition. Now we use the
unique continuation principle in [99, Thm. 4.13] to conclude that E must vanish in all Br(x0)
and by the same argument in all of D.

For (E,H) = (Ei + Es,H i +Hs) we study the Maxwell system in the truncated domain
BR(0), which is

curlE − iωµH = 0 , curlH + iωεE = 0 in BR(0) , (2.50)

and introduce the nonlocal boundary condition on ∂BR(0) given by

Λ(ν ×Es|∂BR(0)) = ν ×Hs|∂BR(0) on ∂BR(0) , (2.51)

where Λ denotes the exterior Calderon operator introduced in (2.41). Again, the boundary value
problem (2.50) with (2.51) has to be understood in a variational sense. The weak formulation
is to find E ∈ H(curl, BR(0)) such that

B(E,V ) = F (V ) for all V ∈ H(curl, BR(0)) (2.52)
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with

B(E,V ) =
∫
BR(0)

1
µ

curlE · curlV − ω2εE · V dx

+ iω
∫
∂BR(0)

Λ(ν ×E|∂BR(0)) · ((ν × V )× ν)|∂BR(0) ds , (2.53)

F (V ) = iω
∫
∂BR(0)

Λ(ν ×Ei|∂BR(0)) · (ν × V )× ν|∂BR(0) ds

− 1
µ0

∫
∂BR(0)

(ν × curlEi|∂BR(0)) · ((ν × V )× ν)|∂BR(0) ds . (2.54)

The following lemma states that any (weak) solution of the scattering problem (2.31) with (2.32)
can be reduced to a (weak) solution of (2.50) with (2.51). On the other hand, any (weak) solution
to (2.50) with (2.51) can be uniquely extended to a (weak) solution of (2.31) with (2.32).

Lemma 2.15. Let the entire incident fields (Ei,H i) be given. The problem in full space, which
is to determine the total fields (E,H) = (Ei + Es,H i + Hs) ∈ (Hloc(curl,R3))2satisfying
(2.31) and the Silver–Müller radiation condition (2.32) is equivalent to the problem to determine
(E,H) = (Ei +Es,H i +Hs) ∈ (H(curl, BR(0)))2 satisfying (2.50) and the nonlocal boundary
condition (2.51).

Proof. For f ∈ H−1/2
div (∂BR(0)) we consider the exterior boundary value problem, which is to

determine (V ,W ) ∈ (Hloc(curl,R3 \BR(0)))2 such that{
curlV − iωµ0W = 0,
curlW + iωε0V = 0

in R3 \BR(0), ν × V = f on ∂BR(0), (2.55)

together with the Silver–Müller radiation condition

lim
|x|→∞

|x| (√µ0W (x)× x̂−√ε0V (x)) = 0 (2.56)

with the limit to be understood uniformly with respect to all directions x̂ = x/|x| ∈ S2. Now
let (E,H) ∈ (Hloc(curl,R3))2 be a solution to (2.31) and (2.32), which, by Proposition 2.14, is
uniquely determined. Then,

Ẽ = E
∣∣
BR(0) and H̃ = H

∣∣
BR(0) satisfy (Ẽ, H̃) ∈ (H(curl, BR(0)))2 (2.57)

and Maxwell’s equations in BR(0). We define f = ν × Ẽs|∂BR(0) ∈ H
−1/2
div (∂BR(0)) with Ẽs =

Ẽ − Ei|BR(0) and denote by (V ,W ) ∈ (Hloc(curl,R3 \ BR(0)))2 the unique radiating fields
determined by (2.55) and (2.56). It holds that

Λ(ν × Ẽs|∂BR(0)) = Λ(ν ×Es|−∂BR(0)) = Λ(ν ×Es|+∂BR(0)) = Λ(ν × V |+∂BR(0))

= ν ×W |+∂BR(0) = ν ×Hs|+∂BR(0) = ν ×Hs|−∂BR(0) = ν × H̃s|∂BR(0) .

The first and the last equality hold due to (2.57). The second and the sixth equality is fulfilled
since (E,H) ∈ (Hloc(curl,R3))2 and hence the interior traces coincide with the exterior ones
(see e.g. [99, Lem. 5.3]). The third and the fifth equality are satisfied since (due to the uniqueness
of solutions) V = Es|R3\BR(0) andW = Hs|R3\BR(0). The fourth equality holds by the definition
of the exterior Calderón operator from (2.41).
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On the other hand, let (E,H) = (Ei +Es,H i +Hs) ∈ (H(curl, BR(0)))2 be a solution of
(2.50) and (2.51). Again, we consider the auxiliary problem (2.55) with f = ν ×Es|∂BR(0). As
in (2.40), we can derive a series representation of the scattered fields (V ,W ). We define

Ẽs =
{
Es in BR(0),
V in R3 \BR(0)

and H̃s =
{
Hs in BR(0),
W in R3 \BR(0).

(2.58)

It holds that

ν × Ẽs|+∂BR(0) = ν × V |∂BR(0) = f = ν ×Es|∂BR(0) = ν × Ẽs|−∂BR(0) . (2.59)

Moreover, we find that

ν × H̃s|+∂BR(0) = ν ×W |∂BR(0) = Λ(ν × V |∂BR(0)) = Λ(ν ×Es|∂BR(0))

= ν ×Hs|∂BR(0) = ν × H̃s|−∂BR(0) .

The first and the last equality hold by the definition in (2.58). The second equality is fulfilled
due to the definition of Λ in (2.41). The third one holds as seen in (2.59). The fourth equality
is true due to (2.51). Using [99, Lem. 5.3], we conclude that (Ẽ, H̃) = (Ei + Ẽs,H i + H̃s) ∈
(Hloc(curl,R3))2 solve (2.31). Furthermore, (Ẽs, H̃s) is a radiating wave pair. Proposition 2.14
now yields that this series extension is unique. This completes the proof.

In conclusion, once we proved that the problem to find E ∈ H(curl, BR(0)) satisfying
(2.52) has a unique solution and depends continuously on the right hand side, the scattering
problem (2.31) with (2.32) is well-posed. The space H(curl,R3) is not compactly embed-
ded in (L2(BR(0)))3 and therefore, we need to study a Helmholtz decomposition for the space
H(curl, BR(0)). This is a decomposition of H(curl, BR(0)) into two subspaces, which are or-
thogonal to each other with respect to the inner product in H(curl, BR(0)). On the one hand,
in the first subspace, this is the curl free part of H(curl, BR(0)), the variational problem (2.52)
is easy to solve, as we see next. On the other hand, the second subspace, this is the div free
part of H(curl, BR(0)), is compactly embedded in H(curl, BR(0)). We first study the curl free
space and define

S̃ =
{
q ∈ H1(BR(0))

∣∣∣ ∫
∂BR(0)

q ds = 0
}
,

with the norm ‖ · ‖H1(BR(0)) given by (2.3) for k = 1 and p = 2. Finding p ∈ S̃ such that

B(∇p,∇ξ) = F (∇ξ) for all ξ ∈ S̃

is equivalent to
a1(p, ξ) + a2(p, ξ) = F (∇ξ) for all ξ ∈ S̃ (2.60)

with

a1(p, ξ) = −ω2
∫
BR(0)

ε∇p · ∇ξ dx

+ ωk

∫
∂BR(0)

Λ̃(ν ×∇p|∂BR(0)) · (ν ×∇ξ)× ν|∂BR(0) ds , (2.61)

a2(p, ξ) = iω
∫
∂BR(0)

(Λ + ikΛ̃)(ν ×∇p|∂BR(0)) · (ν ×∇ξ)× ν|∂BR(0) ds , (2.62)

where Λ̃ denotes the electric to magnetic Calderón operator with k = i from (2.44). For the
space S̃ we obtain a similar result as in [99, Thm. 10.2], that we state and prove below.
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Proposition 2.16. Let ε1 > 0 or ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0. The sesquilinear
form a1 : S̃ × S̃ → C from (2.61) is bounded . Further, there is a ζ ∈ R such that

Re
(
eiζa1(p, p)

)
≥ c‖p‖H1(BR(0)) for all p ∈ S̃ . (2.63)

Moreover, there is a compact operator A : S̃ → S̃ with

a1(Ap, ξ) = a2(p, ξ) for all p, ξ ∈ S̃ ,

where a2 : S̃ × S̃ → C is defined in (2.62).
The operator I +A is an isomorphism from S̃ onto itself. The problem to find p ∈ S̃ with

B(∇p,∇ξ) = F (∇ξ) for all ξ ∈ S̃

is uniquely solvable in S̃, where the sesquilinear form B and the antilinear functional F are
defined in (2.53) and (2.54), respectively. The solution is given by

p = (I +A)−1b ,

where b is the unique solution to

a1(b, ξ) = F (∇ξ) for all ξ ∈ S̃ .

In particular, it holds that ‖p‖H1(BR(0)) ≤ C‖F‖.

Proof. The boundedness of a1 follows from an application of the Cauchy–Schwarz inequality
together with the boundedness of Λ̃ and the traces γt and γT from (2.12) combined with the
fact that curl(∇p) = 0.

Let ε1 > 0. We use the negative definiteness of Λ̃ from Lemma 2.12 and the Poincaré
inequality to find that

−a1(p, p) ≥ c

∫
BR(0)

|∇p|2 dx ≥ c ‖p‖H1(BR(0)) .

On the other hand, let ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0, i.e. we can write ε1 = |ε1|eiα

with α ∈ (π/2, π). For β = α/2 ∈ (π/4, π/2) we find that

Re
(
−e−iβa1(p, p)

)
= ω2

∫
BR(0)

Re
(
e−iβε

)
|∇p|2 dx

− ωkRe
(
e−iβ) ∫

∂BR(0)
Λ̃(ν ×∇p|∂BR(0)) · (ν ×∇p)× ν|∂BR(0) ds.

Since β ∈ (π/4, π/2) it holds that

−ωkRe
(
e−iβ) ∫

∂BR(0)
Λ̃(ν ×∇p|∂BR(0)) · (ν ×∇p)× ν|∂BR(0) ds > 0

for p 6= 0 due to the negative definiteness of Λ̃ from Lemma 2.12. Furthermore, we see that

ω2 Re
(
e−iβε

)
> c > 0

for a constant c > 0. Using the Poincaré inequality once more gives that

Re
(
−e−iβa1(p, p)

)
≥ c ‖p‖H1(BR(0)) ,
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which shows (2.63). Due to the Lax-Milgram theorem A.4, the boundedness and coercivity of
a1 on S̃ implies the existence of a linear and boundedly invertible operator A1 : S̃ → S̃ such
that

a1(p, ξ) = 〈A1p, ξ〉H1(BR(0)) for all p, ξ ∈ S̃. (2.64)

The inner product on the right hand side of (2.64) is given as in (2.4). Since the sesquilinear
form a2 from (2.62) is bounded as well there exists a linear and bounded operator A2 : S̃ → S̃
such that

a2(p, ξ) = 〈A2p, ξ〉H1(BR(0)) for all p, ξ ∈ S̃. (2.65)

Furthermore, A2 is compact. This can be seen as follows. Let (pn)n ⊂ S̃ be a sequence, weakly
converging to 0. We have to show that (A2pn)n converges strongly to 0 since, by [33, Lem.
12.2], an operator T : X → Y , for a reflexive Banach space X is compact if and only if it maps
weakly convergent sequences in X to strongly convergent sequences in the Banach space Y .
Accordingly,

‖A2pn‖2H1(BR(0)) = a2(pn, A2pn)

≤ C‖(Λ + ikΛ̃)(ν ×∇pn|∂BR(0))‖H−1/2
div (∂BR(0))‖(ν ×∇ (A2pn))× ν|∂BR(0)‖H−1/2

curl (∂BR(0)).

Using the boundedness of the trace operator γT from (2.12) and noting that curl(∇(A2pn)) = 0
gives that

‖A2pn‖H1(BR(0)) ≤ C‖(Λ + ikΛ̃)(ν ×∇pn|∂BR(0))‖H−1/2
div (∂BR(0)) . (2.66)

The gradient ∇ is a linear and bounded operator from H1(BR(0)) to H(curl, BR(0)). Thus,
for all functionals ψ ∈ H(curl, BR(0))′, the functional ψ ◦ ∇ is an element of H1(BR(0))′.
Since (pn)n converges weakly to 0 in H1(BR(0)), we therefore find that ∇pn converges weakly
to 0 in H(curl, BR(0)). Moreover, since γt is a bounded operator from H(curl, BR(0)) to
H
−1/2
div (∂BR(0)) we get that (ν×∇pn|∂BR(0))n converges weakly to 0 in H−1/2

div (∂BR(0)). Finally,
since Λ + ikΛ̃ is a compact operator by Lemma 2.13 we get that the right hand side of (2.66)
converges to 0. This shows that A2 is compact. We define A = A−1

1 A2 : S̃ → S̃ and observe
from (2.64) and (2.65) that

a1(Ap, ξ) = a2(p, ξ) for all p, ξ ∈ S̃.

Furthermore, A is compact, since A2 is compact and compositions of compact and bounded
operators are compact (see e.g. [33, Lem. 12.3]). By the Riesz representation theorem (see e.g.
[122, p. 90]) there further exists a unique b̃ ∈ S̃ such that 〈b̃, ξ〉H1(BR(0)) = F (∇ξ) with

‖b̃‖H1(BR(0)) = ‖F (∇·)‖
S̃→C ≤ ‖F‖H(curl,BR(0))→C = ‖F‖ , (2.67)

where F has been defined in (2.54). For b = A−1
1 b̃ we use (2.64) and see that

a1(b, ξ) = F (∇ξ) for all ξ ∈ S̃ .

Thus, equation (2.60) is equivalent to finding p ∈ S̃ such that

a1(p, ξ) + a1(Ap, ξ) = a1(b, ξ) for all ξ ∈ S̃,

which is equivalent to the operator equation

(I +A)p = b. (2.68)
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The operator on the left hand side of (2.68) is an operator of Fredholm type and solvability of
(2.68) is equivalent to uniqueness of solutions to (2.68) due to the Fredholm alternative (see e.g.
[33, Lem. 13.4]). Therefore, we consider the case, in which b = 0. Then, (2.60) reduces to

−ω2
∫
BR(0)

ε∇p · ∇ξ dx+ iω
∫
∂BR(0)

Λ(ν ×∇p|∂BR(0)) · (ν ×∇ξ)× ν|∂BR(0) ds = 0

for all ξ ∈ S̃. Choosing ξ = p yields that

i
∫
∂BR(0)

Λ(ν ×∇p|∂BR(0)) · (ν ×∇p)× ν|∂BR(0) ds = ω

∫
BR(0)

ε|∇p|2 dx .

For f = ν × ∇p denote by (V ,W ) ∈ Hloc(curl, BR(0))2 the unique radiating pair of fields
solving (2.38). Then, ν × V = ν × ∇p and Λ(ν × ∇p) = ν ×W . We write γt and γT for
abbreviating the traces ν × ·|∂BR(0) and ((ν × ·)× ν)|∂BR(0), respectively and compute
∫
∂BR(0)

(γtV ) · (γTW ) ds = −
∫
∂BR(0)

(γtW ) · (γT∇p) ds = −
∫
∂BR(0)

Λ(γt∇p) · (γT∇p) ds

= −
∫
∂BR(0)

Λ (γt∇p) · (γT∇p) ds = −iω
∫
BR(0)

ε|∇p|2 dx. (2.69)

Therefore,

Re
(∫

∂BR(0)

(
ν × V |BR(0)

)
· ((ν ×W )× ν|∂BR(0)) ds

)
= ω

∫
BR(0)

Im(ε)|∇p|2 dx ≤ 0.

Rellich’s lemma 2.6 now implies that V and W vanish in R3 \ BR(0). Due to (2.69) it follows
that ∇p vanishes in all BR(0), since the left hand side in (2.69) is zero. The Poincaré inequality
now yields that p = 0 in BR(0), and we have shown uniqueness of solutions to (2.68). For the
unique solution p ∈ S̃ of (2.68) we obtain by using (2.67) that

‖p‖H1(BR(0)) ≤ C‖b‖H1(BR(0)) ≤ C
∥∥b̃∥∥

H1(BR(0)) ≤ C‖F‖ .

The space ∇S̃ is the curl free part of a Helmholtz decomposition of H(curl, BR(0)). For
the div free part we define the space

X̃0 =
{
u ∈ H(curl, BR(0))

∣∣ B(u,∇ξ) = 0 for all ξ ∈ S̃
}

=
{
u ∈ H(curl, BR(0))

∣∣ div(εu) = 0 in BR(0), iωε0γnu = div∂BR(0)Λ(γtu) on ∂BR(0)
}
,

where B is defined in (2.53). The operators div, γn and div∂BR(0) denote the weak diver-
gence, normal trace and surface divergence introduced in (2.8), (2.9) and (2.13a), respec-
tively. If B(u,∇ξ) = 0 for all ξ ∈ S̃, then indeed div(εu) exists, since C∞0 (BR(0)) ⊂ S̃ and
ξ ∈ C∞0 (BR(0)) implies that ∇ξ ∈ (C∞0 (BR(0)))3 ⊂ N (γT ), where N (γT ) denotes the kernel of
γT (see [88, Thm. 5.25]). To see that the above mentioned sets are indeed the same, we consider
u ∈ H(curl, BR(0)) and apply Green’s theorem in (2.10), which yields∫

BR(0)
div(εu)ξ dx = −

∫
BR(0)

εu · ∇ξ dx+
∫
∂BR(0)

ε0ν · u|∂BR(0)ξ|∂BR(0) ds (2.70)

for all ξ ∈ S̃. Let

B(u,∇ξ) = 0 for all ξ ∈ S̃ .
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By using (2.70) and the definition of the surface divergence in (2.13a) this implies that∫
BR(0)

div(εu)ξ dx =
∫
∂BR(0)

( i
ω

div∂BR(0)Λ(ν × u) + ε0ν · u|∂BR(0)

)
ξ|∂BR(0) ds

for all ξ ∈ S̃. Since this equality holds for all ξ ∈ S̃, it holds for ξ ∈ H1
0 (BR(0)) in particular.

Therefore, we find that

div(εu) = 0 in BR(0) and ε0ν · u|∂BR(0) = − i
ω

div∂BR(0)Λ(ν × u) on ∂BR(0).

We cite the next lemma from [99, Lem. 10.3]. The proof is omitted, as it can be done in the
same way as in [99, Lem. 10.3].

Lemma 2.17. The vector spaces ∇S̃ and X̃0 are closed subspaces of H(curl, BR(0)). The space
H(curl, BR(0)) is the direct sum of the spaces ∇S̃ and X̃0, i.e. it holds that

H(curl, BR(0)) = ∇S̃ ⊕ X̃0.

The orthogonal projections onto these spaces are bounded, i.e., there exist constants C1, C2 > 0
such that

C1‖w +∇p‖2H(curl,BR(0)) ≤ ‖w‖
2
H(curl,BR(0)) + ‖∇p‖2H(curl,BR(0)) ≤ C2‖w +∇p‖2H(curl,BR(0))

for all w ∈ X̃0 and p ∈ S̃.

The next lemma and proof are similar to [99, Lem. 10.4]. In our proof we make use of the
second representation of X̃0 and refer to a compactness result from [75, Prop. B.3].

Lemma 2.18. The space X̃0 is compactly embedded in (L2(BR(0)))3.

Proof. Let (un)n ⊂ X̃0 be a bounded sequence with respect to the norm ‖ · ‖H(curl,BR(0)). We
show that this sequences converges with respect to the norm ‖·‖L2(BR(0))3 . For every function un,
n ∈ N, we consider fn = ν ×un|∂BR(0) and denote by (Vn,Wn) ∈ (Hloc(curl,R3 \BR(0)))2 the
unique radiating fields solving (2.38) with fn taken as the boundary value. Then, the functions

ũn =
{
un, x ∈ BR(0)
Vn, x ∈ R3 \BR(0)

satisfy ũn ∈ Hloc(curl,R3) for all n ∈ N. Since un ∈ X̃0 we find that

iωε0ν · un|∂BR(0) = div∂BR(0)Λ(ν × un|∂BR(0)) for all n ∈ N. (2.71)

From [99, Eq. (3.52)] we find that for v ∈ H(curl, BR(0)) it holds that

div∂BR(0)(ν × v|∂BR(0)) = −ν · (curlv)|∂BR(0). (2.72)

By the definition of the exterior Calderón operator (see (2.41)) we find that

Λ(ν × un|∂BR(0)) = Λ(fn) = ν ×Wn|∂BR(0) = 1
iωµ0

ν × curlVn|∂BR(0)

and combining this with (2.71) and (2.72) yields that

iωε0ν · un|∂BR(0) = 1
iωµ0

div∂BR(0)(ν × curlVn|∂BR(0)) = − 1
iωµ0

ν · (curl2 Vn)|∂BR(0)
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which gives that ν · un|∂BR(0) = ν · Vn|∂BR(0). By [99, Lem. 5.3] and the definition of X̃0, we
find that εũn ∈ H(div,R3) and div(εũn) = 0 in all R3. Let R′ > R and consider ũn|BR′ (0).
Then, ũn|B′R(0) ∈ H(curl, BR′(0)), div(εũn|B′R(0)) = 0 in BR′(0) and ν · (εũn|B′R(0))|∂BR′ (0) =
ε0ν · Vn|∂BR′ (0) ∈ C∞(∂BR′(0)), since (Vn,Wn) are analytic outside of BR(0) (see [34, Thm.
6.3] and Theorem 2.8). By [75, Prop. B.3], the space

M =
{
u ∈ H(curl, BR′(0))

∣∣ div(ξu) ∈ L2(BR′(0)) , ξu · ν ∈ L2(∂BR′(0))
}
, (2.73)

with ξ ∈ L∞(BR′(0)) satisfying Re(ξ) > α is compactly embedded in (L2(BR′(0))3. The set M
in (2.73) does not change if either ξ = ε or ξ = eiβε, with β such that Re(eiβε) > α is chosen.
Thus, there is a subsequence of (ũn|BR′ (0))n, still denoted by (ũn|BR′ (0))n such that (ũn|BR′ (0))n
converges with respect to the norm in (L2(BR′(0))3. Therefore, (ũn|BR(0))n = (un)n must
converge in (L2(BR(0))3.

According to Lemma 2.17, any E ∈ H(curl, BR(0)) has a unique decomposition E = w+∇p
with w ∈ X̃0 and p ∈ S̃. Following the definition of X̃0 it holds that

B(w,∇ξ) = 0 for all ξ ∈ S̃ ,

where B was defined in (2.53). Therefore, using for any V ∈ H(curl, BR(0)) the decomposition
V = ∇ξ + ψ with ξ ∈ S̃ and ψ ∈ X̃0 we find that the weak formulation in (2.52) is equivalent
to

B(∇p,∇ξ) +B(∇p,ψ) +B(w,ψ) = F (∇ξ) + F (ψ) for all ξ ∈ S̃ and ψ ∈ X̃0. (2.74)

Setting ψ = 0 gives that p ∈ S̃ must satisfy

B(∇p,∇ξ) = F (∇ξ) for all ξ ∈ S̃ .

Due to Proposition 2.16 we see that p ∈ S̃ is uniquely defined by (I +A)p = b. Furthermore, p
depends continuously on b. Now, in (2.74), we set ξ = 0. Therefore, it is left to show that there
is a w ∈ X̃0 with

B(w,ψ) = F (ψ)−B(∇p,ψ) for all ψ ∈ X̃0 ,

that is uniquely defined and continuously dependent on the data. We define the right hand side
to be the antilinear and bounded functional

F̃ (ψ) = F (ψ)−B(∇p,ψ) for all ψ ∈ X̃0 . (2.75)

Let f ∈ H−1/2
div (∂BR(0)) be given by

f =
∞∑
n=1

n∑
m=−n

αmn U
m
n + βmn V

m
n , (2.76)

with the vector spherical harmonics defined in (2.16). Using the expansion (2.42) we find that

Λf =
∞∑
n=1

n∑
m=−n

− iωε0β
m
n R

δn
Um
n + αmn (δn − δ̃n)

iωµ0R
V m
n + αmn δ̃n

iωµ0R
V m
n ,

with δ̃n as in (2.43). Therefore, we define for f ∈ H
−1/2
div (∂BR(0)) as in (2.76) the bounded

operators

Λ1 : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)), Λ1f =

∞∑
n=1

n∑
m=−n

− iωε0β
m
n R

δn
Um
n + αmn (δn − δ̃n)

iωµ0R
V m
n ,

Λ2 : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)), Λ2f =

∞∑
n=1

n∑
m=−n

αmn δ̃n
iωµ0R

V m
n .
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The boundedness of both Λ1 and Λ2 can be seen by using Remark 2.11 and −2n < δ̃n < −n
(see [99, Proof of Lem. 9.22]). As before, the ansatz is to decompose the sesquilinear form B
in such a way that the Riesz representation theorem yields an operator equation of the form
(I+K)w = b, where K is a compact operator. The compact operator results from the following
observation about the first part of the Calderón map Λ1, which we state in the following without
proof (see [99, Lem. 10.5]).

Lemma 2.19. The operator Λ1 ◦ γt is compact from X̃0 into H−1/2
div (∂BR(0)).

Now, we use the decomposition B = b1 +b2 with the sesquilinear forms b1, b2 : X̃0×X̃0 → C,
defined by

b1(u,ψ) =
∫
BR(0)

1
µ

curlu · curlψ dx+ ω2
∫
BR(0)

εu · v dx

+ iω
∫
∂BR(0)

Λ2(ν × u|∂BR(0)) · ((ν × v)× ν|∂BR(0)) ds (2.77)

and

b2(u,ψ) = −2ω2
∫
BR(0)

εu · v dx

+ iω
∫
∂BR(0)

Λ1(ν × u|∂BR(0)) · ((ν × v)× ν|∂BR(0)) ds. (2.78)

Using these two sesquilinear forms, we find the following proposition, which is similar to [99,
Thm. 10.6].

Proposition 2.20. Let ε1 > 0 or ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0. The sesquilinear
form b1 : X̃0 × X̃0 → C from (2.77) is bounded. Further, there is a ζ ∈ R such that

Re
(
eiζb1(u,u)

)
≥ c‖u‖H1(Ω) for all u ∈ X̃0.

There is a compact operator A : X̃0 → X̃0 with

b1(Au,v) = b2(u,v) for all u,v ∈ X̃0 ,

with b2 : X̃0 × X̃0 → C defined as in (2.78).
The operator I + A is an isomorphism from X̃0 onto itself. The variational formulation,

which is to find w ∈ X̃0 such that

B(w,v) = F̃ (v) for all v ∈ X̃0

is uniquely solvable in X̃0, where the sesquilinear form B and the antilinear functional F̃ are
defined in (2.53) and (2.75), respectively. The solution is given by

w = (I +A)−1b,

where b ∈ X̃0 is the unique solution to

b1(b, ξ) = F̃ (v) for all v ∈ X̃0.

In particular, it holds that ‖w‖H(curl,(BR(0)) ≤ C‖F̃‖.
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Proof. Boundedness of the sesquilinear form b1 follows from an application of the Cauchy–
Schwarz inequality, the boundedness of Λ2 and the boundedness of the traces γt and γT . For
f ∈ H−1/2

div (∂BR(0)) defined as in (2.76) we find that

ν × f =
∞∑
n=1

n∑
m=−n

αmn V
m
n − βmn Um

n

and therefore

iω
∫
∂BR(0)

Λ2(ν × f) · f ds = − 1
Rµ0

∞∑
n=1

n∑
m=−n

|βmn |δ̃n ≥ 0 , (2.79)

since δ̃n < 0 (see Lemma 2.12). For ε1 > 0, by using (2.79), we see that

b1(u,u) ≥ c‖u‖H(curl,BR(0)) for all u ∈ X̃0 .

For ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0 we write ε1 = |ε1|eiα with α ∈ (π/2, π). For
β = α/2 ∈ (π/4, π/2) we have that Re(e−iβε) > 0 and Re(e−iβ) > 0. Therefore,

Re
(
e−iβb1(u,u)

)
= Re

(
e−iβ) ∫

BR(0)

1
µ
| curlu|2 dx+ ω2

∫
BR(0)

Re
(
e−iβε

)
|u|2 dx

+ Re
(
e−iβ)iω ∫

∂BR(0)
Λ2(ν × u|∂BR(0)) · ((ν × u)× ν|∂BR(0)) ds

≥ c‖u‖H(curl,BR(0)) .

The sesquilinear form b2 from (2.78) is bounded as well. Therefore, we find a boundedly invertible
operator A1 and a bounded operator A2, both mapping from X̃0 into itself, such that

b1(u,v) = 〈A1u,v〉H(curl,BR(0)) and b2(u,v) = 〈A2u,v〉H(curl,BR(0)) for all u,v ∈ X̃0.

Defining A = A−1
1 A2 gives that

b1(Au,v) = b2(u,v) for all u,v ∈ X̃0 .

In order to show that the operator A is compact, we consider a sequence (un)n in X̃0, weakly
converging to 0, and show that (Aun)n converges strongly to 0. Then, by [33, Lem. 12.2], A is
a compact operator. Since (un)n converges weakly to 0 in X̃0, we find that (ν ×un)n converges
weakly to 0 in H

−1/2
div (∂BR(0)), since the trace operator is a bounded operator. According to

Lemma 2.19 we find that Λ1 ◦ γt is compact and therefore, (Λ1(ν × un|∂BR(0)))n converges
strongly to 0 in H−1/2

div (∂BR(0)). Moreover, due to Lemma 2.18, the sequence (un)n converges
strongly to 0 in (L2(BR(0)))3. In what follows we use β = 0 for the case ε1 > 0 and β = α/2
for the case that ε1 = |ε1|eiα for α ∈ (π/2, π). We set

c = min{Re(e−iβε),Re(e−iβµ−1)}

and find that

c‖Aun‖2H(curl,BR(0)) ≤ Re
(

e−iβ
(∫

BR(0)

1
µ
| curlAun|2 dx+

∫
BR(0)

ε|Aun|2 dx
))

≤ Re
(
e−iβb1(Aun, Aun)

)
= Re

(
e−iβb2(un, Aun)

)
≤ |b2(un, Aun)|

≤ C
(
‖Aun‖(L2(BR(0)))3‖un‖(L2(BR(0)))3 + ‖Λ1(ν × un|∂BR(0))‖H−1/2

div (∂BR(0))‖Aun‖H(curl,BR(0))
)
.

The second inequality holds true due to (2.79). This gives that

‖Aun‖H(curl,Ω) → 0 as n→∞
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and consequently that A is compact. Similar to the proof of Proposition 2.16, by the Riesz
representation theorem (see e.g. [122, p. 90]), there exists a unique b̃ ∈ X̃0 such that

〈b̃,ψ〉H(curl,BR(0)) = F̃ (ψ) for all ψ ∈ X̃0 with ‖b̃‖H(curl,BR(0)) = ‖F̃‖ , (2.80)

with F̃ from (2.75). Thus, finding w ∈ X̃0 such that B(w,ψ) = F̃ (ψ) for all ψ ∈ X̃0 is
equivalent to the operator equation

(I +A)w = b ,

where b = A−1
1 b̃. It remains to show that (I +A)w = 0 implies w = 0. For such a w ∈ X̃0, we

have that

B(w,ψ) = b1(w,ψ) + b2(w,ψ) = b1((I +A)w,ψ) = 0 for all ψ ∈ X̃0 .

According to the definition of X̃0 we also have that

B(w,∇ξ) = 0 for all ξ ∈ S̃.

Following the decomposition of H(curl, BR(0)) in Lemma 2.17 gives that

B(w, z) = 0 for all z ∈ H(curl, BR(0)).

This coincides with the weak formulation obtained in (2.52) if the pair of incoming fields (Ei,H i)
vanishes identically in all R3. As established in the proof of Lemma 2.15, w ∈ X̃0 can be
extended to a function Ẽ in the full space R3, where Ẽ is a weak solution of Maxwell’s equation
(2.34) and Ẽ − Ei satisfies the Silver–Müller radiation condition. However, since the incident
electric field is zero, the total field Ẽ, must be zero in all R3 due to the uniqueness result from
Proposition 2.14. Consequently w = Ẽ|BR(0) must be zero as well. Since (I +A)w = 0 implies
w = 0 and (I+A) is an operator of Fredholm type, the Fredholm alternative (see e.g. [33, Lem.
13.4]) shows that (I + A)w = b is uniquely solvable for every b ∈ X̃0. Moreover, using (2.80),
we obtain the bound

‖w‖H(curl,(BR(0)) ≤ C‖b‖H(curl,(BR(0)) ≤ C‖b̃‖H(curl,(BR(0)) = C‖F̃‖ .

We summarize the main result of this chapter in the following theorem.

Theorem 2.21. Let ε1 > 0 or ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0 and let µ1 > 0.
Moreover, let (Ei,H i) be entire wave fields satisfying (2.30). Then, the scattering problem,
to find (E,H) = (Ei + Es,H i + Hs) ∈ (Hloc(curl,R3))2 satisfying (2.31) together with the
Silver–Müller radiation condition for (Es,Hs) in (2.32) is uniquely solvable and equivalent (by
Lemma 2.15) to the problem to find E ∈ H(curl, BR(0)) solving B(E,V ) = F (V ) for all
V ∈ H(curl, BR(0)) with B and F defined in (2.53) and (2.54). Moreover, for this field E it
holds that ‖E‖H(curl,BR(0)) ≤ C‖Ei‖H(curl,BR(0)).

Proof. According to Lemma 2.17, any fieldsE,V ∈ H(curl, BR(0)) can be uniquely decomposed
via E = ∇p+w and V = ∇ξ +ψ, where p, ξ ∈ S̃ and w,ψ ∈ X̃0. The variational formulation
to find E ∈ H(curl, BR(0)) with B(E,V ) = F (V ) is thus equivalent to find the unique p ∈ S̃
and w ∈ X̃0 such that

B(∇p,∇ξ) +B(∇p,ψ) +B(w,∇ξ) +B(w,ψ) = F (∇ξ) + F (ψ) for all ξ ∈ S̃,ψ ∈ X̃0 . (2.81)
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By the definition of X̃0, we have that B(w,∇ξ) = 0 for all ξ ∈ S̃. If we set ψ = 0 in (2.81),
then, we obtain the problem to find p ∈ S̃ such that

B(∇p,∇ξ) = F (∇ξ) for all ξ ∈ S̃ . (2.82)

From Proposition 2.16 we conclude that there is a uniquely determined p ∈ S̃ solving (2.82)
with ‖p‖H1(BR(0)) ≤ ‖F‖. We use this p in (2.81), set ξ = 0 and find that w ∈ X̃0 must satisfy

B(w,ψ) = F (ψ)−B(∇p,ψ) = F̃ (ψ) for all ξ ∈ X̃0 . (2.83)

According to Proposition 2.20 there is a uniquely determined w ∈ X̃0 solving (2.83). Addition-
ally, it holds that ‖w‖H(curl,BR(0)) ≤ C‖F̃‖. Thus, E = w+∇p is uniquely defined and it holds
that

‖E‖H(curl,BR(0)) ≤ ‖w‖H(curl,BR(0)) + ‖p‖H1(BR(0)) ≤ C‖Ei‖H(curl,BR(0)) .



Chapter 3

An asymptotic perturbation formula for
electromagnetic scattering by thin tubular structures

In the previous chapter, we established existence and uniqueness of solutions to time-harmonic
Maxwell’s equations for a scattering object D ⊂ R3 with a Lipschitz boundary ∂D. Beginning
from this chapter on, our considerations concern thin tubular scattering objects exclusively. For
this special class of three-dimensional objects, we study the behavior of scattered electric fields as
the volume of the tubular cross-section shrinks to zero. The result is an asymptotic perturbation
formula that provides a representation of the scattered electric field away from the scatterer via
a leading order term plus terms of higher order, as the volume of the scatterer tends to zero. The
leading order term features the electric and magnetic polarization tensors. As these terms carry
essential properties of the thin tubular scattering object, they require detailed considerations,
which are discussed in Section 3.3. In the next two chapters, the leading order term will be of
particular interest, as it allows an approximation of solutions to the scattering problem (2.34)
and (2.35) without a numerical computation of a solution corresponding to the full Maxwell
system.

We start this chapter with a precise description of a family of thin tubular scattering objects.
Afterwards, we present the asymptotic representation formula for electric fields in free space
scattered by these objects. We continue with preliminary results for the proof of this theorem
and finally prove it by extending the results from [68]. Afterwards, we study the polarization
tensors, examine the two-dimensional polarization tensor of the thin tube’s cross-section and
draw connections to plasmon resonances. Finally, we perform our first numerical examples with
the leading order term of the asymptotic perturbation formula.

3.1 Scattering from thin tubular structures
In this section we introduce a detailed description of (families of) thin tubular scattering objects,
that we consider throughout the next chapters. For this purpose, let BR(0) ⊂ R3 be a ball of
radius R > 0 centered at the origin that is supposed to include all scatterers under consider-
ation. Let Γ ⊂ BR(0) be a simple, i.e. non-self-intersecting but possibly closed curve with C3

parametrization by arc-length pΓ : (−L,L) → R3 equipped with a right handed rotation mini-
mizing frame (RMF) (tΓ, rΓ, sΓ). For the description of a rotation minimizing frame, we refer
to [22, 36, 46, 121, 123]. For a list of possible applications consider e.g. the references in [36,
Ch. 3]. In the RMF (tΓ, rΓ, sΓ), the vector tΓ = p′Γ denotes the tangent vector. The reference
vector rΓ is characterized as the solution of the ordinary differential equation

r′Γ(s) = f(s)tΓ(s), rΓ(s) · tΓ(s) = 0 for all s ∈ (−L,L) (3.1)

for a function f : (−L,L) → R, together with some initial condition for rΓ at s = −L. Having
rΓ, the vector sΓ is given by sΓ = tΓ × rΓ. Using the linear combination

t′Γ = κ1rΓ + κ2sΓ (3.2)

33



34 Chapter 3. An asymptotic formula for scattering by thin tubular structures

with functions κ1, κ2 : (−L,L)→ R as an ansatz, we find that

s′Γ = t′Γ × rΓ + tΓ × r′Γ = −κ2tΓ and r′Γ = −κ1tΓ . (3.3)

The latter equality is found by using that rΓ = sΓ×tΓ and deriving as in the first equality. These
differential equations were initially characterized by Bishop in [22]. Although, in his study, he
named a normal field to a curve Γ satisfying (3.1) a relatively parallel frame. Therefore, the
RMF is sometimes called the Bishop frame. In [22, Thm. 1] it is proven that for curves Γ as
considered in this work, there exists a uniquely determined RMF (tΓ, rΓ, sΓ) for a given initial
value for rΓ at s = −L. Moreover, for different initial values for rΓ at s = −L, the two reference
vectors corresponding to the uniquely determined frames keep a constant angle along the curve
Γ (see also [121, p. 2:5]). We introduce the rotation function θ ∈ C2([−L,L]) and the rotation
matrix

Rθ(s) =
[
cos (θ(s)) − sin (θ(s))
sin (θ(s)) cos (θ(s))

]
∈ R2×2, s ∈ (−L,L) . (3.4)

For sufficiently small r > 0, the tubular neighborhood theorem (see e.g. [118, Thm. 20, p. 467])
shows that the map

qΓ : (−L,L)×B′r(0)→ R3, qΓ(s, η, ξ) = pΓ(s) + [rΓ(s) | sΓ(s)] Rθ(s)
[
η
ξ

]
, (3.5)

where B′r(0) ⊂ R2 is the disk of radius r centered at the origin, defines a local coordinate system
around pΓ. We define its range by

Ωr =
{
qΓ(s, η, ξ)

∣∣ s ∈ (−L,L), (η, ξ) ∈ B′r(0)
}
. (3.6)

For 0 < ` < L and 0 < ρ < r/2 we consider a cross-section D′ρ ⊂ B′ρ(0) given by D′ρ = ρD′,
where D′ is supposed to be a simply connected Lipschitz domain. Thus, the rotation matrix
in (3.4) that appears in the definition of the local coordinates in (3.5) incorporates rotations
of the cross-section D′ρ along the wire. Accordingly, we define the corresponding thin tubular
scattering object by

Dρ =
{
qΓ(s, η, ξ)

∣∣ s ∈ (−`, `), (η, ξ) ∈ D′ρ
}

(3.7)

and call

K =
{
pΓ(s)

∣∣ s ∈ (−`, `)
}

the center curve of Dρ. In Figure 3.1 we visualize an example of a thin tubular scattering object
having a cloud-shaped cross-section D′ρ that twists along the center curve K. Note that, as
explained before, the center curve K of the scattering object is a subset of Γ. In the particular
situation, in which the dimensions of D′ρ are within the order of a few nanometers (nm), we call
Dρ a nanowire.

The parameter ρ is called the radius of the cross-section D′ρ of Dρ or sometimes just the
radius of Dρ. For the family of thin tubular scatterers (Dρ)ρ>0 let the electric permittivity and
magnetic permeability distributions be defined by

ερ(x) =
{
ε1 , x ∈ Dρ ,

ε0 , x ∈ R3 \Dρ

and µρ(x) =
{
µ1 , x ∈ Dρ ,

µ0 , x ∈ R3 \Dρ.
(3.8)

The coefficients in (3.8) are supposed to satisfy the same properties as those from Chapter 2,
i.e. µ1 > 0 and either ε1 > 0 or ε1 ∈ C with Re(ε1) < 0 and Im(ε1) > 0. We emphasize the
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Figure 3.1: An example of a thin tubular scattering object with cross-section D′ρ ⊂ B′ρ(0).

dependence of electric and magnetic fields on the cross-section D′ρ by indexing them with ρ > 0.
Accordingly, the electric field Eρ = Ei +Es

ρ must satisfy

curl
(

1
µρ

curlEρ

)
− ω2ερEρ = 0 in R3 , (3.9)

together with the Silver–Müller radiation condition

lim
|x|→∞

|x|
(
curlEs

ρ(x)× x̂− ikEs
ρ(x)

)
= 0 (3.10)

uniformly with respect to all directions x̂ = x/|x| ∈ S2.
Remark 3.1. The results about the asymptotic perturbation formula and the polarization tensor
that we describe in the next sections may be formulated for more general cross-sections D′ρ than
Lipschitz domains. In fact, one can assume that the cross-sections D′ρ are just measurable and
that |D′ρ| tends to zero as ρ→ 0. We do not consider this general setting and refer to the original
work [28] instead.

3.2 The asymptotic perturbation formula
We establish and motivate the main result of this chapter, namely the asymptotic representation
formula for electromagnetic fields scattered by thin tubular scattering objects. This formula
reflects the behavior of the scattered electric field Es

ρ away from the scattering object and the
corresponding far field E∞ρ as the radius of the cross-section D′ρ of the scattering object Dρ tends
to zero. Asymptotic expansions of this type are available in the literature for time-harmonic
electromagnetic fields. However, the existing results for Maxwell’s equations are formulated
either on bounded domains (see e.g. [2, 12, 68]) or for scattering problems on unbounded domains
but with different geometrical assumptions on the scattering objects than considered in this
work (see [13, 66]). In [12] the authors study an ensemble of diametrically small scatterers of
the form z(j) + ρBj , for j = 1, . . . , n, where Bj is a C∞ domain containing the origin. For a
background medium with constant electric permittivity ε̃0 ∈ C with Re(ε̃0) > 0 and Im(ε̃0) ≥ 0
and constant magnetic permeability µ̃0 > 0 they derive an asymptotic perturbation formula for
the magnetic field H inside a domain Ω with a smooth boundary ∂Ω under the assumption
that the inclusions possess a constant electric permittivity and magnetic permeability. In [68]
a general perturbation formula for measurable, low-volume defects in a homogeneous bounded
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domain Ω with smooth boundary ∂Ω is derived. In fact, the perturbation formula from [12] can
be derived from the one in [68]. In [2] the authors derive an asymptotic expansion for the electric
and magnetic field for variable anisotropic permittivities and permeabilities inside and outside
of the inclusions. In the work [13] a scattering problem for an ensemble of diametrically small
inclusion is studied. Moreover, a representation formula for the scattered electric field subject
to such a scattering object is derived. In [66] a similar setting is studied for layered media and
an ensemble of perfectly conducting diametrically small scatterers. In the following we combine
the general1 perturbation formula for electromagnetic fields on bounded domains from [2, 68]
(see also [29]) with an integral equation technique developed in [8, 13] to arrive at an asymptotic
representation formula that applies to our setting.
In order to establish the asymptotic perturbation formula, we consider a sequence of radii
(ρn)n∈N ⊂ (0, r/2) converging to zero as n→∞. The corresponding sequence of cross-sections
of Lipschitz domains is denoted by D′ρn = ρnD

′ ⊂ B′ρn(0), n ∈ N. We find the following property
for the sequence of measures (|D′ρn |−1χD′ρn )n∈N.

Lemma 3.2. The sequence of measures (|D′ρn |−1χD′ρn )n∈N has the property that

|D′ρn |
−1χD′ρn converges in the sense of measures to µ′ as n→∞, (3.11)

where µ′ is the two-dimensional Dirac measure with support in 0.

Proof. By assumption, D′ρn ⊂ B′r(0) for all ρn < ρ′ and a ρ′ > 0. Thus, for all φ ∈ C(B′r(0)) it
holds that

|D′ρn ||D
′
ρn |
−1 inf

x′∈D′ρn
φ(x′) ≤

∫
B′r(0)

χD′ρn |D
′
ρn |
−1φ dx′ ≤ |D′ρn ||D

′
ρn |
−1 sup

x′∈D′ρn

φ(x′) . (3.12)

Since φ is a continuous function, the lower and the upper bound in (3.12) converge to φ(0) and
so the middle term needs to converge to φ(0) as well.

We need the Jacobian determinant of the local coordinates (3.5) in order to represent the
gradient in these coordinates and to perform integral transformations. Recall that the two-
dimensional parameter dependent rotation matrix Rθ ∈ C2((−L,L),R2×2) is defined as in (3.4).

Lemma 3.3. The Jacobian determinant of the local coordinates qΓ from (3.5) is given by

JΓ(s, η, ζ) = detDqΓ(s, η, ζ) = 1−
[
κ1(s)
κ2(s)

]
·Rθ(s)

[
η
ζ

]
(3.13)

for s ∈ (−L,L) and (η, ζ) ∈ B′r(0). The functions κ1, κ2 are introduced in (3.2).

Proof. By using the relations in (3.2) and (3.3) we find that the partial derivatives of qΓ can be
computed to

∂qΓ
∂s

(s, η, ζ) = tΓ(s)
(

1−
[
κ1(s)
κ2(s)

]
·Rθ(s)

[
η
ζ

])
+
[
rΓ(s)

∣∣ sΓ(s)
] ∂Rθ
∂s

(s)
[
η
ζ

]
,

∂qΓ
∂η

(s, η, ζ) =
[
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

[
1
0

]
,

∂qΓ
∂ζ

(s, η, ζ) =
[
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

[
0
1

]
.

1Here, the word general refers to an arbitrary choice of scattering objects Dρ with |Dρ| → 0.
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The Jacobian of qΓ is consequently given by DqΓ with

DqΓ(s, η, ζ) = [tΓ(s)
∣∣ rΓ(s)

∣∣ sΓ(s)]


1−

[
κ1(s)
κ2(s)

]
·Rθ(s)

[
η
ζ

]
0 0

∂Rθ
∂s (s)

[
η
ζ

]
Rθ(s)


and the Jacobian determinant is found to be

JΓ(s, η, ζ) = detDqΓ(s, η, ζ) = 1−
[
κ1(s)
κ2(s)

]
·Rθ(s)

[
η
ζ

]
,

what ends the proof.

Since the curvature κ is given by κ = |p′′Γ(s)| we find from (3.2) that κ =
√
κ2

1 + κ2
2. Further-

more, since Γ is a C3 curve, we have that κmax = ‖κ‖C(−L,L) < ∞ and it has e.g. been shown
in [95, Thm. 1] that the radius r > 0 from (3.5) must necessarily satisfy rκmax < 1 in order for
the tubular neighborhood theorem to hold. Accordingly, the Jacobian determinant from (3.13)
satisfies |JΓ| = JΓ > 0 in (−L,L)×B′r(0). We introduce the notation

∇′η,ζu =
[
∂u

∂η

∣∣∣ ∂u
∂ζ

]>
and div′η,ζv = ∂vη

∂η
+ ∂vζ

∂ζ
(3.14)

for the two-dimensional gradient and the two-dimensional divergence with respect to (η, ζ) and
obtain the following representation of the three-dimensional gradient in local coordinates.

Lemma 3.4. The gradient in the local coordinates qΓ from (3.5) is given by

∇u (qΓ (s, η, ζ)) =
[
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

(
∇′η,ζu ◦ qΓ

)
(s, η, ζ)

+
(
J−1

Γ (s, η, ζ)
(
∂u ◦ qΓ
∂s

(s, η, ζ) + ∂θ

∂s
(s)
(
∇′η,ζu ◦ qΓ

)
(s, η, ζ) ·

[
ζ
−η

]))
tΓ(s) , (3.15)

where ∇′η,ζu denotes the two-dimensional gradient with respect to (η, ζ) ∈ B′r(0) from (3.14).

Proof. We compute the partial derivatives of qΓ as in the proof of Lemma 3.3 and find that an
application of the chain rule gives that

∂u ◦ qΓ
∂s

(s, η, ζ) = ∇u(s, η, ζ) ·
(
tΓ(s)JΓ(s, η, ζ) +

[
rΓ(s)

∣∣ sΓ(s)
] ∂Rθ
∂s

(s)
[
η
ζ

])
, (3.16a)

∂u ◦ qΓ
∂η

(s, η, ζ) = ∇u(s, η, ζ) ·
([
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

[
1
0

])
, (3.16b)

∂u ◦ qΓ
∂ζ

(s, η, ζ) = ∇u(s, η, ζ) ·
([
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

[
0
1

])
. (3.16c)

Note that in (3.16a) we already used the representation of the Jacobian from (3.13). From
(3.16b) and (3.16c) we find that the two-dimensional gradient with respect to (η, ζ) from (3.14)
can be written as (

∇′η,ζu ◦ qΓ
)>

(s, η, ζ) = ∇u(s, η, ζ) ·
[
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s) .

This implies that

∇u(s, η, ζ) ·
[
rΓ(s)

∣∣ sΓ(s)
]

=
(
∇′η,ζu ◦ qΓ

)
(s, η, ζ) ·R−1

θ (s) . (3.17)
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We rearrange the expression in (3.16a), use (3.17) and that

∂Rθ
∂s

(s) = ∂θ

∂s
(s)Rθ(s)

[
0 −1
1 0

]

to see that

∇u(s, η, ζ) · tΓ(s) = J−1
Γ (s, η, ζ)

(
∂u ◦ qΓ
∂s

(s, η, ζ)− ∂θ

∂s

(
∇′η,ζu ◦ qΓ

)
(s, η, ζ) ·

[
−ζ
η

])
. (3.18)

Finally, using the orthogonal decomposition

∇u(s, η, ζ) = (tΓ(s) · ∇u(s, η, ζ)) tΓ(s) + (rΓ(s) · ∇u(s, η, ζ)) rΓ(s) + (sΓ(s) · ∇u(s, η, ζ)) sΓ(s) ,

the fact that the last two summands can be written as

(rΓ · ∇u) rΓ + (sΓ · ∇u) sΓ = [rΓ
∣∣ sΓ](∇u · [rΓ

∣∣ sΓ])>

as well as (3.17) and (3.18) gives that

∇u (qΓ (s, η, ζ)) =
[
rΓ(s)

∣∣ sΓ(s)
]
Rθ(s)

(
∇′η,ζu ◦ qΓ

)
(s, η, ζ)

+
(
J−1

Γ (s, η, ζ)
(
∂u ◦ qΓ
∂s

(s, η, ζ) + ∂θ

∂s
(s)
(
∇′η,ζu ◦ qΓ

)
(s, η, ζ) ·

[
ζ
−η

]))
tΓ(s) .

Similar to Lemma 3.2, we can now derive a convergence property for the sequence of measures
(|Dρn |−1χDρn )n.

Lemma 3.5. The sequence of measures (|Dρn |−1χDρn )n∈N has the property that

|Dρn |−1χDρn converges in the sense of measures to µ as n→∞, (3.19)

where the Borel measure µ is defined by∫
BR(0)

ψ dµ = 1
2`

∫
K
ψ ds. (3.20)

Proof. We apply the particular formula for the Jacobian determinant in (3.13) and find that

|Dρn | =
∫ `

−`

∫
D′ρn

JΓ(s, η, ζ) d(η, ζ) ds = 2`|D′ρn | (1 +O(κmaxρn))

as n→∞. Accordingly, for ψ ∈ C(BR(0)) it holds that∫
BR(0)

ψ|Dρn |−1χDρn dx =
|D′ρn |
|Dρn |

∫ `

−`

1
|D′ρn |

∫
B′r(0)

χD′ρn (η, ζ)ψ(qΓ(s, η, ζ))JΓ(s, η, ζ) d(η, ζ) ds

→ 1
2`

∫ `

−`

∫
B′r(0)

ψ(qΓ(s, η, ζ)) dµ′(η, ζ) ds = 1
2`

∫ `

−`
ψ(pΓ(s)) ds

as n→∞. In the limit process we used the convergence property from (3.11).

Using the fundamental solution of Maxwell’s equation from (2.27) we state the main result
of this chapter in the following theorem.
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Theorem 3.6. Let K ⊂⊂ BR(0) be a simple C3 center curve and let r > 0 such that the local
parametrization in (3.5) is well-defined. Let (ρn)n∈N ⊂ (0, r/2) be a sequence of radii converging
to zero and let (D′ρn)n∈N be a sequence of Lipschitz cross-sections with D′ρn = ρnD

′ ⊂ B′ρn(0)
for all n ∈ N. Suppose that (Dρn)n∈N ⊂ BR(0) is the corresponding sequence of thin tubular
scattering objects as in (3.7), where the cross-section twists along the center curve subject to the
parameter dependent rotation matrix Rθ ∈ C2([−L,L],R2×2) as in (3.4). Denoting by (ερn)n∈N
and (µρn)n∈N permittivity and permeability distributions as in (3.8), let Es

ρn be the associated
scattered electric field solving (3.9) for some incident electric field Ei. Then, there exist matrix-
valued functions Mε ∈ L2(K,C3×3) and Mµ ∈ L2(K,R3×3) called the electric and magnetic
polarization tensor, respectively, such that

Es
ρn(x) = |Dρn |

2`

(∫
K

(µr − 1) curlx G(x,y)Mµ(y) curlEi(y) ds(y)

+ k2
∫
K

(εr − 1)G(x,y)Mε(y)Ei(y) ds(y)
)

+ o (|Dρn |) (3.21)

for x ∈ R3 \BR(0). Furthermore, the electric far field pattern satisfies

E∞ρn(x̂) = |Dρn |
2`

(∫
K

(µr − 1) ike−ikx̂·y (x̂× I3)Mµ(y) curlEi(y) ds(y)

+ k2
∫
K

(εr − 1) e−ikx̂·y (x̂× (I3 × x̂))Mε(y)Ei(y) ds(y)
)

+ o (|Dρn |) (3.22)

for x̂ ∈ S2. The sequence (Dρn)n∈N and the polarization tensors Mε and Mµ are independent of
the incident field Ei. The terms o (|Dρn |) in (3.21) and (3.22) are such that for any R̃ > R,

‖o (|Dρn |)‖L∞(R3\B
R̃

(0)) /|Dρn | and ‖o (|Dρn |)‖L∞(S2) /|Dρn |

converge to zero uniformly for all Ei satisfying
∥∥Ei

∥∥
H(curl,BR(0)) ≤ C for some fixed C > 0.

Remark 3.7. For real-valued ε1 > 0, the electric polarization tensor Mε is real-valued as well.
The polarization tensors Mε and Mµ that appear in (3.21) and (3.22) carry essential informa-

tion of the sequence of scattering object (Dρn)n∈N. Therefore, Mε and Mµ are studied in detail
in the next section. Before we prove Theorem 3.6 we collect several results that we need for the
proof. As stated before, our aim is to extend the general asymptotic representation formula for
electromagnetic fields from [68] to free space. For this purpose, we recall the setting from [68]
and repeat the results that we use. For g ∈ H−1/2

div (∂BR(0)), we consider the boundary value
problems

curl
( 1
ε0

curlh0

)
− ω2µ0h0 = 0 in BR(0), 1

ε0
curlh0 × ν = g on ∂BR(0), (3.23)

curl
(

1
ερn

curlhρn

)
− ω2µρnhρn = 0 in BR(0), 1

ερn
curlhρn × ν = g on ∂BR(0). (3.24)

Throughout the rest of this section, we assume that k2 is not an eigenvalue of the interior
Maxwell problem (3.23). This is not a strict assumption as the set of eigenvalues of (3.23) is
a discrete set in R+ (see [2, Prop. 3.17]). Consequently, for g ∈ H−1/2

div (∂BR(0)), the problem
(3.23) has a unique solution h0 ∈ H(curl, BR(0)). Assuming that 0 < ρn < ρ0 for a sufficiently
small ρ0, the problem (3.24) has a unique solution hρn ∈ H(curl, BR(0)) as well. This can be
shown by extending the results from [12] to Lipschitz domains (see also [68, Prop. 2.1]) as well
as to the coefficients εr considered in this work by applying multiplications with eiζ similarly, as
we did in Chapter 2. For these coefficients the asymptotic perturbation formula from [68, Thm.
2.2], that we cite next, can be derived in the same way.
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Theorem 3.8. Suppose that (Dρn)n∈N is a sequence of thin tubular scattering objects as in
(3.7) with Lipschitz cross-sections D′ρn = ρnD

′ ⊂ B′ρn(0) and assume that 0 < ρn < ρ0, where
ρ0 > 0 is so small that (3.24) has a unique solution. Given g ∈ H−1/2

div (∂BR(0)), let h0 and hρn,
n ∈ N, denote the corresponding solutions of (3.23) and (3.24), respectively. Then, there exist
matrix-valued functions Mε ∈ L2(K,C3×3) and Mµ ∈ L2(K,R3×3) such that

ν(y)× (hρn(y)− h0(y))− 2
∫
∂BR(0)

(ν(y)× curlx G(x,y)) (ν(x)× (hρn(x)− h0(x))) ds(x)

= 2 |Dρn |
2`

(
−
∫
K

(εr − 1) (ν(y)× curlx G(x,y))Mε(x) curlh0(x) ds(x)

− k2
∫
K

(1− µr) (ν(y)×G(x,y))Mµ(x)h0(x) ds(x)
)

+ o(|Dρn |) (3.25)

for all y ∈ ∂BR(0). The sequence (Dρn)n∈N and the functions Mε and Mµ are independent of
g. The last term on the right hand side of (3.25) satisfies

lim
n→∞

‖o(|Dρn |)‖L∞(∂BR(0)) /|Dρn | = 0

for any g ∈ H−1/2
div (∂BR(0)), uniformly on bounded subsets of H−1/2

div (∂BR(0)).
For later reference, we note that the proof of [68, Lem. 3.2] implies that there is a constant

C > 0 such that, for any g ∈ H−1/2
div (∂BR(0)) it holds that

‖hρn − h0‖H(curl,BR(0)) ≤ C|Dρn |1/2 ‖g‖H−1/2
div (∂BR(0)) . (3.26)

We define the functions

e0 = i/(ωε0) curlh0 and eρn = i/(ωερn) curlhρn ,

and by using (3.23) and (3.24) we find that

curl e0 = iωµ0h0 and curl eρn = iωµρnhρn .

Furthermore, e0 and eρn satisfy

curl
( 1
µ0

curl e0

)
− ω2ε0e0 = 0 in BR(0) , ν × e0 = g̃ on ∂BR(0) , (3.27)

curl
(

1
µρn

curl eρn

)
− ω2ερneρn = 0 in BR(0) , ν × eρn = g̃ on ∂BR(0) , (3.28)

with g̃ = −i/ωg. As we see from (3.27), for g = iων × Ei it holds that e0 = Ei in BR(0),
where Ei denotes the incident field of the full scattering problem (3.9). In the next proposition
we cite [88, Thm. 5.52] for part (a) and (b), which summarizes the mapping properties of the
Maxwell single layer and Maxwell double layer potentials as well as their corresponding jump
relations. Moreover, we show in part (c) a result about the representation of solutions to exterior
scattering problems with boundary values in H−1/2

div (∂BR(0)) provided that k2 is not an interior
eigenvalue. This part is similar to [88, Thm. 3.36].
Proposition 3.9. Let Q ⊂ R3 be a bounded domain such that ∂BR(0) ⊂ Q.
(a) The operators

(M̃a)(x) = curlx
∫
∂BR(0)

Φ(x,y)a(y) ds(y) , x ∈ Q ,

(Ña)(x) = curl2x
∫
∂BR(0)

Φ(x,y)a(y) ds(y) , x ∈ Q ,

are well-defined and bounded from H
−1/2
div (∂BR(0)) into H(curl, Q).
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(b) The traces

M = 1
2
(
ν × M̃

∣∣+
∂BR(0) + ν × M̃

∣∣−
∂BR(0)

)
, N = ν × Ñ |∂BR(0) (3.29)

are bounded from H
−1/2
div (∂BR(0)) into itself. With u = M̃a and a ∈ H−1/2

div (∂BR(0)), the
jump relations read

ν × u|±∂BR(0) = ±1
2a+Ma , ν × curlu

∣∣±
∂BR(0) = Na . (3.30)

(c) Consider the exterior scattering problem to find v ∈ Hloc(curl,R3 \BR(0)) such that

curl curlv − k2v = 0 in R3 \BR(0) , ν × v = f on ∂BR(0) , (3.31)

where v is supposed to satisfy the Silver–Müller radiation condition. Let f ∈ H−1/2
div (∂BR(0))

and assume that h0 = 0 is the unique solution to the interior boundary value problem (3.23)
with g = 0. Then, (3.31) has a unique solution given by M̃a with a ∈ H

−1/2
div (∂BR(0))

given by (1/2I +M)a = f . In particular, (1/2I +M)−1 exists and is bounded.
Proof. For (a) and (b) we directly refer to the proof of [88, Thm. 5.52]. For part (c) we proceed
similar to the proof of [88, Thm. 3.36]. Let v = M̃a for an a ∈ H

−1/2
div (∂BR(0)). Then,

by [88, Thm. 5.52], v solves curl curlv − k2v = 0 in R3 \ ∂BR(0) and satisfies the Silver–
Müller radiation condition. Taking the trace from the exterior yields by (3.30) that a must
satisfy (1/2I +M)a = f . By [27, Lem. 11] the operator M from H

−1/2
div (∂BR(0)) into itself

is compact. Note that this requires the boundary of the domain (in this case ∂BR(0)) to be
sufficiently regular. The Fredholm alternative (see e.g. [33, Lem. 13.4]) now yields that the
operator 1/2I +M is injective if and only if it is surjective. Therefore, we study the case f = 0
and denote by a ∈ H−1/2

div (∂BR(0)) a solution to (1/2I + M)a = 0. For this a, let v = M̃a.
Then, ν × v|+∂BR(0) = (1/2I +M)a = 0. The uniqueness theorem in [88, Thm. 5.59] yields that
v = 0 in R3 \BR(0). In particular, this implies that ν × curlv|+∂BR(0) = 0. Again, by [88, Thm.
5.52] the field v satisfies ν × curlv|+∂BR(0) = ν × curlv|−∂BR(0) and therefore, the interior trace
satisfies ν × curlv|−∂BR(0) = 0. Due to our assumption that k2 is no interior eigenvalue of the
problem (3.23), v must be 0 in BR(0). This also implies that ν×v|−∂BR(0) = 0. The jump relation
in (3.30) now shows that a = ν × v∂BR(0)|+ − ν × v∂BR(0)|− = 0. This shows that 1/2I + M
is injective and thus, by the Fredholm alternative, surjective. The open mapping theorem (see
e.g. [122, p. 75] implies that the bijective operator 1/2I +M has a bounded inverse.

Now, we can prove Theorem 3.6. In order to simplify notation, we suppress the dependency
on the integral variable.

Proof of Theorem 3.6. The Stratton–Chu formula (see [88, Thm. 5.49]) applied to the incident
field Ei gives that

− curlx
∫
∂BR(0)

Φ(x, ·)(ν ×Ei
∣∣
∂BR(0)) ds

− 1
k2 curl2x

∫
∂BR(0)

Φ(x, ·)(ν × curlEi
∣∣
∂BR(0)) ds =

{
Ei(x) , x ∈ BR(0)
0 , x ∈ R3 \BR(0)

. (3.32)

Furthermore, for the scattered field Es
ρn the Stratton–Chu formula shows that

curlx
∫
∂BR(0)

Φ(x, ·)(ν ×Es
ρn

∣∣
∂BR(0)) ds

+ 1
k2 curl2x

∫
∂BR(0)

Φ(x, ·)(ν × curlEs
ρn

∣∣
∂BR(0)) ds =

{
0 , x ∈ BR(0)
Es
ρn(x) , x ∈ R3 \BR(0)

. (3.33)
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Subtracting (3.32) from (3.33) we conclude that

Es
ρn(x) = curlx

∫
∂BR(0)

Φ(x, ·)(ν ×Eρn
∣∣
∂BR(0)) ds

+ 1
k2 curl2x

∫
∂BR(0)

Φ(x, ·)(ν × curlEρn
∣∣
∂BR(0)) ds (3.34)

for x ∈ R3 \BR(0). Applying the tangential trace γt to (3.34) and noting the jump relations in
(3.30) yields

ν ×Es
ρn

∣∣
∂BR(0) = 1

2ν ×Eρn
∣∣
∂BR(0) +M(ν ×Eρn

∣∣
∂BR(0)) + 1

k2N(ν × curlEρn
∣∣
∂BR(0)) . (3.35)

On the other hand, the same procedure applied to (3.32) gives

ν ×Ei
∣∣
∂BR(0) = 1

2ν ×E
i
∣∣
∂BR(0) −M(ν ×Ei

∣∣
∂BR(0))−

1
k2N(ν × curlEi

∣∣
∂BR(0)) . (3.36)

Due to our assumption that k2 is not an interior Maxwell eigenvalue for BR(0), we find that the
boundary value problems (3.27) and (3.28) are uniquely solvable for every g̃ ∈ H−1/2

div (∂BR(0)).
Consequently, the interior Calderón operators

Λρn : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)), Λρn g̃ = 1

k2ν × curl eρn |∂BR(0) ,

Λ0 : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)), Λ0g̃ = 1

k2ν × curl e0|∂BR(0) ,

are both well-defined and bounded. Furthermore, it holds that

Λρn(ν ×Eρn) = 1
k2ν × curlEρn |∂BR(0) and Λ0(ν ×Ei) = 1

k2ν × curlEi|∂BR(0)

on ∂BR(0). Next, we define the operators Tρn and T0 by

Tρn : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)) , Tρn = 1

2I −M −NΛρn

T0 : H−1/2
div (∂BR(0))→ H

−1/2
div (∂BR(0)) , T0 = 1

2I −M −NΛ0 .

The operator T0 is the identity operator on H−1/2
div (∂BR(0)). This can be seen as follows. Let

g̃ ∈ H−1/2
div (∂BR(0)) and let e0 be the unique solution to (3.27). Then, the Stratton–Chu formula

yields that

e0(x) = − curlx
∫
∂BR(0)

Φ(x, ·)(ν × e0|∂BR(0)) ds

− 1
k2 curl2x

∫
∂BR(0)

Φ(x, ·)(ν × curl e0|∂BR(0)) ds (3.37)

for x ∈ BR(0). Applying the tangential trace γt to both sides of (3.37), using the jump conditions
(3.30), the boundary condition of (3.27) and Λ0g̃ = k−2ν × curl e0|∂BR(0) yields that

g̃ = ν × e0|∂BR(0) = 1
2ν × e0|∂BR(0) −M(ν × e0|∂BR(0))−

1
k2N(ν × curl e0|∂BR(0))

= 1
2 g̃ −M g̃ −NΛ0g̃ = T0g̃ .

Thus, (3.35) and (3.36) can be written as

Tρn(ν ×Eρn
∣∣
∂BR(0)) = ν ×Ei

∣∣
∂BR(0) and T0(ν ×Ei

∣∣
∂BR(0)) = ν ×Ei

∣∣
∂BR(0)
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on ∂BR(0). Accordingly, we have Tρn(ν ×Eρn
∣∣
∂BR(0))− T0(ν ×Ei

∣∣
∂BR(0)) = 0 and therefore

Tρn(ν ×Es
ρn |∂BR(0)) = − (Tρn − T0) (ν ×Ei|∂BR(0)) = N

(
(Λρn − Λ0) (ν ×Ei|∂BR(0))

)
(3.38)

on ∂BR(0). Changing the roles of x and y in (3.25), as well as noting that

G(x,y) = G(y,x), curlx G(x,y) = curlx G(y,x), curlx G(x,y) = − curly G(x,y)

turns the general asymptotic perturbation formula on bounded domains from (3.25) into

ν(x)× (hρn(x)− h0(x)) |∂BR(0)

+ 2
∫
∂BR(0)

(
ν(x)× curlx G(x, ·)|∂BR(0)

) (
ν × (hρn − h0) |∂BR(0)

)
ds

= 2 |Dρn |
2`

(∫
K

(εr − 1)
(
ν(x)× curlx G(x, ·)|∂BR(0)

)
Mε curlh0 ds

+ k2
∫
K

(µr − 1)
(
ν(x)×G(x, ·)|∂BR(0)

)
Mµh0 ds

)
+ o(|Dρn |) , (3.39)

for x ∈ ∂BR(0). As pointed out in the previous subsection, for g̃ = −i/ωg the functions

h0 = 1
iωµ0

curl e0 and hρn = 1
iωµρn

curl eρn (3.40)

solve (3.23) and (3.24), respectively. Using g̃ = ν × Ei
∣∣
∂BR(0) we find that e0 = Ei in BR(0)

(but not that eρn = Eρn in BR(0)). Since for this particular choice of g̃ it holds that

Λ0(g̃) = 1
k2ν × curl e0|∂BR(0) = 1

k2ν × curlEi
∣∣
∂BR(0) , Λρn(g̃) = 1

k2ν × curl eρn |∂BR(0) ,

equation (3.39) turns into(1
2I +M

)
(Λρn − Λ0)(ν ×Ei

∣∣
∂BR(0))(x)

= |Dρn |
2`

(∫
K

(µr − 1)
(
ν(x)×G(x, ·)|∂BR(0)

)
Mµ curlEi ds

+
∫
K

(εr − 1)
(
ν(x)× curlx G(x, ·)|∂BR(0)

)
MεEi ds

)
+ o(|Dρn |) (3.41)

for x ∈ ∂BR(0). The proof of [68, Thm. 2.2.] and the smoothness of the dyadic Green’s function
G(x,y) for x ∈ ∂BR(0) and y ∈ Dρn shows that the remainder o(|Dρn |) on the right-hand
side of (3.41) is such that ‖o(|Dρn |)‖H−1/2

div (∂BR(0)) /|Dρn | converges to zero uniformly for all Ei

satisfying ‖ν ×Ei|∂BR(0)‖H−1/2
div (∂BR(0)) ≤ C for some fixed C ≥ 0.

In (3.31) we use the boundary data f = ν × G(·,y)|∂BR(0) (to be understood columnwise)
for y ∈ BR(0) away from the boundary, what yields that G(·,y) is a solution to this problem.
Further, using part (c) in Proposition 3.9 and the assumption that k2 is not an eigenvalue of
the interior Maxwell problem gives that G(·,y) is the only solution to this problem and can be
written as

G(x,y) = curlx
∫
∂BR(0)

aΦ(x, ·) ds , (3.42)

where a is given by a = (1/2I +M)−1 (ν × G(·,y)|∂BR(0)). Thus, using this particular a, we
find by applying ν × curl to (3.42) and using (3.30) that

N

(1
2I +M

)−1 (
ν(x)×G(x,y)|∂BR(0)

)
= ν(x)× curlx G(x,y)|∂BR(0)
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for x ∈ ∂BR(0) and y ∈ K. Similarly, one finds that

N

(1
2I +M

)−1 (
ν(x)× curlx G(x,y)|∂BR(0)

)
= k2ν(x)×G(x,y)|∂BR(0) .

for x ∈ ∂BR(0) and y ∈ K. Accordingly, applying N(1/2I+M)−1 on both sides of (3.41) yields

N (Λρn − Λ0) (ν ×Ei|∂BR(0))(x)

= |Dρn |
2`

(∫
K

(µr − 1)
(
ν(x)× curlx G(x, ·)|∂BR(0)

)
Mµ curlEi ds

+
∫
K
k2 (εr − 1)

(
ν(x)×G(x, ·)|∂BR(0)

)
MεEi ds

)
+ o(|Dρn |) (3.43)

for x ∈ ∂BR(0). Denoting

Ẽs
ρn(x) = |Dρn |

2`

(∫
K

(µr − 1) curlx G(x, ·)Mµ curlEi ds

+
∫
K
k2 (εr − 1)G(x, ·)MεEi ds

)
(3.44)

for x ∈ R3 \BR(0) and combining (3.43) with (3.38) leads to

Tρn(ν ×Es
ρn |∂BR(0)) = ν × Ẽs

ρn |∂BR(0) + o(|Dρn |) on ∂BR(0) . (3.45)

Due to (3.40) and (3.26) there is a constant C > 0 such that

‖(Λρn − Λ0) g̃‖
H
−1/2
div (∂BR(0)) ≤ C ‖hρn − h0‖H(curl,BR(0)) ≤ C|Dρn |1/2 ‖g̃‖H−1/2

div (∂BR(0))

for any g̃ ∈ H−1/2
div (∂BR(0)). The boundedness of the operator N (see Proposition 3.9) further

yields a constant C > 0 such that

‖Tρn − T0‖ = ‖N (Λρn − Λ0)‖ ≤ C|Dρn |1/2.

Since T0 = I, there is an n0 ∈ N such that for all n ≥ n0, the operator Tρn has a bounded inverse
T−1
ρn and ‖T−1

ρn ‖ ≤ C, where C > 0 is independent of n for all n ≥ n0 (see e.g. [91, Thm. 10.1]).
The identity (3.45) gives that

Tρn

(
ν ×Es

ρn |∂BR(0) − ν × Ẽs
ρn |∂BR(0)

)
= − (Tρn − T0)

(
ν × Ẽs

ρn |∂BR(0)
)

+ o(|Dρn |) .

Further, using (3.44) we find that ‖ν × Ẽs
ρn |∂BR(0)‖H−1/2

div (∂BR(0)) ≤ C|Dρn |. Thus,

‖ν ×Es
ρn |∂BR(0) − ν × Ẽs

ρn |∂BR(0)‖H−1/2
div (∂BR(0))

≤ C‖T−1
ρn ‖|Dρn |1/2‖ν × Ẽs

ρn |∂BR(0)‖H−1/2
div (∂BR(0)) + o

(
|Dρn |

)
= o

(
|Dρn |

)
.

Accordingly, Es
ρn ∈ H(curl,R3 \BR(0)) is the radiating solution to

curl curlEs
ρn − k

2Es
ρn = 0 in R3 \BR(0) ,

ν ×Es
ρn |∂BR(0) = ν × Ẽs

ρn |∂BR(0) + o(|Dρn |) on ∂BR(0) .

As before, we use that 1/2I +M is invertible (see Proposition 3.9) and deduce that Es
ρn − Ẽs

ρn
can be written as

Es
ρn(x)− Ẽs

ρn(x) = curlx
∫
∂BR(0)

Φ(x, ·)
(1

2I +M

)−1 (
ν ×Es

ρn |∂BR(0) − ν × Ẽs
ρn |∂BR(0)

)
ds

for x ∈ R3 \ BR(0)). The right hand side is in o(|Dρn |), what shows (3.21). The asymp-
totic representation formula (3.22) follows by substituting the far field expansion of G(·,y) and
curlx G(·,y) from (2.29) into (3.21).
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Remark 3.10. The asymptotic representation formulas for the scattered field in (3.21) and for
the far field in (3.22) can be extended to variable anisotropic permittivities and permeabilities
in Dρn , as well as in R3 \BR(0) by using the more general perturbation formula from [2, Thm.
4.4] instead of [68, Thm. 2.2].

3.3 Explicit characterization of the polarization tensor of a thin
tubular scattering object

The leading order term of the asymptotic perturbation formula features two matrix-valued
polarization tensors Mε ∈ L2(K,C3×3) and Mµ ∈ L2(K,R3×3). The definition of Mε and Mµ

depend both on the material parameters and on the geometry of the scatterer and can therefore
be seen as the fundamental parts in the leading order term of the perturbation formula. Our
studies on the polarization tensors rely on the works [29, 30, 68].

To introduce the polarization tensor as in [68] (see also [29]) we consider BR(0) ⊂ R3 in-
cluding the scattering objects Dρn for 0 < ρn < r/2 as in Theorem 3.6. Further, let γρn
with γ ∈ {ε, µ} be as in (3.8). We consider the boundary value problems, which are to find
V (j), v

(j)
ρ ∈ H1(BR(0)) for j = 1, 2, 3 with

div
(
γ0∇V (j)

)
= 0 in BR(0), γ0

∂V (j)

∂ν
= γ0νj on ∂BR(0) , (3.46)

div
(
γρn∇v(j)

ρn

)
= 0 in BR(0), γρn

∂v
(j)
ρn

∂ν
= γ0νj on ∂BR(0) , (3.47)

together with the normalization conditions
∫
∂BR(0) V

(j) ds = 0 and
∫
∂BR(0) v

(j)
ρn ds = 0. The

functions νj , 1 ≤ j ≤ 3 denote the jth component of the exterior unit normal to BR(0). The
solution of (3.46) is explicitly given by V (j) = xj − |∂BR(0)|−1 ∫

∂Ω xj ds. Convergence results
from [29, Lem. 1] are cited in the following lemma.

Lemma 3.11. Let V (j) and v(j)
ρn be the unique solutions of (3.46) and (3.47), respectively. Then,

there is a constant C > 0 such that

‖V (j) − v(j)
ρn ‖H1(Ω) ≤ C|Dρn |1/2 . (3.48)

Moreover, there is a constant C > 0 such that

‖V (j) − v(j)
ρn ‖L2(Ω) ≤ C|Dρn |3/4 . (3.49)

For a sequence of Lipschitz domains (Dρn)n∈N as in Theorem 3.6, and ψ ∈ C(BR(0)) the
component Mγ

ij , 1 ≤ i, j ≤ 3 of the polarization tensor Mγ is defined by

∫
BR(0)

Mγ
ijψ dµ = lim

n→∞
1
|Dρn |

∫
Dρn

∂v
(j)
ρn

∂xi
ψ dx , (3.50)

where µ denotes the measure from (3.20). Later in this chapter we use an equivalent definition
of the polarization tensor. However, for the next two propositions, in which we study symmetry
and bounds of the polarization tensor, this definition is favorable. The following proposition
and proof follows along the lines of [29, Lem. 2]. We emphasize, that it remains valid also for
complex-valued coefficients ε1 with Re(ε1) < 0 and Im(ε1) > 0.

Proposition 3.12. The polarization tensor Mγ for γ ∈ {ε, µ} is symmetric, i.e. Mγ
ij = Mγ

ji for
all 1 ≤ i, j ≤ 3.
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Proof. The weak formulations of (3.46) and (3.47) imply that∫
BR(0)

γρn∇(v(i)
ρn − V

(i)) · ∇(v(j)
ρn ψ) dx =

∫
BR(0)

(γ0 − γρn)∇V (i) · ∇(v(j)
ρn ψ) dx (3.51)

and ∫
BR(0)

γ0∇(v(i)
ρn − V

(i)) · ∇(V (j)ψ) dx =
∫
BR(0)

(γ0 − γρn)∇v(i)
ρn · ∇(V (j)ψ) dx (3.52)

for all ψ ∈ C(BR(0)). Further, it holds that∫
BR(0)

γρn∇
(
(v(i)
ρn − V

(i))ψ
)
· ∇v(j)

ρn dx =
∫
∂BR(0)

γ0νjψ(v(i)
ρn − V

(i)) ds . (3.53)

Using the Cauchy–Schwarz inequality as well as (3.48) and (3.49) yields∫
BR

γρn∇(v(i)
ρn − V (i)) · ∇ψv(j)

ρn dx =
∫
BR

γρn∇(v(i)
ρn − V (i)) · ∇ψV (j) dx + o(|Dρn |) (3.54)

and∫
BR(0)

γρn(v(i)
ρn − V (i))∇ψ · ∇v(j)

ρn dx =
∫
BR(0)

γρn(v(i)
ρn − V (i))∇ψ · ∇V (j) dx + o(|Dρn |) .

(3.55)

In the equality∫
BR(0)

γρn∇(v(i)
ρn − V

(i)) · ∇(v(j)
ρn ψ) dx =

∫
BR(0)

γρn∇(v(i)
ρn − V

(i)) ·
(
∇v(j)

ρn ψ + v(j)
ρn∇ψ

)
dx

we apply (3.53) and (3.55) for the first summand and (3.54) for the second summand on the
right hand side to see that∫

BR(0)
γρn∇(v(i)

ρn − V
(i)) · ∇(v(j)

ρn ψ) dx = −
∫
BR(0)

γρn(v(i)
ρn − V

(i))∇ψ · ∇V (j) dx

+
∫
∂BR(0)

γ0νjψ(v(i)
ρn − V

(i)) ds+
∫
BR(0)

γ0∇(v(i)
ρn − V

(i)) · ∇ψV (j) dx

+
∫
Dρn

(γ1 − γ0)∇(v(i)
ρn − V

(i)) · ∇ψV (j) dx+ o(|Dρn |) . (3.56)

Similarly, we find that∫
BR(0)

γ0∇(v(i)
ρn − V

(i)) · ∇(V (j)ψ) dx = −
∫
BR(0)

γ0(v(i)
ρn − V

(i))∇ψ · ∇V (j) dx

+
∫
∂BR(0)

γ0νjψ(v(i)
ρn − V

(i)) ds+
∫
BR(0)

γ0∇(v(i)
ρn − V

(i)) · ∇ψV (j) dx . (3.57)

Using (3.57) in (3.56), rearranging the terms and using (3.49) again gives that∫
BR(0)

γρn∇(v(i)
ρn − V

(i)) · ∇(v(j)
ρn ψ) dx =

∫
BR(0)

γ0∇(v(i)
ρn − V

(i)) · ∇(V (j)ψ) dx

+
∫
Dρn

(γ1 − γ0)∇(v(i)
ρn − V

(i)) · ∇ψV (j) dx+ o(|Dρn |) . (3.58)
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In (3.58) we use the identities (3.51), (3.52) and (3.48) once more to obtain∫
BR(0)

(γ0 − γρn)∇V (i) · ∇(v(j)
ρn ψ) dx

=
∫
BR(0)

(γ0 − γρn)∇v(i)
ρn · ∇(V (j)ψ) dx+

∫
Dρn

(γ1 − γ0)∇(v(i)
ρn − V

(i)) · ∇ψV (j) dx+ o(|Dρn |)

=
∫
BR(0)

(γ0 − γρn)∇v(i)
ρn · ∇(V (j)ψ) dx−

∫
Dρn

(γ0 − γ1)∇v(i)
ρn · ∇ψV

(j) dx

+
∫
Dρn

(γ0 − γ1)∇V (i) · ∇ψV (j) dx+ o(|Dρn |)

=
∫
BR(0)

(γ0 − γρn)∇v(i)
ρn · ∇V

(j)ψ dx+
∫
Dρn

(γ0 − γ1)∇V (i) · ∇ψV (j) dx+ o(|Dρn |)

=
∫
BR(0)

(γ0 − γρn)∇v(i)
ρn · ∇V

(j)ψ dx+
∫
Dρn

(γ0 − γ1)∇V (i) · ∇ψv(j)
ρn dx+ o(|Dρn |) .

Another rearrangement gives that

|Dρn |−1
∫
BR(0)

(γ0 − γ1)χDρn∇V
(i) · ∇v(j)

ρn ψ dx

= |Dρn |−1
∫
BR(0)

(γ0 − γ1)χDρn∇v
(i)
ρn · ∇V

(j)ψ dx+ o(1) .

Taking the limit on both sides gives that∫
BR(0)

(γ0 − γ1)Mγ
ijψ dµ =

∫
BR(0)

(γ0 − γ1)Mγ
jiψ dµ ,

for all ψ ∈ C(BR(0)), what shows that the polarization tensor Mγ is symmetric.

In the next theorem, we establish bounds for the polarization tensors. For real γ1, we refer
to the results from [29, Ch. 4]. The proof that we provide here for ε1 with Re(ε1) < 0 and
Im(ε1) > 0 is similar to [29, Ch. 4].
Proposition 3.13. Let ξ ∈ R3. For γ1 > 0, γ ∈ {ε, µ}, it holds that

min
{

1, γ0
γ1

}
|ξ|2 ≤ ξ ·Mγξ ≤ max

{
1, γ0
γ1

}
|ξ|2

for µ−a.e. x ∈ BR(0). For ε1 with Re(ε1) < 0 and Im(ε1) > 0 there is a β ∈ (0, π/2) with
Re(eiβερn) > 0 and Re(eiβ(ε1 − ε0)) < 0 such that the inequalities(

1− |ε0 − ε1|2

Re
(
eiβ(ε1 − ε0)

)
Re
(
eiβε1

)) |ξ|2 ≥ ξ · Re
(
eiβ(ε1 − ε0)Mε

)
ξ

Re
(
eiβ(ε1 − ε0)

) ≥ |ξ|2, (3.59a)(
1− |ε0 − ε1|2

Im(ε1)2

)
|ξ|2 ≤ ξ · Im((ε1 − ε0)Mε)ξ

Im (ε1) ≤ |ξ|2 (3.59b)

hold for µ−a.e. x ∈ BR(0).
Proof. We show the assertion for complex-valued ε1 only. Let ξ ∈ R3. As in [29, Chap. 4] it can
be shown that∑

1≤i,j≤3
ξiξj

∫
BR(0)

(ε1 − ε0)|Dρn |−1χDρn∇v
(j)
ρn · ∇V

(i)ψ dx

= |Dρn |−1 ∑
1≤i,j≤3

ξiξj

∫
Dρn

(ε1 − ε0)∇V (j) · ∇V (i)ψ dx

+ |Dρn |−1 ∑
1≤i,j≤3

ξiξj

∫
BR(0)

ερn∇(v(j)
ρn − V

(j)) · ∇
(
V (i) − v(i)

ρn

)
ψ dx+ o(1) (3.60)
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for all ψ ∈ C(BR(0)). We define the functions

V (ξ) =
3∑
i=1

ξiV
(i) =

3∑
i=1

ξi

(
xi − |∂BR(0)|−1

∫
∂BR(0)

xi ds
)

and v(ξ)
ρn =

3∑
i=1

ξiv
(i)
ρn

and conclude for ρn → 0 in (3.60) that

∑
1≤i,j≤3

∫
BR(0)

(ε1 − ε0)Mijξiξjψ dµ = |Dρn |−1
∫
Dρn

(ε1 − ε0)
∣∣∣∇V (ξ)

∣∣∣2 ψ dx

− |Dρn |−1
∫
BR(0)

ερn

∣∣∣∇(v(ξ)
ρn − V

(ξ))
∣∣∣2 ψ dx+ o(1) . (3.61)

We consider (3.61) for real and positive ψ only and take the imaginary part on both sides. This
gives that∫

BR(0)
ξ · Im ((ε1 − ε0)Mε) ξψ dµ ≥ |Dρn |−1

∫
Dρn

Im (ε1)
∣∣∣∇V (ξ)

∣∣∣2 ψ dx+ o(1) ,

since Im(ερn) ≤ 0. Further, we take the limit ρn → 0 on the right hand side and see that

Im (ε1) |ξ|2 ≤ ξ · Im ((ε1 − ε0)Mε) ξ .

We write ε1 = |ε1|eiα with α ∈ (π, 3π/2). We multiply both sides of (3.61) with eiβ, where
β = 3π/2−α+ c and c > 0 is so small that Re(eiβερn) > 0 and Re(eiβ(ε1− ε0)) < 0. This gives
that∫

BR(0)
ξ · Re

(
eiβ((ε1 − ε0)Mε)

)
ξψ dµ ≤ |Dρn |−1

∫
Dρn

Re
(
eiβ(ε1 − ε0)

) ∣∣∣∇V (ξ)
∣∣∣2 ψ dx+ o(1)

and the limit ρn → 0 shows that

ξ · Re
(
eiβ(ε1 − ε0)Mε)ξ ≤ Re

(
eiβ (ε1 − ε0)

)
|ξ|2 .

We rearrange the terms in (3.60) and see that

|Dρn |−1
∫
BR(0)

ερn

∣∣∣∇(V (ξ) − v(ξ)
ρn )

∣∣∣2 ψ dx

= |Dρn |−1
∫
Dρn

(ε1 − ε0)∇(V (ξ) − v(ξ)
ρn ) · ∇V (ξ)ψ dx+ o(1) .

As before, we consider real and positive ψ. We multiply both sides with −1 and take the
imaginary part. This gives

|Dρn |−1
∫
BR(0)

Im(−ερn)
∣∣∣∇(V (ξ) − v(ξ)

ρn )
∣∣∣2 ψ dx

≤ |Dρn |−1
∣∣∣∣∣
∫
Dρn

(ε0 − ε1)∇(V (ξ) − v(ξ)
ρn ) · ∇V (ξ)ψ dx

∣∣∣∣∣+ o(1)

≤ |Dρn |−1
(∫

Dρn

|ε0 − ε1|2

(− Im(ε1))
∣∣∣∇V (ξ)

∣∣∣2 ψ dx
)1/2(∫

Dρn

(− Im(ε1))
∣∣∣∇(V (ξ) − v(ξ)

ρn )
∣∣∣2 ψ dx

)1/2

+ o(1) .

The inequality a2 < ab+ c implies that a2 < ab+ c+ (a− b)2 = a2 + c+ b2− ab < b2 + 2c. This
shows that

|Dρn |−1
∫
BR(0)

Im(ερn)
∣∣∣∇(V (ξ) − v(ξ)

ρn )
∣∣∣2 ψ dx ≥ |Dρn |−1

∫
Dρn

|ε0 − ε1|2

Im(ε1)
∣∣∣∇V (ξ)

∣∣∣2 ψ dx+ o(1) .
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We consider the imaginary part of the identity (3.61) again, estimate the second term on the
right hand side using the inequality above and apply the limit ρn → 0 to get that

ξ · Im ((ε1 − ε0)Mε) ξ ≤
(

Im (ε1)− |ε0 − ε1|2

Im(ε1)

)
|ξ|2.

For the real part, we study a similar setting. We multiply both sides of (3.61) with eiβ, where
β is chosen as before, and consider the real part. We perform the same calculations as before,
which yields that

|Dρn |−1
∫
BR(0)

Re
(
eiβερn

) ∣∣∣∇(V (ξ) − v(ξ)
ρn )

∣∣∣2 ψ dx ≤ |Dρn |−1
∫
Dρn

|ε0 − ε1|2

Re
(
eiβε1)

∣∣∣∇V (ξ)
∣∣∣2 ψ dx+ o(1) .

Using this inequality, we finally deduce from (3.61) that(
Re(eiβ(ε1 − ε0))− |ε0 − ε1|2

Re(eiβε1)

)
|ξ|2 ≤ ξ · Re

(
eiβ(ε1 − ε0)Mε)ξ .

Exactly as in the proof of Proposition 3.13 we introduce a vector ξ ∈ S2, define
V (ξ) = ∑3

i=1 ξiV
(i) and find that

div
(
γ0∇V (ξ)

)
= 0 in BR(0), γ0

∂V (ξ)

∂ν
= γ0ξ · ν on ∂BR(0) .

Moreover, defining v(ξ)
ρn = ∑3

i=1 ξiv
(i)
ρn gives that

div
(
γρn∇v(ξ)

ρn

)
= 0 in BR(0), γ0

∂v
(ξ)
ρn

∂ν
= γ0ξ · ν on ∂BR(0) .

Noting that ∇V (ξ) = ξ and using the definition from (3.50), we find that for all ψ ∈ C(BR(0))
it holds that

1
2`

∫
K
ξ ·Mγξψ ds =

∫
BR(0)

ξ ·Mγξψ dµ = lim
n→∞

1
|Dρn |

∫
Dρn

∇V (ξ) · ∇v(ξ)
ρn ψ dx . (3.62)

Remark 3.14. As stated in [30, Lem. 1], the characterization of Mγ in (3.62) still holds true when
v

(ξ)
ρn is replaced by ṽ(ξ)

ρn on the right hand side, where ṽ(ξ)
ρn ∈ H1(BR(0)) is the unique solution to

div
(
γρn∇ṽ(ξ)

ρn

)
= 0 in BR(0), ṽ(ξ)

ρn = V (ξ) on ∂BR(0) . (3.63)

Using ṽ(ξ)
ρn from (3.63), we define the corrector potential W (ξ)

ρn = ṽ
(ξ)
ρn − V (ξ) ∈ H1

0 (BR(0))
satisfying

div
(
γρn∇W (ξ)

ρn

)
= −div ((γρn − γ0) ξ) in BR(0), W (ξ)

ρn = 0 on ∂BR(0) . (3.64)

Considering the sequence (Dρn)n from Theorem 3.6 and in view of (3.62), we find that the
polarization tensor Mγ ∈ L2(K,C3×3) is uniquely defined by

1
2`

∫
K
ξ ·Mγξψ ds = 1

|Dρn |

∫
Dρn

|ξ|2ψ dx+ 1
|Dρn |

∫
Dρn

(
ξ · ∇W (ξ)

ρn

)
ψ dx+ o(1) (3.65)

for all ψ ∈ C(BR(0)) and ξ ∈ S2.
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Similarly, we assign a two-dimensional polarization tensor mγ ∈ C2×2 to the sequence of
cross-sections (D′ρn)n of the scattering objects (Dρn)n as follows. As before, we denote by r > 0
the radius, such that the local parametrization in (3.5) is well-defined. Then, we set

γ′ρn(η, ζ) =
{
γ1, (η, ζ) ∈ D′ρn ,
γ0, (η, ζ) ∈ B′r(0) \D′ρn ,

i.e. γ′ρn is the electric permittivity or the magnetic permeability distribution associated to
the cross-section D′ρn . For each ξ′ ∈ S1 we define the two-dimensional corrector potential
wρn ∈ H1

0 (B′r(0)) as the unique solution to

div′η,ζ
(
γ′ρn∇

′
η,ζw

(ξ′)
ρn

)
= −div′η,ζ((γ1 − γ0)χD′ρnξ

′) in B′r(0), w(ξ′)
ρn = 0 on ∂B′r(0) . (3.66)

The operators div′η,ζ and ∇′η,ζ denote the two-dimensional divergence and two-dimensional gra-
dient with respect to the local coordinates of the cross-section (η, ζ), as introduced in (3.14).
Recalling the measure µ′ from (3.11), the two-dimensional polarization tensormγ ∈ L2 (K,C2×2)
is now defined by

ξ′ ·mγξ′ψ(0) = 1
|D′ρn |

∫
D′ρn

|ξ′|2ψ dx+ 1
|D′ρn |

∫
D′ρn

(
ξ′ · ∇′η,ζw(ξ′)

ρn

)
ψ dx+ o(1) (3.67)

for all ψ ∈ C(B′r(0)) and any ξ′ ∈ S1.
Remark 3.15. The definition of the polarization tensor in (3.65) remains valid, if we replace the
domain BR(0) in (3.64) by the tubular neighborhood Ωr from (3.6) (see [30, Rmk. 1]). The
regularity results that are used in the proof of [30, Rem. 1] are applicable because Ωr is C2 away
from the ends of the tube and convex in a neighborhood of the ends of the tube. This will be
used in the next proofs.

The following theorem characterizes the polarization tensor Mε and Mµ for thin tubular
scattering objects as in (3.7).

Theorem 3.16. Let K ⊂ BR(0) be a simple C3 center curve, and let r > 0 be such that the local
parametrization in (3.5) is well defined. Let (ρn)n ⊂ (0, r/2) be a sequence of radii converging
to zero, and let (D′ρn)n be a sequence of Lipschitz cross-sections with D′ρn = ρnD

′ ⊂ B′ρn(0)
for all n ∈ N. Suppose that (Dρn)n ⊂ BR(0) is the corresponding sequence of thin tubular
scattering objects as in (3.7), where the cross-section twists along the center curve subject to
a parameter dependent rotation matrix Rθ ∈ C2([−L,L],R2×2). For γ ∈ {ε, µ}, denoting by
(γρn)n a parameter distribution as in (3.8), let Mγ be the polarization tensor corresponding to
the thin tubular scattering objects (Dρn)n from (3.65). The following pointwise characterization
of Mγ holds for a.e. s ∈ (−`, `):

(a) For the unit tangent vector tΓ(s) it holds that

tΓ(s) ·Mγ(pΓ(s))tΓ(s) = 1 for a.e. s ∈ (−`, `) . (3.68)

(b) Let ξ′ ∈ S1, and let ξ ∈ C1(K,S2) be given by ξ(s) =
[
rΓ
∣∣ sΓ

]
ξ′ ∈ S2 for all s ∈ (−`, `).

Then

ξ(s) ·Mγ(pΓ(s))ξ(s) = ξ′ · (Rθ(s)mγR−1
θ (s))ξ′ for a.e. s ∈ (−`, `) . (3.69)

Before we give a proof to Theorem 3.16 we outline its implications that we summarize in the
following corollary.
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Corollary 3.17. Under the same assumptions as in Theorem 3.16, the polarization tensor Mγ

can be written as

Mγ(s) = V (s)

 1 0 0
0
0 Rθ(s)mγR−1

θ (s)

V (s)> for a.e. s ∈ (−`, `) , (3.70)

where V (s) ∈ R3×3 for a.e. s ∈ (−`, `) is the matrix that has the vectors tΓ(s), rΓ(s), sΓ(s) as
its columns.

Proof. We distinguish between γ1 > 0 and γ1 ∈ C with Re(γ1) < 0 and Im(γ1) > 0. In the first
case, the polarization tensor is real-valued and symmetric. Part (a) in Theorem 3.16, together
with the bounds for the real polarization tensor in Proposition 3.13 directly imply that the tan-
gent vector tΓ(s) is an eigenvector for a.e. s ∈ (−`, `) with corresponding (minimal or maximal)
eigenvalue 1. Furthermore, there must be two more eigenvectors that lie in the orthogonal plane
to tΓ(s), the plane that is spanned by rΓ(s) and sΓ(s). Part (b) in Theorem 3.16 states, that
in this plane, the polarization tensor coincides with the polarization tensor Rθ(s)mγR−1

θ (s) of
the twisted two-dimensional cross-section. Thus, the representation of Mε in (3.70) follows by
(3.69).

For the case that γ1 ∈ C with Re(γ1) < 0 and Im(γ1) > 0 the polarization tensor is not
real-valued anymore (in particular it is not self-adjoint) and we need to apply the bounds for the
complex-valued polarization tensor from Proposition 3.13 as follows. We replace γ by ε here,
since µ is always real-valued. With β ∈ (0, π/2) as in Proposition 3.13 we find that, for ξ ∈ S2,

ξ · Re
(
eiβ(ε1 − ε0)Mε

)
ξ

Re(eiβ(ε1 − ε0)) = ξ ·
(

Re(Mε)−
Im
(
eiβ(ε1 − ε0)

)
Re(eiβ(ε1 − ε0)) Im(Mε)

)
ξ (3.71)

and

ξ · Im ((ε1 − ε0)Mε) ξ
Im(ε1) = ξ ·

(Re (ε1 − ε0)
Im(ε1) Im(Mε) + Re(Mε)

)
ξ .

Therefore, we multiply (3.59a) with −1 and add it to (3.59b). This gives that

c1|ξ|2 ≤ c2ξ · Im(Mε)ξ ≤ 0 (3.72)

with constants

c1 = |ε0 − ε1|2

Re
(
eiβ(ε1 − ε0)

)
Re
(
eiβε1

) − |ε0 − ε1|2

Im(ε1)2 , c2 =
Im
(
eiβ(ε1 − ε0)

)
Re(eiβ(ε1 − ε0)) + Re (ε1 − ε0)

Im(ε1) .

Due to our choice of β from Proposition 3.13 we find that

Re
(
eiβ(ε1 − ε0)

)
< 0 , Im

(
eiβ(ε1 − ε0)

)
< 0 , Re

(
eiβε1

)
> 0 , Re (ε1 − ε0) < 0 , Im(ε1) < 0

and therefore, c1 < 0 and c2 > 0. We consider (3.68) and compare the real and imaginary part
on both sides, what gives that

tΓ(s) · Re(Mε)tΓ(s) = 1 and tΓ(s) · Im(Mε)tΓ(s) = 0 for a.e. s ∈ (−`, `) . (3.73)

Due to (3.72) we conclude that tΓ(s) lies in the kernel of Im(Mε). From (3.59a) and (3.71), we
find that

|ξ|2 ≤ ξ ·Aξ ≤
(

1− |ε0 − ε1|2

Re
(
eiβ(ε1 − ε0)

)
Re
(
eiβε1)

)) |ξ|2 for all ξ ∈ R3 ,
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where

A = Re(Mε)−
Im
(
eiβ(ε1 − ε0)

)
Re
(
eiβ(ε1 − ε0)

) Im(Mε) is self-adjoint and tΓ(s) ·AtΓ(s) = 1

for a.e. s ∈ (−`, `). The latter property follows by (3.73). This gives that tΓ is an eigenvector of
A with eigenvalue 1. However, as we have seen before, tΓ is also an eigenvector of Im(Mε) with
eigenvalue 0 and therefore,

tΓ = AtΓ =
(

Re(Mε)−
Im
(
eiβ(ε1 − ε0)

)
Re
(
eiβ(ε1 − ε0)

) Im(Mε)
)
tΓ = Re(Mε)tΓ ,

i.e. tΓ is an eigenvector of Re(Mε) with corresponding eigenvalue 1. The representation of Mε

in (3.70) follows by (3.69).

The proof of Theorem 3.16 relies on the following proposition, which extends the charac-
terization of the polarization tensor in (3.65) from constant vectors ξ ∈ R3 to vector valued
functions ξ ∈ C1 (Ωr, S

2).
Proposition 3.18. Let ξ ∈ C1 (Ωr, S

2) and denote by W (ξ)
ρn ∈ H1

0 (Ωr) the solution to (3.64).
Then, the polarization tensor satisfies

1
2`

∫
K
ξ ·Mγξψ ds = 1

|Dρn |

∫
Dρn

|ξ|2ψ dx+ 1
|Dρn |

∫
Dρn

(
ξ · ∇W (ξ)

ρn

)
ψ dx+ o(1) (3.74)

for all ψ ∈ C(Ωr).

Proof. Denote by (e1, e2, e3) the standard basis of R3 and let ξ = ∑3
i=1 ξiei ∈ C1 (Ωr, S

2) with
ξi ∈ C1(Ωr,R) for 1 ≤ i ≤ 3. Let W (ξ)

ρn ∈ H1
0 (Ωr) be the solution to (3.64) and let W (ej)

ρn ,
1 ≤ j ≤ 3, be the solution to (3.64) with ξ = ej . Then, using (3.50), we find that

1
2`

∫
K
ξ(x) ·Mγ(x)ξ(x)ψ(x) ds(x)

=
3∑

i,j=1

1
|Dρn |

∫
Dρn

ei · ∇v
(ej)
ρn (x) (ξiξjψ) (x) dx+ o(1)

=
3∑

i,j=1

1
|Dρn |

∫
Dρn

ei · ∇ṽ
(ej)
ρn (x) (ξiξjψ) (x) dx+ o(1)

= 1
|Dρn |

3∑
i,j=1

(∫
Dρn

ei · ∇V (ej) (ξiξjψ) (x) dx+
∫
Dρn

ei · ∇W
(ej)
ρn (x) (ξiξjψ) (x) dx

)
+ o(1)

= 1
|Dρn |

∫
Dρn

|ξ(x)|2ψ(x) dx+ 1
|Dρn |

∫
Dρn

ξ(x) · ∇W (ξ)
ρn (x)ψ(x) dx

− 1
|Dρn |

∫
Dρn

ξ(x) ·

∇W (ξ)
ρn (x)−

3∑
j=1

ξj(x)∇W (ej)
ρn (x)

ψ(x) dx+ o(1)

for all ψ ∈ C(BR(0)). An application of Hölder’s inequality for the last integral gives that∣∣∣∣∣∣
∫
Dρn

ξ ·

∇W (ξ)
ρn −

3∑
j=1

ξj∇W
(ej)
ρn

ψ dx

∣∣∣∣∣∣ ≤ C|Dρn |1/2
∥∥∥∥∥∥∇W (ξ)

ρn −
3∑
j=1

ξj∇W
(ej)
ρn

∥∥∥∥∥∥
L2(Ωr)

. (3.75)
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In order to show the assertion we prove that the right hand side of (3.75) is in o(|Dρn |) as
n→∞. Using (3.64) we obtain

div

γρn∇
W (ξ)

ρn −
3∑
j=1

ξjW
(ej)
ρn


= −div ((γρn − γ0) ξ)−

3∑
j=1

div
(
γρn

(
W

(ej)
ρn ∇ξj +∇W (ej)

ρn ξj
))
. (3.76)

Applying (3.64) once more, we find for the third term on the right hand side of (3.76) that

−
3∑
j=1

div
(
γρn∇W

(ej)
ρn ξj

)
= −

3∑
j=1

γρn∇W
(ej)
ρn · ∇ξj +

3∑
j=1

div ((γρn − γ0) ej) ξj .

With ξ = ∑3
j=1 ξjej , the first term on the right hand side of (3.76) can be written as

−div ((γρn − γ0) ξ) = −
3∑
j=1

div ((γρn − γ0) ej) ξj −
3∑
j=1

(γρn − γ0) ej · ∇ξj .

Therefore, (3.76) turns into

div

γρn∇
W (ξ)

ρn −
3∑
j=1

ξjW
(ej)
ρn


= −

3∑
j=1

(γρn − γ0) ej · ∇ξj −
3∑
j=1

div
(
γρnW

(ej)
ρn ∇ξj

)
−

3∑
j=1

γρn∇W
(ej)
ρn · ∇ξj . (3.77)

Considering (3.77), we define r(1)
ρn , r

(2)
ρn , r

(3)
ρn ∈ H1

0 (Ωr) as the unique solutions to

div
(
γρn∇r(1)

ρn

)
= −

3∑
j=1

div(γρnW
(ej)
ρn ∇ξj) in Ωr , r(1)

ρn = 0 on ∂Ωr , (3.78)

div
(
γρn∇r(2)

ρn

)
= −

3∑
j=1

γρn∇W
(ej)
ρn · ∇ξj in Ωr , r(2)

ρn = 0 on ∂Ωr , (3.79)

div
(
γρn∇r(3)

ρn

)
= −

3∑
j=1

(γρn − γ0) ej · ∇ξj in Ωr , r(3)
ρn = 0 on ∂Ωr . (3.80)

The unique solutions to these Dirichlet problems imply that

W (ξ)
ρn −

3∑
j=1

ξjW
(ej)
ρn = r(1)

ρn + r(2)
ρn + r(3)

ρn (3.81)

and we find the following estimates for r(1)
ρn , r

(2)
ρn and r(3)

ρn . Using the well-posedness of (3.78) (see
e.g. [63, Cor. 8.7]), together with (B.3) yields that

‖r(1)
ρn ‖H1(Ωr) ≤

∥∥∥∥∥∥
3∑
j=1

γρnW
(ej)
ρn ∇ξj

∥∥∥∥∥∥
L2(Ωr)

≤ C max
j=1,2,3

‖∇ξj‖L∞(Ωr) ‖W
(ej)
ρn ‖L2(Ωr)

≤ C ‖ξ‖C1(Ωr) |Dρn |3/4 .



54 Chapter 3. An asymptotic formula for scattering by thin tubular structures

Similarly, using the Poincaré inequality, the weak formulation of (3.79), Hölder’s inequality, the
Sobolev embedding theorem giving that H1

0 (Ωr) ⊂ L6(Ωr) (see e.g. [63, Thm. 7.10]) and (B.4),
we find that

‖r(2)
ρn ‖

2
H1(Ωr) ≤ C

∣∣∣∣∫
Ωr
γρn∇r(2)

ρn · ∇r
(2)
ρn dx

∣∣∣∣ ≤ C

∣∣∣∣∣∣
∫

Ωr

3∑
j=1

γρn

(
∇W (ej)

ρn · ∇ξj
)
r

(2)
ρn dx

∣∣∣∣∣∣
≤ C

∥∥∥∥∥∥
3∑
j=1

γρn∇W
(ej)
ρn

∥∥∥∥∥∥
L6/5(Ωr)

max
j=1,2,3

‖∇ξj‖L∞(Ωr) ‖r
(2)
ρn ‖L6(Ωr)

≤ C|Dρn |5/6 ‖ξ‖C1(Ωr) ‖r
(2)
ρn ‖H1(Ωr) .

For r(3)
ρn we apply the Poincaré inequality, the weak formulation of (3.80), Hölder’s inequality

and the Sobolev embedding theorem to see that

‖r(3)
ρn ‖

2
H1(Ωr) ≤ C

∣∣∣∣∫
Ωr
γρn∇r(3)

ρn · ∇r
(3)
ρn dx

∣∣∣∣ =

∣∣∣∣∣∣
∫

Ωr
(γρn − γ0)

3∑
j=1

(ej · ∇ξj) r(3)
ρn dx

∣∣∣∣∣∣
≤ C ‖γρn − γ0‖L6/5(Ωr) max

j=1,2,3
‖∇ξj‖L∞(Ωr) ‖r

(3)
ρn ‖L6(Ωr)

≤ C |Dρn |
5/6 ‖ξ‖C1(Ωr) ‖r

(3)
ρn ‖H1(Ωr) .

Combining these estimates with (3.81), we find that∥∥∥∥∥∥W (ξ)
ρn −

3∑
j=1

ξjW
(ej)
ρn

∥∥∥∥∥∥
H1(Ωr)

≤ C ‖ξ‖C1(Ωr) |Dρn |
3/4

and using (B.3) again, finally gives∥∥∥∥∥∥∇W (ξ)
ρn −

3∑
j=1

ξj∇W
(ej)
ρn

∥∥∥∥∥∥
L2(Ωr)

≤

∥∥∥∥∥∥∇
W (ξ)

ρn −
3∑
j=1

ξjW
(ej)
ρn

∥∥∥∥∥∥
L2(Ωr)

+
3∑
j=1
‖W (ej)

ρn ∇ξj‖L2(Ωr)

≤ C ‖ξ‖C1(Ωr) |Dρn |
3/4 + max

j=1,2,3
‖W (ej)

ρn ‖L2(Ωr) ‖∇ξj‖L∞(Ωr)

≤ C ‖ξ‖C1(Ωr) |Dρn |
3/4 .

Inserting this estimate in (3.75) yields the assertion.

We can now prove the first part of Theorem 3.16. The idea is to use ξ = tΓ in the represen-
tation (3.74). Then, combining the representation of the gradient ∇ in local coordinates as in
(3.15) with partial integration, interior regularity estimates and the estimates from Appendix B,
we find that the second term on the right hand side of (3.74) is in o(1).

Proof of Theorem 3.16, (a). Let ξ ∈ C1(Ωr) be given by ξ(x) = tΓ(s) for any x = qΓ(s, η, ζ) ∈ Ωr.
Using equation (3.74), we find that

1
2`

∫ `

−`
tΓ(s) ·Mγ(pΓ(s))tΓ(s)ψ(pΓ(s)) ds

= 1
|Dρn |

∫
Dρn

ψ(x) dx + 1
|Dρn |

∫
Dρn

(
ξ(x) · ∇W (ξ)

ρn (x)
)
ψ(x) dx+ o(1) (3.82)
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for any ψ ∈ C1(Ωr). Working in local coordinates (3.5) and recalling the determinant of the
Jacobian in (3.13) and the ∇ operator in local coordinates from (3.15) gives that∣∣∣∣∣
∫
Dρn

(
ξ(x) · ∇W (ξ)

ρn (x)
)
ψ(x) dx

∣∣∣∣∣
=
∣∣∣∣∣
∫ `

−`

∫
D′ρn

(
∂W

(ξ)
ρn

∂s
(qΓ(s, η, ζ)) + ∂θ

∂s
(s)
[
ζ
−η

]
· ∇′η,ζW (ξ)

ρn (qΓ(s, η, ζ))
)
ψ(qΓ(s, η, ζ)) d(η, ζ) ds

∣∣∣∣∣
≤

∣∣∣∣∣∣
[∫

D′ρn

W (ξ)
ρn (qΓ(s, η, ζ))ψ(qΓ(s, η, ζ)) d(η, ζ)

]`
s=−`

∣∣∣∣∣∣
+
∣∣∣∣∣
∫ `

−`

∫
D′ρn

W (ξ)
ρn (qΓ(s, η, ζ))∂ψ

∂s
(qΓ(s, η, ζ)) d(η, ζ) ds

∣∣∣∣∣
+
∣∣∣∣∣
∫ `

−`

∫
D′ρn

∂θ

∂s
(s)
[
ζ
−η

]
· ∇′η,ζW (ξ)

ρn (qΓ(s, η, ζ))ψ(qΓ(s, η, ζ)) d(η, ζ) ds
∣∣∣∣∣ .

Interior regularity estimates (see e.g. [63, Thm. 8.24]) and (B.3) give that

‖W (ξ)
ρn ‖L∞(Dρn ) ≤ C

(
‖W (ξ)

ρn ‖L2(Ωr) + ‖ (γρn − γ0) ξ‖L4(Ωr)
)
≤ C |Dρn |

1/4 .

Using (B.2) and (B.3) now shows that∣∣∣∣∣
∫
Dρn

(
ξ(x) · ∇W (ξ)

ρn (x)
)
ψ(x) dx

∣∣∣∣∣
≤ C|D′ρn |‖W

(ξ)
ρn ‖L∞(Dρn ) + C|Dρn |1/2‖W (ξ)

ρn ‖L2(Dρn ) + Cρn|Dρn |1/2
∥∥∥∇W (ξ)

ρn

∥∥∥
L2(Ωr)

≤ C|Dρn ||Dρn |1/4 + C|Dρn |1/2|Dρn |3/4 + Cρn|Dρn |1/2|Dρn |1/2 = o(|Dρn |) .

Inserting this estimate in (3.82), using (3.19) and (3.20) and letting n→∞ yields that

1
2`

∫ `

−`
tΓ(s) ·Mγ(pΓ(s))tΓ(s)ψ(pΓ(s)) ds = 1

2`

∫ `

−`
ψ(pΓ(s)) ds .

Since ψ ∈ C1(Ωr) was arbitrary, this implies (3.68).

The idea in proving the second part of Theorem 3.16 is to define ξ ∈ C1(Ωr,R3) by

ξ(x) =
[
rΓ(s)

∣∣ sΓ(s)
]
ξ′ for any x = qΓ(s, η, ζ) ∈ Ωr , (3.83)

where ξ′ ∈ S1, and to use it in the representation (3.74). However, in contrast to the proof before,
the second term in (3.74) is no longer in o(1). Instead, it turns out that the second term in (3.74)
minus the second term in (3.67) is in o(1). Before we prove the second part of Theorem 3.16, we
first consider some auxiliary functions. The idea is to approximate the function ∇W (ξ)

ρn by the
gradient of a product of functions involving the solution w(R−1

θ
ξ′)

ρn ∈ H1
0 (B′r(0)) of (3.66) with ξ′

replaced by R−1
θ ξ

′. To do so, we introduce a modified corrector potential w̃(R−1
θ
ξ′)

ρn ∈ H1
0 (B′r(0))

as the unique solution to

div′η,ζ
(
γ′ρn (I +A)∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
= −div′η,ζ((γ1 − γ0)χD′ρnR

−1
θ ξ

′) in B′r(0) ,

w̃
(R−1

θ
ξ′)

ρn = 0 on ∂B′r(0) ,
(3.84)
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where for s ∈ (−L,L) and (η, ζ) ∈ B′r(0) we define

A(s, η, ζ) = J−2
Γ

(
∂θ

∂s

)2
(s)
[
ζ2 −ηζ
−ηζ η2

]
. (3.85)

We note that the matrix A is symmetric and positive definite, i.e. there is a c > 0 such that

c−1|ξ|2 ≤ ξ′ ·A(s, η, ζ)ξ′ ≤ c|ξ′|2 for all ξ′ ∈ R2, s ∈ (−L,L), (η, ζ) ∈ B′r(0) . (3.86)

Therefore, (3.84) has a unique solution (see also the proof of Lemma B.2). Both w(R−1
θ
ξ′)

ρn and
w̃

(R−1
θ
ξ′)

ρn depend on the parameter s ∈ (−L,L), although this is not indicated through our
notation. We define the function

W̃ (ξ)
ρn (qΓ(s, η, ζ)) = fρn(s)J−1

Γ (s, η, ζ)w̃(R−1
θ
ξ′)

ρn (η, ζ) (3.87)

for s ∈ (−L,L) and (η, ζ) ∈ B′r(0), where fρn ∈ C1([−L,L]) is a cutoff function satisfying

0 ≤ fρn ≤ 1 , fρnχ(−`,`) = χ(−`,`) ,∥∥∥∥∂fρn∂s

∥∥∥∥
L2(−L,L)

≤ C|D′ρn |
−1/8 , ‖fρn(1− χ(−`,`))‖L2(−L,L) ≤ C|D′ρn |

1/8 .
(3.88)

The existence of such a function is clarified in [19, Lem. 3.6]. Furthermore, for ρn small enough,
we can choose fρn such that fρn(−L) = fρn(L) = 0. We can now prove the second part of
Theorem 3.16

Proof of Theorem 3.16, (b). Let ξ ∈ C1(Ωr,R3) and W̃ (ξ)
ρn ∈ H1

0 (Ωr) be defined as in (3.83) and
(3.87), respectively, and let ψ ∈ C1(Ωr). Using (3.74), it holds that

1
2`

∫ `

−`
ξ(s) ·Mγ(pΓ(s))ξ(s)ψ(pΓ(s)) ds = 1

|Dρn |

∫
Dρn

ψ dx+ 1
|Dρn |

∫
Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

+ 1
|Dρn |

∫
Dρn

(
ξ ·
(
∇W (ξ)

ρn −∇W̃
(ξ)
ρn

))
ψ dx+ o(1) . (3.89)

We consider the three integrals on the right hand side of (3.89) separately. For the second
integral we use the definition of JΓ from (3.13) and the gradient in local coordinates from (3.15)
to see that∫

Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

=
∫ `

−`

∫
D′ρn

(
ξ′ ·

(
Rθ∇′η,ζ(J−1

Γ w̃
(R−1

θ
ξ′)

ρn )
)

(s, η, ζ)
)
ψ (qΓ (s, η, ζ)) JΓ(s, η, ζ) d(η, ζ) ds

=
∫ `

−`

∫
D′ρn

(
(R−1

θ (s)ξ′) · ∇′η,ζw̃
(R−1

θ
ξ′)

ρn (η, ζ)
)
ψ (qΓ (s, η, ζ)) d(η, ζ) ds

+O
(
|Dρn |1/2‖w̃

(R−1
θ
ξ′)

ρn ‖L2(D′ρn)
)
.

Applying estimate (B.3) and Lemma B.2 gives
1
|Dρn |

∫
Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx

=
∫ `

−`

∫
D′ρn

(
(R−1

θ (s)ξ′) · ∇′η,ζw
(R−1

θ
ξ′)

ρn (η, ζ)
)
ψ (qΓ (s, η, ζ)) d(η, ζ) ds

+O
(
|Dρn |−1/2

∥∥∥∥∇′η,ζw(R−1
θ
ξ′)

ρn −∇′η,ζw̃
(R−1

θ
ξ′)

ρn

∥∥∥∥
L2(D′ρn)

)
+ o(1)

=
∫ `

−`

∫
D′ρn

(
(R−1

θ (s)ξ′) · ∇′η,ζw
(R−1

θ
ξ′)

ρn (η, ζ)
)
ψ (qΓ (s, η, ζ)) d(η, ζ) ds+ o(1) .
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Accordingly, using (3.67) we obtain for the first two terms in (3.89) that

1
|Dρn |

∫
Dρn

ψ dx+ 1
|Dρn |

∫
Dρn

(
ξ · ∇W̃ (ξ)

ρn

)
ψ dx = 1

|Dρn |

∫ `

−`

(∫
D′ρn

ψ (qΓ (s, η, ζ)) d(η, ζ)

+
∫
D′ρn

(
(R−1

θ (s)ξ′) · ∇′η,ζw
(R−1

θ
ξ′)

ρn (η, ζ)
)
ψ (qΓ (s, η, ζ)) d(η, ζ)

)
ds+ o(1)

→ 1
2`

∫ `

−`
ξ′ · (Rθ(s)mγR−1

θ (s))ξ′ψ(pΓ(s)) ds (3.90)

as n → ∞. For the last integral on the right hand side of (3.89) we apply Hölder’s inequality
and conclude that∣∣∣∣∣

∫
Dρn

(
ξ ·
(
∇W (ξ)

ρn −∇W̃
(ξ)
ρn

))
ψ dx

∣∣∣∣∣ ≤ C ‖ξ‖L∞(Ωr) |Dρn |1/2
∥∥∥∇W (ξ)

ρn −∇W̃
(ξ)
ρn

∥∥∥
L2(Ωr)

.

To finish the proof, we will show that
∥∥∥∇W (ξ)

ρn −∇W̃
(ξ)
ρn

∥∥∥
L2(Ωr)

is in o(|Dρn |1/2) as n → ∞.
Then, (3.69) follows from (3.89) and (3.90). This is done in Lemma 3.19 below.

Lemma 3.19. Let ξ′ ∈ S1 and let ξ ∈ C1(Ωr,R3) be given by

ξ(x) =
[
rΓ(s)

∣∣ sΓ(s)
]
ξ′ for any x = qΓ(s, η, ζ) ∈ Ωr .

Let W (ξ)
ρn ∈ H1

0 (Ωr) be the unique solution of (3.64) and define

W̃ (ξ)
ρn (qΓ(s, η, ζ)) = fρn(s)J−1

Γ (s, η, ζ)w̃(R−1
θ
ξ′)

ρn (η, ζ)

for s ∈ (−L,L) and (η, ζ) ∈ B′r(0), where fρn ∈ C1([−L,L]) is a cut-off function satisfying

(3.88), and w̃(R−1
θ
ξ′)

ρn ∈ H1
0 (B′r(0)) solves (3.84). Then,∥∥∥∇W (ξ)

ρn −∇W̃
(ξ)
ρn

∥∥∥
L2(Ωr)

= o(|Dρn |1/2) .

For the proof of Lemma 3.19, we need the following technical result. The corresponding
proof that we present here is similar to the proof of [19, Lem. 3.4].

Lemma 3.20. Let ξ′ ∈ S1 and let w̃(R−1
θ
ξ′)

ρn ∈ H1
0 (B′r(0)) be the unique solution to (3.84). Then,

for a.e. s ∈ (−`, `) it holds that

∥∥∥∥ ∂∂s
(
∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)∥∥∥∥
L2(B′r(0))

≤ C|D′ρn |
1/2 and

∥∥∥∥∂w̃(R−1
θ
ξ′)

ρn

∂s

∥∥∥∥
L2(B′r(0))

≤ C|D′ρn |
3/4.

Proof. We apply the operator ∂
∂s to both sides of the equation (3.84). The derivative on the

right hand side exists and thus, the derivative on the left hand side must exist as well. We get
that

div′η,ζ
(
∂

∂s
(γ′ρn (I +A))∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
+ div′η,ζ

(
(γ′ρn (I +A))∇′η,ζ

∂

∂s
w̃

(R−1
θ
ξ′)

ρn

)
= −div′η,ζ

(
(γ1 − γ0)χD′ρn

∂

∂s
R−1
θ ξ

′
)
. (3.91)

This implies that

∂

∂s
w̃

(R−1
θ
ξ′)

ρn = aρn,1 + aρn,2 ,
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where aρn,1, aρn,2 ∈ H1
0 (B′r(0)) are the unique solutions to

div′η,ζ
(
γ′ρn (I +A)∇′η,ζaρn,1

)
= −div′η,ζ

(
∂

∂s
(γ′ρn (I +A))∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
in B′r(0) ,

div′η,ζ
(
γ′ρn (I +A)∇′η,ζaρn,2

)
= −div′η,ζ

(
(γ1 − γ0)χD′ρn

∂

∂s
R−1
θ ξ

′
)

in B′r(0) ,

together with homogeneous Dirichlet data on the boundary ∂B′r(0), respectively. Exactly as for
the estimates in Lemma B.1, which are found in Appendix B, it can be seen that

‖aρn,2‖L2(B′r(0)) ≤ C|D′ρn |
3/4 and

∥∥∥∇′η,ζaρn,2∥∥∥
L2(B′r(0))

≤ C|D′ρn |
1/2 .

For aρn,1 we find that

div′η,ζ
(
γ′ρn (I +A)∇′η,ζaρn,1

)
= −div′η,ζ

(
∂

∂s
(γ′ρn (I +A))∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
= −div′η,ζ

(
γ′ρn (I +A) (γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
= −div′η,ζ

(
γ′ρn (I +A)∇′η,ζ

(
(γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))w̃(R−1

θ
ξ′)

ρn

))
+ div′η,ζ

(
γ′ρn (I +A)∇′η,ζ

(
(γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))

)
w̃

(R−1
θ
ξ′)

ρn

)
in B′r(0). This shows that

aρn,1 = −(γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))w̃(R−1

θ
ξ′)

ρn + bρn , (3.92)

where bρn ∈ H1
0 (B′r(0)) denotes the unique solution to

div′η,ζ
(
γ′ρn (I +A)∇′η,ζbρn

)
= div′η,ζ

(
γ′ρn (I +A)∇′η,ζ

(
(γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))

)
w̃

(R−1
θ
ξ′)

ρn

)
(3.93)

in B′r(0) together with homogeneous Dirichlet data on the boundary ∂B′r(0). The weak formu-
lation of (3.93) with test function bρn implies that∫

B′r(0)
eiβγ′ρn

(
(I +A)∇′η,ζbρn

)
· ∇′η,ζbρn dx

=
∫
B′r(0)

eiβγ′ρn

(
(I +A)∇′η,ζ

(
(γ′ρn(I +A))−1 ∂

∂s
(γ′ρn(I +A))

))
· ∇′η,ζbρnw̃

(R−1
θ
ξ′)

ρn dx ,

with β chosen such that Re(eiβγ′ρn) ≥ c1 > 0. Without loss of generality, let c1 = min{Re(eiβγ′ρn)}.
Due to the positive definiteness of I +A (see also (3.86)) it holds that

‖∇′η,ζbρn‖2L2(B′r(0)) ≤ C

∫
B′r(0)

(
(I +A)∇′η,ζbρn

)
· ∇′η,ζbρn d(η, ζ)

≤ C

c1
Re
(∫

B′r(0)
eiβγ′ρn

(
(I +A)∇′η,ζbρn

)
· ∇′η,ζbρn d(η, ζ)

)
≤ C‖∇′η,ζbρn‖L2(B′r(0))‖w̃

(R−1
θ
ξ′)

ρn ‖L2(B′r(0)) . (3.94)
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Using the Poincaré inequality, (3.94) and (B.3) we see that

‖bρn‖L2(B′r(0)) ≤ C
∥∥∥∇′η,ζbρn∥∥∥

L2(B′r(0))
≤ C‖w̃(R−1

θ
ξ′)

ρn ‖L2(B′r(0)) ≤ C|D′ρn |
3/4 . (3.95)

Thus, by using (3.92), (3.95) and (B.2), we find that

‖aρn,1‖L2(B′r(0)) ≤ C|D′ρn |
3/4 and

∥∥∥∇′η,ζaρn,1∥∥∥
L2(B′r(0))

≤ C|D′ρn |
1/2 ,

what ends the proof.

Remark 3.21. The regularity assumption that pΓ ∈ C3((−L,L),R3) and Rθ ∈ C2((−L,L),R2×2)
imply the existence of ∂

∂s(γ′ρn (I +A)) in (3.91). This further implies the existence of ∂
∂s w̃

(R−1
θ
ξ′)

ρn .
In our analysis, this is the only time, where we need the existence of the third derivative of pΓ
and of the second derivative of θ.

We can now prove Lemma 3.19.

Proof of Lemma 3.19. The weak formulation of (3.64) implies that W (ξ)
ρn ∈ H1

0 (Ωr) fulfills∫
Ωr
γρn∇W (ξ)

ρn · ∇ψ dx = −
∫

Ωr
(γρn − γ0) ξ · ∇ψ dx (3.96)

for all ψ ∈ H1
0 (Ωr). On the other hand, for the modified potential W̃ (ξ)

ρn from (3.87), we find by
using the gradient in local coordinates from (3.15), (3.88) and the product rule that∫

Ωr
γρn∇W̃ (ξ)

ρn · ∇ψ dx

=
∫ L

−L

∫
B′r(0)

γρn

(
∇′η,ζW̃ (ξ)

ρn · ∇
′
η,ζψ +

(
tΓ · ∇W̃ (ξ)

ρn

)
(tΓ · ∇ψ)

)
JΓ d(η, ζ) ds

=
∫ L

−L

∫
B′r(0)

γρn

(
χ(−`,`)

(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ ∇
′
η,ζw̃

(R−1
θ
ξ′)

ρn

)
· ∇′η,ζψ

+ (1− χ(−`,`))fρn
(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ ∇
′
η,ζw̃

(R−1
θ
ξ′)

ρn

)
· ∇′η,ζψ

+
(
w̃

(R−1
θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)

+ fρnJ
−1
Γ

(
tΓ · ∇w̃

(R−1
θ
ξ′)

ρn

))
(tΓ · ∇ψ)

)
JΓ d(η, ζ) ds .

(3.97)

Using the gradient in local coordinates once more gives a decomposition of the last term on the
right hand side of (3.97), which reads

(
tΓ · ∇w̃

(R−1
θ
ξ′)

ρn

)
(tΓ · ∇ψ) = J−2

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∂ψ

∂s
+A∇′η,ζw̃

(R−1
θ
ξ′)

ρn · ∇′η,ζψ

+ ∂w̃
(R−1

θ
ξ′)

ρn

∂s

(
d′ · ∇′η,ζψ

)
+ ∂ψ

∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
,

where A has been defined in (3.85) and

d′(s, η, ζ) = ∂θ

∂s
(s)J−2

Γ (s, η, ζ)
[
ζ
−η

]
, s ∈ [−L,L], (η, ζ) ∈ B′r(0) .
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Thus,∫
Ωr
γρn∇W̃ (ξ)

ρn · ∇ψ dx

=
∫ `

−`

∫
B′r(0)

γρn

(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ ∇
′
η,ζw̃

(R−1
θ
ξ′)

ρn

)
· ∇′η,ζψ JΓ d(η, ζ) ds

+
∫ L

−L

∫
B′r(0)

γρn(1− χ(−`,`))fρn
(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ ∇
′
η,ζw̃

(R−1
θ
ξ′)

ρn

)
· ∇′η,ζψ JΓ

+ γρnw̃
(R−1

θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)

(tΓ · ∇ψ) JΓ

+ γρnfρn

(
J−2

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∂ψ

∂s
+A∇′η,ζw̃

(R−1
θ
ξ′)

ρn · ∇′η,ζψ

+ ∂w̃
(R−1

θ
ξ′)

ρn

∂s

(
d′ · ∇′η,ζψ

)
+ ∂ψ

∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))
d(η, ζ) ds

=
∫ `

−`

∫
B′r(0)

γρn (I +A)∇′η,ζw̃
(R−1

θ
ξ′)

ρn · ∇′η,ζψ d(η, ζ) ds

+
∫ L

−L

∫
B′r(0)

γρn

(
χ(−`,`) w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ · ∇′η,ζψ

+ (1− χ(−`,`))fρn
(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ (I +A)∇′η,ζw̃
(R−1

θ
ξ′)

ρn

)
· ∇′η,ζψ

+ w̃
(R−1

θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)

(tΓ · ∇ψ) + fρn

(
J−3

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∂ψ

∂s

+ J−1
Γ

(
∂w̃

(R−1
θ
ξ′)

ρn

∂s

(
d′ · ∇′η,ζψ

)
+ ∂ψ

∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))))
JΓ d(η, ζ) ds . (3.98)

Let v ∈ H1
0 (B′r(0)) be the unique solution to

div′η,ζ
(
γ′ρn (I +A)∇′η,ζv

)
= −div′η,ζ(JΓ(γ′ρn − γ

′
0)(R−1

θ ξ
′)) in B′r(0) . (3.99)

Then, using (3.13) we find that

div′η,ζ
(
γ′ρn (I +A)∇′η,ζv

)
= −div′η,ζ((γ′ρn − γ

′
0)(R−1

θ ξ
′))

+ div′η,ζ

([
κ1
κ2

]
·Rθ(s)

[
η
ζ

]
(γ′ρn − γ

′
0)(R−1

θ ξ
′)
)
.

Uniqueness of the solution to the Dirichlet problem implies that w̃(R−1
θ
ξ′)

ρn = v + v1, where
v1 ∈ H1

0 (B′r(0)) satisfies

div′η,ζ
(
γ′ρn (I +A)∇′η,ζv1

)
= −div′η,ζ

([
κ1
κ2

]
·Rθ(s)

[
η
ζ

]
(γ′ρn − γ

′
0)(R−1

θ ξ
′)
)
.

Using estimate (B.2) yields that∥∥∥∇′η,ζv1
∥∥∥
L2(B′r(0))

≤ Cκmaxρn|Dρn |1/2 .
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Thus, (3.99) and the representation of the gradient in local coordinates in (3.15) give that∫ `

−`

∫
B′r(0)

γρn (I +A)∇′η,ζw̃
(R−1

θ
ξ′)

ρn · ∇′η,ζψ d(η, ζ) ds

=
∫ `

−`

∫
B′r(0)

γρn (I +A)∇′η,ζv · ∇′η,ζψ d(η, ζ) ds+ o(|Dρn |1/2 ‖∇ψ‖L2(Ωr))

= −
∫ `

−`

∫
B′r(0)

JΓ (γρn − γ0) (R−1
θ ξ

′) · ∇′η,ζψ d(η, ζ) ds+ o(|Dρn |1/2 ‖∇ψ‖L2(Ωr))

= −
∫

Ωr
(γρn − γ0) ξ · ∇ψ dx+ o

(
|Dρn |1/2 ‖∇ψ‖L2(Ωr)

)
. (3.100)

Combining (3.96) with (3.100) and applying (3.98) yields that for all ψ ∈ H1
0 (Ωr),∫

Ωr
γρn

(
∇W (ξ)

ρn −∇W̃
(ξ)
ρn

)
· ∇ψ dx = −

∫ L

−L

∫
B′r(0)

γρn

(
χ(−`,`) w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ · ∇′η,ζψ

+ (1− χ(−`,`))fρn
(
w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ + J−1

Γ (I +A)∇′η,ζw̃
(R−1

θ
ξ′)

ρn

)
· ∇′η,ζψ

+ w̃
(R−1

θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)

(tΓ · ∇ψ) + fρn

(
J−3

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∂ψ

∂s

+ J−1
Γ

(
∂w̃

(R−1
θ
ξ′)

ρn

∂s

(
d′ · ∇′η,ζψ

)
+ ∂ψ

∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))))
JΓ d(η, ζ) ds

+ o
(
|Dρn |1/2 ‖∇ψ‖L2(Ωr)

)
. (3.101)

As pointed out in the definition of fρn in (3.88), we assume that |Dρn | is so small that fρn(−L) =
fρn(L) = 0. Accordingly, we find that

−
∫ L

−L

∫
B′r(0)

γρnfρn
∂ψ

∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)
d(η, ζ) ds

=
∫ L

−L

∫
B′r(0)

ψ
∂

∂s

(
γρnfρn

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))
d(η, ζ) ds .

Combining this with (3.101) and choosing ψ = W
(ξ)
ρn − W̃

(ξ)
ρn implies that∥∥∥∇W (ξ)

ρn −∇W̃
(ξ)
ρn

∥∥∥2

L2(Ωr)

≤ C

(∥∥∥∥χ(−`,`)w̃
(R−1

θ
ξ′)

ρn ∇′η,ζJ−1
Γ

∥∥∥∥
L2(Ωr)

+
∥∥∥∥(1− χ(−`,`))fρnw̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ

∥∥∥∥
L2(Ωr)

+
∥∥∥∥(1− χ(−`,`))fρnJ−1

Γ (I +A)∇′η,ζw̃
(R−1

θ
ξ′)

ρn

∥∥∥∥
L2(Ωr)

+
∥∥∥∥w̃(R−1

θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)∥∥∥∥

L2(Ωr)
+
∥∥∥∥fρnJ−3

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∥∥∥∥
L2(Ωr)

+
∥∥∥∥fρnJ−1

Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∥∥∥∥
L2(Ωr)

)∥∥∥∇W (ξ)
ρn −∇W̃

(ξ)
ρn

∥∥∥
L2(Ωr)

+ C

∥∥∥∥ ∂∂s
(
γρnfρn

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))∥∥∥∥
L2(Ωr)

‖W (ξ)
ρn − W̃

(ξ)
ρn ‖L2(Ωr)

+ o

(
|Dρn |1/2

∥∥∥∇W (ξ)
ρn −∇W̃

(ξ)
ρn

∥∥∥
L2(Ωr)

)
. (3.102)
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From (3.64), (3.87), (3.84) and (B.3) we get that

‖W (ξ)
ρn − W̃

(ξ)
ρn ‖L2(Ωr) ≤ C|Dρn |3/4 .

Next, we estimate the remaining terms on the right hand side of (3.102) separately. For the first
term we conclude by using (B.3) that∥∥∥∥χ(−`,`)w̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ

∥∥∥∥2

L2(Ωr)
≤ C‖w̃(R−1

θ
ξ′)

ρn ‖2L2(Ωr) ≤ C|Dρn |3/2 .

Using (3.88) and (B.3), the second term can be estimated similarly, i.e.∥∥∥∥(1− χ(−`,`)
)
fρnw̃

(R−1
θ
ξ′)

ρn ∇′η,ζJ−1
Γ

∥∥∥∥2

L2(Ωr)
≤ C‖w̃(R−1

θ
ξ′)

ρn ‖2L2(Ωr) ≤ C|Dρn |3/2 .

For the third term we use again (3.88) and (B.2) to see that∥∥∥∥(1− χ(−`,`))fρnJ−1
Γ (I +A)∇′η,ζw̃

(R−1
θ
ξ′)

ρn

∥∥∥∥2

L2(Ωr)

≤ C‖(1− χ(−`,`))fρn‖2L2(−L,L)

∥∥∥∥∇′η,ζw̃(R−1
θ
ξ′)

ρn

∥∥∥∥2

L2(Ωr)
≤ C|Dρn |1/4|Dρn | ≤ C|Dρn |5/4 .

For the fourth term we use the product rule, the representation of the gradient in local coordi-
nates (3.15), (3.88) and (B.3) to get that∥∥∥∥w̃(R−1

θ
ξ′)

ρn

(
tΓ · ∇(fρnJ−1

Γ )
)∥∥∥∥2

L2(Ωr)

=
∫ L

−L

∫
B′r(0)

|w̃(R−1
θ
ξ′)

ρn |2
∣∣∣∣J−2

Γ
∂fρn
∂s

+ fρn

(
tΓ · ∇J−1

Γ

)∣∣∣∣2 JΓ d(η, ζ) ds

≤ C

∫ L

−L
‖w̃(R−1

θ
ξ′)

ρn ‖2L2(B′r(0))

(
C +

∣∣∣∣∂fρn∂s

∣∣∣∣)2
ds ≤ C|D′ρn |

3/2|D′ρn |
−1/4 ≤ C|Dρn |5/4 .

Using Lemma 3.20 we obtain for the fifth and sixth term on the right hand side of (3.102) that∥∥∥∥∥∥fρnJ−3
Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∥∥∥∥∥∥
2

L2(Ωr)

≤ C|Dρn |3/2 and

∥∥∥∥∥∥fρnJ−1
Γ
∂w̃

(R−1
θ
ξ′)

ρn

∂s

∥∥∥∥∥∥
2

L2(Ωr)

≤ C|Dρn |3/2 .

Finally, we combine (3.88) with (B.2) and use Lemma 3.20 to get that∥∥∥∥ ∂∂s
(
γρnfρn

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))∥∥∥∥2

L2(Ωr)

≤ C

(∫ L

−L

∫
B′r(0)

∣∣∣∣ ∂∂s (γρnfρn)
∣∣∣∣2 ∣∣∣∣d′ · ∇′η,ζw̃(R−1

θ
ξ′)

ρn

∣∣∣∣2 JΓ d(η, ζ) ds

+
∫ L

−L

∫
B′r(0)

|γρnfρn |
2
∣∣∣∣ ∂∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)∣∣∣∣2 JΓ d(η, ζ) ds
)

≤ C

(∥∥∥∥∂fρn∂s

∥∥∥∥2

L2(−L,L)

∥∥∥∥∇′η,ζw̃(R−1
θ
ξ′)

ρn

∥∥∥∥2

L2(B′r(0)
+
∥∥∥∥ ∂∂s

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

)∥∥∥∥2

L2(Ωr)

)
≤ C(|D′ρn |

−1/4|D′ρn |+ |D
′
ρn |) ≤ C|D′ρn |

3/4 .

Taking the square root on both sides gives that∥∥∥∥ ∂∂s
(
γρnfρn

(
d′ · ∇′η,ζw̃

(R−1
θ
ξ′)

ρn

))∥∥∥∥
L2(Ωr)

≤ C|Dρn |3/8 .

We estimated every single term on the right hand side of (3.102) separately. This finishes the
proof.
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3.4 The cross-section’s polarization tensor and plasmonic reso-
nances

Theorem 3.16 and the subsequent Corollary 3.17 induce a characterization of the three-dimensional
polarization tensor Mγ for γ ∈ {ε, µ}. If there is knowledge of the two-dimensional polarization
tensormγ corresponding to the two-dimensional cross-section of the scattering objects (D′ρn)n∈N,
then the polarization tensor Mγ has an explicit representation in terms of

Mγ(s) = V (s)

 1 0 0
0
0 Rθ(s)mγR−1

θ (s)

V (s)> for a.e. s ∈ (−`, `) .

Here, as before, V (s) for a.e. s ∈ (−`, `) is the matrix having the pairwise orthogonal vectors
tΓ(s), rΓ(s), sΓ(s) as its columns. In order to study mγ ∈ C2×2, we first consider an equiv-
alent definition to the one provided in (3.67), which is analogous to the definition of Mγ in
(3.50). Using the measure µ′ from (3.11) (which is simply the Dirac measure in 0), the sequence
D′ρn = ρnD

′, where D′ is a Lipschitz domain, satisfies

mγ
ijψ(0) =

∫
B′r(0)

mγ
ijψ dµ′ = lim

n→∞
1
|D′ρn |

∫
D′ρn

∂z
(j)
ρn

∂xi
ψ dx (3.103)

for all ψ ∈ C(B′r (0)). The function z(j)
ρn ∈ H1(B′r(0)) is the unique solution to

div
(
γ′ρn∇z

(j)
ρn

)
= 0 in B′r(0), γ′ρn

∂z
(j)
ρn

∂ν
= γ0νj on ∂B′r(0) (3.104)

together with the normalization condition
∫
∂B′r(0) z

(j)
ρn = 0. As in (3.46) and (3.47), the functions

νj , j = 1, 2 denote the jth component of the exterior unit normal to B′r(0). In addition to
(3.104) we also study the unperturbed problem, which is to find z(j) ∈ H1(B′r(0)) such that

∆z(j) = 0 in B′r(0), γ0
∂z(j)

∂ν
= γ0νj on ∂B′r(0) (3.105)

together with the normalization condition
∫
∂B′r(0) z

(j) ds = 0. The solution of (3.105) is explicitly
given by z(j) = xj − |∂B′r(0)|−1 ∫

∂B′r(0) xj ds.
Remark 3.22. The definitions of m from (3.103) and (3.67) are equivalent. In fact, defining
ξ′ = (ξ1, ξ2)> ∈ S1, z(ξ′)

ρn = ξ1z
(1)
ρn +ξ2z

(2)
ρn and z(ξ′) = ξ1z

(1) +ξ2z
(2) implies by using (3.103) that∫

B′r(0)
(mξ′) · ξ′ψ dµ′ = lim

n→∞
1
|D′ρn |

∫
D′ρn

∇z(ξ′)
ρn · ξ

′ψ dx . (3.106)

By [30, Lem. 1], the characterization in (3.106) still holds true, when the function z(ξ′)
ρn on the

right hand side of (3.106) is replaced with z̃(ξ′)
ρn ∈ H1(B′r(0)), the unique solution to

div
(
γ′ρn∇z̃

(ξ′)
ρn

)
= 0 in B′r(0), z̃(ξ′)

ρn = z(ξ′) on ∂B′r(0) .

Then, the function w(ξ′)
ρn ∈ H1

0 (B′r(0)) from (3.66) is given by w(ξ′)
ρn = z̃

(ξ′)
ρn − z(ξ′).

The following observations are simplified versions of the results in [31], since here, the interior
material parameter γ1 is constant. By considering the variational formulations of (3.104) and
(3.105) it can be seen that∫

B′r(0)
γ′ρn∇(z(j)

ρn − z
(j)) · ∇ψ dx =

∫
D′ρn

(γ0 − γ1)∇z(j) · ∇ψ dx for all ψ ∈ H1(B′r(0)) .

(3.107)
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We perform the variable transformation

φ : B′r/ρn(0)→ B′r(0), x 7→ y = ρnx .

In order to relate the gradients to the new variable y we find that for x = ρny with y ∈ B′r/ρn(0),
it holds that

∇xV (x) = ∇xV (ρny) = 1
ρn
∇yV (ρny) .

For (3.107) we therefore find that∫
B′
r/ρn

(0)
γ′ρn (ρny)∇y(z(j)

ρn (ρny)− z(j)(ρny)) · ∇yψ (ρny) dy

= (γ0 − γ1) ρn
∫
∂D′

νj(y)ψ(ρny) dy for all ψ ∈ H1(B′r(0)) . (3.108)

We define w̃j ∈ H1
loc(R2) as the weak solution to

∆w̃j = 0 in R2 \ ∂D′ ,

w̃j
∣∣+ − w̃j∣∣− = 0 on ∂D′ ,

γ0
∂w̃j
∂ν

∣∣∣+ − γ1
∂w̃j
∂ν

∣∣∣− = −(γ0 − γ1)νj on ∂D′ ,

w̃j(x) → 0 as |x| → ∞ .

(3.109)

Indeed, w̃j is uniquely determined. This is seen by using a single layer ansatz for the function
w̃j , using jump relations to derive an integral equation and by studying the spectrum of the
corresponding boundary integral operator (details on this follow later in this section). Moreover,
using the weak formulation of (3.109) it holds that∫

B′
r/ρn

(0)
γ′ρn (ρny)∇yw̃j (y) · ∇yψ (ρny) dy

=
∫
D′
γ1∇yw̃j (y) · ∇yψ (ρny) dy +

∫
B′
r/ρn

(0)\D′
γ0∇yw̃j (y) · ∇yψ (ρny) dy

= (γ0 − γ1)
∫
∂D′

νjψ (ρny) ds(y) + γ0

∫
∂B′

r/ρn
(0)

∂w̃j
∂νy

∣∣∣− (y)ψ (ρny) ds(y) . (3.110)

for all ψ ∈ H1(B′r (0)). We define

wj(y) = z(j)
ρn (ρny)− z(j)(ρny)− ρnw̃j(y)− cj , (3.111)

where cj is chosen in such a way that
∫
∂B′

r/ρn
(0)wj ds = 0. A combination of (3.108) and (3.110)

yields that for ψ = wj we have that∫
B′
r/ρn

(0)
γ′ρn (ρny) |∇ywj(y)|2 dy = −ρnγ0

∫
∂B′

r/ρn
(0)

∂w̃j
∂νy

(y)wj(y) ds(y) .

This gives that

‖∇wj‖2L2(B′
r/ρn

(0)) ≤ Cρn

∣∣∣∣∣
∫
∂B′

r/ρn
(0)

∂w̃j
∂νy

(y)wj(y) ds(y)
∣∣∣∣∣ . (3.112)

We rescale the integral on the right hand side to get that∫
∂B′

r/ρn
(0)

∂w̃j
∂νy

(y)wj(y) ds(y) = 1
ρn

∫
∂B′r(0)

∂w̃j
∂νy

(
x

ρn

)
wj

(
x

ρn

)
ds(x) .
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We apply [55, Prop. 2.75] and find that∣∣∣∣∂w̃j∂ν
(x)
∣∣∣∣ = O(|x|−2) as |x| → ∞ , which implies

∥∥∥∥∂w̃j∂ν

( ·
ρn

)∥∥∥∥
L∞(∂B′r(0))

≤ Cρn
2 ,

as n → ∞. Further, we use the boundedness of the trace γ : H1(B′r(0)) → H1/2(∂B′r(0)),
γu = u|∂B′r(0) (see e.g. [97, Thm. 3.38]) and the Poincaré inequality and find that∣∣∣∣∣

∫
∂B′

r/ρn
(0)

∂w̃j
∂νy

(y)wj(y) ds(y)
∣∣∣∣∣ ≤ 1

ρn

∥∥∥∥∂w̃j∂ν

( ·
ρn

)∥∥∥∥
L∞(∂B′r(0))

∥∥∥∥wj ( ·ρn
)∥∥∥∥

H1/2(∂B′r(0))

≤ Cρn ‖∇wj‖L2(B′
r/ρn

(0)) .

Combining this inequality with (3.112) yields that

‖∇wj‖L2(B′
r/ρn

(0)) ≤ Cρn
2 . (3.113)

Thus, returning to the definition of mγ
ij in (3.103), we find with another rescaling that

1
|D′ρn |

∫
D′ρn

∂z
(j)
ρn

∂xi
ψ dx = 1

|D′|

∫
D′

1
ρn

∂z
(j)
ρn

∂yi
(ρny)ψ(ρny) dy

= 1
|D′|

∫
D′

1
ρn

(
∂z

(j)
ρn

∂yi
(ρny)− ρnδij − ρn

∂w̃j
∂yi

)
ψ (ρny) dy

+ 1
|D′|

∫
D′

(
δij + ∂w̃j

∂yi

)
ψ (ρny) dy .

(3.114)

for all ψ ∈ C(B′r (0)). For the first integral on the right hand side of (3.114) we use (3.111) and
(3.113) to find that∣∣∣∣∣ 1

|D′|

∫
D′

1
ρn

(
∂z

(j)
ρn

∂yi
(ρny)− ρnδij − ρn

∂w̃j
∂yi

)
ψ (ρny) dy

∣∣∣∣∣ ≤ Cρn .

Therefore, we deduce for the second term by using (3.103) that

1
|D′|

∫
D′

(
δij + ∂w̃j

∂yi

)
dyψ(0) =

∫
B′r(0)

mγ
ijψ dµ′ for all ψ ∈ H1(B′r (0)) .

Consequently,

mγ
ij = δij + 1

|D′|

∫
D′

∂w̃j
∂yi

dy = δij + 1
|D′|

∫
∂D′

yi
∂w̃j
∂ν

∣∣∣−
∂D′

ds(y) .

We summarize these observations in the following lemma.

Lemma 3.23. Let the two-dimensional cross-section D′ρn be given by D′ρn = ρnD
′, where D′ ⊂

R2 is a simply connected Lipschitz domain and (ρn)n ⊂ (0,∞) is a sequence converging to zero.
Further, let w̃j ∈ H1

loc(R2) be the unique solution to (3.109). Then, for the two-dimensional
polarization tensor mγ = (mγ

ij) corresponding to (D′ρn)n∈N it holds that

mγ
ij = δij + 1

|D′|

∫
D′

∂w̃j
∂yi

dy = δij + 1
|D′|

∫
∂D′

yi
∂w̃j
∂ν

∣∣∣−
∂D′

ds(y) .
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Explicit formulas for mγ are e.g. available when D′ is an ellipse. If the semi axes of the
ellipse are aligned with the coordinate axes, the semi axis in x1-direction has length a and the
semi axis in x2-direction has length b, then the polarization tensor mγ has the form (see e.g.
[10, Prop. 4.6], [25])

mγ =
[

a+b
a+γrb 0

0 a+b
b+γra

]
. (3.115)

In order to approximate a solution to (3.109) for more general cross-sections D′ρn = ρnD
′ one

uses a single layer ansatz. One aims to find a density aj ∈ H1/2(∂D′) such that

wj(x) =
∫
∂D′

aj(y)Φ̃(x,y) ds(y) ,

where Φ̃ is the fundamental solution of the two-dimensional Laplace equation given by

Φ̃(x,y) = 1
2π log

( 1
|x− y|

)
for x 6= y . (3.116)

Applying the jump relations for the normal derivative to (3.116) (see e.g. [97, Thm. 6.11]) and
considering the boundary condition for the normal derivative in (3.109) gives that the density
aj must satisfy (1

2

(1 + γr
1− γr

)
I −K∗∂D′

)
aj = νj on ∂D′ . (3.117)

Here, K∗∂D′ : H−1/2(∂D′)→ H−1/2(∂D′) is the adjoint double layer potential, also known as the
Neumann–Poincaré operator, defined by

(K∗∂D′aj) (x) =
∫
∂D′

∂Φ̃(x,y)
∂ν(x) aj(y) ds(y) , x ∈ ∂D′ .

In what follows, we focus on the case, in which γr = εr = ε1/ε0 with Re(εr) < 0 and Im(εr) > 0.
As described in Chapter 2, electric permittivities in this range are observed for metallic scattering
objects, in particular for frequencies in the optical regime. Electric permittivities with Re(εr) < 0
and Im(εr) > 0 are also predicted by the Drude model that we studied in Remark 2.7. We put the
concept of localized surface plasmons in a more general context and motivate this phenomenon
first for general three-dimensional metallic nanoparticles. Especially, we recall results from the
literature, where balls and ellipsoids are studied. Then, we relate this to two-dimensional cross-
sections of a thin metallic nanowire and thus, obtain conditions for the appearance of a plasmon
resonance for a thin metallic nanowire Dρ as in (3.7).

Consider an electromagnetic field (e.g. an incident plane wave) illuminating a three-dimensional
sub-wavelength metallic nanoparticle. In more detail, this is an object of characteristic size ρ > 0
(e.g. the radius of a ball), for which ρ� λ, where λ denotes the wavelength of the exterior elec-
tromagnetic field. As described in [85], the metal’s free conduction electrons perform a collective
oscillation as the nanoparticle is illuminated by an electric field (see also [85, Fig. 1] for a visu-
alization). On the one hand, the metal’s plasma, i.e. the gas of charged electrons, is displaced
due to the external field, which drives the negatively charged electrons away from the positively
charged nuclei. On the other hand, by Coulomb’s law, oppositely charged particles, i.e., the
negatively charged electrons and the positively charged nuclei, attract each other. This means
that, on the one side, electrons and nuclei are driven apart, but on the other hand, a restoring
force acts to bring them back together. This results in a collective surface charge-density oscil-
lation, what is called a localized surface plasmon (see e.g. [1, p. 152], [102, p. 369], [96, p. 65]).
As stated in e.g. [1, pp. 152], the optical response of a plasmon is characterized via p = αE0,
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where p is the electric dipole moment, E0 is the incident field and α is the polarizability of
the nanoparticle. The occurrence of a localized surface plasmon resonance is related to roots
in the denominator of the polarizability α, with respect to the frequency-dependent material
parameter εr(ω) (see [1, p. 153]). In many textbooks and articles, localized plasmon resonances
are studied first for the case of a sub-wavelength metallic sphere with radius a > 0 (see e.g. [1,
p. 154], [23, Ch. 5], [81, Sec. 9.2], [85], [96, Sec. 5.1], [102, pp. 398]). The polarizability can be
written in this case as (see [1, Eq. (5.3)])

α = 4πε0a
3 εr − 1
εr + 2 . (3.118)

In [96, p. 68] it is pointed out that the polarizability for a sphere in (3.118) possesses the same
representation as the Clausius-Mossoti relation found in e.g. [82, Eq. 4.70]. The polarization α
from (3.118) has a pole for εr = −2. The frequency, for which this condition is met is sometimes
called the Fröhlich frequency (see e.g. [23, p. 327], [96, p. 68]). We emphasize that this electric
permittivity is not attained by the experimental data from [83] or by the Drude model from
Remark 2.7, since Im(εr) > 0. However, one expects a great increase of |α| if Re(εr) = −2 and
Im(εr) is small. Using the experimental data from [83], we find that the condition Re(εr) = −2
is met at approximately 846.51THz (εr = −2 + 0.28) for silver and 620.32THz (εr = −2 + 4.31i)
for gold (see also Figure 2.1). For the Drude model, the condition Re(εr) = −2 can be solved
for the angular frequency explicitly: Using (2.37), we find that Re(εr) = −2 if and only if
ω = (ω2

p/3 − Γ2)1/2, where ωp is the plasma frequency. In the literature, one often suppresses
the damping parameter Γ in this equation (since it is relatively small) and obtains the resonance
frequency at ω = ωp/

√
3 (see e.g. [1, p. 155]). Using the same parameters for ωp for silver and

gold as those in Remark 2.7 suggests that for silver, the plasmon resonance occurs approximately
at 1262THz (εr,Drude = −2+0.01i) and for gold at 1241THz (εr,Drude = −2+0.04i). This simple
study reminds us again that the Drude model does not provide a good model for the relative
electric permittivity at optical or even higher frequencies. In [85] the authors consider a spheroid
with ratio of major and minor axis r ranging from r = 1 (sphere) to r = 10 (oblate spheroid) and
observe a red-shift of the plasmon resonance as r increases. In [23, Ch. 12.2.1] the polarizability
for an ellipsoid is studied. It is shown that if an incident wave has a direction of propagation
that coincides with one of the principal axis of the ellipsoid, then, the polarizability is given by

α = vε0
εr − 1

1 + L(εr − 1) , (3.119)

where v denotes the volume of the ellipsoid and the parameter L is a scalar that depends on the
shape of the ellipsoid and lies between 0 and 1. Thus, the condition for a vanishing denominator
is εr = 1 − 1/L. For a sphere, one obtains L = 1/3 (see [23, p. 146]) and thus, a plasmon
resonance occurs at the Fröhlich frequency.

Polarization tensors for ellipsoids, similarly defined as polarization tensors for thin tubular
scattering objects in (3.50), are studied in [10, Sec. 4.2]. Up to a constant, these formulas
coincide with those in (3.118) and (3.119).

A direct implication of a localized plasmon resonance is the strong enhancement of the
electromagnetic field near the boundary of the scattering object. Applications include e.g.
surface enhanced Raman scattering and optical sensing (see e.g. [96, Ch. 9, 10]).

We return to the two-dimensional polarization tensor corresponding to an ellipse in (3.115).
In analogy to the previously studied conditions, we find that the resonance condition in (3.115)
is met if and only if the real part of a denominator vanishes. Thus, the frequency ω is said to
be a plasmonic resonance frequency for an ellipse with semi axis lengths a and b if either

−a
b

= Re(εr(ω)) or − b

a
= Re(εr(ω)) . (3.120)
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For a circle, i.e. for a = b we therefore see that the resonance condition is fulfilled if and only
if Re(εr) = −1. This resonance condition is found e.g. in [102, Sec. 12.4.1] in the study of
transverse plasmon resonances of a thin wire. For a general two-dimensional simply connected
Lipschitz domain D′ the two-dimensional polarization tensor mε cannot be computed explicitly
and poles in mε cannot be studied as we did before. The authors in [6, 43] consider the integral
equation (3.117) and define ω to be a (dielectric) plasmonic resonance frequency, if

Re
( 1 + εr(ω)

2(1− εr(ω))

)
lies in the spectrum of K∗∂D′ . (3.121)

Based on this definition, the optimal design of two-dimensional shapes that resonate at particular
frequencies has been considered in [5]. Furthermore, an inverse problem that uses the occurrence
of plasmon resonances is studied in [43]. In [86, Sec. 8.3] it is shown that the spectrum of K∗∂D′
corresponding to an ellipse D′ with eccentricity q = (a− b)/(a+ b) is given by

σ(K∗∂D′) =
{
±1

2q
k
∣∣∣ k ≥ 1

}
∪
{

0, 1
2

}
.

Since

1 + εr(ω)
2(1− εr(ω)) = 1− Re(εr)2 − Im(εr)2

2((1− Re(εr))2 + Im(εr)2) + 2 Im(εr)
(1− Re(εr))2 + Im(εr)2 i

and the spectrum of K∗∂D′ is real-valued, the integral equation (3.117) becomes singular if and
only if ω is a dielectric plasmonic resonance and Im(εr) = 0. In this case, it holds that

Re
( 1 + εr(ω)

2(1− εr(ω))

)
= ± a− b

2(a+ b) if and only if Re(εr(ω)) ∈
{
−a
b
,− b

a

}
,

giving the condition for plasmonic resonances that we observed by studying the poles of mε from
(3.115) in (3.120).

Based on these observations, and by using Corollary 3.17 we can apply the definition of
(dielectric) plasmonic resonances to thin tubular scattering objects Dρ with a cross-section
D′ρ = ρD′, where D′ is a simply connected Lipschitz domain.

Definition 3.24. Let Dρ be a thin tubular scattering object as in (3.7) with cross-section
D′ρ = ρD′, where D′ is a simply connected and bounded Lipschitz domain. A frequency ω (or
equivalently f) is defined to be a dielectric plasmonic resonance frequency of Dρ if and only if
the condition (3.121) for the cross-section is fulfilled. If D′ is an ellipse with semi axes lengths
a and b, then the frequency ω (or equivalently f) is a plasmonic resonance frequency if (3.120)
is fulfilled.

Similar as in [85], where the tuning of the major and minor axis of a spheroids leads to
the appearance of plasmon resonances at different frequencies, the tuning of the elliptical cross-
section of a thin nanowire Dρ can be used to shift the appearance of plasmonic resonances across
the optical band. We apply this tuning in the shape optimizations for highly electromagnetically
chiral structures in Chapter 5.

3.5 Numerical experiments on the accuracy of the leading order
term of the asymptotic representation formula

The asymptotic representation formula from Theorem 3.6 together with the characterization of
the polarization tensor from Theorem 3.16 provide an efficient way to approximate the electric
scattered field away from the scattering object or the electric far field pattern corresponding to
a thin tubular scattering object. The approximation relies in evaluating the leading order term



3.5 Numerical experiments on the accuracy of the leading order term 69

of the asymptotic perturbation formula in (3.21) or (3.22) and to neglect terms of higher order
in o(|Dρ|). Consequently, the quality of the approximation is determined by the norm of the
terms of higher order. As we do not provide any bounds on this norm, we perform numerical
experiments for several scattering objects made from dielectric and metallic material.

In the following, we denote the leading order term of the electric far field pattern expansion
from (3.22) by Ẽ∞ρ , i.e.

Ẽ∞ρ (x̂) = |Dρn |
2`

(∫
K

(µr − 1) ike−ikx̂·y (x̂× I3)Mµ(y) curlEi(y) ds(y)

+ k2
∫
K

(εr − 1) e−ikx̂·y (x̂× (I3 × x̂))Mε(y)Ei(y) ds(y)
)
, x̂ ∈ S2. (3.122)

Moreover, we consider far field data E∞ρ accurately computed by using the boundary element
library Bempp (see [115]). In order to approximate a solution with Bempp, one transforms
the transmission problem for the Maxwell’s equation from (2.34) into an integral equation on
the boundary of the scattering object. The corresponding integral equation is based on the
multitrace operator. An explanation on this is found in Appendix C. We stress that although
in our simulations E∞ρ takes the role of a reference solution, and is also denoted as such, it is
still a numerical approximation, where errors arise e.g. from the boundary element mesh size,
H-matrix compression or the use of an iterative solver to approximate the solution of the linear
system of equations. In our Bempp simulations, we apply the GMRES method to approximate
the linear system of equations that results from the discretization of the Calderón operator (see
Appendix C). The tolerance is set to 10−5 and we do not use any restarts of the GMRES method.

In order to quantify the error of the leading order term in (3.122) to the reference solution
E∞ρ , we consider the relative difference of the far field, measured in the L2 norm, i.e.

RelDiff =
‖Ẽ∞ρ −E∞ρ ‖L2

t (S2)

‖E∞ρ ‖L2
t (S2)

. (3.123)

To approximate the norms we fix N ∈ N and consider 2N(N − 1) points on S2 given by

yjl = [sin (θj) cos (ϕl) , sin (θj) sin (ϕl) , cos (θj)]> , j = 1, . . . , N − 1, l = 1, . . . , 2N,

where θj = jπ/N and ϕl = (l− 1)π/N . Using the composite trapezoidal rule in both directions
the quantity RelDiff is approximated via

RelDiff ≈

∑2N
l=1
∑N−1
j=1 sin (θj) |(Ẽ∞ρ −E∞ρ )(yjl)|2∑2N

l=1
∑N−1
j=1 sin (θj) |E∞ρ (yjl) |2

1/2

.

In this section the first numerical examples of this thesis are simulated. For simulating scattering
from thin metallic nanowires, we can always use a scaling in such a way that we can perform the
simulation with the computational wave number kc, which is often chosen to be kc = 1. Details
on upscaling and downscaling of scattering objects are collected in the following remark.
Remark 3.25. Let α > 0 be a scaling parameter that is supposed to enlarge (α > 1) or shrink
(α < 1) the scattering object. Effectively, this means that the original scattering object D is
transformed to αD. We define the scaled electric permittivity distribution εc and magnetic
permeability distribution µc by εc(x) = ε(α−1x) and µc(x) = µ(α−1x). Furthermore, we define
the scaled electric and magnetic fields by Ec(x) = E(α−1x) and Hc(x) = H(α−1x). The
subscript c stands for computational, as these quantities will be used in numerical simulations
later. The variable transform y = α−1x yields that Vc(x) = V (α−1x) = V (y) and

curly V (y) = curly V (α−1x) = α curlx V (α−1x) = α curlx Vc(x) .



70 Chapter 3. An asymptotic formula for scattering by thin tubular structures

With B and F from (2.53) and (2.54), we see that E ∈ H(curl, BR(0)) satisfies

B(E,V ) = F (V ) for all V ∈ H(curl, BR(0))

if and only if Ec ∈ H(curl, BαR(0)) satisfies

Bc(Ec,V ) = Fc(V ) for all V ∈ H(curl, BαR(0)) .

Here, Bc and Fc differ from B and F by replacing ε and µ by εc and µc and ω by ωc = α−1ω.
Moreover, the integration domains changed from BR(0) and ∂BR(0) to BαR(0) and ∂BαR(0).
Both Es = E −Ei and Es

c = Ec −Ei
c possess a far field as in (2.33) given by

Es(x) = eik|x|

4π|x|

(
E∞(x̂) +O

( 1
|x|

))
and Es

c (x) = eikc|x|

4π|x|

(
E∞c (x̂) +O

( 1
|x|

))
,

as |x| → ∞, where kc = ωc
√
ε0µ0. Due to the equality Ec(x) = E(α−1x) we see that

Es
c (x) = Es(α−1x) = eikc|x|

4π|x|

(
αE∞(x̂) +O

( 1
|x|

))
giving that

E∞c = αE∞ . (3.124)

When we are interested in the norm of the far field (this will later be the case when studying
the total interaction cross-section) we use (3.124) to recover the original far field. In the following,
we provide an example on how we scale a metallic nanowire.

Example 3.26. Let the exterior wavelength be given by λ = 400nm = 0.4µm (i.e. the frequency
is f = 750THz and the wave number is k = 2π/(0.4 × 10−6)m−1) and consider the material
parameters for silver from [83] giving µr = 1 and εr = −4.42 + 0.21i. Let the scatterer be a thin
helix with two turns defined by the center curve parametrized by

p1(s) = R cos(4πs), p2(s) = R sin(4πs), p3(s) = hs for s ∈ [0, 1]

with radius R = 63.66nm and total height h = 381.97nm. Further, let the radius of the circular
cross-section of the thin wire be given by ρ = 12.73nm. We scale the object in such a way
that we can use the exterior wave number kc = 1m−1 in our numerical simulation, giving that
λc = 2πm. For this, define α = 2π/(0.4× 10−6) ≈ 1.57× 107 as the scaling parameter. Indeed,
from Remark 3.25 we find that kc = α−1k = 1m−1 giving λc = 2πm. The scaled exterior radius
Rc, height hc and inner radius ρc are given by

Rc = 63.66α× 10−9m ≈ 1m, hc = 381.97α× 10−9m ≈ 6m, ρc = 12.73α× 10−9m ≈ 0.2m

To summarize, we compute the far field E∞c corresponding to the double helix with radius
Rc = 1m, height hc = 6m, cross-section radius ρc = 0.2m and wave number kc = 1m−1 and
obtain the far field in the original units E∞ by setting E∞ = α−1E∞c .

Remark 3.27. This scaling is reasonable for computational purposes only, since in practice, the
modification of the exterior wavelength changes the electric permittivity ε of a metallic nanowire.

In order to approximate the center curve of the scattering object under consideration, we use
cubic splines with the not-a-knot condition at the end points of the splines. Given a non-uniform
partition

4 = {0 = t1 < t2 < · · · < tn = 1} ⊂ [0, 1] , (3.125)
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we denote a corresponding not-a-knot spline by p4 (see e.g. [40, p. 44]). Note that for numerical
simulations, in order to integrate over the spine curve, we always consider the interval [0, 1]
instead of (−`, `) as we did in the definition of Dρ in (3.7). The reason for this is that a
parametrization by arc length for the spine curve is difficult to realize numerically. We summarize
the generation of spline curves from given spatial points x(j) ∈ R3, j = 1, . . . , n, as well as the
discretization of curve integrals in the following technical remark.
Remark 3.28. For n ∈ N nodal points x(j) ∈ R3, j = 1, . . . , n, in space we consider the deter-
mination of the parameter values tj defining the partition 4 from (3.125) by chord length (see
[106, pp. 364-365]). We denote by d the total chord length defined by

d =
n−1∑
j=1

∣∣x(j+1) − x(j)∣∣
and set

t1 = 0, tn = 1, tj = tj−1 +
∣∣x(j+1) − x(j)∣∣

d
for j = 2, . . . , n− 1 .

Note that this usually leads to a non-uniform partition 4 from (3.125). Now, we can compute
the interpolating cubic not-a-knot spline p4 (see e.g. [40, p. 44]) satisfying p4(tj) = x(j).
Denoting by p4,j the cubic polynomial defined on the segment [tj , tj+1] for j = 1, · · · , n − 1,
the not-a-knot condition reads p′′′4,1(t2) = p′′′4,2(t2) and p′′′4,n−2(tn−1) = p′′′4,n−1(tn−1). Thus,
the knots x(2) and x(n−1) behave as if they were no knots, since the piecewise defined cubic
polynomials have matching derivatives of arbitrary order at these spatial points. For every
segment [tj , tj+1], j = 1, . . . , n− 1, we define the odd number M ∈ N, M ≥ 3, and consider M
uniformly distributed points in [tj , tj+1] including tj and tj+1. For every segment, we denote the
discretization length by hj = (tj+1 − tj)/(M − 1), j = 1, . . . , n − 1. This gives a total amount
of T = (M − 1)(n− 1) + 1 non-repeating points that we denote by xτ for τ = 1, . . . , T . We use
these in order to approximate curve integrals as described next. Let f : R3 → C be an integrable
function such as e.g. a component of the integrand of the leading order term of (3.22). It holds
that

∫ 1

0
f(x) dx =

n−1∑
j1=1

∫ tj1+1

tj1

f(x) dx ≈
n−1∑
j1=1

(M−1)j1+1∑
j2=(M−1)(j1−1)+1

wj2f(xj2)

=
n−1∑
j1=1

M∑
j2=1

wj2+(M−1)(j1−1)f(xj2+(M−1)(j1−1)) ,

where the approximation is done by using the composite Simpson’s rule with equidistant dis-
cretization length hj1 (see e.g. [91, Thm. 12.2]). By rearranging the last sums in such a way
that ∫ 1

0
f(x) dx ≈

T∑
j=1

w̃jf(xj)

we find that

w̃j =



1
3h1 , j = 1,
1
3hn−1 , j = T,
4
3hk , j even, (M − 1)(k − 1) + 1 < j < (M − 1)k + 1 for a k = 1, . . . , n− 1,
2
3hk , j odd, j 6= (M − 1)(k − 1) + 1 for all k = 2, . . . , n− 1,
1
3hk + 1

3hk+1 , j odd, j = (M − 1)(k − 1) + 1 for a k = 2, . . . , n− 1 .
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Figure 3.2: The three center curves from Example 3.29 - Example 3.31, together with their
projection onto the surrounding coordinate planes, respectively. The unit of length in all plots
is meter.

In our simulations we pickM = 11 points in each subsegment for approximating the integral
in (3.122) by using the composite Simpson’s rule. We return to the study of the relative difference
RelDiff from (3.123) and discuss the following two questions:

1. How many spline points are sufficient in the approximation of the center curve K that is
used to evaluate Ẽ∞ρ numerically, to obtain a reasonably good approximation of Ẽ∞ρ ?

2. How small does the radius ρ > 0 of the thin tubular scattering object Dρ have to be
such that the leading order term Ẽ∞ρ in the asymptotic perturbation formula (3.22) is a
sufficiently good approximation of E∞ρ ?

The first question is a study on the accuracy of the cubic spline interpolation.The second question
is more important for our applications in Chapter 4 and 5 as it indicates a range of radii, for
which the leading order term of the asymptotic perturbation formula from (3.122) is a reasonable
approximation to the electric far field. We first discuss both Questions 1 and 2 for dielectric
scattering objects.

3.5.1 Numerical examples for dielectric scattering objects

For our numerical experiments, we study three different scattering objects with corresponding
center curves K, parametrized by p : [0, 1] → R3. These are given in the next examples. The
center curves are also shown in Figure 3.2. Each plot features the center curve in blue surrounded
by the three shifted coordinate planes, in which we plotted the projections of the center curve in
black. The material parameters εr, µr that we use in the examples are not intended to describe
a realistic material. We study these parameters as a matter of interest and to test the leading
order term from (3.122).

Example 3.29. The center curve is a closed ring parametrized by

p1(s) = cos(2πs) + 1, p2(s) = sin(2πs) + 1, p3(s) = −1 for s ∈ [0, 1] ,

as shown in Figure 3.2 (left). The unit of length is given in m. With a two-dimensional circular
cross-section D′ρ with radius ρ > 0, the corresponding scattering object Dρ becomes a torus. We
consider the material parameters εr = 2.5 and µr = 1.6.



3.5 Numerical experiments on the accuracy of the leading order term 73

Figure 3.3: The three-dimensional scattering objects corresponding to Example 3.29 - 3.31. Top
row: The radius of the circular cross-sections D′ρ is ρ = 0.03m. Bottom row: The radius of the
circular cross-sections D′ρ is ρ = 0.2m.

Example 3.30. We consider the center curve parametrized by

p1(s) = 2 cos(2πs)
1 + sin(2πs)2 , p2(s) = 4cos(2πs) sin(2πs)

1 + 2 sin(2πs)2 , p3(s) = 4s2 for s ∈ [0, 1] ,

as shown in Figure 3.2 (center). The unit of length is given in m. The cross-section D′ρ is a disc
of radius ρ > 0. The projection onto the xy-plane of the center curve depicts an infinity sign.
Here, we choose the material parameters εr = 1 and µr = 2.1.

Example 3.31. Finally, we consider a helix with two turns parametrized by

p1(s) = cos(4πs), p2(s) = sin(4πs), p3(s) = 6s for s ∈ [0, 1] ,

as shown in Figure 3.2 (right). The unit of length is given in m. The cross-section D′ρ is a disc
of radius ρ > 0. Here, let the material parameters be given by εr = 2.1 and µr = 1.0.

In all examples, the incoming field is a plane wave, i.e.

Ei(x) = Aeikθ·x

with polarization A = [−1, 1i, 1 + 1i]> and direction of propagation θ = 1/
√

3[1, −1, 1]>.
Note that A · θ = 0. In all examples the frequency is given by 100MHz. Accordingly, the
wave number in all simulations is k = ω

√
ε0µ0 ≈ 2.1m−1. Here, ε0 and µ0 denote the electric

permittivity and magnetic permeability in free space given as in (2.19). The wavelength in the
exterior is thus given by λ = 2π/k ≈ 3m. Concerning the first numerical study, we consider
the radius ρ = 0.03m for the circular cross-section in all simulations. The corresponding thin
tubular scattering objects are visualized in the top row of Figure 3.3. Using different numbers
of nodes n ∈ N we consider partitions 4 as in (3.125) and approximate the curves given by
the parametrization p by using the cubic spline p4. Due to the asymptotic character of the
expansion (3.22) and due to numerical errors in the approximation E∞ρ obtained by Bempp,
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Figure 3.4: Dielectric scattering objects. Top row: Relative difference RelDiff between E∞ρ
and the leading order term Ẽ∞ρ in (3.123) as a function of the number of subsegments in the
spline approximation p4 of the center curve K for Examples 3.29 (left), 3.30 (center), and 3.31
(right) with radius ρ = 0.03. Bottom row: Relative difference RelDiff (solid blue) between E∞ρ
and the leading order term Ẽ∞ρ in (3.123) as a function of the radius ρ > 0 of the cross-section
D′ρ for Examples 3.29 (left), 3.30 (center), and 3.31 (right). For comparison, the plot contains
a line of slope 2 (dashed red).

we do not expect the relative difference in (3.123) to decay to zero. The result is visualized in
the top row of Figure 3.4. In each case, the relative difference from (3.123) falls below 2% for
a relatively low number of spline segments n ∈ N that approximate the center curve. For the
torus in Example 3.29 this is the case for n ≥ 6, for the curve in Example 3.30 for n ≥ 26 and
for the double-turn helix in Example 3.31 for n ≥ 12.

Concerning the second numerical study, we simulate reference solutions for different radii
ρ > 0 for the center curves from Example 3.29-3.31 and evaluate the relative difference in
(3.123). Here, we consider 13 Bempp simulations, respectively, with the radius in the range

ρ ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2}m . (3.126)

Since the exterior wavelength is λ ≈ 3m, the radius ρ varies in a range of around 1% to 6.7% of
the exterior wavelength. We gather information about the convergence of the GMRES method
in Table 3.1. We find that in all cases, the GMRES method converges with a relative low
number of iterations. In Figure 3.3 we visualize the scattering objects for ρ = 0.03 in the top
row and for ρ = 0.2 in the bottom row. For decreasing ρ we use increasingly fine triangulations
of the boundary of scatterers ∂Dρ. On the other hand, for evaluating Ẽ∞ρ we approximate the
center curves using n = 30 nodes for the spline representation p4, respectively. We present
our numerical study in the bottom row of Figure 3.4. Each plot features the relative difference
RelDiff from (3.123) as a function of the radius ρ (solid blue). The diamonds indicate the
positions, for which we evaluate the relative difference. Moreover, the plots show a reference
line of slope 2 (dashed red). For all examples, the relative difference decays approximately
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Example 3.29, εr = 2.5, µr = 1.6
ρ [cm] 3 4 5 6 7 8 9

#DOFs 80094 54216 69708 56958 64992 66006 67644
#iter 5 5 5 5 5 5 5

ρ [cm] 10 12 14 16 18 20
#DOFs 67266 67146 60912 54852 61974 59226
#iter 5 6 6 7 7 8

Example 3.30, εr = 1.0, µr = 2.1
ρ [cm] 3 4 5 6 7 8 9

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 9 6 6 7 6 6 6

ρ [cm] 10 12 14 16 18 20
#DOFs 146724 146724 141756 141756 132108 132108
#iter 6 8 9 6 6 6

Example 3.31, εr = 2.5, µr = 1.6
ρ [cm] 3 4 5 6 7 8 9

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 5 5 6 5 5 5 5

ρ [cm] 10 12 14 16 18 20
#DOFs 146724 146724 141756 141756 132108 132108
#iter 6 6 6 6 6 6

Table 3.1: The number of degrees of freedom (DOFs) and the number of GMRES iterations
(iter) for different radii ρ corresponding to Example 3.29-3.31.

of order ρ2. However, note that our theoretical results in Theorem 3.6 do not predict any
convergence rates. In all examples the relative error RelDiff from (3.123) stays below 10% if
the radius ρ is below 0.12m. This corresponds to a radius, which is below 4% of the exterior
wavelength.

3.5.2 Numerical examples for metallic nanowires

We study scattering of visible light from silver nanowires for two different sizes of the scattering
objects. In all cases, let the exterior wavelength be given by λ = 400nm. The material coefficients
for silver corresponding to this wavelength are thus given by εr ≈ −4.42 + 0.21i and µr = 1
(see [83]). We study the same overall shape of the scattering objects from Example 3.29-3.31,
however, the scattering objects are much smaller as we point out in the following examples.
Each example covers two different parametrizations of center curves that feature coefficients
dependent on j = 1, 2.

Example 3.32. The center curve is a closed ring parametrized by

p1(s) = Rj cos(2πs) +Rj , p2(s) = Rj sin(2πs) +Rj , p3(s) = −zj for s ∈ [0, 1] .

With a two-dimensional circular cross-sectionD′ρ with ρ > 0, the corresponding scattering object
Dρ becomes a torus. For j = 1, on the one hand, the exterior radius of the torus is defined to
be R1 = 133.69nm and the offset in z direction is also defined as z1 = 133.69nm. For j = 2, on
the other hand, we choose R2 = z2 = 63.66nm.
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Figure 3.5: Relative difference RelDiff (solid blue) between E∞ρ and the leading order term Ẽ∞ρ
in (3.123) as a function of the radius ρ > 0 of the cross-section D′ρ for Examples 3.32 (left), 3.33
(center), and 3.34 (right). For comparison, the plots contain a line of slope 1 (dashed magenta)
and a line of slope 2 (dashed red). Top row: j = 1. Bottom row: j = 2.

Example 3.33. We consider the center curve parametrized by

p1(s) = Rj
cos(2πs)

1 + sin(2πs)2 , p2(s) = Sj
cos(2πs) sin(2πs)
1 + 2 sin(2πs)2 , p3(s) = hjs

2 for s ∈ [0, 1] .

The cross-section D′ρ is a disc of radius ρ > 0. For j = 1, let the parameters be given by
R1 = 534.76nm, S1 = 267.38nm and h1 = 534.76nm. For j = 2 we define the parameters to be
R2 = 254.65nm, S2 = 127.32nm and h2 = 254.65nm.

Example 3.34. We consider a nano-helix with two turns parametrized by the center curve

p1(s) = Rj cos(4πs), p2(s) = Rj sin(4πs), p3(s) = hjs for s ∈ [0, 1] .

The cross-section D′ρ is a disc of radius ρ > 0. In the first case, i.e. for j = 1, let the exterior
radius of the helix and the total height be given by R1 = 133.69nm and h1 = 802.14nm. In the
second case, we consider R2 = 63.66nm and h2 = 381.97nm.

For j = 1 we consider radii within the range

ρ ∈ {4.01, 5.35, 6.68, 8.02, 9.36, 10.7, 12.03, 13.37, 16.04, 18.72, 21.39, 24.06, 26.74} nm .

On the other hand, for j = 2, let the radii lie in the range

ρ ∈ {1.91, 2.55, 3.18, 3.82, 4.46, 5.09, 5.73, 6.37, 7.64, 8.91, 10.19, 11.46, 12.73} nm .

The results for first numerical study are similar to those for the dielectric examples found in the
top row of Figure 3.4. Therefore, we focus on the second question and study the relative error
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Example 3.32, j = 1, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 4.01 5.35 6.68 8.02 9.36 10.7 12.03

#DOFs 80094 54216 69708 56958 64992 66006 67644
#iter 122 160 104 93 123 104 86

ρ [nm] 13.37 16.04 18.72 21.39 24.06 26.74
#DOFs 67266 67146 60912 54852 61974 59226
#iter 73 86 85 99 112 77

Example 3.33, j = 1, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 4.01 5.35 6.68 8.02 9.36 10.7 12.03

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 319 309 313 329 333 351 366

ρ [nm] 13.37 16.04 18.72 21.39 24.06 26.74
#DOFs 146724 146724 141756 141756 132108 132108
#iter 381 403 416 427 448 451

Example 3.34, j = 1, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 4.01 5.35 6.68 8.02 9.36 10.7 12.03

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 313 317 324 334 340 358 364

ρ [nm] 13.37 16.04 18.72 21.39 24.06 26.74
#DOFs 146724 146724 141756 141756 132108 132108
#iter 375 390 406 416 428 423

Table 3.2: The number of degrees of freedom (DOFs) and the number of GMRES iterations
(iter) for different radii ρ corresponding to Example 3.32-3.34 for j = 1.

RelDiff for a fixed center curve and a circular cross-section D′ρ as ρ→ 0. First, we consider the
case j = 1. In this case, we scale the objects from Example 3.32-3.34 in such a way that we can
perform the numerical experiments with the (computational) exterior wave number kc = 2.1m−1

(see also Remark 3.25). In order to do so, we use the scaling parameter α1 = 2π/(2.1(0.4 ×
10−6)) ≈ 7.48 × 106 and multiply each of the parametrizations from Example 3.32-3.34 by
α1. It turns out that the computational units for the scattering objects from Example 3.32-
3.34 are given by the parametrizations found in Example 3.29-3.31. The curves in Figure 3.2
represent the center curves of the nanowires in computational units. Moreover, the radii in
computational units are given by those in (3.126). Therefore, in order to compute a reference
solution using Bempp, we use the same grids that we studied before. Note however, that the
material parameters εr, µr are completely different to those treated in Example 3.29-3.31. The
results on this study are found in the top row of Figure 3.5. In all plots we show a reference line
of slope 2 (dashed red) and a reference line of slope 1 (dashed magenta). For all examples we
find that the relative error decreases, as ρ gets smaller, however, the relative error (3.123) does
not decay as fast as in the dielectric case (bottom row of Figure 3.4). We leave this numerical
result as an observation and do not analyze why the relative difference decays slower in the
metallic case than in the dielectric case, as ρ decreases. We note however, that the GMRES
method for approximating the linear system of equations that arises by the discretization of the
Calderón preconditioned PMCHWT integral formulation in (C.9) requires significantly more
steps as listed in Table 3.2. We stress that this only affects the computation of the Bempp
reference solution since the evaluation of the leading order term in (3.122) does not require a
linear system of equations to be solved. In this series of examples, we find that the relative
error RelDiff stays below 10% if the radius is below 6.68nm. This is approximately 1.7% of the
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Example 3.32, j = 2, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 1.91 2.55 3.18 3.82 4.46 5.09 5.73

#DOFs 80094 54216 69708 56958 64992 66006 67644
#iter 136 227 111 100 118 153 122

ρ [nm] 6.37 7.64 8.91 10.19 11.46 12.73
#DOFs 67266 67146 60912 54852 61974 59226
#iter 65 44 47 75 40 40

Example 3.33, j = 2, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 1.91 2.55 3.18 3.82 4.46 5.09 5.73

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 557 343 311 534 348 333 341

ρ [nm] 6.37 7.64 8.91 10.19 11.46 12.73
#DOFs 146724 146724 141756 141756 132108 132108
#iter 354 445 593 391 407 417

Example 3.34, j = 2, εr = −4.42 + 0.21i, µr = 1.0
ρ [nm] 1.91 2.55 3.18 3.82 4.46 5.09 5.73

#DOFs 186348 186348 186348 189420 189420 147012 147012
#iter 315 342 365 331 330 344 347

ρ [nm] 6.37 7.64 8.91 10.19 11.46 12.73
#DOFs 146724 146724 141756 141756 132108 132108
#iter 357 373 371 376 386 395

Table 3.3: The number of degrees of freedom (DOFs) and the number of GMRES iterations
(iter) for different radii ρ corresponding to Example 3.32-3.34 for j = 2.

exterior wavelength. We note, that the overall size of the curves parametrized in Example 3.32-
3.34 for j = 1 varies approximately between 2/3 (Example 3.32) to 2 (Example 3.34) times the
size of the exterior wavelength.

For j = 2 we proceed similarly as before. First, we scale the curves from Example 3.32-3.34
in such a way that the (computational) exterior wave number kc = 1 (see Remark 3.25) may
be considered. Therefore, we define the scaling parameter α2 = 2π/(0.4 × 10−6) ≈ 1.57 × 107

and multiply each of the parametrizations from Example 3.32-3.34 by α2. It turns out that
the computational units for the scattering objects from Example 3.32-3.34 are given by the
parametrizations found in Example 3.29-3.31. The radii in computational units are given by
those in (3.126). For Example 3.34, j = 2 and ρ = 12.73nm the scaling to exterior wave number
kc = 1 is done in detail in Example 3.26. Again, note that although we consider the same
grids as for the dielectric case in order to simulate the Bempp reference solutions, the material
parameters are completely different here. The results on this study are found in the bottom row
of Figure 3.5. Further, the number of degrees of freedom together with the number of iterations
of the GMRES method is found in Table 3.3. Again, we find that comparably many steps are
required for GMRES to stop. For Example 3.33, j = 2, and ρ = 8.91nm the number of iterations
reaches a maximum with 593 iterations.

Comparing Example 3.32 for j = 2 (bottom-left) with j = 1 (top-left) shows that the relative
error decays faster for j = 2. Again, we leave this as an observation that is not analyzed further.
For the other two examples the decay of the error is similar. The relative error RelDiff stays
below 10% if the radius is below 6.3nm, i.e. if the radius is less than 1.6% of the exterior
wavelength. This is comparable to the situation for j = 1 before.

Our conclusion of this section is that the leading order term of the asymptotic representation
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formula provides a relatively good approximation to the electric far field if the radius of the cross-
section is at most a few percent of the exterior wavelength. In the dielectric Examples 3.29-
3.31 we found a relative error RelDiff from (3.123) less than 10%, when the total size of the
scattering object is between approximately 2/3 (Example 3.29) to 2 (Example 3.31) times the
size of the exterior wavelength and the radius of the thin scatterer ρ is below 4% of the exterior
wavelength. For metallic scattering objects our numerical examples indicate that the leading
order term provides an approximation with a relative error RelDiff, which is less than 10%, if
the radius of the nanowire ρ is below 1.6% of the exterior wavelength.
Remark 3.35. The numerical evaluation of the leading order term in (3.122) requires only a
few seconds, whereas computations by means of Bempp can take hours or days, dependent on
how many iterations are needed for GMRES to stop. In the next two chapters we establish,
implement and test efficient shape optimization algorithms, in which we will benefit from these
rapid approximations: We first study a reconstruction scheme for thin tubular scattering objects
in Chapter 4 and afterwards, we focus on the design of highly electromagnetically chiral tubular
objects in Chapter 5.
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Chapter 4

Reconstructing thin tubular scattering objects

In this chapter we discuss an inverse scattering problem, which is the reconstruction of scattering
objects given measurements of scattered fields or far fields. We assume given a priori information
on the material of the scatterer εr, µr, the incident electric field Ei and the corresponding
(measured) far field pattern E∞. The challenge is to reconstruct the shape of the scattering
object D that generates the far field E∞ as it is illumined by Ei. We introduce the nonlinear
operator F̃ : X → L2

t (S2) that maps scattering objects to its far field for a given incident field.
The inverse problem is to find the object D ∈ X , where X is a set of suitable objects, such that
D satisfies

F̃ (D) = E∞ . (4.1)

The nonlinear operator equation (4.1) is a starting point for derivative-based reconstruction
schemes such as e.g. a shape optimization based on domain derivatives. These were initially
studied for the Helmholtz equation. The domain derivative corresponding to sound-soft obsta-
cles was introduced in [87]. For sound-hard obstacles, Robin boundary conditions and for the
transmission problem domain derivatives were studied in [77, 78]. Fréchet derivatives based on
boundary integral equations are studied for sound-soft obstacles in [108] and for sound-hard
obstacles in [110]. In the context of Maxwell’s equations domain derivatives for the perfect
conductor are studied in [72, 74]. For penetrable scattering objects domain derivatives are
considered in [72, 79]. An inverse problem for obstacles with generalized impedance boundary
conditions is studied in [32].

Asymptotic representation formulas have been used in the literature to detect and reconstruct
inhomogeneities of small volume. For an overview we refer to [9] and the references therein. For
thin tubular objects, a reconstruction algorithm for a single inclusion for a two-dimensional con-
ductivity problem is studied in [3], and extended to several inclusions in [4]. A uniqueness result
for the inverse problem is provided in both works. In [69] an iterative optimization scheme is
applied in order to reconstruct thin tubular inhomogeneities in electrical impedance tomography.
Moreover, an inverse uniqueness result is proven. A similar inverse problem is studied in [67].
Here, a non-iterative method based on a factorization of an asymptotic perturbation formula is
established that generates an indicator function taking the value zero outside the inhomogeneity
and the value one inside. In [19] the authors use an algorithm to reconstruct the end points of
a straight conductivity inclusion in a three-dimensional domain. Furthermore, they provide an
inverse uniqueness result.

Our aim is to reconstruct the shape of a thin tubular scattering object Dρ as in (3.7) from
observations of a single electric far field pattern E∞ρ due to an incident field Ei. We restrict our
discussion to the special case, when the cross-section of the scatterer is of the form D′ρ = ρD′,
where D′ = B′1(0) is the unit disk. The algorithm that we study here is similar to [69]. The
central building block for our study is the asymptotic representation formula from Theorem 3.6.
The nonlinear operator in (4.1) is approximated by using the leading order term of the asymptotic
representation formula from (3.22). Our intention is to find out whether the leading order term

81



82 Chapter 4. Reconstructing thin tubular scattering objects

of the asymptotic representation formula provides enough information to reconstruct a thin
tubular scattering object given measurements of a single electric far field. We assume that the
radius ρ > 0 is small and that the material parameters of the scattering object ε1, µ1 are known
a priori. In this case the explicit formulas for the polarization tensors mε,mµ ∈ C2×2 of the
cross-sections from (3.115) can be used in the reconstruction algorithm. A possible twisting of
the cross-section along the spine curve does not have to be taken into account. Accordingly, the
inverse problem reduces to reconstructing the center curve K of the scattering object Dρ from
observations of the electric far field pattern E∞ρ . The governing nonlinear operator equation is
ill-posed and therefore, in order to reconstruct a solution, a regularization method is needed.
We suppose that the incident field Ei is a plane wave, i.e.

Ei(x) = Aeikθ·x, x ∈ R3, (4.2)

with direction of propagation θ ∈ S2 and polarization A ∈ C3 \ {0}, for which holds that
A · θ = 0.

The solution to the direct problem is to compute the nonlinear forward map

Fρ : K 7→ E∞ρ , (4.3)

which maps the center curve K of the scattering object Dρ to the electric far field pattern E∞ρ .
For the inverse problem we assume that the electric far field pattern E∞ρ is given. In this case
the challenge consists in solving the nonlinear and ill-posed equation

Fρ(K) = E∞ρ (4.4)

for the unknown center curve K. In practice, E∞ρ would be accessible through measurements
that carry additional noise. Therefore, one usually considers a noisy right hand sideE∞,δρ instead
of E∞ρ , where δ > 0 is an a-priori information on the noise level satisfying∥∥E∞,δρ −E∞ρ

∥∥
L2
t (S2) ≤ δ .

In what follows, we develop a regularized Newton scheme in order to reconstruct the curve K
given the measurementE∞ρ numerically. For this purpose, we first introduce the set of admissible
parametrizations,

P =
{
p ∈ C3([0, 1],R3)

∣∣ p ([0, 1]) is simple and p′(t) 6= 0 for all t ∈ [0, 1]
}

and identify curves K with their parametrization p ∈ P. Using the parametrization p in the
leading order term of the asymptotic perturbation formula from (3.22) gives

Ẽ∞ρ (x̂) = (kρ)2 π

(
−
∫ 1

0
(µr − 1) eik(θ−x̂)·p(s) (x̂× I3)Mµ

p(s) (θ ×A)
∣∣p′(s)∣∣ ds

+
∫ 1

0
(εr − 1) eik(θ−x̂)·p(s) (x̂× (I3 × x̂))Mε

p(s)A
∣∣p′(s)∣∣ ds

)
, x̂ ∈ S2. (4.5)

For this representation we combined (3.22) with (4.2) and with the identity

curlEi (x) = ik (θ ×A) eikθ·x.

Here, Mγ
p = Mγ ◦ p for γ ∈ {ε, µ} is the parametrized version of the polarization tensor. The

parametrized unit tangent vector tp = p′/|p′| can always be completed to an orthonormal frame
(tp, rp, sp). For generating a rotation minimizing frame for the curve K one can use e.g. the
double reflection method (see [121]). The characterization of Mγ

p from Theorem 3.16 together
with (3.115) shows that for γ ∈ {ε, µ} it holds that

Mγ
p(s) = Vp(s)MγVp(s)>, s ∈ [0, 1] ,
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where Mγ = diag (1, 2/(γr + 1), 2/(γr + 1)) ∈ C3×3 and the matrix-valued function
Vp = [tp | rp | sp] ∈ C1([0, 1] ,R3×3) contains the components of the orthogonal frame (tp, rp, sp)
as its columns that we introduced in the beginning of Chapter 3.
Remark 4.1. Instead of using a rotation minimizing frame it is also possible to use the Frenet-
Serret frame as in the original work [28]. For this, one assumes that p′(t) × p′′(t) vanishes at
most at isolated points. Then, the Frenet-Serret frame (tp,np, bp) reads

tp = p′

|p′|
, np = (p′ × p′′)× p′

| (p′ × p′′)× p′| , bp = tp × np.

Note that the orientation of this frame might flip when passing an inflection point (i.e. a point
y = p(s) for which p′′(s) = 0 for an s ∈ (0, 1)) of the parametrization of the curve. Therefore,
the use of this frame is only reasonable when considering a circular cross-section.

We assume that the radius ρ > 0 of the thin tubular scattering object Dρ is sufficiently
small such that the terms of higher order on the right hand side of (3.22) can be neglected, we
approximate the nonlinear operator Fρ from (4.3) by the nonlinear operator

Tρ : P → L2
t (S2), Tρ(p) = Ẽ∞ρ , (4.6)

with Ẽ∞ρ from (4.5). Accordingly, we consider the nonlinear minimization problem∥∥Tρ(p)−E∞ρ
∥∥2
L2
t (S2)∥∥E∞ρ ∥∥2

L2
t (S2)

→ min (4.7)

to approximate a solution to the inverse problem (4.4). We note that due to the asymptotic
character of (3.22) the minimum of (4.7) will be nonzero even for exact far field data. Below we
apply a Gauss–Newton method to a regularized version of (4.7). Thus, we need access to the
Fréchet derivative of the operator Tρ.

4.1 The Fréchet derivative of Tρ

For the operator Tρ : P → L2
t (S2), we aim to derive the Fréchet derivative denoted by

T ′ρ[p] : C3([0, 1],R3)→ L2(S2,C3). This operator satisfies

1
‖h‖C3([0,1],R3)

∥∥Tρ(p+ h)− Tρ(p)− T ′ρ[p]h
∥∥
L2(S2) → 0 as ‖h‖C3([0,1],R3) → 0. (4.8)

From the representation of Ẽ∞ρ from (4.5) we observe that variations of the parametrization p
affect three terms in each of both integrals. In particular, it affects the polarization tensors Mγ

with γ ∈ {ε, µ}. The following lemma concerning the Fréchet derivative of the mapping p 7→Mγ
p

has been established in [69, Lem. 4.1].

Lemma 4.2. The mapping Mγ : P → C([0, 1],C3×3), γ ∈ {ε, µ} with

Mγ
p(s) = Mγ(p)(s) = VpM

γVp(s)>

is Fréchet differentiable. Its Fréchet derivative at p ∈ P is given by

(Mγ
p)′ : P → C([0, 1],C3×3) , (Mγ

p,h)′ = (Mγ
p)′h = V ′p,hM

γV >p + VpM
γ(V ′p,h)> ,

where the matrix-valued function V ′p,h is defined columnwise by

V ′p,h = 1
|p′|

[
(h′ · np)np + (h′ · bp)bp | − (h′ · np)tp | − (h′ · bp)tp

]
.
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The proof of Lemma 4.2 is omitted since we study a similar theorem involving an additional
rotation of a non-circular cross-section in Section 5.3. This is done in Theorem 5.14. We note
that the proof of [69, Lem. 4.1] constructs an explicit orthonormal frame (tp+h, rp+h, sp+h) for
p+ h, given an orthonormal frame for p, denoted by (tp, rp, sp). This frame reads

tp+h = p′ + h′
|p′ + h′| , (4.9a)

rp+h = (tp · tp+h) rp −
sp · tp+h

1 + tp · tp+h
(tp × tp+h)− (rp · tp+h) tp , (4.9b)

sp+h = (tp · tp+h) sp + rp · tp+h
1 + tp · tp+h

(tp × tp+h)− (sp · tp+h) tp . (4.9c)

Remark 4.3. In our shape optimization for em-chiral structures in Section 5.3, we study a
similar update formula as the one in (4.9) involving an additional rotation of a non-circular
cross-section. For this more general update formula we show in Lemma 5.12 that the updated
frame is an orthonormal frame to the curve parametrized by p+ h.

Next we consider the Fréchet derivative of the mapping Tρ. The proof that is similar to the
proof of [69, Thm. 4.2], relies in computing the Fréchet derivatives of the terms in the leading
order term separately and assembling the full Fréchet derivative by using the product rule.

Theorem 4.4. The operator Tρ : P → L2(S2,C3) from (4.6) is Fréchet differentiable and its
Fréchet derivative at p ∈ P is given by T ′ρ[p] : C3([0, 1],R3)→ L2(S2,C3),

T ′ρ[p]h = (kρ)2π

(
−(µr − 1)

3∑
j=1

T ′ρ,µ,j [p]h+ (εr − 1)
3∑
j=1

T ′ρ,ε,j [p]h
)

(4.10)

with

T ′ρ,µ,1[p]h =
∫ 1

0
ik
(
(θ − x̂) · h(s)

)
(x̂× I3)Mµ

p(s)(θ ×A)eik(θ−x̂)·p(s)|p′(s)| ds , (4.11a)

T ′ρ,µ,2[p]h =
∫ 1

0
(x̂× I3)(Mµ

p,h)′(s)(θ ×A)eik(θ−x̂)·p(s)|p′(s)| ds , (4.11b)

T ′ρ,µ,3[p]h =
∫ 1

0
(x̂× I3)Mµ

p(s)(θ ×A)eik(θ−x̂)·p(s)p
′(s) · h′(s)
|p′(s)| ds (4.11c)

and

T ′ρ,ε,1[p]h =
∫ 1

0
ik
(
(θ − x̂) · h(s)

)(
x̂× (I3 × x̂)

)
Mε
p(s)Aeik(θ−x̂)·p(s)|p′(s)| ds , (4.12a)

T ′ρ,ε,2[p]h =
∫ 1

0
(x̂×

(
I3 × x̂)

)
(Mε

p,h)′(s)Aeik(θ−x̂)·p(s)|p′(s)| ds , (4.12b)

T ′ρ,ε,3[p]h =
∫ 1

0

(
x̂× (I3 × x̂)

)
Mε
p(s)Aeik(θ−x̂)·p(s)p

′(s) · h′(s)
|p′(s)| ds . (4.12c)

Proof. Let p ∈ P, δ > 0 and h ∈ C3([0, 1],R3) such that ‖h‖C3([0,1],R3) < δ. In particular, let
‖h‖C3 = ‖h‖C3([0,1],R3) be so small that the curve parametrized by p+ h is simple. We have to
show (4.8) with T ′ρ[p]h from (4.10). We note that Tρ(p+ h)− Tρ(p) can be written as

Tρ(p+ h)− Tρ(p) = (kρ)2π(−(µr − 1)(Tρ,µ(p+ h)− Tρ,µ(p))
+ (εr − 1)(Tρ,ε(p+ h)− Tρ,ε(p)))
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with

Tρ,µ(p+ h)− Tρ,µ(p) =
∫ 1

0
eik(θ−x̂)·(p+h)(s) (x̂× I3)Mµ

p+h(s) (θ ×A)
∣∣(p′ + h′)(s)∣∣ ds

−
∫ 1

0
eik(θ−x̂)·p(s) (x̂× I3)Mµ

p(s) (θ ×A)
∣∣p′(s)∣∣ ds ,

Tρ,ε(p+ h)− Tρ,ε(p) =
∫ 1

0
eik(θ−x̂)·(p+h)(s) (x̂× (I3 × x̂))Mε

p+h(s)A
∣∣(p′ + h′)(s)∣∣ ds

−
∫ 1

0
eik(θ−x̂)·p(s) (x̂× (I3 × x̂))Mε

p(s)A
∣∣p′(s)∣∣ ds .

We study Tρ,µ(p+ h)− Tρ,µ(p) in detail and show that

1
‖h‖C3

∥∥∥Tρ,µ(p+ h)− Tρ,µ(p)−
3∑
j=1

T ′ρ,µ,j [p]h
∥∥∥
L2(S2)

→ 0 as ‖h‖C3 → 0 , (4.13)

with T ′ρ,µ,j [p]h, 1 ≤ j ≤ 3, defined in (4.11). The same techniques can then be used to see that
(4.13) holds with µ replaced by ε and the terms in (4.12). We write Tρ,µ(p+ h)− Tρ,µ(p) as

Tρ,µ(p+ h)− Tρ,µ(p) = Tρ,µ,1(p,h) + Tρ,µ,2(p,h) + Tρ,µ,3(p,h) , (4.14)

where

Tρ,µ,1(p,h) =
∫ 1

0

(
eik(θ−x̂)·(p+h)(s) − eik(θ−x̂)·p(s)

)
(x̂× I3)Mµ

p+h(s) (θ ×A)
∣∣(p′ + h′)(s)∣∣ ds ,

Tρ,µ,2(p,h) =
∫ 1

0
eik(θ−x̂)·p(s) (x̂× I3)

(
Mµ
p+h(s)−Mµ

p(s)
)

(θ ×A)
∣∣(p′ + h′)(s)∣∣ ds ,

Tρ,µ,3(p,h) =
∫ 1

0
eik(θ−x̂)·p(s) (x̂× I3)Mµ

p(s) (θ ×A)
(∣∣(p′ + h′)(s)∣∣− ∣∣p′(s)∣∣) ds .

We will show that ∥∥∥Tρ,µ,j(p,h)− T ′ρ,µ,j [p]h
∥∥∥
C(S2)

≤ C ‖h‖2C3 (4.15)

for all 1 ≤ j ≤ 3. Then, (4.13) follows by the continuous embedding of C(S2) into L2(S2) and
the triangle inequality. All functions that appear in (4.14) are smooth. Thus, we use Taylor’s
theorem and Lemma 4.2 to see that∥∥∥eik(θ−x̂)·(p+h)(·) − eik(θ−x̂)·p(·) − ik

(
(θ − x̂) · h(·)

)
eik(θ−x̂)·p(·)

∥∥∥
C([0,1],C)

≤ C ‖h‖2C3 , (4.16a)∥∥∥∣∣(p′ + h′)(·)∣∣− ∣∣p′(·)∣∣− p′(·) · h′(·)|p′(·)|
∥∥∥
C([0,1],R)

≤ C ‖h‖2C3 , (4.16b)∥∥∥Mµ
p+h(·)−Mµ

p(·)− (Mµ
p,h)′(·)

∥∥∥
C([0,1],R3×3)

≤ C ‖h‖2C3 . (4.16c)

For j = 3, (4.15) follows directly by (4.16b). For j = 2 we proceed as in the proof of [69, Thm.
4.2] and write (we omit the integration variable)

Tρ,µ,2(p,h)− T ′ρ,µ,2[p]h =
∫ 1

0
eik(θ−x̂)·p (x̂× I3)

(
Mµ
p+h −Mµ

p − (Mµ
p,h)′

)
(θ ×A)

∣∣p′∣∣ ds

+
∫ 1

0
eik(θ−x̂)·p (x̂× I3)

(
Mµ
p+h −Mµ

p

)
(θ ×A)

(∣∣(p′ + h′)∣∣− ∣∣p′∣∣) ds . (4.17)

By (4.16c), the first term on the right hand side of (4.17) is in O(‖h‖2C3). Again, by Taylor’s
theorem,∥∥∥Mµ

p+h(·)−Mµ
p(·)

∥∥∥
C([0,1],R3×3)

≤ C ‖h‖C3 ,
∥∥∣∣(p′(·) + h′(·))

∣∣− ∣∣p′(·)∣∣∥∥C([0,1],R) ≤ C ‖h‖C3

and therefore, the second term in (4.17) is in O(‖h‖2C3). For j = 1, (4.15) can be shown similarly
by using (4.16a).
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4.2 Discretization, regularization and the reconstruction
In the reconstruction algorithm we use interpolating cubic splines with the not-a-knot conditions
at the end points of the spline to discretize center curves K parametrized by p ∈ P. Given a
non-uniform partition

4 = {0 = t1 < t2 < · · · < tn = 1} ⊂ [0, 1]

we denote corresponding not-a-knot splines by p4 (see also Remark 3.28). The space of all three-
dimensional not-a-knot splines with respect to 4 is denoted by P4. We note that P4 6⊆ P,
although, functions in P4 are piecewise C∞. Since the inverse problem (4.4) is ill-posed, we add
two regularization terms to stabilize the minimization of (4.7). The functional Ψ1 : P4 → R is
defined by

Ψ1(p4) =
∫ 1

0
κ2(s)|p′(s)| ds , (4.18)

where
κ(s) =

|p′4(s)× p′′4(s)|
|p′4(s)|3 , s ∈ [0, 1] , (4.19)

denotes the curvature of the curve parametrized by p4. We add α2
1Ψ1 with a regularization

parameter α1 > 0 as a penalty term to the left hand side of (4.7) to prevent minimizers from
being too strongly entangled. Furthermore, we define another functional Ψ2 : P4 → R by

Ψ2(p4) =
n−1∑
j=1

∣∣∣ 1
n− 1

∫ 1

0
|p′4(s)| ds−

∫ tj+1

tj

|p′4(s)| ds
∣∣∣2 .

Adding α2
2Ψ2 with a regularization parameter α2 > 0 as a penalty term to the left hand side

of (4.7) promotes uniformly distributed control points along the spline and therefore prevents
clustering of control points during the minimization process. Adding both quadratic regulariza-
tion terms α2

1Ψ1 and α2
2Ψ2 to the left hand side of (4.7) gives the regularized nonlinear output

least squares functional

Φ : P4 → R , Φ(p4) =

∥∥Tρ(p4)−E∞ρ
∥∥2
L2
t (S2)∥∥E∞ρ ∥∥2

L2
t (S2)

+ α2
1ψ1(p4) + α2

2ψ2(p4) , (4.20)

which we will minimize iteratively.
We assume that 2N(N − 1) observations of the far field E∞ρ ∈ C∞(S2,C3) are available on

an equiangular grid of points

yjl =
[
sin θj cosϕl, sin θj sinϕl, cos θj

]> ∈ S2 , j = 1, ..., N − 1 , l = 1, ..., 2N , (4.21)

with θj = jπ/N and ϕl = (l−1)π/N for some N ∈ N. Accordingly, we approximate the L2(S2)-
norms in the cost functional Φ from (4.20) using a composite trapezoid rule in horizontal and
vertical direction. This yields an approximation ΦN that is given by

ΦN (p4) =
∑N−1
j=1

∑2N
l=1

π2

N2 sin(θj)
∣∣(Tρ(p4)−E∞ρ

)
(yjl)

∣∣2∑N−1
j=1

∑2N
l=1

π2

N2 sin(θj)
∣∣E∞ρ (yjl)

∣∣2 + α2
1Ψ1(p4) + α2

2Ψ2(p4) . (4.22)

We denote by #”x ∈ R3n the vector that contains the coordinates of the control points x(1), . . . ,x(n)

of a not-a-knot spline p4. We approximate all integrals over the parameter range [0, 1] of p4
in (4.22) using a composite Simpson’s rule with odd M ∈ N nodes on each subinterval of the
partition 4. This is explained in Remark 3.28. Accordingly, we can rewrite ΦN in the form

ΦN (p4) = |PN ( #”x)|2 , (4.23)
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Algorithm 1 Reconstruction of a thin tubular scatterer Dρ with circular cross-section
Suppose that Ei (i.e., k, θ, A), ρ, εr, µr, and E∞ρ are given.
1: Choose an initial guess #”x0 =

[
x(1), . . . ,x(n)] for the control points of a cubic

not-a-knot spline p4,0 ∈ P4 approximating the unknown center curve K of Dρ.
2: Initialize the regularization parameters α1, α2 > 0, a maximal step size smax > 0

for the line search and the tolerance tol > 0.
3: for ` = 0, 1, ..., `max do
4: Use the Fréchet derivatives T ′ρ, ψ′1, ψ′2,1, . . . , ψ′2,n−1 in (4.10), (4.25) and (4.26)

to evaluate the Jacobian JPN of PN from (4.23), which is then used to compute
the Gauß–Newton search direction

∆` = −
(
J>PN ( #”x`)JPN ( #”x`)

)−1
J>PN ( #”x`)PN ( #”x`) .

5: Use the golden section line search to compute

s∗` = arg min
s∈[0,smax]

ΦN

(
#”x` + s∆`

)
and evaluate Mov from (4.29).

6: if Mov ≥ tol then
7: Update the reconstruction, i.e. compute

#”x`+1 = #”x` + s∗`∆` and ` = `+ 1 .

8: else if (Mov < tol) and the value of |P ( #”x`)|2 is dominated by the contribution
of α2

jΨj(p4,`), j ∈ {1, 2}, in (4.22) then
9: Reduce the corresponding regularization parameter, i.e. set

αj = αj/2 .

10: else if (Mov < tol) and the value of |P ( #”x`)|2 is dominated by the residual
term in (4.22) then

return
11: end if
12: end for
13: The entries of #”x` are the coefficients of the reconstruction p4,` of the unknown

center curve K of Dρ.

where PN : R3n → RQ and Q = 12N(N − 1) + 3((M − 1)(n− 1) + 1) + (n− 1). Storing real and
imaginary parts separately, 12N(N − 1) entries of PN ( #”x) correspond to the normalized residual
term in (4.22), 3((M − 1)(n − 1) + 1) entries correspond to the penalty term Ψ1, and n − 1
entries correspond to the penalty term Ψ2. Consequently, we obtain a real-valued nonlinear
least squares problem, which is solved numerically using the Gauß–Newton algorithm with a
golden section line search (see, e.g. [104, pp. 115]). In addition to the Fréchet derivative of the
operator Tρ this also requires appropriate Fréchet derivatives corresponding to the penalty terms
in (4.20). Note that after a discretization of the integral in the definition of Ψ1 from (4.18) we
have

Ψ1(p4) ≈
T∑
j=1

wj |κ(sj)|2|p′(sj)| , (4.24)

where T = (M −1)(n−1) + 1 and wj are the weights corresponding to the composite Simpson’s
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rule defined in Remark 3.28. Accordingly, in the vector PN , we store a vector of size 3T at the
appropriate position, which yields the value on the right hand side of (4.24), when the norm of
PN is squared as required in (4.23). In the following lemma we suppress the dependency on the
variable s.

Lemma 4.5. It holds that

κ2|p′| =
∣∣∣∣ p′′

|p′|3/2
− p

′ · p′′

|p′|7/2
p′
∣∣∣∣2 .

The Fréchet derivatives of the mappings ψ1 : P → R3,

ψ1(p) = p′′

|p′|3/2
− p

′ · p′′

|p′|7/2
p′

and ψ2,j : P → R,

ψ2,j(p) = 1
n− 1

∫ 1

0
|p′| ds−

∫ tj+1

tj

|p′| ds , j = 1, . . . , n− 1 ,

are given by ψ′1(p) : C3([0, 1],R3)→ R3,

ψ′1(p)h = h′′

|p′|3/2
− 3

2
p′ · h′

|p′|7/2
p′′ − p

′′ · p′

|p′|7/2
h′ −

(
p′′ · h′

|p′|7/2
+ h′′ · p′

|p′|7/2
− 7

2
(p′′ · p′)(p′ · h′)
|p′|11/2

)
p′ (4.25)

and by ψ′2(p) : C3([0, 1],R3)→ R,

ψ′2,j(p)h = 1
n− 1

∫ 1

0

p′ · h′

|p′|
ds−

∫ tj+1

tj

p′ · h′

|p′|
ds , j = 1, . . . , n− 1 , (4.26)

respectively.

Proof. Let p ∈ P and let δ > 0 be so small that p + h ∈ P for all h ∈ C3([0, 1],R3) with
‖h‖C3 < δ. First, we note that the curvature from (4.19) can be written as

κ(s) =
|t′p(s)|
|p′(s)| =

∣∣∣∣ p′′(s)|p′(s)|2 −
(p′(s) · p′′(s))
|p′(s)|4 p′(s)

∣∣∣∣ ,
where tp denotes the tangent vector (see e.g. [119, Prop. 1.34]). Therefore,

κ2(s)|p′(s)| =
∣∣∣∣ p′′(s)
|p′(s)|3/2

− (p′(s) · p′′(s))
|p′(s)|7/2

p′(s)
∣∣∣∣2 .

Using Taylor’s theorem we find that for α > 0 it holds that
1

|p′ + h′|α = 1
|p′|α

− α

|p′|α+2 (p′ · h′) +O(‖h‖2C3). (4.27)

Consequently,

ψ1(p+ h) = (p′′ + h′′)
( 1
|p′|3/2

− 3
2
p′ · h′

|p′|7/2

)
−
(
(p′ · p′′)p′ + (p′ · h′′)p′ + (h′ · p′′)p′ + (p′ · p′′)h′

) ( 1
|p′|7/2

− 7
2
p′ · h′

|p′|11/2

)
+O(‖h‖2C3)

= p′′

|p′|3/2
− p

′ · p′′

|p′|7/2
p′ + h′′

|p′|3/2
− 3

2
p′ · h′

|p′|7/2
p′′ − p

′′ · p′

|p′|7/2
h′

−
(
p′′ · h′

|p′|7/2
+ h′′ · p′

|p′|7/2
− 7

2
(p′′ · p′)(p′ · h′)
|p′|11/2

)
p′ +O(‖h‖2C3).
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This yields that

1
‖h‖C3

|ψ1(p+ h)− ψ1(p)− ψ′1(p)h| → 0 as ‖h‖C3 → 0.

For the Fréchet derivative of ψ2,j we use Taylor’s theorem again and find that

|p′ + h′| = |p′|+ p′ · h′

|p′|
+O(‖h‖2C3). (4.28)

This already shows that ψ′2,j from (4.26) is the Fréchet derivative of ψ2,j .

In Algorithm 1 we describe the optimization scheme that is used to minimize |PN |2 from
(4.23). Here we denote the Jacobian of PN by JPN . The algorithm uses the following heuristic
stopping criterion. If the optimal step size s∗` determined by the line search in the current
iteration is zero or if the (potential) relative movement1 of the iterate defined by

Mov = ‖s∗`∆` ‖
‖ #”x`‖

(4.29)

is smaller than a tolerance tol > 0 and additionally, if the value of the objective functional
|P ( #”x`)|2 is dominated by the normalized residual term in (4.22), then the algorithm stops.
However, if the optimal step size s∗` determined by the line search is zero but the value of the
objective functional |P ( #”x`)|2 is dominated by the contribution of one of the two regularization
terms α2

jΨj(p4,`), j ∈ {1, 2}, then we conclude that in order to further improve the reconstruc-
tion, the corresponding regularization parameter should be reduced. In this case we replace αj
by αj

2 and restart the iteration using the current iterate for the initial guess. The fact that not a
single Maxwell system has to be solved during the reconstruction process makes this algorithm
extremely efficient, when compared to traditional iterative shape reconstruction methods for
inverse scattering problems for Maxwell’s equations (see e.g. [71, 72, 73, 79, 109]).

4.3 Numerical results
For our numerical reconstructions we study, as in Section 3.5, dielectric and metallic scattering
objects separately. In both cases, the far field data E∞ρ is computed by using the PMCHWT for-
mulation described in Appendix C together with Bempp. This reduces the possibility of inverse
crimes: The data generated by the forward solver (i.e. by Bempp) is more or less independent
from the inverse solver (see also [34, p. 179]). In all our examples we consider the construction of
cubic not-a-knot splines from given spatial points and approximate integrals using the composite
Simpson’s rule. We rigorously described this in Remark 3.28. For metallic objects, we further
refer to Remark 3.25, which enables us to upscale and downscale scattering objects in order to
perform simulations in computational units.

4.3.1 Reconstructions of dielectric thin tubes

For our numerical reconstructions of dielectric scattering objects we consider the three center
curves from Example 3.29-3.31 in Section 3.5 for the radius ρ = 0.03, embedded in free space.
For this particular radius the three-dimensional scattering object is also visualized in the top
row of Figure 3.3. The corresponding center curves can be found in Figure 3.2. The material
parameters corresponding to each example are as in the dielectric case of Section 3.5, i.e. εr = 2.5
and µr = 1.6 for Example 3.29, εr = 1 and µr = 2.1 for Example 3.30 and εr = 2.1 and µr = 1.0
in Example 3.31. For these parameters we do not have a specific material in mind. We study

1Note that s∗`∆` = #”x`+1 − #”x`. Thus, we call the expression in (4.29) the relative movement of the iterate.
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Figure 4.1: Reconstruction of the toroidal scatterer from Example 3.29. The top-left plot shows
the initial guess, and the bottom-right plot shows the final reconstruction.

these coefficients as a matter of interest and to test the basis of the reconstruction algorithm, that
is, the leading order term of the asymptotic perturbation formula. We simulate the far field data
E∞ρ for each of the three examples using the PMCHWT formulation described in Appendix C
together with Bempp, where we use triangulations of the boundaries of the tubes ∂Dρ with
26698 triangles for Example 3.29, 62116 triangles for Example 3.30, and 62116 triangles for
Example 3.31. This corresponds to 80094, 186348 and 186348 degrees of freedom, respectively
(see also Table 3.1). The values of E∞ρ are evaluated on the equiangular grid on S2 from (4.21)
with N = 10. As in Section 3.5, the incident field is a plane wave with polarization A =
[−1, 1i, 1 + 1i]> and direction of propagation θ = 1/

√
3[1, −1, 1]>. As the operating frequency

we consider f = 100MHz. With the electric permittivity ε0 and the magnetic permeability µ0
in free space from (2.19) the wave number is given by k = ω

√
ε0µ0 ≈ 2.1m−1, where ω = 2πf

is the angular frequency. The corresponding wavelength in the exterior is λ = 2π/k ≈ 3m.
Section 3.5 showed that the leading order term Ẽ∞ρ is a good approximation to the reference
far field E∞ρ in this regime. We choose the following parameters in Algorithm 1:

• Let the number of nodes of the cubic not-a-knot spline be given by n = 30.

• In order to approximate integrals using the composite Simpson’s rule, let the number of
elements on each spline segment be given by M = 11.

• Let the regularization parameters in step 2 by given by α1 = 0.06 and α2 = 0.9.

• We choose smax = 1 in the golden section line search in step 5 and we terminate each line
search after a fixed number of 10 steps.

• We choose the tolerance tol = 5× 10−3 in step 2 of the algorithm.
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Figure 4.2: Reconstruction of the thin tubular scatterer from Example 3.30. The top-left plot
shows the initial guess, and the bottom-right plot shows the final reconstruction.

The results are shown in Figure 4.1 - 4.3. Here, the top-left plots show the initial guess, and the
bottom-right plots show the final reconstruction. The remaining four plots show intermediate
approximations of the iterative reconstruction procedure. Each plot contains the exact center
curve K (solid blue) and the current approximation p4,` of the reconstruction algorithm after `
iterations (solid red with dots). Furthermore, we have included projections of these curves onto
the three coordinate planes to enhance the three-dimensional perspective.

Example 4.6. We consider the setting from Example 3.29. The initial guess is a straight line
segment connecting the points [0, 2, 0]> and [1, 2, 0]>. The reconstruction algorithm stops after
33 iterations. The initial guess, some intermediate steps and the final result of the reconstruction
algorithm are shown in Figure 4.1. The final reconstruction is very close to the exact center
curve K.

Example 4.7. We consider the setting from Example 3.30. The initial guess is a straight line
segment connecting the points [2, 0, 0]> and [2, 2, 0]>. The reconstruction algorithm stops after
44 iterations. The initial guess, some intermediate steps and the final result of the reconstruction
algorithm are shown in Figure 4.2. Again, the final reconstruction is very close to the exact
center curve K.

Example 4.8. We consider the setting from Example 3.31. The initial guess is a straight
line segment connecting the points [0,−1, 1]> and [0,−2, 1]>. The reconstruction algorithm
stops after 45 iterations. The initial guess, some intermediate steps and the final result of
the reconstruction algorithm are shown in Figure 4.3. As in the previous examples, the final
reconstruction is very close to the exact center curve K.

In all three examples Algorithm 1 provides accurate approximations to the center curve K of
the unknown scattering object Dρ. However, a suitable choice of the regularization parameters
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Figure 4.3: Reconstruction of the helical scatterer from Example 3.31. The top-left plot shows
the initial guess, and the bottom-right plot shows the final reconstruction.

Figure 4.4: Reconstructions from noisy data with 30% uniformly distributed additive noise.

α1 and α2 and an initial guess for p4 sufficiently close to the unknown center curve K are
crucial for a successful reconstruction. In our next example we study the sensitivity of the
reconstruction algorithm to noise in the far field data.

Example 4.9. We repeat the previous computations but we add 30% complex-valued uniformly
distributed error to the electric far field patterns E∞ρ that have been simulated using Bempp.
Precisely, we define the error level δ = 0.3 and set err(yjl) = rand1(yjl) + rand2(yjl)i, where
rand1(yjl), rand2(yjl) denote randomly generated numbers between −0.5 and 0.5 with yjl ∈ S2

from (4.21). These are the points for which observations of the far field E∞ρ are available. Then,
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Figure 4.5: Reconstruction of the silver torus from Example 3.32 and j = 2. The top-left plot
shows the initial guess, and the bottom-right plot shows the final reconstruction.

we define the noisy given far field E∞ρ,n by

E∞ρ,n(yjl) = err(yjl)
‖err‖L2

t (S2)
δ‖E∞ρ ‖L2

t (S2) +E∞ρ (yjl) . (4.30)

We use the same initial guesses and the same initial values for the regularization parameters α1
and α2 as in Examples 4.6 - 4.8. The three plots in Figure 4.4 show the exact center curves
(solid blue), the final reconstructions (solid red with dots), and the projections of these curves
onto the coordinate planes. The reconstruction algorithm stops after 37 iterations for Example
4.6, after 37 iterations for Example 4.7 and after 41 iterations for Example 4.8, respectively.
Despite the relatively high noise level, the final reconstructions are still very close to the exact
center curves K. In the first and second case we find that essentially the end segments of the
reconstruction distinguish from the true curve.

We note that Algorithm 1 incorporates all available a priori information about the radius
ρ, the shape of the cross-section of the unknown scatterer and its material parameters εr and
µr. Furthermore, it reconstructs a relatively low number of nodes corresponding to the spline
approximation p4 of the center curve K of the unknown thin tubular scattering object Dρ.
We also have carefully regularized the output least squares functional Φ in (4.20). This might
explain the good performance of the reconstruction algorithm even for rather noisy far field
data.

4.3.2 Reconstructions of metallic nanowires

We aim to reconstruct thin silver nanowires that possess the center curves described in Exam-
ples 3.32 - 3.34 for j = 2 together with a circular cross-section with radius ρ = 1.91nm. As in the
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Figure 4.6: Reconstruction of the silver nanowire from Example 3.33 and j = 2. The top-left
plot shows the initial guess, and the bottom-right plot shows the final reconstruction.

previous subsection, we simulate the far field data E∞ρ for each of these three examples using the
PMCHWT formulation described in Appendix C together with Bempp, where we use triangula-
tions of the boundaries of the tubes ∂Dρ with 26698 triangles for Example 3.29, 62116 triangles
for Example 3.30, and 62116 triangles for Example 3.31. This corresponds to 80094, 186348 and
186348 degrees of freedom, respectively (see also Table 3.3). The values of E∞ρ are evaluated
on the equiangular grid on S2 from (4.21) with N = 10. The incident field is a plane wave
with polarization A = [−1, 1i, 1 + 1i]> and direction of propagation θ = 1/

√
3[1, −1, 1]>. The

wavelength of the incident field is λ = 400nm, what corresponds to the frequency f ≈ 750THz.
The material parameters for silver for this wavelength are given by εr ≈ −4.42+0.21i and µr = 1
(see [83]). We recall that for computational purposes, we scale the scattering objects in such
a way that the exterior computational wave number kc = 1 may be used, although the actual
wave number is given by k = 2π/(0.4 × 10−6)m−1 in all examples (see Remark 3.25). In an
application, one would measure the far field E∞ρ corresponding to a thin metallic nanowire on
the equiangular grid (4.21). As the incident wavelength λ = 400nm is known, the scaled far field,
that we use as the given data for the reconstruction, is given by E∞ρ,c = αE∞ρ with the scaling
parameter α = k. Afterwards, the reconstruction algorithm in Algorithm 1 is supposed to find
the thin tubular scatterer corresponding to the computational wavelength kc = 1. Finally, the
nanowire in real units will be given by scaling the reconstructed wire by α−1. We choose the
following parameters in Algorithm 1:

• Let the number of nodes of the cubic not-a-knot spline be given by n = 30.

• In order to approximate integrals using the composite Simpson’s rule, let the number of
elements on each spline segment be given by M = 11.

• Let the regularization parameters in step 2 by given by α1 = 0.09 and α2 = 0.6.
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Figure 4.7: Reconstruction of the silver helix with two turns from Example 3.34 and j = 2. The
top-left plot shows the initial guess, and the bottom-right plot shows the final reconstruction.

• We choose smax = 1 in the golden section line search in step 5 and we terminate each line
search after a fixed number of 10 steps.

• We choose the tolerance tol = 5× 10−3 in step 2 of the algorithm.

The results are shown in Figure 4.5 - 4.7. Again, the top-left plots show the initial guess, and the
bottom-right plots show the final reconstruction. The remaining four plots show intermediate
approximations of the iterative reconstruction procedure. Each plot contains the exact center
curve K (solid silver) and the current approximation p4,` of the reconstruction algorithm after
` iterations (solid red with dots). Furthermore, we have included projections of these curves
onto the three coordinate planes to enhance the three-dimensional perspective.

Example 4.10. We consider the setting from Example 3.32. The initial guess is a straight
line segment connecting the points [0, 127.32, 0]>nm and [63.66, 127.32, 0]>nm. In computa-
tional units, this is the same initial guess as the one for the dielectric scattering objects from
Example 4.6. The initial guess, some intermediate steps and the final result of the reconstruc-
tion algorithm are shown in Figure 4.5. The reconstruction algorithm stops after 98 iterations.
Compared to the dielectric coefficients considered in Example 4.6, Algorithm 1 requires 46 more
steps to stop (see Figure 4.1). As in the dielectric case, the final reconstruction is very close to
the exact center curve K.

Example 4.11. We consider the setting from Example 3.33. The initial guess is a curve segment
that lies exactly on the center curve of the true scatterer. This corresponds to an additional
a-priori information about the nanowire that we want to reconstruct. For this initial guess, the
algorithm stops after 53 iterations. The initial guess, some intermediate steps and the final result
of the reconstruction algorithm are shown in Figure 4.6. The final reconstruction is very close
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Figure 4.8: Reconstructions from noisy data with 30% uniformly distributed additive noise.

to the exact center curve K. We point out that for this example, the reconstruction appears to
be more challenging than for the dielectric counterpart in Example 3.30. Using the same initial
guess as in Example 3.30 (in computational units) does not lead to a satisfying reconstruction
of the center curve. In fact, we found that a different initial guess often leads to a failure in the
reconstruction.

Example 4.12. We consider the setting from Example 3.34. The initial guess is a straight line
segment connecting the points [0, 0, 0]>nm and [0, 0, 318]>nm. The reconstruction algorithm
stops after 80 iterations. The initial guess, some intermediate steps and the final result of the
reconstruction algorithm are shown in Figure 4.7. The final reconstruction is very close to the
exact center curve K. Again, the reconstruction is more challenging than in the dielectric case
in Example 3.31: Different initial guesses often lead to a failure in the reconstruction.

In all examples, we find that the reconstruction algorithm provides a good approximation
to the true scattering object. As we already pointed out, an appropriate initial guess of the
algorithm is essential for a successful reconstruction. In our final example we add additional
noise to the given Bempp far field as we did for dielectric scattering objects in Example 4.9.

Example 4.13. We repeat the computations from Example 4.10 - 4.12, but we add 30%
complex-valued uniformly distributed error to the electric far field patterns E∞ρ that have been
simulated using Bempp as in (4.30). We use the same initial guesses and the same initial values
for the regularization parameters α1 and α2 as in Example 4.10 - 4.12. The three plots in Figure
4.8 show the exact center curves (solid silver), the final reconstructions (solid red with dots), and
the projections of these curves onto the coordinate planes. The reconstruction algorithm stops
after 70 iterations for Example 4.10, after 23 iterations for Example 4.11 and after 75 iterations
for Example 4.12, respectively. For the curves from Example 3.32 and 3.34 for j = 2, the recon-
structions from noisy data are still very close to the exact center curves K. For Example 3.33
however, the reconstructed center curve is off from the true curve. In particular, one end of the
curve strongly deviates from the scatterer’s true position.

Remark 4.14. By using Algorithm 1 we reconstructed dielectric and metallic thin tubular scat-
tering objects from given far field data corresponding to a single incident plane wave. We observe
that for an initial guess that is sufficiently close to the true scatterer’s center curve, the algorithm
provides a nice approximation to the true object. Our numerical examples hence imply that
the leading order term is well-suited for a derivative based reconstruction scheme. Therefore,
it should also provide a promising basis for a derivative-based shape optimization method for
designing highly electromagnetically chiral structures.
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Shape optimization for thin em-chiral structures

Electromagnetic chirality (em-chirality) describes the property of a scattering object to inter-
act differently with electromagnetic waves of different polarization handedness, called helicity.
Scatterers made of isotropic materials emitting a highly em-chiral effect are being considered
as possible building blocks of novel chiral metamaterials that exhibit effective chiral material
parameters many orders of magnitude larger than what is found in natural substances (see
e.g. [52, 76, 84]). Metamaterials with large em-chirality have potential applications in angle-
insensitive circular polarizers, which are materials that transmit one circular polarization of light
and that reflect and/or absorb the opposite handedness nearly completely (see e.g. [59, 60]).

In Section 3.5, we found that the leading order term of the electric far field in (3.22) provides a
good approximation to a reference solution computed by solving a boundary integral equation,
if the radius ρ of the scatterer is sufficiently small. Moreover, we found in Chapter 4 that
the leading order term can be used in an inexpensive Gauß-Newton algorithm that is able to
reconstruct thin tubular dielectric or metallic scattering objects from measurements of a single
electric far field pattern.

Our purpose in this chapter is to use the leading order term of the asymptotic perturba-
tion formula from Theorem 3.6 to establish an inexpensive shape optimization algorithm that
maximizes em-chirality for thin tubes. By means of this algorithm we want to design highly em-
chiral thin tubular scatterers and in particular, metallic nanowires for frequencies in the optical
regime. For this purpose, we proceed in the next sections as follows. We start this chapter with
the definition of em-chirality based on the work [49]. In this context we review scalar-valued
em-chirality measures. These measures quantify the degree of em-chirality of a scattering ob-
ject in terms of the singular values of suitable projections of the associated far field operator
onto subspaces of left and right circularly polarized fields. Our idea is to use the asymptotic
perturbation formula in (3.22) to find an asymptotic expansion of the far field operator via a
leading order term that is straightforward to evaluate plus terms of higher order. Hence, we
consider the operator TDρ that maps the thin tubular scatterer Dρ to its corresponding leading
order term of the far field operator expansion. Afterwards, the chirality measure uses only this
leading order term to quantify em-chirality. In order to establish a derivative-based optimiza-
tion scheme we require the shape derivative of the operator TDρ . We compute this derivative
and provide remarks on its implementation. Afterwards we set up the optimization scheme and
apply it in order to find optimal designs of em-chiral tubes and nanowires.

5.1 Definition of em-chirality
We first recall the definition of em-chirality, as introduced in [49]. In particular, we follow the
exposition in [15], in which the notion of em-chirality is described in terms of the electric far
field operator. We first discuss helicity, i.e. the handedness of an electromagnetic field. For a

97
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motivating example, we consider a plane wave
(
Ei,H i

)
that solves (2.30) and which is given by

Ei(x) = Aeikθ·x, H i(x) = 1
Z0

(θ ×A) eikθ·x . (5.1)

Here, θ ∈ S2 is the direction of propagation, A ∈ C3 \ {0} with A ·θ = 0 is the polarization and
Z0 =

√
µ0/ε0 denotes the impedance in free space. In physics literature (see e.g. [82, Chap. 7.2])

the polarization of a plane wave is introduced as the direction of the oscillation of the wave. For
a given direction of propagation θ ∈ S2, a general time-dependent plane wave can be written as

Ei(x, t) = (a1E1 + a2E2)ei(kθ·x−ωt) , (5.2)

where (a1,a2,θ) constitute an orthonormal system of R3 and E1 and E2 are complex numbers
(see [82, Eq. 7.19]). Dependent on the phases, i.e. the arguments of E1 and E2, the plane wave
in (5.2) shows different polarizations for variable times t. If both E1 and E2 have the same
phase, then the plane wave is linearly polarized. For different phases of E1 and E2, the plane
wave is in general elliptically polarized. For the special case that |E1| = |E2| and the phases
differ by ±π/2, the wave is defined as circularly polarized. In this case, (5.2) can be written as

Ei(x, t) = |E1|(a1 ± ia2)ei(kθ·x−ωt+α) , (5.3)

for a fixed α ∈ [0, 2π). The physical wave is obtained by studying the real part of (5.3), which
gives that

Re
(
Ei(x, t)

)
= |E1|(a1 cos(kθ · x− ωt+ α)∓ a2 sin(kθ · x− ωt+ α)) . (5.4)

Thus, for a fixed point in space x ∈ R3 and varying times t the magnitude of Re
(
Ei(x, t)

)
is

constant and equals |E1| and the orientation of the vector performs a circular motion in the
plane spanned by e1 and e2. Equivalently, one may consider a fixed time t, a point in space x
and move a quarter wavelength, i.e. λ/4, forward in space into the direction of propagation θ.
This gives that

Re
(
Ei(x+ λ/4θ, t)

)
= |E1|(a1 sin(kθ · x− ωt+ α)± a2 cos(kθ · x− ωt+ α)) . (5.5)

Comparing (5.4) and (5.5) implies that the orientation of the polarization has changed by π/2.
This observation is independent of the time t and therefore, we return to the time-independent
plane waves from (5.1). We distinguish between left and right circular polarization, dependent on
the direction, in which the real part of the amplitude moves along the direction of propagation.
Since Re(Ei),Re(H i) and θ are pairwise orthogonal, |Ei|/|H i| = Z0 and Re(Ei) × Re(H i)
points in the direction θ, we find that the waves perform a anticlockwise/clockwise motion along
the direction of propagation θ (when viewed from the sender), if Ei(x + λ/4θ) coincides with
∓Z0H

i(x) for all x ∈ R3. This gives that

∓ (θ ×A) eikθ·x = ∓Z0H
i(x) = Ei (x+ λ/4θ) = iAeikθ·x. (5.6)

This introductory example reveals that the polarizationA corresponding to a circularly polarized
plane wave must satisfy A = ±i (θ ×A). An example of such a case can be found in Figure 5.1.
Here, the solid blue line shows the real part of the plane wave Ei(x) as in (5.1) with direction of
propagation θ = [0, 1, 0]> and polarization A = [1, 0, i]> for x = [0, s, 0]>, where s ∈ [0, 4λ].
From the perspective of the sender, the real part of Ei performs an anticlockwise motion. This
is visualized by the solid blue arrows. The solid red arrows, on the other hand, show the real
part of the magnetic field H i. If we consider the orthogonal plane to θ at a fixed spatial point
and track the evolution of Re(Eie−iωt) for t > 0, then this field performs a clockwise motion
from the perspective of the sender.
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Figure 5.1: Visualization of a circularly polarized plane wave with direction of propagation
θ = [0, 1, 0]> and polarization A = [1, 0, i]>. From the perspective of the sender, the wave
performs an anticlockwise motion.

From now on, let A ∈ L2
t (S2). A Herglotz wave with density A is a linear superposition of

plane waves, for which we can write the electric field as

Ei [A] (x) =
∫
S2
A (θ) eikθ·x ds(θ), x ∈ R3 . (5.7)

Let D be a bounded Lipschitz domain. One might already think of D as a thin tubular object
Dρ as in (3.7) for a fixed radius ρ > 0. Let D be the scattering object in the Maxwell system
(2.34) together with (2.35) (or (3.9) together with (3.10) in the case D = Dρ). If the incident
field in the Maxwell system is given by Ei [A] from (5.7), then we denote the corresponding
scattered and total fields by Es [A] and E [A], respectively. The electric far field patterns
E∞ [A] excited by Herglotz waves as incident fields are fully described by the electric far field
operator FD : L2

t (S2)→ L2
t (S2), which is defined by

(FDA) (x̂) =
∫
S2
E∞ (x̂;θ)A(θ) ds(θ) . (5.8)

For later reference, we note that FD is an integral operator with a smooth kernel (see e.g. [34,
Thm. 6.9]) and thus, FD is compact. By linearity we have that E∞ [A] = FDA. For a Herglotz
field as in (5.7) we cite from [15, Def. 2.1] the following property of the density A ∈ L2

t (S2) that
characterizes helicity of the field Ei [A].

Definition 5.1. A Herglotz wave field Ei [A] as in (5.7) with A ∈ L2
t (S2) is called left (or

right) circularly polarized if A is an eigenfunction for the eigenvalue +1 (or −1, respectively) of
the operator C : L2

t (S2)→ L2
t (S2) with

CA(θ) = i (θ ×A(θ)) , θ ∈ S2. (5.9)

From (5.6) we found that a plane wave as in (5.1) has helicity±1 if and only if the polarization
A ∈ C3 \ {0} satisfies A = ±i (θ ×A). Therefore, the eigenvalue problem to find A ∈ L2

t (S2)
satisfying CA(θ) = ±A with C from (5.9) is a generalization of helicity to Herglotz waves. The
eigenspaces of the operator C corresponding to the eigenvalues ±1 are given by

V ± =
{
A± CA

∣∣ A ∈ L2
t (S2)

}
(5.10)

(see [15, Rmk. 2.2]). This can be seen from the calculation

C(A± CA)(θ) = CA(θ)± C2A(θ) = CA(θ)∓ (θ × (θ ×A(θ))) = CA(θ)±A(θ) .
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Moreover, the decomposition

A = 1
2 (A+ CA) + 1

2 (A− CA)

and the straightforward calculation∫
S2

(A+ CA) · (A− CA) ds = 0

shows that

L2
t (S2) = V + ⊕ V −

(see [15, p. 561]). The corresponding orthogonal projections onto the spaces V ± are given by
P±A = 1/2 (A± CA). These observations imply a decomposition of a Herglotz wave Ei[A] in
fields of pure positive and negative helicity. This is summarized in the following corollary.

Corollary 5.2. A Herglotz wave field Ei[A] as in (5.7) with A ∈ L2
t (S2) can be uniquely decom-

posed in fields of pure positive and negative helicity. The decomposition is done by projecting the
density A to the spaces V + (positive helicity) and V − (negative helicity) using the orthogonal
projections

P±A = 1
2 (A± CA) . (5.11)

The decomposition of fields in different helicities from Corollary 5.2 based on the density
A and was established in [15]. To work directly with the corresponding electric fields, we note
that for a Herglotz field Ei [A] with density A the condition CA = ±A with C from (5.9) is
equivalent to

k−1 curlEi [A] = ±Ei [A] . (5.12)

This is seen by using [99, Lem. 14.11], which states that Ei[A] = 0 is equivalent to A = 0. The
property in Equation (5.12) is used to describe helicity for more general fields. Let Ω ⊂ R3 be
a bounded domain. A solution to

curl curlU − k2U = 0 in Ω (5.13)

is said to have helicity ±1, if U is an eigenfunction of the operator k−1 curl for the eigenvalue
±1, respectively. Using the two subspaces of Beltrami fields1

W± (Ω) =
{
U ∈ H (curl,Ω)

∣∣ k−1 curlU = ±U
}
, (5.14)

we find that every solution to (5.13) can be decomposed into a sum of two fields of helicity +1
and −1, respectively (see also [15, Rmk. 2.3]). To see this, let E denote a solution to (5.13) and
define H = (iωµ0)−1 curlE. Then, we set

E+ = E + iZ0H ∈W+(Ω) and E− = E − iZ0H ∈W−(Ω)

and see that E = 1/2
(
E+ +E−

)
. Using straightforward calculations it can be seen that E+

and E− are orthogonal with respect to the inner product

〈u,v〉 =
∫

Ω
curlu · curlv + k2u · v dx .

The fields E+ and E− are called the Riemann-Silberstein linear combinations (see e.g. [21]).
The definition of helicity for fields satisfying (5.13) also applies for the scattered field Es[A]

in R3 \D. In order to characterize helicity for Es[A] using the spaces V ±, we cite the following
theorem from [15, Thm. 2.4].

1This is a field U satisfying curlU = σU for σ 6= 0 (see e.g. [92, §1.3])
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Figure 5.2: Visualization of the scattering problem concerning em-chirality. The incident fieldEi

(bottom-left) and the scattered field Es (top-right) are both decomposed in fields with helicity
+1 (red) and fields with helicity −1 (blue).

Theorem 5.3. The far field pattern E∞[A] is an element of V ± if and only if for any open
and bounded set Ω ⊂ R3 \D we have Es[A] ∈W±(Ω).

To conclude, we have that

Ei[A] has helicity ± 1 if and only if A ∈ V ±,
Es[A]

∣∣
R3\D has helicity ± 1 if and only if E∞[A] ∈ V ±.

A visualization of the wave decomposition is found in Figure 5.2. Here, the incident field,
visualized by a plane wave in the bottom-left and the scattered field in the top-right are both
decomposed in fields with helicity +1 (red) and −1 (blue).

Electromagnetic chirality describes the difference in the interaction of a scattering object
with fields of opposite helicities. Using the projections P± : L2

t (S2) → V ± from (5.11), we can
decompose the electric far field operator FD via

FD = F++
D + F+−

D + F−+
D + F−−D . (5.15)

Here, for p, q ∈ {+,−}, the helicity contribution of the q incoming field to the p scattered field
is given by FpqD = PpFDPq. We note that FpqD is a composition of a compact operator with two
bounded operators and therefore, it is compact. It has been proven in [15, 49] that if a scatterer
is geometrically achiral, then there exists a unitary operator U : L2

t (S2)→ L2
t (S2) such that

CU = −UC and FDU = UFD . (5.16)

The first condition ensures that the unitary transformation U swaps helicity, as with A±CA ∈
V ± the property CU = −UC gives that U (A± CA) ∈ V ∓. Thus, geometrical achirality of
an object D can be understood as the equivalence of the far field operator FD to itself by
means of a unitary transform that swaps helicity. An immediate consequence of (5.16) is that
F++
D = UF−−D U∗ and F

−+
D = UF+−

D U∗. The first equality can be seen by using the computation

UF−−D U
∗ = U

(1
2I − C

)
FD

(1
2I − C

)
U∗ =

(1
2I + C

)
UFDU∗

(1
2I + C

)
= F++

D
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where we used the definitions of F++
D and F−−D , the definition of P± from (5.11) and the

definition of the unitary transform that swaps helicity in (5.16). In the exact same way one
shows that (5.16) implies F−+

D = UF+−
D U∗. Based on this observation, the following more

general definition of electromagnetic chirality was introduced in [15, Def. 2.5].

Definition 5.4. A scattering object D is called electromagnetically achiral (em-achiral) if there
exist unitary operators U (j) : L2

t (S2) → L2
t (S2) satisfying U (j)C = −CU (j), j = 1, . . . , 4, such

that

F++
D = U (1)F−−D U

(2) and F−+
D = U (3)F+−

D U
(4) . (5.17)

If this is not the case, we call the scattering object D electromagnetically chiral (em-chiral).

The property for em-achirality in (5.17) immediately implies that the singular values of F++

and F−− as well as those of F+− and F−+ coincide (see also [15, p. 565]). Let us denote the
singular values of the operator Fpq by (σpqj )j∈N ∈ `2, where p, q ∈ {+,−}. The quantification of
em-chirality of a scattering object D relies in measuring the distance between the corresponding
sequences of the singular values (see also the definitions in Appendix A). In fact, following [49],
we define the chirality measure χ2 of a scatterer D associated to the far field operator FD as

χ2 (FD) =
(∥∥(σ++

j )j∈N − (σ−−j )j∈N
∥∥2
`2

+
∥∥(σ+−

j )j∈N − (σ−+
j )j∈N

∥∥2
`2

)1/2
. (5.18)

The far field operator FD is an integral operator and its kernel is smooth. As a consequence,
the singular values decay exponentially (see e.g. [91, Thm. 15.20]) and the chirality measure χ2
in (5.18) is well-defined. In particular, FD is a Hilbert-Schmidt operator since every integral
operator from L2

t (S2) to L2
t (S2) with a kernel in L2 is a Hilbert-Schmidt operator (see e.g. [44,

Chap. XI.6]). Moreover, using (5.18) and that the singular values are non-negative, it holds that

χ2 (FD)2 = ‖FD‖2HS − 2
∑
j∈N

(σ++
j σ−−j + σ−+

j σ+−
j ) ≤ ‖FD‖2HS . (5.19)

If F++
D = F−+

D = 0 or F−−D = F+−
D = 0, i.e. if fields of either positive or negative helicity

are not scattered, then the upper bound in (5.19) is attained. Thus, invisibility of an object
with respect to fields of one helicity implies χ2(FD) = ‖FD‖HS. If in addition, the reciprocity
principle2 holds, which is the case for the setting considered here, (see e.g. [34, Thm. 9.6]), then
the implication is also valid in the other direction (see [15, Lem. 4.3]). In particular, the proof
of [15, Lem. 4.3] shows that for a reciprocal scatterer, it holds that F+−

D = 0 if and only if
F−+
D = 0. The squared Hilbert-Schmidt norm ‖FD‖2HS of the far field operator is sometimes

called the total interaction cross section of the scattering object D.
Remark 5.5. A scattering object that preserves helicity satisfies F+−

D = F−+
D = 0. Therefore,

preservation of helicity is a necessary condition for the chirality measure χ2 from (5.18) to attain
its upper bound. A dual symmetric scatterer D is a scattering object for which the solution
(E,H) to Maxwell’s equations (2.31) in some Ω ⊂ R3 stays a solution, when it is transformed
by the duality transform

Eθ = E cos(θ)− Z0H sin(θ) , Z0Hθ = E sin(θ) + Z0H cos(θ) (5.20)

(see e.g. [47, 48, 53]), where again, Z0 =
√
µ0/ε0 is the impedance in free space. For the

incident fields (Ei,H i) satisfying (2.30), the transformed fields in (5.20) remain a solution to
time-harmonic Maxwell’s equations in all R3 (this is also found in e.g. [82, Eq. 6.151]). However,
the presence of a scatterer D in general breaks this property (see e.g. [51]). In [47, Sec. 2.7]
and [53] it is shown that εr = µr is the condition for duality symmetry for the macroscopic
Maxwell’s equations (2.31) and that this implies preservation of helicity independent from the
shape of the scatterer D.

2A scatterer is said to be reciprocal if E∞(x̂, θ) = (E∞(−θ,−x̂))> for all x̂, θ ∈ S2 (see [34, Eq. 6.87]).
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The previous discussion motivates the following definition.

Definition 5.6. A scattering object D is said to be maximally em-chiral if χ2(FD) = ‖FD‖HS.

If the scattering object in the center of Figure 5.2 was maximally em-chiral, then either the
+1 or the −1 helicity contribution in the scattered field would vanish.

In [72, Sec. 5.2] a relaxation for χ2 was introduced. We denote it by χHS with

χHS(FD) =
((
‖F++

D ‖HS − ‖F−−D ‖HS
)2 +

(
‖F−+

D ‖HS − ‖F+−
D ‖HS

)2)1/2

=
(
‖FD‖2HS − 2

(
‖F++

D ‖HS‖F−−D ‖HS + ‖F−+
D ‖HS‖F+−

D ‖HS
))1/2

.

(5.21)

The Cauchy–Schwarz inequality in `2 shows that∑
j∈N

σ++
j σ−−j ≤ ‖(σ++

j )j∈N‖`2‖(σ−−j )j∈N‖`2 = ‖F++
D ‖HS‖F−−D ‖HS ,∑

j∈N
σ−+
j σ+−

j ≤ ‖F−+
D ‖HS‖F+−

D ‖HS .

Therefore, it holds that

χHS(FD) ≤ χ2(FD) (5.22)

and comparing (5.19) and (5.22) yields that

χHS(FD) = ‖FD‖HS if and only if χ2(F) = ‖FD‖HS .

The relaxation χHS is indeed smooth. The computation of the Fréchet derivative of χHS with
respect to its argument is studied in Section 5.5.

5.2 Quantifying em-chirality for thin tubular scattering objects
In the literature, thin helical structures have been proposed as candidates for highly em-chiral
scatterers (see e.g. [7, 49, 60]). In this section we use the results from Chapter 3 and consider
the quantification of em-chirality for thin tubular scattering objects. Let Dρ denote a thin
tubular scattering object as in (3.7). Let the cross-section of the scattering object Dρ be given
by D′ρ = ρD′ with a Lipschitz domain D′ ⊂ R2, that possibly twists around the spine curve K.
The support Dρ of a nanowire is uniquely determined by a parametrization p of the spine curve
K and an associated geometry adapted frame (tp, rp,θ, sp,θ), defined by

[rp,θ(s) | sp,θ(s)] = [rp(s) | sp(s)]Rθ(s) . (5.23)

Therefore, we define a set of admissible parametrizations for supports of thin nanowires by

Uad =
{

(p, Vp,θ) ∈ C3([0, 1],R3)× C2([0, 1],SO(3))
∣∣

p([0, 1]) is simple, p′(s) 6= 0, and Vp,θ(s)e1 = p′(s)/|p′(s)| for all s ∈ [0, 1]
}
. (5.24)

Here, e1 = (1, 0, 0)> denotes the first standard basis vector in R3. Measuring em-chirality, i.e.
evaluating (5.18) (or (5.21)) for a given thin tubular object Dρ, requires the evaluation of the
corresponding far field operator. We denote the far field operator corresponding to Dρ by FDρ
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as in (5.8). Recalling the asymptotic representation formula for electric far fields from (3.22),
we define the operator TDρ : L2

t (S2)→ L2
t (S2) by

(
TDρA

)
(x̂) = (kρ)2|D′|

(∫
K

(µr − 1) e−ikx̂·y (x̂× I3)Mµ(y)
( i
k

curlEi[A](y)
)

ds(y)

+
∫
K

(εr − 1) e−ikx̂·y (x̂× (I3 × x̂))Mε(y)Ei[A](y) ds(y)
)
. (5.25)

We choose the support of the thin nanowire Dρ to be parametrized by (p, Vp,θ) ∈ Uad. Then,
Theorem 3.16 gives that the polarization tensors Mγ , γ ∈ {ε, µ}, are given by

Mγ(p(s)) = Vp,θM
γV >p,θ for a.e. s ∈ [0, 1] and γ ∈ {ε, µ} , (5.26)

where the matrix Mγ is given by

Mγ =

 1 0 0
0
0 mγ

 ∈ C3×3 ,

where mγ denotes the two-dimensional polarization tensor corresponding to the cross-sections
(D′ρn)n∈N. Note that here, compared to the representation of the polarization tensor in (3.70),
the rotation is included in the geometry adapted frame (i.e. in Vp,θ). From Theorem 3.6, we find
that

FDρ = TDρ + o((kρ)2) as ρ→ 0. (5.27)

The remainder o((kρ)2) is such that
∥∥o((kρ)2)

∥∥
HS /(kρ)2 converges to 0 as ρ→ 0. The incident

field Ei[A] that appears in (5.25) is a Herglotz wave field with density A as in (5.7). We recall
the vector spherical harmonics Um

n and V m
n from (2.16) and define the circularly polarized vector

spherical harmonics by

Am
n = 1√

2
(Um

n + iV m
n ) and Bm

n = 1√
2

(Um
n − iV m

n ) (5.28)

for m = −n, . . . , n and n = 1, 2, . . . . Since Um
n and V m

n form an orthonormal basis of L2
t (S2),

we find that Am
n and Bm

n form an orthonormal basis of V + and V − from (5.10), respectively.
We refer to these bases as the helicity bases. Especially, it holds that

iθ ×Am
n (θ) = Am

n (θ) and iθ ×Bm
n (θ) = −Bm

n (θ), θ ∈ S2.

Further, recalling the entire wave fields from (2.23), we find that the Beltrami fields correspond-
ing to Am

n and Bm
n as described in (5.14) are given by

Pm
n (x) = Mm

n + k−1 curlMm
n and Qm

n (x) = Mm
n − k−1 curlMm

n (5.29)

for m = −n, . . . , n and n = 1, 2, . . . . In fact, the Beltrami fields Pm
n , Qm

n are linked to Am
n ,B

m
n

via Ei[Am
n ] =

√
8πin−1Pm

n and Ei[Bm
n ] = −

√
8πin−1Qm

n . This is derived in detail in the proof
of the next lemma and is found in (5.38). Since

curlPm
n = kPm

n and curlQm
n = −kQm

n (5.30)

we have that Pm
n ∈ W+ and Qm

n ∈ W−. The asymptotic expansions in (5.27) is now used to
approximate FDρ by TDρ in order to quantify em-chirality for thin nanowires. It turns out that
the representation of TDρ in the helicity bases Am

n and Bm
n can be written down by using the

Beltrami fields Pm
n ,Q

m
n . This is the result of the following lemma.
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Lemma 5.7. Let A ∈ L2
t (S2) with

A =
∞∑
n=1

n∑
m=−n

(amn Am
n + bmn B

m
n ) . (5.31)

Then,

TDρA =
∞∑
n=1

n∑
m=−n

(cmn Am
n + dmn B

m
n ) (5.32)

with

cmn =
∞∑
n′=1

n′∑
m′=−n′

(
am
′

n′ 〈TDρAm′
n′ ,A

m
n 〉L2

t (S2) + bm
′

n′ 〈TDρBm′
n′ ,A

m
n 〉L2

t (S2)

)
(5.33a)

dmn =
∞∑
n′=1

n′∑
m′=−n′

(
am
′

n′ 〈TDρAm′
n′ ,B

m
n 〉L2

t (S2) + bm
′

n′ 〈TDρBm′
n′ ,B

m
n 〉L2

t (S2)

)
. (5.33b)

Introducing, for any U ,V ∈ C(K,C3), the expressions

J ±(U ,V ) = 8(πkρ)2|D′|
∫
K

(
± (εr − 1)V ·MεU + (µr − 1)V ·MµU

)
ds ,

we have

〈TDρAm′
n′ ,A

m
n 〉L2

t (S2) = in′−nJ +(Pm′
n′ ,P

m
n

)
, (5.34a)

〈TDρBm′
n′ ,A

m
n 〉L2

t (S2) = in′−nJ −
(
Qm′
n′ ,P

m
n

)
, (5.34b)

〈TDρAm′
n′ ,B

m
n 〉L2

t (S2) = in′−nJ −
(
Pm′
n′ ,Q

m
n

)
, (5.34c)

〈TDρBm′
n′ ,B

m
n 〉L2

t (S2) = in′−nJ +(Qm′
n′ ,Q

m
n

)
. (5.34d)

Proof. The expansions (5.32) and (5.33) follow by linearity. In order to prove the expansions
in (5.34), we first cite a series representation for the fundamental solution of the Helmholtz
equation Φ from (2.25) (see e.g. [34, Thm. 6.29, Eq. (6.83)]). For p ∈ C3 it holds that

Φ(x,y)p = ik
∞∑
n=1

n∑
m=−n

Mm
n (x)Nm

n (y) · p

+ i
k

∞∑
n=1

n∑
m=−n

curlMm
n (x) curlNm

n (y) · p+ i
k

∞∑
n=1

n∑
m=−n

∇umn (x)∇vmn (y) · p , (5.35)

where umn and vmn denote spherical wave functions (see e.g. [34, Thm. 2.10]) that can be written
in spherical coordinates (2.15) as

umn (x) = jn(kr)Y m
n (x̂) for x ∈ R3 and vmn (x) = h(1)

n Y m
n (x̂) for x ∈ R3 \ {0} .

The series expansion in (5.35) and its term by term derivatives both converge uniformly on
compact subsets of |y| > |x|. Using the asymptotic behavior of the Hankel function (see e.g.
[34, Eq. 2.42]) yields that the far fields of Nm

n and curlNm
n from (2.24) are given by

(Nm
n )∞ (x̂) = − 4π

in+1k
V m
n (x̂) and (curlNm

n )∞ (x̂) = 4π
in U

m
n (x̂) . (5.36)

Splitting the gradient into its tangential and radial part yields

∇vmn (x) = h(1)
n

′(kr)kY m
n (x̂)x̂+ h

(1)
n (kr)
r

∇S2Y m
n (x̂) ,
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from which we find by using [34, Eq. 2.42] once more, that

(∇vmn )∞ (x̂) = 4π
in Y

m
n (x̂)x̂ .

The far field of the expansion (5.35) now reads

e−ikŷ·xp = −4π
∞∑
n=1

(−i)n
n∑

m=−n
Mm

n (x)V m
n (ŷ) · p

+ 4π
k

∞∑
n=1

(−i)n−1
n∑

m=−n

(
curlMm

n (x)Um
n (ŷ) · p+∇umn (x)Y m

n (ŷ)ŷ · p
)
.

Using the orthogonality of the vector spherical harmonics, it follows that

〈e−ikŷ·x,Um
n (ŷ)〉L2(S2) = 4π

k
(−i)n−1curlMm

n (x) , (5.37a)

〈e−ikŷ·x,V m
n (ŷ)〉L2(S2) = −4π(−i)nMm

n (x) (5.37b)

with the scalar product between a scalar and a vector understood to be taken componentwise.
Recalling (5.28) and (5.29) we find that

〈e−ikŷ·x,Am
n (ŷ)〉L2(S2) =

√
8π(−i)n−1Pm

n (x) ,

〈e−ikŷ·x,Bm
n (ŷ)〉L2(S2) = −

√
8π(−i)n−1Qm

n (x) .

Thus,

Ei[Am
n ](x) = 〈eikŷ·x,Am

n (ŷ)〉L2(S2) =
√

8πin−1Pm
n (x) , (5.38a)

Ei[Bm
n ](x) = 〈eikŷ·x,Bm

n (ŷ)〉L2(S2) = −
√

8πin−1Qm
n (x) (5.38b)

and applying (5.30) gives

curlEi[Am
n ](x) =

√
8πkin−1Pm

n (x) , (5.39a)
curlEi[Bm

n ](x) =
√

8πkin−1Qm
n (x) . (5.39b)

In order to derive the scalar products that are needed for the representation of the far field
operator in the helicity bases Am

n and Bm
n , we note that the fundamental solution of time-

harmonic Maxwell’s equation satisfies

G∞(x, ŷ)p = 1
k2 (curly curly Φ(x, ·)p)∞ (ŷ) and curly G∞(x, ŷ) = curly (Φ(x, ·)p)∞ (ŷ) .

Again, using [34, Thm. 6.29] and the foregoing discussion, gives that

1
k2 curly curly (Φ(x,y)p)

= ik
∞∑
n=1

n∑
m=−n

Nm
n (y)Mm

n (x) · p+ i
k

∞∑
n=1

n∑
m=−n

curlNm
n (y)curlMm

n (x) · p

and an alternative version to (5.35), which reads

Φ(x,y)p = ik
∞∑
n=1

n∑
m=−n

Nm
n (y)Mm

n (x) · p

+ i
k

∞∑
n=1

n∑
m=−n

curlNm
n (y)curlMm

n (x) · p+ i
k

∞∑
n=1

n∑
m=−n

∇vmn (y)∇umn (x) · p .
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Using (5.36) and (2.29) yields

e−ikŷ·x (ŷ × I3)× ŷ)p

= −4π
∞∑
n=1

(−i)n
n∑

m=−n
V m
n (ŷ)Mm

n (x) · p+ 4π
k

∞∑
n=1

(−i)n−1
n∑

m=−n
Um
n (ŷ)curlMm

n (x) · p

and

e−ikŷ·x (ŷ × I3)p = 1
ik (curly (Φ(x, ·)p))∞ (ŷ)

= 4π
∞∑
n=1

(−i)n
n∑

m=−n
Um
n (ŷ)Mm

n (x) · p− 4π
k

∞∑
n=1

(−i)n+1
n∑

m=−n
V m
n (ŷ)curlMm

n (x) · p .

Hence, we obtain that

〈e−ikŷ·x (ŷ × I3)× ŷ) ,Am
n (ŷ)〉L2

t (S2) =
√

8π(−i)n−1Pm
n (x)>, (5.40a)

〈e−ikŷ·x (ŷ × I3)× ŷ) ,Bm
n (ŷ)〉L2

t (S2) = −
√

8π(−i)n−1Qm
n (x)>, (5.40b)

〈e−ikŷ·x (ŷ × I3) ,Am
n (ŷ)〉L2

t (S2) =
√

8π(−i)nPm
n (x)>, (5.40c)

〈e−ikŷ·x (ŷ × I3) ,Bm
n (ŷ)〉L2

t (S2) =
√

8π(−i)nQm
n (x)>, (5.40d)

with the scalar product between a matrix and a vector understood to be taken column by
column. Now, we can combine (5.38), (5.39) and (5.40) with the representation of the operator
TDρ in (5.25) to end up with the terms in (5.34).

Remark 5.8. The circularly polarized vector spherical harmonics Am
n and Bm

n , m = −n, . . . , n,
n = 1, 2, . . . , in (5.28) have been constructed in such a way that they span the subspaces V +

and V −, respectively. Thus, the expansion in Lemma 5.7 immediately gives corresponding basis
representations of the projected operators T pqDρ for p, q ∈ {+,−}, that yield a decomposition of
TDρ similar to (5.15).
Remark 5.9. In numerical implementations the series over n in (5.31) and (5.32) has to be
truncated at some N ∈ N. In [70] the authors studied the singular value decomposition of the
linear operator that maps current densities supported in the ball BR(0) of radius R around
the origin to their radiated far field patterns and showed that for all practically relevant source
distributions the radiated far field pattern is well approximated by a vector spherical harmonics
expansion of orderN & kR. Thus, we choose the truncation indexN in the series representations
in (5.31) and (5.32) such that N & kR, where BR(0) denotes the smallest ball around the origin
that includes the scattering object Dρ. We further note that the truncation at index N yields a
discretization of TDρ denoted by Tρ,N , which is given by

Tρ,N =
[
AA BA
AB BB

]
(5.41)

with

XY =



〈TDρX−1
1 ,Y −1

1 〉 〈TDρX0
1 ,Y

−1
1 〉 〈TDρXN

N ,Y
−1

1 〉
〈TDρX−1

1 ,Y 0
1 〉 〈TDρX0

1 ,Y
0

1 〉

〈TDρXN
N ,Y

N−1
N 〉

〈TDρX−1
1 ,Y N

N 〉 〈TDρXN−1
N ,Y N

N 〉 〈TDρXN
N ,Y

N
N 〉


(5.42)

for X,Y ∈ {A,B}. The scalar products in (5.42) are given by (5.34). A single block XY has
dimension Q′ ×Q′ with Q′ = N(N + 2), and consequently, Tρ,N ∈ C2Q′×2Q′ .
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Before we continue with the computation of the Fréchet derivative of TDρ , we study the link
of the far field operator to the T-matrix. This is done in the next remark.
Remark 5.10. In the work [49] the definition and quantification of em-chirality is defined in terms
of the transition matrix T , which is usually referred to as the T-matrix (see e.g. [98, Chap. 5]).
Let R > 0 be so large that Dρ ⊂ BR(0). For an incident field Ei and its corresponding scattered
field Es, we consider the representations

Ei =
∞∑
n=1

n∑
m=−n

amn k
−1 curlMm

n + bmnM
m
n in R3 , (5.43a)

Es =
∞∑
n=1

n∑
m=−n

cmn k
−1 curlNm

n + dmnN
m
n in R3 \BR(0) (5.43b)

(see e.g. [57, Eq. (2)–(6)], [98, Eq. (5.2)–(5.3), App. C]), whereMm
n , curlMm

n andNm
n , curlNm

n

are defined in (2.23) and (2.24), respectively. Note that in (5.43), we added the factor k−1 in
front of curlMm

n and curlNm
n in order to correct the different scaling compared to the work

[57]. By the linearity of the scattering problem, we define the T-matrix T in such a way that[
c
d

]
= T

[
a
b

]
.

Here, the vectors a, b, c,d contain the coefficients amn , bmn , cmn , dmn in succession form = −n, . . . , n,
n = 1, 2, . . . . In what follows, we study the entries of T in detail. Similar computations for the
representation of the T-matrix were done in [58]. For a scattering object D, we denote by S the
linear operator, that maps an incident field Ei to its corresponding scattered field Es outside
of D. With Ei,Es from (5.43) it therefore holds that S(Ei) = Es. Developing the function
S(k−1 curlMm

n ) and S(Mm
n ) as in (5.43) yields

S(k−1 curlMm
n ) =

∞∑
n′=1

n′∑
m′=−n′

t
(1)
n′m′,nmk

−1 curlNm′
n′ + t

(2)
n′m′,nmN

m′
n′ in R3 \BR(0) , (5.44a)

S(Mm
n ) =

∞∑
n′=1

n′∑
m′=−n′

t
(3)
n′m′,nmk

−1 curlNm′
n′ + t

(4)
n′m′,nmN

m′
n′ in R3 \BR(0) . (5.44b)

Using these representations with Ei from (5.43) and changing the order of summation gives

S(Ei) =
∞∑
n′=1

n′∑
m′=−n′

(
k−1 curlNm′

n′

( ∞∑
n=1

n∑
m=−n

t
(1)
n′m′,nma

m
n + t

(3)
n′m′,nmb

m
n

)

+Nm′
n′

( ∞∑
n=1

n∑
m=−n

t
(2)
n′m′,nma

m
n + t

(4)
n′m′,nmb

m
n

))
in R3 \BR(0) .

Comparing coefficients with Es in (5.43) yields that

cm
′

n′ =
∞∑
n=1

n∑
m=−n

t
(1)
n′m′,nma

m
n + t

(3)
n′m′,nmb

m
n and dm

′
n′ =

∞∑
n=1

n∑
m=−n

t
(2)
n′m′,nma

m
n + t

(4)
n′m′,nmb

m
n .

Thus, the entries of the T-matrix T are determined by t(j)n′m′,nm, 1 ≤ j ≤ 4. For the expressions
in (5.44) we extract the far field on both sides, respectively. On the left hand sides, we obtain
the far fields corresponding to the incident field k−1 curlMm

n andMm
n , respectively. By (5.37),

these functions are Herglotz waves as in (5.7) with densities (4πin−1)−1Um
n and −(4πin)−1V m

n ,
respectively. The far field corresponding to a Herglotz wave is, by linearity, given by the far field
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operator with the corresponding density. On the right hand sides of (5.44) we use the expression
for the far field from (5.36). Then we find due to the orthogonality of Um

n and V m
n that

t
(1)
n′m′,nm = ik

16π2 in′−n〈FDUm
n ,U

m′
n′ 〉L2

t (S2) , t
(3)
n′m′,nm = ik

16π2 in′−n+1〈FDV m
n ,Um′

n′ 〉L2
t (S2) ,

t
(2)
n′m′,nm = ik

16π2 in′−n−1〈FDUm
n ,V

m′
n′ 〉L2

t (S2) , t
(4)
n′m′,nm = ik

16π2 in′−n〈FDV m
n ,V m′

n′ 〉L2
t (S2) .

For A ∈ L2
t (S2) we use the basis representations

A =
∞∑
n=1

n∑
m=−n

emn U
m
n + fmn V

m
n and FDA =

∞∑
n=1

n∑
m=−n

gmn U
m
n + hmn V

m
n .

In the same way as above, it can be seen that

gm
′

n′ =
∞∑
n=1

n∑
m=−n

〈FDUm
n ,U

m′
n′ 〉L2

t (S2)e
m
n + 〈FDV m

n ,Um′
n′ 〉L2

t (S2)f
m
n ,

hm
′

n′ =
∞∑
n=1

n∑
m=−n

〈FDUm
n ,V

m′
n′ 〉L2

t (S2)e
m
n + 〈FDV m

n ,V m′
n′ 〉L2

t (S2)f
m
n

Truncating all series representations at N ∈ N, we therefore find that

TN = ik
16π2 Σ∗FNΣ .

Here, TN , FN ∈ CQ×Q with Q = 2N(N + 2) denote the discretized operators T and FD,
respectively, and Σ ∈ CQ×Q is the diagonal matrix with entries

Σj,j =
{
− (−i)n , n2 ≤ j ≤ n(n+ 2),
−i (−i)n , N(N + 2) + n2 ≤ j ≤ +N(N + 2) + n(n+ 2),

n = 1, . . . , N.

Thus, the T-matrix is obtained by applying a scaling and a unitary transformation to the far
field operator.

5.3 The shape derivative of TDρ

In the previous section we discussed the asymptotic behavior of the far field operator FDρ
corresponding to a thin tubular scattering object Dρ with a cross-section D′ρ = ρD′ that possibly
rotates around the fixed spine curve, as the radius tends to 0. In this section, we fix the
radius ρ > 0 and discuss the Fréchet differentiability of the leading order term TDρ in the
asymptotic expansion (5.27) with respect to the center curve K and to the rotation θ. We
recall the set of admissible parametrizations Uad from (5.24) and define the nonlinear operator
Tρ : Uad → HS(L2

t (S2)) that maps admissible parametrizations of supports of thin nanowires
Dρ to the leading order term TDρ of the associated far field operator FDρ in (5.8), by

Tρ(p, Vp,θ) = TDρ , (p, Vp,θ) ∈ Uad . (5.45)

Here, Dρ is a thin tubular scattering object as in (3.7). The set of admissible parametrizations
Uad in (5.24) is not a vector space, but Uad can be parametrized locally around any admissible
(p, Vp,θ) ∈ Uad with Vp,θ = [tp(s) | rp,θ(s) | sp,θ(s)] as follows. Suppose that δp, δθ > 0 are
sufficiently small. Then, an open neighborhood of (p, Vp,θ) in Uad is given by{

(p+ h, Vp+h,θ+φ)
∣∣ h ∈ C3([0, 1],R3), ‖h‖C3 < δp, φ ∈ C2([0, 1],R), ‖φ‖C2 < δθ

}
, (5.46)
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where Vp+h,θ+φ = [tp+h | rp+h,θ+φ | sp+h,θ+φ] ∈ C2([0, 1],SO(3)) with

tp+h = p′ + h′
|p′ + h′| , (5.47a)

rp+h,θ+φ = (tp · tp+h)rp,θ+φ −
sp,θ+φ · tp+h
1 + tp · tp+h

(tp × tp+h)− (rp,θ+φ · tp+h)tp , (5.47b)

sp+h,θ+φ = (tp · tp+h)sp,θ+φ + rp,θ+φ · tp+h
1 + tp · tp+h

(tp × tp+h)− (sp,θ+φ · tp+h)tp (5.47c)

and

[rp,θ+φ | sp,θ+φ] = [cos(φ)rp,θ + sin(φ)sp,θ | − sin(φ)rp,θ + cos(φ)sp,θ] . (5.48)

Remark 5.11. The formulas in (5.47) apply first an update of the rotation and in a second step
an update of the spine curve. It is easy to see that changing the order of these steps results in
the same overall update.

Whenever an admissible (p, Vp,θ) ∈ Uad is deformed by a sufficiently small h and φ, we apply
the update formulas in (5.47) and (5.48). The next lemma shows that this updated frame is an
admissible frame for the curve parametrized by p+ h.

Lemma 5.12. Let (p, Vp,θ) ∈ Uad and let h ∈ C3([0, 1],R3) with ‖h‖C3 < δp and φ ∈
C2([0, 1],R) with ‖φ‖C2 < δθ for sufficiently small δp, δθ > 0. Then, the update formulas from
(5.47), (5.48) define an admissible frame Vp+h,θ+φ for the center curve parametrized by p+ h.

Proof. We prove the assertion by showing that the vectors tp+h, rp+h,θ+φ and sp+h,θ+φ are
normalized and pairwise orthogonal. We first note that tp+h is the tangent vector of p + h.
Moreover, for the rotated reference vector rp,θ+φ from (5.48), it holds that

|rp,θ+φ|2 = | cos(φ)rp,θ + sin(φ)sp,θ|2 = cos2(φ)|rp,θ|2 + sin2(φ)|sp,θ|2 = 1,

since rp and sp are normalized and orthogonal. In the same way, it can be seen that |sp,θ+φ| = 1.
The pairwise orthogonality of tp, rp,θ and sp,θ immediately implies the pairwise orthogonality
of tp, rp,θ+φ and sp,θ+φ. For computing |rp+h,θ+φ| we use that rp,θ+φ and tp are orthogonal,
rp,θ+φ · (tp × tp+h) = −sp,θ+φ · tp+h together with |tp × tp+h|2 = 1− (tp · tp+h)2 and Parseval’s
identity. Thus, we compute

|rp+h,θ+φ|2 = (tp · tp+h)2 − 2sp,θ+φ · tp+h
1 + tp · tp+h

(tp · tp+h)(rp,θ+φ · (tp × tp+h))

+
(

sp,θ+φ · tp+h
1 + tp · tp+h

)2

|tp × tp+h|2 + (rp,θ+φ · tp+h)2

= (tp · tp+h)2 + 2sp,θ+φ · tp+h
1 + tp · tp+h

(tp · tp+h)(sp,θ+φ · tp+h)

+
(

sp,θ+φ · tp+h
1 + tp · tp+h

)2

(1− (tp · tp+h)2) + (rp,θ+φ · tp+h)2

= (tp · tp+h)2 + (rp,θ+φ · tp+h)2 + (sp,θ+φ · tp+h)2 = 1.

In a similar fashion it can be seen that |sp+h,θ+φ| = 1. For computing rp+h,θ+φ · sp+h,θ+φ we use
the bilinearity of the dot product and the identities tp × rp,θ+φ = sp,θ+φ, sp,θ+φ × tp = rp,θ+φ
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and |tp × tp+h|2 = 1− (tp · tp+h)2. This yields

rp+h,θ+φ · sp+h,θ+φ

= tp · tp+h
1 + tp · tp+h

((rp,θ+φ · tp+h)(rp,θ+φ · (tp × tp+h))− (sp,θ+φ · tp+h)(sp,θ+φ · (tp × tp+h)))

− (sp,θ+φ · tp+h)(rp,θ+φ · tp+h)
(1 + tp · tp+h)2 |tp × tp+h|2 + (sp,θ+φ · tp+h)(rp,θ+φ · tp+h)

= −2 tp · tp+h
1 + tp · tp+h

(rp,θ+φ · tp+h)(sp,θ+φ · tp+h)

− (sp,θ+φ · tp+h)(rp,θ+φ · tp+h)
1 + tp · tp+h

(1− tp · tp+h) + (sp,θ+φ · tp+h)(rp,θ+φ · tp+h)
1 + tp · tp+h

(1 + tp · tp+h)

= 0.

The pairwise orthogonality of tp+h with both vectors rp+h,θ+φ and sp+h,θ+φ follows straightfor-
wardly.

Remark 5.13. The update formulas in (5.47) and (5.48) do not guarantee that the new frame
possesses a minimal rotation.

Before we establish the Fréchet derivative of Tρ, we discuss the Fréchet differentiability of
the polarization tensor Mγ , γ ∈ {ε, µ}, with respect to the center curve K and to the rotation
θ. For this, we use the explicit representation of Mγ from (5.26).

Theorem 5.14. The mapping Mγ : Uad → C([0, 1],C3×3), γ ∈ {ε, µ}, defined by

Mγ(p, Vp,θ) = Mγ
p,Vp,θ

= Vp,θM
γV >p,θ

is Fréchet differentiable. Its Fréchet derivative at (p, Vp,θ) ∈ Uad with respect to the local
parametrization of Uad in (5.46)–(5.48) is given by

(Mγ
p,Vp,θ

)′ : C3([0, 1],R3)× C2([0, 1],R)→ C([0, 1],C3×3)

with

(Mγ
p,Vp,θ

)′ = V ′p,θ(h, φ)MγV >p,θ + Vp,θM
γ(V ′p,θ(h, φ))>, (5.49)

where the matrix-valued function V ′p,θ(h, φ) satisfies

V ′p,θ(h, φ) =
[
h′ · rp,θ
|p′|

rp,θ + h′ · sp,θ
|p′|

sp,θ
∣∣∣∣ − h′ · rp,θ|p′|

tp + φsp,θ
∣∣∣∣ − h′ · sp,θ|p′|

tp − φrp,θ
]
.

Proof. Using Taylor’s theorem we find that

tp+h = tp + 1
|p′|

((
h′ · rp,θ

)
rp,θ +

(
h′ · sp,θ

)
sp,θ

)
+O(‖h‖2C2([0,1],R3)) (5.50)

and

rp,θ+φ = rp,θ + φsp,θ +O(‖φ‖2C2([0,1],R)) , (5.51a)
sp,θ+φ = sp,θ − φrp,θ +O(‖φ‖2C2([0,1],R)) . (5.51b)

Substituting (5.50) in (5.47), we find that

rp+h,θ = rp,θ −
1
|p′|

(
h′ · rp,θ

)
tp +O(‖h‖2C2([0,1],R3)) , (5.52a)

sp+h,θ = sp,θ −
1
|p′|

(
h′ · sp,θ

)
tp +O(‖h‖2C2([0,1],R3)) . (5.52b)



112 Chapter 5. Shape optimization for thin em-chiral structures

Thus, the partial derivatives

∂pVp,θ(h) = 1
|p′|

[(
h′ · rp,θ

)
rp,θ +

(
h′ · sp,θ

)
sp,θ | −

(
h′ · rp,θ

)
tp | −

(
h′ · sp,θ

)
tp
]
, (5.53a)

∂θVp,θ(φ) = φ [0 | sp,θ | − rp,θ] (5.53b)

satisfy

‖Vp+h,θ − Vp,θ − ∂pVp,θ(h)‖C([0,1],R3×3) ≤ C ‖h‖2C2([0,1],R3) , (5.54a)

‖Vp,θ+φ − Vp,θ − ∂θVp,θ(φ)‖C([0,1],R3×3) ≤ C ‖φ‖2C2([0,1],R) . (5.54b)

Accordingly, we find that∥∥Vp+h,θ+φ − Vp,θ − V ′p,θ(h, φ)
∥∥
C([0,1],R3×3)

≤ ‖Vp+h,θ+φ − Vp+h,θ − ∂θVp,θ(φ)‖C([0,1],R3×3) + ‖Vp+h,θ − Vp,θ − ∂pVp,θ(h)‖C([0,1],R3×3)

≤ ‖Vp+h,θ+φ − Vp+h,θ − ∂θVp+h,θ(φ)‖C([0,1],R3×3) + ‖∂θVp+h,θ(φ)− ∂θVp,θ(φ)‖C([0,1],R3×3)

+ ‖Vp+h,θ − Vp,θ − ∂pVp,θ(h)‖C([0,1],R3×3) .

Due to (5.54), the first and the third term on the right hand side can be estimated by
‖h‖2C2([0,1],R3) + ‖φ‖2C2([0,1],R). For the second term, we note from (5.53) and (5.52), that

‖∂θVp+h,θ(φ)− ∂θVp,θ(φ)‖C([0,1],R3×3) =
∥∥∥∥ φ

|p′|

[
0 | (h′ · rp,θ)tp | (h′ · sp,θ)tp

]∥∥∥∥
C([0,1],R3×3)

+ C ‖h‖2C2([0,1],R3)

≤ C ‖φ‖C2([0,1],R) ‖h‖C2([0,1],R3) + C ‖h‖2C2([0,1],R3)

≤ C(‖h‖2C2([0,1],R3) + ‖φ‖2C2([0,1],R)).

The Fréchet differentiability of the polarization tensor and (5.49) are now a consequence of the
product rule.

In the next theorem we establish the Fréchet derivative of Tρ at (p, Vp,θ) ∈ Uad.

Theorem 5.15. The nonlinear map Tρ from (5.45) is Fréchet differentiable from Uad to
HS(L2

t (S2)). The Fréchet derivative at (p, Vp,θ) ∈ Uad with respect to the local parametrization
of Uad in (5.46)-(5.48) is given by T ′ρ[p, Vp,θ] : C3([0, 1],R3)× C2([0, 1],R)→ HS(L2

t (S2)) with

T ′ρ[p, Vp,θ](h, φ)

= (kρ)2|D′|
(
(εr − 1)

4∑
j=1
T ′ρ,ε,j [p, Vp,θ](h, φ) + (µr − 1)

4∑
j=1
T ′ρ,µ,j [p, Vp,θ](h, φ)

)
, (5.55)

where, for any A ∈ L2
t (S2),

((
T ′ρ,ε,1[p, Vp,θ](h, φ)

)
A
)
(x̂) = −

∫ 1

0
ik(x̂ · h)e−ikx̂·p P3,x̂M

ε
p,Vp,θ

Ei[A](p)|p′| dt , (5.56a)

((
T ′ρ,ε,2[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p P3,x̂(Mε

p,Vp,θ
)′(h, φ)Ei[A](p)|p′| dt , (5.56b)

((
T ′ρ,ε,3[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p P3,x̂M

ε
p,Vp,θ

(
Ei[A]

)′[p, Vp,θ](h, φ) |p′| dt , (5.56c)

((
T ′ρ,ε,4[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p P3,x̂M

ε
p,Vp,θ

Ei[A](p) p
′ · h′

|p′|
dt (5.56d)
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and((
T ′ρ,µ,1[p, Vp,θ](h, φ)

)
A
)
(x̂) = −

∫ 1

0
ik(x̂ · h)e−ikx̂·p(x̂× I3)Mµ

p,Vp,θ
H̃ i[A](p)|p′| dt , (5.57a)

((
T ′ρ,µ,2[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p(x̂× I3)(Mµ

p,Vp,θ
)′(h, φ)H̃ i[A](p)|p′| dt , (5.57b)

((
T ′ρ,µ,3[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p(x̂× I3)Mµ

p,Vp,θ

(
H̃ i[A]

)′[p, Vp,θ](h, φ)|p′| dt , (5.57c)

((
T ′ρ,µ,4[p, Vp,θ](h, φ)

)
A
)
(x̂) =

∫ 1

0
e−ikx̂·p(x̂× I3)Mµ

p,Vp,θ
H̃ i[A](p) p

′ · h′

|p′|
dt . (5.57d)

Here, we used the notation P3,x̂ = (x̂× I3)× x̂ and H̃ i[A] = i
k curlEi[A] for abbreviation.

Proof. Let (p, Vp,θ) ∈ Uad. Further, let δp, δθ > 0 be such that the open neighborhood of (p, Vp,θ)
as in (5.46) is well-defined. We have to show that∥∥Tρ (p+ h, Vp+h,θ+φ)− Tρ (p, Vp,θ)− T ′ρ[p, Vp,θ](h, φ)

∥∥
HS = o

(
‖(h, φ)‖C3×C2

)
(5.58)

as ‖(h, φ)‖C3×C2 → 0. Here,

‖(h, φ)‖C3×C2 = (‖h‖2C3([0,1],R3) + ‖φ‖2C2([0,1],R))
1/2.

Using (5.25), (5.55)-(5.57) and (5.7), the Hilbert-Schmidt operators Tρ (p+ h, Vp+h,θ+φ),
Tρ (p, Vp,θ) and T ′ρ[p, Vp,θ](h, φ) can be written as integral operators such that for anyA ∈ L2

t (S2),

(
Tρ
(
p+ h, Vp+h,θ+φ

)
A
)

(x̂) =
∫
S2
Kp+h,θ+φ(x̂, ζ)A(ζ) ds(ζ) , (5.59a)(

Tρ
(
p, Vp,θ

)
A
)

(x̂) =
∫
S2
Kp,θ(x̂, ζ)A(ζ) ds(ζ) , (5.59b)(

T ′ρ[p, Vp,θ](h, φ)A
)
(x̂) =

∫
S2
K ′p,θ;h,φ(x̂, ζ)A(ζ) ds(ζ) , (5.59c)

with smooth kernels Kp+h,θ+φ, Kp,θ and K ′p,θ;h,φ in L2(S2 × S2,C3×3). In detail, we find that
Kp,θ from (5.59b) is given by

Kp,θ(x̂, ζ) = (kρ)2|D′|
(∫

K
−(µr − 1)e−ikx̂·y(x̂× I3)Mµ

p,Vp,θ
eikζ·y ds(y)ζ × ·∫

K
(εr − 1)e−ikx̂·y((x̂× I3)× x̂)Mε

p,Vp,θ
eikζ·y ds(y)

)
.

The representation of Kp+h,θ+φ(x̂, ζ) from (5.59a) is obtained by replacing p and Vp,θ by p+h
and Vp+h,θ+φ, respectively. Moreover, K ′p,θ;h,φ from (5.59c) is given by

K ′p,θ;h,φ(x̂, ζ) = (kρ)2|D′|
(
− (µr − 1)

4∑
j=1

K
(j),µ
p,θ;h,φ

′
(x̂, ζ)ζ × ·+ (εr − 1)

4∑
j=1

K
(j),ε
p,θ;h,φ

′
(x̂, ζ)

)
(5.60)

with

K
(1),µ
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
−ik(x̂ · h(t)e−ikx̂·p(t)(x̂× I3)Mµ

p,Vp,θ
eikζ·p(t)|p′(t)| dt , (5.61a)

K
(2),µ
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)(x̂× I3)(Mµ

p,Vp,θ
)′eikζ·p(t)|p′(t)| dt , (5.61b)

K
(3),µ
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)(x̂× I3)Mµ

p,Vp,θ
ik(ζ · h(t))eikζ·p(t)|p′(t)| dt , (5.61c)

K
(4),µ
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)(x̂× I3)Mµ

p,Vp,θ
eikζ·p(t)p

′(t) · h′(t)
|p′(t)| dt (5.61d)
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and

K
(1),ε
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
−ik(x̂ · h(t)e−ikx̂·p(t)((x̂× I3)× x̂)Mε

p,Vp,θ
eikζ·p(t)|p′(t)| dt , (5.62a)

K
(2),ε
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)((x̂× I3)× x̂)(Mε

p,Vp,θ
)′eikζ·p(t)|p′(t)| dt , (5.62b)

K
(3),ε
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)((x̂× I3)× x̂)Mε

p,Vp,θ
ik(ζ · h(t))eikζ·p(t)|p′(t)| dt , (5.62c)

K
(4),ε
p,θ;h,φ

′
(x̂, ζ) =

∫ 1

0
e−ikx̂·p(t)((x̂× I3)× x̂)Mε

p,Vp,θ
eikζ·p(t)p

′(t) · h′(t)
|p′(t)| dt . (5.62d)

In what follows, we denote by Ki,: the ith row of the kernel K. Using the complete orthonormal
system of vector spherical harmonics from (2.16), we obtain that∥∥Tρ (p+ h, Vp+h,θ+φ)− Tρ (p, Vp,θ)− T ′ρ[p, Vp,θ](h, φ)

∥∥2
HS

=
∞∑
n=1

n∑
m=−n

(∥∥(Tρ (p+ h, Vp+h,θ+φ)− Tρ (p, Vp,θ)− T ′ρ[p, Vp,θ](h, φ)
)
Um
n

∥∥2
(L2(S2))3

+
∥∥(Tρ (p+ h, Vp+h,θ+φ)− Tρ (p, Vp,θ)− T ′ρ[p, Vp,θ](h, φ)

)
V m
n

∥∥2
(L2(S2))3

)
=
∫
S2

∞∑
n=1

n∑
m=−n

( ∣∣∣∣∫
S2

(
Kp+h,θ+φ −Kp,θ −K ′p,θ;h,φ

)
(ζ, x̂)Um

n (x̂) ds(x̂)
∣∣∣∣2

+
∣∣∣∣∫
S2

(
Kp+h,θ+φ −Kp,θ −K ′p,θ;h,φ

)
(ζ, x̂)V m

n (x̂) ds(x̂)
∣∣∣∣2 ) ds(ζ)

=
∫
S2

∞∑
n=1

n∑
m=−n

3∑
i=1

(∣∣∣∣〈(Ki,:
p+h,θ+φ −K

i,:
p,θ −K

′i,:
p,θ;h,φ

)>(ζ, ·),Um
n

〉
(L2(S2))3

∣∣∣∣2

+
∣∣∣∣〈(Ki,:

p+h,θ+φ −K
i,:
p,θ −K

′i,:
p,θ;h,φ

)>(ζ, ·),V m
n

〉
(L2(S2))3

∣∣∣∣2) ds(ζ)

≤
∫
S2

3∑
i=1

∥∥(Ki,:
p+h,θ+φ −K

i,:
p,θ −K

′i,:
p,θ;h,φ

)>(ζ, ·)
∥∥2

(L2(S2))3 ds(ζ)

=
∫
S2

∫
S2

∥∥(Kp+h,θ+φ −Kp,θ −K ′p,θ;h,φ
)
(ζ, x̂)

∥∥2
F

ds(x̂) ds(ζ) .

Here, ‖·‖F denotes the Frobenius norm on C3×3. The inequality in the computation above arises
since the rows in the kernels are not tangential. In the same way as in the proof of Theorem 4.4,
i.e. by applying Taylor’s theorem as in (4.16a) and (4.16b) and by using Theorem 5.14, we find
by using (5.60) - (5.62) that∥∥(Kp+h,θ+φ −Kp,θ −K ′p,θ;h,φ

)
(ζ, x̂)

∥∥
F
≤ C ‖(h, φ)‖2C3×C2 .

This implies (5.58).

In Lemma 5.7 we gave an explicit representation of the operator TDρ in terms of the cir-
cularly polarized vector spherical harmonics Am

n and Bm
n , m = −n, . . . ,m, n = 1, 2, . . . , from

(5.28). In the following remark we establish a similar representation for the Fréchet derivative
T ′ρ[p, Vp,θ](h, φ).
Remark 5.16. Let A ∈ L2

t (S2) with

A =
∞∑
n=1

n∑
m=−n

(amn Am
n + bmn B

m
n ) .
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Then, we find that
(
T ′ρ[p, Vp,θ](h, φ)

)
A =

∞∑
n=1

n∑
m=−n

(cmn Am
n + dmn B

m
n ) . (5.63)

with

cmn =
∞∑
n′=1

n′∑
m′=−n′

(
am
′

n′
〈(
T ′ρ[p, Vp,θ](h, φ)

)
Am′
n′ ,A

m
n

〉
L2
t (S2)

+ bm
′

n′
〈(
T ′ρ[p, Vp,θ](h, φ)

)
Bm′
n′ ,A

m
n

〉
L2
t (S2)

)
, (5.64a)

dmn =
∞∑
n′=1

n′∑
m′=−n′

(
am
′

n′
〈(
T ′ρ[p, Vp,θ](h, φ)

)
Am′
n′ ,B

m
n

〉
L2
t (S2)

+ bm
′

n′
〈(
T ′ρ[p, Vp,θ](h, φ)

)
Bm′
n′ ,B

m
n

〉
L2
t (S2)

)
. (5.64b)

The inner products in (5.64) can be evaluated explicitly using (5.56)-(5.57), the identities (5.38),
(5.39), (5.40) and the terms (

Ei[Am
n ]
)′(x) =

√
8πin−1 (Pm

n )′ (x) , (5.65a)(
Ei[Bm

n ]
)′(x) = −

√
8πin−1 (Qm

n )′ (x) , (5.65b)(
curlEi[Am

n ]
)′(x) =

√
8πkin−1 (Pm

n )′ (x) , (5.65c)(
curlEi[Bm

n ]
)′(x) =

√
8πkin−1 (Qm

n )′ (x) (5.65d)

and 〈
ik (x̂ · h) e−ikŷ·x (ŷ × I3)× ŷ) ,Am

n (ŷ)
〉
L2
t (S2) =

√
8π(−i)n−1(Pm

n )′ (x)h
>
, (5.66a)〈

ik (x̂ · h) e−ikŷ·x (ŷ × I3)× ŷ) ,Bm
n (ŷ)

〉
L2
t (S2) = −

√
8π(−i)n−1(Qm

n )′ (x)h
>
, (5.66b)〈

ik (x̂ · h) e−ikŷ·x (ŷ × I3) ,Am
n (ŷ)

〉
L2
t (S2) =

√
8π(−i)n(Pm

n )′ (x)h
>
, (5.66c)〈

ik (x̂ · h) e−ikŷ·x (ŷ × I3) ,Bm
n (ŷ)

〉
L2
t (S2) =

√
8π(−i)n(Qm

n )′ (x)h
>
. (5.66d)

Explicit formulas for the derivatives (Pm
n )′ and (Qm

n )′ of the circularly polarized spherical vector
wave functions (Pm

n ) and (Qm
n ), m = −n, . . . , n, n = 1, 2, . . . , from (5.29) can be found in

Appendix D.
Remark 5.17. As for Tρ we choose the maximal degree of vector spherical harmonics N ∈ N in
such a way that N & kR, where BR(0) denotes the smallest ball around the origin that includes
the scattering object Dρ (see Remark 5.9). This gives a discretization of the Fréchet derivative
T ′ρ,N = T ′ρ,N [p, Vp,θ](h, φ), which is given by

T ′ρ,N =
[
(AA)′ (BA)′
(AB)′ (BB)′

]
(5.67)

with

(XY )′=



〈T ′ρ,NX
−1
1 ,Y −1

1 〉 〈T ′ρ,NX0
1 ,Y

−1
1 〉 〈T ′ρ,NXN

N ,Y
−1

1 〉
〈T ′ρ,NX

−1
1 ,Y 0

1 〉 〈T ′ρ,NX0
1 ,Y

0
1 〉

〈T ′ρ,NXN
N ,Y

N−1
N 〉

〈T ′ρ,NX
−1
1 ,Y N

N 〉 〈T ′ρ,NX
N−1
N ,Y N

N 〉 〈T ′ρ,NXN
N ,Y

N
N 〉


(5.68)
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forX,Y ∈ {A,B}. The scalar products in (5.68) are explicitly given by combining (5.55)-(5.57)
with (5.65) and (5.66). A single block (XY )′ has dimension Q′ ×Q′ with Q′ = N(N + 2) and
consequently, T ′ρ,N ∈ C2Q′×2Q′ .

5.4 Remarks on the implementation
We discuss the implementation of the discretized operators T ′ρ,N from (5.67). The matrix Tρ,N
from (5.41) can be implemented by using the same techniques. Considering the structure of
T ′ρ,N shows that the matrix consists of four blocks (XY )′ for X,Y ∈ {A,B}, where Am

n

and Bm
n denote the circularly polarized vector spherical harmonics from (5.28). The block

(XY )′ corresponds to evaluations of (5.55) using the incoming field Ei[Xm
n ], m = −n, . . . , n,

n = 1, 2, . . . , together with the field Y m′
n′ in the scalar product, where m′ = −n′, . . . , n′, n′ =

1, 2, . . . . Moreover, the block (XY )′ can be split up via

(XY )′ = (XY )′1 + (XY )′2 ,

where (XY )′1 results from the ε-terms and (XY )′2 results from the µ-terms in (5.55). Once
more, these blocks can be split up into 4 blocks, respectively, using the terms from (5.56) and
(5.57). This gives that

(XY )′j =
4∑
`=1

(XY )′j,` for j = 1, 2.

The entries of the matrix (XY )′j,`, j = 1, 2, consist of a scalar product of the integrals in (5.56)
and (5.57), together with circularly polarized vector spherical harmonics. A single integral term
consists of four parts. Disregarding derivatives, these four parts are a scalar product term S, a
polarization tensor P, an incoming field I and the norm of the derivative of the parametrization.
For discretizing curves and applying the composite Simpson’s rule for approximating integrals we
refer to Remark 3.28. In the following we recall this approach. We use n ∈ N points to represent
the curves by a cubic spline with the not-a-knot condition at the end points. For a partition
4 as in (3.125), we define the corresponding cubic not-a-knot spline by p4. To compute the
integrals in (5.56) and (5.57) we further define the odd number M ∈ N, M ≥ 3, and discretize
each interval [tj , tj+1] defined by the partition (3.125) inM equidistant points, including the end
points. Loosely speaking, the number n determines the accuracy of the discretized curve, M on
the other hand determines the accuracy of the quadrature formula, which we use to approximate
the integrals. Altogether, to evaluate an integral from (5.56) or (5.57), we take the weighted
sum over T = (n− 1)(M − 1) + 1 non-repeating points. We arrange these points on the spline
in the order, in which they are passed through as we go from the start to the end of the spline
and denote the points by xτ = p4(tτ ) for τ = 1, . . . , T . This means that the first point of the
spline, which is denoted by x1 = x(1), is the start of the spline, xT = x(n) on the other hand,
corresponds to the end. In what follows, we consider the implementation of a single (XY )′j,`
in detail. We abbreviate by S,P and I the functions corresponding to the scalar product, the
polarization tensor and the incoming field, respectively. In our implementation, we handle these
functions as tensors

S ∈ CQ×3×T , P ∈ C3×3×T , I ∈ C3×Q×T .

Here, the number Q = N(N +2) is the total number of entire wave field functions in each block.
We define the mapping

? : Rα×β×γ × Rβ×δ×γ → Rα×δ×γ , (A ? B)ijk =
β∑
z=1

aizkbzjk,
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Figure 5.3: Sketch of the structure of the blocks S,P and I that are required to implement
the matrix (AB)′1,1. The third dimension T corresponds to the number of points, including the
quadrature points, that represent the cubic spline.

which is the usual matrix product along every slice in the third dimension. Combining the
weights of the quadrature formula from Remark 3.28 with the norm of the derivative in the
vector W gives that an integral in (5.56) or (5.57) can be approximated blockwise by

T∑
τ=1

W (τ) (S ? P ? I)ijτ for i, j = 1, . . . , Q.

For a better overview about the structure of S,P and I we consider the sketch in Figure 5.3,
where we visualized the assignment of the blocks S, I for the matrix (AB)′1,1. For this example,
as we have to evaluate the entries

〈(
T ′ρ,ε,1[p, Vp,θ](h, φ)

)
Am
n ,B

m′
n′
〉
for m = −n, . . . , n, n =

1, 2, . . . , and m′ = −n′, . . . , n′, n′ = 1, 2, . . . according to (5.66b) and (5.38a), we define

S(q, :, τ) = −
√

8π (−i)n−1 (Qm
n )′ (xτ )h

>
, P(:, :, τ) = Mε

p,Vp,θ
(xτ ), I(:, q, τ) =

√
8πin−1Pm

n (xτ ),

where q = n(n+ 1) +m.

5.5 The BFGS scheme for the regularized optimization problem
In the last sections the quantification of em-chirality for a scatterer Dρ as in (3.7) based on
the leading order term of the asymptotic perturbation formula is discussed (see Lemma 5.7).
Moreover, the shape derivative of the curve and rotation to leading order term map is established
(see Theorem 5.15). Now, we combine these results to construct a BFGS method for an efficient
shape optimization. As for the reconstruction algorithm in Chapter 4, we emphasize that the
optimization scheme does not require a single Maxwell system to be solved.

We develop a shape optimization scheme to determine dielectric and metallic thin tubular
scattering objects Dρ as in (3.7) that exhibit comparatively large measures of em-chirality χHS at
a given frequency. In addition to the frequency, we also fix the material parameters εr, µr and the
length |K| of the center curve K of Dρ before we start the optimization process. Furthermore,
we assume that the radius ρ > 0 of the cross-section D′ρ = ρD′ is sufficiently small with respect
to the wavelength of the incident fields, such that the leading order term Tρ of the asymptotic
expansion (5.45) gives a good approximation of the far field operator FDρ (see also Section 3.5).
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Combining (5.19) with (5.22) gives that the smooth relaxation χHS of the chirality measure
χ2 satisfies

χHS(G) ≤ ‖G‖HS for any G ∈ HS(L2
t (S2)).

Accordingly, recalling the definition of the nonlinear operator Tρ in (5.45), we normalize the
smooth relaxiation χHS and consider the bounded objective functional JHS : Uad → [0, 1], which
is given by

JHS(pΓ, θ) = χHS (Tρ(pΓ, Vp,θ))
‖Tρ(pΓ, Vp,θ)‖HS

. (5.69)

Furthermore, we introduce the relative chirality measure

J2(pΓ, θ) = χ2(Tρ(pΓ, Vp,θ))
‖Tρ(pΓ, Vp,θ)‖HS

, (5.70)

which uses the original chirality measure χ2 from (5.18) instead of χHS. Both functionals, J2 and
JHS attain their maximal value 1 for a maximally em-chiral nanowire and their minimal value 0
for an em-achiral object. Since J2 is not differentiable and hence less suitable for a gradient based
optimization, we focus on maximizing the nonlinear functional JHS in the following. Accordingly,
the optimization problem is to

find arg min
(p,Vp,θ)∈Uad

(−JHS(p, Vp,θ)) subject to |K| = L (5.71)

at some prescribed frequency fopt, for some fixed rescaled cross-section D′ = D′ρ/ρ ⊂ B′1(0) ⊂
R2, and for some prescribed length L > 0 of the thin tubular object. In all our numerical
experiments, we present the values of J2 for comparison (e.g. with the results from [62]).
Remark 5.18. It is important to observe that for A ∈ L2

t (S2) the electric far field pattern TDρA
from (5.25) is homogeneous with respect to the squared radius ρ2 of the cross-section D′ρ = ρD′

of the support of the thin nanowire. Thus, the same is true for χ2(Tρ(p, Vp,θ)), χHS(Tρ(p, Vp,θ))
and ‖Tρ(p, Vp,θ)‖HS with (p, Vp,θ) ∈ Uad. In particular, the rescaled em-chirality measures
J2(p, Vp,θ) and JHS(p, Vp,θ) from (5.70) and (5.69) are independent of ρ. This means that the
specific value of ρ does not affect the result of the optimization procedure considered below.
However, in order for the leading order term TDρ in (5.25) to be an acceptable approximation
of FDρ , the radius ρ of the cross-section D′ρ of the thin nanowire has to be sufficiently small.

It has been shown in [72, Lem. 5.15] that the smooth relaxation χHS is differentiable on

X =
{
G ∈ HS

(
L2
t (S2)

) ∣∣ χHS (G) 6= 0 and ‖Gpq‖HS > 0, p, q ∈ {+,−}
}
. (5.72)

We derive the Fréchet derivative in the next lemma.
Lemma 5.19. For a given G ∈ X, the Fréchet derivative of χHS from (5.21) is given by
(χHS)′ [G] : HS

(
L2
t (S2)

)
→ R with

(χHS)′ [G]H =
Re〈G,H〉HS −

∑
p,q∈{+,−}Re〈Gpq,Hpq〉HS

‖Gpq‖HS
‖Gpq‖HS

χHS(G) , (5.73)

where p = −p and q = −q. Accordingly, the Fréchet derivative of the objective functional JHS
satisfies

J ′HS[p, Vp,θ](h, φ) =
(χHS)′ [Tρ(p, Vp,θ)]

(
T ′ρ[p, Vp,θ](h, φ)

)
‖Tρ(p, Vp,θ)‖HS

−
χHS (Tρ(p, Vp,θ)) Re

〈
Tρ(p, Vp,θ),T ′ρ[p, Vp,θ](h, φ)

〉
HS

‖Tρ(p, Vp,θ)‖3HS
, (5.74)

where T ′ρ[p, Vp,θ](h, φ) denotes the Fréchet derivative of the operator Tρ at (p, Vp,θ) ∈ Uad from
(5.63).
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Proof. The Fréchet derivative of the map X0 : X → R, X0(G) = ‖G‖2HS is given by

X ′0[G] : HS(L2
t (S2))→ R , X ′0[G]H = 2 Re〈G,H〉HS , (5.75)

since the space HS
(
L2
t (S2)

)
is a Hilbert space. Moreover, we recall that the operators Gpq for

p, q ∈ {+,−} are given by Gpq = PpGPq (see (5.15) and (5.11)). Hence, it can be seen in the
same way that the Fréchet derivative of the map Xpq : X → R, Xpq(G) = ‖Gpq‖2HS is given by

X ′pq[G] : HS(L2
t (S2))→ R , X ′pq[G]H = 2 Re〈Gpq,Hpq〉HS . (5.76)

We use the chain and the product rule and find that the Fréchet derivative of χHS is given by

(χHS)′ [G]H = 1
2χHS(G)

(
X ′0[G]H− 2

∑
p,q∈{+,−}

X ′pq[G]H
2(Xpq(G))1/2 (Xpq(G))1/2

)
,

where p = −p and q = −q. Using (5.75) and (5.76) implies the representation in (5.73).
The Fréchet derivative of JHS in (5.74) is obtained by applying the chain and product rule, as
before.

Before we establish the optimization scheme we study a simple example to varify the correct-
ness of the shape derivative from (5.74) numerically and to provide an insight of the functionals
J2 from (5.70) and JHS from (5.69).

Example 5.20. Let the frequency be given by f = 700THz, i.e., the exterior wavelength is
λ = 428nm. We consider a family of thin metallic nanowires with a circular cross-section and
center curves given by the parametrizations p = (p1, p2, p3)> with

p1(s) = R cos(4πs), p2(s) = R sin(4πs), p3(s) = hs− h

2 for s ∈ [0, 1] , (5.77)

where the radius of the cross-section is given by ρ = 4nm. At first, we consider the material
parameter for silver, which, by [83], is given by εr = −5.94 + 0.20i (see also Figure 2.1). In
(5.77), we study a fixed exterior radius R = 30nm and variable height h ∈ [100, 600]nm. Since
h is variable, we denote the corresponding parametrizations from (5.77) by ph. Using JHS from
(5.69), we define the operator

XHS,1 : [100, 600]→ [0, 1] , XHS,1(h) = JHS(ph) , (5.78)

which maps the height of the helix parametrized by (5.77) to the values of the relative smooth
relaxation. We suppress the dependency on the twist function θ in the definition (5.78) since
we consider a circular cross-section for the nanowire and thus, rotations of the cross-section do
not change the tubular scatterer. By the chain rule, the derivative of XHS,1 is given by

X ′HS,1(h) = J ′HS[ph](∂hph) , (5.79)

where J ′HS is defined in (5.74) and ∂hph is given by the curve with the parametrization

∂hph,1(s) = 0, ∂hph,2(s) = 0, ∂hph,3(s) = s− 1
2 for s ∈ [0, 1] .

Note that ∂hph replaces h in (5.74). For hj = 100 + 1/2j, j = 1, . . . , 1000, we evaluate the
functional XHS,1 from (5.78). Moreover, we study the functional X2,1, which is defined as
in (5.78) with JHS replaced by J2 from (5.70), where we used the maximal degree of vector
spherical harmonics N = 5. One the one hand, we study the derivative of XHS,1 as in (5.79) for
hj , j = 1, . . . , 1000. On the other hand, we apply finite differences to XHS,1. We find the result
of this simulation in the top-row of Figure 5.4. In the top-left plot we find a visualization of
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Figure 5.4: Numerical results from Example 5.20. Top-row: Numerical examples corresponding
to the silver helix. The top-left plot visualizes the helices having the radius R = 30nm and a
variable height. The top-middle and top-right plots show the functions X2,1, XHS,1 and X ′HS,1,
respectively. Bottom-row: Numerical examples corresponding to the gold helix. The bottom-left
plot visualizes the helices having the height R = 200nm and a variable radius. The bottom-
middle and bottom-right plots show the functions X2,2, XHS,2 and X ′HS,2, respectively.

the families of thin tubular silver scatterers, which have a fixed exterior radius R, a fixed wire
radius ρ and a variable height h. In the top-middle plot we find both functions X2,1 and XHS,1.
The top-right plot features the derivative of XHS,1. We find that the function XHS,1 vanishes
near h = 257nm although X2,1 does not vanish. Moreover, XHS,1 is seen to be non-smooth at
this point. Note that this does not contradict the smoothness of χHS in X from (5.72). In the
top-right plot we find a jump of the derivative at this point. Excluding this jump point in the
comparison of X ′HS,1 from (5.79) with finite differences gives a relative error of 0.004%.

We return to the parametrization of the double turn helix in (5.77) and consider a second
example. Now we use the material parameter corresponding to gold from [83], which is given by
εr = −1.69 + 5.66i. We fix the height of the helix to be h = 200nm and choose the radius R to
be variable in the range R ∈ [10, 250]nm. We study the functions XHS,2, X2,2 : [10, 250]→ [0, 1],
which differ from XHS,1, X2,1 insofar as they map the radius (instead of the height) to the
parametrization in (5.77). The results are shown in the bottom-row of Figure 5.4. We observe
again, that there are two points (around R = 23nm and R = 79nm) for which XHS,2 vanishes
and the derivative jumps. Excluding both jump points in the comparison of X ′HS,2 with finite
differences gives a relative error of 0.21%.

In what follows we rewrite the optimization problem (5.71) as an unconstrained optimization
problem and apply a quasi-Newton method to approximate a (local) minimizer. As before, we
consider the partition

4 = {0 = t1 < t2 < · · · tn = 1} ⊂ [0, 1].
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We denote by S4 and (S4)3 the space of one-dimensional and three-dimensional cubic not-a-
knot splines with respect to this partition, respectively (see also Remark 3.28).

To evaluate local minimizers of the constrained optimization problem (5.71), we approximate
the latter by an unconstrained optimization problem, where we include the length constraint
|K| = L via the penalty term

Ψ1 : Uad → R , Ψ1(p, Vp,θ) =
n−1∑
j=1

∣∣∣∣∣ 1
n− 1 −

1
L

∫ tj+1

tj

|p′(t)| dt
∣∣∣∣∣
2

. (5.80)

Besides enforcing the length constraint, this term will also promote uniformly distributed nodes
along the spline representing the spine curve during the optimization process.

We use two further regularization terms to stabilize the optimization. The functional

Ψ2 : Uad → R , Ψ2(p, Vp,θ) = 1
L

∫ 1

0
κ2(t)|p′(t)| dt , (5.81)

where κ is the curvature of K parametrized by p given by

κ(t) = |p′(t)× p′′(t)|
|p′(t)|3 = 1

|p′(t)|

∣∣∣∣ p′′(t)|p′(t)| −
p′(t) · p′′(t)
|p′(t)|3 p′(t)

∣∣∣∣ , t ∈ [0, 1] , (5.82)

prevents the optimal nanowire from being too strongly entangled. Similarly, the term

Ψ3 : Uad → R , Ψ3(p, Vp,θ) = 1
L

∫ 1

0
β2(t)|p′(t)| dt , (5.83)

where β is the twist rate of the geometry adapted frame (tp, rp,θ, sp,θ) parametrized by (p, Vp,θ)
given by

β(t) = r′p,θ(t) · sp,θ(t), t ∈ [0, 1] , (5.84)

penalizes strong twisting of the cross-section of the optimal nanowire along its spine curve.
Adding α1Ψ1, α2Ψ2, and α3Ψ3 with some suitable regularization parameters α1, α2, α3 > 0

to the objective functional in (5.71), we obtain the regularized objective functional Φ : Uad → R
given by

Φ(p, Vp,θ) = −JHS(p, Vp,θ) + α1Ψ1(p, Vp,θ) + α2Ψ2(p, Vp,θ) + α3Ψ3(p, Vp,θ) . (5.85)

Accordingly, we consider the unconstrained optimization problem

find arg min
(p,Vp,θ)∈Uad

Φ(p, Vp,θ). (5.86)

Below we apply a quasi-Newton scheme to solve a finite dimensional approximation of (5.86)
numerically. In the next lemma we collect the Fréchet derivatives of the penalty terms Ψ1, Ψ2,
and Ψ3, which are required by this algorithm.

Lemma 5.21. The penalty terms Ψ1, Ψ2, and Ψ3 from (5.80)–(5.83) are Fréchet differentiable.
Their Fréchet derivatives at (p, Vp,θ) ∈ Uad with respect to the local parametrization of Uad in
(5.46)–(5.48) are given by Ψ′1[p, Vp,θ] : C3([0, 1],R3)× C2([0, 1],R)→ R with3

Ψ′1[p, Vp,θ](h, φ) = ∂pΨ1[p, Vp,θ](h) = − 2
L2

n−1∑
j=1

(∫ tj+1

tj

p′ · h′

|p′|
dt
)(

L

n− 1 −
∫ tj+1

tj

|p′| dt
)
,

(5.87)
3We corrected a 1/L term that was missing in the original publication [50].
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by Ψ′2[p, Vp,θ] : C3([0, 1],R3)× C2([0, 1],R)→ R with

Ψ′2[p, Vp,θ](h, φ) = ∂pΨ2[p, Vp,θ](h) = 1
L

∫ 1

0

(
2p
′′ · h′′

|p′|3
− 3 |p

′′|2(p′ · h′)
|p′|5

− 2
(
p′ · h′′ + p′′ · h′

)
(p′ · p′′)

|p′|5
+ 5(p′ · h′)(p′ · p′′)2

|p′|7
)

dt , (5.88)

and by Ψ′3[p, Vp,θ] : C3([0, 1],R3)× C2([0, 1],R)→ R with4

Ψ′3[p, Vp,θ](h, φ) = ∂pΨ3[p, Vp,θ](h) + ∂θΨ3[p, Vp,θ](φ) ,

where

∂pΨ3[p, Vp,θ](h) = 1
L

∫ 1

0

(
−2(r′p,θ · sp,θ)

(
(h′ · sp,θ)(r′p,θ · tp) + (h′ · rp,θ)(t′p · sp,θ)

)
+ (r′p,θ · sp,θ)2 p

′ · h′

|p′|

)
dt , (5.89a)

∂θΨ3[p, Vp,θ](φ) = 2
L

∫ 1

0
(r′p,θ · sp,θ)φ′|p′| dt . (5.89b)

Proof. The penalty term ψ1 in (5.80) is given by

Ψ1(p, Vp,θ) =
n−1∑
j=1

∣∣∣Ψ̃1(p, Vp,θ)
∣∣∣2 with Ψ̃1(p, Vp,θ) = 1

n− 1 −
1
L

∫ tj+1

tj

|p′| dt .

Therefore, the Fréchet derivative of Ψ1 is given by

Ψ′1[p, Vp,θ](h, φ) = 2
n−1∑
j=1

Ψ̃′1[p, Vp,θ](h, φ)Ψ̃1(p, Vp,θ) . (5.90)

Using Taylor’s theorem as in (4.28) shows that

Ψ̃′1[p, Vp,θ](h, φ) = 1
L

∫ tj+1

tj

p′ · h′

|p′|
dt

and thus, the representation of Ψ1[p, Vp,θ](h, φ) as in (5.87) follows by (5.90). For Ψ2 we use
the second representation of the curvature κ in (5.82) and find that

Ψ2(p, Vp,θ) = 1
L

∫ 1

0
Ψ̃2(p, Vp,θ) · Ψ̃2(p, Vp,θ) dt with Ψ̃2(p, Vp,θ) = p′′

|p′|3/2
− (p′ · p′′)p′
|p′|7/2

.

Therefore,

Ψ′2[p, Vp,θ](h, φ) = 2
L

∫ 1

0
Ψ̃′2[p, Vp,θ](h, φ) · Ψ̃2(p, Vp,θ) dt . (5.91)

We use Taylor’s theorem as in (4.27) and find that

Ψ̃2(p+ h, Vp+h,θ+φ) = p′′ + h′′
|p′ + h′|3/2

− ((p′ + h′) · (p′′ + h′′))(p′ + h′)
|p′ + h′|7/2

= −((p′ + h′) · (p′′ + h′′))
( 1
|p′|7/2

− 7(p′ · h′)
2|p′|11/2

)
(p′ + h′)

4We corrected errors in ∂pΨ3[p, Vp,θ] that appear in the original publication [50].
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+ (p′′ + h′′)
( 1
|p′|3/2

− 3(p′ · h′)
2|p′|7/2

)
+O(‖h‖C3([0,1],R3))

= −((p′ · p′′) + (p′ · h′′) + (h′ · p′′))
(

p′

|p′|7/2
− 7(p′ · h′)p′
|p′|11/2 + h′

|p′|7/2

)
+ p′′

|p′|3/2
+ h′′

|p′|3/2
− 3(p′ · h′)p′′

2|p′|7/2
+O(‖h‖C3([0,1],R3))

= p′′

|p′|3/2
− (p′ · p′′)p′
|p′|7/2

+ h′′

|p′|3/2
− 3(p′ · h′)p′′

2|p′|7/2
− (h′ · p′′)p′
|p′|7/2

+ 7(p′ · p′′)(p′ · h′)p′
2|p′|11/2 − (p′ · p′′)h′

|p′|7/2
− (p′ · h′′)p′
|p′|7/2

+O(‖h‖C3([0,1],R3)) .

Thus,

Ψ̃2
′[p, Vp,θ](h, φ)

= h′′

|p′|3/2
− 3(p′ · h′)p′′

2|p′|7/2
+ 7(p′ · p′′)(p′ · h′)p′

2|p′|11/2 − (p′ · p′′)h′
|p′|7/2

− (p′ · h′′)p′
|p′|7/2

− (h′ · p′′)p′
|p′|7/2

.

The representation of Ψ′2[p, Vp,θ](h, φ) as in (5.88) now follows by (5.91). For Ψ3 we first
consider variations with respect to p. Using (5.52) and that tp, rp,θ, sp,θ are normalized and
pairwise orthogonal, we find that

r′p+h,θ · sp+h,θ =
(
r′p,θ −

( 1
|p′|

)′
(h′ · rp,θ)tp −

1
|p′|

((h′ · rp,θ)′tp + (h′ · rp,θ)t′p)
)

·
(

sp,θ −
1
|p′|

(h′ · sp,θ)tp
)

+O(‖h‖C3([0,1],R3))

= r′p,θ · sp,θ −
(h′ · sp,θ)(r′p,θ · tp)

|p′|
−

(h′ · rp,θ)(t′p · sp,θ)
|p′|

+O(‖h‖C3([0,1],R3)) .

With β = r′p,θ · sp,θ as in (5.84) we therefore find that

∂pβ
2 = 2(∂pβ)β = − 2

|p′|
((h′ · sp,θ)(r′p,θ · tp) + (h′ · rp,θ)(t′p · sp,θ))(r′p,θ · sp,θ) ,

what yields that

∂p(β2|p′|) = −2((h′ · sp,θ)(r′p,θ · tp) + (h′ · rp,θ)(t′p · sp,θ))(r′p,θ · sp,θ) + (r′p,θ · sp,θ)2p
′ · h′

|p′|
.

This implies the representation in (5.89a). The formula for the derivative in (5.89b) follows by
using (5.51a) and again, by the fact that tp, rp,θ, sp,θ are normalized and pairwise orthogonal.

We apply a BFGS scheme with an inexact Armijo-type line search and a cautious update
rule as described in [94] to approximate a local solution to (5.86). We start with an initial
approximation for the spine curve of the nanowire and for the geometry adapted frame. As in
Section 4.2, let P4 denote the space of all three-dimensional cubic not-a-knot splines. Further-
more, denote by S4 the space of all one-dimensional cubic not-a-knot splines. Let p(0) ∈ P4 be
a three-dimensional cubic not-a-knot spline describing the initial guess for the spine curve. Ac-
cordingly, we compute a rotation minimizing frame (tp(0) , rp(0) , sp(0)) along this spline using the
double reflection method from [121]. Then we choose a one-dimensional cubic not-a-knot spline
θ(0) ∈ S4 that describes the rotation function of the initial guess for the geometry adapted frame
(tp(0) , rp(0),θ(0) , sp(0),θ(0)) as in (5.23). A visualization of p(0) with rp(0) and rp(0),θ(0) , respectively,
is found in Figure 5.5. As before, we write Vp(0),θ(0) = [tp(0) | rp(0),θ(0) | sp(0),θ(0) ]. We store the
coordinates of the knots of p(0) and θ(0) in a vector #”x0 ∈ R4n, where the first 3n components are
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Figure 5.5: Visualization of the creation of the initial curve. Left: The initial cubic spline p(0)

together with the reference vectors rp(0) from the double reflection method. Right: The initial
cubic spline p(0) together with the geometry adapted reference vector rp(0),θ(0) .

associated to p{ #”x0} = p(0) and the last n components correspond to θ{ #”x0} = θ(0). The vector
#”x0 is the initial guess for the BFGS-scheme. Let #”x` ∈ R4n denote the `-th iterate of the BFGS-
scheme. The `-th spine curve p(`) = p{ #”x`} ∈ P4 is the three-dimensional cubic not-a-knot spline
determined by the knots stored in the first 3n components of #”x`. Denoting by θ(`) = θ{ #”x`} ∈ S4
the one-dimensional spline described by the knots stored in the last n components of #”x`, the `-th
geometry adapted frame (tp(`) , rp(`),θ(`) , sp(`),θ(`)) is obtained from the (`−1)-th geometry adapted
frame (tp(`−1) , rp(`−1),θ(`−1) , sp(`−1),θ(`−1)) using the formulas (5.47)–(5.48) with h = p(`) − p(`−1)

and φ = θ(`) − θ(`−1). We write Vp(`),θ(`) = Vp,θ{ #”x`} = [tp(`) |rp(`),θ(`) |sp(`),θ(`) ]. After these dis-
cretizations the minimization problem from (5.86) becomes the finite dimensional optimization
problem

find arg min
#”x∈R4n

Φ(p{ #”x`}, Vp,θ{ #”x`}) .

For an iterate #”x` ∈ R4n, ` ∈ N0, the classical Newton’s method for unconstrained optimization
is to determine the descent direction #”

d ` ∈ R4n by solving

∇2Φ[p{ #”x`}, Vp,θ{ #”x`}]
#”

d ` = −∇Φ
[
p{ #”x`}, Vp,θ{ #”x`}

]
(5.92)

and to update the iterate according to
#”x`+1 = #”x` + #”

d ` . (5.93)

This procedure is simply the Newton’s method for finding roots of the function ∇Φ : R4n → R4n.
Thus, it shares the same advantages and disadvantages as the classical Newton’s method that
are summarized in e.g. [42, Tab. 5.1.2]: The algorithm is q-quadratically convergent to a local
minimum #”x∗ from a starting guess that is sufficiently close to #”x∗, if ∇2Φ[p{ #”x∗}, Vp,θ{ #”x∗}] is
nonsingular (see e.g. [42, Thm. 5.2.1]). Here q-quadratically means that there exists a constant
c ≥ 0 and ˆ̀∈ N such that ( #”x`)`∈N0 converges to #”x∗ and for all ` > ˆ̀ it holds that

| #”x`+1 − #”x∗| ≤ c| #”x` − #”x∗|2,

see e.g. [42, Eq. 2.3.3]. The disadvantages are however that in each step `, a possibly singular
or ill-conditioned system of linear equations involving the Hessian ∇2Φ[p{ #”x`}, Vp,θ{ #”x`}] has to
be solved and that there is no guarantee for the algorithm to converge, when starting with a
starting guess that is not close to a local optimum. In particular, this means that in each step, the
full Hessian ∇2Φ[p{ #”x`}, Vp,θ{ #”x`}] needs to be assembled, implying an immense computational
effort. In fact, even if the iteration in (5.92) and (5.93) converges, it is not clear whether it
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converges to a local maximum, minimum or to a saddle point as all of these points necessarily
possess a vanishing gradient. Accordingly, instead of a Newton’s method, we apply a quasi-
Newton’s method. Precisely, this will be the BFGS method with the cautious update rule from
[94]. BFGS stands for Broyden, Fletcher, Goldfarb and Shanno, who discovered the BFGS
update formula independently in 1970 (see [24, 54, 64, 114]). A quasi-Newton scheme requires
only the gradient of the objective functional and replaces the Hessian ∇2Φ[p{ #”x`}, Vp,θ{ #”x`}]
on the left hand side of (5.92) by an approximation H` ∈ R4n×4n, which is updated, and thus
refined, in each iteration step. Given #”x`, the (` + 1)-th iterate of the BFGS scheme is defined
by

#”x`+1 = #”x` + λ`
#”

d ` , (5.94)

where #”

d ` is a solution to the linear system

H`
#”

d ` = −∇Φ
[
p{ #”x`}, Vp,θ{ #”x`}

]
,

and λ` > 0 determines the stepsize, which is chosen in such a way that certain line search
conditions (e.g. the Wolfe conditions or the Armijo condition) are fulfilled. The gradient
∇Φ[p{ #”x`}, Vp,θ{ #”x`}] of the regularized objective functional Φ from (5.85) with respect to #”x`
is obtained by evaluating the Fréchet derivative of Tρ from Theorem 5.15 and the Fréchet
derivatives of the penalty terms Ψ1, Ψ2, and Ψ3 from Lemma 5.21 in (p{ #”x`}, Vp,θ{ #”x`}) in the
directions corresponding to the components of #”x`. The classical BFGS update formula for the
Hessian H`+1 is defined by setting

H`+1 = H` −
H`

#”s ` #”s >` H`
#”s >` H`

#”s `
+

#”y `
#”y>`

#”y>`
#”s `

, (5.95)

where
#”s ` = #”x`+1 − #”x` ,

#”y ` = ∇Φ
[
p{ #”x`+1}, Vp,θ{ #”x`+1}

]
−∇Φ

[
p{ #”x`}, Vp,θ{ #”x`}

]
,

see e.g. [100, Alg. 6.1]. As described in [100, pp. 137], in order for the new approximation to
the Hessian from (5.95) to be positive definite, the curvature condition #”s ` · #”y ` > 0 needs to
be satisfied. This condition is automatically satisfied for strongly convex objective functionals.
However, there is no reason to believe that this is the case here (see Example 5.20 and Figure
5.4). As a consequence, the curvature condition #”s ` · #”y ` > 0 is incorporated in the cautious
update rule from [94]. Starting with the initial guess H0 = I4n (i.e. the first update direction
corresponds to the direction of steepest descent), we use the cautious update rule

H`+1 =

H` −
H`

#”s ` #”s >` H`
#”s >
`
H`

#”s `
+

#”y `
#”y>`

#”y>
`

#”s `
, if

#”y>`
#”s `

| #”s `|2 > ε
∣∣∇Φ

[
p{ #”x`}, Vp,θ{ #”x`}

]∣∣ ,
H` , otherwise .

(5.96)

Here, as in the classical BFGS scheme,
#”s ` = #”x`+1 − #”x` ,

#”y ` = ∇Φ
[
p{ #”x`+1}, Vp,θ{ #”x`+1}

]
−∇Φ

[
p{ #”x`}, Vp,θ{ #”x`}

]
, (5.97)

and ε > 0 is a parameter. The update formula in (5.96) performs the regular BFGS update
if a stronger curvature condition is satisfied. Otherwise, it simply skips the update. This
ensures positive definiteness of H` throughout the BFGS iteration. It should be noted that some
textbooks (see e.g. [100, p. 143]) do not recommend such a skip, as one might miss to capture
important curvature information for the update. Instead, an inexact line search satisfying the
Wolfe conditions

Φ
(
p{ #”x` + α`

#”

d `}, Vp,θ{ #”x` + α`
#”

d `}
)
≤ Φ

(
p{ #”x`}, Vp,θ{ #”x`}

)
+ c1α`∇Φ

[
p{ #”x`}, Vp,θ{ #”x`}

]
· #”

d ` ,

∇Φ
[
p{ #”x` + α`

#”

d `}, Vp,θ{ #”x` + α`
#”

d `}
]
· #”

d ` ≥ c2∇Φ
[
p{ #”x`}, Vp,θ{ #”x`}

]
· #”

d ` ,
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with 0 < c1 < c2 < 1, or a damped BFGS update is proposed. In order to satisfy the Wolfe
conditions, each line search might require the evaluation of several Fréchet derivatives (see
e.g. [42, Alg. A6.3.1mod]), what would consume a vast amount of time. Moreover, we note
that the BFGS method with line searches that satisfy the Wolfe conditions may fail for non-
convex functions (see [37, 38]). We expect a damped BFGS method to give similar results in a
comparable amount of time, since the case, in which the second case in (5.96) is chosen, occurs
rarely.

We use an inexact Armijo-type line search to determine the stepsize λ` in (5.94). Choosing
parameters σ ∈ (0, 1) and δ ∈ (0, 1), we identify the smallest integer j = 0, 1, . . . such that δj
satisfies

Φ
(
p{ #”x`+δj

#”

d `}, Vp,θ{ #”x`+δj
#”

d `}
)
≤ Φ

(
p{ #”x`}, Vp,θ{ #”x`}

)
+σδj∇Φ

[
p{ #”x`}, Vp,θ{ #”x`}

]
· #”d ` . (5.98)

Then, we set λ` = δj . We note that the update of H` in (5.96) together with (5.98) is a
modification of the BFGS method. The global convergence result in [94] cannot be applied here,
since the level sets

Ω = { #”x ∈ R4n |Φ
(
p{ #”x}, Vp,θ{ #”x}

)
≤ Φ

(
p{ #”x0}, Vp,θ{ #”x0}

)
}

are not bounded: As described in [15], translations of the center curve do not change the chirality
measure. Also, they do not change the values of the penalty terms. In our numerical examples,
we did not encounter any non-convergence when all the spline curves p(`) stayed within a ball
of radius R with kR < N (see Remark 5.9). In all examples, that we consider later, this
is automatically fulfilled, when we choose the maximal degree of spherical harmonics N to be
sufficiently large. In our numerical examples in the next chapter, we use the parameters ε = 10−5,
σ = 10−4 and δ = 0.9 in (5.96) and (5.98). We approximate all line integrals over K (i.e. over
the parameter range [0, 1]) using a composite Simpson rule with M = 2m + 1 nodes on each
subinterval (see also Remark 3.28). We stop the BFGS iteration when | #”x`+1 − #”x`|/| #”x`| < 10−4.
In Algorithm 2 we describe the scheme that is used to design highly em-chiral objects.

5.6 Highly em-chiral thin tubular scatterers
In this chapter we present numerical examples from the previously described Algorithm 2 for
finding highly em-chiral thin tubular scattering objects. We distinguish between three cases
for our examples. In our first series of examples, we consider dielectric scattering objects with
εr > 1, µr = 1. Secondly, we consider the case, where εr = µr. This property implies duality
symmetry, i.e. the components F+−

Dρ
and F−+

Dρ
in the decomposition of the far field operator

from (5.15) vanish (see also Remark 5.5). For the third type of examples, we study shape
optimization for metallic nanowires. Here, we focus on silver and gold and consider frequencies
corresponding to the optical spectrum. In this situation, scattering is modeled with material
parameters εr ∈ C with Im(εr) > 0, Re(εr) < 0 and µr = 1. As already pointed out in
Remark 5.18, the scaling parameter ρ > 0 that determines the thickness of the thin scatterer Dρ

does not affect the outcome of the shape optimization. Accordingly, the results that we present
in this section are valid for any ρ > 0 that is small enough such that the leading order term TDρ
in (5.25) constitutes an acceptable approximation of the far field operator FDρ . In Section 3.5 we
compared the leading order term of the perturbation formula Ẽ∞ρ for circular cross-sections with
radius ρ with a reference solution that has been computed using the C++ boundary element
library Bempp [115] for a whole range of values for ρ. In the dielectric case (see Figure 3.4)
the study suggests that Ẽ∞ρ is an accurate approximation to E∞ρ within a relative error of
less than 5% when the radius of the thin tube Dρ is less than 1.5% of the wavelength of the
incident field, i.e., when kρ . 0.1. For metallic scattering objects however (see Figure 3.5), the
condition kρ = 0.1 is expected to lead to approximations that possess a relative error around
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Algorithm 2 Optimization of thin tubes with elliptical cross-sections
1: Choose εr, µr and k. . scattering problem parameters
2: Define n ∈ N and an initial spline p(0) by the nodes x(1), . . . ,x(n). Denote by

#”x0,p ∈ R3n the vector containing x(1), . . . ,x(n) in succession.
3: Set M ∈ N as the number of intermediate points in each line segment.
4: Choose the semi-axis lengths a > b for the elliptical cross-section.
5: Perform the double reflection method from [121] to generate an approximation to

a RMF on all points including the intermediate points.
6: Define a spline θ(0) by the nodes θ1, . . . , θn and rotate the frame according to (5.23).

Denote by #”x0,θ ∈ Rn the zero vector (the rotation is included in the frame).
7: Set #”x0 ∈ R4n as the vector defined by concatenating #”x0,p and #”x0,θ.

. initial tube defined
8: Choose N ∈ N satisfying kR < N , where R > 0 such that BR(0) includes the

initial tube.
9: Initialize regularization parameters α1, α2, α3 > 0, the parameters for the line

search σ, δ > 0 and H0 ∈ R4n×4n , ε > 0 for the BFGS update.
10: Set Φ0 = Φ(p{ #”x0}, Vp,θ{ #”x0}).
11: for ` = 0, 1, . . . do
12: Evaluate the Fréchet derivative of Φ from (5.85) with respect to p and θ using

(5.74) and Lemma 5.21. Define

Φ′0 = ∇Φ[p{ #”x`}, Vp,θ{ #”x`}] and solve H`d` = −Φ′0 .

13: Define rp ∈ R3 as the entries of d` from 1 to 3n and ϕθ as the entries of d`
from 3n+ 1 to 4n

14: Set j = −1
15: repeat
16: Set j = j+1
17: Set #”x`+1,p = #”x`,p + δjrp and θ`+1 = δjϕθ and denote by p(`+1) the spline

corresponding to #”x`+1,p and by θ(`+1) the spline corresponding to θ`+1.
18: Generate a frame for the tuple (p(`+1), θ(`+1)) using (5.47).
19: Set #”x`+1 as the vector defined by concatenating #”x`+1,p and θ`+1.
20: Set Φ1 = Φ(p{ #”x`+1}, Vp,θ{ #”x`+1}).
21: until Φ1 ≤ Φ0 + σδjΦ′0 · d` . line search ended
22: Evaluate the Fréchet derivative of Φ from (5.85) with respect to p and θ using

(5.74) and Lemma 5.21 and define

Φ′1 = ∇Φ[p{ #”x`+1}, Vp,θ{ #”x`+1}]

23: Define #”s `, #”y ` from (5.97) via #”s ` = #”x`+1 − #”x` and #”y ` = Φ′1 − Φ′0 and
update the Hessian according to (5.96).

24: Set Φ0 = Φ1, Φ′0 = Φ′1 and set the components from 3n + 1 to 4n of #”x`+1 to
zero . the rotation is included in the frame.

25: end for

10% in the worst case. In the following numerical experiments, we often show a thin tubular
scattering object Dρ together with the projections of its center curveK onto the three coordinate
planes that surround Dρ. We use the colors blue, magenta and gold or silver for dielectric, dual
symmetric and metallic scatterers, respectively, to visualize the corresponding three dimensional
scattering object.
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5.6.1 Dielectric scatterers

In this subsection we examine scattering objects measuring several meters in length. Fixing this
unit of length is artificial, since we do not intend to model a realistic scattering object here. We
note however, that a relatively low relative permittivity (e.g. 2 < εr < 5) can be associated to
permittivities corresponding to some optical glass (see e.g. [93, Tab. 5.3]).
Example 5.22. In the first example we consider scattering objects with a circular cross-section.
Thus, we do not consider variations with respect to the rotation θ. This is also reflected in our
notation, as the dependency on θ is suppressed. Further note that different choices for Vp do
not change the scattering object under consideration. The material parameters are set to εr = 5
and µr = 1. Moreover, we use the wave number k = 1m−1 and pick α1 = 5, α2 = 0.0005
and α3 = 0 for the regularization parameters in (5.85) and the length constraint is chosen to
be L = 6m. As an initial guess #”x0 we consider n = 20 equidistant nodes on the straight line
segment between [0, 0,−3]> and [0, 0, 3]>, and then, we slightly perturb the first two components
of each node by adding random numbers between −0.02m and 0.02m. We note that the nodes
cannot be exactly on the straight line segment, because then the thin tubular scattering object
with center curve p4[ #”x0] would be geometrically achiral and thus, em-achiral. The objective
functional Φ from (5.85) would not be differentiable at this initial guess (see also Example 5.20).
Moreover, we pick M = 11 on each spline segment to approximate integrals over K using the
composite Simpson rule. As outlined in Remark 5.9 and Remark 5.17, the maximal degree of
vector spherical harmonics N ∈ N that is used in the representation of the operator Tρ(p4, Vp4)
from (5.45) and of its Fréchet derivative T ′ρ[p4, Vp4 ]h4 from (5.55) must be chosen in such a way
that N is greater than R, where BR(0) is the smallest ball centered at the origin that contains
the scattering object Dρ. In this example, we use N = 5. In Figure 5.6 we show the convergence
history for this example. The initial guess is plotted in the top-left plot, some intermediate
results that are obtained after ` = 10, 30, 50, 70 are plotted in between and the final result after
` = 102 steps of the BFGS method is in the bottom-right plot. Starting with an almost
straight line in the top-left plot of Figure 5.6, the center curve winds up during the optimization
process and finally becomes a helix. The orientation of the helix in space and whether it is left
or right turning depends on the orientation of the initial curve p{ #”x0}, thus, in particular on
the values of the random perturbation that is used to construct the initial curve. In each plot
we feature the relative chirality measure J2 from (5.70) and the relative smooth relaxation JHS
from (5.69) in a table next to the center curve p{ #”x`}. We find that both measures increase
by several orders of magnitude. We track the evolution of both measures among the iteration
steps ` in the left plot in Figure 5.7. Moreover, we perform a sensitivity analysis with respect
to εr and k for the final result of the optimization scheme. For this purpose, we vary either εr
or k and fix all the remaining parameters. The center plot in Figure 5.7 shows the sensitivity
analysis with respect to εr ∈ [1, 50] and the right plot in Figure 5.7 features the sensitivity
analysis with respect to k ∈ [0.01, 2]. The vertical lines in both plots (dotted magenta) indicate
the values of εr and k that have been used for the optimization (εr = 5 and k = 1). We see
that both measures increase, when the relative electric permittivity εr increases. However, both
measures seem to converge to a value which is around 0.23 for J2 and 0.11 for JHS. On the
other hand, JHS reaches a local maximum at the wave number k = 1 that has been used in the
shape optimization, and there is a local maximum of J2 close to this wave number. In order
to study the dependency of the optimized center curve on the length constraint L in (5.71) we
repeat the shape optimization with initial curves having the length L = 4m and L = 8m instead
of L = 6m. For the construction of the initial curves for L = 4, 8m, we took the same random
numbers as for the length constraint L = 6m. The initial curves having length L = 4, 6, 8m can
be found in the top-left, top-middle, and top-right plot of Figure 5.8, respectively. As before,
we pick the maximal degree of vector spherical harmonics N ∈ N in such a way that N is larger
than R, where BR(0) includes the scattering objects. Thus, for L = 4m we pick N = 4 and
for L = 8m, we pick N = 6. In the bottom-left and bottom-right plot in Figure 5.8 we show
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Figure 5.6: Convergence history for the dielectric scatterers from Example 5.22. Top-left: Initial
guess. Bottom-right: Final result.
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Figure 5.7: The relative measures JHS and J2 for Example 5.22 corresponding to the length
constraint L = 6m. Left: Evolution of both measures for increasing iterations `. Center:
Sensitivity with respect to the relative electric permittivity εr. Right: Sensitivity with respect
to the wave number k.

the final results that are obtained by the optimization scheme after 72 iteration steps and 122
iteration steps of the BFGS scheme, respectively. The bottom-middle plot features the final
center curve for L = 6m for comparison. It is interesting to note that the diameter and the
pitch of the helix is basically the same among the different values of L, while with an increasing
length, also the number of turns increases. Both measures essentially attain the same value for
the final structures, however, the total interaction cross section increases with increasing values
of L. This is not shown in our figures. The orientation of the helix remains the same among the
different lengths constraints since we used the same random numbers for perturbing the initial
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Figure 5.8: Optimized structures for the different length constraints L = 4, 6, 8m (left to right)
from Example 5.22. Top row: Initial guesses. Bottom row: Final results.

straight curve.

Example 5.23. For the second example, we focus again on a dielectric thin tubular scattering
object with a circular cross-section. Now, we choose the coefficients k = 1m−1, εr = 30 and
µr = 1. This means that the permittivity contrast is much larger than in Example 5.22. We
further pick the regularization parameters α1 = 10, α2 = 0.005 and, as in Example 5.22, α3 = 0
for the penalized objective function in (5.85). Since we consider circular cross-sections, rotations
of those cross-sections do not change the scattering object and consequently, do not affect the
optimization. The length constraint is set to L = 20m. We construct the initial guess of the
optimization by using two parallel vertical lines connected by a half circle. The distance of the
vertical lines is 2. Each of these has length 8 and is discretized by 20 nodes. The half circle
on the other hand is discretized by 5 nodes, resulting in n = 45, which is the total number of
nodes. As before, we slightly perturb the nodes on the vertical lines by adding random numbers
between −0.02m and 0.02m to the x and y components. The unperturbed initial curve would
be geometrically achiral and thus, the functional (5.85) would not be differentiable. We further
pick M = 11 on each spline segment to approximate integrals over K using the composite
Simpson rule. The total length of the initial curve is approximately 19.16m which is around 4%
off the length constraint. In accordance with Remark 5.9 and Remark 5.17 we use N = 6 for
the maximal degree of vector spherical harmonics that is used in the basis representation of the
operator Tρ(p4, Vp4) from (5.45) and of its Fréchet derivative T ′ρ[p4, Vp4 ]h4 from (5.55).

In Figure 5.9 we visualize the evolution of the scattering objects by showing the initial guess
(top-left), some intermediate results obtained after ` = 10, 30, 50, 70 iterations, and the final
result obtained after ` = 162 steps (bottom-right). The optimization turns the U-shaped initial
guess in an intertwined double helix. Both measures increase by several orders of magnitude,
respectively, starting from an almost em-achiral object.
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Figure 5.9: Convergence history for the dielectric scatterers from Example 5.23. Top-left: Initial
guess. Bottom-right: Final result.
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Figure 5.10: The relative measures JHS and J2 for Example 5.23 corresponding to the length
constraint L = 20. Left: Evolution of both measures for increasing iterations `. Center: Sensi-
tivity with respect to the relative electric permittivity εr. Right: Sensitivity with respect to the
wave number k.

In Figure 5.10 (left) we track the evolution of the chirality measure J2 and the smooth
relaxation JHS, respectively. Figure 5.10 (center) shows plots of J2 and JHS for the optimized
structure from Figure 5.9 (bottom-right) as a function of εr and Figure 5.10 (right) shows plots
of J2 and JHS for the final structure as a function of the wave number k. In both plots, the
vertical line (dotted magenta) shows the values for εr and k that we used for the optimization
(εr = 30, k = 1). Both measures are monotonically increasing in εr. Moreover, the relative
smooth measure JHS has a local maximum for k = 1 and the relative chirality measure J2 has a
local maximum, which is close to k = 1. The sensitivities of both measures are more pronounced
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Figure 5.11: Optimized structures for the different length constraints L = 15, 20, 25m (left to
right) from Example 5.23. Top row: Initial guesses. Bottom row: Final results.

than in Example 5.22. This is due to higher values of J2 and JHS, which, on the other hand,
result from a larger εr than in Example 5.22. To study the dependency of the optimized center
curve on the length constraint L, we repeat the shape optimization for the length constraints
L = 15m and L = 25m instead of L = 20m. We construct the initial curves in the same way
as described above and use the same perturbations for the straight lines. As in the previous
example, this determines the orientation of the final double helix.

The initial center curves for this simulation are shown in Figure 5.11 (top-left and top-right).
For reference, we included the initial curve corresponding to the length constraint L = 20m in
the top-middle plot. For the length constraint L = 15m we choose N = 5, on the other hand,
for the length constraint L = 25m we choose N = 7 as the maximal degree of vector spherical
harmonics that is used in the basis representation of the operator Tρ(p4, Vp4) from (5.45) and of
its Fréchet derivative T ′ρ[p4, Vp4 ]h4 from (5.55). In Figure 5.11 (bottom-left and bottom-right)
we show the final results that are obtained by the BFGS method after 121 steps (L = 15m)
and after 194 steps (L = 25m). We also included the final result for L = 20 in the bottom-
center plot of Figure 5.11, for comparison. As we already observed in Example 5.22 for the
helix, the diameters and the pitches of the three intertwined double helices that are found by
the optimization algorithm are basically the same for the three different length constraints L.
However, the number of turns of these helices increases with increasing length constraint L.
In all of these simulations, the algorithm converges to objects that essentially attain the same
values for J2 and JHS. For increasing total lengths of the center curve, the total interaction cross
section also increases. This is not shown in our figures and is studied in more detail for metallic
scattering objects in the next subsection.
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5.6.2 Dual symmetric scatterers

As described Remark 5.5, the choice µr = εr is the condition for duality symmetry for the
macroscopic Maxwell’s equations and this implies preservation of helicity independent from the
shape of the scatterer. For the leading order term of the asymptotic expansion of the far field
operator Tρ from (5.45) the property µr = εr implies T+−

ρ = T−+
ρ = 0, what can be easily

seen by using the representations in (5.34). Accordingly, in our next numerical examples the
condition µr = εr > 0 guarantees preservation of helicity. For having a well defined derivative
of χHS for µr = εr, we replace the space X from (5.72) by

X ′ =
{
G ∈ HS

(
L2
t (S2)

) ∣∣ χHS (G) 6= 0 and ‖Gpp‖HS > 0, ‖Gpp‖HS = 0, p ∈ {+,−}
}
,

where p = −p, and find that for a given G ∈ X ′ and H ∈ HS
(
L2
t (S2)

)
, the derivative is given by

(χHS)′ [G]H =
Re〈G,H〉HS −

∑
p∈{+,−}Re〈Gpp,Hpp〉HS

‖Gpp‖HS
‖Gpp‖HS

χHS(G) , (5.99)

where p = −p. This replaces the derivative in (5.73). The fact that (5.99) is the Fréchet
derivative of χHS on X ′ can be seen by using the same computations as in Lemma 5.19.

As in the previous subsection, the unit of length that we choose here is artificial.

Example 5.24. We consider thin tubular scattering objects with a circular cross-section and
material parameters given by k = 1m−1 and µr = εr = 50. As outlined before, this implies that
throughout the iterations it holds that T+−

ρ (p4) = T−+
ρ (p4) = 0. We construct a U-shaped

initial guess as in the previous Example 5.23, where we used the vertical side length 6m. The
distance of these vertical lines is 2m. Thus, we use the length constraint L = 14m. We discretize
both vertical lines by using 10 nodal points. Furthermore, we use 5 nodal points to discretize
the arc that connects both lines. This yields n = 25 discretization points in total. In order to
obtain an initial guess that is not em-achiral, we perturb the x and y component of all nodes
by adding random numbers between −0.02m and 0.02m. Moreover, we pick M = 11 on each
spline segment to approximate integrals over K using the composite Simpson’s rule. For the
regularization parameters, we consider (as in Example 5.23) α1 = 10, α2 = 0.005 and α3 = 0. In
accordance with Remark 5.9 and Remark 5.17, we use N = 5 as the maximal degree of vector
spherical harmonics that is used in the basis representation of the operator Tρ(p4, Vp4) from
(5.45) and of its Fréchet derivative T ′ρ[p4, Vp4 ]h4 from (5.55).

In Figure 5.12 we show the initial guess for our shape optimization (top-left), together with
some intermediate results obtained after ` = 10, 20, 30, 40 steps and the final result (bottom-
right) after ` = 50 iterations of the optimization scheme. Despite the different material pa-
rameters, the convergence history from Figure 5.12 is similar to the convergence history from
Example 5.23 in Figure 5.9. However, we observe that both measures attain higher values, what
also results from using larger material parameters.

In Figure 5.13 (left) we track the evolution of both measures J2 and JHS as the iteration
number ` increases. Moreover, we study the sensitivity on the material parameters εr = µr
(center) and the sensitivity on the wave number k (right). Comparing these data with the results
from Example 5.23 shows that for the dual symmetric case, the measures are slightly higher.
Finally, we study the dependency on the length constraint L by performing the same simulation
with the length constraints L = 10, 18m instead of L = 14m. As an initial guess we construct
U-shaped curves by decreasing and increasing the lengths of the parallel vertical lines to 4m and
8m, respectively. The maximal degree of vector spherical harmonics is chosen to be N = 4 in
the first simulation and N = 6 in the second experiment. The initial guesses corresponding to
the lengths L = 10, 14, 18m can be found in the top row of Figure 5.14. The final result of the
optimization is visualized below. Again, the diameter and pitch of the intertwined double helix
remains constant. However, the total length and consequently the number of turns increases
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Figure 5.12: Convergence history for the dual symmetric scatterers from Example 5.24. Top-left:
Initial guess. Bottom-right: Final result.
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Figure 5.13: The relative measures JHS and J2 for Example 5.24 corresponding to the length
constraint L = 14. Left: Evolution of both measures for increasing iterations `. Center: Sen-
sitivity with respect to the relative electric permittivity εr and relative magnetic permeability
µr. Right: Sensitivity with respect to the wave number k.

with increasing length constraint L. This does not affect the measures corresponding to the final
structures, as they almost keep the same values throughout the different lengths.

Example 5.25. In this example, we consider k = 1m−1 and εr = µr = 50. As in the previous
example we use the regularization parameters α1 = 10, α2 = 0.005 and α3 = 0 for the functional
Φ in (5.85). For the initial guess we consider three parallel vertical line segments arranged in
a common two-dimensional plane having a length of 6m, respectively. The distance from the
outer vertical lines to the middle line is 1m. Furthermore, the first outer line is connected to the
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Figure 5.14: Optimized structures for the different length constraints L = 10, 14, 18 (left to
right) from Example 5.24. Top row: Initial guesses. Bottom row: Final results.

middle line by a half circle at one end and the second outer line is connected to the middle line
by a half circle at the other end. This gives an S-shaped initial curve completely lying in a two-
dimensional plane. We discretize the vertical lines by using 10 nodes, respectively. Moreover,
the half circles are discretized by 5 points. This yields n = 40 nodal points in total. As the
initial curve is geometrically achiral, it is em-achiral and the aim functional is not differentiable
for this center curve. Therefore, we perturb the center curve of the initial guess by adding
random numbers between −0.02m and 0.02m to the x and y components of the nodal points.
Moreover, we pick M = 11 on each spline segment to approximate integrals over K using the
composite Simpson’s rule. The length constraint for this numerical example is set to L = 22m.
In accordance with Remark 5.9 and Remark 5.17 we use N = 6 as the maximal degree of vector
spherical harmonics that is used in the basis representation of the operator Tρ(p4, Vp4) from
(5.45) and of its Fréchet derivative T ′ρ[p4, Vp4 ]h4 from (5.55).

In Figure 5.15 we visualize the convergence history by showing the initial curve (top-left),
some intermediate results obtained after ` = 10, 20, 30, 40 (top-center - bottom-center) and the
final result obtained after ` = 123 steps of the BFGS method. Starting with an almost em-achiral
center curve, the optimization algorithm turns the scatterer into a nonintuitive shape attaining
relatively high values of both measures J2 and JHS. The final curve possesses remarkable sym-
metries when projecting it onto the three surrounding planes as seen in the bottom-right plot
in Figure 5.15.

In Figure 5.16 (left) we show the evolution of both measures J2 and JHS during the opti-
mization process. Both functionals increase by several orders of magnitude. Figure 5.16 (center)
shows a sensitivity analysis of both measures J2 and JHS with respect to εr = µr and Figure 5.16
shows corresponding plots of J2 and JHS as a function of k. In both plots, the parameters that
are used in the simulation are marked with a vertical line (εr = µr = 50, k = 1). As before, both
measures are monotonically increasing in εr = µr. Moreover, the smooth relaxation JHS reaches
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Figure 5.15: Convergence history for the dual symmetric scatterers from Example 5.25. Top-left:
Initial guess. Bottom-right: Final result.
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Figure 5.16: The relative measures JHS and J2 for Example 5.25 corresponding to the length
constraint L = 22. Left: Evolution of both measures for increasing iterations `. Center: Sen-
sitivity with respect to the relative electric permittivity εr and relative magnetic permeability
µr. Right: Sensitivity with respect to the wave number k.

a local maximum at k = 1m−1, which is the wave number for which we optimized the function
Φ in (5.85). The original relative chirality measure has a local maximum near k = 1. The
sensitivity with respect to k is more pronounced than in Example 5.24 (see Figure 5.13 (right)).
Finally, we study the dependency of the optimized center curve on the length constraint L. For
this purpose, we pick two more initial curves having the same vertical line distance as before
but with a length of 4m and 8m instead of 6m.

This gives two more S-shaped initial curves for which (after a slight perturbation of the
nodal points as before) we start the optimization by setting the length constraints to L = 16m
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Figure 5.17: Optimized structures for the different length constraints L = 16, 22, 28m (left to
right) from Example 5.25. Top row: Initial guesses. Bottom row: Final results.

and L = 28m, respectively. These curves can be found in the top row of Figure 5.17. For
comparison, we included the initial curve for the length constraint L = 22m in the top-middle
plot of Figure 5.17. In accordance with Remark 5.9, we choose N = 4 when L = 16m and
N = 6 for L = 28m as the maximal degree of vector spherical harmonics that is used in
the basis representation of the operator Tρ(p4, Vp4) from (5.45) and of its Fréchet derivative
T ′ρ[p4, Vp4 ]h4 from (5.55). In Figure 5.17 (bottom-left and bottom-right) we visualize the final
results that are found by the optimization scheme after ` = 121 iterations (for L = 16m) and
after ` = 145 iterations (for L = 28m). In Figure 5.17 (bottom-middle) we included the final
result for L = 22m for comparison. With increasing length constraint L the nonintuitive final
structure becomes larger. However, both measures remain almost constant.

5.6.3 Metallic nanowires

In the previous two subsections we studied scattering objects with positive material parameters
µ1, ε1 > 0. The shape optimization scheme provides interesting thin tubular scatterers, however
both measures J2 and JHS do not come close to their upper bound 1, which would give us a
maximal em-chiral scattering object.

Now, we study shape optimization for metallic nanowires Dρ with an elliptical cross-section
D′ρ = ρD′ that possibly rotates along the center curve K. As we observed in Section 3.4, by
tuning the semi axes lengths of the ellipse we can manipulate the appearance of plasmonic
resonances. Thus, it is possible to shift local maxima and minima of the total interaction
cross section ‖TDρ‖2HS along the optical band. Rather than working directly with the material
parameters for gold and silver, we consider frequencies f in the optical band and obtain a
corresponding frequency dependent electric permittivity εr(f) by using the dataset provided in
[83]. Intermediate values are obtained via interpolation. We use these experimental data as the
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Silver Gold
f Re(εr) Im(εr) Re(εr) Im(εr)

300 THz -50.55 0.57 -41.78 2.94
350 THz -36.23 0.48 -28.84 1.77
400 THz -26.94 0.32 -20.11 1.24
450 THz -20.57 0.44 -14.10 1.04
500 THz -16.05 0.44 -9.36 1.53
550 THz -12.62 0.42 -5.59 2.19
600 THz -9.78 0.31 -2.54 3.65
650 THz -7.64 0.25 -1.73 5.06
700 THz -5.94 0.20 -1.69 5.66
750 THz -4.41 0.21 -1.66 5.74
800 THz -3.10 0.21 -1.50 5.63

Table 5.1: Relative electric permittivities εr of silver and gold at optical frequencies (from [83]).

Drude model provides inaccurate material parameters for optical frequencies (see Remark 2.7)
and the appearance of a plasmonic resonance is highly sensitive with respect to the material
parameters (see Section 3.4). We discuss three numerical examples, where we use the shape
optimization scheme developed in Section 5.5 (see Algorithm 2) to design highly chiral thin
silver and gold nanowires at four different frequencies in the optical band. We work at

• fopt = 400THz, i.e., the wavelength is λopt = 749nm (red light),

• fopt = 500THz, i.e., the wavelength is λopt = 600nm (orange light),

• fopt = 600THz, i.e., the wavelength is λopt = 500nm (green light),

• fopt = 700THz, i.e., the wavelength is λopt = 428nm (blue light).

The relative electric permittivities εr of silver and gold corresponding to these frequencies can
be found in Table 5.1 (see also Figure 2.1). For the elliptical cross-sections D′ρ = ρD′ we
denote the lengths of the semi axes of the rescaled cross-section D′ by 0 < b ≤ a < 1. As
introduced in Definition 3.24, a frequency fres is called a plasmonic resonance frequency of such
a thin metallic nanowire, if the aspect ratio a/b of its elliptical cross-section satisfies a/b =
−Re(εr(fres)), and if Im(εr(fres)) > 0 is sufficiently small. The total interaction cross section
of the nanowire (i.e. the squared Hilbert-Schmidt norm of the associated far field operator) at
a plasmonic resonance frequency is much larger than away from this frequency. Accordingly,
thin metallic nanowires are strongly scattering at plasmonic resonance frequencies. Strongly
scattering highly em-chiral nanowires would be very interesting for the design of novel chiral
metamaterials (see e.g. [76, 80, 120]). Thus, we choose in our first two examples the aspect
ratios of the elliptical cross-sections of the nanowires such that the frequency fopt, where the
shape optimization is carried out, is a plasmonic resonance frequency, i.e., fopt = fres. We
show that strongly scattering thin metallic nanowires with fairly large em-chirality measures
can be obtained. In our third example we then design thin metallic nanowires with even larger
em-chirality measures, choosing the frequency fopt to be around 100THz to 150THz below the
plasmonic resonance frequency fres of the nanowire, i.e., fopt 6= fres. However, in this case the
total interaction cross section of the optimized nanowire is smaller than in the previous examples.
For a metallic nanowire with circular cross-section, for instance, choosing ρ = 0.1/kopt means
that the radius ρ is between 6.8nm at fopt = 700THz and 11.9nm at fopt = 400THz. Here,
kopt denotes the wave number corresponding to the frequency fopt, i.e. kopt = 2π/λopt. In our
visualizations of the optimized nanowires with elliptical cross-sections and for the plots of the
total interaction cross section of these optimized nanowires in the examples below, we choose ρ
such that koptρ

√
ab = 0.05.
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Figure 5.18: Optimized silver nanowires of length L = 2λopt from Example 5.26 for fopt =
400, 500, 600, 700 THz (left to right).
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Figure 5.19: Frequency scans for optimized silver nanowires of length L = 2λopt from Exam-
ple 5.26 at fopt = 400, 500, 600, 700THz (left to right).

Example 5.26. In our first numerical example we discuss thin straight silver and gold nanowires
with elliptical cross-sections. We consider four different frequencies fopt = 400, 500, 600, and
700THz, and for each of these frequencies we choose a different aspect ratio for the elliptical
cross-section of the nanowire such that fopt = fres is a plasmonic resonance frequency of the
nanowire, i.e., a/b = −Re(εr(fopt)). We fix the spine curve of the nanowire to be a straight line
segment and we optimize just the twist rate of the elliptical cross-section along the spine curve
of the nanowire, i.e., the twist function θ that determines the rotation matrix in (3.4). For the
regularization parameters in (5.85) we choose α1 = α2 = 0 and α3 = 5× 10−5.

To discuss the influence of the length of the nanowire on the optimized shape of the nanowire,
we consider four different values L = jλopt/4 with j = 1, 2, 4, 8 for the length constraint in (5.80).
As before, λopt denotes the wavelength at the frequency fopt. Accordingly, we choose the maxi-
mal degree N of circularly polarized vector spherical harmonics that is used in the discretization
of the operator Tρ(p, Vp,θ) and of its Fréchet derivative T ′ρ[p, Vp,θ](h, φ) (see Remark 5.9 and
Remark 5.17) to be N = 2, 4, 6, 8 for L = jλopt/4 with j = 1, 2, 4, 8, respectively.

We use cubic not-a-knot splines with n = 10 knots to describe the (fixed) spine curve K
and the twist function θ and M = 11 quadrature points for the composite Simpson rule on each
spline segment to approximate integrals over K. Since the em-chirality measure χHS, and thus
also the objective functional Φ, are not differentiable at an em-achiral configuration, we choose
an em-chiral initial guess for the shape optimization algorithm. To this end, we start with a
rotation minimizing frame along the straight spine curve and add a small random twist. The
same random twist is used for all frequencies and length constraints.

In Figure 5.18 we show the optimized twisted silver nanowires obtained by the shape op-
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Figure 5.20: Frequency scans for optimized gold nanowires of length L = 2λopt from Exam-
ple 5.26 at fopt = 400, 500, 600, 700THz (left to right).

Silver
fopt [THz] 400 500 600 700

L = λopt
4

J2 0.26 0.26 0.26 0.26
JHS 0.12 0.12 0.12 0.12

L = λopt
2

J2 0.39 0.39 0.39 0.39
JHS 0.17 0.17 0.17 0.17

L = λopt
J2 0.37 0.37 0.37 0.37
JHS 0.20 0.20 0.20 0.20

L = 2λopt
J2 0.32 0.32 0.32 0.32
JHS 0.19 0.19 0.19 0.19

Gold
fopt [THz] 400 500 600 700

L = λopt
4

J2 0.26 0.23 0.09 0.03
JHS 0.12 0.12 0.02 0.003

L = λopt
2

J2 0.39 0.37 0.17 0.06
JHS 0.17 0.17 0.03 0.004

L = λopt
J2 0.36 0.35 0.13 0.03
JHS 0.20 0.19 0.04 0.003

L = 2λopt
J2 0.32 0.30 0.08 0.01
JHS 0.19 0.19 0.03 0.0008

Table 5.2: Normalized em-chirality measures J2 and JHS of optimized silver (left) and gold
nanowires (right) from Example 5.26.

timization for L = 2λopt and fopt = 400, 500, 600, and 700THz (left to right). The direction
of the twist of the optimized structure depends on the initial guess. The aspect ratios a/b of
the elliptical cross-sections vary between 26.94 at fopt = 400THz and 5.94 at fopt = 700THz.
The optimized twist rate per wavelength of the cross-sections of the four optimized twisted sil-
ver nanowires around the straight spine curve is almost constant and virtually the same for all
frequencies.

In Table 5.2 we collect the values of the normalized em-chirality measures J2 and JHS from
(5.70) and (5.69) of the optimized straight twisted silver and gold nanowires for the four dif-
ferent frequencies and the four different length constraints. Each pair of entries in these tables
corresponds to a different optimized twisted silver or gold nanowire. For the silver nanowires
we observe that the values of J2 and JHS that are reached for the different optimized struc-
tures are independent of the frequency. On the other hand, for the optimized gold nanowires
these values change significantly with the frequency. While at fopt = 400THz and 500THz the
normalized em-chirality measures of the optimized twisted gold nanowires are comparable to
those of the optimized twisted silver nanowires, the normalized em-chirality measures of the
optimized twisted gold nanowires quickly decrease at higher frequencies. This is a consequence
of the increasing imaginary part of the relative electric permittivity of gold at higher frequencies
(see Table 5.1). For the gold nanowires the aspect ratio a/b of the elliptical cross-section varies
between 20.11 at fopt = 400THz and 1.69 at fopt = 700THz, i.e., the cross-section is somewhat
rounder than for the corresponding silver nanowires. Finally, we study the frequency dependence
of the normalized em-chirality measures for the optimized twisted silver and gold nanowires of
length L = 2λopt that have been optimized at fopt = 400, 500, 600, and 700THz. In each of the
plots in Figure 5.19 and 5.20 the optimized nanowire is fixed. However, it is illuminated with
incident waves of different frequencies, and thus its frequency-dependent relative electric per-
mittivity εr varies. In Figure 5.19 we plot the normalized em-chirality measures J2 (dashed) and
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Figure 5.21: Optimized silver nanowires and corresponding frequency scans from Example 5.27
for fopt = 400, 500THz (top row) and fopt = 600, 700THz (bottom row).

JHS (solid) and an approximation of the total interaction cross section (dotted) of the optimized
thin twisted silver nanowires shown in Figure 5.18 over a frequency range between 300THz and
800THz. The approximation of the total interaction cross section is obtained by evaluating the
Hilbert-Schmidt norm of the operator TDρ from (5.25) with ρ = 0.05/(kopt

√
ab). The sharp peak

in the total interaction cross section is exactly at the plasmonic resonance frequency fres of the
corresponding thin silver nanowire. It is important to note that, in contrast to the normalized
em-chirality measures, the total interaction cross section is plotted in a logarithmic scale. We
find that J2 and JHS have a peak at the plasmonic resonance frequency fres as well. This is the
frequency that has been used in the shape optimization, i.e., fopt = fres.

In Figure 5.20 we show the corresponding frequency scans for the optimized thin twisted gold
nanowires. For the gold nanowires that have been optimized at fopt = 400THz and 500THz, the
results are similar as for the silver nanowires that have been optimized at the same frequencies
in Figure 5.19. On the other hand, for the gold nanowires optimized at fopt = 600THz and
700THz, the plasmonic resonance is no longer visible in the plots of the total interaction cross
section. This is a consequence of the larger imaginary part of the electric permittivity of gold at
fopt = 600, 700THz (see Table 5.1 and Figure 2.1). For these two higher frequencies, the values
of the normalized em-chirality measures J2 and JHS are small across the entire frequency band.
The plasmonic resonance seems to be required to obtain thin metallic nanowires that exhibit
large normalized em-chirality measures.

Example 5.27. In our second example we consider a free-form shape optimization for the spine
curve of thin silver and gold nanowires with elliptical cross-sections, but we do not optimize the
twist rate of the cross-section of the nanowire along the spine curve. As in the first example,
we consider four different frequencies fopt = 400, 500, 600, and 700THz, and for each of these
frequencies we again choose the aspect ratio of the elliptical cross-section of the nanowire such
that fopt = fres is a plasmonic resonance frequency for the nanowire. For the regularization
parameters in (5.85) we choose α1 = 5, α2 = 8× 10−3 and α3 = 0.

The length constraint for the nanowire is set to be L = 3λopt/2, and, accordingly, we
choose the maximal degree N of circularly polarized vector spherical harmonics that is used in
the discretization of the operator Tρ(p, Vp,θ) and of its Fréchet derivative T ′ρ[p, Vp,θ](h, φ) (see
Remark 5.9 and Remark 5.17) to be N = 5. We use cubic not-a-knot splines with n = 20 knots
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Figure 5.22: Optimized gold nanowires and corresponding frequency scans from Example 5.27
for fopt = 400, 500THz (top row) and fopt = 600, 700THz (bottom row).

to parametrize the spine curve K and the (fixed) twist function θ andM = 11 quadrature points
on each spline segment to discretize line integrals over K.

For the initial guess for the spine curve we use a straight line of length L = 3λopt/2, and
we add a small random perturbation to obtain an em-chiral configuration. The same random
perturbation is used for all frequencies. The initial geometry adapted frame is chosen to be
rotation minimizing.

In Figure 5.21 we show the optimized silver nanowires that have been obtained by the shape
optimization for fopt = 400, 500, 600, and 700THz. The aspect ratios a/b of the elliptical cross-
sections are the same as in Example 5.26 and vary between 26.94 at fopt = 400THz and 5.94 at
fopt = 700THz. For a better three-dimensional impression, we also included the projections of
the spine curves of the optimized nanowires on the three coordinate planes in these plots. During
the optimization the straight initial guess bends into a rather irregular shape that is difficult
to interpret. However, the optimized silver nanowires obtained at the four different frequencies
have very similar shapes, which seem to be rescaled versions of each other with respect to the
wavelength.

Figure 5.21 also contains plots illustrating the frequency dependence of the normalized em-
chirality measures J2 (dashed) and JHS (solid) as well as of the total interaction cross-section
(dotted) of the optimized silver nanowires. The maxima of the normalized em-chirality measures
and the plasmonic resonances visible in the plots of the total interaction cross-section are rather
localized. It is interesting to observe that, although the shape optimization has been carried
out at the plasmonic resonance frequency, i.e., fopt = fres, the maximum of the normalized
em-chirality measures J2 and JHS is attained around 100THz to 150THz below the plasmonic
resonance frequency in all four examples. This is a common feature that we have observed in
several other examples, and we will utilize this phenomenon in Example 5.28 below to design
thin silver and gold nanowires with even higher em-chirality measures.

In Figure 5.22 we show the corresponding results of the shape optimization of thin gold
nanowires for fopt = 400, 500, 600, and 700THz. The shapes of the gold nanowires that have
been optimized at fopt = 400, 500THz are similar to those of the optimized thin silver nanowires
in Figure 5.21. Also the frequency scans in Figure 5.22 show a similar behavior, although the
plasmonic resonance is not as pronounced as for the silver nanowires. For fopt = 600, 700THz
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Figure 5.23: Optimized silver nanowires and corresponding frequency scans from Example 5.28
for fopt = 400, 500THz (top row) and for fopt = 600, 700THz (bottom row).

the results are different. The shapes of the optimized gold nanowires look similar to those
obtained for dielectric thin tubes in Example 5.22. The optimized gold nanowires are helices,
and no plasmonic resonances are visible in the plots of the total interaction cross-sections. This
different behavior results from the larger imaginary part of the electric permittivity of gold at
fopt = 600, 700THz (see Table 5.1 and Figure 2.1).

Example 5.28. The goal of our final example is to design thin silver and gold nanowires
with elliptical cross-sections that possess normalized em-chirality measures J2 and JHS as close
to 1 as possible at optical frequencies. We consider a free-form shape optimization for the
spine curve of the nanowire, and we optimize the twisting of the elliptical cross-section of the
nanowire along the spine curve. As in the previous examples, we discuss four different frequencies
fopt = 400, 500, 600, and 700THz. For each of these frequencies we choose the aspect ratio of
the elliptical cross-section of the nanowire such that its plasmonic resonance frequency fres is
around 100THz to 150THz above the frequency fopt that is used in the shape optimization,
i.e., we use a/b = 12.5 at fopt = 400THz, a/b = 7.14 at fopt = 500THz, a/b = 3.85 at
fopt = 600THz, and a/b = 1.92 at fopt = 700THz. In particular, it holds that fopt 6= fres. This
is different from the previous two examples, where we optimized the shape of the nanowires
directly at the plasmonic resonance frequency. It is motivated by our observations at the end of
Example 5.27. For the regularization parameters in (5.85) we choose α1 = 5, α2 = 8× 10−3 and
α3 = 1 × 10−6. The outcome of the shape optimization strongly depends on the initial guess
for the spine curve. Thus, we consider in this example 100 different initial spine curves for the
optimization scheme at each frequency. These are helices with four turns, where the total height
and the radius of the helix are chosen randomly in [0, 2λopt/3] and in [0, λopt/2], respectively.
As before, λopt denotes the wavelength at the frequency fopt. We also add different random
twists to these initial guesses. We use cubic not-a-knot splines with n = 40 knots to parametrize
the spine curve and the twist function, and M = 21 quadrature points on each spline segment
to discretize line integrals over K. We choose the maximal degree N of circularly polarized
vector spherical harmonics that is used in the discretization of the operator Tρ(p, Vp,θ) and of
its Fréchet derivative T ′ρ[p, Vp,θ](h, φ) (see Remark 5.9 and Remark 5.17) to be N = 5. This
gives 100 different optimized silver and gold nanowires for each frequency fopt, and we finally
select those (for each frequency fopt) that attain the highest normalized em-chirality measures.
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Figure 5.24: Optimized gold nanowires and corresponding frequency scans from Example 5.28
for fopt = 400, 500THz.

In Figure 5.23 we show the optimized silver nanowires that have been obtained for fopt =
400, 500THz (top row) and for fopt = 600, 700THz (bottom row). The shapes of the opti-
mized nanowires look complicated but they show similarities and seem to be scaled accord-
ing to the wavelength, where the optimization has been carried out. Very high normalized
em-chirality measures are being attained by the optimized structures at all four frequencies
fopt = 400, 500, 600, and 700THz, respectively. Figure 5.23 also shows plots of the normalized
em-chirality measures J2 (dashed) and JHS (solid) as well as of the total interaction cross section
(dotted) of the optimized thin silver nanowires as a function of the frequency of the incident
waves. The maximal values of the normalized em-chirality measures appear at approximately
the same frequency, where the total interaction cross-section of the nanowires has a local mini-
mum. Directly at the plasmonic resonance frequency the normalized em-chirality measures are
smaller, but on the other hand the total interaction cross section of the nanowire is much larger.

In Figure 5.24 we show the corresponding results for gold nanowires at fopt = 400THz
and 500THz. The obtained normalized em-chirality measures are lower than for silver, which
might be explained by the larger imaginary part of the relative electric permittivity of gold at
these frequencies. Also the plasmonic resonances are not as pronounced as for the thin silver
nanowires. As a consequence of the even larger imaginary part of the electric permittivity of
gold at fopt = 600THz and 700THz, the normalized em-chirality measures obtained for thin
gold nanowires optimized at these frequencies are rather small. Therefore, we do not show the
results for these frequencies.



Appendix A

Results from linear functional analysis

The following theorem is about the partition of unity. We need this theorem to introduce Sobolev
spaces of (vector-valued) functions on the boundary of a Lipschitz domain ∂Ω. The formulation
itself can be found in e.g. [88, Thm. A.9]. A proof for a more general setting can be found in
[122, p. 61].

Theorem A.1. Let K ⊂ R3 be a compact set. For every system of open sets {Uj | j = 1, . . . ,m}
with K ⊂

⋃m
j=1 Uj there exists a system of functions {φj | j = 1, . . . ,m} with φj ∈ C∞(R3),

supp(φj) ⊂ Uj for j = 1, . . . ,m and
∑m
j=1 φj(y) = 1 for all y ∈ K. We call {φj | j = 1, . . . ,m} a

partition of unity on K with respect to the covering {Uj | j = 1, . . . ,m} and write (Uj , φj)j=1,...,m
in abbreviated form.

The following definition can be found in e.g. [91, Def. 15.15, Thm. 15.16]. We need these
definitions in Chapter 5, when studying norms and scalar products involving the far field oper-
ator.

Definition A.2. Let X and Y be Hilbert spaces, A : X → Y be a compact injective linear
operator, and A∗ : Y → X be its adjoint. The nonnegative square roots of the eigenvalues of
the nonnegative self-adjoint compact operator A∗A : X → X are called singular values of A and
are denoted by (µj)j∈N. A singular system of A is a triple (µj , xj , yj)j∈N such that (xj)j∈N and
(yj)j∈N are orthonormal bases in X and Y , respectively and

Axj = µjyj , A∗yj = µjxj for all j ∈ N.

The next definition is found e.g. in [44, XI.6, Def. 1, Lem. 2, Def. 17].

Definition A.3. Let X be a separable Hilbert space with orthonormal basis (xj)j∈N ⊂ X. A
bounded linear operator A : X → X is said to be a Hilbert-Schmidt operator if the series

‖A‖HS =
(∑
j∈N
‖Axj‖2

)1/2

converges. In this case, ‖A‖HS is independent of the choice of the orthonormal basis (xj)j∈N
and it holds that

‖A‖HS =
(∑
j∈N
〈A∗Axj , xj〉

)1/2
= tr(A∗A)1/2 .

For a singular system (µj , xj , yj)j∈N of A, it holds that ‖A‖HS = ‖(µj)j∈N‖`2 . The space of all
Hilbert-Schmidt operators on X is a Hilbert space with scalar product

〈A,B〉HS =
∑
j∈N
〈Axj , Bxj〉 = tr(B∗A).
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The Lax-Milgram theorem is used to prove existence and uniqueness of the subproblems that
arise by considering the Helmholtz decomposition of H(curl, BR(0)) in Chapter 2. The proof is
similar to [45, Ch. 6.2.1, Thm. 1].

Theorem A.4 (Lax-Milgram). Let H be a Hilbert space and a : H × H → C a bounded
sesquilinear form, i.e. there exists a constant C > 0 such that

|a(u, v)| ≤ C‖u‖‖v‖ for all u, v ∈ H.

Then there exists a uniquely determined, linear, bounded operator A : H → H such that

a(u, v) = 〈Au, v〉 for all u, v ∈ H.

Further, let a satisfy
Re
(
eita(u, u)

)
≥ c‖u‖2 for all u ∈ H

for some t ∈ R and c > 0. Then, A has a bounded inverse with ‖A−1‖ ≤ c−1 and the problem
to find u ∈ H such that

a(u, v) = `(v) for all v ∈ H,
where ` is a continuous, antilinear functional defined on H, is uniquely solvable.

Proof. Let u ∈ H. We define the linear and bounded functional

`u : H → C, `u(v) = a(u, v).

The Riesz representation theorem shows that there is a uniquely determined w = w(u) ∈ H
such that

`u(v) = 〈v, w(u)〉 for all v ∈ H.

We define the operator A : H → H via Au = w. This operator is linear, bounded, uniquely
determined and it holds that

a(u, v) = 〈Au, v〉 for all u, v ∈ H.

Further, it holds that

c‖u‖2 ≤ Re
(
eita(u, u)

)
≤
∣∣eita(u, u)

∣∣ = |〈Au, u〉| ≤ ‖Au‖ ‖u‖

and thus

c ‖u‖ ≤ ‖Au‖ . (A.1)

This immediately gives that A is injective. For u ∈ A(H)⊥ we have that

0 = 〈Au, u〉 ≥ c ‖u‖2 ,

giving that A(H)⊥ = {0}. For (vn)n∈N ⊂ A(H) with Aun = vn → v ∈ A(H), (A.1) shows
that (un)n∈N ⊂ H is a Cauchy sequence. Since H is a Hilbert space, we find u ∈ H with
un → u. The continuity of A now gives that Au = v, proving that H = A(H). This shows,
that the operator A is invertible. The inequality (A.1) further gives that

∥∥A−1∥∥ ≤ c−1. For the
continuous and antilinear functional `, the Riesz representation theorem shows the existence of
a uniquely determined f ∈ H such that

`(v) = 〈f, v〉 for all v ∈ H.

Consequently, the problem to find u ∈ H with

a(u, v) = `(v) for all v ∈ H,

is equivalent to find u ∈ H with Au = f . Since A is proven to be boundedly invertible, we find
that u = A−1f .



Appendix B

Some useful estimates

Lemma B.1. Let D be a Lipschitz domain and let Ω be smooth (e.g. Ω with a boundary in C3

in order to apply [63, Thm. 8.13.]) with D ⊂ Ω ⊂ Rd, d = 2, 3. Further, let γ0 > 0 and either
γ1 > 0 or γ1 ∈ C with Re(γ1) < 0 and Im(γ1) > 0. Define γ ∈ L∞(Ω) by

γ =
{
γ1, x ∈ D,
γ0, x ∈ Ω \D.

Given F ∈ L∞(Ω)d, the problem to find w ∈ H1
0 (Ω) such that

div (γ∇w) = div (χDF ) in Ω, w = 0 on ∂Ω (B.1)

has a unique (variational) solution. Moreover, there exist constants C,Cp > 0 such that

‖∇w‖L2(Ω) ≤ C |D|1/2 ‖F ‖L∞(D) , (B.2)

‖w‖L2(Ω) ≤ C |D|3/4 ‖F ‖L∞(D) , (B.3)

‖w‖W 1,p(Ω) ≤ Cp |D|1/p ‖F ‖L∞(D) , 1 < p < 2. (B.4)

Proof. The variational formulation is to find w ∈ H1
0 (Ω) such that∫

Ω
γ∇w · ∇v dx =

∫
D
F · ∇v dx for all v ∈ H1

0 (Ω). (B.5)

If γ1 > 0, the sequilinear form on the left hand side is bounded and coercive on H1
0 (Ω). If

γ1 ∈ C with Re(γ1) < 0 and Im(γ1) > 0, we consider β ∈ R such that Re(eiβγ) > 0 and find for
w ∈ H1

0 (Ω) that

Re
(
eiβ
∫

Ω
γ|∇w|2 dx

)
≥ c ‖∇w‖2L2(Ω) ≥ c ‖w‖2H1(Ω) .

The last step follows by the Poincaré inequality. Thus, in both cases, the Lax-Milgram theorem
A.4 shows the existence of a unique variational solution w ∈ H1

0 (Ω) of (B.1). From the weak
formulation in (B.5), we immediately find that

‖∇w‖2L2(Ω) ≤ C |D|1/2 ‖F ‖L∞(D) ‖∇w‖L2(Ω) ,

what gives (B.2). Now let z ∈ H1
0 (Ω) be the unique solution to

div (γ0∇z) = −w in Ω, z = 0 on ∂Ω. (B.6)

Elliptic regularity results (see e.g. [63, Thm. 8.13.]) show that ‖z‖H3(Ω) ≤ C ‖w‖H1(Ω). Note
that ‖z‖H1(Ω) ≤ C ‖w‖H1(Ω) due to the Lax-Milgram theorem A.4. The Sobolev embedding
theorem (see e.g. [63, Cor. 7.11]) further gives that

‖∇z‖L∞(Ω) ≤ C ‖z‖H3(Ω) .
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Using the weak formulation of (B.6) and (B.1) gives that

‖w‖2L2(Ω) =
∫

Ω
γ0∇z · ∇w dx =

∫
Ω

(γ0 − γ)∇w · ∇z dx+
∫

Ω
γ∇w · ∇z dx

=
∫

Ω
(γ0 − γ)∇w · ∇z dx+

∫
D
F · ∇z dx

≤
(
‖χDF ‖L1(Ω) + ‖(γ0 − γ)∇w‖L1(Ω)

)
‖∇z‖L∞(Ω)

≤ C
(
|D| ‖F ‖L∞(D) + |D|1/2 ‖∇w‖L2(Ω)

)
‖w‖H1(Ω)

Using (B.2) and the Poincaré inequality finally gives (B.3). Moreover, we note that

div (γ0∇w) = div (χDF ) + div ((γ0 − γ)∇w) . (B.7)

For 1 < p < 2 it holds that ∆ is an isomorphism from W 1,p
0 (Ω) to W−1,p(Ω) (see e.g. [17, p.

40]). The right hand side of (B.7) is in W−1,p(Ω) as well and using Hölders inequality and (B.2)
leads to

‖w‖W 1,p(Ω) ≤ Cp ‖div (γ0∇w)‖W−1,p(Ω)

≤ Cp
(
‖div (χDF )‖W−1,p(Ω) + ‖div ((γ0 − γ)∇w)‖W−1,p(Ω)

)
≤ Cp

(
‖χDF ‖Lp(Ω) + ‖(γ0 − γ)∇w‖Lp(Ω)

)
≤ Cp

(
|D|1/p ‖F ‖L∞(D) + |D|1/p−1/2 ‖∇w‖L2(Ω)

)
≤ Cp|D|1/p ‖F ‖L∞(D) .

The third inequality can be deduced by using that div : Lp(Ω)→W−1,p(Ω) is continuous.

Lemma B.2. Let 0 < ρ < r/2 and let D′ρ ⊂ B′ρ(0) be open, where B′ρ(0) ⊂ R2 denotes the disc
of radius ρ around zero. Suppose that A0, A1 ∈ C0,1(B′r(0),R2×2) are symmetric and

c−1|ξ′|2 ≤ ξ′ ·Aj(x′)ξ′ ≤ c|ξ′|2 for all ξ′ ∈ R2, x′ ∈ B′r(0) and j = 1, 2

with some constant c > 0 and let F ∈ C0,1(B′r(0),C2). Define Aρ, Ãρ ∈ C0,1(B′r(0),R2×2) by

Aρ(x′) =
{
A1, x′ ∈ D′ρ,
A0, x′ ∈ B′r(0) \Dρ,

Ãρ(x′) =
{
A1(0), x′ ∈ D′ρ,
A0(0), x′ ∈ B′r(0) \Dρ.

Furthermore, let γ0 > 0 and either γ1 > 0 or γ1 ∈ C with Re(γ1) < 0 and Im(γ1) > 0. Define
γρ ∈ L∞(Ω) by

γρ =
{
γ1, x ∈ D′ρ,
γ0, x ∈ Ω \D′ρ.

The problems to find wρ, w̃ρ ∈ H1
0 (B′r(0) with

div (γρAρ∇wρ) = div
(
χD′ρF

)
in B′r(0), wρ = 0 on ∂B′r(0), (B.8)

div
(
γρÃρ∇w̃ρ

)
= div

(
χD′ρF (0)

)
in B′r(0), w̃ρ = 0 on ∂B′r(0) (B.9)

both have a unique solution. Furthermore, it holds that

‖∇wρ −∇w̃ρ‖L2(B′r(0)) = o(|D′ρ|1/2) as ρ→ 0. (B.10)
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Proof. First, we prove that (B.8) and (B.9) both have a unique solution. For (B.8) we find that∫
B′r(0)

γρ (Aρ∇wρ) · ∇v dx =
∫
B′r(0)

χDρF · ∇v dx for all v ∈ H1
0 (B′r(0)). (B.11)

Moreover, we find that for all u, v ∈ H1
0 (B′r(0)) it holds that∫

B′r(0)
γρ (Aρ∇u) · ∇v dx ≤ C

∫
B′r(0)

∣∣ (Aρ∇u) · ∇v
∣∣ dx

≤ C

(∫
B′r(0)

|Aρ∇u|2 dx
)1/2(∫

B′r(0)
|∇v|2 dx

)1/2

≤ C ‖u‖H1(B′r(0)) ‖v‖H1(B′r(0)) .

Additionally, with β ∈ R such that Re(eiβγρ) > 0, it holds that

Re
(∫

B′r(0)
eiβγρ (Aρ∇u) · ∇u dx

)
≥ C

∫
B′r(0)

Aρ∇u · ∇u dx ≥ C

∫
B′r(0)

|∇u|2 dx

≥ C ‖u‖H1(B′r(0)) .

Here, we used the Poincaré inequality for the last estimate. Since the right hand side in (B.11) is
antilinear, the Lax-Milgram theorem A.4 shows that there is a unique solution wρ ∈ H1

0 (B′r(0))
that solves (B.8). The uniqueness and existence of w̃ρ ∈ H1

0 (B′r(0)), the solution to (B.9) can
be shown analogously. Furthermore, it holds that

div
(
γρÃρ∇wρ

)
= div

(
γρ
(
Ãρ −Aρ

)
∇wρ

)
+ div (γρAρ∇wρ)

= div
(
χDρF

)
+ div

(
γρ
(
Ãρ −Aρ

)
∇wρ

)
= div

(
χDρF (0)

)
+ div

(
χDρ (F − F (0))

)
+ div

(
γρ
(
Ãρ −Aρ

)
∇wρ

)
.

Introducing Ω′ = B′
ρ1/4(0) implies that wρ = w̃ρ+v1 +v2 +v3, where v1, v2 and v3 are the unique

solutions to

div
(
γρÃρ∇v1

)
= div

(
χDρ (F − F (0))

)
in B′r(0), v1 = 0 on ∂B′r(0), (B.12)

div
(
γρÃρ∇v2

)
= div

(
χΩ′γρ

(
Ãρ −Aρ

)
∇wρ

)
in B′r(0), v2 = 0 on ∂B′r(0), (B.13)

div
(
γρÃρ∇v3

)
= div

(
(1− χΩ′) γρ

(
Ãρ −Aρ

)
∇wρ

)
in B′r(0), v3 = 0 on ∂B′r(0). (B.14)

In the following, we estimate the gradients of v1, v2 and v3 to prove the claim. For v1 we use
(B.12), (B.2) and the Lipschitz continuity of F to see that

‖∇v1‖L2(B′r(0)) ≤ C|D
′
ρ|1/2 ‖F − F (0)‖L∞(D′ρ) ≤ C|D

′
ρ|1/2ρ = o

(
|D′ρ|1/2

)
. (B.15)

For (B.13) we use (B.2) and the Lipschitz continuity of A0 and A1 to find that

‖∇v2‖L2(B′r(0)) ≤ C
∥∥∥(Ãρ −Aρ)χΩ′

∥∥∥
L∞(B′r(0))

‖∇wρ‖L2(B′r(0))

≤ C
(
‖A1 −A1(0)‖L∞(D′ρ) + ‖A0 −A0(0)‖L∞(Ω′)

)
|D′ρ|1/2

≤ C
(
ρ+ ρ1/4)|D′ρ|1/2 = o

(
|D′ρ|1/2

)
. (B.16)

Next, let hρ ∈ C1 ([0, r]) be a cut-off function satisfying

0 ≤ hρ ≤ 1, χ(0,ρ1/2)hρ = 0,

χ(ρ1/4,r)hρ = χ(ρ1/4,r),

∥∥∥∥∂hρ∂t
∥∥∥∥
L∞((0,r))

≤ Cρ−1/4 (B.17)
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(see [19, Lem. 3.6] for a similar construction). With this function we find that

0 =
∫
D′ρ

F · ∇
(
h2
ρwρ

)
dx′.

Furthermore, using the weak formulation of (B.8) gives that

0 =
∫
B′r(0)

γρAρ∇wρ · ∇
(
h2
ρwρ

)
dx′

=
∫
B′r(0)

γρAρ∇wρ · (hρ∇ (hρwρ) + hρwρ∇hρ) dx′

=
∫
B′r(0)

γρAρ∇ (hρwρ) · ∇ (hρwρ) dx′ −
∫
B′r(0)

γρ |wρ|2Aρ∇hρ · ∇hρ dx′

+ 2i
∫
B′r(0)

γρhρ (Aρ Im (wρ∇wρ) · ∇hρ) dx′ . (B.18)

Note that, since χ(0,ρ1/2)hρ = 0, the coefficient γρ in (B.18) satisfies γρ = γ0. Therefore,

‖∇ (hρwρ)‖2L2(B′r(0)) ≤ C ‖wρ‖2L2(B′r(0)) ‖∇hρ‖
2
L∞(B′r(0)) .

Thus, an application of (B.17) and (B.3) yields that

‖∇ (hρwρ)‖L2(B′r(0)) ≤ Cρ−1/4|D′ρ|3/4 ≤ C|D′ρ|−1/8|D′ρ|3/4 = o
(
|D′ρ|1/2

)
.

Here, we used that D′ρ ⊂ B′ρ(0) and consequently |D′ρ| ≤ πρ2. Finally, we combine (B.14) with
(B.2) to obtain that

‖∇v3‖L2(B′r(0)) ≤ C ‖∇wρ‖L2(B′r(0)\Ω′) ≤ C ‖∇ (hρwρ)‖L2(B′r(0)) = o
(
|D′ρ|1/2

)
. (B.19)

Combining (B.15),(B.16) and (B.19) yields (B.10).



Appendix C

The PMCHWT formulation for the Maxwell
transmission problem

In this appendix we derive a multitrace formulation for Maxwell’s equations. We need these
formulations in Chapter 3.3 and 4 to compute (reference) solutions using the boundary element
library Bempp (see [115]). Similar formulations combined with numerical approximation using
Bempp are studied in e.g. [16, 72, 73, 89, 90]. In this appendix we follow the presentation in
[72, Sec. 6.1.2.] to derive the PMCHWT integral equation.

First, we adapt some notations to be consistent with the Bempp framework. In Proposi-
tion 3.9 we study the Maxwell single and double layer potentials and cite their mapping prop-
erties. In [113] the operator M̃ is denoted by H and represents the magnetic potential. The
electric potential E is often defined as E = −(ik)−1Ñ with Ñ from Proposition 3.9 (see also
[88, Thm. 5.52] to see the equality). Let (E,H) ∈ (Hloc(curl,R3))2 be the unique solutions to
(2.31) together with the radiation condition (2.32). As before, let D be a bounded Lipschitz
domain representing the scattering object in the scattering problem. We say that a field V lies in
H(curl2, D) (or inHloc(curl2,R3\D)), if curlV ∈ H(curl, D) (or curlV ∈ Hloc(curl,R3\D)).
We find that the Maxwell system in (2.31) can be equivalently formulated as the transmission
problem to find (E1,H1) ∈ (H(curl2, D))2 and (E0,H0) ∈ (Hloc(curl2,R3 \D))2 satisfying

curlE1 − iωµ1H1 = 0 , curlH1 + iωε1E1 = 0 in D , (C.1a)
curlE0 − iωµ0H0 = 0 , curlH0 + iωε0E0 = 0 in R3 \D , (C.1b)

ν ×E1|−∂D = ν ×E0|+∂D, ν ×H1|−∂D = ν ×H0|+∂D on ∂D , (C.1c)
Es

0 = E0 −Ei|R3\D, Hs
0 = H0 −H i|R3\D satisfy (2.32) . (C.1d)

Note that the transmission condition (C.1c) implies that (E,H) ∈ (Hloc(curl,R3))2, where

E =
{
E1 in D ,

E0 in R3 \D ,
H =

{
H1 in D ,

H0 in R3 \D .

and vice versa. With Ej and Hj we define the electric and magnetic potential with wave number
kj = ω

√
εjµj for j = 0, 1, respectively. The Stratton-Chu formula (see e.g. [88, Thm. 5.49]) in

the interior reads

−H1(ν ×E1|−∂D)− 1
ik1
E1(ν × curlE1|−∂D) = E1 in D . (C.2)

Moreover, in the exterior we find that

H0(ν ×Es
0|+∂D) + 1

ik0
E0(ν × curlEs

0|+∂D) = Es
0 in R3 \D . (C.3)

We note from the jump relations in (3.30) and by defining Etj = −(ikj)−1Nj , Ht
j = Mj with

Mj , Nj from (3.29) with wave number kj , j = 0, 1 in the fundamental solution Φ, that for
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a ∈ H−1/2
div (∂D) it holds that

ν ×Hja|±∂D = ±1
2a+ Ht

ja , ν × Eja|±∂D = Etja ,
1

ikj
ν × curlHja|±∂D = −Etja ,

1
ikj
ν × curl Eja|±∂D = ±1

2a+ Ht
ja .

We apply the interior traces to (C.2) and find that

1
2ν ×E1|−∂D −Ht

1(ν ×E1|−∂D)− 1
ik1

Et1(ν × curlE1|−∂D) = ν ×E1|−∂D ,

Et1(ν ×E1|−∂D) + 1
2

1
ik1
ν × curlE1|−∂D −

1
ik1

Ht
1(ν × curlE1|−∂D) = 1

ik1
ν × curlE1|−∂D .

This yields that[
ν ×E1|−∂D

1
ik1
ν × curlE1|−∂D

]
=
(1

2I +A−
) [ ν ×E1|−∂D

1
ik1
ν × curlE1|−∂D

]
with A− =

[
−Ht

1 −Et1
Et1 −Ht

1

]
. (C.4)

Moreover, we apply the traces from the exterior to (C.3) and see that

1
2ν ×E

s
0|+∂D + Ht

0(ν ×Es
0|+∂D) + 1

ik0
Et0(ν × curlEs

0|+∂D) = ν ×Es
0|+∂D ,

−Et0(ν ×Es
0|+∂D) + 1

2
1

ik0
ν × curlEs

0|+∂D + 1
ik0

Ht
0(ν × curlEs

0|+∂D) = 1
ik0
ν × curlEs

0|+∂D .

This shows that[
ν ×Es

0|+∂D
1

ik0
ν × curlEs

0|+∂D

]
=
(1

2I −A
+
) [ ν ×Es

0|+∂D
1

ik0
ν × curlEs

0|+∂D

]
with A+ =

[
−Ht

0 −Et0
Et0 −Ht

0

]
. (C.5)

The transmission condition (C.1c) yields that[
ν ×E1|−∂D

1
ik1
ν × curlE1|−∂D

]
= S

[
ν ×Es

0|+∂D
1

ik0
ν × curlEs

0|+∂D

]
+ S

[
ν ×Ei|+∂D

1
ik0
ν × curlEi|+∂D

]
, (C.6)

where the matrix S ∈ C2×2 is given by

S =
[
1 0
0
√
µr√
εr

]
,

with µr = µ1/µ0, εr = ε1/ε0. We define the operators C± = 1/2I ∓ A±, with A− from (C.4)
and A+ from (C.5). Now, we apply (C.4), (C.6) and (C.5) and obtain

C−
[

ν ×E1|−∂D
1

ik1
ν × curlE1|−∂D

]
= S

[
ν ×Es

0|+∂D
1

ik0
ν × curlEs

0|+∂D

]
+ S

[
ν ×Ei|+∂D

1
ik0
ν × curlEi|+∂D

]

= SC+
[

ν ×Es
0|+∂D

1
ik0
ν × curlEs

0|+∂D

]
+ S

[
ν ×Ei|+∂D

1
ik0
ν × curlEi|+∂D

]
. (C.7)

Applying S−1 to (C.7), and using (C.6) once again yields

S−1C−
(
S

[
ν ×Es

0|+∂D
1

ik0
ν × curlEs

0|+∂D

]
+ S

[
ν ×Ei|+∂D

1
ik0
ν × curlEi|+∂D

])

= C+
[

ν ×Es
0|+∂D

1
ik0
ν × curlEs

0|+∂D

]
+
[

ν ×Ei|+∂D
1

ik0
ν × curlEi|+∂D

]
.
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Rearranging these terms and using that

S−1C−S − C+ = S−1A−S +A+ and I − S−1C−S = 1
2I − S

−1A−S

yields the PMCHWT integral equation

(S−1A−S +A+)
[

ν ×Es
0|+∂D

1
ik0
ν × curlEs

0|+∂D

]
=
(1

2I − S
−1A−S

) [ ν ×Ei|+∂D
1

ik0
ν × curlEi|+∂D

]
. (C.8)

We denote the operator on the left hand side of (C.8) with P. Now, we apply the Calderón pre-
conditioner P = (S−1A−S+A+) to both sides of (C.8) and obtain the Calderón preconditioned
PMCHWT integral equation

P2
[

ν ×Es
0|+∂D

1
ik0
ν × curlEs

0|+∂D

]
= P

(1
2I − S

−1A−S
) [ ν ×Ei|+∂D

1
ik0
ν × curlEi|+∂D

]
. (C.9)

In [35] it is shown that this preconditioner yields a well-conditioned system matrix, when the
left-hand side of (C.9) is discretized. A numerical approximation to the integral equation (C.9)
can be simulated using the boundary element library Bempp. The multitrace operators A±
from (C.4) and (C.5) and their discretization is discussed in [113]. Note that the different signs
in front of the operators Etj ,Ht

j in the definition of the multitrace operators A± from (C.4)
and (C.5) compared to [113, Eq. 31] result from a sign swap in the definition of the tangential
traces. The implementation for the discretized multitrace operators A± from (C.4) and (C.5)
that is provided by Bempp uses both the Rao-Wilton-Glisson basis functions of order 1 as well
as the Buffa-Christiansen basis functions of order 1. This provides a stable discretization of the
multitrace operators. For more details on these functions we refer to [26, 111, 113].
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Appendix D

Derivatives of spherical vector wave functions

The explicit basis representation of the Fréchet derivative T ′ρ[pΓ]h in Remark 5.16 contains
derivatives of the circularly polarized spherical vector wave functions Pm

n andQm
n ,m = −n, . . . , n,

n = 1, 2, . . .. Recalling the definition of Pm
n and Qm

n in (5.29), we provide a detailed discussion
of the derivatives of the spherical vector wave functions Mm

n and curlMm
n from (2.23). Both

functions are best expressed in spherical coordinates,

x =

x1
x2
x3

 = r

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 = ψ(r, θ, ϕ) , r > 0 , θ ∈ [0, π] , ϕ ∈ [0, 2π) ,

and consist of terms of the form F (x) = J(r)W (θ, ϕ), where W is one of the vector spherical
harmonics Y m

n x̂, Um
n , or V m

n . Using the chain rule

(F ◦ψ)′ = (F ′ ◦ψ)ψ′

and observing that (ψ′)−1 is known explicitly, it suffices to compute the partial derivatives
ofMm

n and curlMm
n with respect to the spherical coordinates. More precisely, with the spher-

ical unit coordinate vectors

x̂ =

sin(θ) cos(ϕ)
sin(θ) sin(ϕ)

cos(θ)

 , θ̂ =

cos(θ) cos(ϕ)
cos(θ) sin(ϕ)
− sin(θ)

 , ϕ̂ =

− sin(ϕ)
cos(ϕ)

0

 ,
we obtain

ψ′(r, θ, ϕ) =
[
x̂
∣∣ θ̂ ∣∣ ϕ̂]

1 0 0
0 r 0
0 0 r sin(θ)

 ,
and hence

F ′ ◦ψ =
[
∂J

∂r
W

∣∣∣∣ 1
r
J
∂W

∂θ

∣∣∣∣ 1
r sin(θ)J

∂W

∂ϕ

] x̂
>

θ̂>

ϕ̂>

 . (D.1)

Note that throughout this section, we will suppress the dependence on r, θ and ϕ of the unit
coordinate vectors and most other functions.

We start with the factors inMm
n and curlMm

n that depend only on the angular variables θ
and ϕ and express their derivatives in terms of the spherical harmonics Y m

n and the partial
derivative of Y m

n with respect to θ. First, we note that the derivatives of the unit coordinate
vectors satisfy

∂θx̂ = θ̂ , ∂θθ̂ = −x̂ , ∂θϕ̂ = 0 ,
∂ϕx̂ = sin(θ)ϕ̂ , ∂ϕθ̂ = cos(θ)ϕ̂ , ∂ϕϕ̂ = − sin(θ)x̂− cos(θ)θ̂ .
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A particular choice of spherical harmonics Y m
n , m = −n, . . . , n, n = 0, 1, . . ., is obtained from

the definition

Y m
n = Cmn P

|m|
n (cos(θ))eimϕ with Cmn =

√
2n+ 1

4π
(n− |m|)!
(n+ |m|)! , (D.2)

where Pmn (t) = (1−t2)m/2(d/dt)mPn(t), m = 0, . . . , n, denote the associated Legendre functions
(see e.g. [88, p. 41]). Derivatives of Y m

n with respect to ϕ just amount to multiplications with
powers of im. The first derivative of Y m

n with respect to θ is calculated explicitly from
dPmn

dt (t) = −mt(1− t2)(m−2)/2 dmPn
dtm (t) + (1− t2)m/2d

m+1Pn
dtm+1 (t)

= 1
(1− t2)1/2P

m+1
n (t)− mt

1− t2P
m
n (t) , n ∈ N , m = 0, . . . , n ,

which gives

∂θY
m
n = m cot(θ)Y m

n −
Cmn
Cm+1
n

e−iϕY m+1
n and ∂θY

−m
n = ∂θY m

n (D.3)

for n ∈ N and m = 0, . . . , n. Here, we use Pn+1
n = 0 and Y n+1

n = 0 for convenience of notation.
As spherical harmonics are eigenfunctions of the Laplace-Beltrami operator on the unit

sphere,
1

sin θ∂θ
(

sin(θ)∂θY m
n

)
+ 1

sin2(θ)∂
2
ϕY

m
n = −n(n+ 1)Y m

n , (D.4)

(see e.g. [88, p. 41]) we can compute the second derivative of Y m
n with respect to θ as

∂2
θY

m
n = − cot(θ)∂θY m

n +
( m2

sin2(θ) − n(n+ 1)
)
Y m
n . (D.5)

We apply these formulas to find expressions for the derivatives of the vector spherical har-
monics Y m

n x̂, Um
n , and V m

n with respect to θ and ϕ. For the radially oriented Y m
n x̂ we obtain

∂θ(Y m
n x̂) = ∂θY

m
n x̂+ Y m

n θ̂ , (D.6a)
1

sin(θ)∂ϕ(Y m
n x̂) = im

sin(θ)Y
m
n x̂+ Y m

n ϕ̂ . (D.6b)

From the definition (2.16) we find for Um
n and V m

n that

Um
n = 1√

n(n+ 1)

(
∂θY

m
n θ̂ + im

sin(θ)Y
m
n ϕ̂

)
, (D.7a)

V m
n = 1√

n(n+ 1)

(
∂θY

m
n ϕ̂−

im
sin(θ)Y

m
n θ̂

)
. (D.7b)

We further deduce

∂θU
m
n = 1√

n(n+ 1)

(
−∂θY m

n x̂+ ∂2
θY

m
n θ̂ −

im
sin(θ)

(
cot(θ)Y m

n − ∂θY m
n

)
ϕ̂

)
, (D.8a)

1
sin(θ)∂ϕU

m
n = 1√

n(n+ 1)

(
− im

sin(θ)Y
m
n x̂+ im

sin(θ)
(
∂θY

m
n − cot(θ)Y m

n

)
θ̂ (D.8b)

+
(

cot(θ)∂θY m
n −

m2

sin2(θ)Y
m
n

)
ϕ̂

)
, (D.8c)

∂θV
m
n = 1√

n(n+ 1)

( im
sin(θ)Y

m
n x̂+ im

sin(θ)
(
cot(θ)Y m

n − ∂θY m
n

)
θ̂ + ∂2

θY
m
n ϕ̂

)
, (D.8d)

1
sin(θ)∂ϕV

m
n = 1√

n(n+ 1)

(
−∂θY m

n x̂+
(

m2

sin2(θ)Y
m
n − cot(θ)∂θY m

n

)
θ̂ (D.8e)

+ im
sin(θ)

(
∂θY

m
n − cot(θ)Y m

n

)
ϕ̂

)
. (D.8f)
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The representations (D.3)–(D.8) contain several terms that are ill-suited to numerical eval-
uation for θ close to 0 or π. These are

1
sin(θ)Y

m
n ,

1
sin(θ)

(
cot(θ)Y m

n − ∂θY m
n

)
,

m2

sin2(θ)Y
m
n − cot(θ)∂θY m

n . (D.9)

Note that the first two expressions in (D.9) always appear in combination with a factor m in
(D.3)–(D.8) and thus are only relevant for m 6= 0. We will only consider m ≥ 0 in the following
paragraphs, as the corresponding formulas for negative m can immediately be obtained by
complex conjugation.

To rewrite the first term in (D.9), we use the recurrence relation

Pmn (t)√
1− t2

= 1
2mt

(
Pm+1
n (t) + (n+m)(n−m+ 1)Pm−1

n (t)
)
, n ≥ 2 , m = 1, . . . , n− 1 ,

for the associated Legendre functions (see e.g. [88, p. 35]). Inserting this into (D.2) gives

Y m
n

sin(θ) = Cmn
2m cos(θ)

( e−iϕ

Cm+1
n

Y m+1
n + (n+m)(n−m+ 1)eiϕ

Cm−1
n

Y m−1
n

)
(D.10)

for n ≥ 2 and m = 1, . . . , n− 1. Furthermore, differentiating Rodrigues’ formula for the associ-
ated Legendre functions (see e.g. [88, Thm. 2.6]) n times shows that Pnn (cos(θ)) = (2n)!

2nn! sinn(θ).
Therefore,

Y n
n

sin(θ) = Cnn
(2n)!
2nn! sinn−1(θ)einϕ , n ∈ N . (D.11)

For the second term in (D.9), from (D.3) we have that

1
sin(θ)

(
cot(θ)Y m

n − ∂θY m
n

)
= Cmn

Cm+1
n

e−iϕY
m+1
n

sin(θ) − (m− 1) cos(θ) Y m
n

sin2(θ) . (D.12)

For m = 1, this can be evaluated using (D.10). For n ≥ 2 and m = 2, . . . , n, expressions for
sin−2(θ)Y m

n are immediately obtained from (D.10) and (D.11).
Finally, the third term in (D.9) satisfies

m2

sin2(θ)Y
m
n − cot(θ)∂θY m

n = Cmn
Cm+1
n

e−iϕ cos(θ)Y
m+1
n

sin(θ) +
(
m2 −m cos2(θ)

) Y m
n

sin2(θ) . (D.13)

For n, m ≥ 2, no new issues arise, and for m = 1, the last term on the right hand side of (D.13)
reduces to Y 1

n . In (D.13) we also have to consider the case m = 0, where (D.2) gives

− cot(θ)∂θY 0
n = −C0

n cot(θ)∂θPn(cos(θ)) = C0
n cos(θ)P ′n(cos(θ)) . (D.14)

For numerical implementations of (D.3), (D.5)–(D.8) we suggest to use the expressions di-
rectly when θ ∈ [π/4, 3π/4], and to replace the problematic terms with the expressions from
(D.10)–(D.14) when θ ∈ [0, π/4) or θ ∈ (3π/4, π].

We continue with the factors inMm
n and curlMm

n that depend only on the radial variable r,
i.e.,

jn(kr) , jn(kr)
r

,
jn(kr) + kr j′n(kr)

r
. (D.15)

We require the derivatives

∂rjn(kr) = kj′n(kr) ,

∂r
jn(kr)
r

= krj′n(kr)− jn(kr)
r2 ,

∂r

(
jn(kr) + krj′n(kr)

r

)
= (kr)2j′′n(kr) + krj′n(kr)− jn(kr)

r2 .
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These may be simplified using the spherical Bessel differential equation

t2j′′n(t) + 2tj′n(t) + (t2 − n(n+ 1))jn(t) = 0

(see e.g. [88, p. 54]) and the recurrence relation

j′n(t) = n

t
jn(t)− jn+1(t)

(see e.g. [103, 10.51.2]) to obtain

∂rjn(kr) = n

r
jn(kr)− kjn+1(kr) , (D.16a)

∂r
jn(kr)
r

= (n− 1)jn(kr)− krjn+1(kr)
r2 , (D.16b)

∂r
jn(kr) + krj′n(kr)

r
= −krj′n(kr) + (n(n+ 1)− 1− (kr)2)jn(kr)

r2

= krjn+1(kr) + (n2 − 1− (kr)2)jn(kr)
r2 . (D.16c)

For small values of r > 0, the expansion of the spherical Bessel functions in powers of r (see e.g.
[88, Def. 2.26]) should be inserted into (D.15) and (D.16) and being truncated to a finite sum
for numerical evaluation. In particular, we note that for n = 1 negative powers of r seem to
remain in (D.1) when the two summands in curlMm

n are inserted separately. However, some
tedious calculations show that these terms cancel as expected when the sum is formed. Hence,
for numerical evaluation in the case n = 1, all terms of order r−1 should be left out of the
calculation to avoid cancellation effects.



Notation

Basic notation

Rd d−dimensional real Euclidean space
Cd d−dimensional complex Euclidean space

x point x = (x1, x2, x3)> in R3

x · y dot product of x,y
x× y cross product of x,y
|x| Euclidean norm of x

BR(x0) open ball in R3 of radius R centered at x0
∂BR(x0) boundary of BR(x0)
BR(x0) closure of BR(x0)
ν unit outward normal on ∂BR(0)
S2 unit sphere in R3

B′r(0) open ball in R2 centered at the origin 34

c speed of light 13
ε0 electric permittivity in free space 13
µ0 magnetic permeability in free space 13
ε, ερ electric permittivity distribution (for Dρ) 15, 34
µ, µρ magnetic permeability distribution (for Dρ) 15, 34
ω angular frequency 13
f frequency 13
k wave number 13

ε′ρ electric permittivity distribution for D′ρ 50
µ′ρ magnetic permeability distribution for D′ρ 50

Γ exterior center curve including center curve K 33
pΓ parametrization of Γ 33
(tΓ, rΓ, sΓ) rotation minimizing frame 33
Ωr range of local coordinate system around pΓ 34
Dρ thin tubular scattering object with radius ρ 34
K center curve of Dρ 34
P set of admissible functions 80
4 non-uniform partition 70, 84
P4 set of not-a-knot splines on partition 4 84
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Function spaces

Ck(Ω), Ck(∂Ω) k times differentiable functions on Ω, ∂Ω 7
Ck(Ω) functions in Ck(Ω) whose derivatives have continuous ex-

tensions to Ω
7

Lp(Ω) Lebesgue space on Ω 8

W 1,p(Ω) Sobolev space on Ω 8
W 1,p

0 (Ω) closure of C1
0 (Ω) in W 1,p(Ω) 8

Hs(Ω) Sobolev space on Ω
Hs

loc(Ω) functions that are inHs(Ω̃) for all open and bounded Ω̃ ⊂ Ω
H(curl,Ω) function space of L2-functions with weak curl in L2(Ω)3 10

H
−1/2
div (∂Ω) trace space, range of γt 11

H
−1/2
curl (∂Ω) trace space, range of γT 11

H
−1/2
div,0 (∂Ω) subspace of H−1/2

div (∂Ω) 20

S̃ ∇S̃ is the curl free part in the Helmholtz decomposition 23
X̃0 X̃0 is the div free part in the Helmholtz decomposition 26

V ± eigenspaces of operator C 97
W± Beltrami fields in Ω 98

Functions

Φ fundamental solution of the Helmholtz equation 14
G fundamental solution of time-harmonic Maxwell’s equation 14
Y m
n spherical harmonics 12
Um
n ,V

m
n vector spherical harmonics 12

Mm
n , curlMm

n entire solutions of time-harmonic Maxwell’s equation 14
Nm
n , curlNm

n radiating solutions of time-harmonic Maxwell’s equation 14
Ei,H i incident electric and magnetic field 15
Es,Hs scattered electric and magnetic field 15
E,H total electric and magnetic field 15
E∞,H∞ electric and magnetic far field 15
Es
ρ scattered electric field corresponding to Dρ 35

E∞ρ electric far field corresponding to Dρ 39
Ẽs
ρ, Ẽ

∞
ρ leading order term of the asymptotic perturbation formula 39, 44,

68, 80
Ei[A],Es[A],
E[A],E∞[A] incident, scattered, total, far field corr. to density A 97

e0,h0 solution of homogeneous Maxwell’s equation in BR(0) 39
eρ,hρ solution of inhomogeneous Maxwell’s equation in BR(0) 39

θ rotation function 34
qΓ local parametrization around pΓ 34
κ, κmax (maximal) curvature of Γ 37

V (j) solution to boundary value problem without inclusion in R3 45
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v
(j)
ρ solution to boundary value problem with inclusion in R3 45
V (ξ) for ξ ∈ S2 given by V (ξ) = ∑3

j=1 ξjV
(j) 49

v
(ξ)
ρ for ξ ∈ S2 given by V (ξ) = ∑3

j=1 ξjv
(j)
ρ 49

ṽ
(ξ)
ρ modified potential satisfying ṽ(ξ)

ρ = V (ξ) on ∂BR(0) 49
W

(ξ)
ρ three-dimensional corrector potential 49

Mε,Mµ 3× 3 electric and magnetic polarization tensor corr. to Dρ 45
µ scaled Dirac measure on center curve K of Dρ 38
µ′ Dirac measure in 0

w
(ξ′)
ρ two-dimensional corrector potential 50

w̃
(R−1

θ
ξ′)

ρ modified corrector potential 55
mε,mµ 2× 2 electric and magnetic polarization tensor corr. to D′ρ 50, 63
z(j) solution to boundary value problem without inclusion in R2 63
z

(j)
ρ solution to boundary value problem with inclusion in R2 63
w̃j solution to two-dimensional transmission problem 64

E+,E− Riemann-Silberstein linear combinations 98

χ2 chirality measure 100
χHS smooth chirality measure
J2 relative chirality measure 115
JHS relative smooth chirality measure 115

Operators

γt trace operator from H(curl,Ω) to H−1/2
div (∂Ω) 11

γT trace operator from H(curl,Ω) to H−1/2
curl (∂Ω) 11

curl, curlx, curly curl operator (w.r.t. x,y) acting on matrices columnwise
∆ Laplace operator
Λ electric to magnetic Calderón operator 19
Λ̃ electric to magnetic Calderón operator with k = i 20
Λ1,Λ2 Λ = Λ1 + Λ2 29

B sesquilin. form in the weak formulation of the scat. problem 23
F antilin. func. in the weak formulation of the scat. problem 23
a1, a2 B = a1 + a2 23

div′η,ζ divergence in local coordinates 37
∇′η,ζ gradient in local coordinates 37

Λρn ,Λ0 interior Calderón operators 42
Tρn , T0 resulting from ν × · applied to Stratton-Chu formula 42

FD far field operator 97
C used to define helicity for fields in L2

t (S2) 97
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A
asymptotic representation formula

in bounded space . . . . . . . . . . . . . . . . . . . . . . 39
in free space . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B
Beltrami fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
BFGS method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

C
Calderón operator
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electric to magnetic with k = i . . . . . . . . . 20
interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

chirality measure . . . . . . . . . . . . . . . . . . . . . . . . . . 102
relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
relative smooth . . . . . . . . . . . . . . . . . . . . . . . 118

circular polarization . . . . . . . . . . . . . . . . . . . . . . . . 99
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composite Simpson’s rule . . . . . . . . . . . . . . . . . . . 71
corrector potential
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three-dimensional . . . . . . . . . . . . . . . . . . . . . . 49
two-dimensional . . . . . . . . . . . . . . . . . . . . . . . .50

curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37, 86

D
Drude model . . . . . . . . . . . . . . . . . . . . . . . . . . . .16, 67
dual symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
dyadic Green’s function . . . . . . . . . . . . . . . . . . . . .14

E
electric permittivity

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
free space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

electromagnetically achiral . . . . . . . . . . . . . . . . .102
electromagnetically chiral . . . . . . . . . . . . . . . . . . 102

maximally . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
entire solutions . . . . . . . . . . . . . . . . . . . . . . . . . 14, 15

derivatives of . . . . . . . . . . . . . . . . . . . . . . . . . 155
equiangular grid of points . . . . . . . . . . . . . . . . . . .86
exterior scattering problem . . . . . . . . . . . . . .18, 41

F
far field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
far field operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Frenet-Serret frame . . . . . . . . . . . . . . . . . . . . . . . . . 83

fundamental solution
of Helmholtz equation . . . . . . . . . . . . . . . . . .14
of Laplace equation . . . . . . . . . . . . . . . . . . . . 66
of time-harmonic Maxwell’s equations . . 14

G
general perturbation formula . . . . . . . . . . . . . . . 36
geometry adapted frame . . . . . . . . . . . . . . . . . . . 103
golden section line search . . . . . . . . . . . . . . . . . . . 87

H
helicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97, 100

preservation of . . . . . . . . . . . . . . . . . . . . . . . . 102
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Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . . . . 14
Herglotz wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

I
impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
inverse problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
invisibility w.r.t helicity . . . . . . . . . . . . . . . . . . . 102

J
jump relations . . . . . . . . . . . . . . . . . . . . . . . . . 40, 152

L
Lipschitz domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
local coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

Jacobian determinant of . . . . . . . . . . . . . . . .36

M
magnetic permeability

distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
free space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Maxwell’s equation
time-dependent . . . . . . . . . . . . . . . . . . . . . . . . 13
time-harmonic . . . . . . . . . . . . . . . . . . . . . . . . . 15

minimization functional . . . . . . . . . . . . . . . . . . . . .86

N
nanowire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Neumann–Poincaré operator . . . . . . . . . . . . . . . . 66
noble metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
nonlinear least squares . . . . . . . . . . . . . . . . . . . . . .86
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P
penalty term . . . . . . . . . . . . . . . . . . . . . . . . . . .86, 121
plasmon resonance . . . . . . . . . . . . . . . . . . . . . . . . . .67
polarization tensor . . . . . . . . . . . . . . . . . . . . . . . . . .45

R
radiating solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 14
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Riemann-Silberstein linear combination . . . . 100
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S
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Silver–Müller radiation condition . . . . . . . . . . . 15
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Sobolev space
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spherical Hankel functions of the first kind . . 14
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