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Abstract—As Electric Vehicle (EV) demand increases, so does
the demand for efficient Smart Charging (SC) applications. How-
ever, SC is only acceptable if the EV user’s mobility requirements
and risk preferences are fulfilled, i.e. their respective EV has
enough charge to make their planned journey. To fulfill these
requirements and risk preferences, the SC application must
consider the predicted parking duration at a given location and
the uncertainty associated with this prediction. However, certain
regions of uncertainty are more critical than others for user-
centric SC applications, and therefore, such uncertainty must
be explicitly quantified. Therefore, the present paper presents
multiple approaches to customize the uncertainty quantification
of parking duration predictions specifically for EV user-centric
SC applications. We decompose parking duration prediction
errors into a critical component which results in undercharging,
and a non-critical component. Furthermore, we derive quantile-
based security levels that can minimize the probability of a
critical error given a user’s risk preferences. We evaluate our
customized uncertainty quantification with four different proba-
bilistic prediction models on an openly available semi-synthetic
mobility data set and a data set consisting of real EV trips. We
show that our customized uncertainty quantification can regulate
critical errors, even in challenging real-world data with high
fluctuation and uncertainty.

Index Terms—Smart Charging, Uncertainty, Parking Dura-
tion, Probabilistic Predictions

ACRONYMS

BRR Bayesian Ridge Regression
CDF Cumulative Distribution Function
EV Electric Vehicle
GPR Gaussian Process Regression
IoT Internet of Things
NGBoost Natural Gradient Boosting
NN Neural Network
PDF Probability Density Function
SC Smart Charging
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NOTATION
E[. . . ] Expected Value of Expression
Et,PI Error Outside the Prediction Interval
EPI Mean Error Outside the Prediction Interval
ETot Mean Absolute Error of the Parking Duration Prediction
Ec Critical Error of the Parking Duration Prediction
Enc Non-Critical Error of the Parking Duration Prediction
EINT Integral Error Between the Predicted and Empirical CDF
fY Probability Density Function of Random Variable Y
FY Cumulative Distribution Function of Random Variable Y
g Arbitrary Prediction Model
Î(β) Prediction Interval With Nominal Coverage Rate 1− β
Lpinball,α Pinball Loss for the α-Quantile
P[. . . ] Probability of Expression
T Tolerance for the Non-Critical Error
W Average Width of the Prediction Interval
X Exogenous Variables Used in Prediction
Y Random Variable Modeling Parking duration
y Observed Parking Duration
ŷ Predicted Parking Duration
ŷ(α) Predicted α-Quantile for Parking Duration
ŷ(¯

α) Predicted Lower Quantile for Prediction Interval
ŷ(ᾱ) Predicted Upper Quantile for Prediction Interval
α Used to Define the α-Quantile
η Security Level in Percent
Θ̂ Estimated Model Parameters

I. INTRODUCTION

M ITIGATING climate change is a major global challenge
and, as observed in our previous conference paper [1],

Electric Vehicles (EVs) could play a major role in reaching
important climate targets, especially when charged by a highly
renewable energy mix [2]. However, coupling this energy
mix with an increased share of EVs causes new strains on
our electrical system and can lead to grid instabilities [3].
As a result, coordinated and intelligent charging approaches,
so-called Smart Charging (SC), of EVs are required [3]–
[5]. These intelligent charging approaches involve integrating
EVs into a smart Internet of Things (IoT) electrical grid,
enabling bi-directional communication to manage power flow,
and optimizing charging schedules [6]. However, these SC
approaches cannot be allowed to inconvenience the user by,
e.g., resulting in extra charging stops due to insufficient state of
charge or forcing the user to charge at an unknown destination.
Therefore, SC applications can only be successfully applied if
information regarding a user’s mobility behavior is available
and combined into the SC application [7]. This mobility behav-
ior includes common destinations, travel frequency, distance
traveled, and how long a user stays at a specific location [7].
Additionally, for SC to be fully accepted, this mobility behav-
ior should be integrated into the SC application without the
user manually feeding parameters, such as planned parking
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duration, next destinations, or risk preferences, into the SC
algorithm [8]. As a result, such mobility behavior must be
automatically predicted.

Although mobility behavior typically follows certain pat-
terns, there is always an aspect of this behavior that is
random and unpredictable [9]. For example, a EV user may
leave for work every morning at a regular time, but due to
fluctuating traffic conditions or unforeseen vehicle problems,
the trip duration varies [10], [11]. Similarly, fluctuations in
parking duration may be caused by external factors, such as
a varying meeting schedule or after-work commitments [10].
The amplitude of these fluctuations depends on the individual
EV user and their typical mobility habits [9]. Furthermore,
this individuality also extends to a users risk preference, e.g.,
some users may be willing to sacrifice a fully charged EV for
a flexible SC schedule to maximize profit [12].

As a result, any prediction of a user’s mobility behavior
must quantify this uncertainty, account for a user’s individual
risk preferences, and integrate this information into the SC
algorithm. However, a general uncertainty quantification with
a probabilistic prediction may not be sufficient to enable SC
acceptance. Not only does a general probabilistic prediction
ignore a user’s individual risk preferences, such predictions
also consider all uncertainty regions equal. However, for
a user-centric SC application, the uncertainty resulting in
undercharging, i.e. the EV leaves earlier than expected, is
more important than the uncertainty that results in a later
than expected departure time. Therefore, a customized un-
certainty quantification that specifically quantifies uncertainty
for SC applications is required. Furthermore, this uncertainty
quantification must account for known and frequently visited
locations and allow for different levels of uncertainty in these
locations. With such a customized uncertainty quantification
and location information, stochastic SC algorithms can be
applied to improve SC performance [13]–[15].

Thus, the present paper extends our previous work [1]
and presents a methodology for customizing the uncertainty
quantification of a EV user’s predicted mobility requirements
specifically for SC applications. More precisely, the present
paper focuses on quantifying the uncertainty for predictions
of the time a user spends in a given location, i.e. the parking
duration [15]. Our methodology first consists of data prepro-
cessing to derive known and frequent locations for EV charg-
ing and to obtain two prediction labels: parking duration and
departure time. We then create a general quantification of the
uncertainty associated with these labels through probabilistic
predictions. Given these probabilistic predictions, we perform
a further customized uncertainty quantification to determine
critical errors resulting in undercharging and non-critical er-
rors. Furthermore, we define quantile-based security levels that
can be used to minimize the probability of the EV being under-
charged, given a user’s individual risk preferences. We evaluate
our methodology with four different probabilistic prediction
models on an openly available semi-synthetic benchmark data
set with reduced uncertainty previously presented in [1] and a
real-world mobility data set from a single user.

The rest of the present paper is structured as follows. Sec-
tion II considers existing literature and highlights the identified

research gap. In Section III, we present our methodology
for customizing uncertainty quantification in parking duration
predictions. We discuss the case study used in Section IV
before reporting all results in Section V. We analyze and
discuss these results in Section VI, before concluding and
providing an overview of future work in Section VII.

II. RELATED WORK

As observed in our previous conference paper [1], few
researchers have focused on parking duration prediction for
a single user [16]. Instead, most research has forecast the de-
mand of an EV either at a charging station, parking lot, or for
a fleet of vehicles [27]–[31]. Furthermore, when considering
probabilistic predictions, almost all work focuses on electric
vehicle charging demand [20]–[26], and does not consider the
associated user-specific parking duration.

Considering arrival and departure time, machine learning
methods are used to predict these labels in [15]. However,
the paper’s main focus is on the effects of this prediction
on the scheduling and not on the accuracy of the prediction
itself. Furthermore, [15] focuses on deterministic departure
time predictions for a single location (a workplace) and a
fleet of vehicles without quantifying the associated uncertainty.
Uncertainty in parking duration and energy demand is con-
sidered in [16] via quantile predictions for both quantities.
These predictions, however, are only performed for a single
location, i.e., the home location [16]. Furthermore, the quantile
predictions do not customize the uncertainty quantification for
SC applications. The first daily departure time is predicted
in [17], and whilst prediction intervals based on an assumed
Gaussian distribution of the errors are created, the uncertainty
associated with these intervals is not specifically quantified
for SC applications. Mobility prediction for many vehicles
is considered in [18] to analyze effects on a distribution
grid, however, only deterministic predictions are considered. A
review of scheduling, forecasting, and clustering strategies for
EV charging is provided in [4] focusing on typical scheduling
problems and coordinating the charging of multiple vehicles.
Whilst probabilistic methods are discussed in [4], they again
focus on EV charging demand or EV charging scheduling and
do not consider the individual user’s parking duration. Further
deterministic mobility predictions are considered for a fleet
of vehicles in [19] and in the form of next-place prediction
in [32]–[34].

As shown in Table I, none of the above papers specifically
quantifies the uncertainty in parking duration predictions for
user-centric SC applications. Most papers are deterministic and
only focus on a single location, or the locations are pre-labeled
and not provided as GPS coordinates. When uncertainty is
included, it is limited to a single location, only used to compare
different predictions, and not customized specifically for use
in SC applications. Therefore, we identify a clear requirement
for customized uncertainty quantification of parking duration
predictions designed specifically for SC applications.

III. METHODOLOGY

Our methodology to customize uncertainty quantification of
probabilistic parking duration predictions specifically for SC
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TABLE I: Overview of related work that considers predicting a user’s mobility behavior. None of the identified papers customize
the uncertainty quantification of parking duration predictions specifically for SC applications.

Paper Quantity Predicted Individual User Multiple Locations Probabilistic Customized Uncertainty Quantification

[16] Parking Duration & Energy Demand ✓ ✗ ✓ ✗
[15] Parking Duration ✓ ✗ ✗ ✗
[17] First Daily Departure Time ✓ ✗ ✓ ✗
[4] Energy Demand & Schedule ✗ ✓ ✓ ✗
[18] Energy Demand ✗ ✓ ✗ ✗
[19] Energy Demand ✗ ✗ ✗ ✗
[20]–[26] Energy Demand ✗ ✗ ✓ ✗
[27]–[31] Energy Demand ✗ ✗ ✗ ✗
[32]–[34] Next-Place ✗ ✓ ✗ ✗

Uncertainty Quantification

Historic Data of
User's Mobility

Behavior

Data
Preprocessing

Probabilistic Prediction of
Label A (Parking Duration)

Probabilistic Prediction of
Label B (Departure Time)

Smart
Charging
Application

Estimation
Merger

Customized Uncertainty
Quantification

Customized Uncertainty
Quantification

Fig. 1: Overview of our methodology with the focus of the present paper highlighted in blue. First, we preprocess data to derive
known and commonly visited locations and create two prediction labels, parking duration (Label A) and departure time (Label
B). Second, we generally quantify the uncertainty associated with parking duration predictions via a probabilistic prediction.
Third, we perform a customized uncertainty quantification designed for smart charging applications. Finally, the predictions
for both labels can be merged, and this information integrated into a stochastic SC application.

TABLE II: An overview of the hyperparameters for the data
preprocessing.

Parameter Value

Minimum Parking Time 2h
Maximum Parking Time 24h
Cluster Density Parameter (DBSCAN) 100m
Minimum Number of Data Points per Cluster (DBSCAN) 5
Maximum Cluster Distance for Joining Clusters 500m
Neighborhood Radius to Assign Noise 300m

applications is shown in Figure 1. The first step is data prepro-
cessing which involves cleaning the data, performing spatial
clustering to determine key locations, and data engineering
to calculate the prediction labels. The second step creates a
general quantification of the uncertainty through probabilistic
predictions. Then, in the third step, we customize this uncer-
tainty quantification specifically for SC applications. The final
step, which is not considered in the present paper, is merging
probabilistic predictions for both labels and integrating this
uncertainty into the SC application. In this section, we describe
each of the first three steps in detail.1

A. Data Preprocessing

The data preprocessing includes three steps: data cleaning,
spatial clustering, and data engineering. In the following, we
describe these steps and provide an overview of the associated
hyperparameters in Table II.

1An overview of the notation used in all mathematical equations is provided
in the Notation section at the beginning of the paper.

Data Cleaning: The first step in the preprocessing chain is
data cleaning. The data cleaning initially involves removing
all trips with measurement errors, for example, trips with
invalid GPS locations or corrupt time stamps. After removing
invalid trips, we calculate the parking duration, i.e. how long
the vehicle is stationary before the next trip begins. We then
remove all trips shorter than 15 s, since we assume these to be
measurement errors and unrealistic trip times. Finally, we aim
to focus on parking durations relevant for SC applications. For
a parking time of less than 2 h there is not enough flexibility
to enable SC. On the other hand, if the duration exceeds 24 h
there is too much flexibility meaning SC is trivial. Therefore,
we filter the data to only include parking durations between
2 h-24 h.

Spatial Clustering: Given clean data, the next aspect of pre-
processing is spatial clustering. Spatial clustering is necessary
to determine key locations and account for small fluctuations
in GPS coordinates. These fluctuations can occur when the
destination is the same, but the exact parking location is
slightly different, i.e. a different parking spot at the same
supermarket. The spatial clustering consists of two steps. In
the first step, we apply standard DBSCAN2 [36] to the GPS
parking location of all trips. Although this initial clustering
generates several suitable clusters, it creates multiple clusters
less than 500m apart. Therefore in the second spatially
clustering step, we join clusters whose centroids are less than
this predefined threshold of 500m apart. Such clusters count
as a single location for our charging purpose since a user
would either walk between them (without using the EV) or, if

2In this paper we apply the clustering algorithm with Scikit-Learn [35].
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TABLE III: Additional features generated to provide useful
information for the parking duration prediction.

Feature Description

Current Location Cluster label for the current location of the EV given as
a number.

Hour of Day Time since midnight given as a real numeric value, e.g.,
09:36 am is encoded as 9.6.

Time Window of Day One-hot encoded variable to indicate different time win-
dows of a day, i.e. morning (5-9am), noon (9am-1pm),
afternoon (1-5pm), evening (5-10pm), and night (10pm-
5am).

Day of Week Encoding of the day of the week (numeric value 0-6) to
represent frequently recurring weekly trips.

Month Month of the year (numeric value 1-12) to represent
seasonally varying mobility behavior.

Is Holiday Boolean value based on a holiday calendar indicating
which days are public and/or school holidays.

Last Parking Time at
Current Location

How long the user stayed at the given location the last
time they visited.

they choose to drive, the energy consumption is negligible.
Once these clusters are determined, we consider the noise
points that do not belong to any location cluster. We assign
a location labeled as noise to a given cluster if they are
within a predefined neighborhood radius of 300m. We assume
this neighborhood radius is a reasonable distance for users to
walk when parking at a known location. Finally, we label the
clusters according to the frequency of their occurrence, i.e. the
cluster that contains the most data points is “cluster 1”, that
with the second-most data points “cluster 2”, and so on. We
also label the data points considered as noise with “-1”.

In the present paper, we only consider the eight most
frequently visited locations for both the training and evaluation
of the parking duration prediction. All trips with unknown
end locations, i.e. those trips assigned to the noise cluster,
are removed. This decision is made because a SC application
is not possible if the location, and as a result, the charging
infrastructure available is unknown. Therefore we only predict
parking duration for commonly visited and known locations.

Data Engineering: We engineer specific features from the
end time of each trip which are designed to provide useful in-
formation for the parking duration prediction. These additional
features are shown and explained in Tab. III.

We also generate labels for the parking duration prediction.
We select two separate labels for prediction, i.e.

Label A (Parking Duration): The time delta between
arriving at the current location and departing for the next
destination.
Label B (Departure Time): The point in time at which
the next departure will occur, given the current location.

B. General Uncertainty Quantification

We create a general uncertainty quantification for parking
duration predictions through probabilistic forecasts. Before
defining such probabilistic forecasts, it is important to under-
stand that deterministic predictions implicitly include uncer-
tainty. Such deterministic predictions are formally defined as
conditional expectations given the available information [37],
i.e.,

ŷ = E[Y | g,X, Θ̂], (1)

where ŷ is the predicted expected value, Y a random variable
modeling the parking duration y, g an arbitrary prediction
model3 with estimated parameters Θ̂, and X the exogenous
variables used in the prediction. However, whilst this predic-
tion is an expected value that implicitly indicates the presence
of variance and uncertainty, deterministic predictions fail to
quantify this uncertainty.

Therefore, probabilistic predictions actively quantify the
underlying uncertainty. For probabilistic predictions, we no
longer consider y as a realization of the random variable
Y ∼ fy , with the Probability Density Function (PDF) fy ,
and the Cumulative Distribution Function (CDF) Fy .4 Instead,
we predict the entire PDF fy or a subset of information that
conveys the uncertainty contained in fy [37].

Since the information contained in a PDF or CDF is
difficult to interpret without expert knowledge [38] and also
difficult to integrate into SC algorithms, we create probabilistic
predictions in the form of quantile predictions and prediction
intervals. We describe both of these prediction forms in the
following.

Quantile Prediction: A quantile prediction ŷ(α), with nomi-
nal level α, is a point prediction with the probability α that the
observation y is smaller than the quantile prediction ŷ(α) [37],
i.e.

P[y ≤ ŷ(α) | g,X, Θ̂] = α. (2)

For example, with α = 0.5, the probability of the observation
being smaller than the quantile prediction is 50%, equivalent to
the median prediction. Whilst the quantile prediction is a point
prediction, we can predict multiple quantiles and later combine
these predictions to convey information on the resulting PDF
or CDF.

Prediction Interval: A prediction interval Î(β), with nom-
inal coverage rate 1 − β, is a range of potential values with
the probability 1− β of the observation y being contained in
this range [37], i.e.

P[y ∈ Î(β) | g,X, Θ̂] = 1− β. (3)

Usually, these prediction intervals are formed by considering
the range between two quantile predictions, i.e.

Î(β) = [ŷ(¯
α), ŷ(ᾱ)], where ᾱ−

¯
α = 1− β, (4)

where
¯
α is the lower quantile, and ᾱ the upper quantile. To

ensure the prediction interval is centered on the PDF, we select
symmetrical quantiles around the median, i.e.,

¯
α = 1− ᾱ = β/2. (5)

Ideal prediction intervals include (1−β)% of the observations.

3To clarify, the prediction model g can, theoretically, be deterministic or
probabilistic in nature. The expectation in Equation (1) is dependent on g, X ,
and Θ̂, and thus flexible. For example, with a deterministic g the expectation
is formed implicitly through the training process or loss function. On the
other hand, with a probabilistic g, the expectation would be performed on
the resulting probabilistic prediction to determine, for example, the mean or
median.

4Note, we use fy and Fy to define the PDF and CDF of y, respectively.
These definitions should not be confused with the above-mentioned prediction
model g.
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ŷ

PD
F

yt

Parking Duration

(a) Error Outside the Prediction Interval (b) Critical and Non-Critical Errors

Fig. 2: A schematic representation of two options to customize the uncertainty quantification of parking duration predictions
specifically for SC applications. The error outside the prediction interval shown in red in (a), assumes that the SC application
is only at a disadvantage if the EV departs at a time outside the given prediction interval and thus only penalizes observations
outside this interval (see Equation (6)). Critical and non-critical error decomposition shown in (b), makes a further distinction
between predictions that overestimate the parking duration resulting in the EV leaving earlier than expected and possibly
undercharged (critical errors, shown in blue) and predictions that underestimate the parking duration (non-critical errors,
shown in green). This error decomposition is introduced in Equation (9).

C. Customized Uncertainty Quantification

Whilst the above-introduced probabilistic predictions quan-
tify the uncertainty of parking duration predictions, they fail to
account for regions of uncertainty that may be critical for user-
centric SC applications. Therefore, we now introduce three
options to customize the uncertainty quantification specifically
for SC applications, namely the error outside the prediction
interval, an error decomposition, and security levels. We
describe each of these options in the following.

Error Outside the Prediction Interval: The first option
to customize uncertainty quantification is by comparing the
error outside of the prediction interval and the width of
that prediction interval. The idea behind this quantification
is shown in Figure 2 (a). More precisely, we define the error
outside of the prediction interval Et,PI as

Et,PI =


ŷ
(
¯
α)
t − yt, if yt < ŷ

(
¯
α)
t ,

0, if ŷ(¯α)t ≤ yt ≤ ŷ
(ᾱ)
t ,

yt − ŷ
(ᾱ)
t , if ŷ(ᾱ)t < yt,

(6)

for trip t, and the upper and lower quantile predictions for that
trip ŷ

(ᾱ)
t and ŷ

(
¯
α)
t , respectively. This quantification assumes

that the only errors relevant for SC applications are those
outside a given prediction interval, i.e., the red sections in
Figure 2 (a). Therefore, the SC application is only at a
disadvantage if the EV departs at a time that is not included
in the predicted interval. The Et,PI is particularly useful when
combined with the average width W of the prediction interval,
defined as

W =
1

N

N∑
t=1

(ŷ
(ᾱ)
t − ŷ

(
¯
α)
t ), (7)

for N considered trips. By jointly considering EPI and the
width of the prediction interval, a SC application can manage
the trade-off between a range of possible parking durations
and the possible error.

Error Decomposition: Whilst the combination of the error
outside the prediction interval and the width of the prediction
interval is useful for SC applications, it assumes that errors
on both sides of the prediction interval are equal. However,
in the case of a user-centric SC application, predictions that
overestimate the parking duration, i.e., they predict the EV
will depart later than it actually does are far more problematic.
Such predictions could lead to an incomplete charging cycle
and an EV that cannot reach its destination without additional
charging stops.

Therefore, we define the critical and non-critical errors for a
user-centric SC application, shown in Figure 2 (b). Beginning
with the deterministic case, we consider the total mean error
for a parking duration prediction as the mean absolute error
between the prediction and actual parking duration

ETot =
1

N

N∑
t=1

|ŷt − yt|, (8)

for each considered trip t = 1, . . . , N . With this definition, we
define the critical and non-critical components by rewriting
Equation (8) as

ETot =
1

N

N∑
t=1

(
1[ŷt≥yt] · (ŷt − yt) + 1[ŷt<yt] · (yt − ŷt)

)
=

1

N

N∑
t=1

1[ŷt≥yt] · (ŷt − yt)︸ ︷︷ ︸
Ec

+
1

N

N∑
t=1

1[ŷt<yt] · (yt − ŷt)︸ ︷︷ ︸
Enc

= Ec + Enc,
(9)

where Ec is the critical error for the parking duration predic-
tion, Enc the non-critical error, and 1 the indicator function.

With this definition of critical and non-critical errors we can
customize the uncertainty quantification to minimize a certain
error as shown in Figure 2 (b). Formally, for a given tolerance
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T we can solve the optimization problem

minimize
ŷt

P[ŷt > yt | g,X, Θ̂]

subject to Enc =
1

N

N∑
t=1

1[ŷt<yt] · (yt − ŷt) ≤ T ,
(10)

i.e., we aim to minimize the probability of a critical error
occurring whilst ensuring that the total non-critical error is
under a given threshold T . This threshold is, however, highly
dependent on a user’s individual risk preferences, and therefore
a method is required to determine appropriate thresholds.

Security Levels: To help identify an appropriate threshold,
we define quantile-based security levels that can be used to
minimize the critical error depending on an individual EV
user’s risk preferences. Per definition, a quantile prediction
ŷ(α) ensures that the probability of the observation y being
smaller than the quantile prediction is α. For example, a
quantile prediction with α = 0.9 should be larger than the
observation 90% of the time. Regarding parking duration
prediction, this concrete example would also result in a critical
error 90% of the time. Therefore, there is a clear mathematical
relationship between quantile predictions and the chance of a
critical error. To take advantage of this relationship, we define
security levels (SL) at level η,

η = 100 · (1− α), (11)

which minimize the critical error Ec with increasing η. With
this definition, a security level of η should guarantee that for
η% of the observations, only non-critical errors occur. Whilst
security levels do not determine a user-specific threshold T ,
they provide a general starting point that can be used to deter-
mine approximate thresholds given a user’s risk preferences.

IV. CASE STUDY

We evaluate our methodology for customizing the uncer-
tainty quantification of parking duration predictions specif-
ically for SC applications on two data sets and with four
probabilistic prediction models. In this section, we introduce
these data sets and prediction models before explaining the
evaluation metrics applied.

A. Data

To evaluate the proposed approach, we consider two data
sets: an openly available semi-synthetic data set with reduced
uncertainty that we created for [1] and a real data set based
on two years of real mobility behavior that contains the full
uncertainty of an EV user5.

Semi-Synthetic Data: We generate a semi-synthetic data set
to create data representing a typical and predictable EV user.
The semi-synthetic data set aims to replicate real user behavior,
excluding unpredictable events that cannot be accounted for in
the optimization process; for example, randomly visiting an
unknown location. The semi-synthetic data set thus contains
reduced uncertainty compared to the real data.

5Due to privacy concerns we cannot release the real data set openly.

To achieve this goal, the semi-synthetic data set contains
eight locations representing the eight most commonly visited
places for a real EV user. Furthermore, there is no “noise”
in this semi-synthetic data set, as we assume only known
locations are visited. To generate the semi-synthetic data set,
we take real travel times between locations from a routing
service and multiply them with a normally distributed random
factor k ∼ N (1, 0.05) to account for stochastic fluctuations
in travel times. Given these trip times, we generate semi-
synthetic sequences of trips, including time and location scatter
with normally distributed offsets, to replicate the temporal and
spatial variation in the trips. Furthermore, the trip sequences
include recurrences on four levels: daily, weekly, monthly, and
seasonally and two random trips per week to the grocery store
occurring with a probability of 50% each. As a result, the semi-
synthetic data set still includes uncertainty but unexpected
events or trips to unknown locations are removed.6

Real Data: The real data is recorded from a personal
vehicle over two years, from 2018 to 2019. During these
two years, the vehicle was only used by a single person and
was also the prioritized means of transport during this time
frame.7 The vehicle was equipped with an onboard computer
to record trip data and parking duration. This data was then
communicated via an IoT system (using the MQTT protocol)
to a backend database for storage (see also [6]). The final data
set in the database consists of 2906 trips. Each trip includes
GPS coordinates (which we use for spatial clustering) and
timestamps (which we use to calculate the time-dependent
features and labels). It is important to note that this real data
set only mirrors the behavior of one individual and is therefore
not necessarily representative of other EV users. Furthermore,
since this real data is collected from an individual using their
EV to fulfill their personal mobility requirements, the data set
contains all uncertainty associated with an EV user.

B. Probabilistic Prediction Models

We use probabilistic predictions to generally quantify
the uncertainty associated with parking duration predictions.
When selecting probabilistic prediction models, we focus on
robust models that are computationally inexpensive, openly
available, and proven to perform well. Therefore, we exclude
complex deep learning-based regression models that rely on
extensive automated feature extraction, are computationally
expensive to train, and are not openly available, e.g. [39]–
[44]. Furthermore, since there is no clear correlation between
successive trips we also exclude time-series-based prediction
models that consider auto-regressive terms, e.g. [45]–[48].

Based on our selection criteria, we identify four probabilistic
prediction models that are shown in Table IV: Bayesian Ridge
Regression (BRR), Gaussian Process Regression (GPR), Nat-
ural Gradient Boosting (NGBoost), and a quantile regression
Neural Network (NN). Additionally, for each of these models,

6The exact algorithm used for trip generation is openly available
and described in more detail on GitHub https://github.com/KarlSchwenk/
mobility-data-creator.

7Note that the single user was formally notified and agreed to the recording
and use of their data for scientific purposes, however, they did not agree to
this data being openly released.
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TABLE IV: Overview of the selected probabilistic prediction
models.

Model Uncertainty Distribution Relationship

BRR Bayesian Prior Parametric Linear
GPR Covariance Function Parametric Non-Linear
NGBoost Gradient Boosting Parametric Non-Linear
NN Quantile Loss Non-Parametric Non-Linear

TABLE V: An overview of the used hyperparameters for the
selected probabilistic prediction models.

Model Hyperparameters

BRR

Prior Distribution: Spherical Gaussian
Max Number of Iterations: 300
Convergence Tolerance: 0.003
Regularization Parameters Noise: α1 = α2 = 0.000006
Regularization Parameters Weights: λ1 = λ2 = 0.000006

GPR

Kernel: Radial Basis Function Kernel
Kernel Length Scale: 1.0
Noise Regularization: α = 0.1
Number of Optimizer Restarts: 10

NGBoost

Base Regressor: Random Forest
Number of Trees in Random Forest: 100
Random Forest Loss Metric: Mean Squared Error
NGBoost Distribution: Gaussian distribution
NGBoost Number of Boosting Iterations: 10000
NGBoost Number of Early Stopping Rounds: 10
NGBoost Learning Rate: 0.01
NGBoost Scoring Rule: Logarithmic Scoring Rule

NN

Network Type: Fully-Connected Feed-Forward Neural Network
Number of Hidden Layers: 2
Hidden Layer Size: 100 Neurons, 50 Neurons
Hidden Layer Activation Function: Rectified Linear Units
Output Activation Function: Linear
Epochs: 200
Loss Metric: Pinball Loss
Optimizer: Adam [49]

we consider a location-dependent ensemble similar to our
previous work [1]. The following briefly describes the general
idea behind these probabilistic prediction methods and how
the location ensemble is created. We refer to the existing
literature for detailed mathematical descriptions of the applied
models and present an overview of the used hyperparameters
in Table V.

Bayesian Ridge Regression: The simplest probabilistic pre-
diction model we apply is BRR. BRR is a Bayesian statistics
approach to linear regression that incorporates prior distribu-
tions over the model parameters to regularize the estimates
[50], [51]. Assuming a linear relationship between the input
features and the parking duration target, BRR uses a prior
distribution over the coefficients to quantify uncertainty. Since
this assumed prior is a parametric distribution, BRR is clas-
sified as a parametric prediction method. We implement the
BRR in Python [52] using Scikit-Learn [35] and assume the
prior distribution to be a spherical Gaussian. For detailed
information regarding BRR, we refer to [53], and [54].

Gaussian Process Regression: Another simple probabilistic
prediction model is GPR. The GPR is also based on Bayesian
statistics, however, instead of assuming a specific distribution
for the prior, it assumes a Gaussian process prior [55]. A
Gaussian process is a collection of random variables of which
any finite number has a joint Gaussian distribution [56]. As
a result, GPR calculates the probability distribution over all

admissible functions that fit the data and can therefore model
complex non-linear relationships. The considered Gaussian
process is defined by a mean function and a covariance func-
tion, with uncertainty quantified with the covariance function.
We implement the GPR in Python [52] using Scikit-Learn [35]
with Gaussian process prior with a constant mean equal to that
of the training data, and a radial basis function kernel with
length-scale parameter equal to 1. For detailed information
regarding GPR, we refer to [56].

Natural Gradient Boosting: The third probabilistic pre-
diction model is NGBoost, proposed by Duan et al. [57].
NGBoost applies gradient boosting [58] to optimize a proba-
bilistic loss function. More specifically, NGBoost uses multi-
parameter boosting and natural gradients to estimate the pa-
rameters of an assumed parametric probability distribution.
NGBoost is based on an arbitrary deterministic base learner
capable of modeling complex non-linear relationships [57].
In the training process, a separate base learner is trained
for each parameter of the selected probability distribution
using natural gradient boosting to minimize a proper scoring
rule [57], such as the logarithmic score or continuous ranked
probability score [38]. We implement NGBoost in Python [52],
with the same random-forest base learner as in our previous
work [1] using Scikit-Learn [35], and the NGBoost [57] python
package. We assume a Gaussian distribution [57] and apply
the logarithmic proper scoring rule [38] for training. For
detailed information regarding NGBoost and gradient boosting
in general we refer to [57] and [58].

Quantile Regression Neural Network: The final proba-
bilistic prediction model is a simple feed-forward quantile
NN [59]. A quantile NN is trained like any feed-forward
NN with gradient back-propagation, however, this training
is designed to directly approximate a given target quantile.
This approximation is achieved by training a NN with the
pinball loss, a proper scoring rule whose minimization results
in optimal quantile predictions [60]. For a given quantile α,
the pinball loss Lpinball,α is defined as

Lpinball,α =

{
α · (ŷ(α) − y), if ŷ(α) ≥ y,

(1− α) · (y − ŷ(α)), if ŷ(α) < y,
(12)

where ŷ(α) is the prediction for the α quantile, and y the obser-
vation [60]. In the present paper, we train multiple NNs to pre-
dict multiple quantiles and combine these predicted quantiles
by sorting overlapping quantiles to achieve a non-parametric
approximation of the full probability distribution. We imple-
ment the quantile feed-forward NN with two hidden layers
of 100, and 50 neurons respectively. The hidden layers both
use the rectified linear units (ReLU) activation function [61],
whilst the output layer takes a linear activation function. Simi-
lar to [62], we predict 99 quantiles α ∈ {0.01, . . . , 0.99}, with
individual NNs. The NN is implemented in Python [52] using
TensorFlow [63] with Keras [64]. For detailed information on
quantile neural networks, we refer to [59], [65], and [66].

Location Ensemble for Each Model: To create a location
ensemble, we first separate the training data into the known
locations based on spatial clustering to quantify the uncertainty
associated with each location. Therefore, the location ensem-
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Fig. 3: A comparison of the observed and predicted values from the NGBoost model for both Label A and B, on a subset
of trips from the test data set. A theoretical perfect deterministic prediction is indicated by the red dotted line, the mean
deterministic predictions are blue crosses, and the light blue lines indicate the width of the 90% prediction interval.

ble uses a separate prediction model for each location to gen-
erate probabilistic parking duration predictions. Although this
allows the models to learn the varying levels of uncertainty at
each location, it also leads to higher computational complexity,
increasing with the number of known locations. Furthermore,
the amount of training data available decreases when only a
single location is considered, which may lead to an inaccurate
representation of the uncertainty at this location. For each of
the four probabilistic prediction models we create a location
ensemble, resulting in the BRR Ens, GPR Ens, NGBoost Ens,
and NN Ens models.

C. Evaluation Metrics

As evaluation metrics, we first consider a qualitative eval-
uation of the general uncertainty quantification by visualizing
prediction intervals. To further evaluate the general uncertainty
quantification, we compare the predicted CDF F̂ (ŷ), with the
observed empirical CDF F (y). To this means, we integrate
over the absolute difference between the two CDFs, i.e.

EINT =

∫ 24

2

|F̂ (z)− F (z)|dz, (13)

where the integral between 2 h and 24 h is due to the filtered
considered parking duration. In this case, a perfectly predicted
CDF identical to the empirical CDF would result in an EINT
of zero, whilst the theoretical maximum EINT is 228.

To evaluate our methodology for customizing the uncer-
tainty quantification, we consider the metrics defined in Sec-
tion III-C and the mean error outside the prediction interval
for all trips, i.e.,

EPI =
1

N

N∑
t=1

Et,PI. (14)

8Note, this theoretical maximum can only occur in an unrealistic scenario.
For example, a predicted CDF predicting the EV will directly depart and thus
has a chance of departure of 1 for all parking durations whilst in reality the EV
never departed in the considered time period resulting in an empirical CDF
with a chance of departure of 0 for all considered parking durations. Since
this scenario is unrealistic, we expect EINT values lower than this maximum.

V. RESULTS

In this section, we first compare the general uncertainty
quantification from the probabilistic prediction models before
reporting the results of our methodology for customizing
uncertainty quantification specifically for SC applications.9

A. General Uncertainty Quantification

To analyze the general uncertainty quantification from the
four probabilistic prediction models we first compare the
prediction intervals before reporting differences between the
predicted and empirical PDFs.

Prediction Intervals: A comparison of NGBoost predicted
and observed values for 25 randomly selected trips from
the test data set is shown in Figure 3. The blue crosses
are the deterministic predictions obtained as the mean of
the probabilistic prediction, and the 90% prediction intervals
are shown by light blue bars. For both labels on the semi-
synthetic data set, the mean predictions always lie on or close
to the diagonal which indicates a perfect theoretical prediction.
Furthermore, the prediction intervals for the semi-synthetic
data are relatively narrow. Interestingly, prediction intervals
for trips occurring in the middle of the considered time range,
i.e. around 10 h for Label A and 12 h for Label B, are narrower
than those for values at the edge of the considered time
range. In contrast to the semi-synthetic data set, the mean
predictions for the real data set do not often lie on the desired
diagonal. Furthermore, for both Label A and B, the mean
predictions overestimate the parking duration for short stops
and underestimate this duration for long stops. The prediction
intervals on the real data set are also much wider than those
from the semi-synthetic data set.

Probability Distribution: To compare the true and predicted
probabilistic distribution, we plot the predicted CDF and
observed empirical CDF for two locations using NGBoost fin
Figure 4. For both data sets, the accuracy of the predicted

9Code to replicate the visualizations and error metrics presented in
the present paper is available via GitHub: https://github.com/KIT-IAI/
Customized-UQ-of-Parking-Duration-Predictions.
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TABLE VI: The integral error, EINT, between the predicted distribution function and the actual observed distribution function
for both labels.

Label A Label B
Data Location BRR GPR NGBoost NN BRR GPR NGBoost NN

Se
m

i-
Sy

nt
he

tic
D

at
a All Locations 0.9733 2.3763 2.4203 2.6101 2.0008 4.2096 4.2429 4.5634

Location 1 1.4981 2.1349 2.3448 2.5258 2.7283 3.0856 3.5817 3.5413
Location 2 0.2521 0.1421 0.1814 0.3618 0.5737 0.5012 0.4837 0.6468
Location 3 1.8093 0.1752 0.1586 0.1663 0.0388 0.0375 0.0369 0.0896
Location 4 0.2373 0.2627 0.2133 0.4149 0.2424 0.2378 0.2591 0.3413
Location 5 1.6834 0.0925 0.0968 0.1167 1.4939 0.0468 0.0439 0.0540
Location 6 5.6065 0.9957 0.1948 0.5113 7.2874 1.0292 0.2883 0.7282
Location 7 0.4984 0.5314 0.5371 1.2980 0.4822 0.4953 0.4963 0.7570
Location 8 0.5027 0.4848 0.5320 0.6274 2.0801 1.8908 1.8918 2.2633

R
ea

l
D

at
a

All Locations 0.9969 1.2119 1.4666 2.6141 0.9497 0.9855 1.1690 2.1500
Location 1 1.4773 1.6453 1.8423 3.0827 0.6975 0.7479 0.7965 1.4152
Location 2 0.6862 0.6840 0.8088 1.5589 0.9972 1.2688 1.2883 1.4998
Location 3 1.1425 1.4316 1.1238 2.5132 1.3411 1.0643 1.2206 1.0875
Location 4 0.1626 0.1603 0.1607 0.3090 1.7334 1.5058 2.0576 2.2980
Location 5 3.8654 3.3779 3.3786 5.3612 3.1125 2.9198 1.2539 2.4804
Location 6 2.2741 2.9024 3.0737 3.7693 1.6942 1.8172 2.2209 1.7147
Location 7 0.8766 0.3412 0.2797 0.2812 0.7190 0.6626 0.9439 0.5664
Location 8 -a -a -a -a -a -a -a -a

a There was only one trip for Location 8 in the test data set, making the calculation of an observed empirical CDF
for this location impossible.

CDF is highly dependent on the location. For example, on
the semi-synthetic data set in Location 1 the predicted CDF is
underdispersed and struggles to predict trips with either a very
short, or very long parking duration. On the other hand, the
CDF for Location 2 on the semi-synthetic data set is highly
accurate. For the real data, similar results are observed. For
this data set, Location 1 results in an accurate CDF, whilst
Location 5 is difficult to predict.

To further analyze the deviations in the predicted and true
PDF for each location we report the mean integral error, EINT
for Label A and B in Table VI. With regard to the data sets,
the errors are generally lower for the semi-synthetic data than
the real data. However, for certain combinations of labels and
locations, the errors are lower for the real data set. For both
data sets, the location plays a major role. Not only do the
errors differ noticeably across the locations, but also the best-
performing label changes. For example, Label A is generally
more accurate than Label B for the semi-synthetic data, but
Label B delivers better results for Locations 3 and 7. Since
there was only one observation from Location 8 for the real
data, we cannot calculate the empirical CDF for this location.

B. Customized Uncertainty Quantification
The main focus of our evaluation is the customized uncer-

tainty quantification specifically designed for SC applications.
Therefore, in this section we first present results for the
error outside the prediction interval, before reporting the error
decomposition results combined with different security levels.

Error Outside the Prediction Interval: We report the trade-
off between EPI and W in Table VII for Label A, and
Table VIII for Label B. Comparing these tables, the errors on
the semi-synthetic data set are lower than those from the real
data, and at the same time the width of the prediction intervals
is also smaller. As expected, as the width of the prediction
intervals increases, the error outside the prediction intervals
decreases.

Considering Label A and the semi-synthetic data set, a min-
imum EPI of 0.03 h (approximately 1.8min) is achieved with

the BRR location ensemble with a W of 10.39 h. However,
on this semi-synthetic data set, the NGBoost location ensem-
ble performs similarly with a EPI of 0.04 h (approximately
2.4min) and a lower W of 2.33 h. On the real data set, the
smallest EPI of 0.09 h (approximately 5.4min) is achieved with
the GPR location ensemble, however, the W is 15.92 h.

For Label B, the lowest EPI of 0.07 h (approximately
4.2min) on the semi-synthetic data is achieved by NGBoost
with a W of 3.67 h. For the real data, both BRR and the
BRR location ensemble achieve the lowest EPI of 0.07 h
(approximately 4.2min), although the Ws of 13.92 h and
13.77 h respectively are far larger.

Error Decomposition & Security Levels: The error decom-
position in Ec and Enc for security levels from 10% to 90%
calculated with the NGBoost location ensemble is shown in
Figure 5. Although the total error for the real data set is much
larger than the semi-synthetic data, a high security level of
90% results in a similar small critical error. Furthermore, for
both data sets the minimal total error occurs at a security level
between 40% to 60%.

To further analyze this error decomposition, we report the
mean critical error Ec, and non-critical error Enc for both the
semi-synthetic and real data set for Label A, and Label B
in Table IX and Table X, respectively. Although the total
error is much larger on the real data set, a high security level
results in a small critical error for both sets. For example,
for Label A we can achieve an average critical error of only
0.03 h (approximately 1.8min) on the semi-synthetic data set
and 0.1 h (approximately 6min) on the real data set, with
a security level of 90%. Similarly, for Label B, the same
security level can result in an average critical error of 0.01 h
(approximately 0.6min) on the semi-synthetic data set and
0.09 h (approximately 5.4min) on the real data set. Comparing
both labels, we observe that the error is not consistently lower
for any one label but depends on the considered probabilistic
prediction model.
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TABLE VII: The mean EPI outside of the prediction interval and the average width W of this prediction interval in hours
calculated on the test data for parking duration (Label A). All prediction models and their associated location ensemble (Ens)
are compared.

Data Model 10%-PI 20%-PI 40%-PI 60%-PI 80%-PI 90%-PI
EPI W EPI W EPI W EPI W EPI W EPI W

Se
m

i-
Sy

nt
he

tic
D

at
a BRR 1.64 0.74 1.35 1.48 0.91 2.07 0.58 4.92 0.28 7.50 0.15 9.62

GPR 0.61 0.19 0.54 0.38 0.41 0.78 030 1.25 0.20 1.91 0.14 2.45
NGBoost 0.44 0.19 0.38 0.38 0.28 0.78 0.20 1.25 0.12 1.91 0.08 2.45

NN 0.52 0.11 0.46 0.24 0.36 0.49 0.26 0.81 0.17 1.33 0.11 2.07
BRR Ens 1.23 0.79 0.97 1.60 0.57 3.31 0.31 5.31 0.11 8.09 0.03 10.39
GPR Ens 0.57 0.22 0.48 0.44 0.35 0.90 0.24 1.45 0.15 2.21 0.10 2.83

NGBoost Ens 0.37 0.18 0.32 0.36 0.23 0.74 0.15 1.19 0.08 1.82 0.04 2.33
NN Ens 0.51 0.11 0.47 0.20 0.39 0.41 0.31 0.67 0.20 1.20 0.13 1.88

R
ea

l
D

at
a

BRR 3.60 1.31 3.03 2.64 2.03 5.46 1.16 8.76 0.40 13.34 0.14 17.12
GPR 3.84 1.29 3.28 2.59 2.20 5.36 1.46 8.60 0.67 13.09 0.36 16.80

NGBoost 3.27 1.12 2.77 2.26 1.88 4.67 1.14 7.50 0.50 11.41 0.22 14.65
NN 4.35 0.75 3.92 1.60 3.16 3.44 2.38 5.46 1.69 7.75 1.32 9.91

BRR Ens 3.02 1.24 2.51 2.50 1.63 5.17 0.92 8.29 0.344 12.63 0.14 16.21
GPR Ens 3.32 1.22 2.79 2.45 1.84 5.07 1.07 8.14 0.36 12.40 0.09 15.92

NGBoost Ens 2.83 0.92 2.44 1.84 1.76 3.82 1.12 6.13 0.59 9.33 0.34 11.98
NN Ens 5.02 0.54 4.76 1.08 4.27 2.21 3.65 3.93 2.73 6.21 2.27 7.94

TABLE VIII: The mean EPI outside of the prediction interval and the average width W of this prediction interval in hours
calculated on the test data for departure time (Label B). All prediction models and their associated location ensemble (Ens)
are compared.

Data Model 10%-PI 20%-PI 40%-PI 60%-PI 80%-PI 90%-PI
EPI W EPI W EPI W EPI W EPI W EPI W

Se
m

i-
Sy

nt
he

tic
D

at
a BRR 2.55 1.09 2.14 2.20 1.44 4.54 0.82 7.29 0.31 11.11 0.14 14.26

GPR 0.88 0.26 0.77 0.53 0.58 1.10 0.43 1.77 0.29 2.70 0.22 3.46
NGBoost 0.59 0.28 0.51 0.56 0.37 1.17 0.25 1.87 0.13 2.85 0.07 3.67

NN 0.64 0.15 0.57 0.32 0.44 0.65 0.31 1.09 0.21 1.79 0.14 3.07
BRR Ens 1.83 0.98 1.43 1.98 0.86 4.09 0.52 6.57 0.27 10.00 0.12 12.84
GPR Ens 0.80 0.32 0.68 0.63 0.50 1.29 0.37 2.08 0.23 3.16 0.15 4.06

NGBoost Ens 0.67 0.2 0.60 0.40 0.47 0.83 0.36 1.34 0.24 2.03 0.18 2.61
NN Ens 0.72 0.15 0.64 0.33 0.51 0.69 0.39 1.10 0.27 1.70 0.20 2.73

R
ea

l
D

at
a

BRR 2.61 1.06 2.16 2.14 1.37 4.44 0.72 7.12 0.25 10.84 0.07 13.92
GPR 3.15 1.03 2.69 2.08 1.86 4.31 1.10 6.92 0.48 10.53 0.28 13.52

NGBoost 2.64 0.93 2.24 1.88 1.51 3.89 0.86 6.24 0.29 9.50 0.10 12.19
NN 3.97 0.62 3.62 1.30 2.92 2.75 2.35 4.19 1.80 5.91 1.44 7.51

BRR Ens 2.49 1.05 2.04 2.12 1.26 4.39 0.62 7.05 0.19 10.73 0.07 13.77
GPR Ens 2.69 0.99 2.25 1.99 1.43 4.12 0.74 6.61 0.22 10.07 0.11 12.92

NGBoost Ens 2.61 0.90 2.21 1.81 1.43 3.74 0.77 6.01 0.27 9.14 0.14 11.74
NN Ens 3.66 0.64 3.35 1.36 2.77 2.73 2.19 4.15 1.63 6.02 1.40 7.09

TABLE IX: The mean critical error Ec and non-critical error Enc in hours on the test data set for different security levels
(SL), when predicting the parking duration (Label A). All prediction models and their associated location ensemble (Ens) are
compared.

Data Model SL 10 SL 20 SL 30 SL 40 SL 50 SL 60 SL 70 SL 80 SL 90
Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc

Se
m

i-
Sy

nt
he

tic
D

at
a BRR 3.95 0.08 2.85 0.26 2.09 0.44 1.52 0.65 1.05 0.93 0.70 1.31 0.47 1.88 0.31 2.64 0.20 3.80

GPR 1.02 0.10 0.74 0.15 0.56 0.21 0.43 0.27 0.33 0.37 0.26 0.49 0.21 0.63 0.15 0.82 0.10 1.09
NGBoost 0.99 0.06 0.70 0.11 0.51 0.15 0.36 0.20 0.25 0.28 0.18 0.40 0.13 0.56 0.10 0.75 0.06 1.04

NN 0.63 0.12 0.47 0.17 0.38 0.23 0.31 0.27 0.25 0.33 0.19 0.39 0.13 0.48 0.09 0.60 0.04 0.86
BRR Ens 4.01 0.01 2.67 0.05 1.80 0.18 1.19 0.42 0.76 0.79 0.55 1.38 0.40 2.04 0.26 2.82 0.11 3.87
GPR Ens 1.18 0.05 0.85 0.10 0.63 0.16 0.47 0.22 0.35 0.32 0.26 0.45 0.19 0.61 0.13 0.83 0.09 1.17

NGBoost Ens 0.91 0.04 0.64 0.08 0.46 0.13 0.32 0.18 0.21 0.25 0.14 0.36 0.10 0.51 0.06 0.70 0.03 0.98
NN Ens 0.54 0.13 0.41 0.19 0.34 0.23 0.28 0.27 0.24 0.31 0.20 0.39 0.16 0.46 0.13 0.57 0.06 0.85

R
ea

l
D

at
a

BRR 6.99 0.27 5.02 0.58 3.75 0.96 2.82 1.45 2.14 2.09 1.58 2.85 1.07 3.74 0.58 4.90 0.13 6.72
GPR 6.93 0.38 5.04 0.74 3.82 1.13 2.92 1.62 2.23 2.22 1.66 2.94 1.17 3.84 0.72 5.01 0.29 6.79

NGBoost 6.24 0.33 4.57 0.62 3.46 0.92 2.65 1.33 2.01 1.80 1.45 2.37 0.96 3.09 0.53 4.07 0.17 5.65
NN 4.08 1.31 3.65 1.52 3.14 1.79 2.68 2.08 2.26 2.47 1.84 2.84 1.37 3.45 0.86 4.20 0.38 5.36

BRR Ens 5.98 0.24 4.12 0.55 2.95 0.94 2.13 1.46 1.51 2.09 1.05 2.88 0.69 3.85 0.37 5.08 0.10 6.93
GPR Ens 5.63 0.16 3.83 0.50 2.74 0.94 2.05 1.56 1.58 2.32 1.22 3.19 0.90 4.17 0.57 5.38 0.20 7.14

NGBoost Ens 4.30 0.40 3.01 0.71 2.24 1.10 1.67 1.51 1.25 2.02 0.93 2.61 0.66 3.34 0.41 4.24 0.20 5.63
NN Ens 3.22 2.18 2.99 2.47 2.62 2.75 2.36 2.96 2.11 3.18 1.81 3.48 1.53 3.87 1.18 4.59 0.55 5.63
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Fig. 4: The predicted CDF and the observed CDF for the semi-synthetic data set (a) and real data set (b) calculated with the
test data for two different locations using the NGBoost model. The error between the two distributions is the highlighted area
between the two curves.

TABLE X: The mean critical error Ec and non-critical error Enc in hours on the test data set for different security levels (SC),
when predicting the departure time (Label B). All prediction models and their associated location ensemble (Ens) are compared.

Data Model SL 10 SL 20 SL 30 SL 40 SL 50 SL 60 SL 70 SL 80 SL 90
Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc Ec Enc

Se
m

i-
Sy

nt
he

tic
D

at
a BRR 6.11 0.30 4.47 0.57 3.34 0.81 2.42 1.06 1.65 1.40 1.07 1.92 0.63 2.65 0.25 3.63 0.01 5.26

GPR 1.57 0.16 1.18 0.22 0.91 0.29 0.70 0.37 0.54 0.47 0.40 0.60 0.29 0.78 0.21 1.02 0.14 1.41
NGBoost 1.58 0.05 1.15 0.11 0.86 0.17 0.61 0.23 0.41 0.30 0.28 0.46 0.20 0.68 0.14 0.97 0.08 1.40

NN 0.84 0.17 0.66 0.22 0.52 0.27 0.40 0.33 0.31 0.40 0.24 0.48 0.17 0.57 0.09 0.75 0.04 1.16
BRR Ens 5.16 0.24 3.67 0.47 2.62 0.66 1.79 0.89 1.11 1.19 0.54 1.61 0.20 2.29 0.05 3.34 0.02 4.90
GPR Ens 1.61 0.18 1.16 0.26 0.85 0.34 0.60 0.43 0.40 0.54 0.25 0.71 0.16 0.95 0.10 1.29 0.05 1.78

NGBoost Ens 1.06 0.15 0.77 0.21 0.58 0.28 0.44 0.35 0.33 0.44 0.25 0.56 0.19 0.72 0.14 0.92 0.10 1.22
NN Ens 0.70 0.21 0.54 0.29 0.43 0.36 0.35 0.44 0.26 0.52 0.21 0.63 0.15 0.77 0.10 0.95 0.06 1.27

R
ea

l
D

at
a

BRR 5.82 0.13 4.16 0.34 2.09 0.61 2.30 0.97 1.69 1.43 1.19 2.00 0.76 2.71 0.39 3.68 0.11 5.27
GPR 5.89 0.25 4.32 0.49 3.38 0.85 2.63 1.22 2.00 1.63 1.47 2.14 1.01 2.79 0.60 3.69 0.23 5.13

NGBoost 5.18 0.13 3.78 0.36 2.90 0.65 2.23 0.99 1.69 1.39 1.25 1.89 0.86 2.50 0.50 3.31 0.16 4.61
NN 3.60 1.38 3.21 1.58 2.83 1.76 2.42 2.01 2.06 2.23 1.60 2.50 1.16 2.84 0.78 3.33 0.41 4.11

BRR Ens 5.44 0.08 3.84 0.32 2.83 0.64 2.08 1.03 1.49 1.50 1.01 2.07 0.62 2.82 0.31 3.83 0.11 5.48
GPR Ens 5.22 0.13 3.75 0.40 2.84 0.73 2.16 1.12 1.61 1.56 1.14 2.08 0.70 2.71 0.34 3.60 0.09 5.07

NGBoost Ens 4.85 0.16 3.51 0.39 2.71 0.72 2.10 1.08 1.58 1.47 1.12 1.91 0.72 2.47 0.38 3.26 0.12 4.57
NN Ens 3.28 1.19 2.81 1.45 2.37 1.77 1.90 2.10 1.56 2.39 1.25 2.80 1.00 3.13 0.73 3.53 0.44 4.37

VI. DISCUSSION

In this section, we first discuss the general uncertainty
quantification before analyzing our customized uncertainty
quantification specifically for SC applications.

General Uncertainty Quantification: The first observation
from the general uncertainty quantification is that the increased
uncertainty in the real data set is directly visible. When
comparing the two data sets, the prediction intervals for the
real data set are far wider than those for the semi-synthetic
data set for all prediction models and labels.

The second observation is that uncertainty is highly
location-dependent. For certain locations, the predicted CDF

is similar to the observed empirical CDF, whilst in other
locations, this prediction differs noticeably. Furthermore, both
Label A and Label B can be beneficial depending on the
location. This result is not surprising since a regular parking
duration characterizes some locations (e.g., visiting the gym),
whilst other locations are characterized by a regular departure
time (e.g., leaving work at the end of the working day).

Finally, the general uncertainty quantification emphasizes
the need for a customized uncertainty quantification specifi-
cally for SC applications. More specifically, although a predic-
tion interval or CDF is useful for visualizing uncertainty, a SC
algorithm will have difficulty optimizing a charging schedule
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Fig. 5: The total mean error broken down into critical and
non-critical error components for different security levels for
the NGBoost ensemble calculated on the test data using all
locations. The critical error decreases as the security level
increases.

based purely on a large range of possible parking durations or
an entire CDF.

Customized Uncertainty Quantification: We first observe
that quantifying the trade-off between the error outside the
prediction interval and the prediction interval width only has
limited benefit. To achieve small errors outside the prediction
interval, we observe that large prediction intervals are required,
which may not be viable in SC algorithms. Furthermore, the
error outside the prediction interval does not explicitly quantify
critical scenarios that may lead to undercharging.

Therefore, we observe that security levels based on prob-
abilistic predictions combined with an error decomposition
provide the most useful quantification for SC applications.
This customized quantification method reduces the critical
error to acceptable levels, even for real data exhibiting high un-
certainty levels. Furthermore, using security levels can account
for individual user’s risk preferences and can be combined
with a SC scheduling to optimize the SC application for
that individual user. Given information regarding a user’s risk
attitude, it may be possible to optimally select a SC schedule
that perfectly fits their profile.

However, we currently focus on user-centric SC applica-
tions, but the impact on other participants in an IoT smart grid
should be considered. For example, an EV charging station
owner who aims to optimally schedule charging slots will
consider errors resulting in underestimated parking duration

critical since the charging slot is not free for an additional
EV when expected. Therefore, multiple definitions of critical
errors, their associated security levels, and the impacts on an
IoT smart grid should be analyzed.

VII. CONCLUSION

To increase acceptance of Smart Charging (SC) applica-
tions, the present paper extends our previous work [1] by intro-
ducing a methodology to customize uncertainty quantification
of parking duration predictions specifically for SC applica-
tions. We generally quantify the uncertainty with probabilistic
forecasts before customizing this uncertainty quantification
by decomposing critical errors that result in undercharging
and non-critical errors. Furthermore, we define quantile-based
security levels, which can minimize the probability of an
Electric Vehicle (EV) being undercharged, given a user’s risk
preferences.

Using four probabilistic prediction methods, we evaluate our
approach on an openly available semi-synthetic data set and
a real data set. We show that uncertainty is highly location-
dependent and that a general uncertainty quantification does
not provide the specific information required by SC appli-
cations. However, our customized uncertainty quantification
does provide such information by enabling critical errors to
be reduced to acceptable levels for SC algorithms, even when
high uncertainty exists in the data.

In light of these findings, probabilistic prediction models
that automatically select the optimal label based on location-
dependent uncertainty could be considered. Since the present
paper focused on user-centric SC applications, future work
should consider all participants in an Internet of Things (IoT)
smart grid. Specifically, this work should investigate how
the definition of critical errors varies for each participant
and how these, perhaps contradictory, preferences can be
combined to benefit all participants mutually. Furthermore,
future work should focus on taking the customized uncertainty
quantification presented in this paper and integrating it into
stochastic optimization problems, similar to [67], or using it
to detect unusual behavior, similar to [68].
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[46] B. Lim, S. Ö. Arık, N. Loeff, and T. Pfister, “Temporal fusion transform-
ers for interpretable multi-horizon time series forecasting,” International
Journal of Forecasting, vol. 37, no. 4, pp. 1748–1764, Oct./Dec. 2021.

[47] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting,”
arXiv preprint arXiv:1905.10437, May 2019.

[48] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Inter-
national Journal of Forecasting, vol. 36, no. 3, pp. 1181–1191, Jul./Sept.
2020.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, Jan. 2017.

[50] T. Minka, Bayesian Linear Regression. Citeseer, Sept. 2000.
[51] I. Castillo, J. Schmidt-Hieber, and A. Van der Vaart, “Bayesian linear

regression with sparse priors,” The Annals of Statistics, vol. 43, no. 5,
p. 1986–2018, Oct. 2015.

[52] Python Software Foundation, “Python,” 2019. [Online]. Available:
https://www.python.org/

[53] M. E. Tipping, “Sparse bayesian learning and the relevance vector
machine,” Journal of Machine Learning Research, vol. 1, pp. 211–244,
Sept. 2001.

[54] D. J. MacKay, “Bayesian interpolation,” Neural Computation, vol. 4,
no. 3, pp. 415–447, May 1992.

[55] J. Q. Shi and T. Choi, Gaussian Process Regression Analysis for
Functional Data. CRC Press, 2011.

[56] C. K. Williams and C. E. Rasmussen, Gaussian Processes for Machine
Learning. MIT Press, 2006, vol. 2, no. 3.

[57] T. Duan et al., “Ngboost: Natural gradient boosting for probabilistic
prediction,” in International Conference on Machine Learning, Virtual
Event, Jul. 2020, pp. 2690–2700.

[58] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, pp. 1189–1232, Oct. 2001.

[59] R. Koenker, V. Chernozhukov, X. He, and L. Peng, Handbook of
Quantile Regression. CRC press, Oct. 2017.

[60] T. Gneiting, “Quantiles as optimal point forecasts,” International Journal
of Forecasting, vol. 27, no. 2, pp. 197–207, Apr./Jun. 2011.

[61] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv
preprint arXiv:1803.08375, Mar. 2018.
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