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As the majority of environmental microbial organisms still evade cultivation attempts, genomic insights into many taxa are 
limited to cultivation-independent approaches. However, current methods of metagenomic binning and single cell genome 
sequencing have individual drawbacks, which can limit the quality as well as completeness of the reconstructed genomes. 
Current attempts to combine both approaches still use whole genome amplification techniques which are known to be 
prone to bias. Here we propose a novel approach for the purpose of metagenomic genome reconstructions, that utilizes 
the potential of fluorescence-activated cell sorting (FACS) for targeted enrichment and depletion of different cell types to 
create distinct cell fractions of sufficient size circumvent amplification. By distributing sequencing efforts over these 
fractions as well as the original sample, co-assemblies become highly optimized for co-abundance variation based binning 
approaches. “Midi-metagenomics” enables accurate metagenome assembled genome (MAG) reconstruction from 
individual sorted samples with higher quality than co-assembly of multiple distinct samples and has potential for the  
targeted enrichment and sequencing of uncultivated organism of interest. 

 

Introduction 
According to current estimates, less than 1% of environ-
mental prokaryotes are culturable under laboratory condi-
tions. The vast majority of microorganisms remain unavail-
able for direct analysis with classic microbiological meth-
ods and is thus commonly referred to as ‘microbial dark 
matter’1,2. However, advances in cultivation-independent 
methodologies such as metagenomics and single-cell ge-
nomics nowadays enable thorough genome analyses of un-
cultured organisms3,4 (Figure 1). 

In metagenomics (Figure 1A), the entire DNA of an 
environmental community is extracted, sequenced, and 
analysed5. Unfortunately, the assembly of individual 
discrete genomes from metagenomics data is sometimes 
not possible, especially for highly complex communities and 
organisms of low abundance. As a result, metagenome 
assembled genomes (MAGs) are highly susceptible to 
chimerism, meaning that they can contain contigs that 
originate from the genomes of different taxa6,7. 

Single-cell genomics (SCG) (Figure 1B) reduces this risk 
by targeting individual cells2,8. However, since a single 
bacterial cell contains only a few femtograms of DNA and 
the minimum requirement for high throughput sequencing 
is typically in the nanogram range, a whole genome 
amplification (WGA) is required. This is a severe 
disadvantage, as WGA usually yields extremely uneven read 
coverage, constituting a large bias that is particularly 
pronounced for genomes with high GC content and usually 
results in fragmented as well as incomplete single cell 
amplified genomes (SAGs)2,9,10.  

In order to minimize the individual drawbacks and 
maximize the advantages of both methods, there is a strong 
interest in combining single-cell and metagenomic 
approaches. A current example for such an attempt is mini-

metagenomics, which targets small groups of usually 5-100 
cells (Figure 1C). These cells are then sequenced together 

 
Figure 1: Current culture-independent methodologies. (A) Meta-
genomics utilizes the entire DNA of an environmental community for 
extraction, sequencing, and construction of metagenome assembled 
genomes (MAGs). Coverage information may be used to infer relative 
abundances and thus utilized for binning. However, assembly may be 
complex for highly diverse communities. (B) In single-cell genomics 
(SCG) individual cells are separated and sequenced, therefore assem-
bly complexity is greatly reduced. However, since individual cells con-
tain too little DNA for direct sequencing, whole genome amplification 
(WGA) steps need to be employed, introducing strong coverage bias. 
(C) Mini-metagenomics comprises of sorting pools of typically 5-100 
cells and subjecting these to lysis, WGA and sequencing. By pooling 
multiple cells, random WGA bias is thought to be reduced while still 
maintaining a relatively low assembly complexity. However, the re-
sulting assemblies nonetheless comprise multiple organisms while 
the remaining WGA bias prohibits abundance based binning efforts.  
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and subsequently treated as a simplified metagenome9,11. 
The DNA yield of such small cell groups is, however, still not 
sufficient to circumvent amplification, but is thought to 
efficiently reduce random bias. Furthermore, the relatively 
low complexity of such mini-metagenomes should, in 
theory, allow for better genome reconstructions than the 
more complex metagenome of the original community. 
However, this approach is still be affected by systematic 
WGA bias that may be caused by e.g. variations in GC 
content12. Most importantly though, effective binning 
criteria are limited because contig abundance information 
is not available due to the uneven read coverage, a severe 
drawback that also obstructs the currently most effective 
binning strategy: co-abundance variation across samples13. 
Therefore contigs will likely have to be binned exclusively 
based on nucleotide signatures, which, however, can be 
unreliable, especially for short contigs of highly fragmented 
genomes7. 

Therefore, we here present a novel alternative 
approach, termed ‘midi-metagenomics’, that utilizes cell 
sorting to create custom community fractions of sufficient 
cell count to circumvent the need for amplification entirely. 
We do so by utilizing the potential of fluorscence-activated 
cell sorting (FACS) for targeted enrichment and depletion of 
different cell types to create fractions which are highly 
optimized for co-abundance variation based binning 
approaches. This way, the quality of genome 
reconstructions can be maximized, even if only individual 
samples, without spatial or temporal parallels, are 
available. 

Results and Discussion 
Basic principle of midi-metagenomics 

In the here presented midi-metagenomic approach, the 
original sample population is divided into multiple frac-
tions, in which different community members are selec-
tively enriched or depleted (Figure 2A).  

Selective fractionation is achieved via fluorescence-
activated cell sorting (FACS). However, in contrast to 
standard single-cell and “mini-metagenomics”, approaches 
which require an amplification step9,11,14–16, several 
hundred thousand to million cells are sorted into the same 
fraction, enabling DNA yields in the multiple nanogram 
range sufficient for direct sequencing (Supplementary 
Table S1). DNA is then extracted and sequenced (Figure 
2B&C) from each fraction, as well as the original 
unfractionated sample, separately, resulting in multiple 
read datasets. Each of these datasets represents a different 
composition of the exact same original microbial 
community, in theory providing optimal conditions for 
subsequent co-assembly as well as co-abundance 
variation17–20 based binning approaches (Figure 2D).  

Furthermore, since each fraction simply represents a 
different view of the exact same community, this solves a 
common dilemma: Although co-assembly of multiple 
samples has been shown to increase genome recovery rates 
especially for low abundant species21, it often also produces 
more fragmented assemblies and increases the risk of strain 
or species-level chimeras due to increased strain 
heterogeneity22. Such heterogeneities are often introduced 
by seasonal or locational variability between sample spots 

or sampling times. This variability is, however, also 
supposed to be exploited by co-abundance variation-based 
binning approaches. In the midi-metagenomics approach, 
the fact that all fractions originate from the same basic 
community prevents inter-sample strain variability, 
thereby maintaining optimal conditions for co-assembly. 

Establishment and application of midi-metagenomics 

Possible strategies for selectively fractionating a complex 
community into distinct subpopulations via FACS are 
manifold and can be based on phylogenetic, physiological or 
morphological properties of the target organisms15, e.g., 
FISH staining using rRNA or mRNA probes2,23,24, 
autofluorescence detection25 or simply cell size and 
complexity26. In order to improve MAG reconstruction by 

 
Figure 2: Midi-metagenomics workflow. (A) Part of the 
sample community is fractionated into distinct groups of sev-
eral hundred thousand to millions of cells by Fluorescence-ac-
tivated sorting (FACS). Different cell types are not separated 
with absolute stringency but differentially enriched (B) DNA 
is extracted separately from each fraction, as well as the origi-
nal unsorted sample. (C) Extracted DNA is sequenced directly 
without applying whole genome amplification (WGA). (D) 
Since the resulting read datasets represent different enrich-
ments based on the same original community, they are optimal 
for co-assembly as well as co-abundance variation-based bin-
ning approaches. An unbiased representation of the source 
community is achieved by also including the original unsorted 
sample in the analyses. Created with BioRender.com 
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subsequent co-abundance variation-based binning ap-
proaches20, fractionation does not need to be particularly 
stringent as long as a tendential enrichment or depletion 
can be achieved for at least some of the involved taxa. To 
illustrate this point, community fractionation in this proof-
of-principle study was based on relatively simple gating 
strategies exploiting only those cell characteristics easily 
detectable via FACS: cell size and complexity as defined by 
forward- and side scatter gating, respectively (Supplemen-
tary Figure S4). For the same reason, soil was chosen as a 
test subject, as it represents one the most complex and chal-
lenging microbial communities for metagenomic anal-
yses4,27.  

The establishment of the involved DNA extraction pro-
tocol from sorted fractions was an iterative process. For the 

first sample (“spring20”), DNA extractions were attempted 
on cell pellets after centrifugation of sorted fractions. How-
ever, no DNA could be recovered from these pellets, there-
fore “spring20” is only included here as a non-fractionated 
sample for comparison of standard metagenomic co-assem-
bly and binning approaches. Preliminary attempts indicated 
that after FACS and subsequent centrifugation of sorted cell 
fractions, DNA was present mostly in the supernatant and 
not the pellet28 (Supplementary Figure 1). The most likely 
explanation for this is cell damage due to stress caused by 
the sorting process and subsequent release of cellular 
DNA28–31. 

Accordingly, we modified the DNA extraction and in-
cluded a DNA precipitation step directly from sorted cell 
suspensions, which resulted in successful DNA extractions 

  
Figure 3: Differences in diversity between distinct unsorted samples as well as corresponding sorted fractions, determined 
based on amplicons of the 16S rRNA V3-region. Clustering reflects Bray-Curtis distances between samples and fractions (beta-
diversity). Samples are indicated by background colouring, while fractions are indicated by pictograms, according to the legend at 
the lower left side. Stacked bar charts indicate the community composition of each sample and fraction, with different phyla being 
indicated by a distinct colour code as indicated on the left. Presence and relative abundance of distinct classes are indicated by black 
horizontal lines forming sub-sections within each stacked coloured bar. For the “Spring20” sample, only the unsorted complete com-
munity was analyzed. Only size fractions were generated for the first “Autumn20” sample, while size and complexity fractions were 
generated for the subsequent “summer21” as well as “winter22” samples. The “BC” fraction of “winter22” is not represented here, as 
the corresponding amplicon library yielded too few reads for thorough comparison. All amplicon libraries were based on the same 
extraction method described for sorted fractions (see material & methods) and the resulting read datasets were normalized to 
45 000 read pairs each. 
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from sorted fractions beginning with the second sample, 
“autumn20”. However, as 16S rRNA amplicon profiles based 
on universal bacterial primers (material & methods) 
showed a distinct lack of Actinobacteria and Firmicutes 
compared to the non-fractionated metagenomes despite us-
ing the same extraction method(Figure 3), we deduced that 
gram-positive cell walls may be more resilient to FACS 
stress and additional lysis steps may be required to capture 
cellular DNA from such organisms. Therefore, we intro-
duced a simple bead beating step prior to DNA precipitation 
in the final extraction protocol that was applied for the sub-
sequent “summer21” and “winter22” samples (see material 
and methods). This modification lead to a strong represen-
tation of Actinobacteria and even an apparent overrepre-
sentation of Firmicutes in the amplicon profiles of the re-
sulting sorted fractions (Figure 3). The latter observation 
may be predominantly attributable to the fact that standard 
metagenomes even also capture cell free DNA, while FACS 
can only capture organisms that were at least intact enough 
to maintain cellular shape: Since Firmicutes were exclu-
sively represented by members of the class Bacilli, which 
are known as proliferate spore formers, the higher stability 
of bacillus spores compared to vegetative cells readily ex-
plains their high representation in the sorted fractions. 
While this effect may be avoidable by employing live/dead 
staining during FACS sorting, it can actually be used to ad-
vantage for co-abundance variation-based binning, espe-
cially since the exact degree of overrepresentation varied 
between fractions. 

With the final adapted extraction method, the DNA yield 
obtained from fractions of up to 5 million cells ranged be-
tween 5-30 ng (Supplementary Table S1, Supplementary 
Figure S5). We note that, since sequencing library prepara-
tion is nowadays already possible with less than a nano-
gram of input DNA, sorting efforts may be significantly re-
duced to fractions of down to 100 000 cells. 

Community Fractionation 

We also analyzed how distinct the sorted fractions are 
compared to each other, as well as to the corresponding 
unsorted samples, based on 16S rRNA amplicons. Bray-
Curtis distance values calculated from these analyses show 
higher beta-diversities between sorted fractions and their 
respective non-fractionated communities than between 
non-fractionated samples taken at different years and 
seasons (Figure 3), despite employing the exact same DNA 
extraction protocoll for all amplicon libraries. This 
increased beta-diversity represents a strong shift in relative 
taxon abundances within the respective microbial 
communities, which can be exploited for distinguishing 
different organisms based on differential coverage 
information during downstream binning attempts. 
Interestingly, the simple size-based fractions of autumn20 
show a higher similarity to unsorted samples than the more 
detailed size and complexity-based fractions of 
“summer21” and “winter22”. This illustrates that the 
distinctness of each sub-population is linked to the 
degree/detail to which the community was fractionated and 
shows promise that this can be fine-tuned to individual 
requirements. 

It needs to be noted that the sorted fractions clearly 
cluster closer together to other sorted fractions than to 
their respective unsorted samples, which also indicates a 
general influence of the FACS process. However, by always 
including  an unsorted sample in the analyses, an unbiased 
view of the original community is maintained and any 
systematic influences from the sorting process can simply 
be exploited for binning purposes. 

The difference of beta-diversity distances between 
sorted fractions varied strongly, with the largest Bray-
Curtis dissimilarity values being observed between the 
“Small Complex” (SC) and respective “Big Non-Complex” 
(BNC) fractions. Therefore, in order to minimize effort, 
when fractionating based on simple size and complexity 

Figure 4: Comparison of overall assembly and average bin quality netrics for the different approaches and samples. (A) 
General contig size metrics of the (midi-)metagenome co-assemblies before binning. (B) Distribution of basic MAG quality metrics 
for all MAGs obtained from the co-assemblies after binning and clean-up. MAG quality metrics were derived via checkm249. The 
number of samples and fractions incorporated into each co-assembly are as follows: “MG3x” = 3 samples with 1 fraction each; 
“MG4x” = 4 samples with 1 fraction each; “midiMG-autumn20” = 1 sample, 3 fractions; “MidiMG-summer21” & “-winter22” = 1 sam-
ple, 6 fractions each. The exact composition of samples and fractions incorporated into each co-assembly is listed in Table 2 and 
Supplementary Figure S2.
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characteristics, beta diversity can already be maximized by 
sorting just these two fractions. 

Several taxa appear to show strong fluctuations of cell 
size and complexity between sampling timepoints, in 
particular members of the phyla Firmicutes, Proteobacteria, 
Gemmatimonadota and Planctomycetota (Figure 3; 
Supplementary Tables S2-S4). Furthermore, in the 
majority of these cases, a strongly pronounced difference 
between the “winter22” and “summer21” samples is 
noticeable. The clearest example is given by members of the 
class Bacilli, which are enriched in the “Big” and “Non-
Complex” fractions in the “summer21” sample but show the 
exact opposite trend in the “winter22” sample, with 
enrichment in the “Small” and “Complex” fractions (Figure 
3; Supplementary Tables S2-S4). 

Interestingly, this exact relationship is also displayed on 
individual OTU level e.g., for multiple members of the genus 
Bacillus (Supplementary Tables S2 and S5-S8), showing 
that this is not simply caused by succession of different 
related species, but that actual individual strains vary in 
size and cell shape between samples of different timepoints. 
This is not necessarily surprising, especially for members of 
the genus Bacillus, which are known to form endospores in 
reaction to different environmental conditions32,33 or 
Planctomycetes which are known to display complex cell 
cycles24. Furthermore, fluctuation of cell size in dependence 
of season and nutrient availability has already been 
reported for multiple taxa in various environments34–37. 
This effect clearly illustrates the potential of the midi-
metagenomic approach to capture and exploit the 
fluctuation of specific cell characteristics over time or 
across environmental conditions. 

Assembly and binning performance 

We compared co-assemblies of metagenomic and midi-met-
agenomic approaches, using always the same total sequenc-
ing depth of 15 Gbp (averaging at 70 mio read pairs per co-
assembly) equally distributed across the respective com-
bined samples and fractions (table 2). Based on N50 and 
maximum contig length metrics, the standard metagenome 
co-assemblies, consisting of different samples from 
different years and seasons, were generally more 
fragmented than the midi-metagenomic co-assemblies con-
sisting of multiple fractions originating from the same 
respective samples (Figure 4). Co-assembly of multiple 
datasets poses a common dilemma in metagenomics: 
Although co-assembly of multiple samples has been shown 
to increase genome recovery rates especially for low 
abundant species21, it often also produces more fragmented 
assemblies and increases the risk of strain or species-level 
chimeras due to increased strain heterogeneity which can 
be introduced by seasonal or locational variability between 
samples directly affecting the complexity of the assembly-
graph 22. 

Accordingly, the multi-sample co-assembly of four soil 
samples (STD4) was slightly more fragmented that with 
only three samples (STD3) with slightly lower N50 and 
maximum contig length values (Figure 4A). In all cases, 
midi-metagenomic co-assemblies yielded larger, less 
fragmented contigs than the multi-sample co-assemblies, 
regardless of whether only three or even six read datasets 
were co-assembled. This indicates that the midi-
metagenomic approach of only co-assembling fractions of 
the same sample allows the maximization of read coverage 
while avoiding the typical increase of complexity that is in-
troduced by combining different samples, e.g. though inter-

Figure 5: Relative proportions of moderate and high-quality MAGs obtained by standard and midi-metagenomic approaches. 
The primarily size based MIMAGS category of “moderate quality” was further divided into subgroups with “high” (5-10%) and “low” 
(0-5%) contamination estimates, in order to place higher emphasis on this critical metric. The total number of samples and fractions 
n combined in each assembly are indicated below the respective assembly designation while the exact composition is listed in Table 
2 and Supplementary Figure S2. 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 26, 2023. ; https://doi.org/10.1101/2023.01.26.525644doi: bioRxiv preprint 

https://doi.org/10.1101/2023.01.26.525644
http://creativecommons.org/licenses/by-nd/4.0/


Midi-metagenomics 
 

Vollmers et al. 2023 (preprint)   6 

sample strain variations. Therefore, by distributing se-
quencing efforts over multiple fractions, both coverage var-
iation and sequencing depth can be maximized at the same 
time in a cost-efficient manner.  

Expectedly, improved assembly metrics also affect the 
quality of the produced MAGs: Midi-metagenomic MAGs 
show tendentially higher completeness values, with upper 
quartiles ranging between 40-65% and at the same time 

lower contamination estimates, with upper quartiles rang-
ing between 1 and 2%, compared to their counterparts from 
standard multi-sample metagenome co-assemblies where 
upper quartiles of completeness and contamination values 
were 5% and 32-37%,respectively (Figure 4B). These 
improvements become most obvious when eliminating 
MAGs of “low quality” and contamination values above 
10%, which are of limited scientific interest 7,38, and instead 

Figure 6: Gene content clustering of MAGs fulfilling at least the “moderate” quality category of MIMAG standards as well as selected 
reference genomes. Coloured boxes indicate the assembly that produced the respective MAGs, while the respective binning tool is indicated 
by bold letters, according to the legend on the lower left. Adjusted MIMAG38 quality category, completeness, contamination as well as general 
taxonomic affiliation are indicated by outer annotation rings according to the legend. Clusters of MAGs that likely represent the same species 
according to dRep22 analyses are indicated by black and grey brackets. The respective representative MAG showing the highest quality per 
potential species is marked by green ticks and highlighted in yellow. In order to place more emphasis on purity than completeness, the “moderate” 
quality category of MIMAG standards was further subdivided into “low contamination” and “high contamination”, representing 0-5% and 5-10% 
contamination estimates, respectively. 
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focusing on the fraction of moderate and high quality 
genomes obtained from the different approaches (Figure 
5): Using the standard multi-sample approach, not a single 
MAG fulfilling MIMAGs “high quality” criteria 38 could be 
reconstructed from the soil metagenome co-assemblies 
with any of the tested binning tools13,18,38–40. On the other side, 
several ”high quality” bins could be produced by most 
binning tools when using the midi-metagenomics approach. 

It is important to note that for quality categories below 
“high quality”, MIMAG standards are unfortunately not 
adequate, as they do not differentiate between different 
degrees of contamination. Instead, the current standards 
group all MAGS, even up to 10% contamination, into the 
same “quality groups”, which are primarily based on 
completeness estimations38. Since this is counterproductive 
to efforts that aim to minimize gradual reference database 
contaminations, it is crucial to place high emphasis on 
contamination besides completeness7. Consequently, we 
sub-categorized all MAGs fulfilling MIMAG criteria of 
“moderate quality” into those with low contamination 
(<5%) and those with high contamination (5-10%). With 
these added criteria it becomes clear that the midi-
metagenomic approach produces far larger numbers of rep-
resentative MAGs, with 11-16 “low contamination" MAGS of 
moderate quality or higher, compared to only 0-3 produced 
by the standard multi-sample metagenome approaches 
(Figures 4 - 6,Supplementary Table S9).  
A total of 69 MAGs were obtained from all sampling, assem-
bly and binning approaches combined, that could be 
classified as “moderate” to “high” quality. Several of these 
form clusters of potentially redundant MAGs likely 
representing the same species, as determined by dRep22 
and confirmed via gene-content-based clustering, (Figure 
6). Interestingly, in the vast majority of these clusters of 
potentially redundant MAGs, the most representative MAG 
determined by dRep was provided by a midi-metagenomic 
rather than a standard metagenomic approach, reflecting 
the generally higher quality results of midi-metagenomics. 
Furthermore, whenever gene-content analyses indicated 
sub-clades within such clusters of redundant MAGs, these 
represented different samples, illustrating a high potential 
of midi-metagenomics to capture and resolve inter-sample 
strain heterologies. Also noteworthy is the observation that 
with up to two domains and five different classes the 
moderate to high quality MAGs of the midi-metagenomic 
approaches cover a much higher phylogenetic range than 
the standard approach, which represents only three 
bacterial classes. This is predominantly due to the fact that 
most of the MAGs produced by the multi-sample 
approaches are of “low quality” or even disqualify 
completely due to contamination values beyond the 
acceptable range defined by MIMAGs38 (Supplementary 
Figure S3). 

Conclusion 
We could here show that the midi-metagenomic approach 
of combining sequence information from multiple fractions 
of the same sample produces higher quality assemblies and 
MAGs compared to the classic metagenomic method of 
combining sequence information of multiple distinct 
samples.  

In order to achieve these advantages, sorting criteria do not 
even require particularly high stringency as long as simply 
partial enrichment or depletion can be achieved, allowing 
setups to be kept minimal and simple. In fact, just the simple 
act of FACS itself already represents a general depletion of 
large multi-cell aggregates, extracellular DNA as well as 
potential cell types that may be more susceptible to FACS 
stress28. Of course, this also means that in order to include 
an accurate representation of the actual natural community, 
unsorted shotgun metagenomes libraries always need to be 
created and included as well. However, since multiple 
fractions can be sorted from a single sample, depending on 
the sample and the exact research goal, i.e. the importance 
of capturing seasonal or spatial variation, the overall effort 
is not necessarily higher than standard multi-sample ap-
proaches. Furthermore, midi-metagenomics may serve to 
boost binning efforts in cases where the variability between 
samples may turn out not be sufficient for co-abundance 
based binning, especially for sampling locations that are 
hard or expensive to access for additional sampling trips, i.e. 
deep-sea vents. 

In this proof-of-principle study we achieved substantial 
improvements in the quality of MAGs obtained from highly 
complex soil communities, just by generating simple size 
and complexity-based fractions. The maximum potential of 
this approach however will likely be realized when other 
cell properties can also be exploited to produce more 
distinct community fractions. A most simple improvement 
could e.g., be the addition of live-dead staining, which would 
distinguish spores and damaged or dead cells from viable 
ones. Furthermore, previously established 16S rRNA FISH 
labelling could help to more stringently target specific taxa 
for enrichment or depletion23. On functional level, FISH-
labelling could also be employed to simply separate cells by 
rate of metabolic activity based on ribosome-content using 
broad-range bacterial/archaeal rRNA probes. Depending 
on the research question it should even be possible to 
enrich cells expressing certain genes of interest, by using 
specific mRNA targeting probes instead of rRNA probes. 
Last but not least, autofluorescence spectra caused by 
diverse membrane proteins in different organisms25 may be 
exploited to enrich or deplete cells with specific functional 
properties. 
In this regard, midi-metagenomics has the added potential 
to specially target and analyze specific organisms, functions 
or metabolic traits of interest within complex communities, 
regardless of actual abundance in the sample. The exact 
sorting criteria do not even need to be known before or 
during sampling as a glycerol stock of frozen sample can be 
revisited for sorting even after preliminary whole-
community metagenome analyses. 

The most significant advantage of the midi-
metagenomics approach, however, is that it allows the 
maximization of sequence data for assembly as well as co-
abundance variation-based binning purposes, while 
simultaneously avoiding the complications typically 
introduced by inter-sample strain heterologies. This means 
that read depth may be distributed across multiple fractions 
without negatively affecting assembly quality, therefore po-
tentially reducing the required sequencing cost. With the 
omission of highly expensive whole genome amplification 
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(WGA) techniques2, this method also provides a cost-effi-
cient alternative to single cell genomics and mini-meta-
genomics approaches. 

The result are more diverse MAGs that better represent 
the respective organisms of interest with substantially less 
contamination compared to traditional metagenome 
binning approaches. This is of particular significance as the 
minimization of MAG contamination desperately needs to 
be prioritized, considering recent complaints of increasing 
reference database contaminations caused by insufficiently 
screened MAGs and SAGs7,39,40. 
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Campus North, Eggenstein-Leopoldshafen (49°5’48.8’’N, 8°25’55.6’’E), 
Germany, during four different periods of time: October 7th, 2020, May 
25th, 2020, August 10th, 2021, and February 15th, 2022. From each sam-
ple, several grams were directly frozen at -80°C immediately after collec-
tion for subsequent standard metagenome DNA extraction and sequencing. 
 Five grams of each sample was then prepared for Fluorescence-Activated 
Cell Sorting (FACS)  by adding 30 mL of filtered, autoclaved and UV-steri-
lized Phosphate Buffer Saline (PBS) solution, brief vortexing to disrupt ag-
gregates and dislocate cells attached to debris, and subsequent pelleting 
and removal of debris by brief centrifugation at 2,000 × g. Sterile glycerol 
was added to a final concentration of 30% as an anti-freezing agent and the 
samples were stored at -80°C until further processing. An overview of all 
samples is given in Table 1. 

 Fluorescence-Activated Cell Sorting (FACS) 
Prior FACS sorting, the samples aliquoted for midi-metagenomics were 
centrifuged for 1 min at 15,871 × g and 20 °C.  The supernatant was dis-
carded and after resuspension of the pellet in 1 mL PBS, 5 µL SYBR® Green 
I was added to all samples. The samples were then vortexed, incubated for 
20 min at 4 °C and subsequently pelleted again by centrifugation for 1 min 
at 15,871 × g. Each pellet was then washed twice with 1 mL PBS.  

 Before loading the sample into the FACS machine (BD FACSMelody™, 
Becton, Dickinson and Company, New Jersey, USA), an unlabeled negative 
control was filtered into a 5 mL FACS tube using a sterile SYSMEX Cell-
Trics® filter with 20 µm mesh size and then diluted with PBS. Such negative 
control was used to compare the difference of fluorescence signals for a 
correct gating that included only labelled cells. Subsequently, the same 
procedure was applied to the SYBR-labelled samples. A threshold was set 
up in order to disregard smaller particles such as debris during the sorting 
process and an excitation wavelength of 488 nm was used. 

 For samples “summer 21” and “winter22”, cells were sorted into five 
different groups according to their size and complexity, which are roughly 
proportional to the Forward Scatter Signal (FSC) and Side Scatter Signal 
(SSC), measured respectively by the cytometry lasers of the FACS machine 
(Supplementary Table S1 & Supplementary Figure S1). For sample “au-
tumn20” only two groups were sorted, according to size measured by dif-
ferences in FSC (Supplementary Table S1). After sorting, the cells were 
stored at -80 °C until further processing. An overview of the Fractions pro-
duced per sample is included in Table 1. 
 
DNA Extraction  

For the unsorted soil samples for Metagenomics, DNA was extracted with 
DNeasy PowerSoil Kit (Qiagen, Hilden, Germany) following the 
manufacturer’s instructions. 
 For midi-metagenomics community fractions, DNA was extracted directly 
from FACS sorted cell suspensions consisting of 4 × 106 cells. First, the cells 
were freeze-thawed three times using liquid nitrogen and a 60 °C water 
bath. Then, bead beating was performed three times for 30 s at 6 m/s using 
one tube of lysing matrix for each fraction (Cat.#6914-800, MP 
Biomedicals, Ohio, USA) and an MP Bio Fast Prep®-24 homogenizer (MP 
Biomedicals, Ohio, USA). Beads and cell debris were pelleted by 
centrifugation at 14,000 ×g for 5 min and the supernatant was subjected to 
standard alcohol precipitation using 1 volume of 80% isopropanol, 0.1 
volume 3 M Sodium Acetate and 340 µg Linear Polyacrylamide. After a 
subsequent wash step with ice cold 70 % ethanol the resulting DNA pellet 
was  resuspended with 100 µL PCR-grade water followed by further 
purification via solid-phase reversible immobilization using 1.5 volume of 
AMPure XP Beads (Beckman Coultier™) and final elution in 20 µL 1× TE. 
All extracted DNA was immediately stored at -20 °C until use. 

Polymerase Chain Reaction (PCR) 
Amplicon sequencing was performed using a nested PCR approach. Almost 
full-length PCR products were obtained in a preliminary PCR using 1.25U 
OneTaq® Quick-Load® DNA Polymerase (New England BioLabs, Ipswich, 
MA, USA), 200 µM mixed dNTPs, 500 µM biology-grade Bovine Serum 
Albumin (BSA) (Thermo Fisher Scientific, Waltham, Massachusetts, USA) 
and 0.2 µM of each universal bacterial forward and reverse primer 27F (5’-
AGRGTTYGATYMTGGCTCAG-3’) and 1492R(5’-
AGRGTTYGATYMTGGCTCAG-3’). 
PCR products were purified using DNA Clean & Concentrator™-5 columns 
(Zymo Research Europe GmbH, Irvine, California, USA) according to the 
manufacturer’s instructions. The purified product was then used as 
template for a subsequent amplicon PCRs using 0.5 U Q5® High-Fidelity 
DNA Polymerase (New England Biolabs, Ipswich, MA, USA) 0.5 U, 200 µM 
dNTP Solution Mix (New England Biolabs), Q5® High GC Enhancer, 0.1 
µg/µl BSA (Thermo Fisher Scientific, Waltham, Massachusetts, USA) and 
0.2 µM of each universal bacterial primer 341F (5’-

AGRGTTYGATYMTGGCTCAG-3’) and 518R (5’-
AGRGTTYGATYMTGGCTCAG-3’), targeting the V3 hypervariable region. 

Sequencing 
 Libraries were prepared using the NEBNext® Ultra™ II FS DNA Library 
Prep Kit for Illumina® (New England Biolabs, Ipswich, MA, USA), according 
to the manufacturer’s instructions. Libraries were sequenced on an 
Illumina NextSeq 550® (New England Biolabs, Ipswich, MA, USA) device 
using 300 cycles and a paired-end approach. 

 Read processing and assembly 
Reads were quality trimmed and adapter-clipped using trimmomatic 
v.0.36, bbduk v.35.69 and cutadapt v.1.14 successively41–43: . Overlapping 
read pairs were identified and merged using FLASH v.1.2.1144. For 
amplicon datasets, reads were subsamples to 45 000 reads per dataset and 
operational taxonomic units (OTUs) were determined by read clustering 
using the unoise approach of VSEARCH v.2.21.145 and subsequently 
taxonomically classified using SINA v1.7.246. Shotgun datasets were 
combined into co-assembly groups representing three, four or six datasets 
of either multiple samples, or multiple fractions of the same sample (Table 
2). Each dataset was randomly subsampled down to 2.5 Gbp or 5 Gbp, 
depending on the size of the respective co-assembly group, ranging from 
three to six datasets, in order to achieve an equal amount of 15 Gbp 
sequencing data in total for each co-assembly. Co-assemblies were then 
performed using MegaHit v1.2.9 47. 

 
 MAG reconstruction and analyses 
For each co-assembly, four different binning tools were used in parallel: 
Metabat2 v.2.15, Concoct, GroopM2 v.2.0.0 and Rosella v.0.4.113,18,48. 
Resulting bins were pre-assessed and filtered using MDMcleaner. Quality 
categories were then determined based on re-assessments using 
checkm249. Taxonomic classifications were based on GTDB-TK v2.1.150  

dRep v.3.4.0 22 was employed to identify groups of redundant MAGs 
created by different assemblies or binning tools and to select the respective 
most representative MAG. Similarities between MAGs were additionally 
determined and visualized based on gene-content as previously described 
elsewhere51. 
 Data availability 

All sequencing data, co-assemblies as well as all MAGs of “high quality” 
or “moderate quality” with contamination estimates below 5% are 
available at NCBI under bioproject PRJNA900514. MAGs of low quality or 
with high contamination rates were not submitted to any dedicated 
sequence database in order to prevent gradual database corruption, but 
may be accessed via zenodo under the DOI: 10.5281/zenodo.7547690 

Table 1: Overview of samples and fractions.  Fraction abbrevia-
tions: BC = “Big Complex”, MC = “Medium Complex”, SC = “Small 
Complex”, BNC = “Big Non-Complex”, SNC = “Small Non-Complex” 

Sample 
Sampling 
location 

Sampling 
date 

Fractions produced 

spring20 

KIT, Campus North 
49°5’48.8’’N, 
8°25’55.6’’E 

15.05.2020 only unsorted 

autumn20 07.10.2020 unsorted, big & small 

summer21 10.08.2021 
unsorted, BC, MC, SC, 

BNC & SNC 

winter22 15.02.2022 
unsorted, BC, MC, SC, 

BNC & SNC 

Table 2: Overview of assemblies. Fraction abbreviations: BC = “Big 
Complex”, MC = “Medium Complex”, SC = “Small Complex”, BNC = “Big 
Non-Complex”, SNC = “Small Non-Complex” 

Assembly 
Total  
input 

Samples Fractions 

MG3x 15 Gbp 
3 (autumn20, summer21, 

winter22) 
3 (only unsorted) 

MG4x 15 Gbp 
4 (spring20, autumn20, 
summer21, winter22) 

4 (only unsorted) 

MidiMG- 
autumn20 

15 Gbp 1 (autumn20) 
3 (unsorted, Big & 

Small) 

MidiMG- 
summer21 

15 Gbp 1 (summer21) 
6 (unsorted, BC, MC, 

SC, BNC & SNC) 

MidiMG- 
winter22 

15 Gbp 1 (winter22) 
6 (unsorted, BC, MC, 

SC, BNC & SNC) 
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