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Summary

Many practical algorithms for numerical rank computations implement an iterative

procedure that involves repeated multiplications of a vector, or a collection of vec-

tors, with both a sparse matrix A and its transpose. Unfortunately, the realization of these

sparse products on current high performance libraries often deliver much lower arith-

metic throughput when the matrix involved in the product is transposed. In this work,

we propose a hybrid sparse matrix layout, named CSRC, that combines the flexibility of

some well-known sparse formats to offer a number of appealing properties: (1) CSRC

can be obtained at low cost from the popular CSR (compressed sparse row) format;

(2) CSRC has similar storage requirements as CSR; and especially, (3) the implemen-

tation of the sparse product kernels delivers high performance for both the direct

product and its transposed variant on modern graphics accelerators thanks to a signifi-

cant reduction of atomic operations compared to a conventional implementation based

on CSR. This solution thus renders considerably higher performance when integrated

into an iterative algorithm for the truncated singular value decomposition (SVD), such

as the randomized SVD or, as demonstrated in the experimental results, the block

Golub–Kahan–Lanczos algorithm.

K E Y W O R D S

graphics processing units, singular value decomposition, sparse matrix-multivector product,

sparse matrix-vector product

1 INTRODUCTION

Many problems in cryptography, image processing, quantum physics, and earth’s atmosphere analysis require information about the most significant

singular values of a system matrix A; and some efficient algorithms for this task are based on the truncated singular value decomposition (SVD).1 A

central building block in these algorithms are the sparse matrix-vector product (SPMV ) and the related sparse matrix-multivector product (SPMM )

involving both the matrix A and its transpose. This occurs, for example, in the randomized SVD2 as well as in the Lanczos procedure based on the

block Golub–Kahan–Lanczos method.3 The SPMV and SPMM kernels play a central role also in the solution of sparse linear systems4 and sparse

eigenvalue problems.5

Given the importance of SPMV , a significant effort has been devoted to accelerate the execution of this kernel on a large variety of proces-

sor architectures. The significant difficulties faced in this task arise from (1) the low arithmetic intensity of the operation, due to the meager ratio
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F I G U R E 1 Performance of the combined direct and transposed sparse matrix-vector product cuSPARSE kernels (in GFLOPS, or billions of
floating point operations per second) using the compressed sparse row format on a NVIDIA A100 GPU for a subset of matrix cases from the
SuiteSparse Matrix Collection.

between the number of floating-point operations (flops) and memory accesses, which exacerbates the memory bottleneck of current processor

architectures; and (2) the irregular data access pattern, which reduces the cache hit ratio and makes it very challenging to attain a balanced workload

distribution in the case of parallel architectures. The combined outcome of these two caveats is that the SPMV kernel is far from delivering the full

peak flop performance of current processors, in many cases achieving as little as 10% of that rate.6-11 For a SPMM kernel involving k (column) vec-

tors, the arithmetic intensity of the operation can be increased by a factor of k. However, given that in the iterative algorithms for the truncated SVD

this problem parameter is selected to be small, the multivector variant mostly remains a memory-bound kernel.

The coordinate sparse format (COO) and the compressed sparse row format (CSR) are two flexible, application-independent sparse matrix

layouts12 upon which many realizations of SPMV and SPMM are built. In particular, this is the case for the implementation of these two kernels in

NVIDIA’s cuSPARSE library for graphics processing units (GPUs) and Intel’s Math Kernel Library (MKL) for general-purpose processors (or CPUs).

Unfortunately, as shown in Figure 1 for an NVIDIA A100 GPU, the performance of the SPMV kernel in cuSPARSE largely varies depending on the

matrix dimensions, sparsity pattern/degree and, particularly interesting for this work, whether the operation involves A or its transpose. Similar comments

apply to SPMM and/or the COO format in NVIDIA cuSPARSE, and the corresponding SPMV /SPMM kernels and formats in Intel MKL. At this point,

it is worth noticing that many of the low performance datapoints involve AT , and this could be circumvented by explicitly storing the transpose

matrix. However, for the truncated SVD methods considered in this work, that would imply maintaining two copies of the matrix (transpose and

non-transpose), duplicating the memory requirements.

The present work revisits the realization of SPMV and SPMM on graphics processing units targeting the special case of sparse matrices with

more columns than rows (or vice versa), and making the following specific contributions:

• We propose a new sparse matrix layout, named CSRC (for compressed sparse row/column), that combines some of the characteristics of COO as

well as from CSR and its column-wise variant CSC (compressed sparse column).12 The new format can be obtained from a matrix stored in CSR

with a low transformation overhead and is rather competitive in terms of memory requirements with CSR.

• We build implementations of the SPMV /SPMM kernels on top of the CSRC format that provide efficient support for the sparse matrix products

involving both A and AT on graphics accelerators with a significant reduction of atomic updates compared to a conventional implementation based

on CSR.

• We provide strong experimental evidence of the performance advantages of the CSRC sparse layout and kernel realizations on an NVIDIA A100

GPU. In addition, we evaluate the impact of the new solution when integrated into a block Lanczos algorithm for the truncated SVD.
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For reference, all our comparisons in the paper are made against the CSR-based implementations of the sparse matrix products in NVIDIA’s

cuSPARSE library as this is the golden standard or baseline, in terms of performance, on NVIDIA’s GPUs.

The rest of the paper is structured as follows: In Section 2 we describe the new sparse layout and kernel realizations. In Section 3 we discuss

the connection between the truncated SVD and the SPMV kernel via the block Lanczos method. In Section 4, we evaluate their performance on an

NVIDIA A100 GPU. Finally, we close the paper with a summary and a number of remarks in Section 5.

2 CSRC SPARSE MATRIX FORMAT

Consider the sparse matrix A ∈ R
m×n, with nz nonzero entries, and the goal of computing the SPMV /SPMM operations

Y = AX, V = AT U,

where X,V ∈ R
n×k , Y,U ∈ R

m×k , m, n ≫ k and, without loss of generality, we assume that m ≥ n. At this point, we remind that, in practice, our work

targets sparse matrices with many more rows than columns (i.e., m ≫ n). Given a block size b, our sparse matrix layout CSRC is a hybrid variant

between the CSR and COO formats which stores the sparse matrix using four arrays: p of length ⌈m∕b⌉ + 1, and r, j, v all three of length nz, where:

• The entries of p (indices) point to the first element of each row block;

• r and j, respectively, store the row and column indices of the elements; and

• v stores the data values.

The CSRC format combines three common sparse matrix formats: CSR, COO, and CSC. First, the array p is akin to the row index array in the

CSR format as, in both cases, the entries of the vectors point to the first element in a row. Second, the array r is equivalent to the row index array in

the COO format but differs in that the indices in r are relative to the start of the corresponding row block. As a consequence, the elements of r are

in the range [0, b), and therefore they can be stored using fewer bits than the original row indices. Typically b = 256 so that r can be encoded as an

array of 8-bit numbers instead of 32-bit or 64-bit integers. Finally, the arrays j and a have the same contents as in the CSR and COO formats, but in

CSRC they are sorted in increasing column index inside each row block, similarly to the CSC format. In contrast to ELLPACK6 and its derivatives, the

CSRC format does not apply any padding.

The CSRC matrix representation can be cheaply built from the CSR format:

1. p is assembled by sampling the row index array in CSR every b row indices.

2. r is built by traversing the row index array in CSR, computing the distance from the starting row of each row block. After this step, the row index

array in CSR is no longer needed and its memory can be released (if necessary).

3. j and v have the same contents as in the CSR format.

4. Finally, r, j, and v are sorted by the value of the column index in CSR for each row block. This procedure is the most expensive step, but it can be

performed in parallel for each row block as the order of elements inside a block is independent of the rest.

Figure 2 illustrates how the vectors in the CSR format are transformed to the CSRC format for a simple sparse matrix.

2.1 Direct product

Figure 3 shows the GPU pseudo-code for the SPMM kernel Y = AX based on the CSRC sparse matrix layout. In this format, the sparse matrix A is

stored using the four arrays p, r, j, and v. The dense matrices X,Y are assumed to be stored in column-major order as the target iterative methods for

the truncated SVD require each vector to be individually addressed (Furthermore, as the number of columns in X and Y is small, there would be no

advantage from maintaining them in row-major format.).

The first loop (line 1) is parallelized via a grid of blocks of threads, with one of these blocks in charge of executing a single row block. Due to the

irregular distribution of nonzero entries among the row blocks, depending on the sparsity pattern, each iteration of this loop will exhibit different

costs and, therefore, execution times. However, the matrix is split in its large dimension m, yielding a considerable number of rows blocks (specifically,

⌈m∕b⌉) so that the scheduler can dynamically balance the workload.

Each block of threads works with only one row block of the sparse matrix. Therefore, it only accesses b elements of each output (column) vector

in Y. This allows storing the partial results in shared memory (matrix S), greatly reducing the cost of the procedure. The loops in lines 2–6 initialize

this workspace in shared memory.
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F I G U R E 2 Simple 4 × 4 sparse matrix (left) and how the compressed sparse row format is transformed to compressed sparse row/column
format with b = 2 (right).

F I G U R E 3 Pseudo-code for the direct product Y = AX in compressed sparse row/column.

The main computation corresponds to the loops in lines 7–11. Each iteration of the loop in line 7 is associated with one element in the sparse

matrix row block and is distributed across all threads in the block. To attain high performance, it is important to have sufficient work to keep all

threads in a block busy. In the CSRC format, this is ensured since there are at least b elements (one per row) in the worst scenario. The loop in line

8 computes one row of Y from one row of X. This loop is performed sequentially by each thread as k is typically small. Note that the values of the

arrays r, j, and v are the same through the loop and their access is coalesced. As any thread could access any position inside S, to avoid race conditions

the accumulation is performed using atomic operations. This type of low-level operations on shared memory are very efficient in NVIDIA GPUs

and much faster than an alternative implementation with padding. The number of conflicts is greatly reduced by the specific ordering of the sparse

matrix elements by columns. This order guarantees that consecutive threads will work on as many elements of one column as possible, that is, with

consecutive addresses in S.

Finally, the loop in lines 12–17 updates the result vector Y with the values from S. As each group of b elements inside the same column of Y is

updated by just one block of threads, atomic operations are not required and memory accesses are fully coalesced.
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F I G U R E 4 Pseudo-code for the transposed product V = AT U in compressed sparse row/column.

2.2 Transposed product

Figure 4 displays the GPU pseudo-code for the transposed SPMM V = AT U with the sparse matrix stored in the CSRC format. The code is composed

of two CUDA kernels: one for zeroing the result V (lines 1–5); and a second one for computing the actual product (lines 6–13). The first kernel can

be trivially implemented with coalesced memory accesses. The second kernel is structured similarly to the direct product in Figure 3, with each

block of threads computing the partial product of a row block. Identically to the direct product, each row of V is computed sequentially from one

row of U (line 9).

In the main kernel, any thread of any block can access any element of V. Therefore, all memory updates must be performed atomically on global

memory. Even with the efficient hardware support for atomic operations in NVIDIA GPUs, this type of memory access is slow. Thanks to the ordering

by columns inside each row block, consecutive threads will most likely compute values inside a particular column only. Therefore, instead of perform-

ing an atomic update in each thread corresponding to the same position in V, we have developed a segmented scan operation that combines values

among threads that are working with on the same column. This segmented was used previously in13 and its CUDA code is reproduced in Listing 1.

1 __device__ inline void reduction(double s, double *y, int jh)
2 {
3 for (int th = 1; th < 32; th *= 2) {
4 int jd = __shfl_down_sync(0xffffffff, j[h], th);
5 double t = __shfl_down_sync(0xffffffff, s, th);
6 if (jh == jd && threadIdx.x + th < 32) s += t;
7 }
8 int prev = __shfl_up_sync(0xffffffff, jh, 1);
9 if (threadIdx.x == 0 || jh != prev) atomicAdd(y + jh, s);

10 }

Listing 1: CUDA code that performs the accumulation on y.

Figure 5 shows a reduced example of the segmented scan using eight threads. The first column represents the contents of the array j (column

index) for each thread and the last column corresponds to the result vector V[∶, i]. The columns in between show the value of the partial sum s at

each step of the loop. The arrows represent the messages exchanged between threads, with a dotted line denoting those cases when the received

value is not added because it crosses a column boundary. The double arrows are the only atomic additions to V[∶, i] in the main memory.

This reduction scheme employs communication operations among threads in order to reduce the number of atomic operations in global memory

required for adding the values of V. As all communications are among threads inside a warp, they are very efficient thanks to the CUDA shuffle

primitives. The ordering by columns ensures that consecutive threads will work with all elements in a sparse matrix column. The best scenario is

when all elements of a column fit inside a warp as, in such case, a single atomic operation to global memory is issued for that column. In contrast, if a

column spans more than one warp (32 threads), then an average of ⌈l∕32⌉ atomic operations per column will be issued. Even in this case, the number

of atomic operations is significantly reduced with respect to a trivial implementation. Reducing further the number of atomic operations requires a
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F I G U R E 5 Diagram of a segmented scan of 8 elements using eight threads.

complex codification or the addition of zero matrix elements as padding. Both options incur significant overhead, blurring most of the gains obtained

from the decrease in the number of global memory transactions.

3 TRUNCATED SVD VIA THE BLOCK LANCZOS METHOD

The SVD of the matrix A ∈ R
m×n is given by

A = UΣVT
, (1)

whereΣ = diag(𝜎1, 𝜎2, … , 𝜎n) ∈ R
m×n is a diagonal matrix with the singular values of A, while U ∈ R

m×m and V ∈ R
n×n are orthogonal matrices whose

columns respectively contain the left and right singular vectors of the matrix.1 In some applications, we are interested in obtaining a truncated (or

compact) SVD, of a certain order r, so that

UTΣTVT
T ≈ A, (2)

where ΣT = diag(𝜎1, 𝜎2, … , 𝜎r) ∈ R
r×r , and UT,VT comprise the first r columns of U,V, respectively. Compared with (1), the computational cost of

computing this truncated SVD can be considerably lower, especially when the desired rank r is much smaller than the number of matrix columns n.

Figure 6 presents the LancSVD procedure for computing r iterations of the block Golub–Kahan–Lanczos bidiagonalization method,3 with the

block size parameterized by b. The truncated SVD can be computed from this bidiagonalization as UTΣTVT
T
= QUΣVT PT where B = UΣVT . In practice,

a significant part of the computational cost of this algorithm is due to the matrix-vector products (or matrix-matrix products, in case the parameter

b > 1) involving A and its transpose; see lines 3 and 5.

F I G U R E 6 Truncated singular value decomposition via the block Lanczos method with one-side full orthogonalization and basic restart.
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4 EXPERIMENTAL EVALUATION

4.1 Setup

All the tests in this section were carried out in an NVIDIA A100 GPU with 40 GB of DDR5 RAM. The graphics accelerator is connected to a server

equipped with an AMD EPYC 7282 processor. However, the role of the CPU is negligible as almost all the calculations are performed on the GPU.

We used a recent NVIDIA SDK with the associated cuSPARSE library (version 11.7.5.86).

The sparse matrices in the evaluation were obtained from the SuiteSparse Matrix Collection,14 selecting tall-and-skinny matrices (m ≥ 2n),

or vice-versa, with at least 200,000 rows or columns; see Table 1. To help the interpretation of the results, the matrices that originally have more

columns than rows are transposed.

4.2 Memory usage

Figure 7 reports the memory overhead of the CRSC format, with a block size b = 256, using the CSR format as the baseline. Here, the memory

consumption is measured as the total number of bytes required for all arrays utilized by each format. The compression level achieved by CRSC

format is similar to CSR within ±10% except in one case, where CSRC consumes 15% less space than CSR. The memory utilization rate of CSRC is

rather good considering that it requires an additional byte for the row index of each matrix element. This extra storage is compensated by the savings

attained in the row block indices, which is reduced by a factor 256× due to vector p specifying the initial (column) index of each row block instead of

the initial (column) index of each row.

4.3 Performance of sparse products

Figure 8 compares the performance of the SPMV kernel in cuSPARSE based on CSR and the new implementation that relies on CSRC. The plot

includes two bars per matrix, the left one for CSR and the right one for CSRC. Each bar displays the combined performance of the direct and

TA B L E 1 Matrices used in the experiments.

Matrix Rows Columns nz Matrix Rows Columns nz

12month1 872,622 12471 22,624,727 ch7-9-b4 317,520 105,840 1,587,600

ch8-8-b4 376,320 117,600 1,881,600 connectus 394,792 512 1,127,525

dbic1 226,317 43200 1,081,843 degme 659,415 185,501 8,127,528

Delor295K 1,823,928 295,734 2,401,323 Delor338K 887,058 343,236 4,211,599

ESOC 327,062 37830 6,019,939 EternityII_E 262,144 11077 1,503,732

EternityII_Etilde 204,304 10054 1,170,516 fome21 216,350 67748 465,294

GL7d15 460,261 171,375 6,080,381 GL7d16 955,128 460,261 14,488,881

GL7d22 822,922 349,443 8,251,000 GL7d23 349,443 105,054 2,695,430

Hardesty2 929,901 303,645 4,020,731 IMDB 896,308 428,440 3,782,463

LargeRegFile 2,111,154 801,374 4,944,201 lp_osa_60 243,246 10,280 1,408,073

mesh_deform 234,023 9393 853,829 NotreDame_actors 392,400 127,823 1,470,404

pds-100 514,577 156,243 1,096,002 pds-40 217,531 66,844 466,800

pds-50 275,814 83060 590,833 pds-60 336,421 99,431 719,557

pds-70 390,005 114,944 833,465 pds-80 434,580 129,181 927,826

pds-90 475,448 142,823 1,014,136 rail2586 923,269 2586 8,011,362

rail4284 1,096,894 4284 11,284,032 rel8 345,688 12,347 821,839

relat8 345,688 12,347 1,334,038 Rucci1 1,977,885 109,900 7,791,168

shar_te2-b2 200,200 17,160 600,600 sls 1,748,122 62,729 6,804,304

spal_004 321,696 10,203 46,168,124 specular 477,976 1600 7,647,040

stat96v2 957,432 29,089 2,852,184 stat96v3 1,113,780 33841 3,317,736

stormG2_1000 1,377,306 528,185 3,459,881 tp-6 1,014,301 142,752 11,537,419
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F I G U R E 7 Memory overhead of the compressed sparse row/column format compared to compressed sparse row.
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F I G U R E 8 Performance of the compressed sparse row/column implementation of sparse matrix-vector product and the corresponding
routine in NVIDIA cuSPARSE on the A100 GPU.
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F I G U R E 9 Acceleration of the compressed sparse row/column implementation of sparse matrix-multivector product over the corresponding
routine in NVIDIA cuSPARSE on the A100 GPU for the product Y = AX and different number of columns in X (values of k).

transposed products, in two different tones: dark for the direct product and light for the transposed variant. Performance is measured in terms of

(billions of double precision) floating-point operations (flops) per second, where the number of operations is estimated as two times the number of

nonzero elements of the sparse matrix.

In general, the performance rates of CSR (dark blue) and CSRC (dark red) are similar for the direct product, although in a few cases, CSR is faster.

In contrast, CSRC clearly outperforms CSR for the transposed product, and the advantage largely compensates the superior performance attained

by CSR in the direct product.

The algorithms for the truncated SVD compute the same number of direct and transposed products. From the results in the previous experiment,

the CSRC format can be thus expected to deliver superior performance in all but four cases. Among these special matrices, the differences for

12month1 and Delor295K are small, but matrices Delor338K and stormG1_100 show a significant advantage for the CSR format. However,

the three Delor matrices in the experimental subset seem “problematic.” (Actually a fifth matrix in this class, Delor64K, was not included in the

comparison because the cuSPARSE routine fails with a run-time exception while the CSRC implementation works fine.) The stormG1_100 matrix

is almost empty except for just two diagonals. Furthermore, 62% and 34% of its nonzero elements are respectively 1.0 and −1.0. In this case, a

specialized matrix product routine can easily outperform any implementation based on a more general format such as CSR or CSRC.

Figure 9 reports the performance of the SPMM kernel Y = AX in CSRC format compared to the corresponding routine in cuSPARSE, for different

values of k (number of columns in the input matrix X). Here the comparison shows the ratio between the execution time of the cuSPARSE routine

and that of our CSRC routine, exposing the acceleration of CSRC over CSR. In general, there is a clear pattern, with CSR being the better option

(acceleration factors smaller than one) for large k but CSRC offering a preferred alternative for small values of k.

Figure 10 shows the performance of the analogous experiment with the transposed product V = AT U. In this case, CSRC is clearly superior, with

a remarkable advantage over CSR. In order to visualize more clearly those cases with differences close to one, the plot in Figure 11 zooms into the

range [0,5], exposing that CSRC is faster than CSR in almost all cases. In those cases where CSR is superior to CSRC, it leads by a very small margin.

4.4 Impact on the truncated SVD

To close the experimental analysis, Figure 12 presents the impact experienced when integrating the routines for the sparse products into a

block-Lanczos iterative method, applied to compute 16 largest singular values of each matrix. This last plot shows the execution time of the whole

iterative method with a fixed number of iterations and different values of the block size k (equivalent to the number of columns in X,U). As in
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F I G U R E 10 Acceleration of the compressed sparse row/column implementation of sparse matrix-multivector product over the

corresponding routine in NVIDIA cuSPARSE on the A100 GPU for the product V = AT U and different number of columns in U (values of k).
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F I G U R E 11 Performance of the compressed sparse row/column transposed sparse matrix product compared to compressed sparse row with

k vectors on the A100 GPU (zoom up to 5x).
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F I G U R E 12 Performance of the singular value decomposition Lanczos iteration with k block size using the compressed sparse row/column
format compared to compressed sparse row on the A100 graphics processing unit.

the previous comparison, the baseline time refers to the cuSPARSE routine based on CSR, and we report that cost divided by execution time of

the same algorithm except for the use of CSRC in the SPMV /SPMM kernels. The Lanczos method computes a direct product plus a transposed

one per iteration, interleaved with re-orthogonalizations (via classical Gram-Schmidt) to stabilize the Lanczos method. In our implementation,

the re-orthogonalization steps are computed in the GPU using the cuBLAS library. In practice, these dense operations consume a significant part

of the time of the whole procedure. Even though the sparse products are not the most expensive part of the iterative method, the CSRC format

improves significantly the global execution time over CSR. Again CSR is only faster for all block sizes in the pathological stormG1_1000 matrix

discussed earlier.

5 CONCLUDING REMARKS

In this paper, we have presented the sparse matrix format CSRC together with an efficient implementation of the SPMV /SPMM kernels for GPUs

built on top of it. The CSRC GPU implementation delivers significantly higher performance than the cuSPARSE kernels for the sparse products based

on CSR format for tall-and-skinny matrices when the sparse matrix is transposed. In addition, the CSRC kernel is competitive with the cuSPARSE

kernel for the direct sparse matrix vector product.

Overall, any iterative method that requires a balanced number of both types of products should experience significantly higher per-

formance without requiring two copies of the matrix (transposed and nontransposed). We illustrate this scenario for a blocked variant

of the Lanczos SVD only, but this approach could also benefit transpose-free linear solvers such as the family of methods derived from

BiCG or QMR.
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