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Abstract: An electronic health record (EHR) is a vital high-dimensional part of medical concepts.
Discovering implicit correlations in the information of this data set and the research and informa-
tive aspects can improve the treatment and management process. The challenge of concern is the
data sources’ limitations in finding a stable model to relate medical concepts and use these existing
connections. This paper presents Patient Forest, a novel end-to-end approach for learning patient
representations from tree-structured data for readmission and mortality prediction tasks. By leverag-
ing statistical features, the proposed model is able to provide an accurate and reliable classifier for
predicting readmission and mortality. Experiments on MIMIC-III and eICU datasets demonstrate
Patient Forest outperforms existing machine learning models, especially when the training data are
limited. Additionally, a qualitative evaluation of Patient Forest is conducted by visualising the learnt
representations in 2D space using the t-SNE, which further confirms the effectiveness of the proposed
model in learning EHR representations.

Keywords: electronic health record; deep learning; intensive care unit; deep random forest; represen-
tation learning

1. Introduction

Medical and therapeutic techniques have substantially benefited from the collec-
tion of health data and the use of such data in the field of data science [1–3]. EHRs are
one of these enormous sources of data, helpful for a variety of predictive tasks in med-
ical applications [4]. EHRs hold a patient’s demographics, medical history, vital signs,
laboratory tests, recommended medicine, diagnosis, and clinical outcomes during an
interaction [5,6]. EHR databases may contain several patient visits, establishing a longitudi-
nal patient record that can be used to aim the treatment process, such as disease prediction,
mortality prediction, and enhancing the efficacy of the therapeutic process.

Initially, EHR systems were intended to manage the basic administrative functions
of hospitals, permitting the use of regulated terminology and labelling schemes. Nu-
merous labelling schemes exist, including ICD (International Statistical Classification of
Diseases) codes for diagnostic [7–10], CPT (Current Procedural Terminology) codes for
procedures [11–13], and LOINC (Logical Observation Identifiers Names and Codes) for
laboratories [14,15], ATC (Anatomical Therapeutic Chemical) for drug [16,17], and RxNorm
for medication [12]. The various labelling techniques produce standard datasets for varied
specialisations. As the EHR system develops, the volume of EHR data increases annually,
and several studies have been conducted on the secondary use of these data.
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EHRs offer numerous benefits, including improved patient care, increased efficiency,
and reduced healthcare costs [18]. Regardless of the potential for EHRs in various ap-
plications, their effective usage is hindered by data-specific restrictions [6], such as high
missingness and irregular sampling [19–21], as well as imbalanced classes due to uneven
prevalence of illnesses [22]. Therefore, it is important to address these limitations in order
to fully realise the potential of EHRs.

Previous work on learning EHRs representations has mainly focused on developing
methods for data integration, such as ontology-based mapping or semantic matching,
which often require significant manual effort and are limited in their effectiveness in
combining different data types. To address these limitations, our proposed approach
leverages the latest advancements in deep learning and representation learning to create a
more unified representation of EHR data. Our method utilises neural networks to learn
a compact and meaningful representation of EHR data, which can be used for a variety
of disease prediction tasks. Additionally, our approach can combine different data types
effectively, such as demographic information, laboratory test results, and imaging studies,
into a single, unified representation. This enables us to capture the complex relationships
between different data elements and provides a more complete picture of the patient’s
health status.

Classic machine learning approaches, such as Support Vector Machine (SVM) [23]
and Random Forest (RF) [24], have been used previously to process large EHR datasets.
However, these methods are limited in their ability to capture the complex patterns in the
underlying data. In comparison, deep learning approaches based on deep data feature
analysis are capable of producing efficient and reliable analytical outcomes, particularly in
the real-world context of enormous data volumes. While deep learning-based models have
shown promise in improving patient outcome prediction, they often require large amounts
of data and computational power, which may not be available in all settings. Compared to
deep learning models, Patient Forest offers several advantages. By using an ensemble of
decision trees, Patient Forest is able to perform well even with smaller datasets and less
computational power, which can be important in clinical settings.

In this work, we propose a novel approach, called Patient Forest, to learning EHRs
representations based on the cascade deep forest method [25]. Our Patient Forest tech-
nique incorporates statistical features to create a more accurate classifier for predicting
readmission and mortality. Our approach seeks to automate the process of data integration
and generate representations that capture the complex patterns in the underlying data.
Moreover, our technique performs a brief preprocessing in order to optimise the final per-
formance. RF is a widely used technique for assessing data with a large dimension [26], and
by utilising its random attribute, generating several forests, and getting multiple outcomes
simultaneously in each layer of the deep network, our approach is able to enhance the
performance of the predictions.

The main contributions of this paper include:

• We propose Patient Forest, a machine-learned approach for predicting patient out-
comes, that incorporates statistical features to learn EHR representations.

• We conduct an evaluation of our proposed method on two large-scale EHR datasets
and demonstrate its effectiveness in predicting readmission and mortality outcomes.

• We compare the performance of Patient Forest with strong machine learning base-
lines to reveal the effectiveness of our approach to improve patient care and reduce
healthcare costs.

2. Related Work

In this section, we present a summary of related works in representation learning for
EHR applications.
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2.1. Vector-Based Methods

One of the learning models that represents patient information on this basis is a fully
connected Deep Neural Network (DNN). Futoma et al. [27] evaluated various models’
propensity to forecast hospital readmissions using data from a large EHR database. The
outcome demonstrates DNN outperforms other approaches that have previously been used
to solve this issue in terms of prediction performance. The study given in [28] employed a
deep generative learning model to overcome the problem of insufficient data using MRI
pictures efficiently by learning and categorising tumour locations from MRI images. The
search by Zheng et al. [29] for suicide ideation, behaviour, or death prediction in the
literature was based on the health records of patients who had visited a Berkshire Health
System hospital. Multiple machine learning and deep learning methodologies are employed
in EHRs to classify the severity of patients in [30]. The experimental findings indicate DNN
performed exceptionally well. In the type II diabetes disease prediction [31], a deep learning
neural network architecture model was adopted. All these studies demonstrated the DNN
can be utilised for EHR data analysis and diagnosis. Despite this, the majority of recent
research has considered this architecture to be the classic way [32].

Autoencoders are vector-based, unsupervised deep learning models, which are an
efficient dimensionality reduction technique with promising performance for the deep
representation of medical data [33]. Autoencoders have also been effectively applied to
datasets comprising massive collections of electronic health records, where they are very
adept at handling missing data [34]. A comparison study by Sadati et al. [35] emphasised
the effectiveness of several types of autoencoders for electronic health record-based data
sets. Combining a recurrent autoencoder with two GANs, Lee et al. [36] suggested sequen-
tial electronic health records with a dual adversarial autoencoder (DAAE). Biswal et al. [37]
synthesised sequences of discrete EHR encounters and encounter features using a varia-
tional autoencoder. Very recently, in [38], for adverse drug event preventability, a model
of dual autoencoders was explored in EHRs. Wang et al. [39] compared the model with
autoencoder features to traditional models, which could show a reasonable result.

Convolutional Neural Networks (CNNs) are a further vector-based technique. EHR
research [40] focuses on capturing the local temporal dependence of these data, which
are then used to predict multiple diseases and for other related tasks. Wang et al. [41]
adopted a CNN learning with 1929 features for the classification of 1099 international
diseases. Researchers in [42] aimed to develop a convolutional neural network model for
the prediction of the risk of advanced nonmelanoma skin cancer (NMSC) in Taiwanese
adults. In an intriguing study [43], CNN was applied over electronic health records to
determine the top 20 lung-cancer-related indicators in order to avoid radiation exposure
and costs. CNN has shown its superior ability to measure patient similarity. However,
the traditional CNN architecture could not properly exploit the temporal and contextual
information of EHRs for disease prediction. Consequently, it is increasingly difficult to
represent the timing and substance of EHR data concurrently [44].

Natural language processing was the original inspiration for word2vec [45], which was
developed to learn word embeddings from large-scale text resources. In [46], the authors
pursue the word2vec technique to train a two-layer neural network to improve clinical
application prediction accuracy relative to baselines. Choi et al. [47] applied skip-gram
to longitudinal EHR data to learn low-dimensional representations of medical concepts.
To improve the performance of a convolutional neural network for patient phenotyping,
Yang et al. [48] explored a model that combines token-level and sentence-level inputs.
Similarly, in [49], clinical text was employed to expect clinical notions. Steinberg et al. [50]
proposed a novel analogy of language modelling on discretised clinical time-series data.
However, these techniques do not explicitly model dynamic temporal information or
address the challenges of heterogeneous data sources [51].
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2.2. Temporal Matrix-Based Methods

Lee and Seu [52] presented Non-Negative Matrix Factorisation (NMF) as a method for
discovering a collection of basic functions for expressing non-negative data. This matrix
pertains to electronic health records, which generate a matrix with a time dimension and a
clinical event dimension. Bioinformatics has extensively used NMF for clustering sources
of variation [53–55]. There are other efforts to use NMF or its variants in the depiction of
patient data in EHRs. In [56], disease trajectories are analysed using NMF to extract multi-
morbidity patterns from a huge data collection of electronic health records. Zhao et al. [57]
suggested that the NMF identifies relationships between genetic variants and disease
phenotypes. In a recent study [58], NMF was used to examine the symptoms of covid and
predict long-term infection. Controlling the degree to which the representation is sparse is
difficult since sparseness is a side effect of the NMF algorithm [59]. The huge number of
various diagnosis codes is an additional obstacle that results in a combinatorial explosion
of the number of possible diseases, many of which are unique to a single patient [60].

2.3. Graph-Based Methods

The graph technique can be expressed using the EHR by using nodes to represent
medical events and edges between the nodes to highlight the temporal links among clinical
events. One emerging method of deep learning on graph-structured data is Graph Neural
Networks (GNNs) [61]. GNNs can infer the missing information, leading to a representa-
tion that is more explicable [62]. The hierarchical relationships in EHRs were captured using
GNN, as described in reference [63,64]. In [65], GNN reflected the links between drugs,
side effects, diagnosis, associated treatments, and test results. For instance, Park et al. [66]
suggested a knowledge graph-based question answering with EHR. Research [67] intro-
duced an EHR-oriented knowledge graph system to efficiently utilise non-used information
buried in EHRs. In EHRs, it is typical for spurious edges to be included and for other edges
to be absent. Even though the observed graph is clean, it may contravene the properties of
GNNs because it is not jointly optimised with them. These flaws in the observed graph
may precipitously degrade the performance of GNNs [68].

2.4. Sequence-Based Methods

Sequence-based patient representation turns EHR data into a temporally ordered
sequence of clinical events for use in prediction. A recurrent neural network (RNN) is a
neural network that includes the GRU and LSTM networks as specific cases, according
to Sherstinsky’s study [69]. RNNs are widely used in patient representation research
that focuses on combinations or sequences of clinical codes [62]. The research included
aid in early diagnosis [70,71] and disease prediction [72–79]. Recently, Gupta et al. [80]
adopted a general LSTM network architecture to make improved predictions of BMI and
obesity. Ref. [81] examined the performance of various deep neural network architectures,
including LSTM, in scenarios involving clinical factors and chest X-ray radiology reports,
revealing that the recommended BiLSTM model outperforms other DNN baseline models.
RNN is frequently stated without context or rationale. In addition, training equations are
frequently removed entirely; therefore, partial descriptions or missing formulas in RNN
may result in its inefficiency [69].

2.5. Tensor-Based Methods

Tensor-based methods apply an n-dimensional tensor to represent patient information.
The multi-dimensional and high level of tensor factors in EHR data make complex relation-
ships understandable and interpretable [82]. Zhao et al. [83] identified previously unknown
cardiovascular characteristics using a modified non-negative tensor-factorisation technique.
Afshar et al. [84] implemented temporal and static tensor factorisation to extract clinically
significant characteristics. Hernandez et al. [85] used a novel tensor-based dimensionality
reduction method to predict the onset of haemodynamic decompensation.
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3. Methodology

In the following, the specifics of the proposed approach will be presented. We frame
the patient outcome prediction task as a classification problem. Patient Forest uses a
prepared EHR matrix to learn EHR representations by using an ensemble of decision trees.
These representations then may be retrieved and used for downstream patient outcome
prediction tasks. Figure 1 depicts a summary of the model. In the subsequent sections, we
explain the implementation details and experimental setup.

Figure 1. Schematic representation of Patient Forest, illustrating the process of patient outcome
prediction based on learnt EHR representations from a prepared EHR matrix.

3.1. Patient Forest

We are provided with a set of N encounters, X = {~x1, ~x2, . . . , ~xN}, as input, where
~xi ∈ RF represents encounter i features. We feed encounters to the gcForest model [25]
in order to learn EHR representations. The learnt EHR representations are then used for
downstream patient outcome prediction tasks.

The gcForest model is made up of two distinct modules: multi-grained scanning
and cascade forest. The multi-grained scanning module is responsible for generating a
set of diversified features from input data by using multiple layers of sliding windows
(convolutional filters) of different sizes, which results in a set of sub-sampled feature maps,
each capturing different aspects of the input data at different granularities. The output of
this module is then fed to the cascade forest module.
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The cascade forest module is made up of multiple levels of random forests. Each level
takes as input the output of the previous level and further refines the extracted features.
The final output of the cascade forest is a set of predictions for the input data.

During training, the gcForest model learns the input features by optimising the param-
eters of the convolutional filters and random forests using a backpropagation algorithm.
These learned features are then used to make predictions on new, unseen data. For the
training objective, we use a standard binary cross-entropy (BCE) loss between the target
and predicted labels.

L = − 1
N

N

∑
i=1

(ŷi log(yi) + (1− ŷi) log(1− yi)) (1)

where ŷi is the network’s predicted label, and yi is the ground-truth label.

3.2. Datasets and Preprocessing
3.2.1. Datasets

Our proposed model examined, using the eICU [86] and MIMIC-III [87] datasets, both
of which are large-scale electronic health record (EHR) dataset collections and are accessible
through the PhysioNet repository [88].

eICU. Philips Healthcare has created the eICU Program, a telemedicine system that
utilises these data to aid in the treatment of critically sick patients. The eICU Collaborative
Research Database is a multi-centre intensive care unit (ICU) database providing high-
resolution data for over 200,000 admissions between 2014 and 2015, to one of 335 units
at 208 US hospital institutions. The de-identified database contains information such as
vital sign readings, care plan paperwork, sickness severity measurements, diagnostics, and
treatments [86].

MIMIC-III. Medical Information Mart for Intensive Care III (MIMIC-III) is a big,
single-centre database including information on Beth Israel Deaconess Medical Center
(BIDMC) in the United States from 2001 to 2012. Data comprises vital signs, medicines,
laboratory measures, observations and comments documented by care providers, fluid
balance, procedure codes, diagnostic codes, imaging reports, hospital length of stay, and
survival data [87].

Readmission rates and death rates are the primary outcomes that catch our attention
for the purpose of this article.

3.2.2. Preprocessing

The EHR representations on MIMIC and eICU datasets are learned by following the
preprocessing suggested in [89]. To prep the datasets, we removed encounters that were
shorter than 24 h and eliminated duplicate codes (e.g., repeated medication administration).
Lab results were also excluded as their values can change during ICU stays (e.g., blood pH
level). These steps resulted in 50,391 and 41,026 patients in the MIMIC and eICU datasets,
respectively. Throughout the paper, we focus on a single encounter and do not consider the
time-series nature of EHRs. See Table 1 for the statistical details of the two datasets.

3.3. Baselines and Tasks
3.3.1. Baselines

To assess our model’s performance in prediction tasks, we evaluate it against different
baselines, including a Random Forest, Multi-Layer Perceptron, Logistic Regression, Support
Vector Machine, Naïve Bayes, Classification and Regression Trees, and K-Nearest Neighbours.

• Random Forest (RF): Random Forest is a classifier comprising decision trees, where
each tree at input x casts one vote for the most popular class [90].

• Multi-Layer Perceptron (MLP): Multi-Layer Perceptron is a type of artificial neural
network consisting of multiple layers of neurons that are connected to each other and
used for supervised learning tasks such as classification [91].
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• Logistic Regression (LR): Logistic Regression is a machine learning algorithm used for
predicting binary outcomes given a set of features [92].

• Support Vector Machines (SVM): Support Vector Machines are a type of supervised
learning algorithm used for finding the line that maximises the minimum distance to
the line [93].

• Naive Bayes (NB): Naive Bayes is a probabilistic classifier based on the assumption
that all features are conditionally independent of each other given a class label [94].

• Classification and Regression Trees (CART): Classification and Regression Trees are a
type of decision tree algorithm used for classification and regression problems that
employ past data to generate decision trees, which are then used to categorise fresh
data [95].

• K-Nearest Neighbours (K-NN): K-Nearest Neighbours is a non-parametric algorithm
used for classification by identifying the closest k-neighbours to an observation and
then assigning it a class label [96].

Table 1. Statistical characteristics of the datasets used to train and evaluate the model for both the
mortality and readmission tasks. N/A stands for Not Applicable.

Dataset MIMIC eICU

Avg. # of diagnosis per visit 11.5 6.5
Avg. # of treatment per visit 4.5 5.0

# of Positives (Readmission) N/A 7051
# of Positives (Mortality) 5377 2983
# of Patients 50,391 41,026

3.3.2. Tasks

The purpose of this study was to compare Patient Forest and baseline models in their
ability to predict two primary tasks: readmission prediction and mortality prediction.

• Readmission Prediction: The models were trained to extract visit representations from
an encounter record in order to predict whether a patient will be readmitted to the ICU
within the same hospital stay. This task was evaluated using only the eICU dataset.

• Mortality Prediction: The models were trained to extract visit representations from an
encounter record in order to forecast patient mortality upon ICU admission. This task
was assessed using both the MIMIC and eICU datasets.

3.4. Training and Evaluation

The gcForest model used in our experiments had a cascade structure comprising
4 completely random tree forests and 4 random forests, with 500 trees in each forest. Class
vector generation was achieved using three-fold cross-validation. The number of cascade
levels was automatically determined by splitting the training set into a growing set and
an estimating set. The cascade was retrained after determining the estimated number
of levels. Multi-grained scanning was performed using three different window sizes for
feature windows. Moreover, 80% of the training data was used for the growing set and 20%
for the estimating set.

We used two metrics to measure how accurately our patient outcome prediction tasks
were performed: the Area Under the Precision-Recall Curve (AUPRC) [97] and the Area
Under the Receiver Operating Characteristic Curve (AUROC) [98]. These metrics were
calculated on the test set, which had the same class distribution as the actual data. AUPRC
is sensitive to the proportion of positive outcomes, so the lowest possible value and the
value of a random classifier would depend on the positive class rate [99]. AUROC is a
measure of how well a classifier can separate positive and negative outcomes, regardless of
the class distribution. The AUROC value of a random classifier is always 0.5.

We conducted 20 runs of training across three different train–test set splits (75%:25%,
50%:50%, and 30%:70%) and evaluated the performance of patient outcome prediction
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tasks across our baselines by measuring the AUPRC and AUROC on the test nodes of our
method. To prevent data contamination, we used a patient-level split of the data, ensuring
that each patient was included only in one split.

4. Experiments

We compared the results of our Patient Forest model to several baseline models such
as RF, MLP, LR, VM, NB, CART, and K-NN. The performance was evaluated using the
AUPRC and AUROC metrics, and the results are reported in Tables 2 and 3 for the 70%:30%
data split and Figure 2 for the 50%:50% and 30%:70% data splits.

Table 2. Readmission and mortality prediction performance on eICU and MIMIC in terms of AUPRC
using 75%:25% data split.

Models MIMIC Mortality eICU Mortality eICU Readmission

RF [90] 0.5166 0.4843 0.4528
MLP [100] 0.5676 0.4549 0.4519
LR [92] 0.5863 0.4903 0.4628
SVM [101] 0.5602 0.5193 0.4612
NB [101] 0.4506 0.3532 0.3491
K-NN [96] 0.4575 0.4196 0.4016
XGB [96] 0.5187 0.4599 0.4481
Patient-Forest (ours) 0.619 0.5732 0.5952

Table 3. Readmission and mortality prediction performance on eICU and MIMIC in terms of AUROC
using 75%:25% data split.

Models MIMIC Mortality eICU Mortality eICU Readmission

RF [90] 0.7628 0.8392 0.8136
MLP [100] 0.7492 0.8163 0.8121
LR [92] 0.7732 0.8328 0.8192
SVM [101] 0.7463 0.8473 0.8213
NB [101] 0.6583 0.7628 0.7605
K-NN [96] 0.6538 0.7927 0.8001
XGB [96] 0.7719 0.8129 0.8083
Patient-Forest (ours) 0.8010 0.8637 0.8690

Results

• Predictive Performance: We compared the performance of Patient Forest with other
baseline models, such as RF, MLP, LR, SVM, NB, CART, and K-NN. We used two
metrics to evaluate the models: AUPRC and AUROC. AUPRC measures how well the
model can identify the positive class (i.e., patients who died or were readmitted), while
AUROC measures how well the model can separate positive and negative classes (i.e.,
patients who survived or were not readmitted). Higher values of both metrics mean
better performance. We used two datasets: MIMIC and eICU, and three data splits:
75%:25%, 50%:50%, and 30%:70%. Tables 2 and 3 show the results for AUPRC and
AUROC using the 75%:25% split. Figure 2 shows the results for AUPRC using the
other two splits. The results show that Patient Forest consistently outperformed all
the baseline models on both metrics and both datasets.
Using the 75%:25% train–test split, the Patient Forest model outperformed all the other
models on both AUPRC and AUROC. It achieved 0.619 AUPRC and 0.8010 AUROC
for MIMIC Mortality, 0.5732 AUPRC and 0.8637 AUROC for eICU Mortality, and
0.5952 AUPRC and 0.8690 AUROC for eICU Readmission. Using the 50%:50% split,
the model still demonstrated superior performance with AUPRC of 0.6019, 0.4626,
and 0.4372 in MIMIC Mortality, eICU Mortality, and eICU Readmission, in order. Even
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with a reduced percentage of training data (30%), our model still outperformed the
other baselines with AUPRC of 0.5927, 0.4544, and 0.4317 in MIMIC Mortality, eICU
Mortality, and eICU Readmission, respectively.
These results demonstrate the robustness and generalizability of our model across
different datasets and data splits. The superior performance of Patient Forest can be
attributed to its ability to capture the heterogeneity and complexity of the patient data
using a forest of patient-specific decision trees. By learning from the patient’s own
history and features, our model can better predict the patient’s future outcomes than
the models that use a single global classifier for all patients. Moreover, by aggregating
the predictions of multiple trees, our model can reduce the variance and improve the
stability of the results.

• Comparative Evaluation: To assess the effectiveness of Patient Forest and its learned
representations, we plotted t-distributed stochastic neighbour embedding (t-SNE)
plots [102] of the generated representations (Figure 3) for the MIMIC mortality pre-
diction task. The different colours denote different patient classes. Our qualitative
results demonstrate Patient Forest is able to learn representations that place patients
with similar outcomes close to each other, indicating the model’s capability of accurate
prediction of outcomes.

(a) 50% train-50%test (b) 30% train-70%test

(c) Average of all settings

Figure 2. Readmission and mortality prediction performance on eICU and MIMIC in terms of AUPRC
with different data splits: 50%:50% (a), 30%:70% (b), and average of all settings (c).
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Figure 3. t-SNE embeddings of the patients in the MIMIC dataset based on raw (left) and learnt
Patient Forest features (right).

5. Discussion and Conclusions

We presented Patient Forest, a model which can learn EHR representations to predict
mortality and readmission rates. Our proposed approach was trained and tested on two
extensive EHR datasets and three benchmark tasks. We compared its performance with
other prominent models and highlighted the benefits of our model. Furthermore, we
did a qualitative assessment of Patient Forest by plotting the t-SNE of the embeddings
for the targeted outcomes across two studied datasets. Results indicated that the learnt
representations provide a 2-D projection that clearly reveals clustering.

This study has notable merits. Patient Forest can accurately learn EHR representations
and surpass other strong models, especially when the training data is scarce, which is a
common difficulty in healthcare domains [103]. We also validated our proposed model on
two expansive EHR datasets. Our method can provide valuable insights and guidance for
clinicians and patients to improve the quality of care and health outcomes.

Conversely, there are certain limitations to this study. We did not factor in the temporal
properties of EHRs. Additionally, we only incorporated three primary tables from MIMIC
and eICU datasets, such as diagnosis, laboratory results, and treatment tables. We intend
to explore strategies to extend our work to time-series EHRs, which could be beneficial for
learning representations of patient deterioration tasks over time and include more tables
like demographics and procedures in upcoming works.

To summarise, our study reveals that Patient Forest is a viable model for predicting
mortality and readmission rates. Furthermore, it should be explored for its potential in
other areas such as disease stratification, diagnostics, and prognosis. Additionally, research
should be done to determine the optimal hyperparameters of Patient Forest, as well as
explore its integration with other AI models to enhance accuracy and performance. Last,
the application of this model in a clinical setting must be evaluated to assess its utility for
healthcare professionals.
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