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Abstract

In this report we present a pipeline for static coverage planning of known
objects, which is an important task in the field of mobile robot based inspection.
We analyse the main components of the Structural Inspection Planner [1] and
embed an improved implementation into a autonomous flight pipeline for UAVs.
Triangle mesh models serve as input for an initial viewpoint sampling. Inspection
quality and path length are optimized by formulating the viewpoint sampling
as constraint QP. We thoroughly evaluate the ROS-based inspection pipeline
on synthetic and real models using a Gazebo simulation. Our experimental
evaluation shows that while an efficient inspection trajectory could be generated
for most of the tested models, the result is very dependent on regular and well
formed input models.

1 Introduction

Automated structural inspection tasks have become increasingly important in
the last couple of years. As facilities grow larger, it is difficult to guarantee a
continuous and smooth operation without generating a high manual workload.
The field of automating those operations is called Non-Destructive Inspection
(NDI) [9]. Utilizing mobile robots to perform NDIs can keep workers out of
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Figure 1.1: Outline of a UAV inspection flight. The drone with a fixed camera is following the
inspection trajectory (blue), while tracking its exact position in the world coordinate frame W . Blue
points on the trajectory mark viewpoints for specific triangles. The position of the viewpoint gs is
dependent on a set of constraints, for instance the one constructed by the parameters dmin and dmax
given in green.

dangerous situations and save a lot of time and resources. Especially with
the availability of UAVs (Unmanned Aerial Vehicles), high risk operations
such as inspection of buildings, bridges or oversea structures become feasible.
Nooralishahi et al. recently provided an in-depth review on the current state of
UAVs in NDI [9]. Oftentimes, it is desirable to create an inspection on the basis
of an existing model of the respective structure. This allows to quantify the
structural damage on the surface compared to the existing model. However, such
an approach requires the mobile inspection robot to approach specific viewpoints
with a high accuracy in order to inspect the correct target area. This is very
difficult to achieve by a manual UAV operator and leads to artifacts in the imagery
generated during the inspection flight due to the accumulation of positioning
errors. These issues can be dealt with by automatically generating suitable
viewpoints and a corresponding inspection trajectory. This way, consistent
inspection imagery can be generated in an automated fashion through a number
of repetitions.

Therefore, we propose a framework which allows for inspection planning of
structures using different kinds of mobile robots, even though we focus on UAVs
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here. A schematic visualization of the inspection process is given in Figure 1.1.
More detailed building blocks of the proposed framework are depicted in
Figure 3.1. The inspection planning approach conceptually bases heavily on the
Structural Inspection Planner (SIP) [1], which has been developed to calculate
inspection trajectories for fixed wing drones as well as UAVs for existing triangle
meshes. Our work identifies weaknesses of the SIP and re-implements it with
certain modernisations and adoptions. We also abstract the planner component
in a way that it can be used inside a larger simulation framework. This allows
us to easily perform tests and simulation flights for reconstruction purposes
using the framework. Section 2 gives a more detailed overview on the structural
inspection planner and other related work, before we present the main structure
of our inspection pipeline in Section 3. We apply the planner to different
artificial and real models in a Gazebo simulation. This allows us to easily test
different UAV, scenario and sensor setups and also account for measurement
uncertainties. The qualitative and quantitative evaluation of these experiments
is presented in Section 4. Finally, we conclude our work, identify drawbacks
and comprehensively describe possible future adoptions in Section 4.

The proposed framework is built within the Robot Operating System (ROS) [11]
connecting the different components as visualized in Figure 3.1. It is widespread
in the robotic community as it comes with sensor drivers, state of the art
simulation frameworks (Gazebo [7]) and lots of prebuilt algorithms for perception
and navigation. 1,2 This allows us to abstract the inspection planner into a single
node as modular component in a greater UAV stack developed in a previous
work [5]. This stack is supported by a Gazebo simulation of a UAV platform
running the px4 software stack.3 Px4 [8] is an open source autopilot running
on various drones. It comes with Software-in-the-loop SiL and Hardware-in-
the-loop HiL features which allows ours scenarios to be simulated in a realistic
way.

1 https://ros.org/
2 https://gazebosim.org/
3 https://px4.io/
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2 Related Work

UAVs are a natural choice for structural inspection as they allow for agile
movements in complicated and cluttered environments. This led to extensive
research for flight planners in the last couple of years. Oftentimes, the desired
goal is to create a reconstruction of a previously unknown environment. In this
work, we focus on model-based inspection, where we require an accurate mesh
of the target. Previous works with these conditions are rare.

The work by Yan et al. uses a multistage approach to generate a coarse reconstruc-
tion in a first step and then samples viewpoints for a high quality reconstruction
in a second step [15]. Such an approach targets large scale reconstruction as
prior knowledge of the target shape is not utilized. Instead, the skeleton is being
build with a costly Structure-from-Motion technique. Schmid et al. provide an
online informative path planner, where only one inspection flight is required. It
uses an RRT*-inspired exploration scheme with object coverage as optimization
target. They showed a TSDF-based reconstruction of previously unknown target
areas [12, 4].

The Structural Inspection Planner (SIP) [1] is one of the few frameworks which
explicitly uses triangle meshes as input to sample a viewpoint trajectory. It
samples viewpoints for each triangle in the mesh. Viewpoints have geometrically
derived constraints, which are solved as global optimization problem. In a next
step, all sampled viewpoints are connected in an efficient way by interpreting the
trajectory generation as Traveling Salesman Problem. The steps of viewpoints
sampling and trajectory generation via TSP are combined in an iterative fashion
until a minimal-length path is found. In practical application however, we found
the planner to sample not admissible viewpoints or not converging at all for
difficult meshes. The initial viewpoint sampling is highly dependant on the
structure of the triangle mesh. Jing et al. [6] also uses an explicit model as
input representation. However, they require a voxelized version of the model
to first sample a suitable inspection area (via-points) using voxel dilation of
the target. Suitable path primitives are then randomly sampled and verified
by estimating the target visibility at each point. In a final step, a graph based
method is used to generate the final UAV trajectory from the path primitives.
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For larger objects, the operation on single voxels can become costly, so that the
visibility calculation is not feasible for all admissible via points.

A recent work by Debus and Rodehorst [2] on the inspection of buildings
provides evaluation metrics for path planning approaches. The corresponding
Bauhaus Path Planning Challenge comes with a framework implementing these
metrics for a set of models, which will also be targeted in this report. Despite
typical evaluation metrics such as path length and runtime, they also focus on
measurable reconstruction quality and surface resolution.

3 Planning Pipeline

In the following, we briefly describe our pipeline architecture before we discuss
the inspection planner design in greater detail. The main building blocks of
the pipeline are depicted in Figure 3.1. We embed the planner into our UAV
framework presented in a previous work [5]. We design the main building
blocks “Viewpoint Sampling” and “Trajectory Generation” to be components
of a Planner Manager, as this manager also takes care of the sequential control
for replanning and avoiding obstacles during the mission. In the original
work [1], both blocks of viewpoint sampling and trajectory generation were
supposed to run multiple times in an alternating scheme. However, in the
experimental evaluation we show that the viewpoint arrangement resulting from
the initial sampling iteration is already an intuitive result providing full coverage.
Therefore, we mostly apply only one step of sampling and trajectory planning
routines. This reduces the overall planning time at the cost of longer trajectories.

3.1 Viewpoint Sampling

We use the same optimization scheme as Bircher et al. in [1], as we iterate
through all triangles in the mesh to generate one viewpoint each. A viewpoint
needs to fulfill all intrinsic and extrinsic constraints. The first refers to the
visibility of the targeted triangle, while the latter refers to boundary constraints
given by the user. Opposing to [1], we increase the flexibility of the optimization
problem by allowing an arbitrary number of constraints in the solver. This also

15



Raphael Hagmanns

Inspection Planner Manager

Localization

Mapping

Dynamic
Planners

Setpoint
Track
and

Control

mavlinkTrajectory
Generation

(TSP)

Viewpoint
Sampling

Figure 3.1: Structure of the whole simulation pipeline. The relevant blocks for inspection planning
are highlighted in blue. The system consists of individual components for localization, mapping and
control, which enable to fly the inspection trajectory within a simulated or real environment. The
pipeline works with system based on the px4 [8] firmware, which implements the mavlink protocol
for communication.

allows to build more generic constraints for polygons instead of triangles. We
first calculate the normal aN of each of the polygons with vertices {x1, . . . , xn},
as well as all edge normals n1, . . . , nn. In addition, we need to specify the
camera parameters horizontal and vertical field of view as well as the pitch.
Using these values as input, we build the following set of constraints.
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Figure 3.2: Visualization of the camera parameters FOV and pitch as well as the notation for
triangle vertices and normals.

The left and right parts of the above equation ubA = {xmin, ymin, zmin} and
lbA = {xmax, ymax, zmax} quantify the admissible viewpoint sampling space.
The first n constraints force the viewpoint gk to be sampled “in front” of the
triangle, as the projection of the hyperplane normal n>

i of the respective edge
onto the vector spanned by the viewpoint (gk − xi)> is required to be positive.
The next constraint forces the distance of the viewpoint to be in [dmin, dmax] by
restraining projected distance of the triangle normal aN . Finally, the last four
constraints are exactly the field of view constraints from [1]. They guarantee
the viewpoint to lie inside the horizontal and vertical FOV of a camera with a
specific pitch. To accomplish this, four hyperplane normals nupper, nlower, nleft,
nright with respective anchor points x<·> are sampled using the camera pitch
and FOV. A more detailed derivation of these constrains can be found in the
original work of SIP [1].

The optimization objective is to minimize the distance between two consecutive
viewpoints gp and gs, which optimizes the total path length. In the original
formulation from [1], the viewpoint sampling was meant to run multiple iterations,
such that the squared distance between gk

p , g
k and gk

s and their previous iteration
k − 1 is minimized. The quadratic problem is then solved using qpOASES [3],
resulting in a optimal position gopt for the current iteration k. In a next step, the
rotation is sampled by performing an explicit visibility analysis. In a simple
UAV scenario, pitch and roll of the rotorcraft are always fixed, while the yaw
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angle γ is subject to change. For the sampled position and all possible yaw
angles in [0, 2π] with a step size of 0.2rad we check if (a) all distance constraints
are met, (b) all vertices lie withing the FOV of the camera, and (c) there are no
collisions on the way from camera to the polygon. The collision check can be
invoked by performing a simple raycast which allows it to consider other static
obstacles in the scene. The first position and orientation pair which passes all
requirements, is selected as viewpoint.

3.2 Trajectory Planning

Given the set of N viewpoints {g1, g2, . . . , gN }, one for each triangle, we now
connect them into a single shortest path trajectory Topt. Connecting such as set of
“must visit”-points is a typical application for the Traveling Salesman Problem
(TSP). Each viewpoint must be visited exactly once while optimizing the overall
path length. Even though TSP it is a NP-hard problem, efficient solvers exist for
the comparatively small number of viewpoints. We use a TSP-solver developed
as part of the Google OR-tools [10]. It allows to use a custom distance matrix
between all viewpoints as input. This allows it to implicitly embed more metrics
such as the change of yaw or inspection angle into the optimization. However,
in the current version we simply use an Euclidean distance matrix in order to
optimize for path length as primary objective. The TSP is then solved using
the guided local search heuristic which is considered one of the most efficient
sampling heuristics for routing problems.

4 Experimental Evaluation

The utilized planning framework allows to use the px4 Software-In-The-Loop
component to run experiments with Gazebo as simulator. We tested the planning
procedure on a number of different models. Figure 4.1 shows some of them, either
taken from the Bauhaus Challenge [2], coming with the SIP-implementation [1]
or created from real-world objects on our premises. Even if Gazebo is not
capable of rendering the environment in a photorealistic way, it allows to test
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Parameter Name Units Default Explanation

1 Planner
dmin, dmax meter [6.0, 10.0] distance constraints
Min. incidence angle degree 10◦ ∠(an, n<·>) c.f. Fig. 3.2

2 Rotorcraft
Max. velocity m/s 2
Max. angular velocity rad/s 0.5

3 Space boundary
Max. space size meter [200, 200, 50] x, y and z size
Space center meter [0, 0, 0] 3D coordinate [x, y, z]

6 Camera
FOV degree [120◦, 120◦] [horizontal, vertical] field of view
Pitch degree 30◦ Pitch angle of the camera

Table 4.1: List of the most important parameters and their respective default values within the
inspection framework.

results of the view-point sampling using different sensor setups and environment
data.

(a) Bridge Pier (b) House (c) Hall (d) Wall Model

Figure 4.1: Exemplary triangle mesh models used for experimental evaluation. The first two were
taken from the Bauhaus Path Planning Challenge [2], while the last two have been created for simple
ablation studies.

The framework has various parameters, which heavily influence the experimental
results. We tried to use similar defaults as in [1]. Table 4.1 gives an overview
over the most important parameters and their default values.

We quantitatively evaluate the planners in different configurations on a set of
standard metrics. We leverage the planning time, path length and mean yaw
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Model Mesh Size
facets

Path Length
[m]

Mean Yaw
Rate [◦]

Planning
Duration [s]

Hall 148 216 14.36 2.60

Artificial House 154 152 14.23 2.51

Bridge Pier
186 408 21.17 2.63
965 441 11.09 8.85

3930 2011 0.28 262.02

Table 4.2: Quantitative evaluation on the three main models hall, house and bridge pier. Mesh size
denotes the number of triangles and planning duration the total planning time for all steps.

rate as main metrics. We also verify the number of rejected triangles. The
path length is specified as L =

∑N−1
i=0 di→i+1 where N is the total number

of viewpoints and di→i+1 is the distance between the ith viewpoint and the
subsequent one. The mean yaw rate ∆ψ = 1

N

∑N−1
i=0 ‖∆ψi→i+1‖ specifies the

mean change in yaw angle over time, with ∆ψi→i+1 being the change in yaw
between two consecutive viewpoints.

Table 4.2 shows the results for some of the models in different resolutions. All
metrics are dependant on the number of triangles in the mesh. The main cause
for an increasing path length are outliers in the viewpoint sampling, while the
increased planning time results mostly from the exponential increase in TSP
solving time. The decrease in yaw rate simply follows from the fact that the
many viewpoints are interpolations of viewpoints from the lower resoluted mesh
and thus not contributing to any turns of the UAV.

We qualitatively inspect the generated inspection trajectory on some of the
models in Figure 4.2. For the simplest wall model in Figure 4.2(a) the viewpoint
generation works as expected when running one iteration of viewpoint sampling.
The remaining images in Figure 4.2 show the bridge pier in different resolutions.
Even though the generated flight plan looks regular in general, more outlier
viewpoints are generated for the higher resoluted meshes. The reason for this
is typically the result from non optimal QP outputs for some difficultly placed
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(a) Wall (b) Bridge Pier
186 facets

(c) Bridge Pier
965 facets

(d) Bridge Pier
3930 facets

Figure 4.2: Generated paths for the wall model and for different resolutions of the bridge model.
The light green lines are the input mesh, blue the trajectory and the yellow arrows denote the
viewpoints and their direction.

triangles. The solver is configured in a way, that some constraints may be relaxed,
if a global optimum cannot be found. One approach to prevent such outliers from
being sampled is to restrict the dmax parameter for the admissible sampling space.
In addition, it could be considered to not sample one viewpoint per triangle
but to combine multiple similar viewpoints in a later step to reduce the overall
path length. This could also allow to filter sampled outlier viewpoints, which
could lead to a smoother trajectory than in Figure 4.2(d). We observe a similar
behaviour for the models in Figure 4.3. We use red to indicate triangles for which
no viewpoints could be generated. As the camera pitch is fixed and the UAV
cannot fly below the ground, all ground triangles are marked red in Figure 4.3(a)
and therefore not participating in the trajectory planning. Figure 4.3(b) shows
the inspection path on the simple hall model and additionally marks the UAV
odometry from a simulated flight in red.

Despite of sampling some outlier viewpoints, we can observe a successful
coverage for all tested models. This can also be verified by performing a
reconstruction using the recorded images from the simulation. Figure 4.4 shows
the result of this procedure on the Hall model. We post-processed the images
with colmap [13] to obtain the sparse and dense reconstruction results. Note
that the inspection planning itself does not target 3D-reconstruction applications
in particular. We do not ensure within the viewpoint generation that a triangle
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(a) House (b) Hall

Figure 4.3: Generated paths for the artificial house and the hall. In addition to the trajectory we
mark rejected triangles in red.

must be observed from two distinct positions. Nevertheless, the generated paths
often allow a dense reconstruction as two consecutive viewpoints oftentimes
target neighboring triangles on the mesh, resulting in a stereo baseline for both
triangles.

(a) Textured Hall Model (b) Generated Inspection Plan (c) Reconstructed Model

Figure 4.4: Application of the inspection planning for reconstruction purposes. The first image (a)
shows a textured version of the model from Figure 4.1(c). We then use the generated inspection
plan to fly it in simulation and perform a reconstruction using the saved images (b). Finally, (c)
shows the dense reconstruction.

5 Conclusion and Future Work

In this work, we presented and evaluated a structural inspection pipeline
for mobile robots using triangle meshes as input. We showed that intuitive
inspection trajectories could be generated for a set of different models. In order
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to thoroughly test the inspection, we embedded it into a UAV autonomy pipeline
with simulation capabilities. Using that simulation, we also applied the routine
for the purpose of 3D-reconstruction. We identify the availability and variability
of input data as main drawback in the presented approach. Given an arbitrary
input mesh, it is a very error-prone pre-processing step to transform it into a
regular triangle mesh with a desired amount of facelets. On the other side,
the number of facelets is the only parameter to control the initial number of
sampled viewpoints and thus the runtime required for the initial sampling step.
Some approaches, such as ACVD 4 resulting from [14] exist to simplify existing
meshes but as soon as the geometries get complex and non-convex, we were not
able to produce a regular mesh (see 5.1(b)).

(a) Excavator (b) Upper Carriage Mesh (c) Voxelized Object

Figure 5.1: Example for an excavator model, which is difficult to tackle using a triangle mesh based
inspection scheme. Using a dynamically generated voxelized version of the model such as in (c)
might improve the viewpoint sampling and also allows resampling for different joint positions.

One way to overcome these limitations in the future is the usage of a different
input modality. For instance, one could use a voxelized structure of the mesh
such as visualized in 5.1(c), which is comparatively easy to generate even for
dynamic joint positions. This approach would require a strategy to divide the
voxel structure into different regions as the workload for sampling one viewpoint
per voxel would be too high. This also raises the question, if the formulation
as QP is even necessary if we only run one iteration of sampling and planning.
We can influence the resulting inspection trajectory either by running multiple

4 https://github.com/valette/ACVD

23

https://github.com/valette/ACVD


Raphael Hagmanns

iterations or by adjusting the input modality in a way that less viewpoints are
sampled in the first place.

Further extensions to the current approach are conceivable. It could be useful to
explicitly encode inspection or reconstruction quality into the optimization. The
first would require some dynamically generated distance constraints in order to
achieve a user-definable ground sampling distance (GSD). The ladder requires
that a triangle can be inspected from at least two viewpoints, so ideally each
viewpoint must encode the constraints for multiple triangles.
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