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Abstract 
The increasing evaporative demand due to climate change will significantly affect the balance of carbon assimilation and water losses of plants 
worldwide. The development of crop varieties with improved water-use efficiency (WUE) will be critical for adapting agricultural strategies under 
predicted future climates. This review aims to summarize the most important leaf morpho-physiological constraints of WUE in C3 plants and iden-
tify gaps in knowledge. From the carbon gain side of the WUE, the discussed parameters are mesophyll conductance, carboxylation efficiency 
and respiratory losses. The traits and parameters affecting the waterside of WUE balance discussed in this review are stomatal size and density, 
stomatal control and residual water losses (cuticular and bark conductance), nocturnal conductance and leaf hydraulic conductance. In addition, 
we discussed the impact of leaf anatomy and crown architecture on both the carbon gain and water loss components of WUE. There are multiple 
possible targets for future development in understanding sources of WUE variability in plants. We identified residual water losses and respiratory 
carbon losses as the greatest knowledge gaps of whole-plant WUE assessments. Moreover, the impact of trichomes, leaf hydraulic conduct-
ance and canopy structure on plants’ WUE is still not well understood. The development of a multi-trait approach is urgently needed for a better 
understanding of WUE dynamics and optimization.
Keywords: Crown architecture; leaf anatomy; mesophyll conductance; minimal conductance; respiration; rubisco; stomata; WUE.

Introduction
Water-use efficiency (WUE) reflects a balance between carbon 
gain and water loss in plants, introduced more than 100 years 
ago by Briggs and Shantz (1913). Since then, multiple ways 
and methods to assess WUE at a different level of organization 
and temporal resolution were developed and conceptualized 
(Vadez et al. 2014, 2023; Hatfield and Dold 2019; Brendel 
2021). Two WUE parameters reflect a momentary state of leaf 
carbon and water fluxes: intrinsic water-use efficiency (WUEi) 
as a ratio of CO2 assimilation rate (An) to water vapour sto-
matal conductance (gs), obtained during gas-exchange meas-
urements at leaf level (Petrik et al. 2022a). Another closely 
related variant, instantaneous WUEi, is calculated as a ratio 
of An and leaf transpiration (Bacon et al. 2004). Other WUE 

parameters capture the long-term balance between carbon fix-
ation and transpiratory water losses. Biomass-based indices 
include whole-plant WUEbio as the ratio of biomass accumu-
lation to cumulative transpiration of the plants (Condon et 
al. 2004; Brendel 2021). Furthermore, yield WUE is usually 
calculated as crop yield per hectare divided by total transpir-
ation or evapotranspiration (Hatfield and Dold 2019; Zahoor 
et al. 2019). The use of growth-based WUE calculated as the 
ratio of annual basal area increment and cumulative annual 
transpiration is used in dendrobiology (Szatniewska et al. 
2022). Moreover, the carbon isotope ratio (δ 13C) has been 
extensively used as a proxy of long-term WUE13C, because 
of the preference for the lighter isotope during physical and 
chemical processes involved in CO2 uptake and assimilation 
(Farquhar et al. 1989; Frank et al. 2015; Ma et al. 2023). 
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Ecosystem-wide WUE derived from eddy-covariance measure-
ments (WUEGPP) is a ratio between gross primary production 
(GPP) of the ecosystem and total cumulative transpiration or 
evapotranspiration (Yi et al. 2019). WUEGPP can be also de-
rived from remote sensing data as the GPP to evapotranspir-
ation ratio (Ahmadi et al. 2019). Overall, the individual-level, 
long-term (vegetation season) based WUEbio is the most pre-
cise assessment of real resource utilization of plants as they 
capture both assimilatory and respiratory balance with pro-
ductive and unproductive water losses (Brendel and Epron 
2022). WUEbio should thus be more commonly used as the 
standard WUE estimates in agricultural and plant sciences, 
instead of the WUEi, which is much easier to measure but 
represents only one point in time.

The importance of WUE acclimation in plants is due 
to raising evaporation demands caused by climate change 
and possible frequent water-deficit stress during seasonal 
droughts (Ponce-Campos et al. 2013; Schuldt et al. 2020). 
Plants with higher WUE will have a competitive advantage in 
natural ecosystems and economic significance for agricultural 
production. The momentary WUEi of plants can be improved 
either by lower transpiration losses or higher efficiency of 
carbon assimilation (Flexas et al. 2016; Hatfield et al. 2019). 
Understanding of constraining factors of WUE is crucial for 
crop optimization efforts and the correct assessment of adap-
tive responses of plant communities (Quan et al. 2020; Kang 
et al. 2021). WUE variability is affected by multiple morpho-
logical and physiological traits (Figure 1). The size and density 
of stomata affect the maximal stomatal conductance and sto-
matal responsiveness to environmental changes (Nunes et 
al. 2022; Pitaloka et al. 2022). As stomatal morphology and 
anatomy can be altered with biotechnological methods for 
improved WUE, it is a great target for future research (Caine 
et al. 2019; Li et al. 2020). The responsiveness of stomata 
to fluctuating light and drought can also improve long-term 
WUEbio (Xylogiannis et al. 2020; Zhao et al. 2021a). Several 
studies have found a negative correlation between WUE es-
timates and leaf hydraulic conductance (Wedegaertner et al. 
2022; Barrera-Ayala et al. 2023; Liu et al. 2023), but these 
findings are still inconclusive (Corcuera et al. 2012; Sellin et 
al. 2014; Jin et al. 2016) and we need a better causal ex-
planation of the relationship. Another important constraint 
of WUE is the mesophyll conductance (gm) of CO2 towards 
Rubisco (Flexas et al. 2016; Zhu et al. 2021). Maximization 
of the gm/gs ratio was suggested as a possible goal for 
improving WUE of crops (Flexas et al. 2013a; Fullana-Pericàs 
et al. 2017). The next step of WUE improvement is an op-
timization of Rubisco carboxylation efficiency (Flexas et al. 
2016). The long-term WUEbio enhancement could be further 
achieved by the reduction of respiratory losses and residual 
water losses during night or drought (Escalona et al. 2012; 
Coupel-Ledru et al. 2016). Finally, leaf anatomy, which in-
fluences both mesophyll conductance CO2 and transpiratory 
losses, can also alter plant WUE (Bramley et al. 2013; Trueba 
et al. 2022).

The objective of this review paper was to summarize 
various morphological and physiological factors, which in-
fluence WUE in plants, as a stepping stone for a more holistic 
approach to the multi-factor assessment of WUE constraints 
(Figure 1). We also focused on identifying under-represented 
physiological and morphological traits in current research, 
which are needed for understanding WUE optimization in 
plants. Moreover, this review focuses specifically on WUEi, 

WUE13C and WUEbio to provide the most possibly concise 
overview of this complex topic at a similar spatial scale. It is 
worth pointing out that environmental factors such as water 
availability (Amitrano et al. 2019; Zhao et al. 2021b), soil 
structure (Hatfield et al. 2001; Rabarijaona et al. 2022), air 
pollution (Hatfield et al. 2001; Rabarijaona et al. 2022) and 
nutrients (Dijkstra et al. 2016; Gharun et al. 2021; Song et al. 
2022) can also have a significant impact on WUE. However, 
this falls beyond the scope of the study and is therefore not 
further discussed.

Water Side of WUE
Stomatal density and trichomes
Plants can influence their transpiratory losses and therefore 
potentially their WUE via stomatal regulation (Hetherington 
and Woodward 2003; Bertolino et al. 2019). The stomatal 
adjustment could include changes in stomatal density (SD), 
stomatal anatomy (size, shape) and stomatal control mechan-
isms (Sack and Buckley 2016; Petrik et al. 2022b). Multiple 
recent studies, which used genetic manipulation methods to 
alter SD, have reported improved WUEi connected to the re-
duction of SD. A genetic manipulation (EPF2OE) approach 
in a study by Franks et al. (2015) led to Arabidopsis mu-
tants with lower SD that showed higher WUEi and long-term 
WUE13C due to lower stomatal conductance of water va-
pour (gs) but unchanged photosynthetic capacity. Similarly, a 
combination of high-yield rice cultivars with overexpressed 
OsEPF1 epidermal patterning factor (EPF) led to a reduc-
tion of SD, lower gs, improved WUEi and overall drought 
tolerance (Caine et al. 2019). The EPF overexpression in 
bread wheat has led to similar results of reduced SD and im-
proved WUEi, without yield losses (Dunn et al. 2019). Guo 
et al. (2019a) have reported the genetic pathway of EDT1/
HDG11, ERECTA, and E2Fa loci, which regulates WUEi 
of Arabidopsis via modulation of SD. Overexpression of 
SlTLFP8 (Tubby-like F-box protein 8) reduced SD by 10–20 
% in tomatoes and was connected to enhanced WUEi (Li et 
al. 2020). Similarly, repression of PuGTL1 via Pu-miR172d 
overexpression led to a reduction of SD and higher WUEi 
in Populus ussuriensis (Liu et al. 2021). On the other hand, 
overexpression of STOMAGEN led to higher SD, greater 
photosynthetic activity (+30 %), but also greater transpir-
ation (+100 %), which resulted in reduced WUEi (Tanaka 
et al. 2013). Contrary, the study by Bhaskara et al. (2022) 
also reported a positive relationship between SD and WUEbio 
derived from natural variation in Arabidopsis accessions. 
Moreover, other leaf structures such as trichomes (trich-
omes/SD ratio) can play a significant role in WUEi and 
WUEbio enhancement via lower transpiratory losses due to 
leaf–air boundary layer resistance (Mo et al. 2016; Galdon-
Armero et al. 2018). For example, Chen et al. (2022) ob-
served a doubling in trichome density and a decline in gs by 
85 % between droughted and well-watered Shepherdia × 
utahensis plants. Single gene manipulation efforts, such as 
EPF2OE, could have negative pleiotropic effects on other 
metabolic processes and should be further explored to avoid 
these negative side effects (Flexas et al. 2016; Husaini et al. 
2022). It seems that the reduction of SD for improving WUEi 
and WUE13C/bio could be a viable option for plant breeding 
initiatives. Additionally, the incorporation of further leaf 
structures, such as trichomes, in combination with SD can 
improve our understanding of WUE constraints.
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Figure 1. Overview of mechanisms and traits which affect the carbon fixation (upper half) and water loss (lower half) components of water-use 
efficiency in C3 plants. Created with BioRender.com and adapted with Canva.com.
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Stomatal size and responsiveness
Stomatal control mechanisms include reaction to atmospheric 
vapour pressure deficit (Grossiord et al. 2020), plant water 
potential (Buckley 2005, 2019; Dayer et al. 2020), light con-
ditions (Lawson et al. 2010; McAusland et al. 2013) and CO2 
concentration (Franks and Beerling 2009). Photosynthetic 
activity of C3 plants can adjust in seconds to changes in ir-
radiance, but the lag in stomatal responses limits the CO2 
uptake and therefore constrains photosynthesis and limits 
WUE (Lawson et al. 2012). Several studies have reported that 
smaller stomata respond faster than larger stomata to changes 
in environmental conditions (Drake et al. 2013; Lawson et 
al. 2014; Kardiman and Raebild 2018; Durand et al. 2019). 
Faster stomatal response in the study by Lawson et al. (2014) 
has been linked to higher WUEi values under naturally chan-
ging irradiance levels. Theoretical maximal stomatal conduct-
ance (gmax) showed a negative correlation with stomatal size, 
but smaller stomata showed faster response time to variable 
irradiance in five Banksia species (Drake et al. 2013). A study 
by Lei et al. (2023) also found that larger stomata of domes-
ticated rice showed slower response time to fluctuating light 
and overall lower WUE13C. The genetic manipulation study in 
rice has found that mutants with small stomatal size showed 
higher WUEi, in comparison to mutants with greater stomatal 
size (Pitaloka et al. 2022). Des Marais et al. (2014) found that 
Arabidopsis genotypes with larger stomata due to AtMPK12 
substitution showed lower WUEi compared with the common 
allele. The improved WUEi of wheat cultivars under water-
deficit stress was linked to smaller stomatal size, lower SD 
and reduced transpiration rates (Li et al. 2017). A study by 
Amitrano et al. (2021) showed that a 49 % increase in WUEi 
and WUEbio of lettuce has been associated with a reduction of 
stomatal size under different vapour pressure deficit (VPD) 
treatments. Moreover, drought stress exposure inhibited sto-
matal development (smaller stomata) and increased the WUEi 
in cotton (Dubey et al. 2023). On the other hand, a study 
by Xiong and Flexas (2020) on ferns, gymnosperms and 
angiosperms found a negative correlation between stomatal 
size and gm, therefore possibly limiting WUE. A comparison 
of Quercus robur genotypes has found a positive correl-
ation between guard cell length and WUE13C, contradicting 
the majority of results suggesting that smaller stomata pro-
mote higher WUE13C (Roussel et al. 2009). Liu et al. (2018a) 
have found a quadratic relationship between stomatal size 
and WUEi at the community level, across forest ecosystems 
along the latitudinal transect, with an optimal stomatal size 
of approximately 400 μm2. Smaller stomatal size could be 
connected to higher WUE in plants, presumably due to faster 
response to environmental conditions. Nevertheless, there is 
probably an optimal stomatal size and further reduction can 
be detrimental due to CO2 limitations of photosynthesis.

Stomatal control and light sensitivity
Excessive water loss under an impaired state of photosyn-
thetic apparatus (drought, salinity stress) can negatively 
affect the WUE of plants. Timely stomatal closure is then 
another major component of WUE optimization of plants 
under water-deficit stress (Yang et al. 2016; Hartmann et 
al. 2021). A study by Yi et al. (2019) showed that WUE13C 
of isohydric species was generally more sensitive to envir-
onmental change due to their conservative water potential 
regulation strategy than WUE13C of the anisohydric species 

and increased significantly with rising VPD during periods of 
water stress. The accumulation of abscisic acid (ABA), which 
drives the stomatal closure of plants under water deficit, 
can be considered a key factor for both WUEi and WUE13C/

bio improvement in plants (Negin and Moshelion 2016; Guo 
et al. 2019b; Mukarram et al. 2021). Plants capable of fine-
tuning their stomatal control with ABA can possess an en-
hanced WUEi with sustained biomass or yield gains (Yoo et 
al. 2009; Yao et al. 2021). Improved WUEi in the presence 
of elevated ABA levels has been demonstrated in transgenic 
Arabidopsis (Zhang et al. 2008) and tomato (Thompson et al. 
2007; Lamarque et al. 2020). Exogenous application of ABA 
showed enhanced WUEi and WUE13C in Populus davidiana 
(Li et al. 2004) and Marsilea crenata fern (Tai-Chung et al. 
2020). French bean and sugar beet plants pretreated with 
ABA also showed improved WUEi under water-deficit stress 
(Pospíšilová and Baťková 2004). Enhanced stimulation of 
ABA signalling of Arabidopsis via distinct ABA receptors can 
result in constitutively high WUEi (Yang et al. 2016). WUE13C 
of Arabidopsis and wheat was also enhanced by modulating 
ABA responses either by using overexpression of specific ABA 
receptors or deficiency of ABA coreceptors (Yang et al. 2019). 
ABA receptors from Populus canescens were stably intro-
duced into Arabidopsis in a study by Papacek et al. (2019), 
which led to enhanced WUEi. Moreover, overexpression of 
PeJAZ2 increased WUEi of poplar under drought stress by 
regulating ABA signalling rather than ABA synthesis (Rao 
et al. 2023). Partial root-zone drying can generate a root-to-
shoot pressure signal from the dry part of the root zone that 
also promotes stomatal closure via a drop in cell turgor and 
enhances WUEi via ABA utilization (Davies et al. 2002; Pérez-
Pérez et al. 2012; McAdam and Brodribb 2016; Zhang et al. 
2018; Xylogiannis et al. 2020). These results, therefore, sug-
gest great opportunities for WUE optimization in crops with 
the use of transgenic methods, breeding efforts and biotech-
nological tools for ABA utilization.

Stomatal sensitivity to light could be another important 
determinant of plant WUEi by adjusting the magnitudes 
of change in gs as a function of the environment (Vialet-
Chabrand et al. 2016). Part of the stomatal response in-
volves the balance between photosynthetic electron transport 
and carbon reduction either in guard cells, chloroplasts, or 
in the mesophyll (Messinger et al. 2006). Overexpression of 
Photosystem II Subunit S in tobacco led to lower stomatal 
opening in response to light, which resulted in a 25 % re-
duction of water loss and improved WUEi (Glowacka et al. 
2018). The desynchronization of An and gs can lead to a 
surplus in transpiration when An is low but gs is high (e.g. 
transition from high to low light), hence reducing WUEi 
(McAusland et al. 2016; Coupel-Ledru 2021). The introduc-
tion of a blue light-activated K+ ion channel, named BLINK1, 
to Arabidopsis, led to a faster reaction of stomatal aperture 
under both increasing and decreasing irradiance, which ul-
timately enhanced the plants’ biomass accumulation and 
WUEbio (Papanatsiou et al. 2019). Dynamic plant response 
to VPD and light fluctuations under natural conditions were 
suggested to increase plants WUEbio (Gosa et al. 2019). Lower 
stomatal openness and lower gs under short-term light transi-
tions led to higher WUEi in chilli pepper treated with “smart 
glass” compared to the control group (Zhao et al. 2021a). 
A study by Li et al. (2023) found that overexpression of 
OE-PtrVCS2 in Populus trichocarpa led to smaller stomatal 
aperture under drought stress and overall higher WUEi than 
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in the wild type. Greater WUEi of isohydric Pine species has 
been also linked to lower stomatal openness under increasing 
light, while anisohydric Oak species behaved more opportun-
istically with lower WUEi (Renninger et al. 2015). Reduction 
of stomatal openness as a reaction to light changes can prob-
ably improve the WUE of plants but can lead to a reduction of 
the total growth and yield of crops. Nevertheless, improving 
stomatal response time to changing irradiance levels can im-
prove the plants’ WUE without a negative impact on assimi-
lation and growth.

Residual and nocturnal conductance
When the stomata are closed (night, drought), plants are still 
losing water via their cuticle, bark or incompletely closed sto-
mata (Duursma et al. 2019; Lintunen et al. 2021). Cuticular 
transpiration has been recognized as a significant factor af-
fecting drought survival rates (Duursma et al. 2019) and 
might affect WUE13C/bio due to residual transpiration (Ni et 
al. 2012; Ávila-Lovera et al. 2019). Minimum leaf conduct-
ance (gmin) incorporates water loss across the leaf cuticle, bark 
and through the incompletely closed stomata (Schuster et al. 
2017; Blackman et al. 2019; Duursma et al. 2019; Lintunen 
et al. 2021). Minimization of these residual losses during 
periods of reduced assimilation rate due to stomatal limita-
tions can therefore lead to improved long-term WUE13C/bio 
(Sevanto 2020). The water loss from leaves of plants under 
drought is dominated by gmin after stomatal closure. This has 
been related to the thickness of the cuticular wax layer, which 
increases in response to water deficit (Jeffree 2006; Shepherd 
and Wynne Griffiths 2006; Bueno et al. 2020). However, a 
relationship between the thickness of the cuticular wax layer 
and gmin can be insignificant, both within (Anfodillo et al. 
2002; Bueno et al. 2020) and across species (Riederer and 
Schreiber 2001). The variability of gmin can be also driven by 
stomatal morphology (leaky stomata) or chemical compos-
ition of cuticle (Duursma et al. 2019; Machado et al. 2021). 
In a recent study across 23 genotypes of wheat, cuticular tran-
spiration showed a strong positive correlation with water loss 
per dry mass unit, which the authors considered as a proxy 
for WUEbio (Gašparovič et al. 2021). A modelling simulation 
approach by Duursma et al. (2019) revealed a theoretical 
reduction of WUEi under increasing gmin of plants using the 
general Ball-Berry model of stomatal conductance. Moreover, 
hydroponically grown Festuca arundinacea exposed to sal-
inity treatment showed enhanced WUEi and lower gmin com-
pared to the control group (Vandegeer et al. 2021). On the 
other hand, eucalyptus clones under water-deficit treatment 
showed significant intra-specific differences in cuticular con-
ductance but not in WUEi (Carignato et al. 2019). A study by 
Clarke et al. (1991) also found no significant correlation be-
tween minimal conductance and long-term WUEbio in wheat 
under drought stress. The impact of cuticular conductance or 
gmin on WUE has not been yet properly quantified and is there-
fore a great target for future research.

The analogical parameter, nocturnal conductance, is also 
critical for optimization of long-term WUE13C/bio (Coupel-
Ledru et al. 2016; Even et al. 2019). Excessive water losses 
during the night (Dawson et al. 2007; Forster 2014) decrease 
long-term WUE as there is no photosynthetic gain during 
the night. It has been suggested that the low nocturnal con-
ductance of shade-tolerant plant species is consistent with 
their conservative water-use strategy (Resco de Dios et al. 

2019). Nocturnal conductance is usually dominated by cu-
ticular transpiration, but incomplete stomatal closure during 
the night has been observed in C3 plants (Caird et al. 2007; 
Escalona et al. 2012). Reduction of night transpiration can 
theoretically improve the WUEbio of crops without growth 
penalties (Tardieu et al. 2022). A study by Dayer et al. (2021) 
has shown that night transpiration was linked more to the 
specific circadian rhythm of the wine cultivars rather than 
environmental conditions, suggesting strong genetic con-
trol. Night transpiration also had a significant impact on 
total transpiration and WUEbio in a study by Medrano et al. 
(2017) and was recognized as one of the under-explored fac-
tors affecting whole-plant WUE. Nocturnal conductance also 
showed a significant negative correlation with WUEbio among 
black poplar genotypes exposed to drought stress (Bogeat-
Triboulot et al. 2019). Differences in the night transpiration 
between Pinus contorta thinning treatments corresponded 
to differences in WUE under water-deficit stress (Wang et al. 
2020). Further quantification of the night transpiration ef-
fect on the long-term WUE of plants is needed for a proper 
understanding of the phenomenon. Selection for plants with 
low cuticular conductance and conservative stomatal control 
(avoiding leaky stomata) can greatly improve their WUE and 
drought resistance.

Leaf hydraulic conductance
Leaf hydraulic conductance (Kleaf) can be coordinated with 
higher WUEi, as observed in several studies (Fichot et al. 
2009; Andrade et al. 2022; Wedegaertner et al. 2022). 
Nevertheless, it is still unknown if the plants with higher 
WUE develop smaller xylem vessels causing lower Kleaf (but 
greater xylem embolism resistance, cf. Isasa et al. 2023) as 
they have lower hydraulic requirements to maintain leaf gas 
exchange, or the lower Kleaf leads to greater WUE by con-
straining water supply in leaves. Kleaf is tied to leaf assimi-
lation and stomatal conductance rate in a positive linear 
fashion (Santiago et al. 2004; Sellin et al. 2014). Reduction 
of leaf hydraulic conductance via gene manipulation can lead 
to lower water losses but is also tied with a proportional re-
duction of assimilation rates and therefore non-significant 
changes in WUEbio (Zsögön et al. 2015). The environmental 
response of Kleaf and its impact on WUE has received more 
attention in recent studies and has been identified as a major 
trait that could constrain WUE under changing VPD (Flexas 
et al. 2013a; Xiong et al. 2018). However, no consensus has 
been reached to date regarding the direction of the relation-
ship between Kleaf and WUE. On one hand, Yao et al. (2021) 
reported that raising WUEi of Caragana sp. with decreasing 
water potential was coordinated with decreasing Kleaf but also 
rapid biosynthesis of ABA. The Solanum species with signifi-
cantly lower Kleaf showed also significantly higher WUE13C 
under well-watered conditions (Barrera-Ayala et al. 2023), 
while WUEi of Ginkgo biloba was also negatively correlated 
with Kleaf (Liu et al. 2023). Warming treatment in four sub-
tropical tree species led to higher Kleaf but lower WUE13C (Wu 
et al. 2020). On the other hand, Jin et al. (2016) reported a 
positive relationship between Kleaf and WUEi among 10 tem-
perate tree species. Similarly, a positive correlation between 
WUE13C and Kleaf was reported for Pinus pinaster populations 
exposed to drought stress (Corcuera et al. 2012). Moreover, 
Sellin et al. (2013, 2014) found no significant correlation be-
tween WUEi and Kleaf in birch and aspen trees. In conclusion, 

D
ow

nloaded from
 https://academ

ic.oup.com
/aobpla/article/15/4/plad047/7233794 by Karlsruher Institut fur Technologie - KIT user on 24 August 2023



6 AoB PLANTS, 2023, Vol. 15, No. 4 

the direction of the Kleaf-WUE relationship is unclear, and fur-
ther work must be conducted to assess whether breeding for 
lower Kleaf to reduce water losses possibly leads to improved 
WUE without a significant reduction of growth. Future ex-
periments with gene manipulation techniques that will not 
affect other physio-morphological traits are needed to under-
stand the causal link of these correlations.

Carbon Side of WUE
Mesophyll conductance
Improving CO2 diffusion to the sites of carboxylation without 
increasing stomatal conductance can enhance WUEi. This re-
quires improving mesophyll conductance to CO2 (gm) and it 
has been proposed that the ratio gm/gs is a relevant breeding 
trait for improving WUE (Galmés et al. 2011; Flexas et al. 
2013b; Tomás et al. 2014a; Flexas 2016). The gm has been 
recognized as one of the main limiting factors of WUE in both 
crops (Leakey et al. 2019) and tree species (Zhu et al. 2021), 
potentially due to the close coupling of gm and Kleaf as both 
share the same pathways of water movement in leaves (Flexas 
et al. 2013b; Xiong et al. 2017). A close positive relationship 
has also been observed between gm and gs although the reason 
for this remains speculative (Guiliani et al. 2013; Barbour 
and Kaiser 2016). However, a study by Fullana-Pericas et al. 
(2017) showed a strong positive correlation between gm/gs 
and WUEi in Mediterranean tomato landraces. Similarly, 
WUEi showed a strong positive correlation with gm/gs in to-
bacco under chloride nutrient treatments (Franco‐Navarro 
et al. 2019). The variability of gm has been linked to leaf 
anatomy, where cell wall thickness, membrane permeabilities, 
cytosol and stromal conductance were constraining factors of 
gm (Terashima et al. 2011; Tomás et al. 2013; Ouyang et al. 
2017). The cell wall conductance to CO2 can be influenced 
by cell wall thickness, porosity and tortuosity (Evans et al. 
2009; Ellsworth et al. 2018). A study by Roig-Oliver et al. 
(2020) found a strong negative correlation between cellulose 
and gm in grapevine. The hemicellulose to pectin ratio of the 
cell wall correlated positively with the gm of tobacco exposed 
to drought and salinity stress (Clemente-Moreno 2019). 
Tholen et al. (2008) manipulated the chloroplast arrange-
ment in Arabidopsis and thus modified gm through changes 
in the surface of chloroplasts exposed to the intercellular air 
spaces (Sc/S). The positive impact of Sc/S on gm and An has 
been observed also for Mediterranean oak species (Peguero-
Pina et al. 2017), rice (Xiong et al. 2017) and tobacco (Clarke 
et al. 2021). A recent study by Baillie and Fleming (2020) has 
found that coordination of stomatal and mesophyll develop-
ment is crucial for the optimization of gm and therefore WUE. 
Findings to date suggest that certain stomatal development 
signalling components, such as TMM, ER and STOMAGEN, 
may be required for interlayer coordination, and that gas ex-
change may also regulate mesophyll structure (Dow et al. 
2017). Acclimation of gm to changing environmental condi-
tions has been linked to aquaporins and carbonic anhydrase 
(Flexas et al. 2006; Warren 2007). The gm can be affected by 
specific genes (e.g. aquaporin NtAQP1, HvPIP2, AtBBX21) 
and thus targeted by genetic manipulation of crops (Evans et 
al. 2009). Overexpression of aquaporin genes led to increased 
gm (Hanba et al. 2004) and inhibition of lower gm in various 
crops (Flexas et al. 2006). Tobacco aquaporin NtAQP1 aids 
the trans-membrane transport of CO2 in plants and thus 

contributes to the CO2 permeability of the plasma mem-
brane of the mesophyll cells (Uehlein et al. 2003). Carbonic 
anhydrase activity has been positively correlated to gm (Price 
et al. 1994; Momayyezi and Guy 2017) and chloroplast frac-
tion of gm (Gillon et al. 2000). Carbon anhydrase accelerates 
the interconversion of the dissolved inorganic carbon spe-
cies, CO2 and HCO3

-, which helps optimize the initial stages 
of photosynthesis. A recent study by Gómez-Ocampo et al. 
(2021) found that overexpression of AtBBX21 led to en-
hanced gm and Jmax, coupled with higher WUE in potato plants 
under drought. Moreover, manipulation of heterotrimeric G 
protein signalling can improve plants’ WUEi and productivity 
due to higher gm rates under drought conditions (Zait et al. 
2021). More specifically, the canonical Gα (RGA1) subunit 
gene of G protein regulated gm in rice, which was reflected 
in improved photosynthetic capacity and overall WUE (Wang 
and Botella 2022). The optimization of gm and therefore 
WUE is multifaceted and incorporates multiple organiza-
tional levels from cell biochemistry to whole leaf anatomy. 
There is also great intra-specific variability of gm across crops 
(Tomás et al. 2014a; Chen et al. 2021) and trees (Momayyezi 
and Guy 2017; Peguero-Pina et al. 2017) and therefore, it is 
a reasonable target for breeding efforts which aim at maxi-
mizing WUE. Nevertheless, the practical performance of the 
population/individual’s selection could be hindered by the 
low reliability of current gm measurements (Pons et al. 2009; 
Lundgren and Fleming 2020). The development of more pre-
cise gm measurement techniques (Márquez et al. 2023) could 
greatly improve the understanding of WUE constraint by 
gm. Furthermore, the strong coupling of gm with Kleaf (Flexas 
et al. 2013; Xiong et al. 2017) and gs (Guiliani et al. 2013; 
Barbour and Kaiser 2016) might impede efforts to improve 
WUEi through modification of gm. As shown by Pathare et 
al. (2023) using rice cell wall mutants, modifying gm indeed 
increases photosynthetic capacity but at the cost of simultan-
eously increasing gs, resulting in no overall change in WUEi.

Carboxylation rate
Another target to achieve improved photosynthesis is to im-
prove the biochemical capacity for CO2 assimilation, that is, 
improving the carboxylation efficiency of Rubisco for C3 spe-
cies (Gago et al. 2014; Flexas et al. 2016). Optimizing the 
efficiency of RuBP carboxylation by Rubisco has the potential 
of improving WUE by decreasing the concentration of CO2 
required to achieve high photosynthetic rates (Carmo-Silva 
et al. 2015). The maximum carboxylase activity of Rubisco 
(Vcmax) and the capacity for photosynthetic electron transport 
(Jmax) can constrain the WUE from the carbon assimilation 
side. Maintenance of functional electron transport under 
drought stress led to higher WUEi in Magnolia grandiflora 
(Vastag et al. 2020). Reduction of Vcmax under ozone treat-
ment caused decoupling of photosynthesis and stomatal con-
ductance, which led to lowered WUEi in rice (Masutomi et al. 
2019) and poplar clones (Xu et al. 2022). Vcmax and therefore 
photosynthetic capacity increases with leaf maturation, thus 
young spring foliage can experience reduced WUE13C, which 
can be critical, especially during spring droughts (Cernusak 
2020). Enhanced WUEi of common bean genotypes under 
heat stress was linked to higher Vcmax (Suárez et al. 2021). 
Additionally, Vcmax/gs ratio has been suggested as a useful 
trait to characterize WUEi variability (positive correlation) 
across multiple plant species (Flexas et al. 2014). Acclimation 
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of WUEi and WUE13C was coupled to Vcmax and Jmax across 
Arabidopsis genotypes in a study by Easlon et al. (2014). 
Moreover, the improvement of WUEi in Brassica juncea was 
linked to higher carboxylation efficiency (A/Ci) under biochar 
treatment (Silva Gonzaga et al. 2019). Photosynthesis and 
therefore WUEi can be limited by Rubisco and RuBP regen-
eration, especially under high irradiance conditions (Galmés 
et al. 2014). Plants with simultaneous stimulation of RuBP 
regeneration and electron transport can improve their WUEi 
due to better photosynthetic capacity (López-Calcagno et al. 
2020). Other alternatives to improve the WUE13C/bio would be 
decreasing photorespiration by means of higher Rubisco ef-
ficiency for CO2 (Whitney et al. 2011; Parry et al. 2013) or 
altering the photorespiratory CO2 release by adjusting meta-
bolic pathways in leaves (Peterhansel and Maurino 2011). 
Total leaf N content shows a significant positive impact on 
the carboxylation capacity of plants (Wright et al. 2003; 
Paillassa et al. 2020). The identification of specific amino 
acids affecting Rubisco kinetics (Orr et al. 2016) may provide 
suitable targets for improving CO2 assimilation and conse-
quently WUEi (Nadal and Flexas 2019). Further exploration 
of optimization of Rubisco activity can positively influence 
the WUE of plants without any direct trade-off with growth 
capacity and yield of crops.

Respiration
Carbon loss through respiration is another process that de-
creases WUEbio (Seibt et al. 2008; Gago et al. 2014; Tortosa 
et al. 2016). Plants with lower maintenance respiration rates 
can maintain higher WUEbio. Moreover, respiration could be 
considered the main factor behind the gap between WUEi 
and whole-plant WUEbio (Medrano et al. 2017). High respira-
tory losses were linked to lower WUEbio of C4 Miscanthus 
x gigantus located in USA drylands (Maleski et al. 2019). 
Greater night-time respiration (i.e. high nocturnal transpir-
ation) has been also recognized as one of the major factors be-
hind the reduction of WUEbio under magnesium deficiency of 
barley (Tränkner et al. 2016). High VPD fluxes led to larger 
reductions in photosynthesis in comparison to respiration, 
which decreased the overall productivity and WUEbio of plants 
from a semi-arid ecosystem (Roby et al. 2020). The higher 
stability of mitochondria and susceptibility of chloroplasts, 
especially PSII, to abiotic stress can negatively influence the 
balance between carbon assimilation and respiration towards 
lower WUEi (Dahal and Vanlerberghe 2017). Root respiration 
explained around 40 % of WUEbio reduction in both well-
irrigated and non-irrigated treatments of grapevine (Tomás 
et al. 2014b). Root respiration might be a major component 
of total plant respiration and thus an important target for 
further exploration for WUEbio optimization (Escalona et al. 
2012). Leaf development (maturation) connected with greater 
respiratory losses could be seen as an additional constraint 
to long-term WUE13C (Zufferey 2016; Hernández-Montes et 
al. 2019). There is a still lack of precise quantification of day 
respiration or night-time respiration effect on whole-plant 
WUEbio and further research is needed. Nevertheless, res-
piration is connected with plant growth and fruit ripening. 
Therefore, plant breeding or genetic manipulation efforts that 
would aim at reducing respiration rates would probably lead 
to a significant reduction of growth and/or yield. Higher re-
spiratory losses could be also linked to the upregulation of 
antioxidant systems and artificial reduction of respiration 

could be therefore defective. The inclusion of respiration for 
WUE calculation creates a more robust estimate, which im-
proves the correlation with whole-plant WUEbio (Cernusak et 
al. 2007; Zhang et al. 2019). For example, Senbayram et al. 
(2015) have shown that the 9.8–48.6 % beneficiary effect of 
nitrogen fertilization on daytime WUEi was lost when noc-
turnal stomatal conductance and night-time respiration were 
taken into consideration. Therefore, the respiratory aspect of 
carbon balance should not be neglected for correct total plant 
WUEbio estimates.

Leaf Anatomy and Plant Crown Architecture
Leaf anatomy can affect the mesophyll diffusion conductance 
to CO2, carboxylation capacity and ultimately WUE in plants 
(Tomás et al. 2013; Carriquí et al. 2015). Increasing internal 
air volume might have positive effects on WUEi (Mediavilla et 
al. 2001), probably due to enhanced internal CO2 conductance 
to the site of carboxylation. Similarly, Guerfel et al. (2009) 
reported more efficient water use associated with thicker pal-
isade parenchyma in olive trees. The leaves’ architecture can 
influence the WUEi due to variable mesophyll porosity and 
SD to intercellular airspace volume ratio in coniferous tree 
species (Trueba et al. 2022), and cell wall properties such as 
cell wall thickness (Tcw) might influence gm and thus WUEi 
(Flexas et al. 2021; Pathare et al. 2023). Mutant rice popula-
tions with higher leaf mass per area (LMA) showed improved 
whole-plant WUEbio under both control and water-limited 
conditions (Reddy et al. 2020a). In the study by Horike et 
al. (2021), WUEi of five shrub species covaried with LMA 
under drought stress. LMA differences explained WUE13C 
variance across rice mutants through its influence on carbon 
gain (Reddy et al. 2020b). A study by Medrano et al. (2009) 
also reported a positive correlation between WUEi and LMA 
in Mediterranean herbs and shrubs. Similarly, LMA was posi-
tively correlated with WUE13C among trees (Betula, Larix, 
Pinus) in the boreal forest (Ge et al. 2022). A thicker leaf 
can be associated with a thicker boundary layer, which lowers 
transpiratory losses and ultimately improves WUEbio (Bramley 
et al. 2013). The manipulation of leaf anatomy has been pro-
posed as a potential theoretical target for improving photo-
synthetic capacity and WUE in plants (Tholen et al. 2012). 
The development of plants with thicker leaves and high in-
ternal air volume can theoretically improve their WUE.

Further macro-morphological constraint, which af-
fects the whole-plant WUEbio, is plant crown architecture 
(Christina et al. 2016; Medrano et al. 2017; McNeil et al. 
2023). A more complex crown architecture creates shade 
for inner leaves, which can reduce evaporative demand 
and therefore improve WUE balance. A positive effect of 
shading treatment on leaf-level WUEi has been observed for 
Actinidia chinensis (Chartzoulakis et al. 1993), A. deliciosa 
(Montanaro et al. 2009), Citrus aurantium (García-Sánchez 
et al. 2015), C. sinensis (Jifon et al. 2003; Syvertsen et 
al. 2003), Coffea arabica (Liu et al. 2018b) and Fragaria 
×ananassa (Cordoba-Novoa et al. 2022). It is notable to 
say that shade leaves are optimized for low irradiance and 
if exposed to direct sunlight (crown damage) they can show 
decreased WUEi (Dai et al. 2009). Moreover, the leaves of 
Pinus taeda in the lower parts of the crown showed sig-
nificantly higher WUEi in comparison to the upper part 
during the peak of the vegetation season (Blazier et al. 
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2004). The WUE13C derived from wood in Fagus crenata 
and Quercus crispula showed a positive correlation with 
tree height, crown depth and crown width (Osada et al. 
2004). Furthermore, Glenn et al. (2015) showed that the 
less complex pillar form of Prunus persica had lower WUEi 
due to higher canopy transpiration in comparison to the 
common crown form. Leaf area index (LAI) as an indicator 
of crown density also shows a positive impact on WUEbio 
across various terrestrial ecosystem types (Li et al. 2018; 
Luo et al. 2022). The raising WUEbio of Alpine grasslands 
has been also linked to increasing LAI (Ma and Zhang 
2022). Nevertheless, higher LAI and therefore greater total 
transpiration can be detrimental for arid regions where it 
can have a negative impact on WUEbio (Malone et al. 2016). 
More complex crown architecture and higher LAI can en-
able plants to optimize and improve their whole-plant WUE 
due to the shading effect and probably also due to better 
microclimatic conditions within the crown.

Conclusion and Future Prospects
The WUE balance of plants is multifaceted and affected at 
multiple levels of organization from molecular to whole-plant 
level. The main constraining factors identified in this review 
were stomatal morphology and control, minimal and noc-
turnal conductance, mesophyll conductance, carboxylation 
efficiency, respiration rates, leaf anatomy and crown architec-
ture. The traits are usually analysed in research papers separ-
ately or in specific combinations (e.g. stomatal morphology 
and gas exchange). We suggest that future research should 
include multi-trait analyses with the aim of WUE optimiza-
tion, thereby deepening our understanding of the coupling 
and decoupling of carbon uptake and water-use traits. The 
technological progress of phenotyping platforms can lead to 
more robust experimental designs that could handle multi-
trait analysis. The night-time transpiration and respiration 
seem to be under-developed major aspects of long-term WUE 
optimization, which could be further investigated. The ef-
fect of leaf hydraulic conductance and canopy structure on 
WUE is also not very well understood and can be improved. 
A better understanding of morpho-physiological constraints 
of WUE can help us to effectively develop more drought-
resilient crop and tree species.
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