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Abstract

Cyber-physical systems (CPSs) constitute the backbone of critical infrastructures such as power grids or water distribution
networks. Operating failures in these systems can cause serious risks for society. To avoid or minimize downtime, oper-
ators require real-time awareness about critical incidents. However, online event identification in CPSs is challenged by
the complex interdependency of numerous physical and digital components, requiring to take cyber attacks and physical
failures equally into account. The online event identification problem is further complicated through the lack of historical
observations of critical but rare events, and the continuous evolution of cyber attack strategies. This work introduces and
demonstrates CyPhERS, a Cyber-Physical Event Reasoning System. CyPhERS provides real-time information pertain-
ing the occurrence, location, physical impact, and root cause of potentially critical events in CPSs, without the need for
historical event observations. Key novelty of CyPhERS is the capability to generate informative and interpretable event
signatures of known and unknown types of both cyber attacks and physical failures. The concept is evaluated and bench-
marked on a demonstration case that comprises a multitude of attack and fault events targeting various components of
a CPS. The results demonstrate that the event signatures provide relevant and inferable information on both known and
unknown event types.
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1. Introduction

The recent development of critical infrastructure such as power grids and water distribution networks is driven by dig-
italization and automation. The closed-loop integration of physical processes with computer systems and communication
technologies renders them cyber-physical systems (CPSs). In such systems, critical incidents can arise from failures of a
variety of interconnected physical and digital devices [1, 2]. The increasing trend of connecting critical infrastructure to
the internet adds cyber attacks as another dimension of possible incident causes [3]. Cyber attacks against CPSs constitute
a particular risk, as they can entail damage to physical equipment or even humans. Appropriate countermeasures for criti-
cal incidents are facilitated by real-time information about affected devices, root causes and physical impact. As incidents
can be caused by failure or attack against a variety of physical and digital devices, integrated monitoring of the cyber and
physical domain is advantageous [4]. The problem is further complicated by new attack types or unseen physical failures,
where no prior knowledge is available for event identification. Consequently, a monitoring system for CPSs is required
which provides real-time information about unknown and known types of both cyber attacks and physical failures.

Nowadays, monitoring of the cyber and physical domain is largely conducted in isolated silos, for example through
intrusion or fault detection systems. Some recent works propose integration of both through supervised machine learning
(ML) [5, 6]. While these approaches excel as they automate event identification, they come with two inherent drawbacks:
1) Substantial amounts of naturally scarce historical attack and fault samples are required. 2) Inability to provide infor-
mation on unknown event types. These shortcomings motivate the following question: How can operators of CPSs be
provided with relevant information for real-time incident response, given the lack of historical critical event observations
and the variety of known and unknown attack and fault types potentially affecting different physical or digital components
of a CPS? To address this question, this work proposes CyPhERS, a new Cyber-Physical Event Reasoning System (see
Fig. 1). CyPhERS comprises a two-stage process which infers event information such as occurrence, location, root cause,
and physical impact from joint evaluation of network traffic and physical process data in real time. Stage 1 creates informa-
tive event signatures of unknown and known cyber attacks and faults by combining methods including cyber-physical data
fusion, unsupervised multivariate time series anomaly detection, and anomaly type differentiation. In Stage 2, the event
signatures are evaluated either by automated matching with a signature database of known events, or through manual
interpretation by the operator.
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Figure 1: Schematic representation of CyPhERS.

1.1. Related works
Literature on attack or fault identification for CPSs is rich [1, 7–12]. Many works propose methods which are inde-

pendent of historical event observations, and able to detect both known and unknown events. Table 1 summarizes these
approaches and classifies them by the groups A-C. Conceptual differences exist in the considered data sources (process
data, network traffic or both), and the information they provide (e.g., event occurrence, location or impact). A description
of methods falling under group A-C is provided in Section 1.1.1. Thereafter, a comparison with CyPhERS follows in
Section 1.1.2.

1.1.1. Existing event identification concepts for CPSs
Group A. Works summarized in group A are conceptually characterized by the joint evaluation of multiple CPS variables
(e.g., multiple sensor readings), where considered variables are derived either exclusively from physical process [13–
15] or network traffic data [16]. Unsupervised multivariate time series anomaly detection is applied to detect deviations
from normal behavior induced by attacks or faults. Their output is a binary description of the system state (normal
vs. abnormal). Differences among the works mainly exist in the applied ML models and detection rules. The proposed
methods can detect unknown and known attack or fault types in real time, given that these entail anomalies in the monitored
data. However, as they provide system-wide anomaly flags they only inform about occurrence of an event, while further
information, e.g., affected devices or event type, is neglected. Moreover, their restriction to either network or process
data limits the events they can detect. While exclusively monitoring network data is blind to physical faults and physical
impacts of cyber attacks, limiting to process data misses pure cyber events and only detects cyber-physical attacks when
their impact on the system already happened.

Group B. Methods falling under group B apply unsupervised multivariate time series anomaly detection either on pro-
cess [17–23] or network data [24, 25], similar to group A. Central difference is the provision of feature-level rather than
system-wide anomaly flags. By identifying the system variables with the highest individual anomaly scores, affected com-
ponents are localized in the CPSs. Thus, these concepts provide additional information about detected events to operators.
However, the scores only describe the intensity of the deviation from normal behavior, while further characteristics of an
anomaly (i.e., polytypic anomaly flags), for example the direction of the deviation or occurrence of missing data, are not
considered. Consequently, information on the physical impact or root causes is limited. Moreover, as for group A, moni-
toring is limited to either network or process data. Consequently, they cannot detect and distinguish anomalies induced by
both cyber attacks and physical failures.

Group C. Methods in group C apply unsupervised multivariate time series anomaly detection to features of both process
and network data [26–28]. Consequently, they are equally capable of detecting anomalies caused by cyber attacks and
physical failures. Moreover, compared to the subset of methods from group A and B which only monitors process data,
cyber-physical attacks can be detected earlier and potentially before impacting the process. However, only system-wide
monotypic anomaly flags are provided. Therefore, these methods only inform operators about the occurrence of an event
without further context information. In contrast to the concepts represented by group A and B, literature on cyber-physical
unsupervised anomaly detection for CPSs is rare.

Table 1: Comparison of CyPhERS to existing event sample-independent attack or fault identification concepts.

Group Concept description Event coverage Early detection Localization Cause & impact identification

A
Multivariate physical or network features,
system-wide monotypic anomaly flags o o − −

B
Multivariate physical or network features,
feature-level monotypic anomaly flags o o o −

C
Multivariate physical and network features,
system-wide monotypic anomaly flags + + − −

CyPhERS
Multivariate physical and network features,
feature-level polytypic anomaly flags + + + +

2



1.1.2. Comparison of existing concepts to CyPhERS
CyPhERS combines strategies of the described concepts (group A-C), such as fusion of process and network data,

unsupervised multivariate time series anomaly detection, and provision of feature-level anomaly flags (see Table 1). It
further leverages their associated advantages by considering polytypic anomaly flags. Together, this allows CyPhERS to
generate highly informative and recognizable event signatures in Stage 1 (see Fig. 1). Moreover, CyPhERS comprises
strategies for manual and automated evaluation of the event signatures (Stage 2).

1.2. Contribution and paper structure
The main contributions of this work are as follows:

• Introduction of CyPhERS, a cyber-physical event reasoning system which provides real-time information about
unknown and known attack and fault types in CPSs, while being independent of historical event observations.

• Concept demonstration, evaluation and benchmarking on a CPS study case, considering a variety of attack and fault
types affecting several system components.

• Discussion of possible modifications to further improve and extend CyPhERS.

The remainder of the paper is structured as follows: In Section 2, CyPhERS is conceptually introduced. The considered
demonstration case is presented in Section 3. Section 4 explains methodological details of CyPhERS, and demonstrates
its implementation on the given case. In Section 5, results of applying CyPhERS on the study case are presented. Finally,
demonstration results are discussed in Section 6, followed by a conclusion and view on future work in Section 7.

2. Conceptual introduction of CyPhERS

This section introduces the two stages of CyPhERS at a conceptual level. Section 2.1 provides details on the on-
line event signature creation (Stage 1). Thereafter, signature evaluation (Stage 2) is explained in Section 2.2. Finally,
Section 2.3 provides a taxonomy of CPSs that CyPhERS can be applied to.

2.1. Online event signature creation (Stage 1)
Stage 1 of CyPhERS is schematically outlined in Fig. 2. To provide event signatures that contain information about

occurrence, location, root cause and physical impact of unknown and known types of both attacks and faults in real time,
CyPhERS combines several strategies, which are introduced in the following.

Online event signature creation (Stage 1)

Raw CPS data

Physical
process data

Cyber
network data
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external data
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(Section 4.1) (Section 4.3)

(Section 4.2)
i

i
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Figure 2: Schematic overview of CyPhERS’ online event signature creation (Stage 1).

2.1.1. Multi-domain information
First element is the fusion and joint evaluation of physical process and cyber network data of a CPS (see Fig. 2), which

is required for real-time detection and differentiation of attacks and failures. Moreover, cyber-physical monitoring allows
to determine whether a cyber attack already entails physical impact or detect it early enough in network traffic to mitigate
damage through countermeasures such as isolation of affected devices. Other data such as maintenance activities and
schedules (human domain) can potentially be included to take human errors into consideration.
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2.1.2. Feature-level monitoring
Second element is the individual monitoring of multiple system variables (see Fig. 2), aiming for a more detailed

picture of critical events in contrast to monitoring the system state. Within CyPhERS, the set of monitored variables is
multivariate in two dimensions:

• Monitoring variables of multiple physical and network components (cross-device multivariate monitoring).

• Monitoring several variables of a single component (in-device multivariate monitoring).

While cross-device multivariate monitoring aims at localizing affected devices, in-device multivariate monitoring is sup-
posed to provide further details about a component’s abnormal behavior. The monitored system variables are derived, for
example, from sensor measurements or traffic of network devices. In the following, the resulting set of monitored system
variables is referred to as target features, with I being the physical target feature and J the network target feature subset.
The time series of an arbitrary target feature c is defined as Xc = {xc

1, x
c
2, ..., x

c
N | x

c
i ∈ R ∀i}. Details on the extraction of

target features follow in Section 4.1.

2.1.3. Unsupervised time series anomaly detection considering covariates
CyPhERS applies unsupervised time series anomaly detection1 to identify the occurrence of critical events. Time

series models are applied to provide normal behavior references of individual target features, which are compared to
actual observations for detecting abnormal system behavior. Central argument is the independence of historical event
observations, and ability to detect both known and unknown event types, given that they entail anomalies. Monitoring
target features in time series format allows to detect deviations from normal behavior which are only abnormal in a specific
temporal context (local anomalies) [29]. Furthermore, covariates are considered for time series modeling. Covariates allow
to provide models with further system internal or external information (see Fig. 2). As a result, situational anomalies can
be detected which are only abnormal in the context of the provided covariates. A covariate time series of a target feature c
is defined as Zc = {zc

1, z
c
2, ..., z

c
N | z

c
i ∈ R ∀i}. Covariate extraction is detailed in Section 4.2.

2.1.4. Differentiation of anomaly types
The fourth element is the semantic differentiation of multiple anomaly types (see Fig. 2). In case that an anomaly

is flagged for a target feature c, it is further classified based on information such as the direction of the deviation (e.g.,
abnormally many data packets received by network device X). Considering various anomaly types provides additional
information for identification of event root causes and impact. The series of flags provided by the signature extraction
system for a target feature c is given as vc = {vc

1, v
c
2, ..., v

c
N | v

c
i ∈ {−2,−1, 0, 1, 2} ∀i}. A detailed explanation of the signature

extraction system, including anomaly types, follows in Section 4.3.

2.1.5. Event signature visualization
By covering multiple domains, system variables and anomaly types, Stage 1 of CyPhERS provides dense information

about critical events in form of anomaly flag series of a set of target features. To ease extraction of these information,
the flag series are re-organized by grouping them for each system zone of a CPS (see Fig. 2). A system zone comprises
a group of physical components and network devices which are directly related, such as a set of physically connected
process units and a programmable logic controller (PLC) monitoring and controlling them. Due to the logical relation
within a system zone, anomaly flags of different target features can be quickly related. As a result, Stage 1 of CyPhERS
provides information-rich and human-readable event signatures.

2.2. Signature evaluation (Stage 2)
The concept of CyPhERS’ Stage 2 is schematically depicted in Fig. 3. In Stage 2, the event signatures of Stage 1 are

evaluated, which can be realized through interpretation by human operators as well as by automated reasoning systems.
The provided signatures are event specific and distinguishable. Thus, for known attacks or faults they can be predefined
and stored in a database. Once Stage 1 indicates occurrence of an event, the associated signature can be compared to the
database. In case of a signature match, the stored information about event type, affected component, root cause, and/or
physical impact provide the event hypothesis. Signature matching can either be conducted by the operator through visual
comparison or an automated evaluation system. One automation approach would be the transformation of a signature into
a set of rules, e.g.,

flagging of (anomaly type 1 in target feature X) and (type 2 in target feature Y)
indicates (device A being targeted by attack type B causing physical impact C).
Signatures can also be defined for unknown event types based on partial knowledge. In this instance, they carry reduced

information, e.g.,
flagging of (anomaly type 1 in target feature X)
indicates (device A failure [type unknown] causing physical impact B).
In case of unknown or undefined signatures, automated evaluation cannot infer event information. In these situations,

operators may deduce information such as affected system components or physical impact based on process expertise. The
minimum information CyPhERS provides in any event case is the occurrence of abnormal system behavior.

1Sometimes referred to as self-supervised anomaly detection.
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Figure 3: Schematic overview of CyPhERS’ signature evaluation (Stage 2).

2.3. Application scope of CyPhERS
The CyPhERS concept is applicable to CPSs which fulfill the following requirements: 1) Real-time data availability of

and 2) learnable normal behavior patterns in both process and network traffic data. CPS traffic typically exhibits periodical
patterns as it arises from automated processes (e.g., polling) in static network architectures with a consistent number of
devices [30]. Moreover, many technical systems exhibit learnable process patterns, including manufacturing processes
[31], transportation systems [32], water distribution systems [33], and spacecraft [34]. A potentially complicating factor
is process volatility and randomness, which, for example, can result from unpredictable weather or user influences. While
CyPhERS is conceptually applicable to most CPS types, its implementation requires some case specific adaptations given
the heterogeneity of processes and network architectures. These include selection or definition of target features, anomaly
types, and known event signatures. Among instances of the same system type (e.g., health monitoring system of a specific
provider), the implementation of CyPhERS is fully transferable.

3. Demonstration case description

This section describes the considered demonstration case, which is introduced by Faramondi et al. in [35]. The
underlying CPS is detailed in Section 3.1. Thereafter, included attack and fault scenarios, and the associated dataset
are described in Section 3.2. The demonstration case was selected as the only complete cyber-physical dataset which
describes various types of both cyber attacks and physical faults affecting different system components. The physical
process represents a typical CPS laboratory setup.

3.1. Cyber-physical structure of demonstration case
Fig. 4 provides a simplified overview of the investigated CPS. The system distributes water between several tanks,

where one process cycle is defined by a filling/emptying process of all tanks. This procedure is continuously repeated,
making it a cyclical process. The physical system comprises eight water tanks (T1-T8), a reservoir, and several sensors
and actuators. Actuators include valves (V10-V22) and pumps (P1-P6), which realize the water distribution between the
tanks. Note that for better readability not all sensors and actuators are depicted in Fig. 4. Pressure sensors in T1-T8
and flow sensors (FSs) (FS1-FS4) measure tank fill levels H and water flows F, respectively. The process is monitored
and controlled by a typical supervisory control and data acquisition (SCADA) architecture consisting of the sensors and

Reservoir T1 T5

T4

T3T2

T6 T7 T8

PLC4PLC3PLC2PLC1

HMI

FS2FS1

FS4

V22

P2

P1

P4 V20 P5 P6

V18

V17

V10/11/12
V13/14/15

SCADA zone

Process zone 1 Process zone 4Process zone 3Process zone 2

Water flow
Data flow

Figure 4: Simplified overview of the demonstration case CPS based on schematic representations in [35].
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actuators (field instrumentation control layer), four PLCs (process control layer), and a SCADA workstation, including a
human-machine interface (HMI) and data historian (supervisory control layer). The SCADA workstation, HMI and data
historian together are referred to HMI in the following. The communication is conducted via MODBUS TCP/IP protocol.
The process consists of four stages, each of which is controlled by one of the four PLCs. The PLCs send sensor values to
the SCADA workstation, so that physical process data can be stored centrally on the historian. Moreover, values of tank
fill levels H and water flows F are directly exchanged between the PLCs and FSs, which they require to control tank fill
levels by (de-)activating pumps and valves. While most sensors and actuators are connected to the PLCs via wired links,
FS1 and FS2 are MODBUS TCP/IP sensors with own IP addresses. Thus, the communication network in total consists
of seven devices, which are marked red in Fig. 4. Note that an additional Kali Linux machine was used to launch cyber
attacks, which is not depicted in Fig. 4.

3.2. Threat scenarios and dataset
The dataset comprises four partitions, each covering multiple process cycles. While the first partition describes a

normal operation scenario (S0) the remaining three describe attack and fault scenarios (S1-S3). S1-S3 exhibit an increasing
level of event type variety. S1 includes several physical component breakdowns and water leaks as well as man-in-
the-middle (MITM) attacks. In MITM attacks a perpetrator positions himself between two victim devices to relay and
potentially alter communication while the victims assume a direct communication [36]. In the present case, the attacker
modifies H values send by victim one, which are required by victim two to control fill levels of tanks in the respective
process zone. In S2, denial-of-service (DoS) attacks are additionally included. These cause a disconnection of the targeted
device from the network by flooding it with requests [37]. In the investigated dataset, several DoS attack variants are used
to disconnect specific PLCs or the SCADA workstation. Finally, S3 adds scanning attacks. Scanning is a reconnaissance
method used by attackers to determine possible vulnerabilities by searching for services and service identifiers in a target
network or host [38]. The given case considers several scanning attacks, which are used to gather information about various
PLCs. Note that S1-S3 comprise of unique attack and fault events affecting various components and communications links
in the system, so that each scenario represents an entirely new case. In total, eight MITM, five DoS, and seven scanning
attacks as well as three water leaks and six sensor or pump breakdowns are included. The considered attack types are
among the most relevant for CPSs [39–42]. Table 2 lists the raw physical and network features of the dataset. The physical
data has a constant one-second resolution, resulting in 3429 (S0), 2421 (S1), 2105 (S2), and 1255 (S3) samples. The
network data during normal operation (S0) on average contains 2265 packets per second, and in total comprises ∼7.8 (S0),
∼5.5 (S1), ∼5.2 (S2), and ∼5.9 (S3) ×106 packets. For a more detailed explanation of the demonstration case the reader is
referred to [35].

Table 2: Raw network and process features within the study case.

No. Physical features No. Network features
1 Timestamp 1 Timestamp

2-9 Fill level H of T1-T8 2-3 IP address (src. & dst.)a

10-15 Activation state S of P1-P6 4-5 MAC address (src. & dst.)

16-19
Flow value F measured by
FS1-FS4

6-7 Port (src. & dst.)
8 Protocol

20-41 Activation state S of V1-V22 9 TCP flags
10 Packet size
11 MODBUS function code
12 MODBUS response value

13-14 No. of packets (src. & dst.)
aSrc. and dst. refer to source and destination, respectively.

4. Methodology and implementation of CyPhERS

This section first provides details on the methodology and case-specific implementation of the online event signature
creation (Stage 1). This includes extraction of target features (Section 4.1) and covariates (Section 4.2) as well as the
signature extraction system (Section 4.3). Thereafter, methodology and case-specific implementation of the event signature
evaluation (Stage 2) is detailed in Section 4.4.

4.1. Target feature extraction
Methodology. The landscape of CPSs is characterized by a pronounced heterogeneity, resulting from factors such as the
diversity of physical components (e.g., tanks, engines or batteries) and communication protocols (e.g., MODBUS, UDP or
DNP). Thus, a general set of target features cannot be defined. Nevertheless, guidelines for extraction of relevant features
can be provided.

CyPhERS considers sensor measurements and actuator states as raw physical process data. Monitoring such data has
two motivations, namely the identification of i) true physical events and ii) manipulation of process-relevant data. The
former requires features which represent the behavior (e.g., state or output) of all physical components of a CPS to 1)

6



localize affected devices and 2) infer the impact on them. For the latter, readings exchanged among devices for automated
process control need to be monitored. For processes exhibiting low randomness and noise levels, raw sensor readings can
directly be used as physical target features. Otherwise, further processing is required to extract the available information.
Strategies include resampling (e.g., moving average) or derivation of features which describe a component’s behavior on
a simplified level (e.g., on/off state).

In CyPhERS, network target features are extracted from OT network traffic2 of a CPS. Traffic monitoring is considered
to retain information for i) localizing affected digital devices, and ii) concluding on attack types. For the former, traffic
of each network device is monitored separately. The latter requires extraction of several features for each device in order
to provide sufficient information for distinguishing attack types. Detecting and differentiating attacks is challenged by
the fact that some solely concern individual packets (e.g., sending a malicious control command), while others are only
visible from the context of multiple packets (e.g., replaying valid data transmission). Therefore, CyPhERS considers both
extraction of network features which i) are sensible to values of single packets (e.g., count of packets send from unknown
source IP or MAC addresses), and ii) set multiple packets into context (e.g., average number of received packets within a
time period).

Case-specific implementation. In the present demonstration case, noise in the raw physical features is comparatively low,
which allows direct use as target features with original per-second resolution. For the sake of clarity, not all available
sensor readings and actuators states are taken into account. Instead, fill levels H of the water tanks are considered, as
they allow to monitor all four process steps, and describe the behavior of the most important components. The network
traffic is separately monitored for PLC1-4, FS1-2 and the HMI. For this purpose, it is first filtered by the destination MAC
addresses and then evaluated for each second through several features. An overview of the resulting set of physical I and
network target features J can be found in Table 3.

Table 3: Overview of target features extracted in the study case.

No. Physical target features I No. Network target featuresa J

1-8 Fill level H of T1-T8 1-7 Average packet size spacket
8-14 Packet count npacket

15-21 New src. IP/MAC count nIP/MAC
22-28 New TCP flags count nTCP
29-35 Mean of encoded TCP flagsb µTCP
36-42 Different src. ports count nports

aFor PLC1-4, FS1-2 and HMI, each considered as destination device.
bEach flag type is encoded as a specific integer.

4.2. Covariate extraction
Methodology. As for target features, extraction of covariates is dependent on the respective CPS. In any case, however,
they should represent process-relevant context such as environmental conditions or human interactions. Examples are
irradiation for solar plants or user intervention in case of self-driving cars. Such information allows models to learn
whether an event is normal or abnormal given the current context. For example, irradiation facilitates differentiation of
normal weather- or malicious attacker-induced drops of solar feed-in power. CPSs often exhibit repeating processes. In
such cases, covariates which inform models about the current position in a cycle (e.g., process stage or time of the day)
provide valuable context information. CyPhERS considers sine and cosine transformation [43] of such cyclical covariates,
which is schematically represented in Fig. 5. Let Zc = {zc

1, z
c
2, ..., z

c
N | z

c
i ∈ R ∀i} be a cyclical covariate time series of length

N for a target feature c. Within one cycle, values of Zc are linearly increasing on the range zc
i ∈ [min(Zc),max(Zc)]. Due

to the jump discontinuity between two cycles, a linear representation cannot properly describe the continuity of cyclical
processes. To eliminate the discontinuity, values of Zc are transformed according to

zc
sin,i = sin

(
2πzc

i

max(Zc)

)
, and zc

cos,i = cos
(

2πzc
i

max(Zc)

)
, (1)

2Other potential data sources include system logs and key performance indicators of digital devices (e.g., memory usage).

0 0.2 0.4 0.6 0.8 1
−1

0

1

jump
discontinuitynot bijective

x (-)

y
(-

)

Zc

Zc
sin

Zc
cos

Figure 5: Illustration of sine and cosine transformation of cyclical covariates.
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∀i ∈ [1,N], resulting in the two new covariate time series Zc
sin and Zc

cos. The use of both sine and cosine transformation is
required as they individually are not bijective, which would lead to ambiguity in the transformed covariate (see Fig. 5).

Case-specific implementation. In the investigated study case, the normal progress of a process cycle is considered as
covariate time series Pc = {pc

1, p
c
2, ..., p

c
N | p

c
i ∈ R ∀i} of length N, ∀c ∈ I. Using S0 (normal operation scenario) the usual

duration dc of a process cycle is determined. Based on the duration, values of Pc are defined on the range pc
i ∈ [0, dc].

The additional covariate time series Pc
sin and Pc

cos are extracted ∀c ∈ I by applying sine and cosine transformation on the
values of Pc according to (1) with max(Pc) = dc.

4.3. Signature extraction system
The signature extraction system (see Fig. 2) follows the idea of applying individual anomaly detection and classification

pipelines to each target feature. Compared to the joint processing in one large model, several advantages exist: 1) The
complexity of time series models can be adjusted to individual target features. As features in CyPhERS originate from
very different sources (process data and network traffic), they exhibit strong variations in characteristics such as observation
rates and noise levels. 2) Independent definition of abnormal behavior for each system component. By selecting covariates
for individual target features, it is possible to define which context models should consider when deciding whether a
component is behaving abnormally. 3) Promotes a distributed implementation of CyPhERS on edge devices. As attackers
can manipulate data to hide induced physical impact from centralized monitoring [9], this facilitates detection of hidden
process manipulations.

The anomaly detection and classification pipelines are explained in Section 4.3.1. After that, Section 4.3.2 addresses
the forecasting models which are applied within the pipelines. Finally, the procedure for automated implementation of the
signature extraction system is detailed in Section 4.3.3.

4.3.1. Anomaly detection and classification pipelines
Methodology. The anomaly detection and classification pipeline of a target feature c is schematically depicted in Fig. 6.
A pipeline consists of two fundamental and consecutive steps, namely a time-series forecasting model and an anomaly
detector. Given Xc = {xc

1, x
c
2, ..., x

c
N | xc

i ∈ R ∀i} and Zc,1, ...,Zc,n = {{zc
1,1, z

c
1,2, ..., z

c
1,N}, ..., {z

c
n,1, z

c
n,2, ..., z

c
n,N}|z

c
j,i ∈R∀( j, i)}

of a target feature c, the forecasting model predicts the expected value x̂c
t at time t based on lag values xc

t−w, ..., x
c
t−1 and

covariates zc
1,t, ..., z

c
n,t according to

x̂c
t = Φ

(
[xc

t−w, ..., x
c
t−1], [zc

1,t, ..., z
c
n,t]

)
, (2)

where w is the length of the history window and n the number of covariates. Depending on the target feature, xc
t−w, ..., x

c
t−1

and zc
1,t, ..., z

c
n,t are only partially used as model input, which is specified in Section 4.3.2.

Next, the expected value x̂c
t and ground truth xc

t are forwarded to the anomaly detector. In CyPhERS, anomalies are
flagged based on multiple consecutive observations instead of only the most recent one, aiming at reducing noise-induced
false positives (FPs). For that purpose, the detector first calculates the average of the distances of the last l observations to
their respective expected values according to

εc
t =

∑l−1
j=0 |x

c
t− j − x̂c

t− j|

l
. (3)

Based on εc
t and further characteristics of the current target feature observations, the detector then differentiated several

anomaly types. While the definition of meaningful anomaly types is facilitated by taking process specificities of a CPS
into account, some widely applicable ones exist. Table 4 defines some of them. The listed types can be transferred into
the detector’s anomaly flag decision function according to

vc
t =



2 if (

Detection︷  ︸︸  ︷
εc

t > τc), (

Direction︷  ︸︸  ︷
xc

t > x̂c
t ) and [

Disruption︷                           ︸︸                           ︷
∃(xc

i = xc
i−1 or NaN) ∈ Xc

J]
1 if (εc

t > τc), (xc
t > x̂c

t ) and [∄(xc
i = xc

i−1 or NaN) ∈ Xc
J]

−1 if (εc
t > τc), (xc

t < x̂c
t ) and [∄(xc

i = xc
i−1 or NaN) ∈ Xc

J]
−2 if (εc

t > τc), (xc
t < x̂c

t ) and [∃(xc
i = xc

i−1 or NaN) ∈ Xc
J]

0 otherwise,

(4)

where τc is a target feature-specific threshold, and Xc
J = xc

t−l+1, ..., x
c
t the ground truth values within the distance averaging

window. The automated adaption of τc to individual target features is described in Section 4.3.3. The differentiation

Covariates (zc
1,t,...,z

c
n,t)

Lags (xc
t-w,...,xc

t-1)

Forecasts (x̂c
t-l,...,x̂

c
t )

Flag (vc
t )

Forecasting
model

Condition
Anomaly
detector

Ground truth (xc
t-l,...,x

c
t )

Figure 6: Schematic overview of the anomaly detection and classification pipeline of a target feature c.
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Table 4: Description of some general anomaly types.

Flag v Anomaly type Description Schematic

2 Positive
disrupted

Target feature positively differen-
tiates from normal behavior, ex-
hibiting static or NaN values.

1 Positive
undisrupted

Target feature positively differen-
tiates from normal behavior, not
exhibiting static or NaN values.

−1
Negative
undisrupted

Target feature negatively differen-
tiates from normal behavior, not
exhibiting static or NaN values.

−2
Negative
disrupted

Target feature negatively differen-
tiates from normal behavior, ex-
hibiting static or NaN values.

0 No anomaly No abnormal behavior.

between static and non-static behavior is neglected for target features exhibiting static values during normal operation,
which in this event reduces (4) to

vc∗
t =



2 if (

Detection︷  ︸︸  ︷
εc

t > τc), (

Direction︷  ︸︸  ︷
xc

t > x̂c
t ) and [

Disruption︷                 ︸︸                 ︷
∃(xc

i = NaN) ∈ Xc
J]

1 if (εc
t > τc), (xc

t > x̂c
t ) and [∄(xc

i = NaN) ∈ Xc
J]

−1 if (εc
t > τc), (xc

t < x̂c
t ) and [∄(xc

i = NaN) ∈ Xc
J]

−2 if (εc
t > τc), (xc

t < x̂c
t ) and [∃(xc

i = NaN) ∈ Xc
J]

0 otherwise.

(5)

Case-specific implementation. For the investigated study case, a distance averaging window l = 10 is selected for calcu-
lation of εc

t according to (3), ∀c ∈ I and J . Considered anomaly types correspond to the ones listed in Table 4. For HT7
and HT8 as well as nIP/MAC and nTCP of all network devices, the detector’s decision function reduces to (5) as they contain
static values during S0.

4.3.2. Forecasting models
Methodology. As some CPSs come with computational constraints, keeping model complexity at a required minimum is
favorable. The forecasting models used within the anomaly detection and classification pipelines (see Fig. 6) are inter-
changeable, which allows adapting their complexity to the specific characteristics of a target feature. Four target feature
property classes are differentiated in CyPhERS. These are listed in Table 5 together with feature examples and recom-
mended forecasting model types. Class A comprises target features exhibiting unchanged values during normal operation.
In these cases, a trivial constant-value forecast is sufficient, which simplifies (2) to x̂c

t = ac, where ac corresponds to the
constant value of the respective target feature during normal operation. In class B, continuous target features with covariate
availability are summarized, which typically includes physical sensor measurements. Due to the additional information
covariates provide, less complex forecasting models can be considered. The use of simple regression models (e.g., linear
regression) for modeling class B features according to (2) is recommended. Target features may also exhibit discrete values
(Class C) as in the case of actuator states. In this event, the use of ensemble models such as a random forest (RF) regressor
[44] is proposed for modeling features according to (2). The rationale behind using ensemble models for class C features
is their internal process of discretizing continuous variables, which facilitates prediction of sudden steps. Moreover, they

Table 5: Target feature property classes and proposed forecasting models.

Class Conditiona Model type Feature example

A Target features with
solely constant values Constant value Occurrence of new

IP address

B Continuous target fea-
tures with covariates

Simple regression
(e.g., linear or RF) Sensor measurements

C Target features with
discrete levels

Ensemble regre-
ssion (e.g., RF) States of actuators

D Continuous target fea-
tures without covariates

Deep-learning
(e.g., LSTM)

Number of transmitted
network packets

aConstant, continuous and discrete behavior relates to normal operation.
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are known for robustness, few parameters to tune and good performance compared to many other standard methods on a
variety of prediction problems [45, 46]. For a detailed theoretical description of ensemble models, the reader is referred
to [47]. Finally, Class D comprises continuous target features without availability of covariates. Since covariates are
neglected, (2) reduces to

x̂c
t = Φ([xc

t−w, ..., x
c
t−1]). (6)

Due to lack of additional information through covariates, more advanced models are required, which are capable of ex-
ploiting short and long-term temporal dependencies within a target feature. Thus, deep-learning-based forecasting models
are suggested for class D features. Prominent representatives are long short-term memory (LSTM) networks [48]. LSTMs
constitute a special architecture of neural networks capable of capturing complex long-term temporal dependencies in
sequential data, which makes them well suited for time series forecasting. Many works have demonstrated their superior
performance in various areas [49–51]. For a detailed theoretical description of LSTM networks, the reader is referred to
[52].

Case-specific implementation. In the investigated demonstration case, nIP/MAC and nTCP constitute constant target features
(class A), which hence are modeled with trivial constant value forecasts. All considered physical target features of the
study case (HT1-HT8) fall into class B. Thus, RF is selected as the regression model. As Pc, Pc

sin and Pc
cos are available as

supporting covariate time series, a comparatively short history window of w = 10 is considered. Table 6 lists the tuned
hyperparameters and their respective search spaces. The underlying model selection procedure is detailed in Section 4.3.3.
The RF models are implemented in Python using the forecasting-library Darts [53].

For forecasting the network target features, no supporting covariates are available. Thus, the set of non-constant net-
work target featuresJnc falls into property class D. Consequently, concerned features are modeled using LSTM networks.
To allow a LSTM to capture long-term dependencies, the history window is extended to w = 300, covering an entire
process cycle. In Table 6, the tuned hyperparameters and their respective search spaces are given. Implementation of the
LSTM models is realized in Python using the forecasting-library Darts [53].

Table 6: Hyperparameters and search spaces for RF and LSTM.

No. Hyperparametera Search space
RF (physical target features I )

1 Number of trees 1, 50, 100, 250, 500, 1000

2 Nr. of features for best
split determination 1, 3, 5, 7, 9, 11

LSTM (non-constant network target features J nc)
1 Number of LSTM layers 1, 2, 3
2 Batch size 32, 64
3 Number of epochs 100, 200, 500
4 Dropout rate 0, 0.2

5 Number of nodes in
LSTM layers 20, 50, 100

aFor other hyperparameters, default values from [53] are used.

4.3.3. Automated model and detector tuning procedure
Methodology. Implementing the signature extraction system requires performing the same automated tuning procedure
for the detection and classification pipelines of all target features, which is schematically represented in Fig. 7. First step
is the selection of forecasting models, which is concerned with the determination of appropriate target feature-specific
hyperparameters. The hyperparameters are selected based on a grid search using time series cross-validation on a train-
ing/validation set Xc

train/val of normal operation data. For each fold Xc
fold = {x

c
1, x

c
2, ..., x

c
Nfold
| xc

i ∈ R ∀i} of the cross-
validation, data is scaled to x̄c

i ∈ [0, 1] before training by

x̄c
i =

xc
i −min

(
Xc

train

)
max

(
Xc

train

)
−min

(
Xc

train

) , (7)

∀xc
i ∈ Xc

fold, where Xc
train corresponds to the first 75 % of the respective fold. In case a covariate time series Zc

train/val or
multiple of them are used, they are scaled in the same way as target features in (7). To finalize model selection, the
resulting forecasting models are retrained on the respective full training/validation set Xc

train/val, again on values scaled
according to (7), where now Xc

train = Xc
train/val.

After selecting appropriate forecasting models, the anomaly detectors (see Fig. 6) of all pipelines are fitted to the
respective target feature. For that purpose, a target feature-specific threshold τc is determined for each pipeline as follows.
First, the associated forecasting model is used to predict the expected values of a normal operation test set Xc

test based
on a rolling one-step ahead forecast. The expected values are required to calculate all averaged distances of the test set
Ec

test = {ε
c
1, ε

c
2, ..., ε

c
Ntest
| εc

i ∈ R ∀i}. Based on Ec
test and a threshold factor f , the feature-specific threshold is determined

according to
τc = f ·max

(
Ec

test
)
. (8)
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Figure 7: Automated tuning procedure of the anomaly detection and classification pipelines constituting the signature extraction system.

If a target feature exhibits a high noise level or if non-optimal hyperparameters are selected, max
(
Ec

test
)

increases due to
a weaker forecasting performance. Thus, according to (8), τc automatically adapts to the prediction performance of the
respective forecasting model. Objective of the proposed adaptive threshold is the reduction of FPs.

Next, to fully exploit available historical data, the selected forecasting models are retrained on the respective totality
of normal operation observations (Xc

train/val + Xc
test) and potentially covariates (Zc

train/val + Zc
test).

After tuning the forecasting models and anomaly detectors, the detection and classification pipelines are ready for op-
eration and can be applied to create anomaly flags for newly incoming observations Xc

op, which again are scaled according
to (7) with Xc

train = Xc
train/val. Finally, the resulting anomaly flags of individual pipelines are grouped for each system zone

of a CPS to obtain event signatures as output of CyPhERS’ Stage 1.

Case-specific implementation. In the considered study case, Xc
train/val and Zc

train/val are taken from the first 75 % and Xc
test

and Zc
test from the remaining 25 % of S0, ∀c ∈ I and J . Xc

op and Zc
op are provided by the three attack and fault scenarios

S1-S3, ∀c ∈ I and J . Moreover, the threshold factor f in (8) is specified to f = 1.5. Consequently, an anomaly within a
target feature c only is flagged if the average distance over the last 10 observations exceeds the biggest average distance
during normal operation by at least 50 %. The target features are grouped according to the system zones depicted in Fig. 4.

4.4. Signature evaluation (Stage 2)
Methodology. Signature evaluation in CyPhERS is based on manually or automatically matching anomaly flags provided
by Stage 1 with a database of known event signatures. The possible attack and fault types that can affect a CPS depend
on the system’s physical and digital components and architectures. Consequently, a set of event signatures which is
valid across all systems cannot be defined. However, some general anomaly flag interpretation rules which hold for most
CPSs have been identified, and are listed in Table 7. These general rules can be applied to create signature databases. They
range from simple principles, such as indication of affected system components through appearance of anomaly flags in the
associated target features (rule 1), to more complex anomaly flag patterns which point to specific attack or fault types (e.g.,
rule 12.2). Therefore, also signatures of different information detail can be defined, ranging from unclassified signatures,

Table 7: General anomaly flag interpretation rules for the definition of event signatures.

No. Rule description
1 Appearance of anomaly flags in a target feature indicates that the underlying physical or network component is affected (localization).
2 Anomaly flags exclusively in physical target features points towards a physical failure.
3 Anomaly flags exclusively in network target features, including flags which indicate malicious activitiesa, points towards a cyber attack.
4 Anomaly flags exclusively in network target features, without flags indicating malicious activitiesa, points towards a network (device) failure.
5 Flags in both physical and network target features, including flags indicating malicious activitiesa, points towards a cyber-physical attack.
6 Flags in ph. and netw. target features, w/o flags indicating mal. activitiesa, indicate a network (device) failure entailing physical impact.
7 Anomaly flags exclusively in physical target features of one component indicates a local failure without impact on other components.
8 Physically plausible and coherent flags in physical target features of multiple components indicates a problem of their physical connection.
9 Anomaly flags exclusively in network target features of one device indicates a local device problem w/o impact on the rest of the system.
9.1 Rule 9 together with flags indicating malicious activitya point towards a reconnaissance attack (e.g., scanning).
10 Flags simultaneously and exclusively in network target features of two netw. devices indicates a problem of their bilateral communication.
10.1 Rule 10 together with flags indicating malicious activitiesa for both devices point towards a MITM attack.
10.2 Rule 10.1 with flags in physical target features indicate a MITM attack which manipulates process relevant data entailing physical impact.
11 Flags in physical target features indicating data disruption point towards disconnection of the network device which sends the data.
11.1 Rule 11 together with flags indicating malicious activitiesa indicates a DoS attack against the disconnected device.
11.2 Rule 11.1 with flags in ph. target features which indicate true physical impact point towards DoS attack interrupting process relevant data.
12 Flags only in network target features of a device X and the ones connected to it indicate disconnection of device X.
12.1 Rule 12 together with flags indicating malicious activitiesa point towards a DoS attack ag. device X.
12.2 Rule 12.1 with flags in ph. target features which indicate true physical impact point towards DoS attack interrupting process relevant data.
aMalicious activities are, for example, communication with unknown devices or untypical connection requests from known devices.
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e.g. Unknown event type affecting device X, to specific event hypotheses, e.g. DoS attack against device
X entailing physical impact Y on component Z.

Case-specific implementation. Based on the general flag interpretation rules in Table 7, a set of known event signatures
is defined for the demonstration case. Fig. 8 visualizes them for selected victim devices, and on a reduced version of the
system. A description of the signatures is provided in Table 8. For the sake of clarity, flags in network target features are
grouped for each network device according to

ṽt =

{
1 (anomaly) if ∃(vc

t = 2, 1,−1 or − 2) ∈ VJt
0 (no anomaly) otherwise,

(9)

where VJt is the set of anomaly flags of one device at time t. However, note that the grouped network target features of
the victim devices during attacks must include flags indicating malicious activities (e.g., connection to unknown external
device) to fulfill the attack signatures. The differentiation between anomaly types is not applicable for the grouped anomaly
flags ṽt and thus neglected. For the demonstration of CyPhERS on the given study case in Section 5, manual recognition
of the defined event signatures is considered.
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Zone 1

Zone 2

Zone 3

Zone 4

Figure 8: Event signatures for the study case. The signatures are depicted for selected victim devices and physical impacts. Grouped network features
ṽcy of the victim devices include flags indicating malicious activities during attacks.

Table 8: Description of the event signatures depicted in Fig. 8, and applied anomaly flag interpretation rules.

Event signature Description Applied rules
A) Failure of a tank Abnormal high/low level of individual tank, no network anomaly. Thus, leak, in- or outflow failurea. 1,2,7
B) Failure of tank connection Parallel over-/underfill of linked tanks, no netw. anomaly. Thus, pump/valve failure or leak between thema. 1,2,8
C) Scan of a PLC Individual PLC affected, communication to unknown device with unusual TCP flags, no phy. anomalies. 1,3,9.1
D) MITM w/o phy. impact Simult. & excl. netw. anomalies in two conn. PLCs, both comm. with unknown device, no phy. anomalies. 1,3,10.1
D2) MITM w. over-/underfill Signature D with over-/underfill of tanks controlled by the victim PLCs. Manip. fill levels distract pumps. 1,5,10.2

E) DoS w/o phy. impact
Network anomalies only for a device X (e.g., a PLC) and the ones connected to it, physical data communi-
cated by device X disrupted, connection of device X to unknown device, no phy. plausible anomalies. 1,3,11.1,12.1

E2) DoS w. tank underfill Signature E with underfill of a tank controlled by a PLC which receives data from the disc. victim device. 1,5,11.2,12.2
aSpecific failure type can be concluded from anomaly flag directions and/or actuator type between tanks.

5. Demonstration

In this section, results of applying CyPhERS on the three attack and fault scenarios (S1-S3) of the demonstration
case are presented. In preparation of that, Section 5.1 explains how the considered alternative approaches are represented
for benchmarking, and Section 5.2 demonstrates attack signatures within ungrouped network target features. Thereafter,
S1-S3 are successively evaluated in the Sections 5.3-5.5. In that context, examination of S2 includes comparison with
the three benchmarks. The investigated dataset contains some wrong ground truth event lengths and labels as well as
further unlabeled anomalies. Thus, focus of this section is on a qualitative demonstration of CyPhERS since a meaningful
quantitative assessment is impractical under these circumstances.
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5.1. Benchmark concepts
As part of the following demonstration of CyPhERS, a qualitative comparison to the existing event identification

concepts introduced in Section 1.1 is conducted (group A-C). Group A is represented by considering only physical target
features of CyPhERS, and grouping associated flags to provide system-wide monotypic anomaly flags vCPS. CyPhERS’
physical target features without grouping their flags are considered for representing monotypic anomaly flags on feature
level (group B). For group C, anomaly flags in both physical and network target features together are grouped, providing
cyber-physical system-wide monotypic anomaly flags.

5.2. Attack signatures in ungrouped network target features
The subsequent evaluation of S1-S3 considers grouped network target features for clarity (see Section 4.4). To demon-

strate the appearance of the ungrouped flags that CyPhERS’ Stage 1 provides during MITM, DoS and scanning attacks,
they are depicted in Fig. 9 for selected network devices.
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(c)18:34 18:35 19:55 19:56 15:40 15:41

Figure 9: Flags in ungrouped network target features provided by CyPhERS’ Stage 1 for a) PLC1 during MITM, b) PLC1 during DoS and c) PLC3
during scanning attack.

During all three attack types malicious activities are flagged, which is a requirement of the pre-defined attack signatures
(see Fig. 8). These activities comprise communication with an unknown device (vnIP/MAC = 1) and use of unusual TCP
flags (vnTCP = 1). Fig. 9 further indicates that the different attack types also express in distinctive signatures within the
ungrouped network features. For example, DoS attacks result in pronounced anomaly flags on all features in contrast to
the others. Fig. 10 showcases this on a comparison to MITM attacks. While the DoS attack entails a global anomaly, the
MITM attack only results in a local one, primarily in the beginning and end of the attack3. While the differences within
ungrouped network features are not taken into account in the following demonstration of CyPhERS, they potentially can
be integrated to provide further information for distinction of different attack types.
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Figure 10: Anomalies in npacket of PLC1 induced by a (a) MITM and (b) DoS attack.

5.3. Evaluation of attack and fault scenario S1
The event signatures provided by CyPhERS’ Stage 1 during S1 are depicted in Fig. 11. The anomaly flags of tank

fill levels (vHT1 -vHT8 ) are located next to the grouped network feature flags ṽ of the PLC controlling the respective process
zone (see Fig. 4). The scenario comprises five MITM attacks and three physical faults, affecting several network devices
and physical components.

3Note that the detection of the MITM attack-induced local anomaly in Fig. 10 demonstrates the advantage of incorporating temporal information
through time series models, as motivated in Section 2.1.3.
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Figure 11: Event signatures of CyPhERS’ Stage 1 during scenario S1. Additional anomalies not labeled by [35] are marked using beige boxes, wrong
ground truth labels are given in parenthesis.

5.3.1. MITM attacks
From Fig. 11 it is visible that anomaly flags during MITM attacks either follow event signature D or D2 (see Fig. 8),

which allows to conclude on the attack type, victim devices, attacker location and physical impact4. For example, dur-
ing the third MITM attack (∼18:45), signature D2 indicates a MITM attack against PLC3 and PLC4 from an external
device entailing overfill of T7 (vHT7 = 1) and underfill of T8 (vHT8 = −1) due to failed pump activation as a result of
manipulated fill levels exchanged between the victim PLCs. Note that in all cases MITM-induced anomalies are flagged
in network features before the physical process is impacted, potentially allowing incident response mechanisms to take
timely countermeasures.

The modification of the physical process during the first and third MITM attack is comparatively strong. As a result, the
impact also extends over the next process cycle as well as consecutive tanks, which explains the two additional anomalies
indicated in Fig. 11. As an example, Fig. 12 depicts the abnormal behavior of T7 in the next process cycle after the first
MITM attack. The comparison with the subsequent process cycle clearly indicates that T7 remains filled for an unusually
long period.
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Ĥ

T
7

(c
m

)

0

1

v H
T

7
(-

)

Ground truth HT7

Prediction ĤT7
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Figure 12: Unlabeled anomaly of T7 during S1 as a result of the MITM attack in the previous process cycle.

5.3.2. Physical faults
Anomaly flags during physical faults follow event signature B (see Fig. 8), allowing to localize affected components,

and infer fault types and physical impact. For example, during the second fault (∼18:40) the provided signature indicates
a leak between T1 and T4, resulting in a simultaneous underfill of T1 (vHT1 = −1) and overfill of T4 (vHT4 = 1). During the
first and third fault, parallel anomalies from the previous MITM attacks complicate recognition of signature B. However,
as the flags for T7 and T8 can be explained by the preceding attacks, while a plausible connection to the abnormal behavior
of T2 and T3 cannot be derived, these two events can be disentangled.

Fig. 11 indicates that CyPhERS’ Stage 1 detects events at an early stage, and reliably differentiates anomaly types in
the beginning of events. However, the flags overrun the events for two reasons: Firstly, the CPS does not immediately re-
cover after an attack or fault, thus, anomalies naturally persist. Secondly, the anomaly detection and classification pipelines
exhibit a recovering phase after detected events. As the detector evaluates the average distance of several consecutive ob-
servations, anomalies are flagged for some more steps even though the system behavior is already normal. Moreover, while
passing an event, abnormal observations become the new model input, which manipulates the predictions entailing longer
anomaly flags and unreliable flag types. A concept improvement tackling this shortcoming is discussed in Section 6.2.

4According to [35], the last MITM attack is supposed to affect PLC3 and FS2. However, the anomaly flags point towards FS1 instead of FS2. A look
on Fig. 4 shows that PLC3 and FS2 in fact do not communicate, proving successful identification of a wrong label.
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5.4. Evaluation of attack and fault scenario S2
In the second scenario, DoS attacks are performed in addition to MITM attacks and physical faults. The event signa-

tures provided by CyPhERS’ Stage 1 during S2 are depicted in Fig. 13 together with the ones of the three benchmarks.
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Figure 13: Event signatures of CyPhERS’ Stage 1 and the three benchmarks during scenario S2. Additional anomalies not labeled by [35] are marked
using beige boxes, wrong ground truth labels are given in parenthesis.

5.4.1. MITM attacks and physical faults
Anomaly flags provided by CyPhERS during faults either follow signature A or B. Thus, the affected tanks are local-

ized, and pump or valve failures together with resulting physical impact inferred. The benchmarks providing system-wide
flags (Fig. 13 (a) and (c)) indicate fault-induced anomalies, however, do not provide information on affected components,
event types and physical impact. In contrast, flagging anomalies in individual physical features (Fig. 13 (b)) additionally
allows for localizing affected tanks. Nevertheless, the lack of network target features and anomaly type differentiation
renders identification of event types and physical impact infeasible.

Flags of CyPhERS during the two MITM attacks follow signature D2, allowing to conclude attack type, victims,
attacker location, and physical impact. During the last attack, no physical impact should exist according to [35]. However,
as can be seen from Fig. 14, T8 in fact exhibits abnormal behavior.
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Figure 14: Unlabeled anomaly of HT8 in S2 during the MITM attack against PLC3 and PLC4.

The benchmarks of group A and B only detect the physical impact of MITM attacks (see Fig. 13 (a) and (b)). As a
result, they exhibit high detection delays during the first one. Moreover, none of the three benchmarks can indicate that
anomalies are caused by a cyber attack.
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5.4.2. DoS attacks
The flags provided by CyPhERS’ Stage 1 during the two DoS attacks correspond to signature E or E2, allowing to

conclude on attack type, victim device, attacker location, and physical impacts. For example, in the second case, signature
E2 indicates a DoS attack against PLC1 from an external device, resulting in a slight underfill of T6 (vHT6 = −1) due to
interrupted communication of HT5 values from PLC1 to PLC2.

The three benchmarks neither indicate disconnection of a network device nor localize it, since they either only detect
DoS-induced anomalies in physical process data, or provide non-interpretable system-wide flags. Moreover, as they only
output monotypic flags, it cannot be inferred that most anomalies result from data disruption instead of true physical
events.

5.4.3. Unlabeled event
CyPhERS’ Stage 1 detects an unlabeled event in the beginning of S2, which is depicted in Fig. 15 on the example

of PLC2’s µTCP. Although the event signature is not known, fulfillment of flag interpretation rules 1 and 4 (see Table 7)
indicates a network failure only affecting PLC1-4 without physical impact. This example demonstrates how CyPhERS
provides real-time information including occurrence, affected devices, physical impact, and differentiation between net-
work failure and cyber attack also for unknown event types. The alternative detection strategies either entirely miss this
event (see Fig. 13 (a) and (b)) or cannot provide any more information than its occurrence (see Fig. 13 (c)).
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Figure 15: Anomaly in µTCP of PLC2 induced by an unlabeled event in S2.

5.5. Evaluation of attack and fault scenario S3
The third scenario adds scanning attacks to the previously evaluated attack and fault types. The event signatures

provided by CyPhERS’ Stage 1 during S3 are depicted in Fig. 16.
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Figure 16: Event signatures of CyPhERS’ Stage 1 during scenario S3. Additional anomalies not labeled by [35] are marked using beige boxes, wrong
ground truth labels are given in parenthesis.

5.5.1. Unlabeled events
Event 1. S3 is characterized by a fundamental process modification not indicated by [35]. Throughout the entire scenario,
anomalies are regularly flagged in vHT2 , vHT3 and vHT4 , as depicted in Fig. 17 for HT2. While the event signature is not
known, fulfillment of flag interpretation rules 1 and 2 (see Table 7) points towards a physical failure only affecting the two
sub-strings comprising T2-4 (see Fig. 4). For the sake of clarity, vHT2 , vHT3 and vHT4 are faded in Fig. 16.
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Figure 17: Unlabeled event of HT2, HT3 and HT4 throughout S3 on the example of HT2.

Event 2. CyPhERS’ Stage 1 indicates two further unlabeled anomalies in S3, which likely result from the same event.
The anomaly in network traffic of PLC1 is depicted in Fig. 18. Shortly after, a consecutive underfill of HT6, HT7 and HT8 is
indicated. Compliance with flag interpretation rules 1 and 6 suggest a network device failure of PLC1 potentially entailing
the underfill of T6-T8 due to interrupted communication of HT5 values from PLC1 to PLC2.

These two examples again showcase how CyPhERS provides real-time information for unknown event types including
occurrence, affected devices, physical impact, and differentiation between physical failures, network failures, cyber attacks,
and cyber-physical attacks.
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Figure 18: Unlabeled anomaly in spacket of PLC1 in S3.

5.5.2. Scanning attacks
Fig. 16 illustrates that anomaly flags during all scanning attacks follow signature C, which gives insights regarding

attack type, victim, attacker location, and impact on the physical process5. For example, during the first scan (∼15:38),
signature C, which includes flagging of communication with an unauthorized external device (vnIP/MAC = 1) containing
unusual TCP flags (vnTCP = 1), indicates a scan of PLC1 by an external device not impacting the physical process.

6. Discussion

This section discusses key findings of the concept demonstration in Section 5. In Section 6.1, it is analyzed whether
CyPhERS fulfils its intended purpose. Section 6.2 addresses possible concept improvements. Finally, Section 6.3 reflects
on the transferability of the demonstration case results to other CPSs.

6.1. Proof of concept
The aim of CyPhERS is to provide CPSs operators with relevant information on unknown and known types of at-

tacks and faults for real-time incident response, while being independent of historical event observations. The results in
Section 5 proof this thesis. All considered attack and fault types are identified, including localization of victim devices
and attacker location as well as determination of the impact on the physical process, through matching anomaly flags
provided by CyPhERS’ Stage 1 with known event signatures. Moreover, information on further unknown events, which
are not officially labeled by the authors of the investigated dataset, are provided, including event occurrence, affected com-
ponents, physical impact, and differentiation between physical failure, cyber attack, cyber-physical attack and network
device failure.

5In this context, a wrong label is identified for the last scanning attack.
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6.2. Concept improvements
One open issue identified by the concept demonstration is the recovering phase of the anomaly detection and classi-

fication pipelines. Primary reason for this is the modification of the ground truth model inputs xc
t−w, ..., x

c
t−1 in (2) during

and through anomalies, which affects the model’s capability to predict the normal behavior of a target feature. To solve
this issue xc

t−w, ..., x
c
t−1 in (2) could be replaced with the respective normal behavior predictions x̂c

t−w, ..., x̂
c
t−1 during flagged

anomalies.
Another improvement is seen in automating the process of creating the event signature database. As of now, CyPhERS

requires to define signatures by manually applying anomaly flag interpretation rules (see Table 7) on the specific system at
hand. In the future, this process should be automated through an application which generates event signatures by providing
it with interpretation rules and specifications about the physical and digital components and architectures of a CPS.

6.3. Result transferability to other CPSs
As pointed out in Section 2.3, process volatility and randomness may complicates application of CyPhERS to some

CPSs, including power system applications. Since the study case considered in this work exhibits comparatively simple
repeating process patterns, a feasibility demonstration of CyPhERS for systems with pronounced volatility and randomness
is required. Moreover, to proof applicability for smaller CPSs without dedicated human operator and for more complex
processes where manual recognition of signatures would require a high cognitive effort, the automated signature evaluation
in Stage 2 needs to be demonstrated.

7. Conclusion and future work

This work introduces CyPhERS, a cyber-physical event reasoning system that provides real-time information about
known and unknown types of attacks and faults in CPSs, independent of historical event observations. CyPhERS uses a
two-stage process to infer event information, including occurrence, location, root cause, and physical impact. In Stage 1,
informative event signatures are created using methods such as cyber-physical data fusion, unsupervised multivariate
time series anomaly detection, and anomaly type differentiation. In Stage 2, the event signatures are evaluated either
automatically by matching with a signature database of known events or through manual interpretation by the operator.
CyPhERS is demonstrated on a cyber-physical water distribution system, where it successfully identifies various attack and
fault types, which includes localization of victim devices and attacker location as well as determination of attack or failure
type and impact on the physical process. Additionally, CyPhERS provides information on unknown event types such as
occurrence, affected components, physical impact, and differentiation between physical failure, cyber attack, and network
failure. Future work will focus on demonstrating CyPhERS for systems with pronounced volatility and randomness under
consideration of the automated signature evaluation in Stage 2.
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