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ABSTRACT
Manganese monoboride has a low- (α) and a high-temperature (β) modification, as well as a defect-rich low-temperature variant (α′). The
crystal structure (FeB-type structure, s.g. Pnma) and properties of high-temperature MnB are well-known. In this work, single crystals were
grown via chemical vapor transport reactions, both of β-MnB and the low-temperature modification, α-MnB. This allowed for determining the
crystal structure of defect-free α-MnB [CrB-type structure, s.g. Cmcm, a = 3.0098(6) Å, b = 7.6390(2) Å, and c = 2.94620(6) Å]. Furthermore,
α′-MnB, the stacking fault-dominated CrB-variant, was obtained as crystalline powder and characterized by X-ray powder diffraction and
transmission electron microscopy. Direction-resolved measurements of the magnetic properties of α-MnB revealed spin-canted magnetic
behavior along c and ferromagnetism along a and b with a Curie temperature of 456 K; ferromagnetic β-MnB has a Curie temperature
of 568 K.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0148236

I. INTRODUCTION

There are more than 1000 binary boron compounds, acces-
sible through different synthesis methods.1–3 Borides are generally
known for properties like chemical inertness, heat and wear resistiv-
ity, hardness, and interesting magnetic behavior.2–5 Some prominent
examples are MgB2 as a superconductive material with a high crit-
ical temperature of 39 K,6 ReB2 as an inorganic diamond,7 MoB2,8
Ni3B,9 (Co, Fe)2B,10,11 and Co3B12 as electrocatalysts, and Co2B and
Ni7B3

13 as catalysts for the selective hydrogenation of citral.14 As
pointed out by Bocarsly et al.,15 compounds like MnB with strongly

coupled magnetic and structural transitions can be of interest for
energy-efficient and environmentally friendly refrigerators, heat
pumps, and thermomagnetic generators. Only recently, Ma et al.
described MnB as promising material because it is incompressible
and ferromagnetic at the same time.16

Six binary manganese borides have been described in the lit-
erature: Mn2B, MnB, Mn3B4, MnB2, MnB4, and MnB23.17–25 Man-
ganese monoboride crystallizes in two different structure types. The
low-temperature modification was reported to crystallize with a
CrB-type structure (α-MnB, s.g. Cmcm), and the high-temperature
modification was reported to crystallize with a FeB-type structure
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TABLE I. Synthesis parameters of the chemical vapor transport reaction of
manganese monoboride.

Product T/K Duration/days Form of product

α′-MnB 1073 14 Powder
α-MnB 1223 21 Powder and crystals
β-MnB 1423 14 Powder and crystals

(β-MnB, s.g. Pnma).15,16,19,23 Different synthesis methods for the
high-temperature modification of MnB are known.15,26–29 β-MnB is
ferromagnetic and has the highest magnetic moment per metal atom
(1.92 μB) of all transition metal monoborides.26,27,30–32 This makes it
a promising material for applications such as magnetocaloric and
magnetic hyperthermia.15 Papesch et al.33 reported α-MnB for the
first time. Smid et al.23 obtained single crystals of this modifica-
tion. α-MnB was reported to be stable below 1223 K and β-MnB
between 1373 and 1473 K. The defect structure of nanoscale man-
ganese monoboride, α′-MnB, was described by Klemenz et al.34 with
a saturation magnetization of 80 Am2 kg−1 at 100 K and a Curie
temperature of 545 K. Ma et al.16 obtained a similar substance via
high-pressure synthesis. A similar modification of nanoscale FeB
containing stacking faults is also known,35,36 and its crystal structure
was recently described.37

While there are calculations and measurements of the magnetic
behavior of β-MnB,15,26,27,32,38,39 the magnetic and other physical
properties of α-MnB single crystals were previously unknown and
will be reported here.

II. EXPERIMENTAL DETAILS
A. Synthesis

Manganese pieces (chemPUR, >99.9%) and crystalline boron
powder (chemPUR, >99.95%) were weighed in stoichiometric ratios
with a 10% excess of manganese due to the formation of MnI2.
To obtain the α′- and β-modifications, the starting materials were
homogenized in a tungsten carbide ball mill prior to chemical vapor
transport. The elements were placed in a half ampoule for pre-
heating under vacuum at 1073 K for two hours. Iodine was added as
a mineralizing agent. The quartz ampoule was sealed under vacuum
and heated. Table I gives further details. The ampoule was quenched
after the heat treatment.

B. Structural characterization
Microcrystalline powders were characterized using X-ray

diffraction (XRD) on a powder diffractometer (STADI P, STOE&Cie

TABLE II. Single crystal structure analysis of α-MnB and β-MnB.

α-MnB β-MnB

Radiation Mo Kα, λ = 0.710 73 Å

Crystal system Orthorhombic Orthorhombic
Space group Cmcm (no. 63) Pnma (no. 62)
a/Å 3.0098(6) 5.5389(2)
b/Å 7.6390(2) 2.9622(6)
c/Å 2.9420(6) 4.1266(8)
V/Å3 67.64(2) 67.71(2)
Z 4 4
ρ/g cm−3 6.456 6.450
Collected reflections 596 1114
Independent reflections 62 107
θ-range/○ 5.35–28.89 6.16–29.06
GOF 1.34 1.17
R1 0.0136 0.0479
wR2 0.0299 0.1092

GmbH, Darmstadt) with Debye–Scherrer geometry at room tem-
perature. For α- and β-MnB, copper radiation was used [Cu Kα1,
λ = 1.540 60 Å, Ge(111) monochromator, 2θ range of 10○ to
90○, Mythen detector, glass capillary]. α′-MnB was investigated
using molybdenum radiation [Mo Kα1, λ = 0.709 30 Å, Ge(111)
monochromator, 2θ range of 5○ to 50○, position sensitive detector,
acetate film]. Rietveld refinement was performed using the program
TOPAS.40

The structure of the single crystals was determined using a
single crystal diffractometer (IPDS 2 STOE&Cie GmbH, Darm-
stadt). The measurement was performed with molybdenum radia-
tion (MoKα, λ = 0.710 73 Å) at room temperature. Structure solution
and refinement of the lattice parameters and atom positions were
subsequently done using the program SHELX-97.41

C. Magnetic measurements
Magnetic measurements of the single crystals of α- and

β-MnB were performed using a Physical Property Measurement
System (14T PPMS, Quantum Design) with a vibrating sample
magnetometer (VSM) option. To measure the magnetic saturation
of the different crystallographic axes, isothermal M(H) scans at
10 to 300 K were measured from 0 to 4 T. M(T) measurements
were collected using a VSM (LakeShore VSM). For α′-MnB powder,

TABLE III. Atom positions and displacement parameters from the single crystal structure refinements of α-MnB and β-MnB.

Atom Wyckoff position x/a y/b z/c Ueq/Å2

α-MnB Mn1 4c 0 0.1437(6) 0.25 0.0060(3)
B1 4c 0 0.4328(6) 0.25 0.0083(7)

β-MnB Mn1 4c 0.1762(1) 0.25 0.1206(7) 0.0049(6)
B1 4c 0.0312(2) 0.25 0.6133(2) 0.0082(2)
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FIG. 1. Crystal structures of (a) α-
MnB (CrB-type structure) and (b) β-MnB
(FeB-type structure), red: B and gray:
Mn. Atoms are drawn with an 80%
probability of anisotropic displacement
ellipsoids.

FIG. 2. Unit cell (a), and bond lengths and distances between atoms (b)–(d) in the structure of α-MnB (red: B and gray: Mn).

FIG. 3. Unit cell (a), and bond lengths
and distances between atoms (b)–(d), in
the structure of β-MnB (red: B and gray:
Mn).
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isofield M(H) measurements were collected between 350 and 600 K
at magnetic fields of 0.1, 1, and 2 T. Additionally, isothermal M(H)
measurements between 10 and 560 K were collected.

D. Differential scanning calorimetry
Calorimetric measurements were run using a high temperature

differential scanning calorimeter (STA 449 F3 Jupiter, Netzsch). 30
to 50 mg of the polycrystalline powder of manganese monoboride
were placed in a BN-crucible. α-MnB was measured in a temperature
range of 313 to 533 K, and β-MnB was measured between 313 and
783 K. The heat capacities of the two modifications were measured
between 323 and 673 K. Sapphire was used as a standard.

E. Microscopy
The single crystals were imaged using a digital microscope

(VHX 500F, Keyence). For capturing the morphology of the crys-
tals of manganese monoboride, scanning electron microscopy (SEM,
JEOL, JSM 6400, 20 kV) was used. The material was placed on
a carbon pad. To verify the stacking faults of α′-MnB, a (scan-
ning) transmission electron microscope (STEM, JEOL, ARM-200F,
120 kV) was used. High-angle annular dark field (HAADF) and
annular bright-field (ABF) images were recorded.

F. Analysis of density
The density of the materials was measured using the gas

pycnometric density method (Accupyc 1340, Micromeritics) at

FIG. 6. Powder diffraction patterns of (a) α′-MnB and (b) α-MnB as well as (c)
β-MnB (black: measured, blue: calculated, and red: difference).

room temperature. The specimen with a known mass was placed
in the chamber and flooded with helium. The density of the
sample was determined after measuring the volume of the
chamber.

FIG. 4. Scanning electron microscopy images of (a) α-MnB, and (b) and (c) β-MnB.

FIG. 5. Optical appearance of (a) α-MnB
and (b) β-MnB.
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III. RESULTS AND DISCUSSION
By chemical vapor transport reactions, crystals of two different

modifications of MnB were obtained. Solving the crystal structure
was possible using direct methods for α-MnB and β-MnB. The
results of the crystallographic information for α-MnB and β-MnB
are given in Tables II and III.42

α-MnB crystallizes in the orthorhombic crystal system (s.g.
Cmcm) with a CrB-type structure. Boron atoms form zigzag chains
that are orientated parallel to the c axis, whereas the manganese
atoms are isolated between the boron zigzag chains. β-MnB crystal-
lizes in the orthorhombic crystal system (s.g. Pnma) with a FeB-type
structure. The boron atoms form zigzag chains along the b axis with
isolated manganese atoms between them. The unit cells of α-MnB

and β-MnB are shown in Figs. 1(a) and 1(b). The pycnometric
densities of α-MnB and β-MnB were determined to be 6.446 and
6.241 g cm−3 and were comparable to the crystallographic densities
of 6.456 and 6.450 g cm−3.

The bond lengths and distances between atoms are given in
Figs. 2(b)–2(d) and Figs. 3(b)–3(d) for α-MnB and β-MnB, respec-
tively. The B–B bond in α-MnB is 1.794(5) Å. The B–B distance
between the chains is 3.009(8) Å. For β-MnB, the B–B bond is
1.778(1) Å and the B–B distances between the neighboring chains
are 4.066(0) and 3.019(1) Å. The Mn–Mn distances are nearly the
same: 2.643(9) and 2.658(7) Å for α-Mn, and 2.682(6) and 2.650(2) Å
for β-MnB. The Mn–B distances range from 2.184(2) to 2.208(4) Å
in α-MnB and from 2.161(9) to 2.267(2) Å in β-MnB.

FIG. 7. (a) High-angle annular dark-field and (b) annular bright-field transmission electron microscopy images of α′-MnB. Atomic resolution scanning transmission electron
microscopy images of (c) and (e) an ordered region (blue) and (d) and (f) a region, which contains stacking faults (orange), of α′-MnB. The insets in both boxes show the
FFT of the HAADF image, respectively. In the disordered region, nanotwins are present. The twin plane is (0-21), and red indices correspond to a [112] and blue indices to
a [−112] zone-axis orientation.
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Scanning electron microscope images of the single crys-
tals obtained by chemical vapor transport reaction are shown in
Figs. 4(a)–4(c). Figures 5(a) and 5(b) give an impression of their
optical appearance shown by digital microscopy and also show that
single crystals were grown from a matrix of crystalline powder.
α-MnB crystals were rod-shaped and 300–500 μm in length, and
β-MnB crystals were needle-shaped and 300–400 μm in length.

Powder patterns of the three phases obtained by chemical vapor
transport reactions are given in Fig. 6. A phase-pure sample of
β-MnB was obtained. Crystalline powders of α-MnB contained 1 wt.
% β-Mn as a side-phase. The lattice parameters were refined using
the Rietveld method (supplementary material, Tables S1 and S2)
and found to be comparable to our single crystal data and the lit-
erature data.19,33 The powder pattern of α′-MnB was comparable
to those of the defect-rich phases described earlier by Kanaizuka
et al.,43 Klemenz et al.,34 and Ma et al.16

Transmission electron microscopy images recorded at 373 K
confirm the presence of stacking faults in α′-MnB. In Figs. 7(a) and
7(b), high-angle annular dark-field and annular bright-field images
of a particle that consists of a region that is ordered (blue) and a
region that contains stacking faults and nanotwins (orange box) are
shown. An atomic resolution HAADF and bright-field images of an
ordered region are shown in Figs. 7(c) and 7(e). The inset shows the
FFT of the HAADF image. An atomic model of α-MnB in [−112]
zone axis orientation was overlaid for interpreting the image con-
trast. An atomic resolution HAADF and bright-field images of an
ordered region are shown in Figs. 7(d) and 7(f). An atomic model
was overlaid to highlight the presence of nanotwins in the left upper
image quadrant of Fig. 7(d). The FFT image is shown as an inset in
the orange box of Fig. 7. The presence of nanotwins requires the use
of two crystal orientations for indexing the FFT, i.e., the [112] zone-
axis orientation in red color and the [−112] zone-axis orientation in

FIG. 8. Isothermal M(H) measurements of single crystals of (a) α-MnB and (b) β-MnB along the different crystallographic axes (black: a, blue: b, and red: c) collected at
10 K (top) and between 50 and 300 K in steps of 50 K (from top to bottom). Additional high-temperature measurements are shown for the b and c axes of α-MnB between
350 and 500 K in steps of 50 K.
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FIG. 9. M(T) and M(H) measurements of α′-MnB powder. (a) Isofield M(T) measurements at 0.1 T (blue), 1 T (orange), and 2 T (black). (b) Isothermal M(H) measurements
collected at 10 K (top) to 560 K (bottom).

blue color. The common twin plane is the {0-21}-type plane. Thus,
these type indices are given in violet color. Besides the nanotwins,
stacking faults of the {0-21}-planes are present as can be seen from
the streaking along that direction.

Results from magnetic measurements along the different crys-
tallographic axes of α-MnB and β-MnB single crystals are shown in
Fig. 8. α-MnB has ferromagnetic behavior along [100] and [010].
The measurements along [001] showed unexpected magnetic behav-
ior even at high temperatures (500 K). This phenomenon may
be attributed to so-called spin-canted magnetism.44 At low mag-
netic fields the spins are neither perpendicular nor parallel to the
c axis. When the magnetic field is increased, the spins slowly align
with the magnetic field. This process is independent of tempera-
ture. The saturation magnetization of α-MnB was determined to be
130 Am2 kg−1 at 10 K (1.54 μB/Mn).

Magnetic measurements of β-MnB on very thin, needle-like
single crystals were difficult but confirmed its ferromagnetic behav-
ior as shown earlier.15,26–29 β-MnB showed magnetic anisotropy and
a saturation magnetization of 156 Am2 kg−1 (1.84 μB/Mn) at 10 K.

Magnetic investigations of powders of α′-MnB led to results
shown in Fig. 9. The Curie temperature determined by isofield M(T)
measurements [Fig. 9(a)] is 500 K. Isothermal low-temperature
and high-temperature M(H) measurements were collected between
0 and 3 T or 0 and 2 T, respectively [Fig. 9(b)]. The saturation
magnetization was determined to be 124 Am2 kg−1 at 10 K.

Differential scanning calorimetry (DSC) measurements were
performed to investigate the ferromagnetic to the paramagnetic
transition of MnB (supplementary material, Fig. S1). The transition
temperature was determined to be 456 K for α-MnB and 574 K for
β-MnB. The process was reversible for both modifications. The value
for β-MnB is comparable to the Curie temperature described in the
literature.15,26,27,29

IV. CONCLUSIONS
Chemical vapor transport reactions between manganese and

boron in the presence of traces of iodine allowed the growth and
structural characterization of single crystals of β- and α-manganese
monoboride as well as the preparation of crystalline powders of

these two phases and in addition of α′-MnB, a stacking-fault dom-
inated variant that was earlier described either as α or α′. Due
to the combination of X-ray diffraction and transmission electron
microscopy, a clear differentiation between ordered α-MnB and
defect-rich α′-MnB was possible for the first time. Magnetic mea-
surements on single crystals allowed for the first description of
temperature-dependent anisotropic magnetic properties of β- and
α-manganese monoboride. Spin-canted magnetism was observed
for α-MnB. Curie temperatures and phase transition temperatures
were determined. Compounds like MnB with strongly coupled mag-
netic and structural transitions are of interest for magnetocaloric
applications.

SUPPLEMENTARY MATERIAL

supplementary material is available under [link], including data
on Rietveld refinements of α- and β-MnB (Tables S1 and S2) as well
as anisotropic components of the displacement parameters from the
single crystal structure determination of the α-modification (Table
S3). Furthermore, DSC traces are given for both modifications (Fig.
S1).
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