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Abstract

Feature engineering for time series data, a critical task in data science, involves the
transformation or encoding of raw data to create more predictive input features.This
paper introduces a novel web framework designed to automate the labor-intensive
and expertise-demanding process of time series feature engineering. The frame-
work comprises advanced methods for automated feature extraction and selection,
providing a wide range of application possibilities. A Bayesian Optimization strat-
egy is also integrated to identify optimal features and model parameters for specific
datasets, thereby enhancing prediction performance. The paper thoroughly explores
the framework’s design principles and operational procedures, along with validation
of its e↵ectiveness across di↵erent domains using real-world datasets.
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Zusammenfassung

Die Merkmalskonstruktion von Zeitreihen, eine wichtige Aufgabe in der Datenwis-
senschaft, beinhaltet die Transformation oder Kodierung von Rohdaten zur Erstel-
lung von vorhersagefähigeren Eingangsmerkmalen. Dieses Papier stellt einen neuar-
tigen Web-Framework vor, der darauf abzielt, den arbeitsintensiven und expertenab-
hängigen Prozess der Merkmalskonstruktion von Zeitreihen zu automatisieren. Der
Rahmen enthält fortschrittliche Methoden zur automatisierten Merkmalsextraktion
und -auswahl und bietet eine breite Palette von Anwendungsmöglichkeiten. Eine
bayesianische Hyperparameter-Optimierungsstrategie ist ebenfalls integriert, um op-
timale Merkmale und Modellparameter für spezifische Datensätze zu identifizieren,
wodurch die Vorhersageleistung verbessert wird. Das Papier untersucht ausführlich
die Designprinzipien und Betriebsverfahren des Frameworks, zusammen mit der Va-
lidierung seiner Wirksamkeit in verschiedenen Bereichen mit realen Datensätzen.
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1. Introduction

Data scientists undergo several stages when analysing and exploring a new dataset.
This process commences with data ingestion, selection and preparation, followed by
feature extraction and selection, and finally, modelling and generalisation.

As discussed in [1], there are two primary objectives in data analysis:

• Inference: This involves constructing random models that adapt to the data,
followed by drawing inferences about the data generation mechanisms based
on the structure of these models.

• Prediction: This pertains to the ability to forecast what the responses to future
input variables will be.

However, in the case of the most raw dataset, the features provided are often in-
adequate. Merely training and predicting by directly inputting the raw data into
the model cannot achieve a higher level of accuracy. Wind [2] presented an intrigu-
ing exposition on the award-winning submissions in numerous Kaggle competitions,
underscoring the significance of feature engineering in real-world scenarios.

Feature extraction and selection, often referred to as feature engineering (FE), tend
to be the most time-consuming and labour-intensive steps in the data science work-
flow. It is a complex task that requires the manual identification of intricate patterns
in the data, driven by cumulative domain knowledge, and carried out through it-
erative experimentation and trial-and-error [3]. Moreover, the feature engineering
conducted for di↵erent datasets is frequently unscalable, posing further challenges
in the process.

The fundamental building blocks of FE approach are transformation functions, ca-
pable of being applied to single or multiple attributes within a dataset to create
novel features, and robust selection methodologies that allow for the curation of the
newly generated features, ensuring their suitability for the targeted model.

In this paper, we propose a generic and scalable web-based framework that attempts
to address the above mentioned goals through automated FE for time series data
to streamline data science workflows and improve the accuracy and e�ciency of
inference and prediction tasks.
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The workflow (see figure 1.1) can be summarized as follows:

1. Firstly, we have developed an extensible backend, supported by Python, to
enable e�cient data preprocessing, feature engineering, and model selection
for the given dataset.

2. Secondly, we have curated a collection of feature extraction, feature selection,
and modeling algorithms from reputable open-source platforms such as Ts-
fresh, Tsfel, Seglearn, Kats, Sklearn and so on.

3. Then, due to the specialized and intricate nature of backend programming, we
have constructed a frontend framework using React. This approach leverages
a user-friendly interface, simplifying the process of automated FE.

4. And finally, we have evaluated our web framework using 15 real-world datasets
sourced from diverse domains, showcasing significant performance improve-
ments achieved within a limited timeframe.

Figure 1.1: Framework building flow chart.



2. Background

In this chapter, we first discuss time series data, a typical representation of in-
formation that is inherently dependent on its temporal context. We then explore
automated feature engineering, which revolutionizes traditional manual processes of
feature extraction, contributing to more predictive models.

Moreover, we discuss the essential elements of data modeling, underscoring its role
as the mathematical representation of real-world phenomena and its impact on pre-
diction and classification tasks. Lastly, we introduce Bayesian Optimisation, an
e�cient technique for model tuning, enhancing both accuracy and applicability to
new data. These fundamentals provide the necessary background for the methods
and tools discussed later in the paper.

2.1 Time series data

A time series is a sequence of observations taken sequentially in time [4]. In order
to use a set of time series

D = {�i}Ni=1

as input for supervised machine learning algorithms, each time series �!�i needs to be
mapped into a well-defined feature space with problem specific dimensionality M

and feature vector �!
�i =(�i,1,�i,2, ...,�i,M). In principle, one might decide to map

the time series of set D into a design matrix of N rows and M columns by choosing
M data points from each time series �i as elements of feature vector �!�i [5].

In other words, the aforementioned description can be represented using the follow-
ing matrix format: 0

BBBBB@

�0,1 �0,2 �0,3 ... �0,M

�1,1 �1,2 �1,3 ... �1,M
...

...
... ...

...
...

...
... ...

...
�N,1 �N,2 �N,3 ... �N,M

1

CCCCCA
.

Furthermore, the total number of such two-dimensional matrices equals the overall
quantity of data points present in the dataset. That is, if a trivial time series
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dataset is converted into a matrix form it should be a three-dimensional matrix
A 2 RS⇥N⇥M, where:

• The first dimension (S) represents the number of datasets, indicating the count
of individual samples.

• The second dimension (N) represents the window size of the time series, de-
noting the number of time steps within each sample.

• The third dimension (M) represents the feature dimension, indicating the
number of features at each time step.

Such a three-dimensional matrix A provides a convenient representation, integrating
time series data into a unified structure, facilitating subsequent data processing and
analysis. Each sample can be accessed by its index (S, N, M) to retrieve specific
feature values at a particular time step.

2.2 Automated feature enginnering

The emergence of Automated Machine Learning (AutoML) has underscored the
critical goal of simplifying and automating feature engineering. AutoML is devoted
to crafting algorithms and models designed to autonomously carry out tasks that
have historically demanded significant human intervention [6].

Automated FE, as a vital component of AutoML, refers to an auto-generative pro-
cess that extracts and creates novel features from raw data to elevate machine learn-
ing model performance. The potential of this approach to drastically cut down the
time and specialized knowledge required for feature engineering, thereby expedit-
ing the evolution of machine learning models, has garnered substantial scholarly
attention in recent years.

Despite the significant strides made in the realm of automated FE recently, several
challenges persist. These encompass handling high-dimensional data, ensuring the
explainability of generated features, and ascertaining the most e↵ective combinations
of features.

2.3 Machine learning model

In automated FE, models play a key role in tasks and accelerate the data science
process. By utilizing models in automated FE, prediction performance can be signif-
icantly improved. Models capture complex patterns and trends in time series data,
enabling more accurate predictions.

In our framework, we have integrated four models from di↵erent domains, namely
k-nearest neighbors, logistic regression, random forest, and finally the multilayer-
perceptron. These models represent diverse algorithms and concepts, providing our
framework with a comprehensive and diversified predictive capability.

Further detailed discussions and explorations regarding these models will be pre-
sented in chapter 5.
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2.4 Bayesian optimisation

The model of our framework is built on scikit-learn and integrates hyperparameter
Optimisation based on a range of parameters chosen by the user. When the user
chooses a wide range of parameters, it can be very time consuming to use brute
force to obtain the best results. Therefore, we introduce Bayesian optimisation as
an alternative method.

Bayesian Optimisation derives from Bayes’ theorem [7]. Given evidence data E,
the posterior probability P (M|E) of a model M is proportional to the likelihood
P (E|M) of observing E given model M, multiplied by the prior probability of
P (M) [8]:

P (M|E) / P (E|M)P (M). (2.1)

In our framework, the optimisation objective is to find the best combination of model
parameters, which yields the highest score in the context of supervised learning, i.e.,

bp = argmax
p2S

f(p),

where S denotes the search parameter space of parameter p. This formula 2.1 is used
to update the probability distributions of di↵erent model parameter combinations,
enabling the most promising parameter combinations to be selected for the next step
in the evaluation. Through iterative updates, the focus is narrowed to parameter
combinations with higher probabilities, ultimately leading to the discovery of the
optimum.

In other words, by applying Bayesian Optimisation, we are able to search for local
optima within a defined range of trial numbers. It allows us to systematically explore
the parameter space and discover the best combination of model parameters for a
specific dataset and problem.

With Optuna [9], our framework is capable of performing hyperparameter optimi-
sation for models. The following is a pseudocode:

Algorithm 1 Bayesian Optimisation with Optuna

Require: Dataset D, Model M, Parameter ranges P , Optimisation rounds T
Ensure: Optimal parameter set bp
1: Create a new Optuna study
2: Define the objective function: bp = argmaxp2P f(p)
3: Set f(p) to a specific model evaluation metric
4: for t = 0 to T do
5: Generate a new trial with the study
6: Optimize the parameter set p from P using Bayesian Optimisation
7: Set the model parameters to p

8: Train the model M on the dataset D using the parameter set p
9: Inform the selection of the next trial based on the objective function value

f(p) and its corresponding parameter set p

10: Extract the best parameter set bp from the study within T

11: return bp
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3. Pre-processing

Data pre-processing is an important step in the data analysis and machine learning
workflow. It involves cleaning, transforming and sliding windows of raw time series
data to bring in models for training and analysis more e�ciently. Each of these
steps will be described in detail in the next few sections.

3.1 Data cleaning

Data cleaning is usually the first step in pre-processing, which deals with errors and
missing values in the raw data.

Since our framework is designed to facilitate automated processes, it is important
to validate the integrity of newly acquired datasets. This includes checking for the
presence of NAN or missing values. If in that case we choose to replace them with
average values. In addition, we would like to have direct access to the dimensions of
the dataset as well as the target columns in order to generate anonymised column
names for the data import.

We use the read_csv1 function from the pandas library to load the dataset. Cur-
rently, we can read datasets in .txt, .csv, and .data formats.

3.2 Data transformation

Once the dataset has been cleaned, the next step is data transformation. Raw data
often contain noise and outliers, which can negatively impact the performance of
the model, leading to inaccurate predictions or classifications. Data transformation,
a significant step in data preprocessing, helps to mitigate these disruptions. Our
framework provides normalization and min-max scaling techniques for data trans-
formation. These methods adjust the scales of the features to a uniform numerical
range, thereby reducing the disturbance caused by variations in the scales of di↵erent
features.

1
https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.read csv.html

https://pandas.pydata.org/pandas-docs/version/1.5/reference/api/pandas.read_csv.html
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3.3 Sliding window

Sliding window is a temporary approximation over the actual value of the time series
data [10]. In the realm of time series data analysis, the sliding window process is
typically characterized by two crucial factors: the window size and window stride.
These are often determined by a specific sampling rate (commonly expressed in
Hz) and sampling duration (measured in seconds). For example, in the context of
a 20Hz dataset, we receive 20 data samples each second. Hence, in light of the
dataset’s characteristics and the objectives of the analysis, selecting a window size
of 20 (samples/second) x 5 (seconds) = 100 would be an appropriate choice.

As shown in the figure 3.1, we constructed a dataset containing 80 data points. By
setting the window size to 20 and the step size to 10, we can divide the data set
into 7 windows. In each window, various statistical operations can be performed on
the data points in that window, such as calculating the mean, median, and other
measures.

Figure 3.1: A sketch of sliding window on time series data with a window size of 20
and a window stride of 10.

In our framework, we use the sliding_window_view 2 method from NumPy to
process sliding windows over the time series dataset. The code 3.1 implementation
is as follows:

Listing 3.1: Sliding window algorithm
1 from numpy.lib.stride_tricks import sliding_window_view
2 from scipy import stats
3 def sliding_window(df, segment_length , step_distance , sensor_cols ,

target):
4 """
5 The returned array should be in the form of a 3-dimensional.
6 (n_samples ,segment_length ,n_features)

2
https://numpy.org/devdocs/reference/generated/numpy.lib.stride tricks.sliding window view.

html

https://numpy.org/devdocs/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html
https://numpy.org/devdocs/reference/generated/numpy.lib.stride_tricks.sliding_window_view.html
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7

8 Parameters
9 ----------

10 df : pd.Dataframe
11 the input frame should already be pre -processed , e.g. tagging

target ..;
12 It should only contain the feature and target columns.
13 segment_length: int
14 window size
15 step_distance:float
16 the overlap of window size between (0,1).
17 sensor_cols: list
18 all features in the data that require feature engineering.
19 target: str
20 aka. column to be forecast.
21

22 Returns
23 -------
24 X: ndarray y:ndarray
25 the 3D array after the sliding window(based on the specific

segment length and step distance);
26 an array of the most common value for the passed array.
27 """
28 step = round(segment_length * float(step_distance)) # window

size * overlap
29 X_slide = sliding_window_view(df[sensor_cols], (segment_length
30 , len(sensor_cols)))[::step , :] # 4d array
31 y_slide = sliding_window_view(df[target],
32 segment_length)[::step , :] # 2d array
33 X = X_slide.reshape(X_slide.shape [0] * X_slide.shape[1],

segment_length , len(sensor_cols))
34 # Return an array of the modal (most common) value for the

passed array.
35 y = stats.mode(y_slide.transpose (), axis =0) [0][0] # the shape

is now equal to the sample of X
36 return X, y

For each window, the corresponding target is determined by employing a mode
(most common value) strategy. This approach e↵ectively captures the most frequent
target value in each window, providing a robust and representative target for each
windowed segment of the dataset.
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4. Technology

4.1 Automated feature enginnering technology
In this section, we will discuss the Python machine learning libraries (tsfresh [5],
tsfel [11], kats, seglearn [30], cesium [34]) that we have utilized in our framework.
These libraries provide a comprehensive set of tools and functionalities for time
series analysis and feature extraction. They o↵er a wide range of capabilities for
time series analysis, feature extraction, and modeling. Leveraging these libraries, we
enhance the feature representation of our design matrix and empower our framework
to handle diverse time series data e�ciently.

Indeed, the focus of each feature extraction library is not identical. This implies
that the time series characterization methods fj applied to respective time series �i

yield distinct feature vectors, which is why, at the same time, we can use multiple
feature extraction packages to extract the maximum number of features and then
use feature selection methods to filter out features that are not very important to
the target.

4.1.1 TSFRESH

The Python-based machine learning library tsfresh is a rapid and standardized tool
used for automatic extraction and selection of time series features, which has been
integrated into our framework as well.

Tsfresh provides 63 time series characterization methods, which compute a total of
794 time series features. A design matrix of univariate attributes can be extended by
time series features from one or more associated time series. Alternatively, a design
matrix can be generated from a set of time series, which might have di↵erent num-
ber of data points and could comprise di↵erent types of time series [5]. It provides
three basic feature extraction interfaces: “minimal”, “e�cient”, and “comprehen-
sive”. Additionally, we have utilized its feature selection method based on statistical
hypothesis testing, o↵ering two variations. One variation emphasizes selecting the
union of features beneficial for each individual class (see code 4.2), while the other
variation focuses on selecting the top n_significant features most strongly corre-
lated with all of the target variables (see code 4.3). This enables us to restrict the
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number of features selected during the feature selection process and retain only the
most important ones.

Listing 4.1: TSFRESH features
1 from tsfresh import extract_features
2 from tsfresh.feature_extraction import EfficientFCParameters ,

MinimalFCParameters ,ComprehensiveFCParameters
3 extraction_settings_dict = {
4 ’minimal ’:MinimalFCParameters (),
5 ’efficient ’:EfficientFCParameters (),
6 ’comprehensive ’:ComprehensiveFCParameters ()
7 }

Listing 4.2: TSFRESH feature selection var1
1 from tsfresh import select_features
2 import pandas as pd
3

4 def features_selector_variant1(x_train ,x_test ,y_train):
5 y_train_pd = pd.Series(y_train)
6 relevant_features = set()
7 for label in y_train_pd.unique ():
8 y_train_binary = y_train_pd == label
9 x_train_filtered = select_features(x_train , y_train_binary)

10 relevant_features = relevant_features
11 .union(set(x_train_filtered.columns))
12

13 x_train_filtered = x_train[list(relevant_features)]
14 x_test_filtered = x_test[list(relevant_features)]
15

16 return x_train_filtered , x_test_filtered

Listing 4.3: TSFRESH feature selection var2
1 from tsfresh import select_features
2 import math
3 import pandas as pd
4 def features_selector_variant2(x_train ,x_test ,y_train):
5 ’’’
6 n_significant is set to 20-percent of the number of classes (

rounded up). This means that , after correction , at least
this many features in each class should be considered
significant in relation to the target. If a feature does not
meet this criterion in all classes , then it will not be

selected as significant.
7 ’’’
8 n_unique_classes = pd.Series(y_train).nunique ()
9 x_train_filtered_multi = select_features(x_train ,

10 pd.Series(y_train), multiclass=True , n_significant=math.ceil(
n_unique_classes * 0.2))

11

12 x_test_filtered_multi = x_test[x_train_filtered_multi.columns]
13 return x_train_filtered_multi , x_test_filtered_multi

4.1.2 TSFEL

Tsfel features a diverse suite of feature extraction methods that are categorized into
three main domains: “temporal”, “spectral”, and“statistical”. It o↵ers over 60 di↵er-
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ent features that encompass autocorrelation, energy, entropy, statistical moments,
spectral analysis, peak analysis, and many more [11]. In addition, we integrated
TSFEL’s internal Pearson correlation coe�cient-based feature selection method 1 to
filter out highly correlated features.

Listing 4.4: TSFEL features
1 import tsfel
2 domains = [’statistical ’,’spectral ’,’temporal ’]
3 cfg_file = {}
4 def extract_features(domain):
5 cfg_file.update(tsfel.get_features_by_domain(domain))

Listing 4.5: TSFEL feature selection
1 import tsfel
2 def features_selector_tsfel(x_train ,x_test):
3 # redundancies and noise should be removed.
4 # Compute pairwise correlation of features using pearson method
5 redundant_features = tsfel.correlated_features(x_train)
6

7 x_train_filtered = x_train.drop(redundant_features , axis =1)
8 x_test_filtered = x_test.drop(redundant_features , axis =1)
9 # Sort the columns of the training and test data to ensure the

features are in the same order
10 x_train_filtered = x_train_filtered.sort_index(axis =1)
11 x_test_filtered = x_test_filtered.sort_index(axis =1)
12

13 return x_train_filtered , x_test_filtered

4.1.3 KATS

Kats is released by Facebook’s Infrastructure Data Science team. The time series
feature (TSFeature) extraction module in Kats can produce 65 features with clear
statistical definitions 2.

Kats divides the features that can be extracted into groups such as “statistics”,
“acfpacf features”, “bocp detector” and so on.

Our framework integrates several groups, allowing users to select as per their re-
quirements.

Listing 4.6: KATS features
1 from kats.tsfeatures.tsfeatures import TsFeatures
2

3 features_to_use = [’acfpacf_features ’,’statistics ’,’bocp_detector ’,
’cusum_detector ’,’level_shift_features ’,’robust_stat_detector ’,

4 ’special_ac ’,’trend_detector ’]

4.1.4 SEGLEARN

Seglearn provides about 30 features 3, and since these features are all statistically
based, there are no features from other domains. We have grouped these statistical
features together under the name “seglearn”.

1
https://tsfel.readthedocs.io/en/latest/ modules/tsfel/utils/signal processing.html

2
https://facebookresearch.github.io/Kats/

3
https://dmbee.github.io/seglearn/feature functions.html

https://tsfel.readthedocs.io/en/latest/_modules/tsfel/utils/signal_processing.html
https://facebookresearch.github.io/Kats/
https://dmbee.github.io/seglearn/feature_functions.html
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Listing 4.7: SEGLEARN features
1 from seglearn.feature_functions import all_features
2

3 features_to_use = {
4 ’mean’: mean ,
5 ’median ’: median ,
6 ’gmean’: gmean ,
7 ’hmean’:hmean ,
8 ’vec_sum ’: vec_sum ,
9 ’abs_sum ’: abs_sum ,

10 ’abs_energy ’: abs_energy ,
11 ’std’: std ,
12 ’var’: var ,
13 ’mad’: median_absolute_deviation ,
14 ’variation ’: variation ,
15 ’min’: minimum ,
16 ’max’: maximum ,
17 ’skew’: skew ,
18 ’kurt’: kurt ,
19 ’mean_diff ’: mean_diff ,
20 ’mean_abs_diff ’: means_abs_diff ,
21 ’mse’: mse ,
22 ’mnx’: mean_crossings ,
23 ’hist4’: hist(),
24 ’mean_abs_value ’: mean_abs ,
25 ’zero_crossings ’: zero_crossing (),
26 ’slope_sign_changes ’: slope_sign_changes (),
27 ’waveform_length ’: waveform_length ,
28 ’emg_var ’: emg_var ,
29 ’root_mean_square ’: root_mean_square ,
30 ’willison_amplitude ’: willison_amplitude ()}

4.1.5 CESIUM

Cesium provides a large number of feature extraction methods, divided into “Ca-
dence/Error”, “General” and “Lomb-Scargle (Periodic)” 4. We have selectively em-
ployed a selection of these feature extraction methods, depending on the type of our
dataset, as follows:

Listing 4.8: CESIUM features
1 from cesium import featurize
2

3 features_to_use = [
4 "all_times_nhist_numpeaks",
5 "all_times_nhist_peak1_bin",
6 "all_times_nhist_peak2_bin",
7 "all_times_nhist_peak3_bin",
8 "all_times_nhist_peak4_bin",
9 "all_times_nhist_peak_1_to_2",

10 "all_times_nhist_peak_1_to_3",
11 "all_times_nhist_peak_1_to_4",
12 "all_times_nhist_peak_2_to_3",
13 "all_times_nhist_peak_2_to_4",
14 "all_times_nhist_peak_3_to_4",
15 "all_times_nhist_peak_val",

4
https://cesium-ml.org/docs/feature table.html

https://cesium-ml.org/docs/feature_table.html
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16 "avg_double_to_single_step",
17 "avg_err",
18 "cad_probs_1",
19 "cad_probs_10",
20 "cad_probs_20",
21 "cad_probs_30",
22 "cad_probs_40",
23 "cad_probs_50",
24 "cad_probs_100",
25 "cad_probs_500",
26 "cad_probs_1000",
27 ’cads_avg ’,
28 ’cads_kurtosis ’,
29 ’cads_med ’,
30 ’cads_skew ’,
31 ’cads_std ’,
32 "mean",
33 ’med_double_to_single_step ’,
34 "med_err",
35 ’std_double_to_single_step ’,
36 "std_err",
37 "amplitude",
38 ’anderson_darling ’,
39 ’flux_percentile_ratio_mid20 ’,
40 ’flux_percentile_ratio_mid35 ’,
41 ’flux_percentile_ratio_mid50 ’,
42 ’flux_percentile_ratio_mid65 ’,
43 ’flux_percentile_ratio_mid80 ’,
44 "max_slope",
45 "maximum",
46 "median",
47 "median_absolute_deviation",
48 "minimum",
49 ’percent_amplitude ’,
50 "percent_beyond_1_std",
51 "percent_close_to_median",
52 ’percent_difference_flux_percentile ’,
53 ’qso_log_chi2_qsonu ’,
54 ’qso_log_chi2nuNULL_chi2nu ’,
55 ’shapiro_wilk ’,
56 "skew",
57 "std",
58 ’stetson_j ’,
59 ’stetson_k ’,
60 "weighted_average",
61 "fold2P_slope_10percentile",
62 "fold2P_slope_90percentile",
63 "freq1_amplitude1",
64 "freq1_amplitude2",
65 "freq1_amplitude3",
66 "freq1_amplitude4",
67 "freq1_freq",
68 "freq1_lambda",
69 "freq1_rel_phase2",
70 "freq1_rel_phase3",
71 "freq1_rel_phase4",
72 "freq1_signif",
73 "freq2_amplitude1",
74 "freq2_amplitude2",
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75 "freq2_amplitude3",
76 "freq2_amplitude4",
77 "freq2_freq",
78 "freq2_rel_phase2",
79 "freq2_rel_phase3",
80 "freq2_rel_phase4",
81 "freq3_amplitude1",
82 "freq3_amplitude2",
83 "freq3_amplitude3",
84 "freq3_amplitude4",
85 "freq3_freq",
86 "freq3_rel_phase2",
87 "freq3_rel_phase3",
88 "freq3_rel_phase4",
89 "freq_amplitude_ratio_21",
90 "freq_amplitude_ratio_31",
91 "freq_frequency_ratio_21",
92 "freq_frequency_ratio_31",
93 "freq_model_max_delta_mags",
94 "freq_model_min_delta_mags",
95 "freq_model_phi1_phi2",
96 "freq_n_alias",
97 "freq_signif_ratio_21",
98 "freq_signif_ratio_31",
99 "freq_varrat",

100 "freq_y_offset",
101 "linear_trend",
102 "medperc90_2p_p",
103 "p2p_scatter_2praw",
104 "p2p_scatter_over_mad",
105 "p2p_scatter_pfold_over_mad",
106 "p2p_ssqr_diff_over_var",
107 "scatter_res_raw",
108 ]

4.2 Discussions

Firstly, it is clear that there will unavoidably be a small number of redundant feature
methods within the feature extraction package, as can be seen in methods such as
mean, median, std, etc.

Thanks to subsequent feature selection methods, we can eliminate these highly cor-
related repetitive features and retain only a representative set of features before
feeding them into the model.

Secondly, we try to achieve a good trade-o↵ between accuracy and computational
overhead. The calculation of a large number of features increases the computation
time and thus a↵ects e�ciency. We therefore o↵er users a full range of possibilities by
providing feature extraction packages that include multiple methods (e.g., tsfresh)
as well as compact and e�cient feature extraction packages (e.g., seglearn).
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4.2.1 Overfitting

Overfitting is a common problem in supervised machine learning, where models
are susceptible to fitting the training data too perfectly. This can undermine their
ability to generalize well to unseen data in the testing set. Because of the presence
of noise, the limited size of training set, and the complexity of classifiers, overfitting
happens [39]. Therefore, it’s crucial to extract more “informative” features.

An “informative” feature should satisfy the following conditions:

• Relevance to the target: An informative feature should have a high relevance
with the target, which means that changes in the feature should significantly
a↵ect the target.

• Contains informative information: If all the values of a feature are the same,
then the feature cannot provide any useful information.

• Low noise levels: If a feature contains too much noise, it could interfere with
the model, leading to worse performance.

4.2.2 Curse of dimensionality

The concept of the “curse of dimensionality” was proposed by Richard Bellman
in 1961 [12]. In machine learning and data analysis, the curse of dimensionality
typically refers to the decline in performance of many algorithms as the number
of features (or dimensions) increases, especially when the number of features ap-
proaches or exceeds the number of samples. This is mainly because data points
tend to become very sparse in high-dimensional spaces, making it more di�cult to
identify e↵ective patterns and regularities.

More generally, the curse of dimensionality represents all the phenomena that occur
with high-dimensional data, often resulting in reduced accuracy and poorer perfor-
mance in machine learning [13].
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5. Model

In this chapter, we will delve into the basic concepts and principles of the models
that were previously introduced in Section 2.3. We will explore the similarity-based
classification method of k-nearst neighbors, the generalised linear model of logistic
regression, and the features and advantages of random forests as an ensemble learn-
ing method. In addition, we will look at the neural network structure of multilayer
perceptrons.

By getting a deeper understanding of the principles and workings of these models,
we will better understand their application within our framework, helping us to
select the most appropriate models to solve various time series problems.

5.1 K-nearest neighbors

The k-nearest neighbors (kNN) is a powerful non-parametric classification algorithm
that operates without making any assumptions about the underlying data distribu-
tion. It is widely recognized for its simplicity and e↵ectiveness. As a supervised
learning algorithm, it leverages a labeled training dataset, where data points are
already classified into di↵erent classes, to make predictions on unlabeled data in-
stances [14].

The right side figure 5.1 represents a sim-
ple kNN model. When k = 1, due
to the higher number of orange triangles
compared to green squares, the unlabeled
blue data points are classified by the kNN
model as orange triangles. However, when
k = 2, as there are more green squares,
they are considered as blue squares.

Figure 5.1: A simple kNN-model with k =
2.
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So the principle of the kNN algorithm in supervised learning is as follows:

1. Determine the number of nearest neighbors.

2. For each unlabeled sample to be classified, calculate its distance to each la-
beled sample in the training set. Common distance metrics include Euclidean
distance, Manhattan distance, etc.

3. Find the k-nearest neighbours.

4. Assign class containing the maximum number of nearest neighbours.

5.2 Logistic regression
The basic principle of logistic regression is to linearly combine the input features
and then map the linear output to the range [0, 1] using the logistic function [15],
also known as the sigmoid function, defined as follows:

sigmoid(x) =
1

1 + e�x
=

e
x

ex + 1
. (5.1)

Since the output range of the sigmoid function is [0,1], we can set the output prob-
ability threshold to 0.5 in practice for binary classification prediction. If the output
probability is greater than or equal to 0.5, we predict the sample as a positive case;
if the output probability is less than 0.5, we predict the sample as a negative case.

For a problem withK classes (K>2), we can trainK binary logistic regression classi-
fiers, each classifier treating one class as the positive class and the remaining classes
as the negative class. This strategy is used to solve the multi-class classification
problem.

This following figure 5.2 illustrates the application of logistic regression to solve
the multi-class classification problem in the Iris dataset 1. The sample points are
distributed in a coordinate system based on the length and width of the sepals. The
model then partitions these points into three distinct regions. Sample points located
in the same region are considered to belong to the same class. For example, samples
in the purple region are classified as setosa, while those in the yellow region are
classified as virginica, and so on.

5.3 Random forest
The random forest was first proposed by Leo Breiman from the University of Cali-
fornia in 2001 [16].

The model comprises numerous fundamental classifiers (decision trees), each op-
erating independently of one another. When a sample is fed into this composite
classifier, the classification of the sample is determined by the majority voting result
from each individual classifier.

The entire process of classification based on the random forest is shown in the
Figure 5.3.

According to the [16] and the figure 5.3, the construction of a random forest involves
the following steps:

1
https://archive.ics.uci.edu/dataset/53/iris

https://archive.ics.uci.edu/dataset/53/iris
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Figure 5.2: Logistic regression with iris dataset.

Figure 5.3: Conceptual framework of random forest classifier [17, 18]
.
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1. Determine an appropriate value for the number of elements in each feature
subset.

2. Generate a random subset ⇥k from the whole set depending on the value at
step 1,independent of the past random subset ⇥1, ...,⇥k�1 but with the same
distribution.

3. Train the dataset using the selected subsets, generating a decision tree for each
training set group.

4. Repeat steps 2 and 3 until a specified number of trees have been generated.
This process results in a collection of tree-structured classifiers denoted as:�
h (x,⇥k) , k = 1, 2, 3, ...

 
,where x represents the input features.

5. Cast a unit vote for the most probable class at each instance in the test set,
with each tree in the forest contributing to the voting process.

6. Assign the class with the most votes across all trees as the final prediction for
each instance.

5.4 Multilayer perceptron

The perceptron is one of the fundamental building blocks of neural networks, and
it serves as the foundation for the multilayer perceptron (MLP), which is the most
widely known and frequently used type of neural network [19].

The perceptron usually consists of 4 parts, the input value; the weights and bias;
the net input function and the activation function as shown in figure 5.4.

Figure 5.4: The structure of a single perceptron.

It comprises several input nodes. Each input node is associated with a specific
weight, and these inputs are multiplied by their respective weights. The results of
these multiplications are then summed up and passed through an activation function,
which ultimately determines the output of the perceptron. I.e.,

y = f

 
kX

i=1

xi!i + b

!
, (5.2)

where k represents the number of inputs and b specifically denotes the bias.
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The MLP consists of multiple layers of perceptrons (neurons), including an input
layer, one or more hidden layers, and an output layer. The hidden layers allow
the network to learn complex patterns by combining the features learned in the
input layer [20]. Each perceptron in these layers performs a weighted summation
of its inputs, similar to a single-layer perceptron, but followed by the application of
a nonlinear activation function. This feed-forward architecture is characterized by
its lack of loops, ensuring that the computations of any given perceptron are not
influenced by its own output. The signals in the MLP typically flow through the
network in a unidirectional manner, progressing from the input layer, through the
hidden layers, and finally to the output layer [19]. The figure 5.5 shows a simple
multilayer perceptron with 2 hidden layers.

Figure 5.5: A multilayer feed-forward neural network.

Suppose our neural network has L hidden layers, we can represent the output of
each layer as O(l), where l denotes the index of the layer, l = 0 corresponds to the
input layer and l = L + 1 corresponds to the output layer. We can represent the
output of neuron j at layer l as O(l)

j .

For the hidden layer, the output of each neuron is calculated according to the for-
mula 5.2, which can be expressed as

O
(l)
i = f

0

@
N(l�1)X

j=1

w
(l)
ji O

(l�1)
j + b

(l)
i

1

A ,

where

• O
(l)
i is the output of the i-th neuron in the l-th layer.

• f is activation function.

• w
(l)
ji is the weight of the j-th neuron in the previous layer to the i-th neuron

in the current layer.



28 5. Model

• O
(l�1)
j is the output of the j-th neuron in the previous layer.

• b
(l)
i is the bias of the i-th neuron in the l-th layer.

• N
(l�1) is the number of neurons in the previous layer.

5.4.1 Activation function

In a neural network, the activation function has two main roles:

• Introduce non-linearity: To handle complex tasks, neural networks often need
to solve non-linear problems. Activation functions are typically non-linear, en-
abling neural networks to approximate any non-linear function, which enhances
the expressive power of the networks.

• Determine neuron activation: The activation function decides the degree to
which a neuron should be activated in response to a given input.

Our framework uses the MLP from scikit-learn, which includes four types of activa-
tion functions, namely 2:

• Identity: f(x) = x.

• Logistic: f(x) = 1
1+e�x = ex

ex+1 .

• Tanh: f(x) = tanh(x).

• ReLU: f(x) = max(0, x).

In practice, additional activation functions such as leaky ReLU(·) and softmax(·) are
also frequently utilized. Each of these has its own advantages and suitable scenarios.
For example, the identity function is useful to implement linear bottleneck, while
the softmax function is often used in the output layer for multi-class classification
problems.

2
https://scikit-learn.org/stable/modules/generated/sklearn.neural network.MLPClassifier.

html

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
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5.5 Discussions

In the previous sections, we have discussed the fundamental concepts of four models:
kNN, logistic regression, random forest, and MLP. However, one crucial point has
been overlooked: how to evaluate the performance of a model?

There are numerous evaluation methods available, as mentioned in [21], including
micro average F1-score, macro average F1-score, dodrans, entropy, among others.
In this section, we will focus on F1-based scores and specifically highlight the macro
average F1-score employed in our framework.

5.5.1 F1-score

F1-score is defined as the harmonic average of recall and precision. The mathemat-
ical formula is defined as

F1 =
2⇥ (Recall⇥ Precision)

(Recall + Precision)
, (5.3)

where

• Recall is defined as the ratio of observations that are predicted positively
correct to the total number of observations in an actual class; that is,

Recall =
True Positives

True Positives + False Negatives
.

• Precision is defined as the ratio of observations that are predicted positively
correct to the total number of observations predicted positively:

Precision =
True Positives

True Positives + False Positives
.

5.5.2 Macro average F1-score

The macro average F1-Score provides an equal weight for each class, irrespective
of their individual sample counts. It considers the F1-score for each class indepen-
dently and then calculates their average [21]. This approach allows us to evaluate
the model’s performance without considering class imbalances. By giving equal im-
portance to each class, macro average F1-score highlights the overall e↵ectiveness of
the model in handling diverse classes and can help identify areas where the model
may struggle across di↵erent classes.

As mentioned in [35], there are two ways to implement macro average F1-score.
In our framework, under the premise of utilizing scikit-learn 3, we adopt the first
approach, which involves calculating the arithmetic mean over harmonic means.
Referring to 5.3, the mathematical expression can be defined as follows:

F1M =
1

n

X

i2Classes

F1i.

3
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1 score.html

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
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6. Related work

AutoML has emerged as a hot topic with both industrial and academic interest. In
recent years, numerous studies and methodologies have been proposed in this area,
reflecting the growing recognition of the importance of AutoML. In the following
sections, some of the current work in the field of AutoML will be described.

6.1 Novel feature selection methods

In general, feature selection methods can be categorized into three types: filter-
based, wrapper-based, and embedded [33]. The feature selection methods used
within our framework are all filter-based, as illustrated in listings 4.2, 4.3, and 4.5.

Tan et al. [36] proposed a new method called DimReM to deal with high dimensional
problems in the search space. The method uses an evolutionary algorithm (EA),
which belongs to the wrapper-based feature selection technique. DimReM provides
an e↵ective way to identify and delete unimportant features by taking advantage of
the information from evolution and due to the re-evaluation of population, DimReM
ensures that the classification performance never gets worse when a feature is deleted
in each time [36].

In the realm of embedded feature selection methods, the elastic net has proven
to be a viable strategy [22]. The elastic net is a regularized regression technique
that incorporates an `2 penalty to circumvent the inherent limitations of the Least
Absolute Shrinkage and Selection Operator (LASSO) [23].

However, the elastic net can lead to inconsistent feature selection, as the selected
features and their weights may vary when the training set data samples change. Yu
et al. [40] proposed an enhancement to the traditional elastic net process. Their
methodology involves ranking features based on the probability of a feature being
selected after multiple data splits and subsequent elastic net-based feature selection.
This improvement mitigates the problem of the elastic net’s inability to rank the
importance of features consistently.
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6.2 Model hyperparameter tuning

The work of Yao, Wang, et al. [24] fundamentally states three questions: what is
AutoML, why AutoML, and how to implement AutoML. Notably, their research
discusses a multitude of methods for model selection and hyperparameter optimi-
sation. Beyond the Bayesian Optimisation adopted in our framework, they also
consider classification-based optimisation (CBO), greedy algorithms, evolutionary
algorithms, and reinforcement learning (RL), etc.

Yu et al. [25] proposed an algorithm based on CBO, named RACOS, and demon-
strated that RACOS performs better than Bayesian optimisation in the task of
hyperparameter tuning.

Greedy search is a natural strategy to solve multi-step decision-making problem.
It follows a heuristic that makes locally optimal decision at each step, although
it cannot find the global optimum, but it can usually find a local optimum which
approximates the global optimum in a reasonable time cost.

Evolutionary algorithms, inspired by biological evolution, involve generation steps
of crossover and mutation. Crossover combines two distinct individuals from the
previous generation, typically favoring promising individuals, to produce a new one.
Mutation slightly alters an individual to form a new one. Through these processes,
exploiting via crossover and exploring via mutation, the population is expected to
evolve towards improved performance [29].

RL [26] is a very general and strong optimisation framework, which can solve prob-
lems with delayed feedbacks. A special case of RL, i.e., bandit-based approach, where
rewards are returned for each action without a delay, is introduced to AutoML for
hyperparameter optimisation [27, 28]. In this context, employing a bandit-based
approach, the “multiple arms” denote the various possible combinations of hyperpa-
rameters. The reward associated with each “arm” can be defined as the performance
of the model on the validation set.
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Our framework contains several feature extraction packages, each of which may have
their own pre-conditions and dependencies. Careful management of version infor-
mation for these packages is essential to avoid conflicts and to ensure the stability
and compatibility of our framework.

And combining fastAPI and React technologies, we achieve seamless interaction
between the front-end and back-end.

Finally, we have listed the specific version information of key packages here for
reference and utilization.

• Programming

- PyCharm 2022.3

∗ Python 3.8.0

· Tsfresh 0.20.0

· Tsfel 0.1.4

· Seglearn 1.2.5

· Kats 0.2.0

· Cesium 0.12.1

· Optuna 3.0.4

· Pandas 1.5.3

· Numpy 1.22.3

· Scikit-learn 1.2.2

· Scipy 1.7.3

· Matplotlib 3.6.1

· Fastapi 0.97.0

- Webstorm 2022.3.1

∗ JavaScript ECMAScript 6+

∗ React 18.2.0

∗ Node 18.12.1

∗ Material UI v5.14.1
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8. Design of user interface

In this chapter, we will dive into a newly developed user interface (UI) front-end
framework tailored to our feature-engineered AutoML pipeline. The framework
is designed to simplify the often complex process of feature extraction, selection,
transformation and optimisation, enabling both newcomers and experienced data
scientists to streamline their workflow.

8.1 Welcome page

When a user enters the website, they are first taken to the welcome page 8.1. After
waiting, the user will be redirected to the main page 8.2. This page will also be used
in the future for registration and login.

Figure 8.1: The animation on the welcome page.
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8.2 Main page

This page will be our main execution page. In the center of the page is a pipeline,
where the user needs to follow the steps to complete the appropriate actions.

Figure 8.2: The main page of feature engineering pipeline.
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8.2.1 Step 1: import data

The first step in the pipeline is, of course, to import the dataset. We provide two
approaches:

• Default (figure 8.3 left): Users can select the dataset of the built-in system
and start running it directly.

• Customized (figure 8.3 right): We also allow users to upload customized
datasets by clicking on “upload dataset” button.

Figure 8.3: The default and customized mode of importing data.



38 8. Design of user interface

8.2.2 Step 2: pre-processing

In this step we expect the user to provide some basic information about the dataset.
Most of it is about the sliding window (section 3.1) operation. We also provide two
approaches:

• Default (figure 8.4 left): All built-in datasets have fixed (unchangeable) win-
dow size/stride and frequency sampling.

• Customized (figure 8.4 right): Custom parameter attributes for specific datasets
(especially those uploaded by users themselves).

Figure 8.4: The default and customized mode of pre-processing.

For datasets integrated into the system, we still allow users to modify certain infor-
mation, such as the scaler. Additionally, we o↵er a cross-validation method known
as “Leave-One-Group-Out (LOGO)”, as illustrated in figure 8.5.

Figure 8.5: The details of the scaler setting and the dialog for the ”cross-validation
for id” information icon.
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8.2.3 Step 3 & 4: feature extraction and feature selection

These two steps are the feature extraction and selection that we mentioned in chap-
ter 4. As shown in the figure 8.6, the user can select a single feature package or
combine multiple feature packages together. The feature selection method is the
same.

Figure 8.6: The step of feature extraction and feature selection.
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8.2.4 Step 5: model

Our framework now o↵ers 4 models to choose from. Users can click on a specific
model button to perform hyperparameter tuning. If users wish to use these model,
they need to also click the checkbox, the detailed operation can be seen in the
figure 8.7.

Figure 8.7: The overview of the model.

Each model is designed to operate similarly, and the following is an example of a
random forest model. The left figure 8.8 shows the current settings dialog. Hints are
given through the text. The user can easily do the same as in the right figure 8.8.

Figure 8.8: The original and changed random forest model parameter settings.
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8.2.5 Step 6: optimizer

This is the final step in the pipeline. As you can see in figure 8.9, for feature selection
and hyperparameter optimization of the model we currently only have Bayesian
Optimisation. But it still requires the user to choose the number of trials needed.
After clicking the “Execute” button, the program will start executing automatically.

Figure 8.9: The optimizer of the pipeline.

Upon completion of all steps by the user, the title of each step will transition from
red to blue. This indicates that the user has not omitted any required inputs. Once
the backend processes have been executed, the results will be returned.

8.3 Navigation bar

The navigation bar (figure 8.10) is built into every page. Users can choose what they
want to see, and the main page we just introduced is the first item in the navigation
bar.

Figure 8.10: The navigation bar of the website.
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8.4 Datasets page

On this page (figure 8.11) we give some basic information about the built-in datasets
such as trian cases, test cases, and so on. The dataset can be viewed directly by
clicking on the dataset. The table also supports querying, sorting, etc.

Figure 8.11: The dataset page with basic details about built-in datasets.
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8.5 Time series features document page

In this page, we have provided a comprehensive list of all the feature extraction pack-
ages available, as mentioned in chapter 4. Detailed features and their descriptions
are presented for user reference.

Figure 8.12: The time series features document page, listing all feature extraction
packages for time series.
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8.6 User guide page

We have always prioritized fostering an optimal interaction with our users. Hence,
we o↵er a “quick start” guide aimed at enhancing the user experience. Both text-
based and video guides are provided to cater to various user needs.

8.6.1 User guide panel

This is a comprehensive textual description for each step in the pipeline. Users can
simply click on any step to access the corresponding documentation or functionality
they wish to explore. Figure 8.13 provides an overview of the user guide panel, while
Figure 8.14 o↵ers an example of detailed view.

Figure 8.13: The initial panel of the user guide page, o↵ering a comprehensive textual
description for each pipeline step. Clicking on a step leads users to its corresponding
documentation or functionality.
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Figure 8.14: An example of user guide panel.

8.6.2 Video panel

The video covers every step, starting from“import data” to viewing the results upon
completion. Essentially, it’s a comprehensive walkthrough of the full procedure.

Figure 8.15: Video walkthrough from ’import data’ to final result viewing on the
user guide page.
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8.7 Results page

On the Results page, we display the results derived from the backend execution,
as illustrated in figure 8.16. This is divided into two sections. The first section
explicitly shows the scores of the model, along with its parameters, which have been
validated on the validation set, when applied to the test set. The second section, on
the other hand, presents the optimization history and detailed optimization data.

We utilized the “ArticularyWordRecognition” [38] dataset along with randomly se-
lected models, their parameters, feature extraction methods, and feature selection
methods. We demonstrated the following 4 panels using 10 trial numbers.

8.7.1 Optimization history panel

In this panel 8.16, we primarily display images of the optimization history for each
trial. It can be observed that for the trial indexed at 1 (indexing starts from 0), the
performance on the validation set has already reached its peak. Subsequently, the
model, its parameters, and feature selection method from this trial will be employed
on the test set.

Figure 8.16: Optimization history panel highlighting the peak performance at trial
number 1.
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8.7.2 Model hyperparameter importances panel

This panel is primarily designed to highlight the importance of hyperparameters
for a singular model. If multiple models are being optimized simultaneously, then
the significance of this chart diminishes. However, when optimizing only a single
model, one can discern the specific importance of each parameter within the model
as illustrated in right figure 8.17.

Figure 8.17: Hyperparameter importances in multi vs. singular model optimisation.
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8.7.3 Feature importances panel

In this panel, our primary objective is to illustrate the importance of up to the
top 20 features, specifically in relation to the test set. For the random forest, the
features’ importance is ranked directly based on the tree models. In the case of
MLP and KNN, we employed a permutation feature importance method, using a
5-fold cross-validation, to rank the features. For the logistic regression model, we
used coe�cient weights to order the feature importance.

Permutation feature importance is a technique wherein the importance of a feature is
determined by evaluating model performance on data where the said feature’s values
have been randomly shu✏ed. If the model’s performance drops significantly upon
shu✏ing, this indicates that the feature in question holds significant importance.
By employing a 5-fold cross-validation alongside, we ensure the robustness of our
ranking. On the other hand, for logistic regression, the magnitude of each feature’s
coe�cient in the model provides a direct measure of its importance.

Figure 8.18: An example of a feature importances panel focusing on the top 20
features.
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8.7.4 Trial stury history panel

This panel serves as a detailed supplement to panel 8.7.1. The figure 8.19 displays the
specific models used, their respective parameters, and the chosen feature selection
methods for all trials, providing a comprehensive reference for users.

Figure 8.19: Detailed trial study history panel showing specific models, parameters,
and feature selection methods for each trial.
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9. Evaluation

9.1 Hypothesis

Our framework provides 5 di↵erent open source feature extraction packages, as we
mentioned in the chapter 4.

As each feature extraction package has its own di↵erent focus. We thus want to
verify whether combining multiple feature extraction packages outperforms using
only one package (baseline)

In other words, we think that multiple feature extraction packages can provide more
informative features.

9.2 Metric

The metric we employed is based on the content discussed in section 5.5.2, i.e., the
macro average F1-score.

9.3 Datasets

To evaluate the e↵ectiveness of our hypothesis, we conducted experiments using 15
datasets from a broad range of domains:

• UCR 1 time Series classification archive:

– Human Activity Recognition(HAR): BasicMotions, Cricket, Epilepsy,
ERing, Libras, RacketSports, UWaveGestureLibrary

– Motion: ArticularyWordRecognition, CharacterTrajectories

– Electrocardiogram(ECG): StandWalkJump

– Electroencephalogram/Magnetoencephalography(EEG/MEG): SelfReg-
ulationSCP1, SelfRegulationSCP2, HandMovementDirection

1
http://www.timeseriesclassification.com/dataset.php
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– Audio Spectra: SpokenArabicDigits

– Others: EthanolConcentration

As for the selection of datasets, we did not have any specific criteria. Due to the
constraints of local computing resources and time, we were unable to process very
large datasets. Table 9.1 presents the details of each dataset we used.

Table 9.1: A summary of the used datasets in the UCR Multivariate Time Series
Classification archive.

ID Dataset Train Cases Test Cases Dimensions Length Classes

1 ArticularyWordRecognition 275 300 9 144 25

2 BasicMotions 40 40 6 100 4

3 CharacterTrajectories 1422 1436 3 182 20

4 Cricket 108 72 6 1197 12

5 Epilepsy 137 138 3 206 4

6 ERing 30 30 4 65 6

7 EthanolConcentration 261 263 3 1751 4

8 HandMovementDirection 320 147 10 400 4

9 Libras 180 180 2 45 15

10 RacketSports 151 152 6 30 4

11 SelfRegulationSCP1 268 293 6 896 2

12 SelfRegulationSCP2 200 180 7 1152 2

13 SpokenArabicDigits 6599 2199 13 93 10

14 StandWalkJump 12 15 4 2500 3

15 UWaveGestureLibrary 120 320 3 315 8

9.4 Design of experiments

For each feature extraction package (tsfresh, tsfel, cesium, kats, seglearn), we con-
ducted individual extractions to serve as our baseline.

For our experimental group, we initially used combinations of feature extraction
packages taken two at a time, excluding tsfresh. This exclusion was due to the ex-
tensive number of features extracted by tsfresh, which could potentially lead to issues
of overfitting (see section 4.2.1) and the curse of dimensionality (see section 4.2.2).

We carried out 100 trials using all the model parameters that have been pre-defined
in the frontend, testing their macro average F1-score.

For model hyperparameter details:

• Random forest:

– n_estimators: [50, 200]

– max_depth: [1, 10]

– min_samples_split: [2, 5]

– criterion: [“gini”, “entropy”, “log loss”]

– max_features: [“sqrt”, “log2”]

– random_state: 42
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• KNN:

– n_neighbors: [1, 100]

– p: [1, 5]

– weights: [“uniform”, “distance”]

• Logistic regression:

– C: [0.5,1.5]

– tol: [0.0001, 0.0005]

– penalty & solver:

∗ (l2, lbfgs)

∗ (None, lbfgs)

∗ (None, newton-cg)

∗ (None, newton-cholesky)

∗ (None, sag)

∗ (None, saga)

∗ (l1, liblinear)

∗ (l1, saga)

∗ (l2, liblinear)

∗ (l2, newton-cg)

∗ (l2, newton-cholesky)

∗ (l2, sag)

∗ (l2, saga)

• MLP:

– hidden_layer_size: Consists of 1 to 5 hidden layers. The number of
neurons in each layer is formed as an arithmetic sequence from the input
layer to the output layer.

– activation: [“relu”, “logistic”,“tanh”]

– solver: [“adam”, “lbfgs”,“sgd”]

9.4.1 Benchmark results

As can be observed in table 9.2, except for the datasets marked with (*), our com-
bination of two feature extraction packages did not surpass the baseline. However,
for the majority of datasets, our hypothesis holds true. Even on some datasets, the
scores combining the two feature extraction packages were consistently higher than
all baseline scores.
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To further validate our hypothesis, we noticed that the datasets which did not meet
the criteria had the highest scores from tsfresh. This might be due to the other
feature extraction packages not extracting enough informative features, making it
di�cult to achieve comparable scores regardless of the combinations used. Therefore,
in this step, we also included tsfresh in our combinations and conducted the same
experiments. The results can be seen in table 9.3.

Now, as you can see, all tuples of feature extraction packages that included tsfresh
performed better than tsfresh on its own and also surpassed the other baseline
packages.
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10. Conclusion and Future Work

10.1 Conclusion

This is our first attempt at building a web-based, modular feature engineering
pipeline. By refining each small step in the pipeline, users can select the feature
extraction packages they need (or combine multiple packages), choose their pre-
ferred feature selection method, and specify the hyperparameters for each model.
The program can then automatically execute the specified number of trials. Users
simply need to wait a while and they can see the visualized results directly on the
web page.

We provide essential user interaction. For example, if users are unfamiliar with
the built-in datasets in the system, they can directly click on the “datasets” button
in the sidebar to view detailed information. In addition, we o↵er all the specific
features about the feature extraction methods from the source document for user
inspection, as shown in chapter 4. We also allow users to upload their own datasets
for feature engineering (currently, only those with an attribute type of numerical are
supported).

10.2 Future work

Currently, the entire framework runs locally, which can be time-consuming when
extracting a large number of features, especially for high-dimensional time series
data. If the framework could be set up on a server, it could leverage the server’s
computational power to significantly enhance computational e�ciency. This would
necessitate the construction of a cloud computing architecture.

As mentioned in our “Related Work” (see section 6), we plan to incorporate addi-
tional feature selection methods to e↵ectively choose more informative features, thus
avoiding phenomena such as overfitting (see section 4.2.1) or the curse of dimension-
ality (see section 4.2.2). Hyperparameter optimisation in our model is not limited
to Bayesian Optimisation; we aim to implement a broader array of optimisation
methods for users to choose from.
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In terms of the model itself, our framework currently supports 4 di↵erent models, but
there is room for expansion. In the future, variants of models such as Support Vec-
tor Machines (SVMs) [31], Long Short-Term Memory Networks (LSTMs) [32], and
Transformers [37, 41] can be added, thus expanding the applicability and versatility
of our system.

At present, our framework does not implement a database. For the interactive
web interface with users, our web pages could o↵er more e�cient interactions. For
example, each user could have their own account with login credentials, granting
access to a personalized interface containing frequently used datasets. The system
could also feature functionalities such as sending notifications via email.
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