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Abstract - The hyperspectral image analysis technique, one of the most advanced remote 
sensing tools, has been used as a possible means of identifying from a single pixel or in the field 
of view of the sensor. An important problem in hyperspectral image processing is to decompose 
the mixed pixels into the information that contribute to the pixel, endmember, and a set of 
corresponding fractions of the spectral signature in the pixel, abundances, and this problem is 
known as un-mixing. The effectiveness of the hyperspectral image analysis technique used in 
this study lies in their ability to compare a pixel spectrum with the spectra of known pure 
vegetation, extracted from the spectral endmember selection procedures, including the 
reflectance calibration of Landsat ETM+ image using ENVI software, minimum noise fraction 
(MNF), pixel purity index (PPI), and n-dimensional visualization. The Endmember extraction is 
one of the most fundamental and crucial tasks in hyperspectral data exploitation, an ultimate 
goal of an endmember extraction algorithm is to find the purest form of spectrally distinct 
resource information of a scene.     
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I. Introduction 

he recent developments in remote sensing 
technology have witnessed two major trends in 
sensor improvement (Qiu et al., 2006). The 

hyperspectral imaging (Shippert, 2003) is concerned 
with the measurement, analysis, and interpretation of 
spectra acquired from a given scene at a short, medium 
or long distance by an airborne or satellite sensor 
(Goetz et al., 1985; Aspinall et al., 2002). The pixel purity 
index (González et al., 2010; Pal et al., 2011) allows for 
spatial data reduction. The pixels in the image that 
represent the 'most pure' spectral signatures are 
identified  and  subset  from  the  mass majority of pixels  
 
 

    
 

representing mixed pixels. A 'pure' pixel, also known as 
an endmember (Nascimento and Dias, 2005), can be 
envisioned as a homogenous area greater in spatial 
extent than the image pixel size, so that the recorded 
signal for that pixel represents a spectral profile for 
single surface information (Boardman, 1993; Boardman 
et al., 1995). It assumes that the pixel-to-pixel variability 
in a scene results from varying proportions of spectral 
endmembers (Rogge et al., 2007). The spectrum of a 
mixed pixel can be calculated as a linear combination of 
the endmember spectra weighted by the area coverage 
of each endmember within the pixel, if the scattering and 
absorption of electromagnetic radiation is derived from 
a single component on the surface (Keshava and 
Mustard, 2002; Rogge et al., 2007). Image endmembers 
are pixel spectra that lie at the vertices of the image 
simplex in n-dimensional space. Imagery may provide 
similarly meaningful endmembers that can be 
considered 'pure' or relatively 'pure' spectra, meaning 
that little or no mixing with other endmembers has 
occurred within a given pixel (Rogge et al., 2007). A 
mixed pixel is a picture element representing an area 
occupied by more than one ground cover type (Mozaffar 
et al., 2008). Spectral unmixing represents a significant 
step in the evolution of remote decompositional analysis 
that began with multispectral sensing (Shippert, 2003). It 
is a consequence of collecting data in greater and 
greater quantities and the desire to extract more 
detailed information about the resource composition 
(Keshava and Mustard, 2002). Spectral analysis extracts 
useful information might have missed otherwise from the 
raw pixel values of medium and high resolution imagery 
and can reveal hidden information locked in the pixels of 
imagery (Keshava and Mustard, 2002; Shippert, 2003). 

The hyperspectral imagery provides 
opportunities to extract more detailed information than is 
possible using traditional multispectral data. The future 
of hyperspectral remote sensing is promising (Shippert, 
2003). As newly commissioned hyperspectral sensors 
provide more imagery alternatives, and newly developed 
image processing algorithms provide more analytical 
tools, hyperspectral remote sensing is positioned to 
become one of the core technologies for geospatial 
research (Shippert, 2004), exploration, and monitoring. 

Hyperspectral images have been used to detect 
soil properties including moisture, organic content, and 
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Pixel Purity Index Algorithm and n-Dimensional 
Visualization for ETM+ Image Analysis: A Case 

of District Vehari

Abstract - The hyperspectral image analysis technique, one of 
the most advanced remote sensing tools, has been used as a 
possible means of identifying from a single pixel or in the field 
of view of the sensor. An important problem in hyperspectral 
image  processing is to decompose  the mixed pixels  into the 
information that contribute to the pixel, endmember, and a set 
of corresponding fractions of the spectral signature in the 
pixel, abundances, and this problem is known as un-mixing. 
The effectiveness of the hyperspectral image analysis 
technique used in this study lies in their ability to compare a 
pixel spectrum with the spectra of known pure vegetation, 
extracted from the spectral endmember selection procedures, 
including the reflectance calibration of Landsat ETM+ image 
using ENVI software, minimum noise fraction (MNF), pixel 
purity index (PPI), and n-dimensional visualization. The 
Endmember extraction is one of the most fundamental and 
crucial tasks in hyperspectral data exploitation, an ultimate 
goal of an endmember extraction algorithm is to find the 
purest form of spectrally distinct resource information of a 
scene. The endmember extraction tendency to the type of 
endmembers being derived, and the number of endmembers,
estimated by an algorithm, with respect to the number of 
spectral bands, and the number of pixels being processed, 
also the required input data, and the kind of noise, if any, in 
the signal model surveying done. Results of the present study 
using the hyperspectral image analysis technique ascertain 
that Landsat ETM+ data can be used to generate valuable 
vegetative information for the District Vehari, Punjab Province, 
Pakistan.
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salinity (Ben-Dor et al., 2002). Vegetation scientists have 
successfully used hyperspectral imagery to identify 
vegetation species (Clark and Swayze, 1995), study 
plant canopy chemistry (Aber and Martin, 1995; 
Shippert, 2003), and detect vegetation stress. 

a) Study Area 
The District Vehari (Figure 2 and 8) lies between 

29° 36' and 30° 22' North latitude and 71° 44' and 72° 53' 
East longitude (GOP, 2000). The district is bounded on 
the north by and Khanewal and Sahiwal, on the east by 
Pakpattan, on the south by Bahawalpur and 
Bahawalnagar, on the west by Lodhran and Khanewal. 

Research Design and Methods 

In this research paper Landsat ETM+ scene 
2003 for the District Vehari (path 150, row 39) was used 
for hyperspectral image analysis. In order to use this 
scene, several steps were followed to prepare for an 
accurate extraction of vegetation endmember. These 
vital steps are: image registration, geometric correction, 
radiometric enhancement, and histogram equalization 
as discussed by Macleod and Congalton (1998), 
Mahmoodzadeh (2007) and Al-Awadhi et al., 2011. The 
scene was corrected and geo-referenced using 
projection UTM, zone 43 and datum WGS 84. 
Atmospheric correction operation was performed using 
ENVI software. Further, Minimum Noise Fraction (MNF), 
Pixel Purity Index (PPI), n-Dimensional Visualizer (n-DV) 
and Endmember Extraction technique has been used 
for hyperspectral image analysis (Figure 1). 

The Pixel Purity Index (PPI) technique was 
adopted using ENVI 'automated spectral hourglass' 
application upon ETM+ image. The PPI was applied 
upon the full scene of the district. In this experiment 
22,948,704 pixels were operated (Figure 3 and 4) using 
Automated Hourglass Parameters: Number of MNF 
bands to use: 6 (excluding Thermal IR and 
Panchromatic); Number of PPI Iterations: 5,000; PPI 
Threshold Value: 2.500; Maximum number of PPI Pixels 
to use for Endmember Selection: 10,000; and Mapping 
Methods were selected: Mixture Tuned Matched 
Filtering (MTMF), Spectral Angle Mapper (SAM), and 
Unmixing. The Endmembers were selected for 
processing flow, a series of tools that use the spectrally 
over-determined nature of hyperspectral data to find the 
most spectrally pure or spectrally unique pixels within 
the dataset. This set of endmember signatures (Bateson 
and Curtiss, 1996; Bateson et al., 2000) was then used 
in the full range of mapping algorithms available in ENVI 
to determine locations, and in some cases subpixel 
abundances of endmembers (Harris, 2006). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 :  Scheme for hyperspectral image analysis.   
The hyperspectral imaging, also known as 

imaging spectrometry, is now a reasonably familiar 
concept in the world of remote sensing. Hyperspectral 
images are spectrally providing ample spectral 
information (Shippert, 2003) to identify and distinguish 
between spectrally similar resource information. 
Consequently, hyperspectral imagery provides the 
potential for more accurate and detailed information 
extraction than is possible with other types of remotely 
sensed data (Shippert, 2004). Standard multispectral 
image processing techniques were generally developed 
to classify multispectral images into broad categories of 
surface condition. Hyperspectral imagery provides an 
opportunity for more detailed image analysis. Boardman 
(1993) and Boardman et al. (1995) were among the first 
to develop and commercialize a sequence of algorithms 
specifically

 
designed to extract detailed information from 

hyperspectral imagery (Shippert, 2004). ENVI tools, 
applicable to a variety of applications, distinguish and 
identify the unique resource information present in the 
scene and map them throughout the image (Research 
System, Inc., 2004).

 
III.

 
Results

 
The hyperspectral imaging is a new emerging 

technology in remote sensing which generates 
hundreds of images, at different wavelength channels, 
for the same area on the surface of the Earth (Goetz et 
al., 1985; González et

 
al., 2010; Sánchez and Plaza, 

2010). The concept of hyperspectral imaging originated 
at NASA’s Jet Propulsion Laboratory in California, which 
developed instruments such as the Airborne Imaging 
Spectrometer (AIS), then called AVIRIS, for Airborne 
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II.

Visible Infrared Imaging Spectrometer (Green et al., 
1998). This system is now able to cover the wavelength 
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region from 0.38 to 2.5 μm or 380 nm to 2500 nm using 
two hundred twenty four spectral channels, at nominal 
spectral resolution of 10 nm (González et al., 2010).

 
The Pixel Purity Index (PPI) is a new automated 

procedure in the hyperspectral analysis process 
(Boardman, 1993; Boardman et al., 1995) for defining 
potential image endmember spectra (Bateson and 
Curtiss, 1996) for spectral unmixing (Lillesand and 
Kiefer, 2000). When image spectra are treated as points 
in n-dimensional spectral space, endmember spectra 
should lie along the margins of the data cloud 
(MicroImages, Inc., 1999; Berman et al., 2004). The PPI 
creates a large number of randomly oriented test 
vectors anchored at the origin of the coordinate space. 
The spectral points are projected onto each test vector, 
and spectra within a threshold distance of the minimum 
and maximum projected values are flagged as extreme 
(Nascimento and Dias, 2005). As directions are tested, 
the process tallies the number of times an image cell is 
found to be extreme (Miao and Qi, 2007). Cells with high 
values in the resulting PPI raster should correspond 
primarily to 'edge' spectra (Chang et al., 2006). The PPI 
raster then can be used as a mask to control input to the 
n-dimensional visualizer (MicroImages, Inc., 1999; 
Zhang et al., 2008).

 
The most commonly used endmember 

extraction (Figure 5, 6 and Table 1, 2) tool is pixel purity 
index, which searches for vertices that define the data 
volume in n-dimensional space (Rogge et al., 2007). 
Commonly the first step of PPI is to apply MNF (Lee et 
al., 1990) to reduce the dimensionality of the data set 
(Green et al., 1988; Rogge et al., 2007). The MNF 
transform is used to determine the inherent 
dimensionality of image data, to segregate noise in the 
data, and to reduce the computational requirements for 
subsequent processing (Boardman and Kruse, 1994). 
The transformation based on an estimated noise 
covariance matrix, decorrelates and

 

rescales the noise 
in the data (Research Systems, Inc., 2003; 2004). This 
step results in transformed data in which the noise has 
unit variance and no band-to-band correlations. For the 
purposes of further spectral processing, the inherent 
dimensionality of the data is determined by examination 
of the final eigenvalues and the associated images. The 
data space can be divided into two parts: one part 
associated with large eigenvalues and coherent 
eigenimages, and a complementary part with near-unity 
eigenvalues and noise-dominated images. By using only 
the coherent portions, the noise is separated from the 
data, thus improving spectral processing results 
(Research Systems, Inc., 2001; 2004).

 

Spectra can be thought of as points in an n-
dimensional scatter plot, where n is the number of 
bands (Boardman et al., 1995). The coordinates of the 
points in n-space consist of 'n' values that are simply the 
spectral radiance or reflectance values in each band for 
a given pixel. The distribution of these points in n-space 

can be used to estimate the number of spectral 
endmembers and their pure spectral signatures 
(Research Systems, Inc., 2001). The scatter plot (Figure 
7) is an important tool for exploring an image and 
helping to understand some of the spectral 
characteristics of features in an image. The two 
dimensional scatter plotting tool allows comparing not 
only the relationship between the data values in two 
selected bands but also the spatial distribution in the 
image of pixels in any area of the scatter plot. This

 

combined functionality provides a very simple, two-
band, interactive classification of image data (Research 
Systems, Inc., 2004).

 

Spectral unmixing (Figure 9) algorithms 
(Lillesand and Kiefer, 2000; Rogge et al., 2006) use a 
variety of different statistical procedures to endmember 
extraction and estimate abundances. Unmixing problem 
comprises three sequential steps: dimension reduction, 
endmember determination, and inversion (Chang and 
Plaza, 2006). Because hyperspectral scenes can 
include extremely large amount of data, some 
algorithms for spectral unmixing first use image itself to 
estimate endmembers present in the scene. The 
dimension-reduction stage reduces the dimension of the 
original data in the scene (Cochrane, 2000; Mozaffar et 
al., 2008). The noise estimate can come from one of 
three sources; from the dark current image acquired 
with the data, from noise statistics calculated from the 
data (Richards and Jia, 1999), or from statistics saved 
from a previous transform. Both the eigenvalues and the 
Minimum Noise Fraction (MNF - Figure 10) images 
(eigenimages) are used to evaluate the dimensionality of 
the data (Qiu et al., 2006). Eigenvalues for bands that 
contain information will be an order of magnitude larger 
than those that contain only noise. The corresponding 
images will be spatially coherent, while the noise images 
will not contain any spatial information (Research 
Systems, Inc., 2004; Qiu et al., 2006).
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Figure 2 : District Vehari - Landsat ETM+ 2003 image.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  

Figure 3 :

 

Showing the endmember pixels extracted by the PPI for the District Vehari.
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Source : http://glovis.usgs.gov/     (Accessed on December 04, 2008)       Processed by the author.

Processed by the author.



Table 1 :  Showing selected endmembers data. 
 

Bands nD Class 1-2 nD Class 2-3 nD Class 3-4 nD Class 4-5 nD Class 5-6 nD Class 6-7 nD Class 7-8 
1 81 74 75 84 74 76 76 
2 68 62 62 84 61 64 66 
3 78 66 67 99 69 74 75 
4 70 57 68 77 71 86 64 
5 255 103 255 48 255 255 109 
8 1 255 255 38 1 1 255 

 
Table 2 : Showing selected endmembers (MNF). 

 
Bands nD Class 1-2 nD Class 2-3 nD Class 3-4 nD Class 4-5 nD Class 5-6 nD Class 6-7 nD Class 7-8 

1 -45.668144 -9.559686 -13.362324 -42.251820 -40.435787 -43.774044 -11.297052 
2 -3.265855 -0.914537 18.957897 -11.722809 3.940382 14.638547 4.918655 
3 15.752277 -29.919695 -23.210220 -2.429869 20.311623 26.381514 -31.349176 
4 296.551239 -137.255051 52.496872 -22.368624 294.801758 282.927765 -135.733566 
5 -27.440727    146.126907    160.149399    -48.182602    -19.783876    -24.758867    136.516922 
6 139.244019    -62.703640     27.703362      1.272109    137.308945    129.952774    -63.861103 

 
Figure 4 :  Showing Pixel Purity Index Plot for the District 

Vehari. 
 

Figure 6 :

 

Showing selected endmembers (MNF).

 

  
Figure 5 :  Showing selected endmembers data. 

  

Figure 7 :  2-D scatter plot applied upon unmixing using 
band X 4 and band Y 3.
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The Mixture Tuned Matched Filtering (MTMF - 
Figure 11) algorithm builds upon the strengths of both 
matched filtering and spectral unmixing while avoiding 
the disadvantages of both (Boardman, 1998). Matched 
filtering performs partial unmixing and identifies 
abundance of spectral endmembers without knowing 
background endmember signatures (Harsanyi and 
Chang 1994; Boardman et al., 1995). Matched filtering 
does not distinguish rare spectral targets very well and 
assumes an additive signal based upon radio/radar 
applications. Spectral unmixing takes advantage of the 
hyperspectral leverage to solve the linear mixed pixel 
problem, but traditional spectral unmixing techniques 
require knowledge of all of the background 
endmembers (Boardman, 1993; Bateson and Curtiss, 
1996; Bateson et al., 2000). Incorporating convex 
geometry concepts, mixtures must be non-negative and 
unit-sum helps identify false positives, unrealistic 
mixtures, and maps subpixel fractional abundances.

 

The Minimum Noise Fraction (MNF) data 
reduction transform and Mixture Tuned Matched 
Filtering (MTMF) partial unmixing classification algorithm 
are relatively new image processing techniques that 
have proven to be effective target detection tools 
(Research Systems, Inc., 2004). These techniques allow 
partial unmixing and subpixel target abundance 
estimation, products that cannot be achieved using 
spectral angle mapping algorithms (Mundt et al., 2007).

 

The n-dimensional visualizer serves as an 
interactive tool for multidimensional analysis and 
identification of spectral endmembers (Tompkins et al., 
1997; Plaza et al., 2002). The data are displayed in a 
defined number of dimensions and spectral 

endmembers are identified as pixels that are located at 
the corner vertices (Tsai and Philpot, 1998). The n-
dimensional visualizer second round of spatial data 
reduction designed to identify particular pixels or group 
of pixels that represent the purest spectra within the 
image. These pure spectra are exported and saved as 
ROI’s that can be used for subsequent image 
classification techniques.

 

The n-dimensional visualizer was used to 
interactively locate, identify, and cluster the most 
spectrally pure or unique pixels in the image by 
visualizing those pixels selected from the PPI as points 
in an multidimensional scatter plot (Figure 7), where the 
number of dimensions was defined by the total number 
of coherent MNF bands (Boardman, 1993; Harris, 2006). 
The advantage of the n-dimensional visualizer was that it 
allowed visualization of points in an n-dimensional 
space, forming a data 'cloud' (Berk et al., 1998; Harris, 
2006).

 

Advantages of this technology include both the 
qualitative benefits derived from a visual overview, and 
more importantly, the quantitative abilities for systematic 
assessment and monitoring (Shippert, 2003). A 

Pixel Purity Index Algorithm and N-Dimensional Visualization for ETM+ Image Analysis: A Case of District 
Vehari

considerable number of mixed pixels are present in any 
remotely sensed image (Mozaffar et al., 2008). Several 
research objectives were accomplished : 
 Select optimal bands in hyperspectral images those 

are most useful in vegetation classification,
 Identify optimal endmember, signature spectrum 

that represents a certain class, for vegetation 
classification, and

 Test effective endmember extraction algorithms for 
classification of vegetation type.

Figure 8 : Landsat ETM+, District Vehari.
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Figure 9 : Image showing unmixing.



 
 

 

 
 

 
 

  
 

 
  

Figure 11 :

 

Image showing mixture tuned matched 
filtering (MTMF).
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IV. Discussion and Conclusions

The potential of hyperspectral remote sensing is 
exciting; there are special issues that arise with this 
unique type of imagery. For example, many 
hyperspectral analysis algorithms require accurate 
atmospheric corrections to be performed. To meet this 
need, sophisticated atmospheric correction algorithms 
have been developed to calculate concentrations of 
atmospheric gases directly from the detailed spectral 
information contained in the imagery (Roberts et al., 
1993; Cochrane, 2000; Okin et al., 2001; Riano et al., 
2002) itself without additional ancillary data. These 
corrections can be performed separately for each pixel 
because each pixel has a detailed spectrum associated 
with it. Several of these atmospheric correction 
algorithms are available within commercial image 
processing software (Shippert, 2004). However, several 
image analysis algorithms have been successfully used 
with uncorrected imagery (Shippert, 2003).

The MNF transform applied to the ETM+ data 
achieved a reasonable separation of coherent signal 
from complementary noise, therefore the MNF 
transformed eigenimages were employed and coupled 
with pixel purity index and n-dimensional visualization 
techniques to facilitate the extraction of the 
endmembers (Song, 2005; Qiu et al., 2006). After 
applying PPI thresholding, the data volume to be 
analyzed has been effectively reduced (Zhang et al., 
2000). However, it is still possible that many less 'pure' 
pixels have crept in as candidate endmembers during 
the automatic selection process. All the pixels that were 

previously selected using the PPI thresholding 
procedure are displayed as pixel clouds in the n-
dimensional spectral space (Welch et al., 1998). To 
make possible the visualization of a scatter plot with 
more than two dimensions, the pixel clouds of high 
dimensions are cast on the two-dimensional display 
screen (Kruse et al., 1993; Tu et al., 1998). To effectively 
extract endmembers from high dimensional remote 
sensing data (Plaza et al., 2004) and to effectively 
process the data, it is often necessary that the 
dimensionality of the original data be decreased and 
noise in the data be segregated first, so the visualizing 
complexity and computational requirement for the 
subsequent analysis can be reduced (Kalluri et al., 
2001; Qiu et al., 2006). This is often achieved through 
applying a minimum noise fraction transform to the high 
dimensional data (Qiu et al., 2006).

The hyperspectral sensors and analysis have 
provided more information from remotely sensed 
imagery than ever possible before. As new sensors 
provide more hyperspectral imagery and new image 
processing algorithms continue to be developed, 
hyperspectral imagery (Shippert, 2003) is positioned to 
become one of the most common research (Shippert,
2004), exploration, and monitoring technologies used in 
a wide variety of fields.

This paper has investigated the usage of ETM+ 
data for vegetation cover analysis of a semi-arid area in 
Pakistan. Landsat ETM+ data provide rich spectral 
information content. The open availability of Landsat 
data makes it attractive choice for many researchers in 
Pakistan. The hyperspectral image analysis technique 
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Figure 10 : Image showing minimum noise fraction 
(MNF).
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employed was implemented based on the comparison 
of a pixel spectrum with the spectra of known pure 
resource information, which can be effectively extracted 
using endmember selection procedures such as 
minimum noise fraction, pixel purity index and n-
dimensional visualization.
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