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Abstract
Background  Peptide receptor radionuclide therapy (PRRT) is one of the most promising therapeutic strategies in neuroen-
docrine neoplasms (NENs). Nevertheless, its role in certain tumor sites remains unclear. This study sought to elucidate the 
efficacy and safety of [177Lu]Lu-DOTATATE in NENs with different locations and evaluate the effect of the tumor origin, 
bearing in mind other prognostic variables. Advanced NENs overexpressing somatostatin receptors (SSTRs) on functional 
imaging, of any grade or location, treated at 24 centers were enrolled. The protocol consisted of four cycles of 177Lu-DOTA-
TATE 7.4 GBq iv every 8 weeks (NCT04949282).
Results  The sample comprised 522 subjects with pancreatic (35%), midgut (28%), bronchopulmonary (11%), pheochro-
mocytoma/ paraganglioma (PPGL) (6%), other gastroenteropancreatic (GEP) (11%), and other non-gastroenteropancreatic 
(NGEP) (9%) NENs. The best RECIST 1.1 responses were complete response, 0.7%; partial response, 33.2%; stable disease, 
52.1%; and tumor progression, 14%, with activity conditioned by the tumor subtype, but with benefit in all strata. Median 
progression-free survival (PFS) was 31.3 months (95% CI, 25.7–not reached [NR]) in midgut, 30.6 months (14.4-NR) in 
PPGL, 24.3 months (18.0-NR) in other GEP, 20.5 months (11.8-NR) in other NGEP, 19.8 months (16.8–28.1) in pancreatic, 
and 17.6 months (14.4–33.1) in bronchopulmonary NENs. [177Lu]Lu-DOTATATE exhibited scant severe toxicity.
Conclusion  This study confirms the efficacy and safety of [177Lu]Lu-DOTATATE in a wide range of SSTR-expressing 
NENs, regardless of location, with clinical benefit and superimposable survival outcomes between pNENs and other GEP 
and NGEP tumor subtypes different from midgut NENs.

Keywords  [177Lu]Lu-DOTATATE · Lutathera · Lung · Neuroendocrine tumor · PRRT​ · Radionuclide therapy

Abbreviations
[177Lu]Lu-DOTATATE	� [177Lu][Lu-DOTA0, Tyr3] 

Octreotate (DOTATATE)
[90Y]Y-DOTATOC	�  [90Y][Y-DOTA-DPhe1-Tyr3] 

octreotide
[68Ga]Ga-DOTATOC	�  [68Ga]Ga-DOTA-Tyr-octreotide
AEMPS	� Spanish Agency of Medicines 

and Medical Devices

BP-NENs	� Bronchopulmonary neuroendo-
crine neoplasms

CI	� Confidence interval
CT	� Computed tomography
DF	� Degrees of freedom
ECOG-PS	� Eastern Cooperative Oncology 

Group performance status
EMA	� European Medicines Agency
FDA	� Food and Drug Administration
GBq	� Gigabecquerel
GEP	� Gastroenteropancreatic
GEP-NENs	� Gastroenteropancreatic neuroen-

docrine neoplasms
HR	� Hazard ratio
IV	� Intravenous

This article is part of the Topical Collection on Oncology - 
Digestive tract.

 *	 Alberto Carmona‑Bayonas 
	 alberto.carmonabayonas@gmail.com

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00259-023-06166-8&domain=pdf
http://orcid.org/0000-0002-1930-9660


2487European Journal of Nuclear Medicine and Molecular Imaging (2023) 50:2486–2500	

1 3
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mOS	� Median overall survival
NCI-CTC​	� National Cancer Institute Com-

mon Toxicity Criteria
NENs	� Neuroendocrine neoplasms
NGEP	� Non-gastroenteropancreatic
NR	� Not reached
ORR	� Overall response rate
PET/CT	� Positron emission tomography 

and computed tomography
pNENs	� Pancreatic neuroendocrine 

neoplasms
PPGL	� Pheochromocytoma/

paraganglioma
PRRT​	� Peptide receptor radionuclide 

therapy
RCT​	� Randomized clinical trial
RECIST v1.1	� Response Evaluation Criteria in 

Solid Tumors version 1.1
SEMNIM	� Spanish Society of Nuclear 

Medicine and Molecular 
Imaging

SEEN	� Spanish Society of the Endocri-
nology and Nutrition

SRI	� SSTR imaging
SSA	� Somatostatin analogs
SSTRs	� Somatostatin receptors
Y-90	� Yttrium-90

Introduction

Somatostatin receptors (SSTRs) are G-protein-coupled recep-
tors with complex biological activities, diffusely distributed in 
multiple tissues and tumors [1, 2]. Overexpression of SSTRs 
in more than 80% of well-differentiated gastroenteropancreatic 
neuroendocrine neoplasms (GEP-NENs) (more in gastrinomas 
and less in insulinomas), in addition to expression in 50% of 
bronchopulmonary NENs (BP-NENs), as well as in thyroid 
tumors, pheochromocytomas and paragangliomas (PPGLs) lay 
the groundwork for the rationale to study the potential antitu-
mor effect of targeted therapies with radioligands [3, 4].

Under the aegis of this strategy, theragnosis based on 
SSTRs for both the diagnosis and treatment with peptide 
receptor radionuclide therapy (PRRT) is one of the most 
promising treatment approaches in NENs. In vivo expres-
sion of SSTRs is detected by SSTR imaging (SRI) with 
great sensitivity, making it possible to select patients for 
PRRT with [90Y][Y-DOTA-DPhe1-Tyr3] octreotide (DOTA-
TOC) or [177Lu][Lu-DOTA0-Tyr3] octreotate (DOTATATE) 

[5, 6], by means of standardized methods, such as Krenning 
criteria [7].

Nonetheless, NENs’ low incidence and tremendous 
heterogeneity have been a stumbling block to attaining 
evidence of PRRT’s efficacy in most tumor subtypes [8, 
9]. With a biological imprint modulated by tumor origin, 
the embryogenesis of the diffuse neuroendocrine system 
accounts for the broad spectrum of these tumors: GEP-NENs 
(approximately two thirds of all cases), BP-NENs (22–27%), 
unknown primaries (10–20%), and up to 5% located in endo-
crine glands, endocrine islets other than the pancreas (thy-
roid), and in other organs, such as the gonads [9–12].

The most robust evidence in favor of PPRT in NENs 
derives from the phase 3 NETTER-1 randomized clinical 
trial (RCT) comparing [177Lu]Lu-DOTATATE and octreotide 
vs high-dose octreotide in SSTR+, advanced midgut NEN in 
progression on somatostatin analog (SSA) [13]. The study 
showed signs of unmistakable efficacy, exhibiting an objec-
tive response rate (ORR) of 18% vs. 3% and mature median 
progression-free survival (mPFS) of 28.4 vs. 8.5 months (HR 
0.21; 95% confidence Interval (CI), 0.14–0.33; p < 0.0001) 
with [177Lu]Lu-DOTATATE vs. high-dose octreotide, 
respectively. In the final analysis, median overall survival 
(mOS) was 48 vs. 36.3 months (HR 0.84; 95% CI, 0.60–1.17; 
p = 0.30) conditioned by the crossover in 36% and probably, 
by the impact of successive therapies [14]. The evidence 
is far less resounding for NENs of other locations or those 
having a worse prognosis. Thus, the FDA/EMA’s approval 
of [177Lu]Lu-DOTATATE in pancreatic NENs (pNENs) 
was grounded on a non-randomized cohort in which ORRs 
were documented of 31%, 55%, and 30%; mPFS of 30 (95% 
CI, 52–68), 30, and 20 months, and mOS of 60 (95% CI, 
52–68), 71 (56–86), and 52 months (49–55), in midgut NENs 
(n = 181), pNENs (n = 133), and BP-NENs (n = 23), respec-
tively [15]. Despite the fact that the regulators considered 
that a consistent effect across the entire spectrum of SSTR+ 
well-differentiated GEP-NENs was plausible, leading to 
unrestricted approval, the truth is that there is still a paucity 
of evidence for a substantial percentage of factual indications.

More recently, the phase 2 CONTROL NET trial has yielded 
more solid signals of efficacy in pNENs in a randomized setting 
with the peculiarity that PRRT was coupled with chemotherapy 
in the experimental arm in the pNEN cohort [16]. Consequently, 
the need for more solid information is pressing, inasmuch as 
pNENs appear to respond well to PRRTs, but later progress 
somewhat more quickly than midgut NENs [15, 17–20]. It 
will take other ongoing phase 3 RCTs, such as NETTER-2 
(NCT03972488) and COMPETE (NCT03049189), years to 
yield hard, mature data regarding the role of PPRTs in pNENs. 
Evidence concerning BP-NEN, PPGLs, subtypes of rarer NENs, 
or high-grade tumors is even more preliminary [21].

Moreover, the lack of randomized data leaves the issue 
up in the air of to what point PRRT-based theragnosis 
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should be established in the repertoire of treatments for 
advanced unresectable NENs independently of their loca-
tion. This gap is generally more important in daily care, 
with non-selected patients having a more unfavorable pro-
file compared to clinical trials.

Under these premises, our study (NCT04949282) con-
tributes to the body of evidence available, traditionally 
sparse in apropos of advanced NENs, with this analysis of 
a national registry of PRRT in which the results of subjects 
with NENs originating within or outside the digestive tract 
have been meticulously examined.

Method

Study design and population

SEPTRALU (NCT04949282) is a national registry of 
tumors treated with PRRT sponsored by the Spanish 
Society of Nuclear Medicine and Molecular Imaging 
(SEMNIM) in collaboration with the Spanish Society of 
the Endocrinology and Nutrition (SEEN). The data log-
gers are nuclear medicine physicians, medical oncologists, 
endocrinologists, and surgeons from 24 Spanish hospitals.

A registerable case is defined as any adult (> 18 years) 
with a metastatic, unresectable, SSTR-overexpressing, 
histologically confirmed neoplasm, that receives at least 
one cycle of [177Lu]Lu-DOTATATE, in accordance with 
the clinical practice of each center. At all centers, [177Lu]
Lu-DOTATATE was administered at a dose of 7.4 GBq 
iv per cycle, in 4 cycles with an interval of 8–10 weeks 
together with an amino acid solution to protect the kid-
neys. The sample also included undifferentiated or/and 
grade 3 (Ki67 > 20%) NENs if they expressed SSTRs. 
Individuals were excluded if they had < 3 months of fol-
low up except for those who had died during this period. 
In cases pretreated with PRRTs, outcomes of the first treat-
ment received were evaluated.

The data are managed by means of a website (http://​
www.​septr​alu.​es/) consisting of filters and an online moni-
toring system to guarantee data reliability and to control 
missing or inconsistent data (MM and PJF).

The protocol and study were approved by the Span-
ish Agency of Medicines and Medical Devices (AEMPS) 
(CSV: DSRZJ6QF1B), a reference Research Ethics Com-
mittee, the local agencies and Ethics Committees of each 
center. The study was conducted in accordance with the 
Guide of Good Clinical Practices of the International 
Conference of Harmonization, the principles of the Dec-
laration of Helsinki, and local laws and regulations. All 
patients still alive at the time of data collection gave their 
informed consent in writing.

Endpoints, variables, and assessments

The populations of interest comprised midgut, pancreatic, 
and other gastroenteropancreatic tumors (collectively, GEP-
NENs); as well as BP-NENs, PPGLs, and other non-gastro-
enteropancreatic tumors (collectively, NGEP-NENs). Mid-
gut tumors included primary jejunum, ileum, appendix, and 
proximal colon tumors. The group of “other GEP-NENs” 
collectively included tumors originating in esophagus, stom-
ach, duodenum, biliary, distal colon, rectum, and anus. In 
addition, neoplasms of unknown primary were clustered as 
“other GEP-NENs” in the presence of at least one histo-
pathologic marker compatible with digestive origin; if not, 
as “NGEP-NENs” [22].

The objective was to describe the outcomes (ORR, mPFS, 
and mOS) and safety (toxicity) of [177Lu]Lu-DOTATATE 
in NGEP-NENs and GEP-NENs, both aggregated and indi-
vidually by tumor subtype. As a secondary objective, the 
effect of tumor site was explored, taking into account other 
prognostic variables and confounding factors.

SRI positivity was graded according to Krenning’s crite-
ria [7], considering positivity when the uptake intensity of 
the primary tumor and metastases exceeded the uptake of 
normal liver using any SRI modality. Clinical, treatment, 
and disease status data were acquired from clinical history, 
patient interview, and local procedures, which included 
radiological studies, SRI, and serum and urinary markers 
that were performed following clinical practice.

The data evaluated included demographic (age, sex), 
clinical (Eastern Cooperative Oncology Group performance 
status (ECOG-PS), and symptoms), tumor (primary tumor 
site, number and location of metastases, functioning, serum, 
and urinary markers), histopathological (grade, Ki67, differ-
entiation, immunohistochemistry), prior treatments (types, 
number, time on treatment, and best response), and treat-
ment characteristics (dose, cycles, reasons for discontinu-
ation, ORR, mPFS, mOS, toxicity) information. Response 
was assessed on the basis of morphological criteria, ORR 
(proportion of subjects with partial or complete response 
according to RECIST1.1 criteria on computed tomography 
(CT) or magnetic resonance (MR)), and functional crite-
ria based on SRI ([68Ga]Ga-DOTA-Tyr-octreotide PET/
CT, [111In]In-DTPA0-D-Phe1-octreotide SSTR scintig-
raphy or post-therapy [177Lu]Lu-DOTATATE) scans. All 
patients were re-evaluated by post-therapy scans at the end 
of treatment; assessment by CT or PET-CT was performed 
according to each center’s clinical practice (generally every 
3–6 months). The best response achieved at follow-up was 
determined and the measurement technique was the one used 
locally, as per clinical practice in each center. In the case 
of PET-CT scans, response was graded analogously to the 
PERCIST criteria, with partial response defined as a reduc-
tion in lesion size or intensity of ≥ 30% (minimum absolute 

http://www.septralu.es/
http://www.septralu.es/
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change in peak standardized uptake value [SUV] of 0.8), 
complete response defined as normalization of all SUVs, and 
progression defined as an increase in intensity > 30% or the 
appearance of new lesions, verified through morphological 
criteria during follow-up [23]. In the case of scintigraphy 
evaluation, a semi-quantitative assessment of response was 
requested through the relationship between tumor uptake 
intensity and reference zones (liver or spleen), with response 
or progression defined as an increase or decrease in uptake 
of approximately 30%. Biochemical response was evaluated 
utilizing the criteria proposed by the Italian Trials in Medi-
cal Oncology (ITMO) [24]. Partial response was defined 
as a ≥ 50% decrease in plasma Chromogranin A (CgA), 
5-hydroxyindoleacetic acid, or other secreted biomarkers 
compared to the baseline, stable disease was defined as a 
decrease of < 50% or an increase of < 25%, and progressive 
disease (PD) was characterized by an increase of ≥ 25%. 
Moreover, the greatest reduction in biomarkers from base-
line to radiological progression was also documented. The 
response was categorized based on the stability of the bio-
marker concentration during the follow-up period. In the 
case of symptomatic response, data were obtained from the 
clinical history, and subsequent follow-up. Investigators 
were asked to report documentary evidence of subjective 
improvement in various areas such as functional syndrome 
due to hormonal hypersecretion (e.g., flushing or diar-
rhea), constitutional syndrome, functional improvement, or 
improvement in specific symptoms such as pain or gastro-
intestinal clinical symptoms. mPFS and mOS were defined 
as the period between the date that [177Lu]Lu-DOTATATE 
was initiated and progression according to the investigator’s 
assessment (mPFS) or death due to any cause (mOS), cen-
soring those cases without an event at the time of the last fol-
low-up. Assessments were performed during each treatment 
cycle and thereafter, following standard practice, at least 
every 6 months until progression or demise. Adverse events 
were classified according to the National Cancer Institute 
Common Toxicity Criteria (NCI-CTC), version 4.03, con-
sidering the maximum toxicity developed during follow up.

Statistical analyses

The time-to-event variables (mPFS/mOS) were evaluated 
utilizing the Kaplan-Meier estimator, comparing survival 
functions via log-rank tests. The results were modeled 
using multivariable Cox proportional hazards regression. 
The covariables selected in these models were chosen by 
theoretical criteria, consistent with the review of the litera-
ture and registry coordinators (MM, PJF, ACB, JCP), while 
avoiding collinearity (variation inflation factor < 2.5). For 
this purpose, the most common, known prognostic factors 
in NENs that might act as confounding factors were taken 
into account. The model was designed to assess the effect 

of tumor subtype while controlling for various confounding 
variables, so coefficients associated with confounders should 
not be interpreted as implying causality [25].

Missing values were handled by multiple imputation 
with predictive mean matching by chained equations, dis-
carding covariates with > 20% of missing data [26]. The 
study had a fixed sample size, contingent on the number 
of registered cases, which means that the inferences had to 
be interpreted as a function of the magnitude of the CIs. 
However, to specify the multivariable models, the “rule of 
thumb” of having at least 15 events per degree of freedom 
spent (between 15 and 16 in this context) was applied [27]. 
The correlation between PFS and OS was quantified using 
Kendall’s τ associated with Hougaard’s copula models for 
bivariate survival data [28]. Descriptive data were treated 
with appropriate standard statistics and measures in each 
instance. Proportions were compared by χ2-tests. The out-
comes for uncommon neoplasms were reported individually 
using swimmer plots.

Results

Baseline characteristics

The registry contains 562 eligible patients treated between 
June 2014 and June 2022, 522 of whom were eligible given 
that follow-up data were available for them. The sample 
consisted of 35% pNENs (n = 182), 28% midgut NENs 
(n = 148), 11% BP-NENs (n = 56), 6% PPGLs (n = 31), 
11% other GEP-NENs (n = 60), and 9% other NGEP-
NENs (n = 45). Baseline characteristics by tumor subtype 
are reported in Table 1 and aggregated into GEP-NENs 
and NGEP-NENs are provided in Supplementary Mate-
rials, Annex Table 1. Median age was 60 years (range, 
21–88) and 60.2% (n = 314) were male. Most neoplasms 
were well-differentiated (90%, n = 470), with median Ki67 
of 5% (range, 0–80), and Krenning score of 3 (uptake 
exceeding hepatic) in 75.7% (n = 395). Tracer uptake var-
ied with histologic grade but was independent of line of 
treatment (Supplementary Materials, Annex Table 2). The 
percentage of Krenning 4 tumors was higher in patients 
diagnosed by [68Ga]Ga-DOTATOC vs. SSTR scintigra-
phy (33% vs. 14%, p < 0.0001) (Supplementary Materi-
als, Annex Table 2). Roughly one-third were functioning 
tumors. Treatments were given as first, second, third, and 
subsequent lines in 4.2% (n = 22), 35.2% (n = 184), 29.6% 
(n = 155), and 30.8% (n = 161), respectively. Most fre-
quent previous therapies were somatostatin analog (91%), 
everolimus (42.9%, n = 224), or chemotherapy (27.6%, 
n = 144) with no differences between GEP and NGEP-
NENs. The most substantial differences by tumor subtypes 
were younger age, greater prevalence among females, 
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Table 1   Baseline characteristics by tumor subtype

Baseline charac-
teristic

All patients, 
N = 522 
(100%)

pNEN, N = 182 
(100%)

Midgut NEN,
N = 148 (100%)

BP-NEN,
N = 56 (100%)

PPGLs,
N = 31 (100%)

Other GEP-
NEN, N = 60 
(100%)

Other NGEP-
NEN, N = 45 
(100%)

Gender
  Men 314 (60.2) 105 (57.7) 93 (62.8) 44 (78.6) 14 (45.2) 33 (55.0) 25 (55.6)
  Women 208 (39.8) 77 (42.3) 55 (37.2) 12 (21.4) 17 (54.8) 27 (45.0) 20 (44.4)

Age (years), 
median (range)

60 (21–88) 59 (22–84) 65 (38–88) 60 (21–83) 50 (21–78) 61 (21–85) 60 (29–81)

ECOG performance status
  0 256 (49.0) 103 (56.6) 71 (48.0) 24 (42.9) 10 (32.3) 28 (46.7) 20 (44.4)
  1 210 (40.2) 63 (34.6) 59 (39.9) 26 (46.4) 15 (48.4) 26 (43.3) 21(46.7)
  2 37 (7.1) 13 (7.1) 11 (7.4) 5 (8.9) 4 (12.9) 3 3 (5.0) 1 (2.2)
  > 2 4 (0.8) 0 1 (0.7) 0 1 (3.2) 11 (1.7) 1 (2.2)
  Unknown 15 (2.9) 3 (1.6) 6 (4.1) 1 (1.8) 1(3.2) 22 (3.3) 2 (4.4)

Ki-67%, median 
(range)

5 (0–80) 6 (1–60) 3 (1–35) 6 (1–30) 4 (0–20) 5 (1–80) 10 (1–77)

  Missing 95 (18.2) 32 (17.6) 18 (12.2) 12 (21.4) 18 (58.1) 6 (10.0) 9 (20.0)
WHO 2017
  NET G1 178 (34.1) 51 (28.0) 64 (43.2) 15 (26.8) 13 (41.9) 23 (38.3) 12 (26.7)
  NET G2 292 (55.9) 103 (56.6) 79 (53.4) 35 (62.5) 16 (51.6) 34 (56.7) 25 (55.6)
  NET G3 42 (8.0) 24 (13.2) 4 (2.7) 3 (5.4) 2 (6.5) 2 (3.3) 7 (15.6)
  NEC G3 10 (1.9) 4 (2.2) 1 (0.7) 3 (5.4) 0 1 (1.7) 1 (2.2)

Hormonal syn-
drome

169 (32.4) 36 (19.8) 73 (49.3) 10 (17.9) 20 (64.5) 16 (26.7) 14 (31.1)

Localization of metastases
  Liver 436 (83.5) 168 (92.3) 132 (89.2) 47 (83.9) 9 (29.0) 50 (83.3) 30 (66.7)
  Lymph nodes 286 (54.8) 94 (51.6) 91 (61.5) 30 (53.6) 22 (71.0) 23 (38.3) 26 (57.8)
  Peritoneum 90 (17.2) 17 (9.3) 52 (35.1) 1 (1.8) 2 (6.5) 8 (13.3) 10 (22.2)
  Bone 145 (27.8) 35 (19.2) 25 (16.9) 30 (53.6) 20 (64.5) 17 (28.3) 18 (40.0)
  Lung 48 (9.2) 7 (3.8) 4 (2.7) 14 (25.0) 8 (25.8) 9 (15.0) 6 (13.3)
  Other 78 (14.9) 22 (12.1) 17 (11.5) 15 (26.8) 1 (3.2) 13 (21.7) 10 (22.2)

Prior surgery
  Primary tumor 281 (53.8) 83 (45.6) 94 (63.5) 34 (60.7) 26 (83.9) 31 (51.7) 13 (28.9)
  Metastases 121 (23.2) 49 (26.9) 41 (27.7) 7 (12.5) 4 (12.9) 14 (23.3) 6 (13.3)

Number of prior systemic treatments
  0 22 (4.2) 4 (2.2) 1 (0.7) 2 (3.6) 12 (38.7) 0 3 (6.7)
  1 184 (35.2) 55 (30.2) 73 (49.3) 48 12 (21.4) 6 (19.4) 22 (36.7) 16 (35.6)
  2 144 (29.7) 55 (30.2) (32.4) 21 (37.5) 5 (16.1) 16 (26.7) 10 (2.2)
  > 2 161 (30.8) 68 (37.4) 26(17.6) 21 (37.5) 8 (5.8) 22 (36.7) 16 (35.6)

Prior systemic treatments
  Somatostatin 

analogues
477 (91.4) 168 (92.3) 146 (98.6) 53 (94.6) 14 (45.2) 57 (95.0) 39 (86.7)

  Chemotherapy 144 (27.6) 70 (38.5) 15 (10.1) 16 (28.6) 14 (45.2) 11 (18.3) 18 (40.0)
  Everolimus 224 (42.9) 78 (42.9) 59 (39.9) 32 (57.1) 3 (9.7) 20 (44.4) 20 (44.4)
  Sunitinib 104 (19.9) 61 (33.5) 10 (6.8) 7 (12.5) 4 (12.9) 12 (20) 10 (22.2)
  Other tyrosin 

quinase inhibi-
tor

54 (10.3) 15 (8.2) 15 (10.1) 10 (17.9) 3 (9.7) 6 (10.0) 5 (11.1)

Prior locoregional 
and ablative 
therapies

77 (14.8) 36 (19.8) 18 (12.2) 4 (7.1) 0 15 (25.0) 4 (8.9)
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and more bone metastases in PPGLs; the predominance 
of liver, peritoneal, and lymph node involvement in mid-
gut tumors, and the preponderance of males in BP-NENs 
(Table 1).

Treatment

At the time of analysis, 90% (n = 471) had completed ther-
apy with [177Lu]Lu-DOTATATE. The most common reasons 
for withdrawal were having completed the schedule planned 
in 74% (n = 385), progression in 7% (n = 37), or toxicity 
in 3% (n = 15) of the subjects. Twenty-one intra-treatment 
deaths (4%) were recorded in relation to tumor-associated 
complications, 71% of which occurred following progres-
sion to ≥ 2 previous lines. Of the participants who com-
pleted therapy, 94% received the four standard doses; the 
rest, 5–8 doses, with no variation based on tumor subtype 
(the reason for administering > 4 doses was usually retreat-
ment after 18–60 months of initial therapy, except in 2 cases 
that initially received 6 cycles to increase tumor regression). 
Almost all (97%) of the doses were 7.4 GBq and average 
interval between them was 2.1 months (90% between 1.7 
and 3 months). Median time from diagnosis of metastasis 
until PRRT was 40.6 months (range, 0–288). Prior to [177Lu]
Lu-DOTATATE, 94% (n = 489) displayed tumor progres-
sion as per RECIST.

Response, survival, and toxicity outcomes

Response based on radiological, SRI, clinical, or biochemi-
cal criteria was available in 85%, 72%, 90%, and 87% of 
the cases, respectively. Response distribution can be seen 
in Fig. 1. Considering only subjects with measurable and 
response-evaluable disease (443/552), the best RECIST 
1.1 response was complete response in three (0.7%), partial 
response in 147 (33.2%), stable disease in 231 (52.1%), and 
tumor progression in 62 (14%). The overall disease con-
trol rate (responses and stabilizations) was 86% (n = 381). 
ORR and disease control rate broken down by tumor subtype 
was 42.4% and 84.8% in pNENs, 35.4% and 85.4% in other 
GEP-NENs, 31.5% and 78.9% in other NGEP-NENs, 28.6% 
and 77.6% in BP-NENs, 28.2% and 93.5% in midgut, and 
19.2% and 84.6% in PPGLs (χ2 = 27.1, degrees of freedom 
[d.f.] = 15, p = 0.0274) (Table 2). The landmark-analysis 
survival curves stratified by response are shown in Supple-
mentary Materials, Annex Fig. 1 . The response type prior to 
12-month landmark predicts OS with a concordance index of 
0.646 (standard error [SE] = 0.034). Clinical responses were 
higher than radiographic or SRI responses across all tumor 
types (Fig. 1). The response rate tended to decrease with 
the number of previous lines, with the exception of midgut 
NENs (Supplementary Materials, Annex Table 3). No sub-
stantial differences were detected across tumor subtypes for 
SRI, clinical, or biochemical response (Fig. 1, see χ2 tests 

Table 1   (continued)

Baseline charac-
teristic

All patients, 
N = 522 
(100%)

pNEN, N = 182 
(100%)

Midgut NEN,
N = 148 (100%)

BP-NEN,
N = 56 (100%)

PPGLs,
N = 31 (100%)

Other GEP-
NEN, N = 60 
(100%)

Other NGEP-
NEN, N = 45 
(100%)

Median time from 
initial diagnosis 
to PRRT,months 
(range)

40.6 (0–288) 40.7 (0–276) 39.0 (2–288) 39.7 (3–273) 41.2 (1–169) 41.4 (2–186) 40.9 (2–127)

Median time from 
most recent 
progression until 
PRRT, months 
(range)

2.3 (0–92.1) 2.2 (0.1–33) 2.7 (0–92) 2.4 (0–16.9) 2.9 (0.9–16) 2.2 (0.5–31) 2.2 (0.6–25)

SRI, Krenning scale
  2 44 (8.4) 15 (8.2) 12 (8.1) 4 (7.1) 2 (6.5) 1 (1.7) 10 (22.2)
  3 395 (75.7) 133 (73.1) 120 (81.1) 41 (73.2) 21 (67.7) 51 (85.0) 29 (64.4)
  4 83 (15.9) 34 (18.7) 16 (10.8) 11 (19.6) 8 (25.8) 8 (13.3) 6 (13.3)

[18F]F-FDG PET-CT
  Not done 383 (73.4) 130 (71.4) 122 (82.4) 41 (73.2) 13 (41.9) 50 (83.3) 27 (60.0)
  Consistent with 

SRI
50 (9.6) 16 (8.8) 6 (4.1) 7 (12.5) 12 (38.7) 2 (3.3) 7 (15.6)

  Not concordant 89 (17.0) 36 (19.8) 20 (13.5) 8 (14.3) 6 (19.4) 8 (13.3) 11 (24.4)

pNEN pancreatic neuroendocrine neoplasm, NEN neuroendocrine neoplasm, BP-NEN bronchopulmonary neuroendocrine neoplasm, GEP-
NEN gastroenteropancreatic neoplasm, NGEP-NEN no gastroenteropancreatic neoplasm, PPGL pheochromocytoma and paraganglioma, ECOG 
Eastern Cooperative Oncology Group, WHO World Health Organization, PRRT​ peptide receptor radionuclide therapy, PET positron emission 
tomography, SRI somatostatin receptor-based imaging, 18F-fluorodeoxyglucose position emission tomography-computed tomography
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in the footnote). The response stratified by tumor grade is 
shown in Table 4, with more partial responses but also a 
higher rate of tumor progression, and lower percentage of 
stable disease in high-grade tumors (G3) versus NET G1/2 
(Supplementary Materials, Annex Table 4).

After a median follow up of 21.2 months in partici-
pants still alive, 245 progressions to PRRT events and 163 
death events were recorded, with mPFS of 24.3 (95% CI, 

20.6–28.7) and mOS of 42.3 (95% CI, 34.2–61.1) months. 
Survival results stratified by tumor subtype are reflected in 
Fig. 2. mPFS was 31.3 months (95% CI, 25.7–not reached 
[NR]) in midgut, 30.6  months (14.4-NR) in PPGLs, 
24.3 months (18.0-NR) in other GEP-NENs, 20.5 months 
(11.8-NR) in other NGEP-NENs, 19.8 months (16.8–28.1) in 
pNENs, and 17.6 months (14.4–33.1) in BP-NENs (Fig. 2A). 
In any of the strata, results worsened with increasing number 

Table 2   Response assessment 
according to tumor subtype in 
subjects with measurable and 
response-assessable disease

pNEN pancreatic neuroendocrine neoplasm, BP-NEN bronchopulmonary neuroendocrine neoplasm, PPGL 
pheochromocytoma and paraganglioma, NEN neuroendocrine neoplasia, GEP gastroenteropancreatic, 
NGEP no gastroenteropancreatic, PD progression disease, DC disease control (CR+PR+SD), SD stable 
disease, PR partial response, CR complete response
Note: Response was evaluated using RECIST v1.1 criteria

Tumor subtype PD, N (%) DC, N (%) SD, N (%) PR, N (%) CR, N (%) Total, N (%)

pNENs 24 (15.2) 134 (84.8) 67 (42.4) 66 (41.8) 1 (0.6) 158 (100)
Midgut NENs 8 (6.5) 116 (93.5) 81 (65.3) 34 (27.4) 1 (0.8) 124 (100)
BP-NENs 11 (22.4) 38 (77.6) 24 (49.0) 14 (28.6) 0 49 (100)
PPGLs 4 (15.4) 22 (84.6) 17 (65.4) 5 (19.2) 0 26 (100)
Other GEP-NENs 7 (14.6) 41 (85.4) 24 (50.0) 17 (35.4) 0 48 (100)
Other NGEP-NENs 8 (21.1) 30 (78.9) 18 (47.4) 11 (28.9) 1 (2.6) 38 (100)
Total 62 (14.0) 381 (86.0) 231 (52.1) 147 (33.2) 3 (0.7) 443 (100)

A B

C D

Fig. 1   Response rate, assessed with anatomical imaging (A), SSR 
imaging (B), clinical interview (C), and with markers (D). Bivariate 
χ2 tests of response and tumor type, with SSR imaging: χ2 = 15.33, 
degrees of freedom [d.f.]  =  15, p value  =  0.4277; anatomical: 

χ2  =  29.33, d.f.  =  20, p value  =  0.0816; clinical: χ2  =  15.64, 
d.f. = 15, p value = 0.4047; and biomarkers: χ2 = 13.86, d.f. = 15, 
p value = 0.5359
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of previous treatments (Supplementary Materials, Annex 
Table 5). However, the correlation between PFS and OS 
does not seem to vary significantly based on the number 
of previous treatments: Kendall’s τ = 0.765 (SE = 0.036), 
0.794 (SE = 0.026), and 0.750 (SE = 0.026) for patients 
who received 0–1, 2, or 3 or more prior therapies for PRRT, 
respectively.

Sensitivity analysis for PFS by histological grade is found 
in Supplementary Materials, Annex Table 6. Likewise, it 
cannot be ruled out that the detection method, [68Ga]Ga-
DOTATOC vs. SSTR scintigraphy, constitutes an additional 
source of heterogeneity (Supplementary Materials, Annex 
Table 6). In the 52 subjects with grade 3 NENs, mPFS 
increased with SSTR expression in SRI, but the signal was 
weak (i.e., median PFS of 8.8 vs. 26.9 months in NENs with 
Krenning 2 vs. 4 [χ2 = 3.6, d.f. = 2, p = 0.2]) (Supplemen-
tary Materials, Annex Table 2).

Multivariable Cox regression model for PFS is displayed 
in Table 3. Taking the most numerous stratum (pNENs) as 

a reference, midgut NENs had less risk of progression (HR 
for PFS of 0.69; 95% CI, 0.44–0.93; p = 0.02).

mOS was 50.8 months (95% CI, 39.1-NR) in midgut 
NENs, 44.8 months (19.9-NR) in BP-NENs, 34.2 months 
(30.4-NR) in pNENs, 33.6 months (21.0-NR) in other 
NGEPs, and not-reached in other GEP-NENs and PPGLs 
(log-rank test, p = 0.3) (Fig. 2B). Individual survival 
results in rare neoplasms are displayed in a swimmer plot 
(Fig. 3). Of note is the 57% (8/14) ORR in rectal NENs; 
tumor control rate (objective response + stable disease) 
of 72% (23/32) and ORR of 21% in tumors of unknown 
primary, and tumor control rate of 64% (14/22) and 
89% (8/9), in paragangliomas and pheochromocytomas, 
respectively.

As for safety, [177Lu]Lu-DOTATATE was associated 
with scant severe toxicity, with hematological toxicity the 
only grade 3–4 side effect presenting an incidence > 1% 
(4.7%) (Table 4). The most common adverse effects were 
nausea (30.4%), hematological (29.8%), emesis (19.5%), 
asthenia (13%), and alopecia (7.2%). In a sensitivity analy-
sis, prior treatment with chemotherapy or biological agent 
was not associated with increased hematological toxic-
ity (Supplementary Materials, Annex Table 7). Grade 5 
events included pancytopenia (in 2 patients), leukemia (in 
1 patient), and myelodysplastic syndrome (in 2 patients). 
In addition, two patients who died due to tumor progres-
sion had severe cytopenia attributed to PRRT.

Table 3   Multivariable Cox PH regression for progression-free sur-
vival

PFS progression-free survival, HR hazard ratio, CI confidence inter-
val, Ref. reference, ECOG Eastern Cooperative Oncology Group, 
pNEN pancreatic neuroendocrine neoplasm, BP-NEN bronchopulmo-
nary neuroendocrine neoplasm, PPGL pheochromocytoma and para-
ganglioma, NEN neuroendocrine neoplasm, GEP gastroenteropancre-
atic, NGEP no gastroenteropancreatic

Variable HR (95% CI) p value

Number of previous lines 1.22 1.00- 1.50 0.048
Everolimus 1.38 1.01-1.89 0.040
Ki67% 1.22 1.08-1.39 0.001
ECOG performance status
  0 Ref. Ref. —
  1 1.81 1.36–2.41 < 0.0001
  2 2.58 1.64–4.05 < 0.0001

Tumor site
  pNEN Ref. Ref. –
  Midgut NEN 0.64 0.44–0.93 0.020
  BP-NEN 0.89 0.73–1.73 0.585
  PPGL 1.12 0.49–1.62 0.713
  Other GEP-NEN 0.69 0.44–1.09 0.118
  Other NGEP-NEN 0.68 0.41–1.13 0.144

Krenning score
  2 Ref. Ref. Ref.
  3 0.73 0.46–1.15 0.183
  4 0.53 0.30–0.92 0.025

Metastases
  Liver Ref. Ref. Ref.
  Extrahepatic 1.39 1.04–1.87 0.025
  Extranodal 1.14 0.48–2.71 0.751

Table 4   Adverse events

Adverse events All patients
N = 522 (100%)

Drug-related adverse events All grades Grade 3/4

Nausea 30.4% 0.6%
Vomiting 19.5% 0.2%
Hematological toxicity 29.8% 4.7%
Asthenia 13.0% 0.7%
Alopecia 7.2%
Enteritis 4.4% 0.1%
Nephrotoxicity 3.6% 0.9%
Abdominal pain 3.0% 0.1%
Urticaria 2.3% –
Hepatotoxicity 1.3% 0.7%
Decreased appetite 1.3% –
Flushing 0.9% –
Fever 0.7% 0.1%
Mucositis 0.3% –
Musculoskeletal pain 0.3% –
Skin disorders 0.1% –
Others 2.1% 0.3%
Death 0.9%
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Discussion

This analysis of the SEPTRALU registry confirms, albeit 
with nuances, the effect of [177Lu]Lu-DOTATATE in meta-
static, SSTR-expressing NENs, regardless of location. The 
results in midgut NENs were similar to those of the NET-
TER-1 trial [13], and outcomes in BP-NENs, PPGLs, and 

other neoplasms comparable to that seen in pNENs. The 
rationale for this study is that therapy and optimal treat-
ment sequence in advanced NENs continues to be poorly 
established and there is still limited evidence in favor of 
PRRT in various tumor subtypes. The approval of [177Lu]
Lu-DOTATATE for SSTR+ GEP-NENs was based on 
the comparison of the results of the NETTER-1 RCT in 

Fig. 2   Kaplan-Meier curves 
for progression-free survival 
(A) and overall survival (B) 
based on tumor site. N/n sample 
size/events, PFS progression-
free survival, CI confidence 
interval, NR not reached, 
PPGL pheochromocytoma 
and paraganglioma, GEP 
gastroenteropancreatic, NGEP 
non-gastroenteropancreatic, BP 
bronchopulmonary

9

9
9

A

B
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ileal tumors and the data from the ERASMUS MC series 
(Rotterdam) in pNENs. In contrast, with less activity in 
the Rotterdam series, BP-NENs and other subtypes were 
excluded from the approval. Uncertainty underlies this cri-
terion due to the smaller size of these strata, as well as the 
reasonable doubts regarding the external validity of the 
data derived from a single-center, non-randomized study. 
This uncertainty has been reflected in disparate clinical 
recommendations. Thus, the 2016 NEN ENETS clinical 
guidelines does not reflect PRRT as an alternative for BP-
NEN [29], whereas the Commonwealth Neuroendocrine 
(CommNETs) and North American (NANETS) 2020 
clinical guidelines suggest that PRRT can be an option in 
patients with SSTR+ BP-NEN, on the basis of an expert 
opinion [30].

Compiling the clinical practice from many centers, the 
SEPTRALU study has revealed that the ORR of [177Lu]
Lu-DOTATATE is higher in pNEN vs midgut NEN, which, 
in turn, is similar for the remaining neoplasms. The results 
for pNENs in the SEPTRALU registry are slightly less 
favorable than those reported in other series (ORR 42% vs. 

52–60%, mPFS 19.8 vs. 31–34 months, and mOS 34.2 vs. 
53–71 months), respectively [15, 18, 19]). The cause for 
these discrepancies lies in the heterogeneous composition of 
the samples, with individuals having a worse prognosis and 
heavily pretreated in the SEPTRALU registry (i.e., 61% and 
6% had received somatostatin analogs or chemotherapy prior 
to PRRT in the Rotterdam series vs. 92% and 38% in our reg-
istry, with multiple participants treated with TKIs or everoli-
mus). The greater ORR seen for [177Lu]Lu-DOTATATE in 
pNENs was not clearly correlated with other endpoints. On 
the other hand, the findings are consistent with those of the 
recent OCLURANDOM trial, which reported a median PFS 
of 20.7 months (95% CI 17.2–23.7), similar to the results 
from our study [31].

In our series, midgut NENs had better mPFS, with an 
adjusted HR of 0.64 (95% CI, 0.44–0.93) using pNENs as 
a reference. This datum coincide with other bibliographic 
reports [20, 32]. For example, a German, multicenter reg-
istry with 450 cases reported greater mOS in tumors of 
the ileum-jejunum vs. other locations (HR 0.39; 95% CI, 
0.18–0.87; p = 0.021) [32]. This worse survival rate raises 

Fig. 3   Swimmer plot with results of responses and survival in individual tumors. Each bar represents one patient. PRRT​ peptide receptor radio-
nuclide therapy, PPGL pheochromocytoma/paraganglioma, GEP gastroenteropancreatic
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questions surrounding the benefit dimension of [177Lu]Lu-
DOTATATE in the stratum of pNENs and its optimal appli-
cation, which must be resolved by the ongoing phase 3 RCTs 
(NCT03972488, NCT03049189).

As in other series, the evidence about other rarer subtypes 
of NENs is limited, albeit our data point toward an effect that 
is consistent with the literature. As for BP-NENs, the 28.6% 
ORR and the mPFS and mOS of 17.6 and 44.8 months, 
respectively, are in keeping with the data from a small Ital-
ian phase 2 trial that reported an ORR of 15%, 18.5-month 
mPFS (95% CI, 12.9–26.4), and 48.6-month mOS (95% CI, 
26.4–68.9) [33]. The remainder of the observational studies 
have yielded similar results, with ORR of 10–40%, mPFS 
of 17–28 months, and mOS of 40–59 months [34–38]. 
However, it is noteworthy that all of these previous series, 
including the phase 2 trial, have a limited number of patients 
(< 50), except for the Milan series (n = 114) which recruited 
patients between 1997 and 2012 [34]. Since RCTs and 
indications for therapeutic alternatives have traditionally 
focused on GEP-NENs, it becomes increasingly important 
to have evidence of [177Lu]Lu-DOTATATE efficacy in this 
underserved location. Likewise, in the case of PPGLs, our 
results (19% ORR and 30.6 months mPFS) are comparable 
to those of a small Polish phase 2 trial that reported an ORR 
of 8%, mPFS of 35 months (95% CI, 24.4–93.1), and mOS 
of 68 months (95% CI, 38.6–105.1) [39]. Similarly, an Ital-
ian study reported a mPFS and mOS of 27.5 months (95% 
CI, 14.5–51.5) and 142.6 months (95% CI 76.1–146.2), 
respectively in sympathetic paragangliomas [40]. Moreover, 
a meta-analysis of 12 studies on PRRT in SSTR+ advanced 
PPGL reported a pooled estimate of 25% ORR (95% CI, 
19–32%), 61% clinical response (30–88%), and 64% bio-
chemical response (11–96%). The mPFS was 37.1 months 
(95% CI, 32.1–42.0 and range, 10–91) and mOS was 
54.5 months (42.5–66.5) [41]. In this context, it is impor-
tant to note the remarkable disease control rate observed in 
PPGLs (84.6%) with a median PFS that is comparable to that 
reported in midgut tumors. These results may have impli-
cations for the management of these conditions; however, 
further validation through larger-scale prospective trials is 
required to fully establish its significance.

Our study also endorses the efficacy of [177Lu]Lu-DOTA-
TATE in uncommon NENs, for which the evidence is even 
scarcer, such as hindgut NENs and other NGEP-NENs, 
including those of unknown origin that cannot be mapped in 
the digestive tract. Activity has been detected in all of them 
and deserves to be confirmed in future RCTs. The similar 
prognosis of NENs of unknown primary or other locations 
compared to pNENs has also been reported in a series of 1048 
patients treated at a German reference center [20]. Therefore, 
our study indicates that the benefit of PRRT in SSTR+ tumors 
is independent of tumor site in the extra-midgut scenario, cast-
ing doubts on decision making based on this criterion.

In this series, hematological toxicity and alopecia are in 
keeping with published findings of the NETTER-1 RCT, 
but nausea/vomiting and asthenia are much lower (less than 
half), possibly because the centers are aware of these side 
effects and therefore prevent them.

As for generalizability, it must be remembered that 
the SEPTRALU registry cases had a metastatic, SSTR+ 
(defined by a Krenning score of 2-4) NEN, in progression 
(94%), and of any location. Unlike the NETTER-1 RCT 
[13], this registry includes 71% of non-midgut NENs; 10% 
with Ki67 > 20%; 60.5% treated in third or successive lines; 
patients and NENs having a worse prognosis, which must be 
contemplated when making treatment decisions.

Our work has several limitations, not least of which are 
its retrospective nature and the relative immaturity of the 
follow up (i.e., events of progression recorded in 245/522). 
SRIs were conducted according to the imaging modali-
ties and laboratory tests available at each center. Readers 
should be aware that both functional response evaluation by 
scintigraphy and biochemistry were performed in a semi-
quantitative or non-standardized manner, with the potential 
loss of sensitivity that this implies. Similarly, symptomatic 
response was evaluated through records in medical histories 
and subsequent follow-up, without a validated questionnaire, 
which limits the accuracy of the data and prevents precise 
investigation into specific aspects of quality of life. The 
readers should also be aware that the multivariable model 
in Table 3 attempts to assess the effect of tumor subtype, 
while considering various confounding factors. The choice 
of everolimus as a covariate is based solely on its widespread 
utilization among NENs, and the results should not be inter-
preted as implying causal effects [25]. PFS estimation may 
also have been affected by the local regularity in performing 
CTs. Furthermore, other uncommon factors may be relevant 
in unusual contexts (i.e., the effect of SDHB mutation or 
PPGL subtype) [39, 40, 42].

With these limitations present, our article contains note-
worthy information that is applicable in clinical practice, 
and it contribute to externally validate the results of other 
studies such as the OCLURANDOM trial [31]. To begin 
with, PRRT continues to be the modality associated with 
greater ORRs in well-differentiated midgut NENs and 
potentially has an ORR similar to chemotherapy in other 
scenarios of extramidgut NENs. Nevertheless, our data 
point toward decreased efficacy as the number of previous 
lines increases. Treatment sequence clarification by RCTs 
notwithstanding, the finding might be related with non-dif-
ferentiation and the tumors being less dependent on SSTR, 
which would indicate the advisability of prescribing PRRT 
earlier [20, 43–45]. PRRT is currently indicated following 
progression to somatostatin analog, pending the results of 
the COMPETE RCT, comparing everolimus to PRRT, and 
of the NETTER2 study, comparing somatostatin analog vs. 
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PRRT in first line, to have more evidence with respect to 
the best sequence [14, 46]. However, it is noteworthy that 
PFS appears to be a reliable surrogate for OS, regardless 
of the line in which PRRT is administered. This suggests 
that PRRT effectively controls the disease and contributes 
significantly to the patient’s survival, while the impact of 
subsequent treatments is likely to be less significant. Sec-
ond, in the case of PPGLs, treatment choice should be 
informed by the concentration of the tracer in the vari-
ous molecular imaging modalities, being mindful of the 
greater experience with [131I]I-metaiodobenzylguanidine. 
However, PRRT has the potential advantage of producing 
fewer hematological side effects and not requiring thyroid 
blockade prior to treatment. Third, our data demonstrate 
that PPRT is active in grade 3 NENs with an ORR com-
parable to that of well-differentiated tumors, albeit mPFS 
is more limited. Fourth, an evaluation of both [18F]fluoro-
2-deoxy-d-glucose PET-CT and SRI might help to select 
patients with grade 3 NENs who can benefit more with 
PRRT, despite the evidence being weak. Subject to the 
presence of SSTRs demonstrated by SRI, PRRT prescrip-
tion may be particularly suitable in symptomatic individu-
als that need rapid relief.

As for safety, our data point toward [177Lu]Lu-DOTA-
TATE having a favorable profile, with scant adverse events 
that were generally mild. Thus, the literature reflects that 
[177Lu]Lu-DOTATATE is safer than [90Y]Y-DOTATOC 
thanks to the lower doses absorbed by the kidneys and bone 
marrow at comparable dosages and to the longer half-life 
(6.7 versus 2.7 days) [36].

In short, our data imply that [177Lu]Lu-DOTATATE is 
active and safe in wide range of NENs, with both radio-
logical and clinical response rates and survival outcomes in 
pNENs and other tumor subtypes coinciding, which would 
support its tumor-agnostic use in the presence of SSTRs 
demonstrated by SRI techniques.
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