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A B S T R A C T   

Metastatic triple-negative breast cancer (mTNBC) is a poor prognostic disease with limited treatments and un
certain therapeutic algorithms. We performed a systematic review and multiple Bayesian network meta-analyses 
according to treatment line to establish an optimal therapeutic sequencing strategy for this lethal disease. We 
included 125 first-line trials (37,812 patients) and 33 s/further-lines trials (11,321 patients). The primary 
endpoint was progression-free survival (PFS). Secondary endpoints included overall response rates (ORR), 
overall survival (OS) and safety, for first and further lines, separately. We also estimated separate treatment 
rankings for the first and subsequent lines according to each endpoint, based on (surface under the cumulative 
ranking curve) SUCRA values. No first-line treatment was associated with superior PFS and OS than paclitaxel ±
bevacizumab. Platinum-based polychemotherapies were generally superior in terms of ORR, at the cost of higher 
toxicity.. PARP-inhibitors in germline-BRCA1/2-mutant patients, and immunotherapy + chemotherapy in PD-L1- 
positive mTNBC, performed similar to paclitaxel ± bevacizumab. In PD-L1-positive mTNBC, pembrolizumab +
chemotherapy was better than atezolizumab + nab-paclitaxel in terms of OS according to SUCRA values. In 
second/further-lines, sacituzumab govitecan outperformed all other treatments on all endpoints, followed by 
PARP-inhibitors in germline-BRCA1/2-mutant tumors. Trastuzumab deruxtecan in HER2-low mTNBC performed 
similarly and was the best advanced-line treatment in terms of PFS and OS after sacituzumab govitecan, ac
cording to SUCRA values. Moreover, comparisons with sacituzumab govitecan, talazoparib and olaparib were not 
statistically significant. The most effective alternatives or candidates for subsequent lines were represented by 
nab-paclitaxel (in ORR), capecitabine (in PFS) and eribulin (in PFS and OS).   

Introduction 

Triple negative breast cancer (TNBC) represents approximately 
10–15 % of all breast tumors and is defined by the absence of endocrine 
receptors (ER) and HER2 gene overexpression/amplification [1]. Met
astatic TNBC (mTNBC) remains an incurable disease with unfavorable 
prognosis [2]. However, the scenario is quickly changing. 10.6–41.9 % 
TNBC harbor a germline mutation in the homologous recombination 
repair (HRR) genes BRCA1/2 [3]. In these cases, following positive re
sults from respective pivotal trials, it is now possible to administer the 
PARP-inhibitors (PARPi) olaparib or talazoparib in first or further lines 
[4,5]. Additionally, the TNT phase III first-line trial recently demon
strated that carboplatin was more effective than the standard of care 
docetaxel in germline BRCA1/2-mutant (gBRCA-mut) mTNBC [1]. 
Intriguingly, in the same trial, in a broader condition of HRR deficiency 
(HRD), none of the 2 drugs was superior to the other [1]. Recently, two 
randomized phase III studies showed that PD-L1 positive (+) mTNBC 
(though selected with different methodologies) derive benefit from the 
addition of an anti-PD-L1/PD-1 immune-checkpoint inhibitor (ICI) to 
upfront chemotherapy (CT) [6,7]. However, the majority of mTNBC are 
PD-L1-negative (40–80 %) and germline BRCA1/2-wild type (gBRCA- 
wt) (60–90 %) [3,8,9], thus being only manageable with mono- or poly- 
CT, with the possibility (only in Europe) to use a first-line combination 
of bevacizumab with either paclitaxel or capecitabine [10,11]. 

Importantly, the novel anti-TROP2 antibody-drug conjugate (ADC) 
sacituzumab govitecan provided unprecedented overall response rates 
(ORR), progression-free survival (PFS) and overall survival (OS) benefit 
in heavily pretreated mTNBC [12,13], quickly leading to a US Food and 
Drug Administration (FDA) approval in this subset. Although pre
liminary, similar findings have been recently observed with the novel 
ADC trastuzumab deruxtecan (T-DXd) in the subset of TNBC with low 
expression levels of HER2 [14,15]. 

In this complex and changing scenario, uncertainties exist on 
whether and when to prefer single-agent over multi-agent treatments 
and most regimens have not undergone head-to-head comparisons. Also, 

the role of platinum-based regimens is unclear and therapeutic se
quencies uncertain [11,16,17]. To date, only network meta-analyses 
(NMA) provides a methodologically reliable statistical framework to 
indirectly compare treatments that have never been confronted in head- 
to-head studies, given that such therapies have been compared to at least 
one common comparator [18,19]. NMA also allows to determine the 
amount of agreement between the results obtained when different 
linking treatments are used; it can incorporate results from direct 
comparisons, to account for both direct and indirect evidences at the 
same time, and it can provide a rank ordering of the interventions 
[18,19]. 

Therefore, we conducted a systematic literature search to identify all 
phase II/III randomized controlled trials (RCT) published in the last 20 
years comparing all CT and target therapies (TT) in metastatic HER2- 
negative breast cancer (BC) and carried out multiple Bayesian NMA to 
define the best therapeutic options for mTNBC according to treatment 
line. 

Methods 

Search strategy and selection criteria 

We performed a systematic literature search on Pubmed® and 
CENTRAL to identify all phase II/III RCT published between 01/01/ 
2000 and 30/06/2020 comparing all CT and TT in metastatic HER2- 
negative BC. The time span was selected to both retrieve studies more 
uniformly conceived and presented, and include all currently available 
and most promising therapeutic options. The full search query is re
ported in the Supplementary Methods. Articles relevant to the topic 
published between July 2020 and June 2022 were manually included in 
the networks before conducting final analyses. Online archives of the 
San Antonio Breast Cancer Symposium, European Society for Medical 
Oncology (ESMO)’s Congress, ESMO Breast Congress and American 
Society of Clinical Oncology (ASCO)’s Annual Meeting were also con
sulted. No language restrictions were adopted. Records had to be pref
erably full papers, however, for each trial where only an abstract was 
available and results were adequately provided, the study was included 
in our analyses. In case of more publications for the same study, the most 1 co-first authors for equal contribution. 
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updated one was considered. Two independent reviewers (FS and MG) 
carried out the systematic revision of the literature and a third one (DG) 
was consulted in case of controversy. Some cross-references from main 
international guidelines were also included. 

Endpoints 

We aimed at identifying the best therapeutic option for the first-line 
and second/further (advanced) lines, separately, according to efficacy/ 
activity and safety. PFS was the primary endpoint whereas ORR, OS and 
safety were secondary endpoints. 

Data extraction 

To be included, a publication had to provide at least the data for one 
of the three endpoints of this study (detailed response rates and/or 
hazard ratios [HR] of PFS and/or OS). In case HR for Time-to- 
Progression (TTP) instead of PFS were provided, TTP was considered 
for the analysis. TTP and PFS are very similar endpoints, which have 
been frequently mixed-up in other previously published NMA [20–22]. 
The HR and associated 95 % confidence intervals (CI) for OS and PFS/ 
TTP were extracted from each paper. The number of patients achieving a 
partial or complete response as their best response according to treat
ment arm were extracted to calculate the ORR. 

Data concerning the following variables were also extracted from all 
the studies: full publication reference, publication year, line of treat
ment, phase of the trial, investigated treatments, single center vs 
multicenter studies, follow-up period (months), total number of pa
tients, proportion of patients with ER + BC, median age, age range, 
proportion of patients with PD-L1+, gBRCA-mut and altered PI3K/PTEN 
pathway, as well as proportion of visceral, lung, liver and bone metas
tases, and main grade (G)3–5 adverse events (AEs). 

Several adjustments regarding data extraction need to be disclosed. 
Firstly, when a study set in first and further lines presented with a result 
for the entire population enrolled and separate results for the first line 
and for the following, results according to treatment lines were extrac
ted. Secondly, three trials specifically enrolled patients with gBRCA-mut 
tumors [4,5,23]. Therefore, our results concerning the therapeutic 
agents administered within these studies have to be intended only for 
the specific subgroup of gBRCA-mut TNBC. Third, the same three studies 
presented separate aggregate data for TNBC and ER + tumors, although 
such results were not provided according to treatment line. To better 
estimate the therapeutic efficacy in the first and subsequent lines, we 
preferred to include results according to treatment line, although a 
proportion of ER + BC was comprised in these estimates. Fourth, the 
studies of pembrolizumab and atezolizumab included both patients with 
and without PD-L1+ tumors [7,24–26]. Considering that such drugs 
have been FDA and/or European Medicine Agency (EMA)-approved 
only in mTNBC with a PD-L1 combined positive score (CPS) ≥ 10 % or 
PD-L1 levels ≥ 1 % according to the Ventana SP142 assay, respectively, 
only results for these subpopulations have been included. As a conse
quence, our results concerning the therapeutic agents administered 
within these studies have to be intended only for the specific subgroup of 
PD-L1+ mTNBC, with PD-L1 positivity defined according to the relative 
trials’ assays. Finally, AKT-inhibitors ipatasertib in Kim et al. 2017 and 
capivasertib in Schmid et al. 2019 were tested in TNBC with and without 
alterations in PIK3CA, AKT1 or PTEN, whilst the former was tested in 
Dent et al. 2021 only in PIK3CA/PTEN/AKT-altered mTNBC [27–29]. 
For ipatasertib, which failed to prove a significant benefit transferrable 
to the clinical practice, the results for the intention-to-treat (ITT) trials’ 
population were included. Conversely, capivasertib was included for the 
obtained results in the PIK3CA/PTEN/AKT-altered population, a subset 
with a potential approval; although results from the phase III trial are 
required to draw definitive conclusions. Finally, in order to include some 
trials in the networks, some links had to be forced. More specifically, the 
capecitabine-containing treatment of physician’s choice (TPC) arms 

from Litton et al. and Robson et al. were linked to the capecitabine arm 
of Harbeck et al. to include olaparib and talazoparib in the first-line 
networks [4,5,30]. The CT arm of Cortes et al., which included also 
paclitaxel, and the taxane-containing arm of Takashima et al. were 
linked to weekly paclitaxel and the CT arm of Von Minckwitz et al. was 
considered as a TPC arm, allowing its inclusion in the second/further- 
lines networks [25,31,32]. Additionally, TPC arms did not differ too 
much among different trials, therefore they were always linked together, 
whenever possible. 

Data analysis 

A Bayesian NMA framework was used for each endpoint and for each 
treatment line for a total of 6 networks, i.e. first-line and advanced lines 
networks of PFS/TTP, ORR and OS, respectively [18,19,33]. 

We also provided a ranking of treatments based on the surface under 
the cumulative ranking curve (SUCRA). The SUCRA values range from 
0 to 100 %. The higher the SUCRA value, and the closer to 100 %, the 
higher the likelihood that a therapy is in the top rank; the closer to 0 the 
SUCRA value, the more likely that a therapy is in the bottom rank [34]. 

The parameters of the different models (HR of PFS/TTP and OS with 
95 % credible intervals [CrI] and OR for ORR with 95 %CrI) were esti
mated using a Markov Chain Monte Carlo method as implemented in the 
WinBUGS software package [33]. For all the analyses, the WinBUGS 
sampler, using three chains, was run for 1,000,000 iterations that were 
discarded as ‘burn-in’, and the model was run for a further 2,000,000 
iterations on which inferences were based. A thinning rate of 100 iter
ations was used to reduce autocorrelation of the sampled values, thus 
leaving 20,000 iterations per chain to use for estimation and inference. 
Convergence of the chains was confirmed by the Gelman-Rubin statistic 
and by inspection of the trace plots [35,36]. For each NMA, the model 
providing the best fit to the data between random- and fixed-effect was 
chosen based on the Deviance Information Criterion (DIC). The DIC 
provides a measure of model fit that penalizes model complexity. The 
model with the lowest DIC was considered the model providing the best 
fit to the data, otherwise, wherever DIC values were similar (difference 
of < 5) a fixed-effect model was preferred [33]. For the NMA of the HR, 
we assumed that the logHR were normally distributed with the logHR 
mean equaling the true logHR observed in each study and the variance 
equaling the observed variability in each study. 

We used a vague flat (i.e., uniform) prior distribution for between- 
study standard deviation τ. Moreover, as for the correlations between 
the random effects for each trial, we adopted the standard approach to 
set this correlation equal to 0.5 [37]. We used a common between-study 
variance parameter τ2 for all studies. 

The PRISMA guidelines for NMA were followed [38]. Inconsistency 
of the results was explored, as recommended [38–40]. For all treatment 
line networks according to each endpoint, an inconsistency model was 
obtained by omitting the consistency equations. Then, for each 
endpoint, the consistency and inconsistency models were compared in 
terms of goodness of fit by using their relative DIC [39,40]. A difference 
of less than 5 points was considered to be not significant. 

All the analyses were performed with WinBUGS version 1.4.3 and the 
results were processed using R version 4.2.0 [33,41]. All the equations 
adopted had been published elsewhere and adapted for our analyses 
[37]. Internal validity of eligible studies was assessed with Review 
Manager version 5.4 according to the Cochrane guidelines [42]. 

The study protocol was registered on PROSPERO (ID: 
CRD42020211971). 

Results 

Overall, 139 studies were included in our networks for a total of 118 
different therapeutic regimens for the first-line and 33 for the following 
lines (all references in Supplementary Methods). The study selection 
process is summarized in Supplementary Fig. 1. First-line networks 
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included 125 RCT whilst advanced-line networks included 33 RCT 
(Supplementary Tables 1–2 and Supplementary Figs. 2–7). The first-line 
PFS, OS and ORR networks were based on trial-level data deriving from 
31,203, 22,848 and 36,015 patients, respectively. Advanced-line PFS, 
OS and ORR networks were based on trial-level data deriving from 
7,185, 6,467 and 11,321 patients, respectively. Eighteen (56.2 %) 
advanced-line studies included a proportion of first-line patients and 
were also incorporated in first-line networks. Ninety-two (73.6 %) first- 
line studies also included ER + metastatic BC (MBC) (mini
mum–maximum [min–max] range of ER + MBC patients in the included 
studies: 14 % − 91 %). Twenty-one (63.6 %) advanced-line studies 
involved ER + MBC (min–max range: 26.1 % − 83.3 %), as well. 
Considering all included studies, the median proportion of patients with 
ER + MBC per treatment arm was 59.5 % (interquartile range [IQR] of 
35.3 % – 74.0 %) and endocrine therapy (ET) for the metastatic disease 
had been administered before study treatments in 37 % of the cases in at 
least a proportion of patients per treatment arm. Four (2.9 %) trials 
explicitly included a proportion of PD-L1+ tumors [6,7,26,43], 5 (3.6 
%) trials included, exclusively or in part, gBRCA-mut MBC 
[1,4,5,13,23], and 3 (2.2 %) trials included patients with PIK3CA/ 
PTEN/AKT-altered tumors [27–29]. Overall, 49 (35.3 %) studies 

evaluated TT, with or without CT while the remaining 91 (64.7 %) only 
compared different CT regimens or schedules. Study characteristics are 
extensively reported in Supplementary Tables 1–2. 

To graphically visualize the results, paclitaxel + bevacizumab was 
chosen as the reference treatment for the first-line, being a potentially 
good compromise between mono-CT and poly-CT, while capecitabine 
was the reference for the advanced lines, as in numerous RCT. 

Inconsistency and consistency models’ DIC for each network are 
reported in the Supplementary Methods. A marginally significant 
inconsistency was observed only for the first-line ORR network (a dif
ference between the DIC of consistency and inconsistency models of 
6.49). 

First-line networks 

A total of 92 different regimens were compared for PFS/TTP. None 
was deemed to be significantly superior to paclitaxel + bevacizumab, 
including poly-CT regimens such as anthracycline/taxane combinations 
or other anthracycline-based regimens and taxanes + platinum agents 
(Fig. 1). At the same time, paclitaxel + bevacizumab was not likely to be 
superior to any first-line mono-CT, such as weekly paclitaxel, pegylated 

Fig. 1. Forest plot of all first-line regimens compared to paclitaxel + bevacizumab in terms of PFS/TTP. The figure has been split in two panels (A and B) to improve 
its readability. The forest plot includes the log hazard ratios (HR) of each treatment versus paclitaxel + bevacizumab. Central dots represent posterior medians; thin 
lines represent 95 % credible intervals (CrI), while thicker ones represent 80 % CrI. Log scale was adopted to graphically represent the 95 % CrI. The first column of 
values on the right reports the log HR with 95 % CrI, the second column reports HR with 95 % CrI. Statistically significant results according to Bayesian posterior 
medians and 95 % credible intervals are highlighted by asterisks. 5-FU: 5-fluorouracil; AC: doxorubicin + cyclophosphamide; ATEZO: atezolizumab; AXI: axitinib; 
BEVA: bevacizumab 10 mg/kg IV q2w; BEVA 7.5: bevacizumab 7.5 mg/kg IV q3w; BEVA 15: bevacizumab 15 mg/kg IV q3w; BMF: bendamustine + methotrexate +
5-FU; CAPE: capecitabine; CAPE LD: capecitabine low dose/metronomic; CAPI: capivasertib; CYC: cyclophosphamide; CARBO: carboplatin; CIS: cisplatin; CME: 
cyclophosphamide + mitoxantrone + etoposide; CMF: cyclophosphamide + methotrexate + 5-FU; CT: chemotherapy; DOC: docetaxel; DOXO: doxorubicin 75 mg/m2 

q3w; DOXO 60: doxorubicin 60 mg/m2 q3w; EC: epirubicin + cyclophosphamide; EPI: epirubicin; ERI: eribulin; EVE: everolimus; FAC: 5-FU + doxorubicin +
cyclophosphamide; FEC: 5-FU + epirubicin 75 mg/m2 + cyclophosphamide q3w; FEC 100: 5-FU + epirubicin 100 mg/m2 + cyclophosphamide q3w; FEC 50: 5-FU +
epirubicin 50 mg/m2 + cyclophosphamide q3w; GEM: gemcitabine; INI: iniparib; IPA: ipatasertib; IXA: ixabepilone; LONI: lonidamine; MITO C: mitomycin C; 
MITOX: mitoxantrone; MMM: mitoxantrone + mitomycin C + methotrexate; MOT: motesanib; NAB-PAC: nab-paclitaxel 260/300 mg/m2 q3w; NAB-PAC 100 qw: 
nab-paclitaxel 100 mg/m2 q3/4w; NAB-PAC qw: nab-paclitaxel 125/130/150 mg/m2 q3/4w; NPLD: non-pegylated liposomal doxorubicin; OLA: olaparib; PAC 
within schedules and PAC q3w: paclitaxel 175 mg/m2 q3w; PAC 210: paclitaxel 210 mg/m2 q3w; PAC 250: paclitaxel 250 mg/m2 q3w; PAC qw: paclitaxel 80/90 
mg/m2 q3/4w; PEMBRO: pembrolizumab; PEMBRO + CT: pembrolizumab + nab-paclitaxel/paclitaxel/carboplatin + gemcitabine; PLD: pegylated liposomal 
doxorubicin 50 mg/m2 IV q4w; PLD 40 mg: peghylated liposomal doxorubicin 40 mg/m2 IV q4w; PLD 60 mg: pegylated liposomal doxorubicin 60 mg/m2 IV q4w; 
RAMU: ramucirumab; SCT: stem cell transplant; SOR: sorafenib; SUN: sunitinib; TALAZO: talazoparib; TMZ: temozolomide; TREB3: trebananib 3 mg/kg qw; TREB10: 
trebananib 10 mg/kg qw; TRILA: trilaciclib 240 mg/m2 d1,8 IV q3w; TRILA 1,2,8,9: Trilaciclib 240 mg/m2 d1,2,8,9 IV q3w; VELI: veliparib; VINFLU: vinflunine; 
VNR: vinorelbine; IV: intravenous; d: day; qw: weekly schedule; q2w: biweekly schedule; q3w: threeweekly schedule; q3/4w: 3 weeks out of 4 schedule; q4w: every- 
4-weeks schedule; →: followed by; DD: dose dense; HD: high dose; TI: time intensive; *: statistically significant results. 
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liposomal doxorubicin (PLD) or nab-paclitaxel (Fig. 1). Sixty-four regi
mens included in the PFS/TTP analysis were also comparable in terms of 
OS with consistent results (Fig. 2). In contrast, when compared to other 
117 regimens, paclitaxel + bevacizumab was likely to be significantly 
associated with superior ORR than several poly-CT regimens like 
cyclophosphamide + methotrexate + 5-fluorouracil (CMF) (odds ratio 
[OR]: 6.57, 95 % credible intervals [CrI]: 2.05–21.63), FEC (OR: 4.44, 
95 %CrI: 1.33–15.23), ixabepilone + capecitabine (OR: 3.45, 95 %CrI: 
1.02–12.03) or capecitabine + bevacizumab (OR: 2.47, 95 %CrI: 
1.08–5.73) (Supplementary Fig. 8). The reference regimen was associ
ated with lower ORR only when compared to docetaxel + cisplatin (OR: 
0.13, 95 %CrI: 0.02–0.82). Additionally, paclitaxel + bevacizumab was 

likely to be significantly superior to several mono-CT, like PLD (OR: 
6.89, 95 %CrI: 1.30–36.67) or capecitabine (OR: 5.47, 95 %CrI: 
1.89–16.17) (Supplementary Fig. 8). 

Notably, similar results were observed with weekly paclitaxel, as 
well as with atezolizumab + nab-paclitaxel or pembrolizumab + CT in 
PD-L1+ TNBC, and with olaparib or talazoparib in gBRCA-mut TNBC 
(data not shown). Direct comparisons based on indirect evidence of 
atezolizumab + nab-paclitaxel vs pembrolizumab + CT or talazoparib vs 
olaparib did not show significant differences, respectively (Supple
mentary Table 3). 

Fig. 2. Forest plot of all first-line regimens compared to paclitaxel + bevacizumab in terms of OS. The forest plot includes the log hazard ratios (HR) of each 
treatment versus paclitaxel + bevacizumab. Central dots represent posterior medians; thin lines represent 95 % credible intervals (CrI), while thicker ones represent 
80 % CrI. Log scale was adopted to graphically represent the 95 % credible intervals. The first column of values on the right reports the log HR with 95 % credible 
intervals, the second column reports HR with 95 % credible intervals. Statistically significant results according to Bayesian posterior medians and 95 % credible 
intervals are highlighted by asterisks. 5-FU: 5-fluorouracil; ATEZO: atezolizumab; BEVA: bevacizumab 10 mg/kg IV q2w; BEVA 7.5: bevacizumab 7.5 mg/kg IV q3w; 
BEVA 15: bevacizumab 15 mg/kg IV q3w; CAPE: capecitabine; CAPE LD: capecitabine low dose/metronomic; CAPI: capivasertib; CYC: cyclophosphamide; CARBO: 
carboplatin; CIS: cisplatin; CMF: cyclophosphamide + methotrexate + 5-FU; DOC: docetaxel; DOXO: doxorubicin 75 mg/m2 q3w; DOXO 60: doxorubicin 60 mg/m2 

q3w; ERI: eribulin; EVE: everolimus; FEC: 5-FU + epirubicin 75 mg/m2 + cyclophosphamide q3w; FEC 100: 5-FU + epirubicin 100 mg/m2 + cyclophosphamide q3w; 
FEC 50: 5-FU + epirubicin 50 mg/m2 + cyclophosphamide q3w; GEM: gemcitabine; INI: iniparib; IPA: ipatasertib; IXA: ixabepilone; NAB-PAC: nab-paclitaxel 260/ 
300 mg/m2 q3w; NAB-PAC 100 qw: nab-paclitaxel 100 mg/m2 q3/4w; NAB-PAC qw: nab-paclitaxel 125/130/150 mg/m2 q3/4w; NPLD: non-peghylated liposomal 
doxorubicin; OLA: olaparib; PAC within schedules and PAC q3w: paclitaxel 175 mg/m2 q3w; PAC qw: paclitaxel 80/90 mg/m2 q3/4w; PLD: peghylated liposomal 
doxorubicin 50 mg/m2 q4w; SOR: sorafenib; SUN: sunitinib; TALAZO: talazoparib; TMZ: temozolomide; TRILA: Trilaciclib 240 mg/m2 d1,8 IV q3w; TRILA 1,2,8,9: 
Trilaciclib 240 mg/m2 d1,2,8,9 IV q3w; VELI: veliparib; VINFLU: vinflunine; VNR: vinorelbine; qw: weekly schedule; q2w: biweekly schedule; q3w: threeweekly 
schedule; q3/4w: 3 weeks out of 4 schedule; q4w: every-4-weeks schedule; →: followed by; DD: dose dense; HD: high dose. 
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Advanced lines networks 

Seventeen regimens entered the advanced-line network of PFS/TTP. 
Compared to capecitabine, sacituzumab govitecan (HR: 0.51, 95 %CrI: 
0.36–0.72), ixabepilone + capecitabine (HR: 0.75, 95 %CrI: 0.64–0.88), 
and talazoparib (HR: 0.67, 95 %CrI: 0.46–0.97) were likely to be su
perior. Conversely, commonly used alternatives like eribulin and 
vinorelbine, or olaparib in gBRCA-mut tumors, showed comparable re
sults (Fig. 3). T-DXd in HER2-low TNBC showed a numerically similar 
result to sacituzumab govitecan, although not significant (Fig. 3). 

Fifteen of the 16 previous regimens entered the network of OS. Only 
sacituzumab govitecan was significantly superior to capecitabine (HR: 
0.52, 95 %CrI: 0.38–0.72) (Fig. 4). 

When considering ORR, 33 treatments were comparable. Among 
clinically relevant regimens, only sacituzumab govitecan (OR: 3.34, 95 
%CrI: 1.16–9.45) and ixabepilone + capecitabine (OR: 3.19, 95 %CrI: 
2.24–4.61) were associated with better ORR than capecitabine (Sup
plementary Fig. 9). Importantly, sacituzumab govitecan showed the best 
survival results, being significantly superior to many common therapies, 

including eribulin and ixabepilone + capecitabine (in PFS and OS), 
vinorelbine (in PFS), pembrolizumab in PD-L1+ mTNBC (in PFS and 
OS), olaparib and talazoparib in gBRCA-mut tumors (in OS) (not 
shown). No significant difference was observed in PFS/TTP and OS be
tween sacituzumab govitecan and T-DXd in HER2-low tumors, as well as 
between olaparib and talazoparib in gBRCA-mut patients (Supplemen
tary Table 3). 

Treatment rankings based on SUCRA and safety 

We estimated separate rankings for the first and subsequent lines 
based on SUCRA values (Supplementary Figs. 10–11). For practical 
purposes, we refined the rankings by including only the currently US 
National Comprehensive Cancer Network (NCCN)-recommended [10] 
and/or FDA/EMA-approved treatments, as of June 2022 (Table 1). 
Nevertheless, the ranking includes also T-DXd, which is likely to be 
approved in the near future for HER2-low TNBC. 

A formal comparison of toxicities could not be carried out due to the 
heterogeneity of reporting side effects across trials. However, we 

Fig. 3. Forest plot of all advanced lines regimens compared to capecitabine in terms of PFS/TTP. The forest plot includes the log hazard ratios (HR) of each treatment 
versus capecitabine. Central dots represent posterior medians; thin lines represent 95 % credible intervals (CrI), while thicker ones represent 80 % CrI. Log scale was 
adopted to graphically represent the 95 % CrI. The first column of values on the right reports the log HR with 95 % CrI, the second column reports HR with 95 % CrI. 
Statistically significant results according to Bayesian posterior medians and 95 % credible intervals are highlighted by asterisks. BEVA: bevacizumab 10 mg/kg q2w; 
CAPE: capecitabine; ENZA: enzastaurin; ERI: eribulin; GEM: gemcitabine; IXA: ixabepilone; OLA: olaparib; PEMBRO: pembrolizumab; RAMU: ramucirumab; T-DXd: 
trastuzumab deruxtecan; SAC GOV: sacituzumab govitecan; SOR: sorafenib; SUN: sunitinib; TALAZO: talazoparib; TPC: treatment of physician’s choice (mostly 
CAPE, ERI, or VNR); VINFLU: vinflunine; VNR: vinorelbine; qw: weekly schedule; q2w: biweekly schedule; q3w: three weekly schedule; *: statistically signifi
cant results. 
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extensively described the proportion of G3-5 AEs observed for each 
regimen in ≥ 2 % of study patients (Supplementary Tables 4–5). As 
expected, combination CT presented with the highest proportion of 
moderate/severe AEs. Neverthless, G3-5 neutropenia and leucopenia 
were relatively frequent also with mono-CT. Doxorubicin, docetaxel, 
vinorelbine, paclitaxel and gemcitabine were associated with the high
est rates of severe alopecia, as like capecitabine with hand-foot syn
drome and doxorubicin with stomatitis and febrile neutropenia. 
Anthracycline-based regimens, excluding pegylated and non-pegylated 
liposomal doxorubicin, were typically associated with cardiotoxicity. 
Bevacizumab-containing regimens typically showed proteinuria and 
hypertension. Although ICI-based combinations (pembrolizumab + CT 
and atezolizumab + nab-paclitaxel) are usually associated with 
immune-related AEs, including thyroiditis, pneumonitis, skin alterations 
and colitis, G3-5 rates of such toxicities were not observed, except for 
pneumonitis, hypo/hyperthyroidism and skin reactions (all < 2 %). 
PARPi were characterized by an overall better toxicity profile than 
mono-CT, except for partially comparable hematologic toxicities. 
Finally, sacituzumab govitecan and T-DXd presented with a chemo-like 
toxicity profile, with diarrhea, nausea/vomiting, hematotoxicity and 
fatigue as most frequent moderate/severe AEs. Both drugs can 

frequently induce alopecia (46.0 % and 37.7 %) and T-DXd was asso
ciated with interstitial lung disease/pneumonitis (<20 % cases), 
although the vast majority of cases was mild or moderate [13,15]. 

Risk of bias analysis 

Internal validity of eligible studies was assessed with a risk of bias 
(RoB) analysis as recommended by the Cochrane Handbook for Sys
tematic Reviews of Interventions [42]. There were no specific concerns 
regarding 5/9 RoB domains (Supplementary Fig. 12). However, the RoB 
was high in approximately half trials included with respect to blinding of 
participants and personnel and outcome assessments, as well as 
regarding the selective reporting bias (Supplementary Figs. 12–13). 

Discussion 

We performed multiple Bayesian NMA to identify the best treatment 
for the first and subsequent lines of mTNBC, in terms of PFS/TTP, OS and 
ORR. We found that among the most commonly adopted first-line reg
imens, there were no substantial differences in terms of PFS/TTP and OS 
whereas paclitaxel + bevacizumab was associated with better ORR than 

Fig. 4. Forest plot of all second/further-lines regimens compared to capecitabine in terms of OS. The forest plot includes the log hazard ratios (HR) of each treatment 
versus capecitabine. Central dots represent posterior medians; thin lines represent 95 % credible intervals (CrI), while thicker ones represent 80 % CrI. Log scale was 
adopted to graphically represent the 95 % credible intervals. The first column of values on the right reports the log HR with 95 % credible intervals, the second 
column reports HR with 95 % credible intervals. Statistically significant results according to Bayesian posterior medians and 95 % credible intervals are highlighted 
by asterisks. BEVA: bevacizumab 10 mg/kg q2w; CAPE: capecitabine; ENZA: enzastaurin; ERI: eribulin; IXA: ixabepilone; OLA: olaparib; PEMBRO: pembrolizumab; 
RAMU: ramucirumab; SAC GOV: sacituzumab govitecan; SOR: sorafenib; SUN: sunitinib; TALAZO: talazoparib; TPC: treatment of physician’s choice (mostly CAPE, 
ERI, or VNR); VINFLU: vinflunine; VNR: vinorelbine; qw: weekly schedule; q2w: biweekly schedule; q3w: threeweekly schedule; *: statistically significant result. 
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Table 1 
Ranking of available regimens according to treatment line.  

FIRST-LINE 

Treatment SUCRA PFS/TTP Ranking Treatment SUCRA OS Ranking Treatment SUCRA ORR Ranking 

DOC + CIS  0.9135 1 NAB-PAC q3w + CARBO  0.7660 1 DOC + CIS  0.9800 1 
CIS + PAC q3w  0.8174 2 PEMBRO + CT  0.7355 2 CIS + PAC q3w  0.8896 2 
NAB-PAC q3w + CARBO  0.7537 3 DOC + CIS  0.7268 3 NAB-PAC qw + ATEZO  0.7326 3 
DOXO + DOC  0.7147 4 CARBO + GEM  0.6948 4 PAC qw + BEVA  0.6980 4 
NAB-PAC qw + ATEZO  0.6696 5 CAPE + BEVA  0.6797 5 GEM + DOC  0.6893 5 
CIS + GEM  0.6535 6 TALAZO  0.6638 6 NAB-PAC q3w + CARBO  0.6833 6 
PAC qw + BEVA  0.6430 7 ERI  0.6455 7 PAC qw  0.6802 7 
NPLD + CYC  0.6369 8 IXA q3w + CAPE  0.6369 8 CAPE + PAC q3w  0.6779 8 
AC  0.6365 9 OLA  0.6259 9 DOXO + DOC  0.6198 9 
DOXO + PAC q3w  0.6291 10 PAC qw + BEVA  0.6060 10 EPI + PAC q3w  0.6126 10 
FEC 100  0.6184 11 S1  0.5940 11 CAPE + DOC  0.5936 11 
VNR + CAPE  0.6158 12 PAC qw  0.5683 12 OLA  0.5766 12 
PEMBRO + CT  0.6132 13 CAPE  0.5649 13 NAB-PAC q3w  0.5722 13 
TALAZO  0.6080 14 PLD  0.5567 14 DOXO + PAC q3w  0.5632 14 
CAPE + DOC  0.5907 15 DOXO 60  0.5165 15 NAB-PAC qw  0.5455 15 
OLA  0.5764 16 FEC 100  0.5089 16 CARBO + PAC q3w  0.5453 16 
CARBO + GEM  0.5613 17 NAB-PAC 100 qw + ATEZO  0.4895 17 GEM + PAC q3w  0.5258 17 
FAC  0.5250 18 FEC  0.4522 18 TALAZO  0.5214 18 
GEM + DOC  0.4998 19 CIS + GEM  0.4145 19 NPLD + CYC  0.5189 19 
CAPE + BEVA  0.4942 20 VNR + CAPE  0.4068 20 VNR + CAPE  0.5110 20 
GEM + PAC q3w  0.4853 21 CARBO + PAC q3w  0.3852 21 EPI + DOC  0.5087 21 
EPI + PAC q3w  0.4785 22 CAPE LD + DOC  0.3815 22 AC  0.4845 22 
NAB-PAC qw  0.4760 23 CMF  0.3641 23 EC  0.4255 23 
CAPE + PAC q3w  0.4755 24 GEM + PAC q3w  0.3563 24 DOXO  0.4250 24 
IXA q3w + CAPE  0.4472 25 NPLD  0.3419 25 DOC  0.4065 25 
EC  0.4437 26 GEM + DOC  0.3327 26 NAB-PAC q3w  0.4048 26 
CARBO + PAC q3w  0.4124 27 NAB-PAC qw  0.3120 27 VNR + GEM  0.3835 27 
FEC  0.4094 28 CAPE + DOC  0.2896 28 CARBO  0.3770 28 
NAB-PAC q3w  0.4074 29 PAC q3w  0.2578 29 CAPE + BEVA  0.3593 29 
DOXO  0.3914 30 DOC  0.1806 30 FAC  0.3499 30 
PLD  0.3855 31 –  – – CARBO + GEM  0.3327 31 
PAC qw  0.3837 32 –  – – CIS + GEM  0.3052 32 
EPI + DOC  0.3569 33 –  – – FEC 100  0.2981 33 
PAC q3w  0.3247 34 –  – – PAC q3w  0.2787 34 
DOC  0.3134 35 –  – – IXA + CAPE  0.2696 35 
CAPE  0.3124 36 –  – – VNR  0.2479 36 
CMF  0.2661 37 –  – – PLD  0.1979 37 
–  – – –  – – FEC  0.1880 38 
–  – – –  – – CAPE  0.1420 39 
–  – – –  – – CMF  0.1070 40  

SECOND/FURTHER LINES 

Treatment SUCRA PFS/TTP Ranking Treatment SUCRA OS Ranking Treatment SUCRA ORR Ranking 

SAC GOV  0.965 1 SAC GOV  0.9595 1 CAPE + DOC  0.8082 1 
T-DXd*  0.8581 2 T-DXd*  0.9110 2 NAB-PAC q3w  0.7993 2 
TALAZO  0.8158 3 ERI  0.6487 3 IXA q3w + CAPE  0.7518 3 
OLA  0.7555 4 PEMBRO  0.6443 4 SAC GOV  0.7504 4 
IXA q3w + CAPE  0.7481 5 IXA q3w + CAPE  0.5962 5 PAC qw  0.7151 5 
GEM + VNR  0.4781 6 TALAZO  0.5361 6 CAPE LD + DOC  0.7088 6 
CAPE  0.4263 7 OLA  0.4366 7 DOC  0.6328 7 
ERI  0.3281 8 CAPE  0.3711 8 T-DXd*  0.5516 8 
VNR  0.1346 9 –  – – GEM + DOC  0.5359 9 
PEMBRO  0.1152 10 –  – – GEM + VNR  0.5038 10 
–  – – –  – – PAC q3w  0.4709 11 
–  – – –  – – OLA  0.4519 12 
–  – – –  – – DOC  0.4167 13 
–  – – –  – – CAPE + SUN  0.4060 14 
–  – – –  – – TALAZO  0.3862 15 
–  – – –  – – CAPE  0.3704 16 
–  – – –  – – ERI  0.3532 17 
–  – – –  – – VNR  0.3251 18 
–  – – –  – – PEMBRO  0.2539 19 

CMF: cyclophosphamide + methotrexate + 5-FU; 5-FU: 5-fluorouracil; BEVA: bevacizumab; ATEZO: atezolizumab; EPI: epirubicin; FEC: 5-FU + epirubicin +
cyclophosphamide; FAC: 5-FU + doxorubicin + cyclophosphamide; DOXO: doxorubicin; DOC: docetaxel; PAC: paclitaxel; PLD: pegylated liposomal doxorubicin; 
NPLD: non-pegylated liposomal doxorubicin; CYC: cyclophosphamide; TALAZO: talazoparib; OLA: olaparib; IXA: ixabepilone; CAPE: capecitabine; GEM: gemcitabine; 
VNR: vinorelbine; ERI: eribulin; PEMBRO: pembrolizumab; NAB-PAC: nab-paclitaxel; CT: chemotherapy; CIS: cisplatin; CARBO: carboplatin; AC: doxorubicin +
cyclophosphamide; EC: epirubicin + cyclophosphamide; SAC GOV: sacituzumab govitecan; ERI: eribulin; T-DXd: trastuzumab deruxtecan; LD: low dose; q3w: three 
weekly schedule; qw: weekly schedule; *: although still not approved, T-DXd is the new standard of care for HER2-low breast cancer and might enter quickly the 
therapeutic armamentarium also for this subset of triple negative tumors. 
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numerous mono-CT and several poly-CT, with less G3-5 AEs compared 
to CT combinations. Docetaxel + cisplatin was the only regimen 
significantly favored in terms of ORR, at the cost of higher toxicities 
(Figs. 1-2, Supplementary Fig. 8, Table 1, Supplementary Tables 4–5). 
These results, taken together with the available evidence, despite con
flicting results on its potential OS benefit [20,44–48], support paclitaxel 
+ bevacizumab as a suitable first-line option. At the same time, the lack 
of a clear superiority in survival endpoints, especially in comparison to 
mono-CT options, makes the combination of paclitaxel with bev
acizumab a valuable regimen mostly when a rapid and/or potent tumor 
shrinkage is the required therapeutic goal (e.g. high tumor burden, 
visceral crisis). In this case, the better safety profile of this regimen 
compared to those of poly-CT plays in favor of paclitaxel + bev
acizumab. To note, this regimen is no longer available in the USA and, 
where available (e.g. Europe), its higher costs compared to mono-CTs 
and numerous poly-CT regimens should be properly taken into ac
count at the moment of therapeutic decision-making. 

Interestingly, platinum-based regimens, especially in combination 
with taxanes, resulted in very high SUCRA values for all endpoints, but 
their potential benefits should be weighed against their higher toxicities 
(e.g. nausea/vomiting, peripheral neuropathy, hemato-toxicity) and 
patients’ inclination to receive the appropriate supportive care, when 
required [49–51]. 

A viable alternative in patients unfit for/unwilling to receive poly- 
CT, or with low tumor burden, is the use of mono-CT. The best-ranked 
single-agents in terms of both PFS and OS appeared to be weekly 
paclitaxel and PLD (Table 1). Single-agent carboplatin is another option, 
with many mono-CTs being not significantly superior to it in terms of 
ORR (data not shown), including taxanes (coherently with the TNT trial) 
[1]. Yet, it could not be included in the PFS and OS networks, limiting 
the evidence to support it as a clear standard. The choice among one of 
those drugs should be properly discussed and adapted to patients’ 
preferences, especially with regard to their different toxicity profile and 
different administration schedule. 

Notably, talazoparib and olaparib in gBRCA-mut patients were 
among the highest ranked available treatments, without superior mono- 
CTs (Table 1). Conversely, many multiagent regimens, although not 
selectively tested in gBRCA-mut patients, were associated to better 
outcomes (Table 1). Therefore, PARPi might reasonably represent an 
optimal first-line option in gBRCA-mut cases when no combinations are 
strictly required. Notably, signals of activity beyond BRCA1/2 mutant 
TNBC might lead to an expansion of their therapeutic indication, if 
further confirmed [52–55]. Importantly, recently published positive 
results on adjuvant olaparib in gBRCA-mut early-stage TNBC already 
lead to FDA approval in this subset [56]. Whether this might affect the 
efficacy of first-line PARPi in case of relapse will be a matter of debate in 
the next years. 

Regarding PD-L1+ mTNBC, no treatment was significantly superior 
to atezolizumab + nab-paclitaxel for all the 3 endpoints investigated and 
to pembrolizumab + CT in terms of PFS/TTP and OS (data not shown). 
These combinations also showed a relatively favorable and manageable 
toxicity profile compared to numerous poly-CT regimens (Supplemen
tary Tables 4–5). Overall, based on these results and considering that ICI 
+ CT regimens are limited to the first-line setting, atezolizumab + nab- 
paclitaxel or pembrolizumab + CT might be the preferred upfront 
treatment for PD-L1+ mTNBC. Importantly, the comparison between 
the two regimens in our study was not statistically significant but 
pembrolizumab + CT was favored over more first-line regimens and 
obtained the best position in the OS SUCRA-based ranking. In addition, 
atezolizumab + nab-paclitaxel pivotal trial’s result was formally nega
tive due to its hierarchical testing plan [7]. Furthermore, following the 
manufacturer’s request, the FDA (but not EMA) also recently withdrew 
its indication for atezolizumab in this setting [24,57,58]. 

In case of concomitant PD-L1+/gBRCA-mut tumors, the evidence is 
still too scarce to draw any meaningful conclusion. Yet, PARPi can be 
administered also in advanced lines, while, at present, ICI-based therapy 

cannot. Interestingly, an ongoing phase II/III RCT of pembrolizumab +
olaparib vs pembrolizumab + CT after induction with pembrolizumab 
+ CT in mTNBC will provide additional important insights [59]. 

Another open question is whether to prefer first-line platinum agents 
or PARPi in PD-L1-negative/gBRCA-mut TNBC, considering that 
BRCA1/2 dysfunction has been associated with increased response to 
platinum agents [60]. Our results suggest that platinum-based regimens 
in unselected TNBC (potentially including also gBRCA-mut tumors) are 
likely better than PARPi in gBRCA-mut tumors on all 3 endpoints 
(Table 1). Importantly, roughly 20 % and 30 % of patients receiving 
talazoparib and olaparib in their pivotal trials, respectively, had been 
pretreated with platinum agents [4,5]. Hence, the sequencing might not 
impair PARPi’s efficacy, although those subpopulations had not pro
gressed on platinums [4,5]. Nevertheless, the evidence to unequivocally 
support either strategy is still insufficient. The different toxicity profile 
among these agents may help guiding treatment choice according to 
individual patient characteristics and preferences. 

Finally, as observable in the full treatment rankings (Supplementary 
Fig. 10), paclitaxel + capivasertib, in PIK3CA/PTEN/AKT-altered TNBC, 
and carboplatin + gemcitabine + CDK4/6-inhibitor trilaciclib, in un
selected mTNBC, proved to be particularly effective. In both cases, 
confirmatory phase III trials are ongoing and results eagerly awaited 
[61,62], especially after the unexpected negative results of the IPA
Tunity130 phase III trial of first-line paclitaxel + ipatasertib [28]. 

Concerning advanced lines, sacituzumab govitecan was associated to 
the best PFS, OS and ORR results (Figs. 3-4, Supplementary Fig. 9, 
Table 1). These data strongly support sacituzumab govitecan being the 
preferred second-line in mTNBC. At the same time, olaparib and tala
zoparib in gBRCA-mut tumors were favored among all other treatments 
in terms of PFS/TTP, with no difference between the two PARPi on all 
endpoints (Fig. 3, Table 1, Supplementary Table 3). Hence, in the 
absence of sacituzumab govitecan, a PARPi might represent the pref
erable second-line in gBRCA-mut mTNBC, if not previously used. In the 
subset of HER2-low tumors, representing ~ 37 % of all TNBC [14], T- 
DXd provided also extremely promising results, being one of the best 
options in terms of all 3 endpoints. The overall comparisons led to a 
better positioning of sacituzumab govitecan in SUCRA-based rankings. 
Still, a direct comparison between the two ADCs did not show significant 
differences. No significant difference was also observed with PARPi, but 
overall results, especially in OS, were in favor of T-DXd. However, 
considering the low number of patients treated with T-DXd, these results 
have to be taken carefully. T-DXd might be well positioned either after 
sacituzumab govitecan or before/right after PARPi in gBRCA-mut HER2- 
low TNBC. Direct comparisons in RCT, especially between the two ADCs 
should be pursued to draw more definitive conclusions. 

Subsequent most effective mono-CT were represented by nab- 
paclitaxel (ORR), capecitabine (PFS/TTP) and eribulin (PFS/TTP, OS) 
(Table 1). The former could not enter survival networks but solid effi
cacy data concur in supporting its use also in taxane-pretreated patients 
[63,64]. Whether to administer one or the others is a decision that 
should be individualized based on toxicity profile, drug delivery method 
(oral for capecitabine vs intravenous for eribulin and nab-paclitaxel), 
previous therapies, patients’ clinical conditions and preferences. 
Conversely, not many poly-CT could enter our networks and the ones 
that could, did not show any significant advantage on all endpoints to 
justify their use in advanced lines compared to mono-CT, providing also 
their worse toxicity profile. 

Finally, single-agent pembrolizumab appeared to be another valu
able option in advanced lines. However, the results hereby reported are 
based on PD-L1+ mTNBC, whereas it is currently FDA-approved in pa
tients with high microsatellite instability/mismatch repair deficiency or 
high tumor mutational burden [65,66]. 

This study has several limitations to consider. First, several as
sumptions and simplifications fully disclosed in the Methods section 
(including forcing some links), were required to include the majority of 
the most relevant therapeutic options and should be carefully taken into 
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account when evaluating this study results. Second, we did not report 
publication bias since the approaches developed to assess this type of 
bias in NMA are challenging and still present limitations that make their 
effectiveness often debated [67]. However, our analysis includes most of 
the available literature on the topic, somewhat mitigating the impact of 
publication bias. Third, some results are based on specific biomarker- 
defined subpopulations (i.e. PD-L1+, gBRCA-mut, HER2-low or 
PIK3CA/PTEN/AKT-altered), hence they cannot be generalized to the 
totality of mTNBC. However, considering that these subgroups represent 
a limited proportion of TNBC and their concomitant presence is un
common, it is likely that no RCT will ever be conducted comparing the 
most appropriate biomarker-based treatments within such nested sub
groups. Moreover, no evidences are available to conduct specific 
biomarker-restricted networks. In this scenario, this study provides 
unique results that might be valuable for clinicians. Furthermore, while 
sufficient evidence suggest novel biomarker-based treatments are not 
effective in all TNBC patients, there is no biologic rationale or published 
evidence supporting lack of efficacy of previous standard treatments in 
biomarker-based subgroups. Fourth, ~72 % of studies included also 
ER+/HER2-negative MBC. Given that mTNBC are usually considered to 
be more CT-sensitive than ER+/HER2-negative tumors [11,20], it is 
possible that the efficacy of several regimens might have been diluted in 
favor of some treatments tested in TNBC-restricted trials. At the same 
time, in 40 % of study treatment arms, the ER positivity proportion was 
< 50 %, meaning that the TN population was overall highly represented. 
Furthermore, in such studies, ET for the metastatic disease had been 
administered before CT in more than 1/3 cases, further reducing the 
proportion of fully endocrine-sensitive ER + MBC, which are potentially 

less sensitive to CT than endocrine pre-treated tumors [11,17,68]. To 
note, a certain heterogeneity in the proportion of patients with visceral/ 
non-visceral/brain metastases among included studies was also present 
and should be taken into account when considering results. Fifth, the 
highest risks of bias were observed in the domains of the performance 
bias, blinding of outcome assessment and selective reporting bias. 
Concerning the latter, since our study was focused on 3 endpoints (i.e. 
PFS, OS and ORR) we decided to adopt a comprehensive approach in the 
RoB analysis by taking into account all endpoints concomitantly. 
However, the limit of this approach is that at least one of the 3 endpoints 
was not published in many cases (usually OS), for reasons attributable to 
the same study design (roughly a third were phase II RCT). However, the 
primary endpoint (i.e. PFS) was only partially affected by this issue 
(~74 % first-line and ~ 82 % advanced-line studies reported PFS data) 
and results for the three different endpoints were substantially coherent 
among them. Regarding blinding of outcome and performance bias, the 
risk was high because approximately half studies were not blinded. At a 
closer look, this was often justified by different ways of drug adminis
tration that made it impossible, unethical or useless to apply any 
blinding procedure. Those issues could not be overcome and sub- 
analysis on the restricted casuistry of studies with no blinding bias 
was unfeasible because of the impossibility of closing meaningful net
works. Nevertheless, most of these studies led to the approval of regi
mens and schedules commonly used in clinical practice. Importantly, no 
substantial inconsistency was observed (Supplementary Methods). 
Finally, we point out that NMA share the same limitations of standard 
pairwise meta-analyses [69,70], with the addition of a set of specific 
assumptions, including transitivity and consistency, on which a lot of 

Fig. 5. Proposed therapeutic algorithms for the first and following lines. mTNBC: metastatic triple negative breast cancer; wt: wild-type; mut: mutant; gBRCA: 
germline BRCA1 and/or 2; CT: chemotherapy; ICI: immune-checkpoint inhibitors (atezolizumab or pembrolizumab); PLD: pegylated liposomal doxorubicin; NPLD: 
non– pegylated liposomal doxorubicin; neg.: negative; +: positive; PARPi: PARP inhibitor; TMB high: tumor mutational burden ≥ 10 mutations/megabase; MSI-H: 
high microsatellite instability (≥30 % mutations); dMMR: dysfunctional mismatch repair; 1: indicate the same advanced lines algorithm of PD-L1+/gBRCA-mut, 
independently from PD-L1 status; 2: indicate the same advanced lines algorithm of PD-L1+/gBRCA-wt, independently from PD-L1 status; *: pembrolizumab should 
be preferred over atezolizumab, where available, considering the more methodologically solid results in its pivotal trial and the better position in the SUCRA-based 
overall survival ranking. Moreover, atezolizumab is no longer approved in the USA for this setting; #: still not approved in Europe, but recently FDA-approved for 
HER2-low metastatic breast cancer, irrespective of hormone receptor status; §: if not previously administered in first-line with chemotherapy. The algorithm is based 
on the results published in Table 1, Figs. 1-4, Supplementary Figs. 8–9, Supplementary Tables 3–5 and results not shown for space reasons. All data were then 
interpreted according to the available literature reviewed plus the most updated American and European Society for Clinical/Medical Oncology (ASCO and ESMO) 
and US National Comprehensive Cancer Network (NCCN) guidelines. 
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research is still ongoing [37,71,72]. 
In conclusion, despite limitations, this is the first study comparing all 

available systemic treatments for the management of mTNBC, providing 
timely and methodologically reliable results. In this perspective, we 
propose a consensus therapeutic algorithm resumed in Fig. 5, based on 
our original data, literature review and main international guidelines to 
support daily-practice therapeutic decision-making [10,11,17,73]. 
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