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Abstract

CDK4/6 inhibitors benefit a minority of patients who receive them in the breast cancer adjuvant setting. p27Kip1 is a protein that
inhibits CDK/Cyclin complexes. We hypothesized that single-nucleotide polymorphisms that impaired p27Kip1 function could
render patients refractory to endocrine therapy but responsive to CDK4/6 inhibitors, narrowing the patient subpopulation that
requires CDK4/6 inhibitors. We found that the p27Kip1 V109G single-nucleotide polymorphism is homozygous in approximately 15%
of hormone-positive breast cancer patients. Polymorphic patients experience rapid failure in response to endocrine monotherapy
compared with wild-type or heterozygous patients in the first-line metastatic setting (progression-free survival: 92 vs 485 days,
P< .001); when CDK4/6 inhibitors are added, the differences disappear (progression-free survival: 658 vs 761 days, P¼ .92). As opposed
to wild-type p27Kip1, p27Kip1 V109G is unable to suppress the kinase activity of CDK4 in the presence of endocrine inhibitors; however,
palbociclib blocks CDK4 kinase activity regardless of the p27Kip1 status. p27Kip1 genotyping could constitute a tool for treatment
selection.

As opposed to the advanced disease setting (1-7), current results
suggest only limited benefit from blocking CDK4/6 in early hor-
mone receptor–positive breast cancer (HRPBC) (8-11). To our
knowledge, no predictive factors have been defined to date
(10,11). This point is relevant because a large percentage of
patients seem to be adequately managed with endocrine mono-
therapy, and abemaciclib rescues from metastatic relapse only a
limited number of patients (10,11). Differentiating the patients
who are adequately treated with endocrine monotherapy from
those who require combination with CDK4/6 inhibitors to avoid
relapse would save considerable economic resources and avoid
toxicity.

Single-nucleotide polymorphisms (SNPs) are variations in the
germline genetic code that can result in functional changes.
CDKN1B encodes p27Kip1, a protein involved in cell cycle control.
p27Kip1 binds and prevents the activation of cyclin E-CDK2 or
cyclin D-CDK4 complexes, slowing down the cell cycle (12,13). We
hypothesized that SNPs that impair the function of p27Kip1 could
render cells insensitive to hormonal blockade because CDK/
cyclin complexes would be active regardless of upstream signals.
This lack of response, however, could be reverted by CDK4/6

kinase inhibitors, which would block the cell cycle despite the
functional impairment of p27Kip1. Patients harboring dysfunc-
tional p27Kip1 variants could be those who are not adequately
treated with endocrine monotherapy and would require CDK4/6
inhibitors for disease control, as opposed to patients with the
wild type.

The CDKN1B T329G SNP (RS2066827, encoding for p27Kip1

V109G) has been previously related to the incidence and progno-
sis of different cancers (14-23). We genotyped 10 hormone-
positive breast cancer cell lines (Supplementary Table 1, avail-
able online). T47-D was the only one that was endocrine sensitive
and homozygous for the wild-type allele. Taking advantage of
CRISPR-Cas9, we generated isogenic p27Kip1 V109G G/G variants
(homozygous for the variant allele) of the T47-D parental V/V line
(homozygous for the wild-type allele; Figure 1, A; Supplementary
Figure 1, available online). To account for potential off-target
effects of CRISPR-Cas9, 3 independent G/G clones (C1, E1, and F5)
were generated. p27Kip1 levels did not vary statistically signifi-
cantly according to the genotype (Figure 1, B).

Compared with V/V cells, colony (Figure 1, C) and BRDU
(Bromodesoxiuridine) incorporation assays (Figure 1, D) showed
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Figure 1. p27Kip1 V109G single-nucleotide polymorphism (SNP) impairs endocrine sensitivity, but it is rescued with CDK4/6 inhibitors in preclinical
models and patients. A) Electropherogram showing the 3 possible sequences in position 329 of P27Kip1, generated from the parental T47-D cells: T/T
(left, wild type [WT]), T/G (middle, heterozygous), and G/G (right, homozygous for the polymorphism, clone C1). The results obtained with the
heterozygous variants are not shown because they behaved like the wild type. B) P27Kip1 protein (left) and mRNA (right) levels in wild-type T47-D cells
and 3 polymorphic T47-D clones. C) Representative colony assays and relative plating efficiency chart comparing the survival of wild-type and
polymorphic T47-D clones in DCC (Dextran-Coated Charcoal) medium (tissue culture medium deprived from estrogens), in FBS (Fetal Bovine Serum)
medium (full medium) plus 0.5 nM fulvestrant, or the same conditions plus 25 nM palbociblib. D) Representative BRDU-uptake charts of wild-type T47-
D cells (upper panels) and polymorphic variants (Clone C1, lower panels), in full medium, DCC medium, fulvestrant, DCC plus palbociclib or
fulvestrant plus palbociclib, showing the relative resistance to cell cycle arrest in response to hormonal deprivation but sensitivity to palbociclib
combos in the polymorphic clone. The accompanying chart shows the comparison between the BRDU fraction among the different conditions in all
clones. E) Kaplan-Meier progression-free survival (PFS) curves for patients treated with endocrine monotherapy in the first-line setting, according to
their P27Kip1 genotype. F) Kaplan-Meier PFS curves for patients treated with CDK4/6 inhibitor plus endocrine therapy according to their P27Kip1

genotype. G) Kaplan-Meier PFS curves for polymorphic and wild-type or heterozygous patients H) comparing the PFS when receiving endocrine
monotherapy or combination with CDK4/6 inhibitors. Error bars: standard error. The log-rank test performed for comparing the PFS curves shown in E-
H PFS functions were computed using the Kaplan-Meier estimator. Cell cycle assays (D) were compared with 2-sided unpaired t tests and considered
statistically significant when P< .05. All P values are 2-sided.
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that the G/G clones were resistant to estrogen deprivation (an
in vitro model for aromatase inhibitors resistance) (24,25) and ful-
vestrant. Adding palbociclib reverted therapeutic resistance: the
combos achieved similar efficacy in G/G or V/V clones (Figure 1, C
and D).

We compared the outcomes of G/G against G/V or V/V HRPBC
patients when treated with endocrine monotherapy or in combi-
nation with CDK4/6 inhibitors in the first-line metastatic setting
(N¼ 122; Supplementary Table 2, available online). PFS
(Progression Free Survival) favored G/V and V/V patients when

treated with endocrine monotherapy (485 vs 92 days; P< .001;
Figure 1, E). When patients received CDK4/6 inhibitor combina-
tions, no differences were observed (761 vs 658 days, P¼ .920;
Figure 1, F). Adding CDK4/6 inhibitors to hormonotherapy
improved PFS to a greater extent in G/G patients (92 to 685 days,
P< .0001; Figure 1, G) than in G/V or V/V (485 to 761 days, P¼ .041;
Figure 1, H).

The cell cycle is regulated by the temporal activation of differ-
ent CDK/Cyclin complexes. p27Kip1 can interact with several of
them, negatively regulating their activity (26,27). We reasoned
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Figure 2. p27Kip1 V109G single-nucleotide polymorphism (SNP)-induced increments in CDK4 activity, but not in CDK/Cyclins complex formation, are
reversible by palbociclib. A) Western blots of CDK2 (upper panels) and CDK4 (lower panels) pull-downs from V/V and G/G clones, in untreated (FBS
[Fetal Bovine Serum]) or treated (DCC [Dextran-Coated Charcoal], DCC plus palbociclib or palbociclib) conditions, showing an increased amount of
CDK2/Cyclin A, CDK2/Cyclin E, and CDK4/Cyclin D1 complex formation in both. B) CDK4 kinase in vitro kinase assays performed with lysates from
polymorphic clone C1 and wild-type cells, obtained from a CDK4 pull-down, showing how palbociclib is able to fully suppress CDK4 kinase activity
regardless of the p27Kip1 status. C) Western blot of phosphorylated RB1 and loading control showing that the cell cycle repressor is always
phosphorylated at higher levels in the polymorphic clones compared with the parental cells, except from when palbociclib is added. D) Cartoon
depicting the proposed implications of the p27Kip1 V109G SNP: wild-type cells have functional p27Kip1, which is able to exert its inhibiting control over
CDK/Cyclin complexes. In cancer cells, the cell cycle is already unrestrained; in non-treated conditions, both wild-type and polymorphic cells
continuously cycle. In the presence of an endocrine inhibitor, the function of wild-type p27Kip1 is sufficient to inhibit the activity of the CDK/Cyclin
complexes; thus, RB1 no longer gets phosphorylated and degraded. Conversely, in polymorphic cells, abnormal p27Kip1 is unable to shut down CDK
kinase activity, and the cell cycle continues despite endocrine inhibition. However, if the kinase activity of CDKs is directly blocked (by a CDK4/6
inhibitor), the disfunction of p27Kip1 is no longer relevant and the cell cycle is suppressed as well in polymorphic clones.
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that the p27Kip1 V109G SNP could cause the functional defect by 2
main mechanisms: alteration in the formation of CDK/Cyclin
complexes or modulation of their kinase activity. Although we
observed increased formation of CDK2/Cyclin A, CDK2/Cyclin E,
and CDK4/Cyclin D complexes in G/G clones—and this increment
was sustained despite hormonal deprivation—the addition of pal-
bociclib was unable to decrease the complexes back to normal
levels (Figure 2, A). We then analyzed the CDK4 kinase activity of
the p27Kip1-CDK4-Cyclin D complexes pulled down from V/V or
G/G cells, using recombinant RB1 (Retinoblatoma protein 1) as
substrate. We observed that both in the presence of full medium
and estrogen-deprived medium, CDK4 kinase activity was higher
in the polymorphic clones (Figure 2, B). The addition of palboci-
clib, however, was able to fully block CDK4 kinase activity both in
wild-type and polymorphic cells, bypassing the insufficient inhib-
itory activity derived from polymorphic p27Kip1. Phosphorylated
levels of RB1 in V/V and G/G cells were congruent with the kinase
assays (Figure 2, C).

The management of early HRPBC requires predictive factors
for guiding the indication of CDK4/6 inhibitors. Studies performed
before the advent of CDK4/6 inhibitors suggest that low p27Kip1

levels are associated with worse prognosis in the absence of
endocrine therapy and with relative hormone refractoriness (28-
30). Our study design does not allow addressing prognostic impli-
cations, but we present how the p27Kip1 V109G SNP can split the
hormone-positive breast cancer population into 2 main sub-
groups: one (G/V or V/V patients, approximately 85%) in which
endocrine treatment is sufficient to block cell replication and
achieve disease control; and a second one (G/G patients, approxi-
mately 15%) in which endocrine therapy is insufficient but is res-
cued by CDK4/6 inhibitors, suggesting a predictive role. Two
limitations of our study are its retrospective nature and the rela-
tively low number of patients. The imbalance in metastatic
relapse within 12 months of completing adjuvant hormonother-
apy between G/G and G/V-V/V patients (Supplementary Table S2,
available online) could contribute to the observed differences in
the first-line setting (Figure 1, E) while reflecting an inherent
resistance of G/G patients to endocrine monotherapy.

The impaired p27Kip1 inhibitory activity is evidenced by
increased CDK4 kinase activity and phosphorylated RB1 in base-
line or hormonal-deprived conditions; however, CDK4/6 inhibi-
tors achieve cell cycle control, akin in the wild types (Figure 2, D).
Regardless of the potential off-target effects of CRISPR/Cas9, the
homogeneity observed across the 3 tested clones (Figures 1, C
and D and 2) suggests that the effects are due to the V109G
change.

Taken together, our data suggest that G/V and V/V patients
are adequately treated with endocrine monotherapy; G/G p27Kip1,
however, impairs the ability of endocrine therapy to control the
cell cycle, requiring the addition of CDK4/6 inhibitors. This study
may be relevant for the adjuvant setting. Validation is required,
and the role of the V109G SNP in the PALLAS (8) and monarchE
(10) study cohorts currently is being addressed, which should
clarify whether this SNP deserves incorporation in the clinical
decision algorithm. Whether genetic ancestry modulates the G/G
effect should also be clarified, because our study was conducted
exclusively in Hispanic White patients.
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