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ABSTRACT
◥

Purpose: Cholangiocarcinoma (CCA) is usually diagnosed
at advanced stages, with limited therapeutic options. Preclinical
models focused on unresectable metastatic CCA are necessary
to develop rational treatments. Pathogenic mutations in IDH1/
2, ARID1A/B, BAP1, and BRCA1/2 have been identified in 30%–
50% of patients with CCA. Several types of tumor cells har-
boring these mutations exhibit homologous recombination
deficiency (HRD) phenotype with enhanced sensitivity to
PARP inhibitors (PARPi). However, PARPi treatment has not
yet been tested for effectiveness in patient-derived models of
advanced CCA.

Experimental Design: We have established a collection of
patient-derived xenografts from patients with unresectable met-
astatic CCA (CCA_PDX). The CCA_PDXs were characterized at
both histopathologic and genomic levels. We optimized a pro-
tocol to generate CCA tumoroids from CCA_PDXs. We tested

the effects of PARPis in both CCA tumoroids and CCA_PDXs.
Finally, we used the RAD51 assay to evaluate the HRD status of
CCA tissues.

Results: This collection of CCA_PDXs recapitulates the histo-
pathologic and molecular features of their original tumors. PARPi
treatments inhibited the growth of CCA tumoroids andCCA_PDXs
with pathogenic mutations of BRCA2, but not those withmutations
of IDH1, ARID1A, or BAP1. In line with these findings, only
CCA_PDX and CCA patient biopsy samples with mutations of
BRCA2 showed RAD51 scores compatible with HRD.

Conclusions: Our results suggest that patients with advanced
CCA with pathogenic mutations of BRCA2, but not those
with mutations of IDH1, ARID1A, or BAP1, are likely to benefit
from PARPi therapy. This collection of CCA_PDXs provides new
opportunities for evaluating drug response and prioritizing clinical
trials.

Introduction
Cholangiocarcinomas (CCA) are a diverse group of malignancies

of the biliary tract (1). After hepatocellular carcinoma (HCC), CCA
is the second most common primary hepatic malignancy (2). Often
asymptomatic at early stages, CCA is usually diagnosed at an
advanced stage with limited therapeutic options (2). This lack
of efficient treatment for patients with advanced CCA is associated
with a dismal prognosis: the 5-year survival rate of patients

with advanced metastatic CCA is only 2% (3). Thus, there is an
urgent need to develop efficient treatments for patients with
advanced CCA.

Patient-derived xenografts (PDX) are generated by transplanting
intact and surgically derived tumor samples from patients into
mice. PDX models retain the characteristics of tumors from distinct
patients and recapitulate intratumor and intertumor heterogene-
ity (4, 5). Importantly, PDX models exhibit treatment responses
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concordant with those found in patients with cancer (6, 7). Thus,
they have become a valuable tool in oncology for evaluating new
treatments and identifying biomarkers (8, 9). While a few collec-
tions of PDX models of CCA have been reported, most of them
were derived from surgically resected primary tumors (10, 11). To
date, PDX models focused on unresectable advanced CCA are not
fully developed.

Pathogenic mutations in genes encoding for isocitrate dehydro-
genase 1 (IDH1) and 2 (IDH2), AT-rich interaction domain 1A
(ARID1A) and B (ARID1B), BRCA1-associated protein 1 (BAP1),
and BRCA1/2 DNA repair associated (BRCA1 and BRCA2) have
been reported in 30%–50% of patients with CCA (12–16). Given
their prevalence in CCA, among other types of malignancy, these
mutations (IDH1/2mut, ARID1A/Bmut, BAP1mut, and BRCA1/2mut)
are becoming promising targets for developing new therapeutic
strategies (1). Indeed, preclinical models in different types of
tumors harboring these mutations showed enhanced sensitivity to
PARP inhibitors (PARPi) due to a deficiency in the homologous
recombination (HR) repair pathway (17–21). Nonetheless, it is still
unclear whether PARPi treatment represents an effective targeted
therapy for advanced CCAs harboring these mutations.

Here, we present a unique collection of PDX models derived
from biopsy samples of patients with unresectable metastatic CCA
(CCA_PDX). These CCA_PDXs recapitulate the histopathologic
and molecular features of their original tumor. In addition, when
cultured ex vivo, tumor cells derived from CCA_PDX can form
tumoroids that demonstrate concordant drug responses to those
found in the original PDXs and patients with CCA. Notably, while
we observed that PARPi inhibits tumor growth in BRCA2mut CCA
tumoroids and PDXs, this effect was not found in the patient-
derived models with IDH1mut, ARID1Amut, or BAP1mut. In agree-
ment, using clinically applied RAD51 score assay (22–27), we
found that both CCA_PDX and advanced CCA patient biopsy
samples with BRCA2mut, but not those with IDH1/2mut, ARID1A-
mut, or BAP1mut, showed RAD51 scores compatible with an HR
deficiency profile (HRD). These data suggest that patients with
advanced CCA with BRCA2mut are likely to benefit from PARPi
treatment in the clinic, and ongoing clinical trials should be
prioritized.

Materials and Methods
Human specimens

CCA metastatic lesions (�1–2 cm long, �1–2 mm diameter) were
obtained by ultrasound-guided core needle biopsy, and one primary
tumor sample was obtained during surgery. All procedures were
performed in the Vall d’Hebron Hospital with informed written
consent from patients. The studies were conducted in accordance
with the Declaration of Helsinki. Human samples were handled and
processed following the institutional guidelines under protocols
approved by the Institutional Review Boards at the Vall d’Hebron
Hospital prior to tissue acquisition. Each tumor biopsy specimen
was divided into two parts: (i) formalin-fixed paraffin embedding
(FFPE) and (ii) subcutaneous implantation into NOD.CB-17-Prkdc
scid/Rj mice (Janvier Labs, RRID:MGI:3760616) for CCA_PDX
generation. CCA diagnosis on biopsied samples was confirmed by
histopathologic assessment.

Generation of CCA_PDXs
Tumor pieces (15–60 mm3) from patient metastatic lesions

(except one from the primary tumor) were obtained from biopsy
and immediately subcutaneously implanted into 6-week-old female
NOD.CB-17-Prkdc scid/Rj mice (Janvier Labs, RRID:MGI:3760616).
Animals were housed in air-filtered flow cabinets with a 12:12 light/
dark cycle, and food andwater were provided ad libitum. Upon growth
of the engrafted tumors, a tumor piece was implanted into a new
recipient mouse for the model perpetuation. Flash-frozen and FFPE
samples were taken for genotyping and histologic studies in each
passage. The presented collection of CCA_PDX is a part of the
EuroPDX consortium (http://www.europdx.eu). All animal proce-
dures were approved by the Ethical Committee for the Use of
Experimental Animals at the Vall d’Hebron Institute of Research and
by the Catalan Government.

IHC and image analysis
CCA_PDX and patient tumors were fixed immediately after

excision in 4% buffered formalin solution for a maximum of
24 hours at room temperature before being dehydrated and paraffin
embedded. The following primary mAbs were used for IHC staining:
anti-KRT19 (Atlas Antibodies, catalog no. HPA002465, RRID:
AB_1079179), anti-HepPar1 (Novus, catalog no. NBP3-08970,
RRID:AB_2909615), anti-Ki67 (Roche, catalog no. 05278384001,
RRID:AB_2631262), anti-cleaved caspase 3 (Asp175; Cell Signaling
Technology, catalog no. 9661, RRID:AB_2341188) and secondary
anti-rabbit (Jackson ImmunoResearch Labs, catalog no. 711-035-
152, RRID:AB_10015282) and anti-mouse (Thermo Fisher Scientific,
catalog no. G-21040, RRID:AB_2536527), and UltraMap anti-Rabbit
antibody (horseradish peroxidase; Roche, catalog no. 05269717001,
PRID:AB_2924783). For KRT19 and HepPar1 IHC, fixed tissue
samples embedded in paraffin were sectioned to a 3-mm thickness.
Sections were heated to 60�C, deparaffinized with xylene (131769.1612;
Panreac), and hydrated with three steps of incubation with ethanol
(from 100%, 96%, and 70%). For antigen retrieval, samples were
boiled for 7 minutes in citrate buffer at pH 6 for KRT19 staining
or at pH 9 for HepPar1 staining. Endogenous peroxidase was blocked
by incubating the samples with 3% peroxide hydrogen (#108597,
Merck Millipore) diluted in phosphate-buffered saline (PBS) for
10 minutes. Slides were permeabilized for 15 minutes in PBS with
1% Tween (A4974,0500, Panreac) and blocked with 3% bovine
serum albumin (BSA) in 1� PBS for 1 hour; samples were
then incubated overnight at 4�C, with the primary antibody

Translational Relevance

Currently, only limited therapeutic options are available for
patients with unresectable advanced cholangiocarcinoma (CCA).
Preclinical models focused on unresectable metastatic CCA are
necessary to develop rational treatments. We present a unique
collection of patient-derived xenografts from patients with CCA
with unresectable metastatic diseases (CCA_PDX). Using these
preclinical models, we identified that pathogenic mutations of
BRCA2, but not those of IDH1, ARID1A, or BAP1, were associated
with the sensitivity to PARP inhibitor (PARPi) treatment. Accord-
ingly, using clinically applied RAD51 assay, we found that only
pathogenic mutations in BRCA2 were linked to homologous
recombination deficiency in both CCA_PDX and advanced CCA
patient samples. These preclinical insights suggest that patients
with advanced CCA with pathogenic mutations of BRCA2 may
benefit from PARPi treatment, and those with pathogenic muta-
tions of IDH1, ARID1A, or BAP1 should be prioritized for other
therapeutic options.
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anti-KRT19 (Atlas Antibodies, catalog no. HPA002465, RRID:
AB_1079179) diluted 1:200 or with HepPar1 (Novus, catalog no.
NBP3-08970, RRID:AB_2909615) diluted 1:500, in blocking buffer
and then incubated at room temperature for 1 hour with anti-rabbit or
anti-mouse secondary antibody (Thermo Fisher Scientific, catalog no.
G-21040, RRID:AB_2536527) at a 1:250 dilution. Sampleswere stained
with DAB substrate chromogen (#K3468, Agilent) for 1–10 minutes
and counterstained with Harris hematoxylin (#109254; Sigma) for 2
minutes, followed by dehydration with ethanol and xylene, and finally
mounted in DPX (06522, Sigma). Positive and negative controls were
run along the tested slides for each marker. For Ki67 and cleaved
caspase 3 staining, slides were heated in the instrument at 75�C for 8
minutes and deparaffinized with EZ prep solution (Ventana Medical
System, catalog no. 950-102 2L). Antigen retrieval was performed at
95�C for 64 minutes using the Cell Conditioning 1 buffer (CC1;
Ventana Medical System, catalog no. 950-124 2L). Subsequent incu-
bation of 8 minutes with CM inhibitor (ChromoMap DAP kit) was
used for peroxidase blockade. For primary antibodies anti-Ki67 (pre-
diluted; Roche, catalog no. 05278384001, RRID:AB_2631262) and
anti-cleaved caspase 3 (Cell Signaling Technology, catalog no. 9661,
RRID:AB_2341188; 1:100), slides were first incubated at 37�C for 24
or 60 minutes, respectively, and for further 8 minutes with UltraMap
anti-Rabbit antibody (horseradish peroxidase; Roche, catalog
no. 05269717001, PRID:AB_2924783). As a detection system, CM
ChromoMap DAB kit (Roche Diagnostics, catalog no. 760-159)
was used according to the manufacturer’s instructions, followed by
counterstaining with hematoxylin II (Ventana Medical System,
catalog no. 760-2021) for 8–12 minutes and bluing reagent (Ventana
Medical System, catalog no. 760-2037) for 4 minutes, dehydration,
and mounting processes. Slides were scanned in the NanoZoomer
2.0-HT slide scanner (Hamamatsu Photonics) and visualized in the
NDP.view2 software (Hamamatsu Photonics) or QuPath (28).

Genomic profiling
Molecular profiling was performed using FFPE tumor tissue

obtained from patient biopsies and corresponding PDXs. For patient
samples, DNA was analyzed using FoundationOne CDx hybrid-
capture next-generation sequencing (NGS) service platform, an
assay designed to detect substitutions, insertions, deletions, and rear-
rangements in a total of 324 genes, including genes known to be
somatically altered in solid tumors that are validated targets for
therapy (either approved or in clinical trials) and unambiguous drivers
of oncogenesis based on current knowledge. For PDX samples, an
in-house NGS panel was used for genomic characterization. Four 8-
mm tissue sections from all PDXs, with more than 20% tumor area,
were obtained, and DNA extraction was performed with the auto-
mated system Maxwell16 FFPE plus LEV DNA purification kit
(Promega, catalog no. TM349). DNA quality and concentration
were measured by Qubit and analyzed by NGS with a custom 435-
gene hybrid capture-based panel (VHIO-300 panel, see Supple-
mentary Table S1). Sequencing reads were aligned (BWA v0.7.17,
Samtools v1.9) against a custom reference containing all chromo-
somes from hg19 mm10 reference genomes. Reads aligned to
chromosomes from the mm10 genome were removed, and reads
aligned to the hg19 genome were further analyzed. Picard (v1.139)
was used to remove duplicates. Base recalibration, indel realignment
(GATK v3.7.0), and variant calling (VarScan2 v2.4.3, Mutect2
v4.1.0.0) were performed. Variants from both callers are reported.
A minimum of 7 reads supporting the variant allele were required to
call a mutation. The technique’s sensitivity is 5% MAF for single-
nucleotide variants and 10% MAF for INDELs. Copy-number

alterations were calculated with CNVkit (v0.9.6.dev0) using an
in-house 2N pool as the standard sample. For somatic variant
analysis, frequent SNPs in the population were filtered on the basis
of the gnomAD database (allele frequency ≤ 0.0001). Variants
were manually curated, and identified variants were classified using
publicly available databases: COSMIC (RRID: SCR_002260), cBio-
Portal (RRID: SCR_014555), ClinVar (RRID: SCR_006169), Var-
Some, and OncoKB (RRID: SCR_014782).

CCA tumoroid ex vivo three-dimensional cultures
CCA patient-derived tumor cells were isolated from CCA_PDX

through a combination of mechanic disruption and enzymatic disag-
gregation following a described protocol (4). Briefly, PDX tumors with
a volume of less than 500 mm3 were freshly collected in DMEM/F12/
HEPES (L0093-500, Biowest) after surgical resection, minced using
sterile scalpels, and dissociated for a maximum of 90 minutes in
DMEM/F12/HEPES supplemented with 0.3 mg/mL collagenase
(C9891, Sigma-Aldrich), 0.1 mg/mL hyaluronidase (H3506, Sigma-
Aldrich), 2% BSA (VWRC0332, VWR), 5 mg/mL insulin (I1882,
Sigma-Aldrich), and 50 mg/mL gentamycin (15750-037, Gibco). After
centrifugation, pellets were further dissociated using 0.05% trypsin
(HYCLSH30236.02, VWR), 5 mg/mL Dispase (7923, STEMCELL
Technologies) and 1 mg/mL DNase (D4263, Sigma-Aldrich). Red
blood cells were eliminated by washing the cell pellet with 1� Red
Blood Cell Lysis Buffer solution (00-4333-57, eBioscience). Cells were
then resuspended in DMEM/F12/HEPES supplemented with 2%
of fetal bovine serum (10270106, Gibco), 1% penicillin/streptomycin
(15140122, Gibco), 10 mg/mL of ROCK inhibitor (S1049, Selleck
Chemicals) and 5 mg/mL insulin. For drug efficacy tests, cells were
seeded at 4 � 104 cells/well on Matrigel precoated 48-well plates
(130187, Thermo Fisher Scientific) or at 2� 104 cells/well in aMatrigel
pre-coated Corning 96-WellWhite PolystyreneMicroplate (CLS3610,
Corning). On the following day, cells were treated with either vehicle
(DMSO) or the corresponding drug and cultured at 37�C in 5%ofCO2.
Medium and treatments were refreshed every 2–3 days.

Cell viability measurement
Cell viability was evaluated at four different timepoints for growth

kinetics on days 1, 4, 7, and 10. For each measurement, the culture
medium was first replaced by cold PBS-ethylenediaminetetraacetic
acid (EDTA) 1 mmol/L and incubated for 1 hour at 4�C to melt
Matrigel; cell pellets were then obtained by centrifugation at 450 � g
for 5 minutes at 4�C. The supernatant was removed, and pellets were
resuspended with 50 mL of PBS with 1 mmol/L EDTA and trans-
ferred to a Corning 96-Well White Polystyrene Microplate. Cell
viability was quantified using CellTiter-Glo Luminescent Cell
Viability Assay (Promega; G7570), according to the manufacturer’s
instruction. Luminescence was measured with infinite M2000 Pro
(Tecan) and i-control 1.11 software. For drug efficacy experiments,
cells were treated ex vivo with the indicated compounds for 7 days,
and cell viability was measured by CellTiter-Glo. As cells were
already seeded in the final readout plate (Corning 96-Well White
Polystyrene Microplate, CLS3610, Corning), Matrigel was melted
by direct on-plate incubation with 50 mL PBS with1 mmol/L EDTA
for 1 hour at 4�C. Cell viability was evaluated as described above.

Drug efficacy studies in vivo
Upon xenograft growth (50–150 mm3), CCA_PDX-bearing

mice were randomized and treated with indicated molecules.
NEO2734 was provided by Epigene Therapeutics Inc. and dissolved
in PEG300 (81162-1L, Sigma-Aldrich). Olaparib (AZD2281) was
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purchased from MedChemExpress (catalog no. HY-10162) and
dissolved in 10% DMSO (v/v) and 10% Kleptose [HP-b-CD]
(346102, Roquette) (w/v). Pamiparib was provided by BeiGene
and dissolved in sterilized 0.5% methylcellulose (M0262, Sigma-
Aldrich). Niraparib (MK-4827; catalog no. HY-10619) and pemigatinib

(INCB054828; catalog no. HY-109099) were purchased from Med-
ChemExpress. Each treatment regimen is indicated in the figures.
Tumor growth was measured 3� per week with a caliper; research-
ers were blinded to the treatment effect. Mice weights were recorded
3� per week. Tumor volumes were calculated using the formula:

A B

Female
Male

Biopsies
(n = 49)

PDX lines
(n = 19)

Sex of
patient

Original
tissue of
biopsies

Intrahepatic
Extrahepatic

Treatment naïve
After neoadjuvant therapy
During first line
After first line
After second line
After third line

Patient
treatment

Metastatic CCA
Biopsies

Subcutaneous
implantation

P0 PDX
Subsequent
passages

CCA PDX bank

FFPE
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Genomic and 
histologic

comparaisons

Primary tumors
Metastatic lesions

Pathologic
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Figure 1.

Generation of CCA_PDX models. A, Schematic illustration of the process of establishing and maintaining CCA_PDXs. Successfully established CCA_PDXs are
compared with their foundation biopsy counterparts in histologic and genomic analyses. B, Pie charts showing the stratification of all biopsies (n ¼ 49) and
successfully established CCA_PDXs (n¼ 19) based on the sex of the patient, tissue origin of biopsies, pathologic subtypes, and patient treatment received prior to
biopsy.

Table 1. Characteristics of patients with metastatic CCA, biopsies, and PDXs.

Biopsies
Total
(n ¼ 49)

Unsuccessful
engraftment
(n ¼ 30)

Successful
engraftment
(n ¼ 19)

n (%) n (%) n (%) P

Sex of patient 0.7516
* Female 31 (63.3) 20 (66.7) 11 (57.9)
* Male 18 (36.7) 10 (33.3) 8 (42.1)

Median patient age
at biopsy (years)
[interquartile range]

59 [49–70.5] 61 [40–70.8] 57 [48–71] 0.262

Original tissue of
biopsies

0.8160

* Primary tumors 1 (2.0) 0 (0) 1 (5.3)
* Metastatic lesions 48 (98.0) 30 (100) 18 (94.7)

CCA pathologic
subtypes

0.2939

* Intrahepatic 43 (87.8) 28 (93.3) 15 (78.9)
* Extrahepatic 6 (12.2) 2 (6.7) 4 (21.1)

Patient treatment 0.0777
* Treatment na€�ve 4 (8.2) 4 (13.3) 0 (0)
* After adjuvant treatment (gemcitabineþ capecitabine) 3 (6.1) 0 (0) 3 (15.8)
* During first line (gemcitabine þ platinum) 5 (10.2) 3 (10.0) 2 (10.5)
* After first line (gemcitabine þ platinum) 14 (28.6) 11 (36.7) 3 (15.8)
* After second line (chemotherapy or targeted therapy) 14 (28.6) 7 (23.3) 7 (36.8)
* After third line 9 (18.4) 5 (16.7) 4 (21.1)
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V ¼ (length � width2)/2. According to institutional guidelines, mice
were euthanized using CO2 inhalation once tumors reached 1–1.5 cm3

or in case of severe weight loss.

Immunofluorescence staining
For immunofluorescence staining, cells were seeded on a Matrigel

precoated 8-well Nunc Lab-Tek Chamber Slide system (C7182,
Thermo Fisher Scientific) at 4 � 104 cells/well. After a 72-hour to
144-hour incubation, cells were fixed with 4% paraformaldehyde
(30525-89-4, Santa Cruz Biotechnology) for 15 minutes, washed with
1%BSA in PBS for 5minutes, and permeabilizedwith 1%TritonX-100
for 20 minutes at room temperature. After 1 hour of blocking in 5%
BSA-PBS, cells were incubated at room temperature for 2 hours with
the primary antibody anti-KRT19 (Atlas Antibodies, catalog no.
HPA002465, RRID:AB_1079179) or anti-HepPar1 (Novus, catalog
no. NBP3-08970, RRID:AB_2909615) diluted 1:200 in blocking buffer.
Cells were then incubated for 1 hour with a secondary anti-rabbit
antibody (Jackson ImmunoResearch Labs, catalog no. 711-035-152,
RRID:AB_10015282) diluted at 1:400 in blocking buffer, washed twice
with 1% BSA PBS, and incubated with 40,6-diamidino-2-phenylindole
(DAPI; D9542, Sigma-Aldrich) in PBS for 5 minutes. Slides were then
mounted with Fluoromount-G (0100-01, SouthernBiotech). Slides
were stored at 4�C until analysis. Images were acquired with a Nikon
confocal microscope C2þ equipped with an LU-N4S laser unit, using
the NIS-Elements software (Nikon).

RAD51 assay
A total of 3-mm FFPE sections from patients with CCA and PDXs

were used for the analysis of RAD51 foci (as a functional readout of
HRD) and gH2AX foci (as a biomarker of endogenous double-
stranded DNA damage); each biomarker was counterstained with
geminin (as a marker of the S–G2 cell-cycle phase) and DAPI, as
described previously (26, 27). The following primary antibodies
were used for immunofluorescence: rabbit anti-RAD51 (Abcam,
catalog no. ab133534, RRID:AB_2722613, 1:1,000), mouse anti-
gH2AX (Millipore, catalog no. 05-636, RRID:AB_309864, 1:200),
mouse anti-geminin (Leica Biosystems, catalog no. NCL-L-Geminin,
RRID:AB_563738, 1:60), and rabbit anti-geminin (Proteintech,
catalog no. 10802-1-AP, RRID:AB_2110945, 1:400). Goat anti-
rabbit Alexa fluor 568 (Thermo Fisher Scientific, catalog no. A-
11036, RRID:AB_10563566), goat anti-mouse Alexa Fluor 488
(Thermo Fisher Scientific, catalog no. A-28175, RRID:AB_2536161),
donkey anti-mouse Alexa Fluor 568 (Thermo Fisher Scientific, catalog
no. A-10037, RRID:AB_2534013), and goat anti-rabbit Alexa Fluor 488
(Thermo Fisher Scientific, catalog no. A-11070, RRID:AB_2534114;
1:500) were used as secondary antibodies. Scoring was carried
out blindly using live images and a 60� immersion oil lens in a Nikon
Ti-Eclipse microscope. The mean score from two observers is provided
for each sample. At least 40 geminin-positive cells were analyzed per

sample, and the gH2AX score was used as a quality check to ensure the
presence of enough endogenous DNA damage to evaluate homologous
recombination repair functionality (cutoff, 25% geminin-positive
cells with gH2AX foci). The RAD51 score was considered low or high
based on the predefined cutoff of 10% geminin-positive cells with ≥5
RAD51 nuclear foci.

Statistical analysis
x2 tests were used to search for associations between PDX engraft-

ment and categorical clinical features of the patients; Mann–Whitney
U tests were used for detecting various clinical features. These tests
were performed using Python 3.6.12 (RRID:SCR_001658) and the
Scipy 1.5.2 package. Unless otherwise stated, statistical tests were
performed with GraphPad Prism Version 9.4.1 (RRID:SCR_002798)
with methods indicated in the figure legends.

Data availability
Next-generation panel sequencing data have been deposited in the

NCBI BioProject (https://www.ncbi.nlm.nih.gov/bioproject) under
BioProject number PRJNA763182. The data generated in this study
are available within the article and its Supplementary Data. The data
supporting the findings of this study are also available from the
corresponding author upon reasonable request.

Results
PDX models were generated from biopsies of patients with
unresectable metastatic CCA

We generated PDX models from biopsy specimens collected over
5 years (from 2016 to 2020) from 49 patients with a confirmed
diagnosis of metastatic CCA (Fig. 1A; Supplementary Table S2). Of
note, specimens from 48 patients with the unresectable disease (98%)
were obtained by ultrasound-guided biopsy of metastatic lesions, and
one specimen (2%) was obtained by biopsy of the primary tumor
during surgery (Fig. 1B; Table 1). Forty-three patients (87.8%) were
diagnosed with intrahepatic CCA and 6 (12.2%) with confirmed
extrahepatic CCA. Importantly, 45 of the 49 patients (91.8%) had
already received at least one line of platinum-based chemotherapy,
neoadjuvant chemotherapy, and/or targeted therapy; only 4 (8.2%)
were treatment na€�ve.

Patient specimens were subcutaneously implanted into immune-
deficient (NOD/SCID)mice immediately after the biopsy procedure to
generate CCA_PDXmodels. The establishment of CCA_PDXmodels
was determined to be successful based on whether they: (i) could be
readily and serially transplanted; (ii) recapitulated the histopathologic
characteristics of the initial biopsy sample; (iii) reliably retained the
main genomic alteration of the initial biopsy tissue. Of the 49
implanted samples, 19 generated CCA_PDX models (success rate,
38.8%), with a median latency (e.g., time from implantation in mice to

Figure 2.
CCA_PDXs maintain the histologic and genomic features of the original biopsy specimens. A, Comparative histologic and IHC images of tumors of CCA_PDXs
compared with each original biopsy specimen. Top row, H&E staining; middle row, IHC staining of KRT19 (CCA marker); and bottom row, IHC staining of HepPar1
(HCC). Representative examples of 19 CCA_PDXs are shown; an HCC biopsy sample was used as a control. CCA_PDX samples were collected at passage 1 (PDX133)
or passage 2 (PDX78 and PDX119). Scale bar, 250 mm. B, Comparison of somatic mutations identified in CCA_PDX tumors and their parental biopsy specimens.
Genes harboringmutationswere classified into three categories: epigenetic regulation, DNAdamage response/cell-cycle control, and signaling pathways. CCA_PDX
samples were collected at passage 1 (PDX41, PDX123, PDX96, PDX118, and PDX133) or passage 2 (PDX58, PDX62, PDX68.2, PDX78, PDX85, PDX67, PDX75,
PDX75.2, PDX119, and PDX120). C, Frequencies of mutations identified as biopsy-specific, PDX-specific, or common somatic mutations. D, Comparison of CNVs
identified in CCA_PDX tumors and the original biopsy samples. E, Diagrams of FGFR2 gene fusions identified in four paired biopsy–PDX samples. Fusion
mRNAs (including FGFR2) and their fusion partners are indicated, as well as the predicted protein products of the fusions with their functional domains. Numbers
represent the exon of the corresponding genes.
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tumor growth) of 4.7 months (Supplementary Fig. S1A). Importantly,
these 19 CCA_PDXs proportionally represented the original 49
patients in regard to patient sex, original tissue, pathologic subtypes,
and treatment received (Fig. 1B), suggesting that none of these factors
was associated with the success and/or failure of PDX generation; this
was confirmed by further statistical analyses (Table 1). Thus, we
successfully generated a panel of 19 PDXs using biopsy specimens
from patients with unresectable metastatic CCA who had been pre-
viously treated.

The CCA_PDX characteristicsmatch those of the original biopsy
tissues

We next investigated whether the histopathologic characteristics of
the original biopsy samples were preserved in the CCA_PDXs. His-
topathologic analyses of hematoxylin and eosin (H&E)-stained tissue
showed features in the PDXs consistent withCCA andwith similarities
to the original biopsy specimens (Fig. 2A). Moreover, as the majority
of our CCA_PDX collection was generated using biopsy samples from
liver metastatic lesions (17 of 19 PDX), we also used cytokeratin 19
protein (KRT19) and hepatocyte paraffin 1 (HepPar1) as biomarkers
to distinguish CCA (which is KRT19þ/HepPar1�) fromHCC (which
is KRT19�/HepPar1þ; ref. 29). IHC analysis revealed that all
CCA_PDXs and their original biopsy specimens were KRT19þ/
HepPar1�, further confirming the CCA identity (Fig. 2A; Supple-
mentary Fig. S2A). As expected, the HCC biopsy sample used as a
control was KRT19�/HepPar1þ.

To verify whether the CCA_PDXs faithfully recapitulated the
genomic features of each corresponding original biopsy specimen,
the genomic DNA samples from fifteen original biopsy samples and
their corresponding CCA_PDXs were sequenced (by Foundation
Medicine for the biopsies, and in-house NGS with a custom 435-gene
hybrid capture-based panel for the CCA_PDXs). Notably, we found
that the CCA_PDXmodels maintainedmost of the somatic mutations
identified in the corresponding original biopsy specimens (Fig. 2B
and C; Supplementary Tables S3 and S4). Many of these identified
somatic mutations were in genes involved in epigenetic regulation
(e.g., IDH1, IDH2, BAP1, ARID1A/B), DNA damage and cell-cycle
control (e.g., BRCA2, TP53), or signaling pathways (e.g., BRAF,
PIK3CA), corresponding to previous reports (12, 13, 16, 30). Analysis
of copy-number variation (CNV) revealed a high similarity between
CCA_PDXs and the paired original biopsy samples (Fig. 2D). We also
detected amplification of putative oncogeneMDM2 and homozygous
deletions of CDKN2A, which have been associated with the CCA
pathology (13). Finally, we analyzed theFGFR2 fusion status, as FGFR2
fusion genes have been observed in 10%–15% of CCA patient sam-
ples (15, 16). We found three types of predicted FGFR2 fusions in four
original biopsy samples as well as in the corresponding CCA_PDXs
(Fig. 2E; Supplementary Fig. S3A). The identified fusions involve the
50-part of the FGFR2 gene, which encodes for an intact tyrosine
domain, fused in-frame with 30-part of the gene encoding the tran-
scription factor activating transcription factor 2 (ATF2; CCA67), the
RNA-binding protein RNA-binding motif protein 20 (RBMC20;
CCA75 and CCA75.2), and the ring finger protein 123 (RNF213;
CCA118). Therefore, in both the histopathologic and genomic anal-
yses, the CCA_PDXs faithfully recapitulated the key features of their
original biopsy specimens.

Short-term ex vivo three-dimensional culture of CCA_PDX-
derived cells for evaluating drug efficacy

Although PDX models are valuable for preclinical studies,
expanding these models in vivo for drug efficacy evaluation is

costly and time consuming. Several studies have demonstrated that
tumor cells derived from PDXs can be maintained in ex vivo three-
dimensional (3D) culture systems and used for “pre–in vivo” drug
screens (4, 31–33). Importantly, the drug responses obtained from
these ex vivo culture systems are highly predictive of those from
their in vivo PDX counterparts. We therefore aimed to establish and
optimize a short-term ex vivo 3D culture protocol for tumor cells
derived from our CCA_PDXs (Fig. 3A). Briefly, single-cell suspen-
sions were obtained from CCA_PDXs and seeded out on a Matrigel
pre-coated dish; after 24 hours, tumoroids began to form at the
interface between the culture medium and Matrigel (see Materials
and Methods). These tumoroids could be grown in culture for at
least 10 days (Fig. 3B; Supplementary Fig. S4A), and they main-
tained CCA histopathologic features and marker expression (e.g.,
KRT19þ/HepPar1�; Fig. 3C).

To test whether this system can be used as a platform for preclinical
drug efficacy evaluation, we first focused on a novel bromodomain and
extraterminal domain (BET) inhibitor, NEO2734. BET inhibitors have
demonstrated efficient antitumor activities in both hematopoietic
and solid tumors, including CCA (34–38). NEO2734 is a novel potent
BET-CBP/p300 dual inhibitor, and its antitumoral activity has been
shown using in vitro cell lines, ex vivo organoids, and in vivo PDX of
multiple cancer types (39–42). We found that NEO2734 showed
significant antiproliferative effects in tumoroids derived from different
CCA_PDXs, with an average IC50 of 685.3 nmol/L (Fig. 3D), indi-
cating its potential application for CCA treatment. Next, we verified
whether the results obtained in CCA tumoroids were predictive of the
drug response observed in CCA_PDXs in vivo. For this, CCA_PDX78
wasfirst expanded inNOD-SCIDmice and then treatedwith vehicle or
NEO2734. In agreement with the results obtained in the ex vivo 3D
culture system, NEO2734 significantly inhibited the CCA_PDX78
tumor growth in vivo (Fig. 3E).

Furthermore, we also tested whether the CCA tumoroids can
capture drug responses observed in patients with CCA. We used two
CCA_PDX models derived from a patient with FGFR2 fusion. The
PDX75 was developed before FGFR inhibitor treatment and the
PDX75.2 after therapy with progressive disease (Fig. 3F). We found
that tumoroids derived from PDX75 were more sensitive to FGFR
inhibitor pemigatinib treatment than those derived from PDX75.2
(Fig. 3G). Of note, in PDX75.2 and the corresponding patient biopsy
samples, we could identify FGFR2 V564 L mutation, which has been
associated with acquired resistance to FGFR inhibitor in CCA (Sup-
plementary Table S4; refs. 43–45).

Thus, we have established a short-term, ex vivo 3D culture system
for tumor cells derived from CCA_PDXs; this CCA tumoroid culture
system can be used for rapid drug efficacy tests. Notably, the results
obtained from this system agreed with those observed in CCA_PDXs
and patients with CCA.

PARPi treatment inhibits the growth of BRCA2mut CCA_PDX
Pathogenic mutations of IDH1/2, ARID1A/B, BAP1, and BRCA1/2

have been found in many types of solid tumors (46), including 30%–
50% of patients with CCA (12–16). Efforts have thus been made to
discover the vulnerability of cancer cells harboring these mutations
and to design accordingly novel therapeutic strategies. Notably, the
oncometabolite 2-hydroxyglutarate produced by mutant IDH1/2
enzymes, and loss of function of ARID1A, BAP1, or BRCA2 can
impair the HR pathway, rendering cancer cells sensitive to PARPi
treatment (18–21, 47, 48). However, preclinical evidence supporting
the employment of PARP inhibition in advanced CCA with these
mutations is still missing. Among our 19 established CCA_PDX
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Figure 3.

Ex vivo 3D culture of tumors derived fromCCA_PDXs can be used to evaluate drug efficacy.A, Schematic illustration of the process of ex vivo 3D culture of tumoroids
derived from CCA_PDX. B, Cell proliferation of CCA_PDX-derived tumoroids was determined using CellTiter-Glo assays. Data were normalized to cell viability
measured onday0 (D0) and aremean� SD from three independent replicates.C,Histopathologic characterization of tumoroids generated using CCA_PDX-derived
cells cultured ex vivo for 10 days. Top row: H&E staining (left); IHC for the CCA marker KRT19 (right); bottom row: CCA marker KRT19 (left) and the HCC marker
HepPAR1 (right); representative images are shown. Scale bars, 250 mm (top row), 50 mm (bottom row).D,NEO2734 dose–response curves for a panel of CCA_PDX-
derived tumoroids cultured ex vivo. Cell viability was determined using Cell Titer-Glo assay on day 7. (The initiation of treatment was considered as day 1.) Data are
mean� SD from independent biological replicates (PDX41, n¼ 5; PDX75.2, n¼ 2; PDX78, n¼ 6; PDX85, n¼ 6; PDX118, n¼ 3; PDX113, n¼ 3). E, Effects of NEO2734
evaluated in vivo using CCA_PDX78. Mice implanted with PDX78 were treated intraperitoneally three times per week for 4 weeks with either vehicle (n ¼ 6) or
NEO2734 (10mg kg–1) (n¼ 6). Each tumor volumewas normalized to its volumemeasured on day 1 of treatment. Data aremean� SEM (multiple t tests); the P value
was from data of day 29. F, Schematic illustration of the process of establishing two PDXmodels from a patient with CCAwith FGFR2 fusion (prior to FGFR inhibitor
treatment and in progression) and using tumoroids derived from the paired PDXs to test the efficacy of FGFR inhibitor.G, FGFR inhibitor pemigatinib dose–response
curves for PDX75- and PDX75.2-derived tumoroids cultured ex vivo. Cell viability was determined using Cell Titer-Glo assay on day 7. (The initiation of treatment
was considered as day 1.) Data are mean � SD from independent biological replicates (PDX75, n ¼ 3; PDX75.2, n ¼ 3).
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Figure 4.

PARPi inhibits the growth of CCA_PDXs with a BRCA2 mutation. A, Dose–response curves of olaparib (left) or pamiparib (right) for a panel of tumoroids derived
from CCA_PDXs. Cell viability was determined using a Cell Titer-Glo assay 7 days after the treatment initiation. Data are mean � SD from independent
biological replicates. For olaparib treatment: PDX41, n ¼ 8; PDX68.2, n ¼ 2; PDX78, n ¼ 6; PDX85, n ¼ 11; PDX75, n ¼ 2; PDX75.2, n ¼ 4; PDX96, n ¼ 2; PDX118,
n ¼ 3; PDX120, n ¼ 2; PDX133, n ¼ 3; and PDX119, n ¼ 3. For pamiparib treatment: PDX41, n ¼ 6; PDX78, n ¼ 6; PDX85, n ¼ 9; PDX75.2, n ¼ 2; PDX118, n ¼ 3;
PDX133, n ¼ 3; PDX119, n ¼ 3. B, IC50 of olaparib (left) and pamiparib (right) in tumoroids derived from CCA_PDXs. C, Effects of olaparib and pamiparib
evaluated in vivo using PDX85 (IDH1mut). Mice implanted with PDX85 were treated orally six times per week with either vehicle (n ¼ 8) or olaparib (at a low or
high dose, of 50 or 100 mg kg–1, respectively; each n ¼ 10) or pamiparib (at a low or high dose, of 6 or 12 mg kg–1, respectively; each n ¼ 8). Each tumor volume
was normalized to its volume on day 1 (D1). Data are mean � SEM (two-way ANOVA multiple comparisons with Tukey correction); the indicated P value
reflects data from D19.(Continued on the following page.)
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models, 10 have confirmed pathogenic mutations of IDH1 (n ¼ 7),
ARID1A (n ¼ 1), BAP1 (n ¼ 1), or BRCA2 (n ¼ 1), and one with
ARID1A deletion (Supplementary Table S4).We therefore checked the
PARPi response in these CCA_PDXs.

We first tested the effects of each of three PARPis (i.e., olaparib,
pamiparib, and niraparib) using established ex vivo 3D culture
systems of tumor cells derived from CCA_PDXs harboring mutations
in IDH1, ARID1A, BAP1 or BRCA2. Of note, these PARPis are either
approved by the FDA or are currently being evaluated in multiple
clinical trials (17). As controls, we also included cells derived
from CCA_PDXs harboring none of these mutations (wild-type
CCA_PDXs). We found that, among all tumoroid models tested, only
those derived from BRCA2mut CCA_PDX (PDX119) were sensitive to
olaparib and pamiparib treatments (Fig. 4A and B). In contrast,
neither tumoroids derived from wild-type CCA_PDXs nor those
derived from CCA_PDXs harboring IDH1mut, ARID1Amut, or BAP1-
mutwere found sensitive to any of the three PARPi treatments (IC50>10
mmol/L; Fig. 4A and B; Supplementary Fig. S5A and S5B). Moreover,
in line with these findings, although olaparib and pamiparib treat-
ments did not affect the in vivo growth of PDX85 (IDH1mut,
R132C; Fig. 4C) or PDX78 (IDH1mut, R132L; Fig. 4D), olaparib
treatment significantly inhibited the tumor growth of PDX119
(BRCA2mut, G3076R; Fig. 4E). Further IHC analysis for the cell
proliferation marker Ki67 and the apoptosis marker cleaved caspase
3 revealed that PARPi treatment did not alter IDH1mut tumor cell
proliferation or apoptosis in vivo (Supplementary Fig. S5C and S5D).

Moreover, a 73-year-old male patient with metastatic CCA with a
pathogenic BRCA2mut (D2723H) was identified by NGS (Foundatio-
nOne Panel). This patient was initially diagnosed with localized
extrahepatic CCA (T2N2M0), and had received surgical resection
(R0) and adjuvant chemotherapy with capecitabine. Unfortunately,
multiple metastatic lesions were found after the adjuvant chemother-
apy, mainly localized in the celio-mesenteric lymph nodes. He then
received cisplatin/gemcitabine, carboplatin/gemcitabine, and durva-
lumab/tremelimumab (as part of the IMMUNO-BIL clinical trial,
NCT03704480) treatments. Because pathogenic BRCA2mut (D2723D)
was identified in the tumor samples, he was compassionately treated
with olaparib at a dose of 300mg orally, twice a day continuously. After
10 weeks of treatment, CT scans showed regressions of several target
lesions (Fig. 4F).

Thus, our results showed that PARPi treatments are effective in
advanced CCApatient-derived preclinical models withBRCA2mut, but
not those harboring IDH1mut, ARID1Amut, or BAP1mut. In agreement,
olaparib showed clinical activity in a patient withCCAwith pathogenic
BRCA2mut.

RAD51 scoringpredicts that patientswith IDH1mut,ARID1Amut, or
BAP1mut CCA may not benefit from PARPi treatment

The rationale for using PARPis to treat IDH1/2mut, ARID1Amut,
BAP1mut, or BRCA2mut tumors is based on the reported findings that
cells harboring thesemutations are defective forHR (18–21, 47, 48). As
we only observed the expected antitumoral effects of PARPis in
BRCA2mut CCA_PDX, and this effect was not found in tumoroids

and CCA_PDXs with IDHmut, ARID1Amut, or BAP1mut, we next
sought to examine the HR status of these CCA_PDXs to determine
whether they are HR proficient (HRP) or HR deficient (HRD). We
used a recently developed RAD51 assay to estimate HR status in
routine FFPE tumor samples (26, 27). This assay analyzes nuclear
immunofluorescence staining of the DNA repair protein RAD51
(RAD51), geminin, and DAPI. Tumors were considered HRP if more
than 10% of gemininþ tumor cells had more than five RAD51þ foci
(Fig. 5A). Otherwise, the tumor was scored as HRD. Moreover,
immunofluorescence of the phosphorylation of the Ser-139 residue
of the histone variantH2AX (gH2AX)was also scored on a consecutive
slide to evaluate the basal DNA damage level of the tumor. Of note, the
RAD51 assay has been applied in multiple clinical trials and PDX
models, and tumors with HRD profiles scored by this assay showed
responses to PARPis with high sensitivity and specificity (22–25).

Using this assay, we found that 17 of 18 tested CCA_PDXs showed
RAD51 scores above 10% (Fig. 5B), which is compatible with an HRP
profile. Only PDX119 and its original patient samples with a biallelic
pathogenic BRCA2 mutation showed, as expected, a RAD51 score
below 10%, compatible with an HRD profile (Fig. 5B; Supplementary
Fig. S6A). All samples showed significant DNA damage (gH2AX score
median, 59%; interquartile range, 52%–74%). Importantly, IDH1/2mut,
ARID1A/Bmut, or BAP1mut CCA_PDXs were scored as HRP as wild-
type CCA_PDXs (Fig. 5B). Moreover, we also confirmed that the
original CCA biopsy specimens scored concordantly with their
matched CCA_PDXs (Supplementary Fig. S6A), suggesting that the
HR repair status observed was not due to the PDX setting but rather
was representative of the patient sample of origin. These results
demonstrated that, in this panel of CCA_PDXs, mutations of
IDH1/2,ARID1A/B, or BAP1were not associated with anHRDprofile,
which would explain the absence of a PARPi treatment sensitivity in
these CCA_PDXs. In line with these findings, we also found that the
RAD51 scores increased in the PDX85 (IDH1mut) tumors treated with
olaparib or pamiparib in vivo (Supplementary Fig. S6B), indicating
that the HR repair pathway is still functional in these tumors.

To further strengthen ourfindings, we also analyzed an independent
cohort of patients with metastatic CCA using the RAD51 assay
(Fig. 5C; Supplementary Table S5). This analysis confirmed the HRD
profiles in patients with CCA with pathogenic mutations of BRCA2
(n ¼ 2; Fig. 5D). In contrast, patients with CCA with pathogenic
mutations of IDH1/2mut (n ¼ 10), ARID1Amut (n ¼ 3), or BAP1mut

(n¼ 7) showedHRP profiles (Fig. 5D).We concluded that pathogenic
mutations of BRCA2, but not those of IDH1/2mut, ARID1Amut, and
BAP1mut, are associated with HR deficiency profile, at least in met-
astatic CCA that has progressed following chemotherapy. Importantly,
these data also suggest that patients with metastatic CCA with
BRCA2mut, but not those with IDH1/2mut, ARID1Amut, or BAP1mut,
are likely to benefit from PARPi treatment.

Discussion
PDXs have become an essential tool for understanding the

mechanisms underlying cancer development and progression, and

(Continued.) D, Effects of pamiparib evaluated in vivo using PDX78 (IDH1mut). Mice implanted with PDX78 were treated orally with either vehicle (n ¼ 5) or
pamiparib (6 mg kg–1; n ¼ 5) six times per week. Each tumor volume was normalized to its volume measured on day 1 of treatment (D1). Data are mean � SEM
(multiple t tests); the indicated P value was from day 26. E, Effects of olaparib evaluated in vivo using PDX119 (BRCA2mut). Mice implanted with PDX119 were
treated orally with either vehicle (n¼ 5) or olaparib (100 mg kg–1; n¼ 5) six times per week. Each tumor volume was normalized to its volume measured on day
1 of treatment (D1). Data are mean � SEM (multiple t tests); the indicated P value was from day 40. F, CT scan images of a 73-year-old male patient with
metastatic CCA with a pathogenic BRCA2 mutation at baseline and after 10 weeks of olaparib treatment. Target lesion 1 (adjacent to the splenic vein) and
target lesion 2 (mesenteric) are outlined in red lines.
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they are also being used for discovering cancer biomarkers and
treatment (8, 49). While PDXs of CCA have been reported previously,
they have mainly been established with surgically resected primary
tumor tissues (11, 50–52). It is noteworthy that only approximately
25% of patients with CCA are diagnosed early and are eligible
for surgical resection (1). In contrast, the remaining 75% of the CCA
cases are frequently diagnosed at advanced stages with locoregional
involvement or/and distant metastatic lesions, currently without long-
lasting or effective therapeutic strategies (1). Despite this clear unmet
clinical need, large collections of PDXmodels focused on unresectable
advanced CCA are missing. We report here a unique collection of
CCA_PDXs, of which the majority (18 of 19 CCA_PDXs) was
established with biopsy samples of metastatic lesions from patients
with confirmed advanced CCA disease.

This collection of CCA_PDX models faithfully recapitulates the
histopathologic and genetic characteristics of the corresponding orig-
inal CCA samples. Of note, the genomic profiles of the CCA_PDX
collection compile a list of mutations that have been previously
reported to be associated with cholangiocarcinoma pathogenesis, such
as mutations in genes TP53, KRAS, ARID1A, BAP1, BRCA2, or
PIK3CA (12, 13, 16, 30). Moreover, as they are established mainly
from patients with metastatic intrahepatic CCA, our CCA_PDX
showed a high prevalence of mutations in IDH1/2, which is in
agreement with reported molecular traits of the intrahepatic
CCA (12, 16). In addition, tumor cells derived from CCA_PDXs
can grow as tumoroids using optimized ex vivo 3D culture condi-
tions. Importantly, as previously reported in breast cancer (4),
castration-resistant prostate cancer (32), and osteosarcoma
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models (33), the drug responses observed in tumoroids derived
from CCA_PDXs were in agreement with those observed with
CCA_PDX and patients with CCA, thus providing a new potentially
valuable platform for rapid, cheap, and high-throughput screening
of drug sensitivity and resistance in CCA.

Tumor cells that lack functional BRCA1/2, key HR proteins,
have been shown to be exquisitely sensitive to PARPi (47, 48).
Clinical evidence demonstrated that patients with BRCA2mut

breast, prostate, and ovarian cancers could benefit from PARPi
treatment (53–55). We found that CCA-derived preclinical models
with BRCA2mut respond to PARPi, indicating the potential appli-
cation of PARPi in advanced CCA. Indeed, several recent case
reports have independently documented the effectiveness of ola-
parib in patients with CCA with pathogenic deleterious mutations
of BRCA2 (56–58). As BRCA2mut was reported in approximately
3% of patients with CCA (59), which is non-negligible, further
large-scale studies are warranted to systematically evaluate the
effectiveness of PARPi in these patients.

Strikingly, our IDH1mut, ARID1Amut, and BAP1mut CCA patient-
derived preclinical models did not respond to PARPi treatment.
Remarkably, the absence of PARPi effectiveness in these preclinical
models is in contrast to what would be expected on the basis of
previously published data (17–21). Interestingly, several other
preclinical studies also showed a high degree of variable response
of IDH1/2mut cancer cells to PARPis (60, 61). Moreover, a retro-
spective study suggested that ARID1A loss may confer PARPi
resistance in patients with ovarian cancer (62). A recent phase II
also reported that olaparib has limited activity in patients with
previously treated mesothelioma with BAP1 mutations (63). Taken
together, these results suggest that IDH1mut, ARID1Amut, and
BAP1mut should not be used as a pan-cancer biomarker to predict
PARPi response and that patients with advanced CCA with these
mutations are unlikely to benefit from PARPi monotherapy. Fur-
ther studies are needed to investigate in which cancer type and/or
subtype these mutations are associated with sensitivity to PARPi.

To understand why our IDH1mut, ARID1Amut, and BAP1mut CCA
patient-derived preclinical models did not respond to PARPi treat-
ment,we also examined theirHRstatus using theRAD51assay (26, 27).
Of note, this assay has been applied in several clinical trials, and tumor
sample RAD51 scores can predict clinical benefits from PARPi treat-
ment with high sensitivity and specificity (22, 24, 25). Our data showed
that RAD51 scores of IDH1mut,ARID1Amut, and BAP1mut CCA_PDX,
as well as those of patients with advanced CCA harboring these
mutations, are compatible with an HRP profile; CCA_PDX (PDX119)
and patient sample with pathogenic alterations in BRCA2 were, as
expected, scored as HRD. Indeed, as most of our CCA_PDXs were
generated from patients with advanced CCA refractory to chemo-
therapy, we could not exclude the possible scenario that IDH1mut,
ARID1Amut, and BAP1mut CCA cells were originally deficient in HR,
and that the capacity for HR was restored over the disease pro-
gression and/or course of treatment. A comparison between pri-
mary and metastatic CCA biopsy before and after the treatment
could address this. We also acknowledge the limitation of having a
low number of analyzed CCA patient samples in our study; further
studies with RAD51 assay in larger CCA cohorts are needed
to confirm our results and select patients who are likely to benefit
from PARPi.

Identifying biomarkers to predict response is essential for
the success of clinical trials. Accordingly, PDX models allow us to
test the efficacy of new drugs both ex vivo and in vivo, and the results
can help clinicians prioritize potential clinical trials and deliver pre-

cision patient care. This is especially important in tumors with an
unmet clinical need, such as unresectable and advanced CCA.
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