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Abstract 

Background  In this phase Ib/II open-label study, tumor immune suppression was targeted in patients with advanced 
refractory solid tumors and patients with recurrent/refractory non-small cell lung cancer (NSCLC) using galunisertib 
with nivolumab.

Methods  Eligible patients were ≥ 18 years old, had an Eastern Cooperative Oncology Group performance status ≤ 1, 
and were treatment-naive for anti-programmed cell death-1, its ligand, or transforming growth factor β receptor 1 
kinase inhibitors. Phase Ib was an open-label, dose-escalation assessment of the safety and tolerability of galunis‑
ertib with nivolumab in patients with advanced refractory solid tumors. Phase II evaluated the safety of galunisertib 
with nivolumab in NSCLC patients who had received prior platinum-based treatment but were immuno-oncology 
agent-naive.

Results  This trial was conducted between October 2015 and August 2020. No dose-limiting toxicities were observed 
in phase I. In the phase II NSCLC cohort (n = 25), patients received 150 mg twice daily galunisertib (14 days on/14 days 
off dosing schedule for all phases) plus nivolumab at 3 mg/kg (intravenously every 2 weeks). In this phase, the most 
frequent treatment-related adverse events (AEs) were pruritus (n = 9, 36%), fatigue (n = 8, 32%), and decreased 
appetite (n = 7, 28%). No grade 4 or 5 treatment-related AEs were observed. Six (24%) patients had confirmed partial 
response (PR) and 4 (16%) had stable disease; 1 additional patient had confirmed PR after initial pseudo-progression. 
The median duration of response was 7.43 months (95% confidence interval [CI]: 3.75, NR). Among the 7 respond‑
ers, including the delayed responder, 1 had high PD-L1 expression (≥ 50%). The median progression-free survival 
was 5.26 months (95% CI: 1.77, 9.20) and the median overall survival was 11.99 months (95% CI: 8.15, NR). Interferon 
gamma response genes were induced post-treatment and cell adhesion genes were repressed, although the associa‑
tion of these observations with tumor response and clinical outcomes was not statistically powered due to limited 
samples available.

Conclusions  The study met its primary endpoint as galunisertib combined with nivolumab was well tolerated. Pre‑
liminary efficacy was observed in a subset of patients in the Phase 2 NSCLC cohort.
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Trial registration  Trial registered with ClinicalTrials.gov (NCT02423343; 22.04.2015).
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Background
Non-small cell lung cancer (NSCLC) accounts for 
approximately 85% of the incidences of lung cancer [1, 2]. 
Many tumors, including NSCLC, progress in part due to 
the acquisition of traits that allow cancer cells to evade 
immunosurveillance and escape the immune response.

Cancer immunotherapy aims to activate the host’s 
immune system to recognize and attack cancer cells. 
Recent successes in immunotherapy have been achieved 
by targeting immune checkpoints, i.e. a host of inhibitory 
receptors expressed on immune cells that upon activa-
tion suppress the inflammatory response [3]. Immune 
checkpoint inhibitors can induce durable responses and 
have demonstrated a survival benefit in patients with 
cancer, including metastatic, locally advanced, and early 
stage NSCLC [4–7].

Programmed cell-death-1 (PD-1) is expressed on 
activated T-cells and can act to dampen the immune 
response [8]. Tumor cells overexpress PD-1 ligand (PD-
L1), either by pro-inflammatory stimuli or as a result of 
pro-oncogenic pathway activation, and inhibit the local 
immune response [9]. Nivolumab blocks the binding of 
PD-L1 and PD-L2 to its receptor, allowing the activated 
T-cells to identify and attack cancer cells [10]. Although 
NSCLC may have a high mutational load or PD-L1 
expression, which are associated with response to anti-
PD(L)1 therapy, many patients do not respond to single 
agent anti-PD(L)1 inhibition [11, 12].

Transforming growth factor β (TGF-β) signaling plays 
an important role in tumorigenesis and contributes to 
many hallmarks of cancer cells including cell prolifera-
tion, invasion, escape of immune surveillance, angiogen-
esis, and metastasis [13]. A major contributing factor for 
mortality in NSCLC, like most cancer types, is metastasis 
[14]. Epithelial-mesenchymal transition (EMT) is a cru-
cial event leading to metastasis during which cells exhibit 
mesenchymal properties such as becoming more motile 
and invasive [15]. TGF-β signaling is a primary inducer 
of EMT in NSCLC [16]. TGF-β binding to its recep-
tor leads to phosphorylation of small mothers against 
decapentaplegic homolog 2 (SMAD2) and SMAD3, 
which then form a transcriptional complex with SMAD4, 
activating the expression of target genes [17]. SMAD2 
has been identified as a key element downstream of the 
TGF-β signaling pathway in regulating cancer metas-
tasis through promoting EMT [18, 19]. Upregulation 
of SMAD2 has been associated with poor survival in 
patients with NSCLC [20].

Galunisertib is an oral small molecule inhibitor of the 
TGF-β receptor 1 kinase that specifically down-regulates 
the phosphorylation of SMAD2 and is associated with an 
increase in T-cell infiltration in tumors [21, 22].

TGF-β can suppress or alter the activation, maturation, 
and differentiation of both innate and adaptive immune 
cells [23]. Increased TGF-β in the tumor microenviron-
ment promotes T-cell exclusion from tumors, and blocks 
acquisition of the T helper cells-effector phenotype, 
which are both associated with poor clinical outcomes. 
Inhibition of TGF-β releases a cytotoxic T-cell response 
against tumor cells and allows immune cells to infiltrate 
the tumor [24]. However, inhibition of TGF-β on its own 
is not always sufficient to promote tumor rejection [23]. 
In preclinical models, concurrent blockade of TGF-β and 
PD-L1 work synergistically to reverse immunosuppres-
sion leading to T-cell infiltration and activation, which 
promote antitumor activity [24–26].

In this study, both TGF-β and PD-1 were targeted using 
galunisertib in combination with nivolumab in patients 
with advanced refractory solid tumors and in patients 
with recurrent/refractory NSCLC who were PD-(L)1 
naïve. The clinical trial objectives were to evaluate the 
safety and tolerability of the drug combination.

Patients and methods
Study design
This was a phase Ib/II open-label study (NCT02423343) 
conducted between October 2015 and August 2020. 
The phase Ib portion of this study consisted of a dose-
escalation assessment of the safety and tolerability of 
galunisertib administered at 50  mg daily, 50  mg twice 
daily (BID), 80  mg BID, or 150  mg BID in combina-
tion with nivolumab 3  mg/kg administered every two 
weeks in patients with advanced refractory solid tumors. 
The phase II portion of the trial evaluated the safety 
and efficacy of 150 mg BID galunisertib in combination 
with nivolumab at 3 mg/kg in patients with recurrent or 
refractory NSCLC that were immune checkpoint naive. 
The study did not have a fixed treatment duration, and 
patients received combination treatment in 28-day cycles 
until disease progression, intolerable toxicity or with-
drawal of consent. Based on the results of a preclini-
cal dosing schedule investigation that evaluated toxicity 
using animal models [27], each patient took galunisertib 
on an intermittent dosing strategy of a 14 days on/14 days 
off dosing schedule for all phases of the trial. 
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Eligibility criteria
Inclusion and exclusion criteria for phase Ib and phase II 
are shown in Additional file 1. In the phase 1a escalation 
portion, patients with any solid tumor in the advanced 
stage refractory to standard of treatment were eligi-
ble. The phase II portion of this study included patients 
with stage IV NSCLC who were previously treated with 
platinum-based chemotherapy. Patients with action-
able oncogene mutations were required to receive prior 
treatment with tyrosine kinase inhibitor (TKI) (e.g., 
approved EGFR TKI for patients with activating EGFR 
mutations and approved ALK TKI for patients harbor-
ing ALK-fusions). Patients that received more than 1 line 
of treatment in the advanced setting were excluded. Eli-
gible patients were ≥ 18 years old with an Eastern Coop-
erative Oncology Group (ECOG) performance status ≤ 1, 
were treatment-naive for anti-PD-(L)1 or TGF-β recep-
tor 1 kinase inhibitors and had measurable disease per 
Response Evaluation Criteria in Solid Tumors (RECIST) 
v1.1 [28].

Efficacy measures
Efficacy measures included overall survival (OS), pro-
gression-free survival (PFS), overall response rate [ORR 
-partial response (PR) + complete response (CR)] and 
duration of response (DoR). Tumor responses were 
assessed per RECIST v1.1 guidelines. DoR, PFS and OS 
were estimated using Kaplan- Meier methodology.

Outcomes
The primary objective of the study (both phases) was to 
assess the safety and tolerability of galunisertib in com-
bination with nivolumab by identifying dose-limiting 
toxicities (DLTs) and the maximum tolerated dose or 
pharmacologically active dose of the combination in 
patients with advanced refractory or solid tumors dur-
ing the first 2 cycles. DLTs were defined as Grade 3 non-
haematologic toxicity; Grade 4 haematological toxicity 
of > 5 days duration; any febrile neutropenia.

The secondary objectives of the study were to char-
acterize the pharmacokinetics (PK) of galunisertib and 
nivolumab when co-administered, to characterize the 
immunogenicity of nivolumab when administered in 
combination with galunisertib, and to estimate the OS 
rate. In addition, PFS, ORR, and DOR were evaluated for 
patients with NSCLC  in phase II. Exploratory objectives 
were to examine biomarkers and correlate these makers 
to clinical outcomes.

Toxicity and safety measures
All patients who received at least 1 dose of either gal-
unisertib or nivolumab were evaluated for safety and 

toxicity. Any other significant toxicity deemed to be dose 
limiting or resulted in the patient getting < 75% of the 
total doses or lead to holding galunisertib for > 2 weeks. 
For nivolumab, any toxicity that occurred during Cycles 
1 or 2 managed by discontinuation. Any Grade ≥ 2 non-
skin, drug-related AE; any Grade 3 skin, drug related AE; 
any Grade 3 drug-related laboratory abnormality; any 
adverse event (AE), laboratory abnormality, or intercur-
rent illness which, in the judgment of the investigator, 
warranted delaying the dose of study medication. Excep-
tions not considered a DLT included: Grade 3 amylase 
or lipase abnormalities not associated with symptoms or 
clinical manifestations of pancreatitis that did not require 
a dose delay; nausea, vomiting, diarrhea, and constipa-
tion controlled with treatment; fatigue relieved by rest; 
Grade 3 elevations of alanine aminotransferase and/or 
aspartate aminotransferase, without evidence of other 
hepatic injuries; anorexia not associated with significant 
weight loss (weight loss of > 10% baseline) or malnutri-
tion. The AEs were assessed, according to the Common 
Terminology Criteria for Adverse Events (CTCAE) ver-
sion 4.0, continuously during the study and for 100 days 
after the last dose of combination treatment. Disease 
assessment with computed tomography and/or magnetic 
resonance imaging, as appropriate, were performed at 
baseline and approximately between Days 22 and 28 of 
every other cycle and completed before the first dose in 
the next cycle, until disease progression or patient with-
drawal from the study.

Pharmacokinetics and biomarkers
PK of galunisertib were measured using validated liquid 
chromatography-atmospheric pressure ionization/tan-
dem mass spectrometry methods at Intertek Pharmaceu-
tical Services (El Dorado Hills and San Diego, California, 
USA). There were 293 PK galunisertib observations in 41 
patients on Days 1, 14, and 15 in Cycles 1 and 2 as well as 
pre-dose, Cycle 4 Day 1 (C1D4).

Tumor cell membrane PD-L1 was measured by immu-
nohistochemistry using the Dako PD-L1 (28–8) kit at 
Mosaic Laboratories (n = 20 samples) and scored as 
percent tumor cells expressing PD-L1. Anti-drug anti-
bodies (ADA) were evaluated in all patients comparing 
their baseline levels to study levels. Patients that devel-
oped positive ADA after negative baseline were further 
evaluated for AEs and response to treatment to assess 
potential relationship between study treatment and 
immunogenicity.

Cancer gene sequencing (n = 9 tumor samples) was 
performed by Foundation Medicine using the Founda-
tionOne T7 assay (404 genes). Here we report results for 
tumor mutation burden (TMB) as mutations/megabase 
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and genetic variants for common mutated genes or genes 
with known relevance to anti-PD(L)1 NSCLC response.

Ribonucleic acid (RNA) extraction and Illumina TruSeq 
RNA Exome sequencing was performed by Almac for 
gene expression profiling of 12 baseline tumor samples, 
4 tumors collected on C1D15, and 3 tumors collected on 
C2D1. Six baseline samples were paired with treatment 
biopsies. Formalin fixed paraffin embedded tumor sam-
ples were macrodissected and RNA extraction was per-
formed using the Qiagen RNeasy extraction kit followed 
by quality assessments using Nanodrop, Agilent Bioana-
lyzer & RNA-Seqability (an Almac proprietary quality 
control step). Paired-end sequencing with a read length 
of 100 base pairs and targeted read depth of 50 million 
reads/sample was performed. Read counts were quanti-
fied using an in-house Perl script and summarized at the 
gene level (National Center for Biotechnology Informa-
tion [NCBI] h37.p13 annotation). The resulting data were 
quantile-normalized and filtered to remove genes with 
fewer than 5 counts across 80% of the samples from the 
analysis. Baseline expression of TGF-β pathway genes 
included TGFβ-1, TGFβ-2, ACVR1, TGFβ-3, TGF-β 
R1, TGF-β R2, SMAD2, SMAD4; and T-cell inflamed 
genes included IFNGR1, IFNG, TIGIT, CD27, CD8A, 
PDCD1LG2, LAG3, CD274, CXCR6, CMKLR1, NKG7, 
CCL5, PSMB10, IDO1, CXCL9, HLA-DQA1, CD276, 
STAT1, HLA-DRB1, and HLA-E.

Differentially expressed gene analysis was conducted 
using the DESeq2 package [29]. Fold changes were cal-
culated to show up or down-regulation of genes between 
4 tumors collected on C1D15 and 3 tumors collected 
on C2D1 versus 12 baseline tumor samples. Differen-
tially expressed genes were identified from comparisons 
when the p-value was ≤ 0.05 and the absolute fold change 
was ≥ 1.5. The contrasts of differentially expressed genes 
were displayed in a heatmap using the Complex Heatmap 
R package (https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​
bioc/​html/​Compl​exHea​tmap.​html).

Serum proteins (51 analytes) were assessed at baseline, 
C1D8, C1D15, C2D1, and C2D15 using the Inflammation 
Multi-Analyte Immunoassay panel developed by Myriad 
RBM. Paired t-tests were used to compare post-dose lev-
els with baseline at each time point for each biomarker.

Statistical analysis
All patients who received any dose of study treatment 
were included in safety and efficacy analyses. For safety 
analyses, the frequency and percentage of patients with 
dose-limiting toxicities and AEs were presented for each 
cohort. Best overall response per RECIST v1.1 with con-
firmation on CR and PR were represented by frequency, 
percentage, and 95% confidence interval (CI) with the 
Clopper-Pearson Confidence Interval method. PFS, 

DOR, and OS were analyzed using the Kaplan–Meier 
method. PFS was defined as the time from the date of first 
study treatment to the first date of documented progres-
sion or death due to any cause. For patients who were not 
known to have died or progressed as of the cut-off dates, 
PFS times were censored at the date of the last progres-
sion-free disease assessment prior to the date of any sub-
sequent anticancer therapy. DOR was measured from the 
date of the first documented response to the date of first 
disease progression or the date of death due to any cause, 
using the same censoring rules as PFS. OS was defined 
as the time from the date of first study treatment to the 
date of death from any cause. For each patient who was 
not known to have died as of the cut-off date, OS data 
were censored for that analysis at the date of last contact 
prior to the data inclusion cutoff date. SAS 9.4 was used 
for analyses on the clinical data for demographics, base-
line characteristics, safety, and efficacy.

Results
Baseline patient demographics
Fifteen patients were enrolled in phase Ib and 25 patients 
in phase II. Baseline patient and disease characteristics of 
patients in phase 1b are depicted in Additional file 2. In 
the phase II NSCLC cohort, 16 (65%) of the patients were 
male and all were Caucasian. Two (8%) had tumors with 
PD-L1 expression of  ≥ 50%, 11 (44%) had PD-L1 expres-
sion ranging from 1–49%, and 7 (28%) had no PD-L1 
expression. Demographic and baseline disease character-
istics of the patient population are shown in Table 1.

Toxicity and safety
The primary objective of safety was reached for both 
phases of the trial. No DLTs were observed in the phase 
Ib portion of the study. The median duration of galuni-
sertib treatment ranged from 56 days (min 28 days; max 
157 days) to 143 days (min 55 days; max 462 days) across 
the phase Ib cohorts. The most common AEs related to 
study treatment in phase Ib were observed in the gal-
unisertib 150 mg BID cohort and included rash maculo-
papular, amylase increased, aspartate aminotransferase 
increased, gamma-glutamyltransferase increased, blood 
alkaline phosphatase increased, lipase increased, and 
non-cardiac chest pain. The median duration of galunis-
ertib treatment was 120 days (min 14 days; max 726 days) 
in the phase II NSCLC cohort. Two deaths occurred on 
treatment (multi-organ failure and myocardial infarction) 
in phase II. Both cases were deemed unrelated to study 
treatment by the treating physicians. The case of multi-
organ failure was deemed related to study disease and, 
the case of myocardial infarction was considered unre-
lated as patient had pre-existing underlying conditions 
that increased the risk of cardio-vascular disease, and a 

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html
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familial history of cardiac disease. There were no Grade 
4 or 5 treatment-related toxicities. The most frequent 
treatment-related AEs were pruritus (n = 8, 32%), fatigue 
(n = 8, 32%), and decreased appetite (n = 7, 28%). Other 
treatment-related Grade 3 AEs included immune-related 
encephalitis, diarrhea, fatigue, aspartate aminotrans-
ferase/alanine aminotransferase/gamma-glutamyltrans-
ferase increase, blood alkaline phosphatase increase, 
abdominal distension, cutaneous rash (n = 1 each), and 
cholestasis (n = 2) that resolved or were resolving at the 
time of data cutoff (Table 2). A total of 28 patients (68%) 
across the phase Ib cohorts and the phase II NSCLC 
cohort experienced a Grade ≥ 3 AE, of which 12 (29%) 
were related to treatment. Discontinuation rate due to 
any treatment related AE was 2%.

Efficacy
No patients in the phase Ib portion of the study achieved 
CR or PR, though stable disease (SD) was observed in 

seven patients across the four dosing schedules. In the 
phase II NSCLC portion of the trial, 6 (24%) patients 
had PR, no patient achieved CR, 4 (16%) had stable dis-
ease (SD), 9 (36%) patients had progressive disease (PD), 
1 of 9 progressed patients had confirmed PR after initial 
pseudo-progression (delayed responder), and 6 (24%) 
patients were deemed not evaluable (NE) due to treat-
ment discontinuation (Fig. 1). Reasons for treatment dis-
continuation included AEs, subject decision, and PD. The 
median DOR was 7.41 months (95% CI: 3.75, not reached 
[NR]), and the median PFS was 5.26  months (95% CI: 
1.77, 9.20) (Fig.  2). The median OS was 11.99  months 
(95% CI: 8.15, NR).

Pharmacokinetics
Phase Ib PK data showed rapid absorption (1–3  h) and 
elimination of galunisertib within 48 h. Observed galuni-
sertib plasma concentrations were comparable with those 
observed in previous galunisertib trials [30].

There was no significant immunogenicity observed that 
would have impacted study results.

Biomarkers
Tumor PD-L1 expression was measured by immunohis-
tochemistry. Among 7 responders, including the delayed 
responder, only 1 patient had high PD-L1 expression 
(≥ 50%), 5 patients had PD-L1 scores in the range of 1 to 
30%, and 1 patient was PD-L1 negative. PD-L1 expression 

Table 1  Phase II baseline patient demographics

Abbreviations: ECOG Eastern Cooperative Oncology Group, n number of patients, 
NSCLC non-small cell lung cancer, PD-L1 programmed death ligand 1
a  One patient received adjuvant chemotherapy and another patient received 
neoadjuvant chemotherapy

Characteristics Phase II NSCLC 
Cohort (n = 25)
n (%)

Sex

  Male 16 (64)

Age, median (range) 61 (43–80)

Race

  White 25 (100)

Ethnicity

  Hispanic or Latino 5 (20)

  Not Hispanic or Latino 18 (72)

  Unknown 2 (8)

Baseline ECOG performance status

  0 3 (12)

  1 22 (88)

Tobacco use

  Current 6 (24)

  Former 17 (68)

  Never 2 (8)

Prior therapy

  1 prior regimen 23 (92)

  2 prior regimens a 2 (8)

PD-L1 status

   ≥ 50% 2 (8)

  1–49% 11 (44)

   < 1% 7 (28)

Data not available 5 (20)

Table 2  Treatment-emergent adverse events related to study 
treatment per investigator assessment

Abbreviations: n number of patients NSCLC non-small cell lung cancer
a  No Grade 4 or 5 treatment-related toxicity

Treatment-Emergent Adverse Events 
Related to Study Treatment (> 10% and 
Grade 3)

Phase II NSCLC Cohort 
(n = 25) n (%)

Any Grade Grade 3a

Pruritus 8 (32) –

Fatigue 8 (32) 1 (4)

Decreased appetite 7 (28) –

Diarrhea 5 (20) 1 (4)

Maculo-papular rash 5 (20) –

Nausea 4 (16) –

Dry mouth 4 (16) –

Hypothyroidism 3 (12) –

Cholestasis 3 (12) 2 (8)

Abdominal distension 3 (12) 1 (4)

Aspartate aminotransferase increased 2 (8) 1 (4)

Alanine aminotransferase increased 2 (8) 1 (4)

Gamma-glutamyltransferase increased 2 (8) 1 (4)

Blood alkaline phosphatase increase 1 (4) 1 (4)

Encephalopathy 1 (4) 1 (4)
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did not correlate with efficacy based upon this small sam-
ple set (Fig. 1).

DNA sequencing was performed for the subset of 
tumor samples with sufficient tissue remaining (N = 9) 
(Fig.  3). As expected, the TP53 gene had the greatest 
frequency of pathogenic variants detected (8 of 9, 89%). 
Two of the samples associated with PR harbored variants 
in CDKN2A and 2 other samples with NFE2L2 variants 
were both associated with PD. No STK11 mutant tumors 
were represented in the subset of samples with genetic 
data, but 2 KEAP1 mutated tumors were observed in 
patients with a PR (Fig. 3). This data set was not powered 
to correlate individual gene alterations or TMB with clin-
ical response.

Baseline RNA expression data associated with 12 
tumor samples was used to evaluate previously identified 
expression signatures associated with immune function 
and TGF-β biology, including the T-cell inflamed signa-
ture and TGF-β pathway genes [31]. Within this small 
data set elevated expression of TGF-β pathway and T-cell 
inflamed status tended to be aligned with tumor regres-
sion and survival (Fig. 3).

The RNA expression profile of 19 tumor samples 
were analyzed (12 baseline samples vs 4 collected on 
C1D15 and 3 on C2D1) to look for pharmacodynamics 

(treatment driven) expression changes. Of the 6 paired 
samples, 3 were baseline versus C1D15 and 3 were base-
line versus C2D1. Genes associated with interferon 
gamma response were upregulated, while repressed 
genes were associated with cell adhesion (Fig. 4). TGF-β 
pathway genes were not modulated (data not shown). The 
genes with the largest fold induction at C1D15 were the 
chemokines CXCL10, CXCL9, and CXC11, which play a 
role in attracting immune cells, such as cytotoxic T-cells, 
natural killer (NK) cells, and macrophages. Only CXCL9 
was induced at C2D1 (unadjusted p-value < 0.05). These 
changes were not associated with response as the paired 
samples were collected from no-responders.

Serum proteins (n = 51) were assessed at baseline and 
at specific time points during the dosing period. No sig-
nificant association between baseline protein levels and 
PFS, OS, or response were detected after adjusting for 
multiplicity (n = 19 patients). Analysis of serum protein 
modulation in response to treatment (PK), also did not 
detect changes significant after correction for multiplic-
ity, however, a trend of increased interferon gamma-
induced protein 10 (IP-10) (CXCL10), monokine induced 
by gamma interferon (MIG) (CXCL9), and interleukin-2 
receptor alpha was observed on treatment (Fig.  5). The 
increase in circulating IP-10 and MIG is consistent with 

Fig. 1  Waterfall plot of best overall response rate (ORR) according to RECIST in the in NSCLC Cohort. Information is provided about baseline PD-L1 
expression in 18 patients (number in blue), and tumor mutation burden (TMB) in 7 patients (number in red). Abbreviations: NSCLC, non-small cell 
lung cancer; PD-L1, programmed death ligand 1
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the observed increase in RNA expression of their encod-
ing genes CXCL10 and CXCL9 in tumor samples.

Discussion
Immune checkpoint molecules are established targets 
for cancer immunotherapies. Blocking PD-(L)1 signaling 
has become standard of care in patients with lung can-
cer in different clinical settings, but still not all patients 
benefit from these therapeutic approaches [32]. Several 
studies have demonstrated the benefit of anti-PD-(L)1 
in combination with chemotherapy and studies are now 
investigating whether combined blockade of PD-(L)1 and 
TGF-β signaling can induce tumor regression [33–35]. 
TGF-β signaling plays an important role in tumorigenesis 
by inducing EMT. EMT is a major contributing factor of 
mortality in a range of malignancies including NSCLC, 

since it is associated with cancer progression and metas-
tasis [13–15, 36].

Overall, in this study we did not observe significant PFS 
or OS benefit suggesting a delay in disease progression, 
although some patients that had elevated baseline expres-
sion of TGF-β pathway genes tended to have longer PFS 
and OS benefits than patients who did not (Fig. 3).

Given the immune suppressive role of TGF-β on 
cytotoxic T-cells, our clinical hypothesis was that dual 
blockade of both TGF-β and PD-1 may overcome the 
immunosuppressive nature of the tumor microenviron-
ment and lead to T-cell infiltration and activation [37]. 
In our study, we observed the combination treatment 
of galunisertib at the recommended phase II dose of 
150 mg BID for 14 days on/14 days off with nivolumab 
3  mg/kg every 2  weeks to be well tolerated. No DLTs 
were observed in the phase Ib portion of the study and 

Fig. 2  Efficacy outcomes in the phase II NSCLC cohort. Kaplan–Meier plots of Progression-Free Survival (A) Overall Survival (B) and Duration 
of Response (C)
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the safety profile of the combination was not different 
than the safety profiles of nivolumab or other check-
point inhibitors. The most commonly reported treat-
ment-related AEs were pruritus, fatigue, and decreased 
appetite. Except for 1 myocardial infarction leading 
to death, deemed unrelated to study treatment due to 
underlying comorbidities and a familial history of car-
diac disease in the patient, no cardiovascular toxicities 
were observed, which was a major concern from pre-
clinical toxicology studies.

The 2-week treatment break and a maximum dose of 
150  mg BID was introduced not to exceed area under 
the curve (AUC) levels corresponding to levels where 
valvulopathies were observed in animals. Although we 
did not observe major cardiovascular signals or emer-
gence of secondary malignancies in our study, it is 
plausible higher doses might have led to better target 
inhibition and thus higher response rates. Interestingly, 
TGF-β pathway genes were not modulated but changes 
were seen in interferon gamma gene expression that is 
likely related to PD-1 blockade. Although most patients 

had tumor target reduction, overall, the efficacy data 
were not different than PD-(L)1 monotherapy in the 
same disease setting.

The median OS was 11.99 months (95% CI: 8.15, NR) 
for patients treated with galunisertib plus  nivolumab. 
This is not different than survival data observed in mul-
tiple large studies showing median OS to be between 
12–14 month for anti PD-1 (nivolumab, pembrolizumab) 
and anti PD-L1 (durvalumab, atezolizumab) single agent 
treatment [4, 38–40]. Here, we report the median PFS to 
be 5.26 months. This compares favorably to single agent 
PD-(L)1 trials where median PFS was between 2.8 to 
3.8 months depending on the trial [4, 5]. However, given 
the small sample size and the nonrandomized design of 
this trial, it is not possible to draw any conclusions as to 
whether the addition of the TGF-β inhibitor provided any 
clinical benefit. Studies have shown variable associations 
between PD-L1 expression and response to nivolumab in 
NSCLC [4, 41–43]. Here, we did not observe clear asso-
ciations between response and PD-L1 expression due 

Fig. 3  Genetic Variants and RNA Signatures in NSCLC Cohort. Abbreviations: BOR, best overall response; CTS, change in tumor size; NE, 
not evaluable; OS, overall survival; PD, progressive disease; PD-L1, programmed death ligand 1; PFS, progression-free survival; PR, partial response; 
TGF-β, transforming growth factor beta; TMB, tumor mutation burden. *pseudo-progressor patient
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to the limited sample size, however most patients with 
PD-L1 positivity had tumor reduction (Fig. 3).

DNA sequencing was performed to assess for asso-
ciations between genetic variants and clinical response. 
Both STK11 and KEAP1 mutations have been associ-
ated with resistance to checkpoint blockade, especially 
when concurrent with kirsten rat sarcoma viral oncogene 
homolog (KRAS) mutations [44, 45]. None of the patients 
that had tumor tissue available for sequencing had STK11 
mutations suggesting loss of liver kinase B1. Two patients 
harbored a KEAP1 mutation, which has been associated 
with tumor progression and treatment resistance in lung 
cancer [46, 47]. Interestingly, both patients with a KEAP1 
mutation achieved a PR, despite the association with 
poor response to checkpoint inhibitors in combination 
with chemotherapy in first line therapy [45]. Two samples 
had a KRAS mutation. One KRAS (G12C) variant with-
out co-occurring mutations in TP53 and STK11 achieved 
a PR, while the other with KRAS (G12S) variant concur-
rent with a TP53 mutation progressed on treatment. An 

ARID1A mutation was found in 1 patient sample, which 
has been associated with a better response to check-
point inhibitors and the patient response observed here 
was a PR [48, 49]. Finally, TMB is a surrogate of tumor 
antigenicity and has been positively associated with a 
response to nivolumab and other checkpoint inhibitors 
[12, 50, 51]. In our study, no association of TMB score 
with response was observed, however, data are insuffi-
cient to make any conclusions.

Patients were not selected prospectively based on 
TGF-β gene expression, therefore the appropriate patient 
population may not have been treated to see changes in 
the expression of TGF-β pathway genes. Higher doses 
may have modulated gene expression but were associ-
ated with higher risk of inducing cardiac toxicity. Not-
withstanding, we detected increased transcription and 
serum levels of T-cell activation and migration markers 
IP-10 (CXCL10) and MIG (CXCL9) following combina-
tion treatment of nivolumab and galunisertib. Similarly, 
increased transcription and serum levels of these same 

Fig. 4  Modulation of Tumor RNA Expression in NSCLC Cohort. Abbreviations: CxDx, Cycle x Day x; FC, fold change; IFNG.RES, interferon gamma 
response; NE, not evaluable; PD, progressive disease; PR, partial response; SD, stable disease. Shapes represent 6 paired samples; the star represents 
the pseudo-progressor patient; filtering criteria: p ≤ 0.05 and |FC|≥ 1.5
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markers were reported in renal cell carcinoma patients 
post nivolumab treatment [52]. These changes may be 
indicative of treatment driven T-cell recruitment to the 
tumor microenvironment.

These findings demonstrate combination treatment 
with galunisertib plus nivolumab has an acceptable safety 
profile in patients with refractory or recurrent NSCLC 
who received prior platinum-based treatment and were 
treatment-naive for anti-PD-(L)1 or TGF-β receptor 1 
kinase inhibitors. Notwithstanding, this study has several 
limiting factors. The primary limitation is the low num-
ber of patients. While this study contributes to research 
in the field, analysis of a larger cohort of patients would 
provide further data on the safety and efficacy of the 
combination treatment in NSCLC. Another limitation 
is the low number of paired baseline and on-treatment 
tumor samples for exploratory comparative analysis. 
Collection of baseline and on-treatment biopsies were 
required for participation in this study, however, lim-
ited on-treatment tissue was submitted due to tumor 
progression, clinical deterioration, insufficient tumor, 

and patient decision. Thus, although these results iden-
tify potential predictive markers of therapeutic effect in 
recurrent or refractory NSCLC, more patient samples 
are needed to support the translational work.

In conclusion, combination treatment of galunisertib 
with nivolumab was well tolerated and the study met its 
primary endpoint of safety. Preliminary efficacy activity 
was observed in a subset of patients and was not asso-
ciated with tumor PD-L1 expression. Increased levels of 
T-cell activation and migration markers were indicative 
of potential treatment-driven T-cell recruitment. How-
ever, the sample size was small and the magnitude of 
response or benefit in survival outcomes do not clearly 
differentiate from nivolumab monotherapy in the second 
line IO-naïve setting. In this unselected cohort of NSCLC 
patients, a few patients exhibited a baseline increase in 
TGF-β activity that may have benefited from this com-
bination treatment. Further studies that select patients 
based on TGF-β pathway expression may yield higher 
response rates to TGF-β and immune checkpoint inhibi-
tor combination treatment.

Fig. 5  Serum Interferon Gamma Induced Protein 10, Interleukin-2 Receptor Alpha, and Monokine Induced by Gamma Interferon in NSCLC Cohort. 
Abbreviations: NSCLC, non-small cell lung cancer; CxDx, Cycle X Day X; IP-10, interferon gamma-induced protein 10; MIG, monokine induced 
by gamma interferon
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