
DePaul University DePaul University

Digital Commons@DePaul Digital Commons@DePaul

College of Computing and Digital Media
Dissertations Jarvis College of Computing and Digital Media

Spring 4-21-2023

Code generation based on inference and controlled natural Code generation based on inference and controlled natural

language input language input

Howard R. Dittmer
DePaul University, hdittmer@mac.com

Follow this and additional works at: https://via.library.depaul.edu/cdm_etd

 Part of the Programming Languages and Compilers Commons, and the Software Engineering

Commons

Recommended Citation Recommended Citation
Dittmer, Howard R., "Code generation based on inference and controlled natural language input" (2023).
College of Computing and Digital Media Dissertations. 46.
https://via.library.depaul.edu/cdm_etd/46

This Dissertation is brought to you for free and open access by the Jarvis College of Computing and Digital Media
at Digital Commons@DePaul. It has been accepted for inclusion in College of Computing and Digital Media
Dissertations by an authorized administrator of Digital Commons@DePaul. For more information, please contact
digitalservices@depaul.edu.

https://via.library.depaul.edu/
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm_etd
https://via.library.depaul.edu/cdm
https://via.library.depaul.edu/cdm_etd?utm_source=via.library.depaul.edu%2Fcdm_etd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=via.library.depaul.edu%2Fcdm_etd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=via.library.depaul.edu%2Fcdm_etd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=via.library.depaul.edu%2Fcdm_etd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://via.library.depaul.edu/cdm_etd/46?utm_source=via.library.depaul.edu%2Fcdm_etd%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalservices@depaul.edu

CODE GENERATION BASED ON INFERENCE AND CONTROLLED

NATURAL LANGUAGE INPUT

BY

HOWARD R. DITTMER

A DISSERTATION SUBMITTED TO THE JARVIS COLLEGE OF COMPUTING

AND DIGITAL MEDIA OF DEPAUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

OF

DOCTOR OF PHILOSOPHY

DEPAUL UNIVERSITY

CHICAGO, ILLINOIS

2023

HTTPS://CDM.DEPAUL.EDU
HTTPS://CDM.DEPAUL.EDU
HTTPS://WWW.DEPAUL.EDU
HTTPS://WWW.DEPAUL.EDU

DePaul University

Jarvis College of Computing and Digital Media

Ph.D Computer and Information Sciences Dissertation

Defense

This doctoral dissertation has been read and approved by the dissertation commit-

tee below according to the requirements of the Computer and Information Systems

PhD program and DePaul University.

Name:

HOWARD R. DITTMER

Title of dissertation:

CODE GENERATION BASED ON INFERENCE AND CONTROLLED NATURAL

LANGUAGE INPUT

Date of Dissertation Defense:

APRIL 21, 2023

Dissertation Committee:

XIAOPING JIA, Committee Chair / Dissertation Advisor*

ADAM STEELE, Committee Member / 1st Reader

WAEL KESSENTINI, Committee Member / 2nd Reader

CHRIS JONES, Committee Member / 3rd Reader

* A copy of this form has been signed, but may only be viewed after submission and approval

of FERPA request letter.

ii

https://www.depaul.edu
https://cdm.depaul.edu

iii

CODE GENERATION BASED ON INFERENCE AND CONTROLLED

NATURAL LANGUAGE INPUT

Abstract

Over time the level of abstraction embodied in programming languages has

continued to grow. Paradoxically, most programming languages still require pro-

grammers to conform to the language’s rigid constructs. These constructs have

been implemented in the name of efficiency for the computer. However, the con-

tinual increase in computing power allows us to consider techniques not so limited.

To this end, we have created CABERNET, a Controlled Natural Language (CNL)

based approach to program creation. CABERNET allows programmers to use a

simple outline-based syntax. This syntax enables increased programmer efficiency.

CNLs have previously been used to document requirements. We have taken

this approach beyond the typical application of creating requirements documents

to creating functional programs. Using heuristics and inference to analyze and de-

termine the programmer’s intent, the CABERNET toolchain can create functional

mobile applications. This approach allows programs to align with how humans

think rather than how computers process information. Using customizable tem-

plates, a CABERNET application can be processed to run on multiple run-time

environments. Since processing a CABERNET program file results in a native ap-

plication program, performance is maintained.

This research explores whether a CNL-based programming tool can provide a

readable, flexible, extensible, and easy-to-learn development methodology. To an-

swer this question, we compared sample applications created in Swift, SwiftUI, and

a prototype of the CABERNET toolchain. The CABERNET implementations were

v

consistently shorter than those produced in the other two languages. In addition,

users surveyed consistently found the CABERNET samples easier to understand.

vi

Acknowledgements

This degree has been a long journey for me. Across that time there have been a

number of people whose support has been important.

First I must thank Dr. Xiaoping Jia. He has been my advisor, mentor and sup-

port throughout this process. Without that support, I would likely have not made

it to this point. Dr. Jia has been my advisor since I started my Master’s Degree

twenty-plus years ago. I am not sure either of us thought we would get to this

outcome. I would also like to thank the other members of my dissertation commit-

tee: Chris Jones, Adam Steele and Wael Kessentini for their support in this process.

Chris in particular has shared Dr. Jia as his advisor and has been very supportive

of me over the years.

My wife, the love of my life and best friend for forty-eight years and counting,

Sheree, has been my rock. This work would not have been possible without her

support, understanding and encouragement. All the times I disappeared into my

office and zoned into this work would not have been possible without her under-

standing and support.

Add to that the encouragement I have received from my mom, our two sons,

my friends and co-workers over the years have made this possible. I wish my mom

was still here to see this.

vii

Contents

Dissertation Defense Report ii

Abstract v

Acknowledgements vii

1 Introduction 1

2 Background 5

2.1 Machine Learning . 5

2.2 Controlled Natural Languages . 9

2.3 Requirements Capture . 11

2.4 Dynamic Programming Languages . 12

2.5 Static Analysis . 13

2.6 Integrated Development Environments 13

2.7 Declarative Syntax . 14

3 Vision 17

3.1 Describe the result . 17

3.2 Program housekeeping . 18

3.3 Flexible vocabulary . 18

3.4 Goals . 19

ix

4 Approach 21

4.1 Basic Principles . 23

4.2 Flexible Nomenclature . 24

4.3 Declarative with a Difference . 25

5 Notation 29

5.1 Markdown . 29

5.2 Outline Structure . 30

5.3 Thesaurus . 31

5.4 Natural Language Processing . 33

5.4.1 Ambiguous Content . 35

5.4.2 Example Application . 36

5.5 Advantages and Limitations . 37

5.6 Capability of Prototype . 38

6 Evaluation 43

6.1 Research Method . 43

6.2 Code Size . 43

6.3 Easy to Understand . 46

6.4 Confidence of Understanding . 49

6.5 Respondent Feedback . 50

6.6 Quantitative Results . 52

6.7 Qualitative Results . 53

7 Discussion 55

7.1 State of Research . 55

7.2 Preliminary Work . 56

7.3 Future Direction . 57

x

8 Related Work 59

8.1 Programmer Productivity . 59

8.2 Next Paradigm Programming Languages 60

8.3 Natural Programming Languages . 61

8.4 Code Snippets . 64

9 Conclusions 65

9.1 Conclusion . 65

9.1.1 Contribution to Computer Science 65

9.1.2 Results . 65

A Code of Example Application 67

B Examples for Survey 69

B.1 Example 1, Tip Calculator, Screenshot 69

B.2 Example 1, Tip Calculator, CABERNET Source Code 70

B.3 Example 1, Tip Calculator, Swift Source Code 71

B.4 Example 1, Tip Calculator, SwiftUI Source Code 76

B.5 Example 2, Real Estate App, Screenshot, page 1 of 2 79

B.6 Example 2, Real Estate App, Screenshot, page 2 of 2 80

B.7 Example 2, Real Estate App, CABERNET Source Code 81

B.8 Example 2, Real Estate App, Swift Source Code 82

B.9 Example 2, Real Estate App, Swift Acreage Calculator Source Code . 87

B.10 Example 2, Real Estate App, SwiftUI Source Code 91

B.11 Example 2, Real Estate App, SwiftUI Acreage Calculator Source Code 93

B.12 Example 3, Real Estate App with Logic, CABERNET Source Code . . 95

B.13 Example 3, Real Estate App with Logic, SwiftUI Source Code 96

xi

C Results of Programmer Survey 99

D Survey Respondent Comments 135

Bibliography 141

xii

List of Tables

4.1 CABERNET Synonym Examples . 24

6.1 Comparison of code size. 44

6.2 Ease of Understanding. 48

6.3 Mean Ease of Understanding Scores. 49

xiii

List of Figures

1.1 Techniques for computer-assisted programming. 2

2.1 Tip calculators produced by CoPilot. 8

2.2 Acreage calculators produced by CoPilot. 16

4.1 Key Characteristics of CABERNET . 21

4.2 Programming Challenges of Mobile Applications 22

4.3 Characteristics of CABERNET CNL 26

4.4 Processing CABERNET program. 27

5.1 CABERNET Outline Properties . 30

5.2 Sources of Synonyms . 32

5.3 Interpretation of CNL input. 39

5.4 Construct Processing. 40

5.5 App example screens. 41

6.1 Ease of Understanding. 48

6.2 Normal Distribution of Responses. 49

6.3 CABERNET Responses vs SwiftUI. 50

6.4 Confidence of Understanding. 51

xv

List of Abbreviations

AI Artificial Intelligence

API Application Programming Interface

AST Abstract Syntax Tree

BDD Behavior-Driven Development

CABERNET Code generAtion BasEd on contRolled Natural languagE inpuT

CASE Computer Aided Software Engineering

CNL Controlled Natural Language

GUI Graphical User Interface

IA Intelligence Augmentation

IDE Integrated Development Environment

ISDOS Information System Design and Optimization System

OWL Web Ontology Language

UML Univeral Modeling Language

xvii

Chapter 1

Introduction

Computer programming is about providing tools for improving the productivity of

human users. The tools that are embodied in computer programs have improved

the productivity of all types of users. However, one area that can still benefit from

computer-based automation is program development. While many tools automate

specific tasks performed by a programmer, there is a lack of consistent automation

directed at the actual process of creating instructions that embody the program.

Computer-aided Software Engineering (CASE) tools have existed since the late

1960s. In 1968 researchers at the University of Michigan started the Information

System Design and Optimization System (ISDOS) project [1]. This project had the

goal of developing a “. . . problem statement technique.” The ISDOS project was the

beginning of requirements management as a CASE tool. In 1973 Terry Winograd

argued for an "intelligent assistant"[memo:leIpigfi] to handle many of a program-

mer’s routine tasks. These are but two alternate visions for tools to aid program

developers.

In Figure 1.1, we have captured the range of techniques involved in computer-

assisted programming. These approaches include everything from requirements

capture and code generation to evaluation of code for potential errors. We will dis-

cuss the nature of the broad base of research on these approaches in this paper’s

1

FIGURE 1.1: Techniques for computer-assisted programming.

background chapter. Unfortunately, most of these tools have been applied piece-

meal to the program development domain. By starting with code generation based

on inference and a controlled natural language, we see an opportunity to address

the programmer’s core function, actual code generation.

Much has been made of using Artificial Intelligence (AI) to replace human ef-

forts. In the field of program development, there is an expectation that AI could

generate computer programs based on the input of requirements. Some recent

work has involved the use of Machine Learning to generate code. This effort seeks

to replace the human programmer’s efforts. Alternately, we see our efforts as not

an attempt to replace the developer but an opportunity to increase the developer’s

productivity. Our efforts follow the path of Intelligence Augmentation (IA) pro-

posed by Doug Engelbart and Terry Winograd [fisher:2017vd, 2, 3]. To that end,

this approach combines inference with developer interaction to create robust solu-

tions to program needs while maximizing developer productivity.

While significant research (discussed in Chapter 2) has proceeded us across

the range of computer-assisted program development, there still needs to be more

progress on actual code generation. The challenge is to create a flexible, intuitive,

and natural methodology for the developer. The tool should allow for synonyms,

acronyms, abbreviations, and shorthand. It should allow flexibility in the structure

of the information provided to it. Most importantly, it must deal with ambiguous

and unrecognized content cleanly. Finally, the process must produce unambiguous

2

and consistent results. Our approach meets all these requirements.

Our goals are two-fold. We seek to provide novice developers with a tool and

approach that allows them to be productive without the learning curve in exist-

ing programming approaches. At the same time, we seek to provide experienced

developers with a methodology that improves their productivity.

To this end, we have created a programming methodology named CABERNET.

As part of our research, we have developed a tool to generate mobile applications

based on this methodology. This paper will describe the methodology and exam-

ple applications built with it. We believe that our approach provides a develop-

ment platform that can produce deterministic results while allowing flexibility in

the input and code. At the same time, this approach is easy to understand and ac-

cessible for novices. This combination will provide the opportunity for significant

improvements in programmer productivity and quality.

Through this research, we have sought to answer the question: Can a controlled

natural language-based programming tool provide a highly readable, flexible, extensible,

and easy-to-learn development methodology?

Chapter 2 of this paper briefly discusses other approaches to providing tools

that address the broad range of program development processes and compare them

with our work. Chapter 3 provides a vision for what is possible with this CNL-

based programming approach. Chapter 4 describes the core concepts of CABER-

NET. Chapter 5 describes the syntax and structure of a CABERNET program. Chap-

ter 6 documents the results of the comparison of CABERNET with the alternate ap-

proaches. Chapter 7 reviews the current state of this research. Finally, Chapter 8

discusses other approaches to improving programmer effectiveness.

3

Chapter 2

Background

The programming community continually looks for ways to improve the efficacy

of those involved in program development. We define the measure of improve-

ment in programmer efficacy or productivity as a reduction in the quantity of work

required to produce a defect-free program or program function. Researchers have

long sought to automate various aspects of the software development process. To-

day there are many tools and techniques available to help developers in their work.

Some of these are discussed below. As we will see, few of these directly address

code generation.

2.1 Machine Learning

A recent area of activity is computer-assisted programming through machine learn-

ing. The approach involves training a tool with libraries or code repositories. Using

this resource, the tool then provides code recommendations to the programmer. Ex-

amples of this include Natural Language-Guided Programming [4], OpenAI Codex [5]

and GitHub CoPilot [6], an OpenAI based code generation tool. This is based on

the same technique applied by ChatGPT. ChatGPT can generate some types of pro-

gram files but not the iOS programs we are considering in this work. Since GitHub

5

CoPilot is based on the same OpenAI work and is applied to programming our anal-

ysis will be based on this tool. Another approach in this area is Genetic programming

[7]. Genetic programming is similar in usage to the other two solutions but is based

on hand-coded training cases making it much more expensive to implement.

These tools attempt to improve programmers’ productivity by providing coded

solutions to portions of programs as the developer works. This appears to be a ben-

efit to a programmer, particularly when working with a language or in a solution

space with which they are not familiar. The approach that these tools take has been

described as AI Pairs Programming or as an automatic code completion tool. Since

GitHub CoPilot generates code based on examples collected from publicly available

code on GitHub there has been some question about the quality of the result. There

is no assurance that the source code is correct or efficient. A recent study [8] of

the results of GitHub CoPilot generated code gives reason for concern. In this study,

they found that in 28.7% of the problems GitHub CoPilot generated the correct code.

In 20.1% of the problems GitHub CoPilot completely failed to provide a correct so-

lution. If you combine the 51.2% of the time where the solution is partially correct

with the totally correct solutions, you get 79.9% of the time where a solution would

be helpful to a programmer. Another study of GitHub Copilot generated code [9]

found code correctness ranged from 57% on Java examples to 27% on JavaScript

examples. But these success rates are not such that a programmer can expect a

correct solution without significant review and refinement.

We have applied GitHub CoPilot to some of the sample problems we have con-

sidered in our work. First, we asked GitHub CoPilot to: "create an iOS app in SwiftUI

which accepts a Bill Amount, a Tip Percentage and the number of people paying and calcu-

lates the amount each person pays". GitHub CoPilot offered seventeen solutions to this

request. Fifteen of these solutions ran without error. All the proposed solutions

6

matched Figure 2.1. However, none of these solutions looked like the output of

our programs (see Figure 5.5b). The GitHub CoPilot produced applications that re-

quired the user to select their tip amount from a list of possible values. These apps

also require the user to select the number of people from a list. Some of these solu-

tions return a total bill amount in addition to the amount each person pays which

is different from the instructions and different from our solution. Why would all

of these proposed solutions be different from what was requested and different

for our solution? It turns out that there is a website titled 100 Days of SwiftUI[10]

that contains a video training course that produces a tip calculator. All of these

proposed solutions come from students taking this course and saving their work

on GitHub. The problem is that all of these solutions ignored the original instruc-

tions we provided to GitHub CoPilot. Next, we tried providing more detail in our

instructions to GitHub CoPilot. We asked GitHub CoPilot to "create an iOS app in

SwiftUI which accepts a Bill Amount in dollars, a number between 0 and 35 for the Tip

Percentage and a number between 1 and 6 representing the number of people paying and

calculates the amount each person pays". With these instructions, the solutions pro-

vided were the same as the first set of responses. We conclude that GitHub CoPilot

sees the instructions to create a tip calculator and it provides the examples of tip

calculators it finds in the GitHub repository.

To test our conclusion from the tip calculator we offered GitHub CoPilot a sec-

ond example to process. We asked GitHub CoPilot to: "create an iOS app in SwiftUI

which accepts the Lot Width and the Lot Depth and calculates the area of the lot by mul-

tiplying the Lot Width and Lot Depth dividing by 43560 square feet per acre". To this

request, GitHub CoPilot provided eight potential solutions. Five of these solutions

successfully ran and calculated the area of the presented lot. However, each of the

solutions included more or different information than what was included in the

7

FIGURE 2.1: Tip calculators produced by CoPilot.

instructions and was organized differently. The resulting solutions can be seen in

Figure 2.2. So, while this tool has provided program solutions to these relatively

well know problems the solutions do not correspond to the specifics of the instruc-

tions provided. The result is that the programmer has little or no control over the

specifics of the resulting program.

These results indicate that GitHub Copilot and the others will likely be valuable

tools for programmers in the future[11]. However, given the questionable quality

of the code source (GitHub public repository), there will continue to be a need for

8

a close review of the results. Additionally, these are tools to aid programmers in

their development efforts, not tools for actually creating programs. As we have

seen the solutions provided may match the high-level requirements provided the

tools allow the programmer little or no control over the details of the program.

2.2 Controlled Natural Languages

A natural language programming technique has long been a goal in the program-

ming community. In 1983 Biermann, Ballard and Sigmon introduced NLC [12, 13],

a natural language notation, which was interpreted directly to an output. In 1984

Knuth proposed Literate Programming [14], which combined TEX and Pascal to pro-

duce a vocabulary that had the primary goal of documenting for humans what

the programmer desires. In 2000 Price, Rilofff, Zachary, and Harvey introduced

Natural Java [15]. Natural Java provides a notation that allows the programmer

to define a procedure in English, which is converted to Java. This tool allows the

programmer to create program structures and edit a selective part of the program

with this Natural Language interface. The core program is stored in a Java Abstract

Syntax Tree (AST).

Researchers have also considered the application of natural language techniques

for creating software artifacts such as requirements documents and source code.

There are also efforts to use natural language techniques to analyze artifacts cre-

ated in conventional programming languages. Michael Ernst suggested using these

techniques to analyze all kinds of artifacts [16]. He suggests using this approach

with “. . . error messages, variable names, procedure documentation, and user ques-

tions.” Similarly, there have been efforts to define the user interface by extract-

ing information from the natural language requirements documents [17]. This ap-

proach performs a static analysis on the multiple artifacts to find bugs and generate

9

code. Essentially this approach uses natural language tools and techniques to iden-

tify (and possibly satisfy) requirements for the program by analysis of the informa-

tion that the developer has created to date. In 2001 Overmyer, et al. demonstrated

the use of linguistics analysis to convert requirements documents to models of the

subject requirements [18]. This approach represents another step along the path to

natural language programming.

In another approach [19], Landhaeusser and Hug attempt to use full English to

derive program logic. English tends to be verbose, and a programming language

based on the entire English language results in significant content being required.

Our approach utilizes a Controlled version of English, which results in a simplified

syntax. This simplified syntax allows the program to be created with a concise

source document.

One of the biggest challenges in mimicking natural language communications

with a computer system is the things humans leave unsaid. Much of human inter-

actions are dependent upon shared experience and idioms, which allow humans to

provide incomplete information and enable the listener to fill in the rest. Without

these implied nuances, human communications would be much more verbose. The

challenge for using a controlled natural language for defining a computer program

is that we must replicate, at least in part, these techniques which humans use to

share information.

Controlled natural languages (CNL) have been applied to many fields of endeavor

both within computer science and elsewhere [20]. Many CNL implementations

seek to be general to allow their use across multiple areas of study. One well-

known CNL of this type is the Attempto Project [21]. The project describes its

language as “. . . a rich subset of standard English designed to serve as a knowledge repre-

sentation language.” This tool has been applied to a Multilingual Semantic Wiki [22],

10

a Reasoning Engine [23], and a knowledge representation language as used by the

Web Ontology Language (OWL) [24]. In these applications, Attempto has provided

consistency to the tools by involving a specific subset of English.

Exman et al. [25] offers an interesting tool to translate programming language

back into natural language. This tool is intended to allow programmers to un-

derstand a previously created program even without a working knowledge of the

programming language in question. The application of natural language and ma-

chine learning continues to grow in their application to program development [26].

Many of these tools show promise for additional development and application.

2.3 Requirements Capture

The process of requirements capture has been the subject of improvement efforts

within the software development community. These efforts have ranged from the

rigorous, structured approaches embodied in formal methods and UML to the min-

imalist approach of User Stories utilized by eXtreme Programming [27]. Requirements

capture is an area where Controlled Natural Language approaches have previously

been used [28]. For some years, the agile development community has sought to

develop better ways to capture user requirements. Test-Driven Development (TDD)

[29] was initially associated with agile development in Kent Beck’s book on eX-

treme Programming [30] and then expanded upon in his book on the subject [31].

This methodology seeks to direct the programming effort towards requirements as

embodied in a series of tests. These tests are generated by the development team

from user requirements. However, they are not in a form that most users could

recognize. More recently, parts of the agile community have embraced Behavior-

driven Development (BDD) as a starting point. Behavior-driven Development [32, 33]

seeks to describe the user’s requirements, which can be converted into tests. These

11

tests are then used as those envisioned in Test-driven Development. These require-

ments are described in a natural language form that can be translated into tests.

As such, BDD acts as a front-end for TDD. Cucumber [34, 35] and jBehave [36] are

two popular tools that allow developers to capture their requirements in an end-

user-friendly format and produce a test suite for TDD application. While these

methodologies and associated tools enable the user to describe the requirements

in a natural language format, they still require the program to first be created in a

traditional programming language.

2.4 Dynamic Programming Languages

In recent years there has been significant growth in the use of dynamic program-

ming languages for mainstream development. While Java and C with their various

derivatives continue to be widely used, Python (ranked number one in the TIOBE

index), JavaScript (and its derivative, TypeScript), PHP, Ruby, and Perl have moved

into the top twenty most popular languages in the TIOBE Index [37] and the Stack-

Overflow annual programmer survey [38]. Dynamic programming languages have

gained a following because they have helped to improve the productivity of pro-

grammers. The combination of dynamic typing and concise syntax results in fewer

lines of code being required to achieve the desired result. These advantages have

led to claims of productivity gains from 5 to 10 times [39]. With the advent of ro-

bust, dynamically typed languages, developers have begun using these tools for

applications previously thought to be the domain of traditional statically typed

languages. These languages have a syntax that is easier for a programmer to un-

derstand, even if written by someone else. In general, the syntax used by these

languages is closer to that of a natural language. They still do require confor-

mance to a strict set of rules. However, they have limited the requirements for

12

computer-driven structures like variable declarations, which add to a traditional

programming language’s verbosity. While these languages’ use does not involve

automation, they show that other cleaner, simpler syntax languages offer improved

programmer productivity opportunities.

2.5 Static Analysis

Static analysis tools come in a range of capabilities. The simplest of these tools are

commonly referred to as lint tools [40]. These tools review the program code and

identify violations of syntax rules provided for each target programming language.

Violations can include punctuation, the misspelling of reserved words, variables

that are declared but never used, and other errors that can be identified by review-

ing the source code. Static analysis is an area that has seen considerable activity. In

addition to stylistic checks, traditionally the approach of linters, these tools have

taken more ambitious approaches such as the use of bug patterns. Two of the most

popular and successful products in the area are FindBug and PMD [41]. They have

proved very useful in finding bugs in code that is already written. They help im-

prove the code quality but do not help in the creation of the code.

2.6 Integrated Development Environments

The most used tool for developers is the Integrated Development Environment

(IDE). Tools such as Visual Studio, Eclipse, NetBeans, IntelliJ, PyCharm, XCode,

and others [42, 43, 44, 45, 46, 47] provide a wide range of features to make the

developer more productive. Among these many capabilities is syntax highlighting

[48], which involves highlighting various constructs and keywords with colors and

13

formatting to identify their function and usage. These tools can aid the program-

mer by identifying errors in code when the color coding of the source code does

not match their intent. These features also include code completion [49], which au-

tomatically completes various words and constructs within the program based on

the context and previously entered code. Modern IDEs also provide for the inte-

gration of tools such as linters and other static analysis tools. While a modern IDE

is a valuable productivity enhancer, it still requires that the programmer code the

program in the target programming language’s particular syntax.

2.7 Declarative Syntax

Imperative programming [50] is the style utilized by most of the popular program-

ming languages. These languages require the programmer to describe how to con-

struct the various objects that make up a program. To build a user interface, the

program would include the tedious steps required to draw each object and then

link them to the program logic. This process results in the code being voluminous

and difficult to read. It also can obscure the nature of what the programmer is

trying to achieve. Listing 2.1 contains the Swift code involved in creating a sim-

ple button that invokes a method called processEachPayThis. This example includes

eleven lines of code. For all but the most knowledgeable, this code is hard to read

and obscures the nature of the programmer’s goal.

In 2019 Apple introduced SwiftUI [51], which utilizes a declarative syntax for

describing the program’s user interface. Declarative syntax [52] describes the re-

sults the programmer wants to achieve but not how to achieve that result. List-

ing 2.2 includes the SwiftUI code required to create the same button as captured in

Listing 2.1 but does it in seven lines of code, three of which contain only structural

14

1 let button2 = UIButton(type: .system)

2 button2.setTitle("Calculate", for:. normal)

3 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

4 y:35 * 3,

5 width:self.view.bounds.maxX * 0.5,

6 height :30)

7 button2.titleLabel ?. textAlignment = .left

8 button2.addTarget(self ,

9 action: #selector(processEachPayThis),

10 for: .touchDown)

11 self.view.addSubview(button2)

LISTING 2.1: Swift code for Simple Button.

1 HStack {

2 Button(action: {

3 self.processEachPayThis ()

4 }) {

5 (Text("Calculate"))

6 }

7 }

LISTING 2.2: SwiftUI code for Simple Button.

symbols. This code is easier to read and to understand what the programmer is try-

ing to achieve. While this code is considerably simpler than the Swift code, it still

is rigid in its syntax and contains numerous special words/commands. It requires

the programmer to conform to a strict set of rules. As we describe CABERNET in

this paper, we will see that it can describe this same button in two lines of code

without these strict rules.

15

FIGURE 2.2: Acreage calculators produced by CoPilot.

16

Chapter 3

Vision

Natural language programming has long been an aspiration for the program de-

velopment world. Programming languages tend to be complex and idiosyncratic.

Scotty, the Chief Engineer from Star Trek, saying “Good Morning computer” to his

computer is what people envision as the future of computer interaction. Flying cars

are what we have been told the future will include. But are any of these reasonable

expectations? By the time we completely describe the function of a program in

English, we have a document much longer than your typical computer program.

At the same time, there is a significant chance that the English description will

be incomplete. Omissions in the English language description of a program are op-

portunities for errors. If an English language program description is long, complex,

and prone to errors what value does it bring? Might we have a better solution if

we limit the natural language document to describing only the result and not the

details required to get there?

3.1 Describe the result

Much of programming involves describing the process that the computer must go

through to achieve the desired goal. This approach allows the programmer broad

flexibility in what they can achieve. However, in most cases, the look and feel of the

17

program are dictated by the platform that the programmer is targeting. The types

of objects, what they look like and where they are placed on the screen are dictated

by a set of platform rules or guidelines. If we incorporate these rules into the devel-

opment tool or a set of templates used by the development tool; the programmer

can avoid having to describe them in the program.

As a result, the program need only describe the unique aspect of each object

within the program. These would include unique appearance and behavior char-

acteristics and interactions between the various objects.

3.2 Program housekeeping

In most programs, significant content is dedicated to error checking and other

housekeeping activities. These include checking for common errors, such as blank

inputs, divide by zero errors and type errors. These processes are well known,

and standard methods exist to deal with them. There is little technical challenge in

identifying where these processes are needed and how to implement these error-

checking and correction methods. Automation of this process can significantly re-

duce the size of the input program. The added benefit is increasing the readability

of the program. The error-checking and correction methods can be verbose and do

not seem to relate to the primary processes being implemented. Eliminating this

code makes for cleaner application code and code which is more directly related to

the function being implemented.

3.3 Flexible vocabulary

The challenge for people learning a programming language is the rigidity of the

terminology. Programming languages have a fixed vocabulary that a programmer

18

must learn. Once this vocabulary is learned the programmer must conform to its

rules and avoid conflicts between the vocabulary and the object names used in

their programs. On the other hand, English and other natural languages are quite

flexible in this regard. If our programming approach allows for more flexibility, it

will be easier for a developer to move between programming languages. It also

allows people with different native languages to adapt to the tool more easily.

Additionally, this flexibility allows the programmer to use terminology which is

appropriate to the domain for which the application is intended without having to

be concerned about conflicts between the domain language and the programming

language.

3.4 Goals

Our goal for CABERNET is to incorporate these three visions in our programming

tool. We seek to limit the content of the CABERNET program to only describing the

desired result, provide the required housekeeping tasks in the tool rather than in

our program source code and accommodate a flexible vocabulary for our program-

ming tool. This combination will provide a productive development environment.

Additionally, we made CABERNET adaptable to the programmer. The intent is

that the input terminology is easily adjusted and updated. While the approach has

been specifically applied to iOS programming in the prototype and examples, the

same approach can be applied to other targets.

As summarized in the introduction, we seek to determine if a controlled natural

language-based programming tool can provide a highly readable, flexible, extensi-

ble, and easy-to-learn development methodology.

19

Chapter 4

Approach

The core research question which we are addressing is, “Can a controlled natural lan-

guage based programming tool provide a highly readable, flexible, extensible, and easy to

learn development methodology?” To that end, we have developed CABERNET (Code

generAtion BasEd on contRolled Natural languagE inpuT), an approach that al-

lows a programmer to define a computer program using a Controlled Natural Lan-

guage (CNL). Figure 4.1 lists the key advantages of the CABERNET development

approach.

• Increased programmer efficiency
• Flexible and straightforward syntax
• English-like (controlled natural language)
• Address needs of all programmers
• Natural language

– More flexible
– More forgiving

• Inference fills in gaps

FIGURE 4.1: Key Characteristics of CABERNET

21

Because the application domain is of limited scope and is specific to the pro-

gram definition, we can fill in the blanks using inference and implication. This

approach provides a result similar to that experienced by typical human commu-

nication. We are not seeking to replace the developer in this process. Instead, our

work seeks to provide a tool that makes programmers more effective in their efforts

while still allowing them to control the process. As an example, we have addressed

the challenges of creating a mobile application. This domain has proved challeng-

ing for programmers for several reasons including those listed in Figure 4.2.

• Limited screen size
• Multiple possible screen proportions
• Multiple operating systems and widget preferences

FIGURE 4.2: Programming Challenges of Mobile Applications

The use of constraint-based user interface design [53] has helped address these

challenges. However, it has added complexity of its own. Constraints must com-

pletely define the size and location of features relative to each other and the under-

lying hardware. At the same time, it must avoid over-constraining the user inter-

face. If a developer is not careful, they may define a set of constraints that work for

one device configuration but fail for another. This conflict can nullify the advan-

tages that led us to constraint-based design in the first place. Current techniques

include both code-based definition and graphical-based user interface design. Both

methods have advantages and disadvantages, but neither has proven to provide an

ideal combination of power and productivity. Our approach allows for a flexible

description of the application in a natural language notation.

22

It allows for a minimal description of the user interface, yet it results in a canon-

ical model as output. Since screen size and proportions are handled through tem-

plates, the programmer is freed from dealing with those during development. Our

approach allows the programmer to define an application for this popular platform

with a simple human-friendly approach.

4.1 Basic Principles

The simplicity and directness of the approach are possible because many aspects

of the design can be inferred from the context. A programmer developing an ap-

plication for a mobile device seeks to conform to a set of user interface guidelines.

These guidelines become one of the many contextual influences on the applica-

tion design. As previously noted, one significant advantage enjoyed by humans in

their use of natural language is the shared knowledge that allows for portions of

the communications to be implied. To overcome this challenge in human-computer

communications, we have utilized three techniques.

First, we have used a broad set of defaults applied when the developer omits

the needed information from their descriptions. Second, we use inference to deter-

mine the developer’s intent from the information provided (both within the user

interface description and other artifacts that make up the program). Third, our ap-

proach allows machine learning to adjust the defaults based on developer choices

during the development process. When information is missing or the information

provided is ambiguous, we offer the developer options from which to choose a solu-

tion. Based on these choices and the default solutions that the developer accepts or

declines, we build and reinforce our recommended solutions1. The characteristics
1While the design of CABERNET and the CABERNET environment support this feature it is not

implemented in the prototype at this time. See Section 5.4.1

23

of the proposed Controlled Natural Language model are listed in Figure 4.3.

4.2 Flexible Nomenclature

One of the challenges of dealing with a natural language is the variety of words or

phrases used for a single object or concept. To deal with this, we make use of a the-

saurus. We identify a group of words or phrases that can be used interchangeably.

Table 4.1 includes some examples of these lists of synonyms.

Widget Type Synonyms
Binary input widget “option,” “switch,” “checkbox”
Application “App,” “Application,” “Program”
Application Screen “Window,” “Screen,” “Scene”
Process Directive “save,” “undo,” “calculate,” “evaluate”
Switch State “true,” “selected,” “on”
Load new screen “go,” “go to,” “load,” “to”

TABLE 4.1: CABERNET Synonym Examples

These lists are just a small sample of possible synonyms that we should con-

sider. Going one step further, we consider what may be implied by a word or

phrase. For example, the last item in the list includes the word “to” and we in-

terpret it to imply “go to.” These lists of synonyms are created in several ways.

First, they are generated from our knowledge of the domain and the terminology

used by programmers. Second, we can expand them using online resources like

thesaurus.com, thesaurus.Babylon-software.com, etc. Third, we can use search to find

terms that are common in the subject area. Finally, we can learn from the devel-

oper as they provide feedback when the CABERNET processor cannot interpret

the term.

24

4.3 Declarative with a Difference

We have seen the improvement in readability and productivity that is offered by

declarative programming approaches like SwiftUI. CABERNET takes that concept

further; it offers declarative with a difference. CABERNET combines a declarative

style with a natural language-based syntax. It then utilizes inference to discern the

programmer’s intent. We couple that with a robust set of defaults and templates to

convert the program into a native executable.

Figure 4.4 depicts the process of converting a CABERNET source into an exe-

cutable program. The process starts by tokenizing the CABERNET source based on

the structure of the Markdown outline. The tokenized version is then inspected for

terms that can be matched with synonyms in the thesaurus. Where there are to-

kens that seem to be missing, they are added by inference. The resulting tokens or

groups of tokens are identified as actions, symbols, formatting, etc. based on their

context. The accuracy of that identification is then tested based on other objects in

the program. Where appropriate, outline levels are then simplified using Natural

Language tools. The CABERNET processor then generates code for the target plat-

form by applying the appropriate templates. Finally, the program is compiled or

interpreted by the target platform development tool.

25

• Input language is forgiving

– Outline-based structure

– Flexible

* Allow use of synonyms, acronyms, and standard abbreviations

* Allow flexibility in ordering and location of descriptions

– Terse

* Minimum input required

* In most cases, the input is keyword-based and does not require
English sentences

* Each bullet has limited context

– Utilize popular Markdown [54] lightweight markup language

• Model processing

– Tool processes natural language model

– Outputs canonical model

– Offers alternative interpretations

– Identifies ambiguous elements

– Highlights unrecognized and unused elements

• Canonical model

– Unambiguous

– Consistent with the natural language model and with itself

– Can target alternate platforms (iOS, Android, Etc.)

• Tools

– Predefined rules

– Learn additional rules from experience

– Learn from documentation of target framework

FIGURE 4.3: Characteristics of CABERNET CNL

26

FIGURE 4.4: Processing CABERNET program.

27

Chapter 5

Notation

5.1 Markdown

The notation for the Controlled Natural Language tool is based on the Markdown

[55, 56] lightweight markup language. Markdown was created in 2004 by John

Gruber [57]. The original intent of Markdown was to provide a tool that allows

writers to compose web content in plain text with minimal formatting information.

In many ways, the intent of Markdown is like that of CABERNET but addresses

HTML creation rather than mobile applications. Markdown is intended to focus

on the content rather than the formatting information [58]. The same case can be

made for CABERNET. This makes the use of Markdown as the underlying basis of

CABERNET predictive.

An additional benefit of Markdown as the underlying format of CABERNET is

that the source code can be processed using the Markdown tool. The result is an

attractively formatted file that displays the program structure without the Mark-

down tags and formatting characters. By applying a customized CSS style sheet

the Markdown processed CABERNET can be formatted to improve the readability

of the source code.

29

5.2 Outline Structure

A CABERNET program is structured as an outline, including only the information

necessary to distinguish itself from the default. Some high-level outline properties

that define the CABERNET syntax are identified in Figure 5.1.

• #, ##, ###, etc. = Object hierarchy

– # App = Application
– ## Scene / Screen

• "*" = Properties and / or actions

– Object with no properties is a label
– Properties which begin with a verb = Button
– "blank", "phone number", etc. = input field
– "option" = checkbox or switch

• Quoted Text = Literal

FIGURE 5.1: CABERNET Outline Properties

The outline structure captures the hierarchical structure of the program. Each

succeeding indentation of the outline represents another embedded structure in

the resulting program. The CNL code of an example application is found in Ap-

pendix A. Line 1 of this code identifies the basic application. Lines 2 and 31 are

one level indented from the application and start two different screens. The lines

such as 4, 5, and 7 that begin with ‘###’ are one additional level indented and de-

fine the objects on the subject screen. Lines such as 36 that begin with ‘####’ are

embedded within the proceeding object or, as in this case, are placed side-by-side

on the screen. The decision to embed or to place side-by-side is made based on the

context. It would not make sense to embed a button within another button, so the

30

objects are placed side-by-side.

Outline entries that start with a ‘*’ describe the content of the various objects.

Entries such as 10, 13, and 27, which contain adjectives, are descriptions of the

object’s format. Entries such as 35 and 37 that start with a verb describe actions to

be taken when clicking the object. Entries like that beginning on line 45 define a

calculation that is used to populate the field. Lines like 19 and 25, which do not fall

into other categories provide a default entry for the field.

5.3 Thesaurus

The use of a CNL means that multiple names can describe an object in the user in-

terface. For example, in Appendix A, line 2, we refer to one screen of the application

as a “Scene.” On line 31, we call the second screen as a “Screen.” Additionally, these

objects can be called different things based on the target platform involved. As a

result, the subject tool must create alignment between what the CNL code calls an

object and what the target platform expects. To allow CABERNET to accommodate

this varied nomenclature, we have implemented the concept of a thesaurus. The

thesaurus captures a range of words that can be treated as synonyms. Examples of

the thesaurus word lists are shown in Figure 4.1. The contents of these thesaurus

entries come from the multiple sources shown in Figure 5.2.

The approach utilizes the process shown in Figure 5.3. First, the CNL descrip-

tion is converted from the markdown form to a JSON representation simultane-

ously, tokenizing key objects in the description. Since the vocabulary utilized in

the CNL description can involve multiple names for the same object, we next iden-

tify potential synonyms for each object. Then we utilize defaults and templates

to fill in the missing parts of the description. In reviewing the program in Ap-

pendix A, we can see that, in most cases, the content of the bullets for each object

31

1. Manually entered values based on our domain experience.

2. Entries from a web-based thesaurus and searches of online documenta-
tion.

3. Additional items that CABERNET learns from programmers.

FIGURE 5.2: Sources of Synonyms

is very concise. These contain verbs like “calculate” or “cancel” (or “to” which is

interpreted to imply “go-to”) or adjectives like “blank,” “italic,” “selected,” “red”

or “green” and nouns like “background” or “option.” These verbs, nouns, and

adjectives combined with targets like the names of screen objects or other screens

make up most of the outline-based program. In cases where a complex function

must be executed (like the mathematical calculation in line 45), it is written in a

more English-like format. Because the content of each bullet is very concise the

opportunity for confusion is limited.

It should be noted that, as in this example, the function can be captured in

a flexible combination of English words and mathematical symbols. These state-

ments are processed using natural language processing techniques to derive an

executable function. Our tool searches the subject statement to identify the names

of objects in the program, such as “Bill amount,” “Tip Percentage,” and “Split.” An

entry may contain mathematical symbols and include items that cannot be identi-

fied as objects from the program. In this case, it is assumed that the item is not a

function but rather text to be displayed. Examples of this include lines 19, 21, and

25.

32

5.4 Natural Language Processing

As noted, we have limited the description of the application content to the ’*’ out-

line levels. Each of these outline items can contain brief entries that describe the

content or the material’s format. These outline items are also where the controlled

natural language entries exist for describing the program function and content.

Each item is very limited in scope and context and is therefore relatively easy to

interpret. For example, lines 45 through 47 in Appendix A describe the calculation

of the value displayed in the object.

(Multiply Bill amount by Tip Percentage / 100 plus Bill amount) divided by Split

Calculated items like this are identified by mathematical operators’ precedents

such as multiply, divided by, plus, numbers, and mathematical symbols.

(Multiply Bill amount by Tip Percentage / 100 plus Bill amount) divided by Split

Once an item is identified as potentially being a mathematical calculation, it

is further evaluated to see if all the information needed is present to evaluate the

item. First, the items are parsed to identify the names of objects in the code that

contain the inputs to the calculation. In this example, these include Bill amount, Tip

Percentage, and Split.

(Multiply Bill amount by Tip Percentage / 100 plus Bill amount) divided by Split

The remaining text is then examined for adverbs such as quickly, precisely, and

carefully and articles such as the, a, and an, which do not add to our understanding

of the calculation being performed.

At this point, we should have all the information we need to evaluate the calcu-

lation. The biggest challenge to evaluating the remaining text is to understand

how to group the calculation. Mathematical expressions are usually evaluated

33

from left to right adjusted by precedence rules and grouping defined by paren-

thesis. Our tool uses all of these, but it must also consider grouping defined by

the natural language of the statement. In its simplest form, this could include “a

times b,” “a * b,” or “multiply a times b.” All three of these statements are equiv-

alent and do require any special consideration of the grouping of the items. A

more complicated example could involve “(a + b + c) / d,” “divide a plus b plus c

by d,” “divide the sum of a and b and c by d,” or “(a plus b + c) divided by d”. This

last example will have a different result than “a plus b plus c divided by d” which

would be the same as “a + b + (c / d)”. By considering the grouping provided

by English statements of the forms “Divide. . . expression. . . by. . . expression”, “Mul-

tiply. . . expression. . . times. . . expression” or “Sum of. . . expressions,” we can properly

evaluate the calculations described in the natural language of these expressions.

In this example, we need to determine to which values the “multiply” at the begin-

ning of the line applies.

(Multiply Bill amount by Tip Percentage / 100 plus Bill amount) divided by Split

Using the analysis approach we have described, it is clear that Multiply goes

with by so that we multiply Bill amount by Tip Percentage In evaluating these natural

language expressions, CABERNET converts these statements to traditional mathe-

matical expressions with the proper grouping of calculations. As a result, CABER-

NET can evaluate traditional mathematical expressions directly if that is what is

provided in the program input. In this case, the result is the following expression.

(“Bill amount” * “Tip Percentage” / 100 + “Bill amount”) / “Split”

If the programmer had entered Bill rather than Bill amount or Tip rather than Tip

Percentage, we would have failed to complete the transformation. However, this

is an example of where we would have prompted the programmer for guidance.

34

These would be an example of where the transformation was close, and we would

have suggested to the programmer a possible match. In some cases, an item will

include mathematical symbols or appear to describe a calculation, but CABERNET

cannot convert it to a mathematical expression. Lines 19, 21, and 25 are examples of

this. These lines contain mathematical symbols, but the other text does not contain

object names, so we cannot translate them into formulas.

“xxxxx-xxxx” or “(xxx) xxx-xxxx ” or “mm/dd/yyyy”

Based on the evidence’s extent, CABERNET will evaluate the likelihood that

the programmer’s intent is a calculation. If CABERNET believes that the item is

intended to contain a calculation, it will prompt the programmer for clarification.

A mathematical calculation is but one type of item described in a CABERNET

outline item. Using the same approach CABERNET can evaluate a wide range of

program constructs. The steps in the process are as shown in Figure 5.4

This approach can be used for a wide range of programming constructs. By

combining items such as database queries, logic statements, mathematical expres-

sions, graphic generation, and file manipulation, we can generate a working pro-

gram.

5.4.1 Ambiguous Content

Given the issues with natural language processing, there can be more than one in-

terpretation of the CNL form. When CABERNET is not able to process a bullet it

is interpreted as a text field and added to the app as a String. There will be cases

where CABERNET detects some evidence for a possible interpretation of a bullet.

One example of this is a bullet where the content seems to be a mathematical ex-

pression but the processor is not able to identify some of the variables. In these

cases, the developer can be presented with options that the tool identifies as the

35

most likely interpretation and possible alternate options. This could include a per-

centage evaluation of how much of the bullet was successfully interpreted. The

results of this selection process are also an opportunity for the system to learn from

these decisions. This capability is not implemented in the current prototype but the

path to its implementation is understood.

5.4.2 Example Application

Figure 5.5 represents the output of our example application. In Figure 5.5(a), we

have the entry screen for an address book application. The App and Scene bullets

are for organization and are used to separate the application by screens. “Settings”

and “Done” are actions and become buttons. The descriptions of the actions taken

for each of the tappable objects are listed as sub-bullets. Next comes multiple blank

fields for the contact’s name, company, phone number, email address, and birthday.

Finally, there are two option fields represented by switch objects. Depending upon

the platform targeted, these could alternately be checkboxes. One of these options

is selected by default. Likewise, they could be called switches in the CNL instead

of being called options. These alternate names for this object are but one example

of how an object can be called multiple things in the CNL or could have multiple

objects implemented based on the given CNL. As described above, these choices

are made or prioritized based on the developer or target platform preferences.

Figure 5.5(b) is the second screen of the application and includes a tip calculator.

This screen contains three blanks filled with the bill amount, the number of people

splitting the bill, and the tip percentage. Finally, there is a calculated field repre-

senting how much each person pays. As previously described, the text defines this

final field in lines 45 through 47 in Appendix A. This calculation is triggered by

tapping the “Calculate” button described in lines 34 and 35.

36

5.5 Advantages and Limitations

Much of the approach’s power comes from the flexibility of nomenclature. This

flexibility comes from the use of application-specific dictionaries and thesaurus, which

allow for alternate terms to describe objects and properties within the application.

Much of this information is generated based on general domain knowledge. The

approach also allows for expanding and customizing this information by apply-

ing search techniques to the target development platform’s documentation / APIs. Using

search techniques to index this platform documentation, we can expand and im-

prove the dictionaries and thesaurus used to interpret the CNL input.

Among other advantages, our approach is well suited to integrate with agile

processes. The CNL source code is self-documenting since it is written in a human-

readable/understandable form. This human-readable format makes it easy to un-

derstand and refactor as needed. The result is a dual-purpose artifact (documentation

and source code). The implementation is in the form of a domain-specific program-

ming language. Our CNL is not intended to be a general-purpose language like

Attempto English. As a result, the proposed syntax is concise and lends itself to the

proposed application of inference and machine learning. While the example pro-

vided in this research involves mobile development, the approach is well-suited

for a broad range of programming applications.

While there are many domains where CABERNET is applicable, there are some-

where its dependence upon inference and domain knowledge could be a disadvan-

tage. Within this methodology, we must understand the domain terminology and

various synonyms that the programmer may use. For domains not previously ad-

dressed, this information may be difficult to come by. We believe that using search

techniques to develop a thesaurus for a new domain will help address this limita-

tion.

37

5.6 Capability of Prototype

The current implementation of CABERNET can create multi-screen iPhone and

iPad applications. The programs coded in CABERNET can be converted to either

Swift or SwiftUI as the intermediate target language. The application can contain

labels, text input fields, toggles, and buttons. It can perform mathematical calcula-

tions based on inputs provided to the user input fields. The screens are generated

based on standard templates for screen layouts. Customization of the generated

screens, including colors, fonts, and text styles, is supported. The applications can

also include screen navigation, including moving among the screens defined in the

application.

The CABERNET tool identifies instructions that it is not able to evaluate as sim-

ply text entries. It presents those to the programmer but does not provide sugges-

tions for correction (see Section 5.4.1). Since the tool currently only has a limited

choice of outputs, these errors are treated as either correct or not.

38

FIGURE 5.3: Interpretation of CNL input.

39

FIGURE 5.4: Construct Processing.

40

(a) Addressbook (b) Tip Calculator

FIGURE 5.5: App example screens.

41

Chapter 6

Evaluation

6.1 Research Method

To evaluate the efficacy of CABERNET we evaluated it in three ways. First, we

compared sample programs written in CABERNET with functionally identical pro-

grams written in Swift and SwiftUI. This comparison evaluated the size of the pro-

grams. Second, we presented these programs to a group of potential users and

solicited their feedback on their ability to understand the samples. Third, we asked

the users for their feedback on the various programs. This feedback addressed the

user’s ability to understand the program and their thoughts on how the tools might

be used.

6.2 Code Size

The key process metrics that we seek to address with CABERNET include code de-

velopment speed, clarity, and size. In Appendix B we have included examples of

CABERNET, Swift and SwiftUI applications. As can be seen from the examples

CABERNET programs are very concise. Because they rely heavily on inference, the

43

alignment between how the programmer and the computer understand the pro-

gram is strong. We can compare the CABERNET code for the tip calculator with

the alternate ways of implementing this program screen.

Appendices B.1 through B.4 involves a tip calculator application. The 14 lines

of code to implement this one screen in CABERNET have been included in Ap-

pendix B.2. Appendices B.3 and B.4 include the code to implement the same screen

in Swift and SwiftUI respectively. The Swift implementation is made up of 122 lines

of code. If we eliminate the eight blank lines and ten lines which include only a

bracket, both of which are included for readability, the Swift implementation still in-

cludes 104 lines of code. The SwiftUI implementation is made up of 76 lines of code.

If we eliminate the two blank lines and seventeen lines that include only a bracket

the SwiftUI implementation still includes 57 lines of code. Table 6.1 shows a com-

parison of the code required by each of the languages to create this one screen. As

we can see, Swift requires over seven times as many lines of code as does CABER-

NET to implement this screen. While the SwiftUI implementation is shorter than

the Swift implementation, it still requires more than four times as many lines of

code as does CABERNET.

Example CABERNET Swift SwiftUI
Tip Calculator Lines of Code 14 104 57

Compared with CABERNET 1X 7.4X 4.1X
Real Estate App Lines of Code 29 211 96

Comparison with CABERNET 1X 7.3X 3.3X
Real Estate App Lines of Code 30 106
Revised Comparison with CABERNET 1X 3.5X

TABLE 6.1: Comparison of code size.

Much of this Swift and SwiftUI code implements things that CABERNET han-

dles as default values and constructs. That is a large part of what this approach

44

involves. One clear example of this is the actual calculation of the tip value. In

the CABERNET version, the calculation is defined in line 15. In addition, line 5

describes the action to be taken when we tap the subject button. To perform the

same calculation in Swift, we need to include lines 4 through 7 to declare the vari-

ables involved, lines 23 through 31 to create the button, and lines 107 through 122

to perform the actual calculation. That is a total of twenty-eight lines of code. If

we eliminate the eight lines containing only a bracket, we still have twenty lines

of code compared with two lines in the CABERNET implementation. For the Swif-

tUI implementation, we have lines 4 through 7 for declaring the variables, lines 14

through 20 to define the button, and lines 60 through 71 for the method to perform

the calculation. This is a total of twenty-three lines of code. If we again eliminate

the lines that contain only brackets, we get sixteen lines of code for this calculation.

The Swift and SwiftUI code must check for common errors like dividing by zero

and blank entry fields in addition to the steps required to describe the screen fea-

tures. CABERNET performs these functions by default, thus eliminating the need

to check for these things. If there were a reason to allow a program to divide by

zero or perform a calculation using an empty field, then CABERNET would expect

the programmer to say so and describe how it should be handled. In the absence

of such descriptions, CABERNET assumes that these are errors and handles them

appropriately.

The result of these aspects of CABERNET is that the source document includes

only the basic description of the program content. The implementation, error han-

dling and other processes normally included in a program’s source file are all

added by the templates and processing done by the CABERNET tool. The result

is that the CABERNET file is brief and easy to understand.

A second example application is included in Appendices B.5 through B.11. This

45

example is a Real Estate application that involves two screens. This application is

implemented with a single CABERNET file which is 29 lines long (Appendix B.7).

This same application takes two files and 211 lines of code in Swift (Appendices B.8

and B.9) and 96 lines of code in SwiftUI (Appendices B.10 and B.11).

The third example involves modifying the Real Estate application to highlight

one of the input fields based on the content of that field. The implementation of this

example in CABERNET and SwiftUI is included in Appendices B.12 and B.13 (note

the SwiftUI solution also needs the Acreage Calculator file from Appendix B.11).

Like the previous two examples, CABERNET required significantly less code to

make this addition than SwiftUI. In this case, CABERNET required only 30 lines of

code and SwiftUI required 106 (including the files in Appendices B.13 and B.11).

Across these examples, Swift required about 7.3 times as many lines of code

as CABERNET. In the same examples, SwiftUI required between 3.3 and 4.1 times

as many lines of code as CABERNET. This is a significant difference that results in

more opportunities for typos and errors to be introduced. At this point, we should

note that CABERNET is more forgiving with the input provided. As previously

noted, CABERNET allows a significant range of word selection in its programs. On

the other hand, Swift and SwiftUI require strict adherence to the program structure.

The combination of longer programs and strict rules make Swift and SwiftUI more

vulnerable to errors.

6.3 Easy to Understand

Lines of code are but one means of measuring the effort required to create a pro-

gram. Additional measurements involve how difficult it is to craft the code, how

readable the code is, and how well the program processing the code deals with al-

ternative inputs. These all contribute to how easy it is for a programmer to learn

46

the language. The measurement of these aspects of the language is more subjective

than the simple counting of lines of code. Nevertheless, they are all important to

understanding how successful CABERNET is / can be in improving programmer

productivity.

To understand the relative ease of understanding a program written in CABER-

NET vs. the same program written in Swift or SwiftUI we surveyed 47 people.

These survey participants were solicited from undergraduate and graduate stu-

dents at DePaul University and Virginia Tech computer science programs. When

asked about their level of programming ability 31 participants self-identified as a

“Student”, 7 as a “Developer” and 1 as a “Novice”. When asked about their years

of programming experience 33 reported 3 or more years of experience and 6 re-

ported 2 or fewer.

The survey participants were provided sample programs implemented in CABER-

NET, Swift and SwiftUI. These samples are included in Appendix B. The survey

questions and results can be found in Appendix C. Of the 35 questions included

in the survey, there are 8 which ask the participants to evaluate how Easy to Un-

derstand the various samples were. The results of these questions are included in

Figure 6.1. The figure graphs the percentage of responses at a given rating on a

scale of zero to ten with ten being the easiest to understand. 80% of the ratings on

CABERNET were a 7 or better. On the same basis, the Swift and SwiftUI exam-

ples were 46% and 52% were rated 7 or better respectively. The actual number of

responses for each language is included in Table 6.2.

The mean score for CABERNET on these questions was 7.75. The mean score for

Swift and SwiftUI were 5.53 and 6.26 respectively. Figure 6.2 shows the normal dis-

tribution of the responses for three languages. However, these normal distribution

charts can be a bit misleading. The chart in Figure 6.3 shows the actual responses

47

for CABERNET and SwiftUI. From this, you can see that while the SwiftUI results

form a bell curve around its mean the CABERNET results have a more single-sided

distribution. 48% of the responses for CABERNET are a rating of either a 9 or 10.

FIGURE 6.1: Ease of Understanding.

Language 10 9 8 7 6 5 4 3 2 1 0
CABERNET 37 24 17 24 7 6 4 2 3 2 2
Swift 2 5 11 23 8 7 13 10 5 3 2
SwiftUI 8 15 21 22 18 15 13 6 4 3 3

TABLE 6.2: Ease of Understanding.

If we consider the groups that self-identify as Students and Developers inde-

pendently, we get comparable results. The developers gave the CABERNET exam-

ples a mean score of 8.29 on the Easy-to-Understand questions. The students gave

CABERNET a mean score of 7.62 on these same questions. On the other hand, the

developers gave Swift and SwiftUI mean scores of 4.64 and 5.81 respectively. The

48

students gave Swift and SwiftUI mean scores of 5.69 and 6.35 respectively. All these

values can be seen in Table 6.3.

Language Overall Developers Students
CABERNET 7.75 8.29 7.62
Swift 5.53 4.64 5.69
SwiftUI 6.26 5.81 6.35

TABLE 6.3: Mean Ease of Understanding Scores.

FIGURE 6.2: Normal Distribution of Responses.

6.4 Confidence of Understanding

There were also 8 questions on the survey which ask participants their confidence

they understood the code examples and/or do they feel they could code similar

structures. A clear understanding of the code is required if the programmers are to

modify the examples or create similar programs on their own. Figure 6.4 shows the

49

FIGURE 6.3: CABERNET Responses vs SwiftUI.

cumulative number of responses rating the respondent’s confidence that they un-

derstood the various examples. The respondents gave a mean score on their confi-

dence in understanding the various examples of 6.75, 5.80 and 6.30 for CABERNET,

Swift and SwiftUI respectively.

From these survey results, we find that the respondents found CABERNET

clearly easier to understand. Additionally, they are confident they understand how

the examples work and would be able to code similar structures.

6.5 Respondent Feedback

In addition to the quantitative responses based on examples, application survey

respondents were offered the opportunity to provide general comments about the

various programming options. There were two questions included in the survey to

this end. These specific questions were as follows:

Do you have any general comments, observations, or suggestions on

the Cabernet tool?

50

FIGURE 6.4: Confidence of Understanding.

How would you compare the three development tools used in these

examples?

The responses provided to these two questions are included in Appendix D. In

total, there were 52 comments submitted. Five of these responses had to do with

the mechanics of the survey itself rather than the tools. This leaves 47 comments

about the tools. Of the remaining comments, 21 were positive comments about

CABERNET. 17 of the comments expressed concern about the granularity of control

provided by CABERNET. A couple of representative examples of these types of

comments are as follows.

“It is much more readable in terms of figuring out what it is doing and

judging what the result will look like. However, it seems harder if I

51

wanted to make something specific, because I wouldn’t know where to

start with getting the right syntax.”

“I think this would be a good tool for quick form or mockup creation,

but there are many things I wonder about it. Like for these examples -

can I change size of entry boxes? Can I move fields on the screen? How

would a more complicated function look? I am intrigued but scared

since so much of the "brains" dictating things is hidden.”

“Cabernet is good for a quick solution. The other two are good if you

want more specific options and to understand the development tools.”

These respondents were concerned that they would not be able to achieve pre-

cise control over the end application. In a couple of cases, they equated this with

the approach being more suitable for end-user programming. While it is possible to

write the requirements for precision control of the resulting application the respon-

dent seemed to want more surety that they know how CABERNET will interpret

their input.

6.6 Quantitative Results

In Section 6.2 we described a detailed comparison of the code size for CABERNET,

Swift and SwiftUI for some example applications. This comparison demonstrated

a significant difference in the size of the program required for these examples (see

Table 6.1). As can be seen, the Swift and SwiftUI implementations require between

over 3 and 7 times as much code respectively. As previously discussed, this not

only affects the direct productivity of the developer but also affects the potential

for errors.

52

This size difference is a direct result of the basic architecture of the CABERNET

approach. First, most of the screen layout in a CABERNET application is provided

by the CABERNET tool. This greatly simplifies the source code. Second, most of

the error checking for the subject application is generated by CABERNET during

the process of converting from the source code to the native program code.

This results in a 70 to 85% reduction in source code while automatically includ-

ing the appropriate error-checking code. This virtually eliminates the possibility of

divide by zero, missing input and other common programming errors.

6.7 Qualitative Results

One of the major goals of this research is to create a tool that is easy to understand.

As we have seen from the developers and students surveyed CABERNET scored

very well in this respect (see Section 6.3). On average on a scale of 1 to 10 CABER-

NET received a score of 7.75 for easy to understand. This is very favorable when

compared with an average score of 5.53 and 6.26 for Swift and SwiftUI, respectively.

This is even more apparent when we see that 80% of the easy-to-understand scores

for CABERNET were 7 or higher. This compares to 46% and 52% of the scores for

Swift and SwiftUI respectively were 7 or higher. These results were consistent for

both the group identifying as students and those identifying as developers.

Being easy to understand can be interpreted as being limited to reading some-

one else’s code. It is also important that a developer be able to use the tool. To do

this requires that they have confidence they understand the code and can repro-

duce applications. As we saw from the survey results, (see Section 6.4) the survey

respondents had that confidence. They gave CABERNET an average score of 6.75

compared with 5.80 and 6.30 for Swift and SwiftUI respectively. So, they found

53

the code significantly easier to understand and they were confident of their under-

standing.

54

Chapter 7

Discussion

7.1 State of Research

The effort to date includes the development of the CABERNET prototype as de-

scribed above. Additionally, we have completed the comparison of that prototype

against Swift and SwiftUI development tools. This comparison is described in this

document. The feedback from survey participants has been generally favorable

(see Section 6.5).

One area of concern expressed by the survey participants involved the preci-

sion and granularity of control provided to the developer. 36% of the comments

expressed concern about being able to control the program result with precision.

This makes sense since CABERNET allows a programmer to make use of the flex-

ible nomenclature to generate the program. Traditional programming languages

provide a limited vocabulary with a single result for each input. Since CABERNET

allows for multiple alternate inputs, this one-to-one relationship no longer exists.

Additionally, since CABERNET depends upon templates to generate the end pro-

gram, there is the question of how the programmer can deal with variations from

those templates. This has been a common theme since the beginning of computer

programming. Early programming attempts involved direct machine language in-

put. As programming languages evolved, the developer had less direct control

55

over the details of the application. The tension between the productivity offered

by continually higher-level programming tools and the precise control offered by

lower-level tools has defined the progress of program development methodologies.

Some of the survey comments suggested that CABERNET might be best suited

for application prototyping or end-user programming. These are understandable

suggestions. Both of these domains can benefit from rapid application develop-

ment. They also can benefit from the simplicity that CABERNET provides without

being limited by the limited precision of control provided.

7.2 Preliminary Work

I have published several papers that document some of the progress of this effort.

All of this research has focused on improving developer efficacy. Early research

involved the use of type inference to detect anomalies in dynamic language pro-

grams. This approach showed promise and was effective in identifying errors in

dynamic language-based programs. This paper, titled Anomaly detection in dynamic

programming languages through heuristics based type inference, was presented at the

2017 Computing Conference [59].

Subsequent work has taken the use of inference and applied it to a controlled

natural language-based programming approach as described in this proposal. I

have published two papers on this work. The first of these papers, titled Code Gen-

eration Based on Inference and Controlled Natural Language Input, I presented at the 6th

International Conference on Software Engineering (SOFE 2020) [60]. Subsequently,

a paper covering additional progress on this research, titled Programmer Produc-

tivity Enhancement Through Controlled Natural Language Input, was published in the

International Journal of Software Engineering and Applications [61].

56

My most recent paper titled Code Generation Based on Controlled Natural Language

Input has been accepted for presentation and subsequent publication at the 8th In-

ternational Conference on Software Engineering (SOEN 2023). This paper covers the

current state of this work. This conference will take place in Toronto, Canada on

July 22 through 23, 2023.

7.3 Future Direction

The described approach represents just one implementation of a family of lan-

guages that can address a wide range of programming environments. Because

we are approaching the specific needs of program development, we can avoid the

complexity of general-purpose natural language implementations. Search and re-

flection allow for multiple and new targets without having to generate all the back-

ground equivalences. The approach lends itself to growth and evolution to address

new and more difficult challenges.

While the existing research is focused on mobile device development, this ap-

proach has a much broader potential application. It is easy to see how this same ap-

proach can be applied to any number of GUI-based development targets. Beyond

that, this overall approach can be utilized for any number of development appli-

cations. The combination of outline-based input with each outline bullet handling

a single issue of interest can be applied to any number of applications. Combin-

ing that with a simplified natural language syntax and allowing for programmer

feedback makes the potential number of applications very broad.

The approach results in a lower cognitive barrier for new programmers. At the

same time, it allows for significant productivity improvements for experienced de-

velopers. The simplicity and natural form of the tool make the development process

much more approachable. By utilizing templates, synonyms, a search of API, and

57

reflection methodologies, this approach allows for CNL-based code to generate ap-

plications for other platforms.

As we pursued this research, we envisioned utilizing search techniques to har-

vest the required information from new domains and application targets. This is a

potential goal for the future. Our ability to accomplish this is dependent upon the

quality and organization of the documentation for the target domain. As the qual-

ity of tools for understanding natural language, and input improves this becomes a

more realistic goal. In reviewing the documentation of Swift and SwiftUI we have

found that it is more suitable for human consumption than for programmatically

extracting the required information. As a result, we have elected to not implement

this as part of the current effort.

58

Chapter 8

Related Work

8.1 Programmer Productivity

The underlying goal of our research is to improve the productivity of program de-

velopers. Of course, the first challenge is to define what we mean by productivity.

We view productivity as the quantity of defect-free functionality a developer can

produce per unit of time or effort. How do we evaluate that productivity? It is a

common belief that productivity varies between program developers by as much

as 10:1. While program developer skills affect productivity, it is but one factor in

determining the process’s productivity. Lutz Prechelt [62] highlights the wide va-

riety of things that affect the program development process’s overall productivity.

The choice of programming language [63] is a significant element in determining

the productivity of the overall process. These evaluations involve comparing tradi-

tional languages like C and Java vs. scripting languages like Python and Perl. This

work found that the scripting languages resulted in shorter programs and shorter

development efforts. At the same time, the run-time performance did not suffer as

a result of using scripting languages. These comparisons involve programs that do

not involve GUI development. On the other hand, our effort does involve GUI, but

we believe the conclusions are the same.

59

In his research, William Nichols [64] showed that the relationship between pro-

grammers and productivity was weak. He found a high degree of variability in

programmer productivity across a range of tasks. In comparing developers’ per-

formance on a range of tasks, only half of the variation could be attributed to the

differences between programmers. If programmer skill is not the overwhelming

predictor of development, then we must consider other things when attempting to

improve the productivity of the development process.

8.2 Next Paradigm Programming Languages

Yannis Smaragdakis [65] considered how next-generation programming languages

will change to support significant productivity improvements. This research is

based on the author’s experiences developing using DataLog (a declarative lan-

guage based on ProLog). His conclusions are heavily influenced by the belief that

future languages will depend upon the compiler (or interpreter) to perform the

heavy lifting behind the scenes. The programmer will specify their desired result

in the programming language, and the tool (compiler or interpreter) will deter-

mine the methods required to achieve those goals. This conclusion aligns with our

approach for CABERNET.

Pane, Ratanamahatan, and Myers [66] studied how non-programmers describe

problems and how programming languages expect them to be described. This

study documents an understanding of things that future programming languages

can utilize to try and reduce that gap. It provides background information from

which we can draw in the development of CABERNET.

Jia-Jun Li et al. [67] offers a generalized approach to end-user-development,

60

which combines natural language programming with Programming by Demonstra-

tion. This approach allows end-users to demonstrate behavior by recording inter-

actions with example applications. The PUMICE tool presented in this research

is powerful in the conversion of the demonstration into a generalized user appli-

cation. However, this tool is intended for the automation of end-user tasks, not

application development. This approach requires the user to provide an applica-

tion to use as the demonstration platform. This limits the scope of development to

interactions with existing or similar applications. CABERNET, on the other hand,

allows for the development of new concepts and allows the developer to provide

clarification where required because of feedback from the development tool.

8.3 Natural Programming Languages

The use of natural language input as a programming language has long been envi-

sioned. To date, none of these efforts have been accepted by mainstream program-

ming applications. Good and Howland [68] explored the use of natural languages

for teaching programming or computational thinking. This research involves a

study of the role-playing game toolkit for Neverwinter Nights 2. The program as

shipped allows the creation of scenarios using NWScript, an Electron tool-set-based

programming tool. The researchers studied users’ programming with NWScript

and then using natural-language-based input. They evaluated the ability of non-

programmers to script events using NWScript and natural language. They found

that none of the users were able to script their events with the NWScript tool suc-

cessfully. When using unconstrained natural language, they found significant con-

fusion about how to formulate input. After several iterations of more constrained

input methods, their final solution involved a hybrid graphical-textual-based pro-

gramming tool. Their conclusion was the unconstrained natural-language-based

61

programming was not successful for these non-programmers. They concluded

that it was necessary to utilize the graphical tool’s enhanced structure and pro-

vide meaningful feedback to the programmer throughout the coding process. Our

approach also recognizes that unconstrained natural language can be confusing for

users. However, rather than taking the hybrid approach proposed by Good and

Howland, we chose to implement a more focused application of natural language,

which allows us to make inferences by the context of the individual natural lan-

guage phrases.

Gao [69] presents a survey of Controlled Natural Languages (CNL) used for

machine-oriented applications. This work includes consideration of Attempto Con-

trolled English (ACE), Processable English (PENG,) and Computer-processable En-

glish (CPL). This paper demonstrates the capability of these languages to describe

a system of logic. From this research, it is clear that these CNLs make their inputs

very constrained and impose a rigid set of rules. These limitations are necessary

to enable direct translation to machine-processable logic. The result is a much less

natural syntax that imposes rules not that dissimilar to traditional programming

languages. At the same time, the resulting languages that are suited to expres-

sions of logic are less appropriate for describing the actions involved in a computer

program. Our application, on the other hand, is looking to describe computer ap-

plications.

Nadkarni et al. [70] present a technique for converting English-like algorithms

into C code. Like our proposal, this approach allows for synonyms and can learn

from personalized training with individual programmers. However, their algo-

rithms’ syntax is more like pseudo-code than English (see example in Listing 8.1).

Like NaturalJava [15] and NLP (Natural Language Processing) for NLP (Natural

62

Language Programming) [71], the input for this approach is still very programming-

language-like and of limited scope.

1 define integer rem

2 input an integer n

3 rem = n mod 2

4 if rem equal to 0 then

5 end if

6 else

7 display ’Given number is odd’

8 end else

LISTING 8.1: Example of “Semi-Natural Language Algorithm to

Programming Language Interpreter”.

Wang, Ginn, et al. [72] have applied the concept of a language that learns from

the programmers to Natural Language input. This approach is conceptually sim-

ilar to our vision for CABERNET. The programmer can specify the notation they

want to use to describe various actions that the program needs to take in their ap-

proach. In this way, the program compiler/interpreter continually learns from the

programmer to the point where most of the programs in their research were based

on this user-defined notation. Their research involves game-based programming

where users provide instructions for building objects. This work demonstrates how

natural language programming can be effective when it grows based on user input.

The work to date is limited in scope but does help show direction for the future.

Our application is much broader in scope as we are using CABERNET to create full

programs. In CABERNET, we start with a natural language interpreter and allow

that interpreter to grow and improve based on programmer input, much like the

Dependency-based Action Language (DAL) in Wang, Ginn et al.’s research.

63

8.4 Code Snippets

One of the most common processes used by developers is searching online devel-

opment resources to identify approaches to solving specific problems. If productiv-

ity is the number of program functions that a developer produces per unit of time,

then improving that developer’s access to example code and solutions to specific

programming problems is a means of improving their productivity. StackOverflow

is a site frequented by many programmers seeking to find answers to their pro-

gramming questions. Yan et al. [73] created a tool called CosBench, which combines

natural language input with a dataset of previous projects and other resources to

provide programmers with answers to their programming questions. CosBench

takes natural language input and searches for code snippets that are relevant to the

search criteria. They compared their results with six other tools attempting to do

the same thing. In a survey article, Allamanis et al. [74] identified a depth of work

undertaking this same approach. This provides an interesting tool to find solutions

to programming problems but is not a programming methodology in itself.

64

Chapter 9

Conclusions

9.1 Conclusion

9.1.1 Contribution to Computer Science

Natural-language-based programming has long been envisioned as a desirable ap-

proach to program development. As discussed, this is an approach that has been

previously tried but has not been effectively executed. This research envisioned an

implementation of a natural-language-based technique that could be utilized as a

general-purpose programming tool.

This work has shown that there is potential for a CNL-based programming tool.

CABERNET has demonstrated a programming approach that is easy for both de-

velopers and students to understand. The tool is significantly more concise than the

present common programming techniques for mobile device development. It also

incorporates common error-checking techniques without burdening the developer

with their implementation.

9.1.2 Results

The described approach involves the use of a Controlled Natural Language to cre-

ate programs. The code is human readable and self-documenting and lends itself to

65

modern agile programming methodologies. Using defaults and templates, the re-

quired code is succinct and allows the system to fill in many of the details. The result is a

very terse source code with detail only included where needed to provide informa-

tion for the program execution. Our approach significantly simplifies the required

code reducing the code size by a factor of up to 7 to 1. Not only is there significantly

less code, but the content of the program is significantly easier to read and under-

stand. Developers and students that have reviewed examples of these applications

have expressed concerns about the granularity of control the programming tool

provides. Based on the review and understanding of this feedback, we believe this

technique may be most suitable for application in development prototyping and

end-user programming.

While this technique is not a solution for all problems it does provide significant

benefits for the right problem space. This is a win/win proposition.

• Shorter programs

• Easier to read

• Flexible syntax

• Collaborative interaction with programmer

• Learns from programmer feedback

In summary, a valuable development tool for programmers of all capability

levels.

66

Appendix A

Code of Example Application

1 # App

2 ## Scene

3 * home

4 ### "Contacts"

5 ### "Tip Calc"

6 * to calc

7 ### "First name"

8 * blank

9 ### "Last name"

10 * blank

11 ### "Company"

12 * blank

13 * background green , blue

14 ### "City"

15 * blank

16 ### "State"

17 * xx

18 ### "Zip Code"

19 * xxxxx -xxxx

20 ### "Mobile phone"

21 * (xxx) xxx -xxxx

22 ### "Email"

23 * blank

24 ### "Birthday"

67

25 * mm/dd/yyyy

26 ### "Business contact"

27 * option selected

28 ### "Favorite"

29 * option

30 * italic , red

31 ## Screen

32 * calc

33 ### "Tip Calculator"

34 ### "Calculate"

35 * calculate Each Pay This

36 #### "Cancel"

37 * cancel entry

38 ### "Bill amount"

39 * blank

40 ### "Split"

41 * blank

42 ### "Tip Percentage"

43 * blank

44 ### "Each Pay This"

45 * (Multiply Bill amount by Tip Percentage / 100 plus Bill amount

) divided by Split

68

Appendix B

Examples for Survey

B.1 Example 1, Tip Calculator, Screenshot

69

B.2 Example 1, Tip Calculator, CABERNET Source Code

1 # App

2 ## Scene

3 * tipcalc

4 ### "Tip Calculator"

5 ### "Calculate"

6 * calculate Each Pay This

7 ### "Bill amount"

8 * enter amount of bill

9 ### "Split"

10 * enter number paying

11 ### "Tip Percentage"

12 * enter percentage tip

13 ### "Each Pay This"

14 * (Multiply Bill amount by Tip Percentage / 100 plus Bill amount

) divided by Split

70

B.3 Example 1, Tip Calculator, Swift Source Code

1 import UIKit

2

3 class TipcalcView: UIViewController {

4 var field3: UITextField!

5 var field4: UITextField!

6 var field5: UITextField!

7 var field6: UILabel!

8 override func viewDidLoad () {

9 super.viewDidLoad ()

10 view.isOpaque = true

11 view.backgroundColor = .white

12

13 let label1 = UILabel(frame:CGRect(x:0,

14 y:35 * 1,

15 width:self.view.bounds.maxX

* 1,

16 height :100))

17 label1.text = "Tip Calculator"

18 label1.textAlignment = .center

19 label1.font = .boldSystemFont(ofSize :30.0)

20 label1.isHighlighted = true

21 self.view.addSubview(label1)

22

23 let button2 = UIButton(type: .system)

24 button2.setTitle("Calculate", for:. normal)

25 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

26 y:35 * 3,

27 width:self.view.bounds.maxX * 0.5,

28 height :30)

29 button2.titleLabel ?. textAlignment = .left

30 button2.addTarget(self , action: #selector(processEachPayThis),

for: .touchDown)

71

31 self.view.addSubview(button2)

32

33 let label3 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

34 y:35 * 4,

35 width:self.view.bounds.maxX

* 0.3,

36 height :25))

37 field3 = UITextField(frame:CGRect(x:self.view.bounds.maxX *

0.4,

38 y:35 * 4,

39 width:self.view.bounds.maxX

* 0.55,

40 height :25))

41 label3.text = "Bill amount"

42 label3.textAlignment = .right

43 label3.textColor = .black

44 label3.font = .boldSystemFont(ofSize :16.0)

45 field3.placeholder = "enter amount of bill"

46 field3.backgroundColor = .white

47 field3.borderStyle = .line

48 self.view.addSubview(field3)

49 self.view.addSubview(label3)

50

51 let label4 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

52 y:35 * 5,

53 width:self.view.bounds.maxX

* 0.3,

54 height :25))

55 field4 = UITextField(frame:CGRect(x:self.view.bounds.maxX *

0.4,

56 y:35 * 5,

57 width:self.view.bounds.maxX

* 0.55,

72

58 height :25))

59 label4.text = "Split"

60 label4.textAlignment = .right

61 label4.textColor = .black

62 label4.font = .boldSystemFont(ofSize :16.0)

63 field4.placeholder = "enter number paying"

64 field4.backgroundColor = .white

65 field4.borderStyle = .line

66 self.view.addSubview(field4)

67 self.view.addSubview(label4)

68

69 let label5 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

70 y:35 * 6,

71 width:self.view.bounds.maxX

* 0.3,

72 height :25))

73 field5 = UITextField(frame:CGRect(x:self.view.bounds.maxX *

0.4,

74 y:35 * 6,

75 width:self.view.bounds.maxX

* 0.55,

76 height :25))

77 label5.text = "Tip Percent"

78 label5.textAlignment = .right

79 label5.textColor = .black

80 label5.font = .boldSystemFont(ofSize :16.0)

81 field5.placeholder = "enter percentage tip"

82 field5.backgroundColor = .white

83 field5.borderStyle = .line

84 self.view.addSubview(field5)

85 self.view.addSubview(label5)

86

87 let label6 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

73

88 y:35 * 7,

89 width:self.view.bounds.maxX

* 0.3,

90 height :25))

91 field6 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.4,

92 y:35 * 7,

93 width:self.view.bounds.maxX *

0.55,

94 height :25))

95 label6.text = "Each pay this"

96 label6.textAlignment = .right

97 label6.textColor = .black

98 label6.font = .boldSystemFont(ofSize :16.0)

99 field6.backgroundColor = .white

100 self.view.addSubview(field6)

101 self.view.addSubview(label6)

102 }

103

104 @IBAction func doDismiss(_ sender: Any?) {

105 self.presentingViewController ?. dismiss(animated: false)

106 }

107 @objc func processEachPayThis () {

108 if let field3_text = field3.text {

109 if let field3_float = Float(field3_text){

110 if let field5_text = field5.text {

111 if let field5_float = Float(field5_text){

112 if let field4_text = field4.text {

113 if let field4_float = Float(field4_text){

114 field6.text = String ((field6_float*

field5_float /100+ field3_float)/

field4_float)

115 }

116 }

117 }

118 }

74

119 }

120 }

121 }

122 }

75

B.4 Example 1, Tip Calculator, SwiftUI Source Code

1 import SwiftUI

2

3 struct TipcalcView: View {

4 @State var field3: String = ""

5 @State var field4: String = ""

6 @State var field5: String = ""

7 @State var field6: String = ""

8 var body: some View {

9 NavigationView {

10 VStack {

11 VStack {

12 Text("Tip Calculator")

13 .font(. largeTitle)

14 HStack {

15 Button(action: {

16 self.processEachPayThis ()

17 }) {

18 (Text("Calculate"))

19 }

20 }

21 HStack {

22 Text("Bill amount")

23 Spacer ()

24 TextField("enter amount of bill", text:

$field3)

25 .frame(width: 240)

26 .multilineTextAlignment (. center)

27 .border(Color.black)

28 }

29 HStack {

30 Text("Split")

31 Spacer ()

76

32 TextField("enter number paying", text: $field4

)

33 .frame(width: 240)

34 .multilineTextAlignment (. center)

35 .border(Color.black)

36 }

37 HStack {

38 Text("Tip Percent")

39 Spacer ()

40 TextField("enter percentage tip", text:

$field5)

41 .frame(width: 240)

42 .multilineTextAlignment (. center)

43 .border(Color.black)

44 }

45 HStack {

46 Text("Each pay this")

47 Spacer ()

48 TextField("", text: $field6)

49 .frame(width: 240)

50 .multilineTextAlignment (. center)

51 .disabled(true)

52 }

53 }

54 Spacer ()

55 }

56 .padding ()

57 }

58 }

59

60 private func processEachPayThis () {

61 let int_field3 = Int(field3) ?? 0

62 let int_field5 = Int(field5) ?? 0

63 let int_field4 = Int(field4) ?? 0

64 if int_field4 != 0 {

77

65 field6 = String ((int_field3 * int_field5 / 100 +

int_field3) / int_field4)

66 }

67 else {

68 field6 = ""

69 }

70 }

71 }

72 struct TipcalcView_Previews: PreviewProvider {

73 static var previews: some View {

74 TipcalcView ()

75 }

76 }

78

B.5 Example 2, Real Estate App, Screenshot, page 1 of 2

79

B.6 Example 2, Real Estate App, Screenshot, page 2 of 2

80

B.7 Example 2, Real Estate App, CABERNET Source Code

1 # App

2 ## Scene

3 * home

4 ### "Home Listing"

5 ### "Acreage Calculator"

6 * to acregecalc

7 ### "Owner Name"

8 * enter some text

9 ### "City"

10 * enter some text

11 ### "State"

12 * xx

13 ### "Zip Code"

14 * xxxxx -xxxx

15 ### "Active Listing"

16 * option selected

17 ## Screen

18 * acreagecalc

19 ### "Acreage Calculator"

20 ### "Calculate"

21 * calculate Lot Acreage

22 ### "Cancel"

23 * cancel entry

24 ### "Lot Width"

25 * enter some text

26 ### "Lot Depth"

27 * enter some text

28 ### "Lot Acreage"

29 * Multiply Lot Width by Lot Depth / 43560

81

B.8 Example 2, Real Estate App, Swift Source Code

1 import UIKit

2

3 class ContentView: UIViewController {

4 var field3: UITextField!

5 var field4: UITextField!

6 var field5: UITextField!

7 var field6: UITextField!

8 var switch7: Bool!

9 override func viewDidLoad () {

10 super.viewDidLoad ()

11 view.isOpaque = true

12 view.backgroundColor = .white

13

14 let label1 = UILabel(frame:CGRect(x:0,

15 y:35 * 1,

16 width:self.view.bounds.maxX

* 1,

17 height :100))

18 label1.text = "Home Listing"

19 label1.textAlignment = .center

20 label1.font = .boldSystemFont(ofSize :30.0)

21 label1.isHighlighted = true

22 self.view.addSubview(label1)

23

24 let button2 = UIButton(type: .system)

25 button2.setTitle("Acreage Calculator", for:. normal)

26 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

27 y:35 * 3,

28 width:self.view.bounds.maxX * 1,

29 height :30)

30 button2.titleLabel ?. textAlignment = .left

82

31 button2.addTarget(self , action: #selector(gotoAcreagecalcView)

, for: . touchDown)

32 self.view.addSubview(button2)

33

34 let label3 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.0,

35 y:35 * 4,

36 width:self.view.bounds.maxX *

0.3,

37 height :25))

38 field3 = UITextField(frame:CGRect(x:self.view.bounds.maxX * 0.4,

39 y:35 * 4,

40 width:self.view.bounds.maxX *

0.55,

41 height :25))

42 label3.text = "Owner Name"

43 label3.textAlignment = .right

44 label3.textColor = .black

45 label3.font = .boldSystemFont(ofSize :16.0)

46 field3.placeholder = "enter some text"

47 field3.backgroundColor = .white

48 field3.borderStyle = .line

49 self.view.addSubview(field3)

50 self.view.addSubview(label3)

51

52 let label4 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.0,

53 y:35 * 5,

54 width:self.view.bounds.maxX *

0.3,

55 height :25))

56 field4 = UITextField(frame:CGRect(x:self.view.bounds.maxX * 0.4,

57 y:35 * 5,

58 width:self.view.bounds.maxX *

0.55,

59 height :25))

60 label4.text = "City"

83

61 label4.textAlignment = .right

62 label4.textColor = .black

63 label4.font = .boldSystemFont(ofSize :16.0)

64 field4.placeholder = "enter some text"

65 field4.backgroundColor = .white

66 filed4.borderStyle = .line

67 self.view.addSubview(field4)

68 self.view.addSubview(label4)

69

70 let label5 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.0,

71 y:35 * 6,

72 width:self.view.bounds.maxX *

0.3,

73 height :25))

74 field5 = UITextField(frame:CGRect(x:self.view.bounds.maxX * 0.4,

75 y:35 * 6,

76 width:self.view.bounds.maxX *

0.55,

77 height :25))

78 label5.text = "State"

79 label5.textAlignment = .right

80 label5.textColor = .black

81 label5.font = .boldSystemFont(ofSize :16.0)

82 field5.placeholder = "xx"

83 field5.backgroundColor = .white

84 field5.borderStyle = .line

85 self.view.addSubview(field5)

86 self.view.addSubview(label5)

87

88 let label6 UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.0,

89 y:35 * 7,

90 width:self.view.bounds.maxX * 0.3,

91 height :25))

92 field6 = UITextField(frame:CGRect(x:self.view.bounds.maxX * 0.4,

93 y:35 * 7,

84

94 width:self.view.bounds.maxX *

0.55,

95 height :25))

96 label6.text = "Zip Code"

97 label6.textAlignment = .right

98 label6.textColor = .black

99 label6.font = .boldSystemfont(ofSize :16.0)

100 field6.placeholder = "xxxxx xxxx"

101 field6.backgroundColor = .white

102 field6.borderStyle = .line

103 self.view.addSubview(field6)

104 self.view.addSubview(label6)

105

106 let label7 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.0,

107 y:35 * 8,

108 width:self.view.bound.maxX *

0.5,

109 height :25))

110 let switch7 = UISwitch(frame:CGRect(x:self.view.bounds.maxX * 0.6,

111 y:35 * 8,

112 width:self.view.bounds.maxX *

0.35,

113 height :25))

114 label7.text = "Active Listing"

115 label7.textAlignment = .right

116 label7.textColor = .black

117 label7.font = .italicSystemFont(ofSize :16.0)

118 switch7.isOn = true

119 self.view.addSubview(switch7)

120 self.view.addSubview(label7)

121

122 }

123

124 @IBAction func doDismiss(_ sender: Any?) {

125 self.presentingViewController ?. dismiss(animated: false)

85

126 }

127

128 @objc func gotoAcreagecalcView () {

129 let svc = AcreagecalcView(nibName: nil , bundle: nil)

130 svc.modalPresentationStyle = .fullScreen

131 self.present(svc , animated: false)

132 }

133

134 }

86

B.9 Example 2, Real Estate App, Swift Acreage Calculator

Source Code

1 import UIKit

2

3 class AcreagecalcView: UIViewController {

4 var field4: UITextField!

5 var field5: UITextField!

6 var field6 UILabel!

7 override func viewDidLoad () {

8 super.viewDidLoad ()

9 view.isOpaque = true

10 view.backgroundColor = .white

11

12 let label1 = UILabel(frame:CGRect(x:0,

13 y:35 * 1,

14 width:self.view.bounds.maxX

* 1,

15 height :100))

16 label1.text = "Acreage Calculator"

17 label1.textAlignment = .center

18 label1.font = .boldSystemFont(ofSize :30.0)

19 label1.isHighlighted = true

20 self.view.addSubview(label1)

21

22 let button2 = UIButton(type: .system)

23 button2.setTitle("Calculate", for:. normal)

24 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

25 y:35 * 3,

26 width:self.view.bounds.maxX * 0.5,

27 height :30)

28 button2.titleLabel ?. textAlignment = .left

29 button2.addTarget(self , action: #selector(processLotAcreage),

for: .touchDown)

87

30 self.view.addSubview(button2)

31

32 let button3 = UIButton(type: .system)

33 button3.setTitle("Cancel", for:. normal)

34 button3.frame = CGRect(x:self.view.bounds.maxX * 0.5,

35 y:35 * 3,

36 width:self.view.bounds.maxX * 0.5,

37 height :30)

38 button3.titleLabel ?. textAlignment = .left

39 button3.addTarget(self , action: #selector(doDismiss(_:)),for:

.touchDown)

40 self.view.addSubview(button3)

41

42 let label4 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

43 y:35 * 4,

44 width:self.view.bounds.maxX

* 0.3,

45 height :25))

46 field4 = UITextField(frame:CGRect(x:self.view.bounds.maxX *

0.0,

47 y:35 * 4,

48 width:self.view.bounds.maxX

* 0.55,

49 height :2))

50 label4.text "Lot Width"

51 label4.textAlignment = .right

52 label4.textColor = .black

53 label4.font = .boldSystemFont(ofSize :16.0)

54 field4.placeholder = "enter some text"

55 field4.backgroundColor = .white

56 field4.borderStyle = .line

57 self.view.addSubview(field4)

58 self.view.addSubview(label4)

59

88

60 let label5 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

61 y:35 * 5,

62 width:self.view.bounds.maxX

* 0.3,

63 height :25))

64 field5 = UITextField(frame:CGRect(x:self.view.bounds.maxX *

0.4,

65 y:35 * 5,

66 width:self.view.bounds.maxX

* 0.55,

67 height :25))

68 label5.text = "Lot Depth"

69 label5.textAlignment = .right

70 label5.textColor = .black

71 label5.font = .boldSystemFont(ofSize :16.0)

72 field5.placeholder = "enter some text"

73 field5.backgroundColor = .white

74 field5.borderStyle = .line

75 self.view.addSubview(field5)

76 self.view.addSubview(label5)

77

78 let label6 = UILabel(frame:CGRect(x:self.view.bounds.maxX *

0.0,

79 y:35 * 6,

80 width:self.view.bounds.maxX

* 0.3,

81 height :25))

82 field6 = UILabel(frame:CGRect(x:self.view.bounds.maxX * 0.4,

83 y:35 * 6,

84 width:self.view.bounds.maxX *

0.55,

85 height :25))

86 label6.text = "Lot Acreage"

87 label6.textAlignment = .right

89

88 label6.textColor = .black

89 label6.font = .boldSystemFont(ofSize :16.0)

90 field6.backgroundColor = .white

91 self.view.addSubview(field6)

92 self.view.addSubview(label6)

93

94 }

95

96 @IBAction func doDismiss(_ sender: Any?) {

97 self.presentingViewController ?. dismiss(animated: false)

98 }

99 @objc func processLotAcreage () {

100 if let field4_text = field4.text {

101 if let field4_float = Float(field4_text){

102 if let field5_text = field5.text {

103 if let field5_float = Float(field5_text){

104 field6.text = String(field4_float*field5_float

/43560)

105 }

106 }

107 }

108 }

109 }

110 }

90

B.10 Example 2, Real Estate App, SwiftUI Source Code

1 import SwiftUI

2

3 struct ContentView: View {

4 @State var field3: String = ""

5 @State var field4: String = ""

6 @State var field5: String = ""

7 @State var field6: String = ""

8 @State var switch7: Bool = false

9 var body: some View {

10 NavigationView {

11 VStack {

12 VStack {

13 Text("Home Listing")

14 .font(. largeTitle)

15 HStack {

16 NavigationLink(destination: AcreagecalcView ())

{

17 Text("Acreage Calculator")

18 }

19 }

20 HStack {

21 Text("Owner Name")

22 Spacer ()

23 TextField("enter some text", text: $field3)

24 .frame(width: 240)

25 .multilineTextAlignment (. center)

26 .border(Color.black)

27 }

28 HStack {

29 Text("City")

30 Spacer ()

31 TextField("enter some text", text: $field4)

91

32 .frame(width: 240)

33 .multilineTextAligment (. center)

34 .border(Color.black)

35 }

36 HStack {

37 Text("State")

38 Spacer ()

39 TextField("xx", text: $field5)

40 .frame(width: 240)

41 .multilineTextAlignment (. center)

42 .border(Color.black)

43 }

44 HStack {

45 Text("Zip Code")

46 Spacer ()

47 TextField("xxxxx xxxx", text:$field6)

48 .frame(width: 240)

49 .multilineTextAlignment (. center)

50 .border(Color.black)

51 }

52 Toggle(isOn: $switch7){

53 Text("Active Listing")

54 }

55 }

56 Spacer ()

57 }

58 .padding ()

59 }

60 }

61 }

62 struct ContentView_Previews: PreviewProvider {

63 static var previews: some View {

64 ContentView ()

65 }

66 }

92

B.11 Example 2, Real Estate App, SwiftUI Acreage Calcula-

tor Source Code

1 import SwiftUI

2

3 struct AcreagecalcView: View {

4 @State var field4: String = ""

5 @State var field5: String = ""

6 @State var field6: String = ""

7 var body: some View {

8 NavigationView {

9 VStack {

10 VStack {

11 Text("Acreage Calculator")

12 .font(. largeTitle)

13 HStack {

14 Button(action: {

15 self.processLotAcreage ()

16 }) {

17 (Text("Calculate"))

18 }

19 }

20 HStack {

21 Text("Lot Width")

22 Spacer ()

23 TextField("enter some text", text: $field4)

24 .frame(width: 240)

25 .multilineTextAlignment (. center)

26 .border(Color.black)

27 }

28 HStack {

29 Text("Lot Depth")

30 Spacer ()

31 TextField("enter some text", text: $field5)

93

32 .frame(width: 240)

33 .multilineTextAlignment (. center)

34 .border(Color.black)

35 }

36 HStack {

37 Text("Lot Acreage")

38 Space ()

39 TextField("", text: $field6)

40 .frame(width: 240)

41 multilineTextAlignment (. center)

42 .disabled(true)

43 }

44 }

45 Spacer ()

46 }

47 .padding ()

48 }

49 }

50

51 private func processLotAcreage () {

52 let float_field4 = Float(field4) ?? 0

53 let fload_field5 = Float(field5) ?? 0

54 field6 = String(float_field4 * float_field5 / 43560)

55 }

56 }

57 struct AcreagecalcView_Previews: PreviewProvider {

58 static var previews: some View {

59 AcreagecalcView ()

60 }

61 }

94

B.12 Example 3, Real Estate App with Logic, CABERNET

Source Code

1 # App

2 ## Scene

3 * home

4 ### "Home Listing"

5 ### "Acreage Calculator"

6 * to acregecalc

7 ### "Owner Name"

8 * enter some text

9 * when equals " " background yellow

10 ### "City"

11 * enter some text

12 ### "State"

13 * xx

14 ### "Zip Code"

15 * xxxxx -xxxx

16 ### "Active Listing"

17 * option selected

18 ## Screen

19 * acreagecalc

20 ### "Acreage Calculator"

21 ### "Calculate"

22 * calculate Lot Acreage

23 ### "Cancel"

24 * cancel entry

25 ### "Lot Width"

26 * enter some text

27 ### "Lot Depth"

28 * enter some text

29 ### "Lot Acreage"

30 * Multiply Lot Width by Lot Depth / 43560

95

B.13 Example 3, Real Estate App with Logic, SwiftUI Source

Code

1 import SwiftUI

2

3 struct ContentView: View {

4 @State var field3: String = ""

5 @State var field4: String = ""

6 @State var field5: String = ""

7 @State var field6: String = ""

8 @State var switch7: Bool = false

9 var body: some View {

10 NavigationView {

11 VStack {

12 VStack {

13 Text("Home Listing")

14 .font(. largeTitle)

15 HStack {

16 NavigationLink(destination: AcreagecalcView ())

{

17 Text("Acreage Calculator")

18 }

19 }

20 if field3 == "" {

21 HStack {

22 Text("Owner Name")

23 Spacer ()

24 TextField("enter some text", text: $field3

)

25 .frame(width: 240)

26 .multilineTextAlignment (. center)

27 .border(Color.black)

28 .background(Color.yellow)

29 }

96

30 }

31 else {

32 HStack {

33 Text("Owner Name")

34 Spacer ()

35 TextField("enter some text", text: $field3

)

36 .frame(width: 240)

37 .multilineTextAlignment (. center)

38 .border(Color.black)

39 }

40 }

41 HStack {

42 Text("City")

43 Spacer ()

44 TextField("enter some text", text: $field4)

45 .frame(width: 240)

46 .multilineTextAligment (. center)

47 .border(Color.black)

48 }

49 HStack {

50 Text("State")

51 Spacer ()

52 TextField("xx", text: $field5)

53 .frame(width: 240)

54 .multilineTextAlignment (. center)

55 .border(Color.black)

56 }

57 HStack {

58 Text("Zip Code")

59 Spacer ()

60 TextField("xxxxx xxxx", text:$field6)

61 .frame(width: 240)

62 .multilineTextAlignment (. center)

63 .border(Color.black)

97

64 }

65 Toggle(isOn: $switch7){

66 Text("Active Listing")

67 }

68 }

69 Spacer ()

70 }

71 .padding ()

72 }

73 }

74 }

75 struct ContentView_Previews: PreviewProvider {

76 static var previews: some View {

77 ContentView ()

78 }

79 }

98

Appendix C

Results of Programmer Survey

99

Cabernet Model Description Language

1 / 35

Q1 Using any number from 0 to 10, where 0 is extremely difficult and 10 is
extremely easy, what number would you use to rate how easy it was for

you to understand the Cabernet source code?
Answered: 47 Skipped: 0

29.79%
14

17.02%
8

10.64%
5

23.40%
11

4.26%
2

6.38%
3

0.00%
0

2.13%
1

4.26%
2

0.00%
0

2.13%
1 47

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOTAL

.

Cabernet Model Description Language

2 / 35

Q2 Using any number from 0 to 10, where 0 is extremely difficult and 10 is
extremely easy, what number would you use to rate how easy it was for

you to understand the Swift source code?
Answered: 47 Skipped: 0

2.13%
1

4.26%
2

14.89%
7

25.53%
12

10.64%
5

8.51%
4

10.64%
5

10.64%
5

8.51%
4

2.13%
1

2.13%
1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOT

.

Cabernet Model Description Language

3 / 35

Q3 Using any number from 0 to 10, where 0 is extremely difficult and 10 is
extremely easy, what number would you use to rate how easy it was for

you to understand the SwiftUI source code?
Answered: 47 Skipped: 0

4.26%
2

8.51%
4

17.02%
8

14.89%
7

14.89%
7

12.77%
6

8.51%
4

8.51%
4

6.38%
3

2.13%
1

2.13%
1 4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOTA

.

Cabernet Model Description Language

4 / 35

Q4 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the Cabernet program behaves?
Answered: 47 Skipped: 0

6.38%
3

12.77%
6

8.51%
4

21.28%
10

19.15%
9

10.64%
5

10.64%
5

2.13%
1

0.00%
0

6.38%
3

2.13%
1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTA

.

Cabernet Model Description Language

5 / 35

Q5 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the Swift program behaves?
Answered: 47 Skipped: 0

6.38%
3

10.64%
5

8.51%
4

12.77%
6

19.15%
9

19.15%
9

8.51%
4

4.26%
2

4.26%
2

4.26%
2

2.13%
1 4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTA

.

Cabernet Model Description Language

6 / 35

Q6 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the SwiftUI program behaves?
Answered: 47 Skipped: 0

4.26%
2

10.64%
5

29.79%
14

12.77%
6

12.77%
6

8.51%
4

6.38%
3

4.26%
2

4.26%
2

2.13%
1

4.26%
2 4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTA

.

Cabernet Model Description Language

7 / 35

Q7 In the Cabernet source code what is the line number of the code that
contains the formula that defines the results of the calculation?

Answered: 47 Skipped: 0

85% Answered correctly

Cabernet Model Description Language

8 / 35

Q8 In the Swift source code what is the line number of the code that
contains the formula that defines the results of the calculation?

Answered: 47 Skipped: 0

79% Answered correctly

Cabernet Model Description Language

9 / 35

Q9 In the SwiftUI source code what is the line number of code that
contains the formula that defines the results of the calculation?

Answered: 47 Skipped: 0

79% Answered correctly

Cabernet Model Description Language

10 / 35

 6 263 47

 7 352 47

Q10 At the top of the application screen there is a button containing the
word "Calculate". The user taps this word to initiate the calculation

operation. In the Cabernet source code which lines of code define this
button?

Answered: 47 Skipped: 0

Total Respondents: 47

0 1 2 3 4 5 6 7 8 9 10

First line of
code

Last line of
code

ANSWER CHOICES AVERAGE NUMBER TOTAL NUMBER RESPONSES

First line of code

Last line of code

81% Answered correctly

Cabernet Model Description Language

11 / 35

 28 1,313 47

 39 1,853 47

Q11 At the top of the application screen there is a button containing the
word "Calculate". The user taps this word to initiate the calculation

operation. In the Swift source code which lines of code define this button?
Answered: 47 Skipped: 0

Total Respondents: 47

0 10 20 30 40 50

First line of
code

Last line of
code

ANSWER CHOICES AVERAGE NUMBER TOTAL NUMBER RESPONSES

First line of code

Last line of code

66% Answered correctly

Cabernet Model Description Language

12 / 35

 23 1,085 47

 23 1,095 47

Q12 At the top of the application screen there is a button containing the
word "Calculate". The user taps this word to initiate the calculation

operation. In the SwiftUI source code which lines of code define this
button?

Answered: 47 Skipped: 0

Total Respondents: 47

0 10 20 30 40 50

First line of
code

Last line of
code

ANSWER CHOICES AVERAGE NUMBER TOTAL NUMBER RESPONSES

First line of code

Last line of code

66% Answered correctly

Cabernet Model Description Language

13 / 35

Q13 Using any number from 0 to 10, where 0 is extremely difficult and 10
is extremely easy, what number would you use to rate how easy it was for

you to understand the Cabernet source code?
Answered: 42 Skipped: 5

14.29%
6

21.43%
9

14.29%
6

28.57%
12

7.14%
3

2.38%
1

4.76%
2

0.00%
0

2.38%
1

4.76%
2

0.00%
0 42

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOTAL

.

Cabernet Model Description Language

14 / 35

Q14 Using any number from 0 to 10, where 0 is extremely difficult and 10
is extremely easy, what number would you use to rate how easy it was for

you to understand the Swift source code?
Answered: 42 Skipped: 5

2.38%
1

7.14%
3

9.52%
4

26.19%
11

7.14%
3

7.14%
3

19.05%
8

11.90%
5

2.38%
1

4.76%
2

2.38%
1 42

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOTAL

.

Cabernet Model Description Language

15 / 35

Q15 Using any number from 0 to 10, where 0 is extremely difficult and 10
is extremely easy, what number would you use to rate how easy it was for

you to understand the SwiftUI source code?
Answered: 42 Skipped: 5

4.76%
2

4.76%
2

14.29%
6

19.05%
8

16.67%
7

16.67%
7

11.90%
5

2.38%
1

2.38%
1

4.76%
2

2.38%
1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOT

.

Cabernet Model Description Language

16 / 35

Q16 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the Cabernet program behaves?
Answered: 42 Skipped: 5

9.52%
4

14.29%
6

14.29%
6

23.81%
10

14.29%
6

9.52%
4

4.76%
2

2.38%
1

4.76%
2

2.38%
1

0.00%
0 4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTA

.

Cabernet Model Description Language

17 / 35

Q17 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the Swift program behaves?
Answered: 42 Skipped: 5

4.76%
2

11.90%
5

11.90%
5

14.29%
6

11.90%
5

11.90%
5

11.90%
5

7.14%
3

9.52%
4

4.76%
2

0.00%
0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOT

.

Cabernet Model Description Language

18 / 35

Q18 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident

are you that you understand how the SwiftUI program behaves?
Answered: 42 Skipped: 5

4.76%
2

4.76%
2

14.29%
6

19.05%
8

23.81%
10

4.76%
2

9.52%
4

9.52%
4

4.76%
2

4.76%
2

0.00%
0

42

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTAL

.

Cabernet Model Description Language

19 / 35

 10 409 42

 12 501 42

Q19 In the Cabernet source code for the real estate app which lines of
code contain the instructions for launching the acreage calculator?

Answered: 42 Skipped: 5

Total Respondents: 42

0 2 4 6 8 10 12 14 16 18 20

First line of
code

Last line of
code

ANSWER CHOICES AVERAGE NUMBER TOTAL NUMBER RESPONSES

First line of code

Last line of code

62% Answered correctly

Cabernet Model Description Language

20 / 35

100.00% 42

100.00% 42

Q20 In the Swift source code for the main real estate app which lines of
code contain the instructions for launching the acreage calculator?

Answered: 42 Skipped: 5

ANSWER CHOICES RESPONSES

First line of code

Last line of code

74% Answered correctly

Cabernet Model Description Language

21 / 35

100.00% 42

100.00% 42

Q21 In the SwiftUI source code for the main real estate app which lines of
code contain the instructions for launching the acreage calculator?

Answered: 42 Skipped: 5

ANSWER CHOICES RESPONSES

First line of code

Last line of code

36% Answered correctly

Cabernet Model Description Language

22 / 35

100.00% 42

100.00% 42

Q22 In the Cabernet source code for the real estate application which lines
of code contain the instructions for returning to the main real estate app?

Answered: 42 Skipped: 5

ANSWER CHOICES RESPONSES

First line of code

Last line of code

57% Answered correctly

Cabernet Model Description Language

23 / 35

100.00% 41

100.00% 41

Q23 In the Swift source code for the acreage calculator which lines of code
contain the instructions for returning to the main real estate app?

Answered: 41 Skipped: 6

ANSWER CHOICES RESPONSES

First line of code

Last line of code

63% Answered correctly

Cabernet Model Description Language

24 / 35

100.00% 42

100.00% 42

Q24 In the SwiftUI source code for the acreage calculator which lines of
code contain the instructions for returning to the main real estate app?

Answered: 42 Skipped: 5

ANSWER CHOICES RESPONSES

First line of code

Last line of code

21% Answered correctly
Note: this question is somewhat misleading as there are no lines of code for returning
to the main app

Cabernet Model Description Language

25 / 35

100.00% 39

100.00% 39

Q25 In the Cabernet source code for the revised real estate application
which lines of code contain the instructions for changing the color of the

owner's name field if it is left blank?
Answered: 39 Skipped: 8

ANSWER CHOICES RESPONSES

First line of code

Last line of code

87% Answered correctly

Cabernet Model Description Language

26 / 35

100.00% 39

100.00% 39

Q26 In the SwiftUI source code for the revised real estate application
which lines of code contain the instructions for changing the color of the

owner's name field if it is left blank?
Answered: 39 Skipped: 8

ANSWER CHOICES RESPONSES

First line of code

Last line of code

62% Answered correctly

Cabernet Model Description Language

27 / 35

Q27 Using any number from 0 to 10, where 0 is extremely difficult and 10
is extremely easy, what number would you use to rate how easy it was for

you to understand this change in the Cabernet source code?
Answered: 39 Skipped: 8

43.59%
17

17.95%
7

15.38%
6

2.56%
1

5.13%
2

5.13%
2

5.13%
2

2.56%
1

0.00%
0

0.00%
0

2.56%
1

39

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOTAL

.

Cabernet Model Description Language

28 / 35

Q28 Using any number from 0 to 10, where 0 is extremely difficult and 10
is extremely easy, what number would you use to rate how easy it was for

you to understand this change in the SwiftUI source code?
Answered: 39 Skipped: 8

10.26%
4

23.08%
9

17.95%
7

17.95%
7

10.26%
4

5.13%
2

10.26%
4

2.56%
1

0.00%
0

0.00%
0

2.56%
1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Extremel…

.

 10
EXTREMELY
EASY

9 8 7 6 5 4 3 2 1 0
EXTREMELY
DIFFICULT

TOT

.

Cabernet Model Description Language

29 / 35

Q29 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident
are you that you that you could add similar conditions to other fields in the

Cabernet application?
Answered: 39 Skipped: 8

23.08%
9

10.26%
4

30.77%
12

10.26%
4

7.69%
3

2.56%
1

7.69%
3

2.56%
1

0.00%
0

2.56%
1

2.56%
1

39

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTAL

.

Cabernet Model Description Language

30 / 35

Q30 Using any number from 0 to 10, where 0 is not confident at all and 10
is extremely confident, what number would you use to rate how confident
are you that you that you could add similar conditions to other fields in the

SwiftUI application?
Answered: 39 Skipped: 8

17.95%
7

12.82%
5

20.51%
8

7.69%
3

7.69%
3

10.26%
4

12.82%
5

2.56%
1

2.56%
1

0.00%
0

5.13%
2 3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 Extreme… 9 8 7

6 5 4 3

2 1 0 Not confi…

.

 10
EXTREMELY
CONFIDENT

9 8 7 6 5 4 3 2 1 0 NOT
CONFIDENT
AT ALL

TOTA

.

Cabernet Model Description Language

31 / 35

Q31 Do you have any general comments, observations or suggestions on
the Cabernet Tool?

Answered: 26 Skipped: 21

Cabernet Model Description Language

32 / 35

Q32 How would you compare the three development tools used in these
examples?

Answered: 26 Skipped: 21

Cabernet Model Description Language

33 / 35

2.56% 1

12.82% 5

74.36% 29

10.26% 4

Q33 How many years experience do you have in programming?
Answered: 39 Skipped: 8

TOTAL 39

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0 years

1 to 2 years

3 to 5 years

more than 5
years

ANSWER CHOICES RESPONSES

0 years

1 to 2 years

3 to 5 years

more than 5 years

Cabernet Model Description Language

34 / 35

2.56% 1

5.13% 2

2.56% 1

0.00% 0

97.44% 38

0.00% 0

7.69% 3

Q34 Which of the following mobile device programming environments to
you have experience in?

Answered: 39 Skipped: 8

Total Respondents: 39

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

iOS -
ObjectiveC

iOS - Swift

iOS - SwiftUI

iOS - Other

Android

Palm

Other

ANSWER CHOICES RESPONSES

iOS - ObjectiveC

iOS - Swift

iOS - SwiftUI

iOS - Other

Android

Palm

Other

Cabernet Model Description Language

35 / 35

2.56% 1

79.49% 31

17.95% 7

0.00% 0

Q35 How would you describe your level of programming ability?
Answered: 39 Skipped: 8

TOTAL 39

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Novice

Student

Developer

Architect

ANSWER CHOICES RESPONSES

Novice

Student

Developer

Architect

Appendix D

Survey Respondent Comments

135

Cabernet Model Description Language

1 / 2

Q31 Do you have any general comments, observations or suggestions on
the Cabernet Tool?

Answered: 26 Skipped: 21

RESPONSES DATE

1 It looks great. 12/7/2022 1:55 PM

2 The Cabarnet Tool greatly simplifies much of the UI components and is able to create a similar
view at a much faster rate based on the examples. However it seems to be slightly more
convoluted in terms of logic and arithmetic operations, though the syntax is still basic and
should probably not be particularly difficult to get used to. I do also wonder how the code will
be presented for significantly larger apps that use more mobile features and libraries, or if this
could just be used as a tool to go alongside Swift/SwiftUI.

12/7/2022 12:55 PM

3 For the question where it asks how it behaves, I personally think it is easier to understand this
when u see each methods implementation. Hard to understand how Cabernet tool is
implemented but easy to see how it "behaves"

12/6/2022 3:49 PM

4 It is much more readable in terms of figuring out what it is doing, and judging what the result
will look like. However, it seems harder for if I wanted to make something specific, because I
wouldn't know where to start with getting the right syntax.

12/3/2022 10:21 PM

5 It seems like it would be a pain to understand how to use fully. It can make extremely basic
designs but I fail to understand how to really use it to simplify coding. I actually prefer the
SwiftUI because it's strictly typed.

11/29/2022 3:21 PM

6 very different to how someone would typically code something 11/29/2022 12:54 PM

7 It is a good tool for logic. 11/25/2022 10:10 AM

8 seems very intuitive and concise, but sometimes it makes it hard to grasp what is happening
for someone not familiar with coding

11/23/2022 2:42 PM

9 I feel comfused when I read Cabernet code. It's too ambigus. 11/17/2022 2:02 PM

10 It is extremely easy to understand. It is similar to writing in English. 11/11/2022 11:11 PM

11 It reminds me of markdown. It feels like it would take a little bit to get a handle on it for
someone with programming experience, since it doesn't feel like a "traditional" programming
language and could have some weird syntax stuff you'd need to look at a reference sheet to
understand, but it also feels like it should be very easy to pick up and use for someone without
programming experience.

11/11/2022 6:25 PM

12 It seems like a great tool for allowing people who aren't professional programmers to design
their own apps. I am not familiar with Apple development, but it seems like a helpful tool. I
would assume that this tool couldn't make as granular of detailed changes as you could make
in Swift though.

11/10/2022 11:28 AM

13 I don't feel like I completely understand the logic of Cabernet, it looks like I'm calling methods
but I can't see the methods so I don't know the logic behind them

11/9/2022 12:09 PM

14 No. Thank you. 11/6/2022 4:45 PM

15 I think it's good if at a glance you need to tell what a program is doing but I worry how it would
perform with more complicated app interfaces. I also worry that it doesn't display enough
information, but some of that might be because I have no training with Cabernet.

11/3/2022 6:58 PM

16 Cabernet seems good for custom calculators and CRUD apps. There might already be
functionality for it, but directions that could change the UI to include images and other visual
effects would be helpful.

11/3/2022 6:43 PM

17 it felt a bit too encapsulated, I didn't feel like I was in control, I would need time to trust it does
what I want

11/3/2022 1:01 PM

Cabernet Model Description Language

2 / 2

18 The syntax may be confusing to people reading it for the first time. 11/3/2022 11:09 AM

19 When I entered "0" for first and last lines, this was to indicate that I did not know. 11/2/2022 4:15 PM

20 I understand simplicity is the main goal but I found it sometimes detrimental to understanding
exactly what is going to happen. I'm sure good documentation will help with that.

11/2/2022 3:37 PM

21 Having scope (I assume) denoted by the number of #s makes it difficult to "skim over", since
is a rather busy character and multiple of them in succession tend to blend together.

11/2/2022 3:27 PM

22 In example #1 in the Swift source code, I find the processEachPayThis() function logic
somewhat confusing. This may be due to me not actually knowing how to write in Swift, but I
think maybe there could be some improvement in how that logic is written.

11/2/2022 11:14 AM

23 I could not understand why the SwiftUI code in Example 2 did not have a "cancel" button like
the Carbernet and Swift implementations. I didn't know where the code actually specified how
to return the the Home page. Additionally, I am assuming each of the languages build its own
version of the app? As in, they aren't working together much like Java, Kotlin, and XML are
used together to make an Android app?

11/2/2022 9:58 AM

24 It is very simple and easy to understand. 11/2/2022 8:50 AM

25 I didnt know how to return to main page from the Acre calculator and it wouldnt let me leave it
blank so I just put 1, I originally would have said the cancel button but it looked like that was
just for erasing what entries you had put in already for the calculator.

10/6/2022 2:23 PM

26 I think this would be a good tool for quick form or mockup creation, but there are many things I
wonder about it. Like for these examples - can I change size of entry boxes? Can I move fields
on the screen? How would a more complicated function look? I am intrigued, but scared since
so much of the "brains" dictating things is hidden.

9/27/2022 12:57 PM

Cabernet Model Description Language

1 / 2

Q32 How would you compare the three development tools used in these
examples?

Answered: 26 Skipped: 21

RESPONSES DATE

1 Cabernet: Similar to Markdown Swift: Your basic average Kotlin or Java syntax SwiftUI: HTML-
style embedding

12/7/2022 8:28 PM

2 The first one is the easiest one for me. 12/7/2022 1:55 PM

3 Swift is currently the most popularly used language among the three, and as a result has the
deepest selection of methods and libraries that can be accessed to go very in-depth with
developing an app. The SwiftUI seeks to build upon this and make it slightly easier to build a
view for a fragment, though it looks to have less customization capabilities. Cabarnet creates
views with significantly less lines of code than either of the former languages, though based on
the examples it has not shown how it will stack up for more advanced apps. There is also
some concern with how it will handle more complex logic and how easy it may be to trace the
code with the monotnous way it is written.

12/7/2022 12:55 PM

4 I compared certain sections of code to one another 12/6/2022 3:49 PM

5 It seems like the Swift code was the least abstract and the Cabernet was the most abstract,
with SwiftUI in between. I think the more abstract code types were easier to read to figure out
how they worked, but if I was implementing an app myself the less abstract code types would
ironically be easier. The more readable and easily understandable Cabernet code seems like it
comes at the cost of not knowing how I would generate it myself (Unless, I guess, the point is
that you don't need the syntax just right, and it can interpret what I say with NLP or
something).

12/3/2022 10:21 PM

6 Cabernet seems cool and easy 12/1/2022 8:56 AM

7 I could not see the cancel button being created at all in the SwiftUI. Perhaps the picture is
missing something?

11/29/2022 3:21 PM

8 In terms of how much control I feel I have over what I'm creating, Swift seems to give me the
most control, then SwiftUI and then Cabernet feels very limiting for what I can create.

11/29/2022 12:54 PM

9 I feel swift code and swiftUI code is easier to understand than cabernet, however, cabernet is
lightweight and fast to have something done in terms of logic and structures.

11/25/2022 10:10 AM

10 Cabernet is very concise whereas other two are more detailed as for which components are
used and how they are used.

11/23/2022 2:42 PM

11 I will compare them based on more complex interaction behavior. 11/17/2022 2:02 PM

12 Cabernet doesn't feel like a programming tool, more so something like xml or markdown that
gets interpreted into a style. It's much more readable than Swift or Swift UI, which could really
benefit from some reasonably-named variables and comments.

11/11/2022 6:25 PM

13 Swift and SwiftUI look like traditional development languages, while Cabernet looks like a
markdown file. As a programmer, I am more comfortable with the look of Swift and SwiftUI
even if I don't know those languages. To me, Cabernet looks like cheating, and I don't trust it
to give me the full, correct result.

11/10/2022 11:28 AM

14 Swift and SwiftUI are relatively similar, SwiftUI is much easier to understand than Swift. In
order of easy to understand to hard to understand, I would rank them SwiftUI, Cabernet, Swift

11/9/2022 12:09 PM

15 The Cabernet Model is definitely much easier to write (more concise and seems more
efficient.)

11/6/2022 4:45 PM

16 SwiftUI makes the most sense to me and is a good blend of simplifying the language but still
giving enough information, Swift was a bit confusing to figure out what some of the code was

11/3/2022 6:58 PM

Cabernet Model Description Language

2 / 2

doing and Cabernet felt too simple. SwiftUI felt like a good mix of Swift and Cabernet.

17 Cabernet was the easiest to understand. I'm sure Swift/UI would be easier to parse if I went
through tutorials / a class on iOS development, but with my current knowledge, it was
definitely harder to go through than Cabernet.

11/3/2022 6:43 PM

18 the variable naming for swift and swiftUI felt mean 11/3/2022 1:01 PM

19 Cabernet is good for a quick solution. The other two are good if you want more specific options
and to understand the development tools.

11/3/2022 11:09 AM

20 Cabernet seems much simpler. 11/2/2022 4:15 PM

21 I have no previous experience with any of these tools and I would say that SwiftUI was my
favorite. Although Cabernet is simple and perhaps easier to understand for a beginner, as a CS
student with almost 4 years of experience, I actually preferred the more complex SwiftUI
because there are more details in the code to help me understand what exactly is going on and
what I can choose to customize.

11/2/2022 3:37 PM

22 Cabernet, while generally easier to parse, only felt so because the code was short and entry
fields were labeled by the information they store (rather than just being named "label1",
"label2", etc.) Swift felt the most similar to Kotlin in syntax and semantics. SwiftUI was the
easiest to understand coming from front-end development experience with JavaScript.

11/2/2022 3:27 PM

23 Swift and SwiftUI make a lot of sense, since their logic and structure are similar to Kotlin's in
Android. Cabarnet reminds me a bit of a Prolog, and I'm unsure of the underlying code that
executes the logic in Cabarnet. Is it meant to be used in conjunction with Swift or SwiftUI?

11/2/2022 9:58 AM

24 Cabernet easiest, Swift not too bad 11/2/2022 8:50 AM

25 swift seems more complex. 10/6/2022 2:23 PM

26 *note: enteres 61/61 on question 24 because I didn't know. I have not used SWIFT UI or
SWIFT before, so all 3 were new to me. I find SWIFT most comfortable, simply because I can
see more details telling me what to expect about what will happen when program runs.
Cabernet seems simple, but a lot of logic is hidden, so I really wouldn't know what to expect
when running, so it makes me nervous.

9/27/2022 12:57 PM

Bibliography

[1] C Russell Ed Phelps. “Proceedings of a Conference on a National Information

System in the Mathematical Sciences (Harrison House, Glen Cove, New York,

January 18-20, 1970).” In: (1970).

[2] Gail C. Murphy. “Beyond Integrated Development Environments: Adding

Context to Software Development”. In: 2019 IEEE/ACM 41st International Con-

ference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER) 00

(2019), pp. 73–76. DOI: 10.1109/icse-nier.2019.00027.

[3] John Markoff. Machines of Loving Grace. The Quest for Common Ground Be-

tween Humans and Robots. HarperCollins, Aug. 2015.

[4] Geert Heyman et al. “Natural Language-Guided Programming”. In: arXiv

(2021). DOI: 10.48550/arxiv.2108.05198. eprint: 2108.05198.

[5] Aman Kumar and Priyanka Sharma. “Open AI Codex: An Inevitable Fu-

ture?” In: International Journal for Research in Applied Science and Engineering

Technology 11.2 (2023), pp. 539–543. DOI: 10.22214/ijraset.2023.49048.

[6] Arghavan Moradi Dakhel et al. “GitHub Copilot AI pair programmer: Asset

or Liability?” In: arXiv (2022). DOI: 10.48550/arxiv.2206.15331. eprint:

2206.15331.

[7] Dominik Sobania, Martin Briesch, and Franz Rothlauf. “Choose Your Pro-

gramming Copilot: A Comparison of the Program Synthesis Performance of

141

https://doi.org/10.1109/icse-nier.2019.00027
https://doi.org/10.48550/arxiv.2108.05198
2108.05198
https://doi.org/10.22214/ijraset.2023.49048
https://doi.org/10.48550/arxiv.2206.15331
2206.15331

GitHub Copilot and Genetic Programming”. In: arXiv (2021). DOI: 10.48550/

arxiv.2111.07875. eprint: 2111.07875.

[8] Shane McIntosh et al. “Assessing the quality of GitHub copilot’s code gener-

ation”. In: Proceedings of the 18th International Conference on Predictive Models

and Data Analytics in Software Engineering (2022), pp. 62–71. DOI: 10.1145/

3558489.3559072.

[9] David Lo et al. “An Empirical Evaluation of GitHub Copilot’s Code Sugges-

tions”. In: 2022 IEEE/ACM 19th International Conference on Mining Software

Repositories (MSR) 00 (2022), pp. 1–5. DOI: 10.1145/3524842.3528470.

[10] Hudson Heavy Industries. Hacking With Swift. urlhttps://www.hackingwithswift.com/100.

Accessed: 2023-3-28. 2022.

[11] Jean-Baptiste Döderlein et al. “Piloting Copilot and Codex: Hot Temperature,

Cold Prompts, or Black Magic?” In: arXiv (2022). DOI: 10.48550/arxiv.2210.

14699. eprint: 2210.14699.

[12] Bruce W Ballard and Alan W Biermann. “Programming in Natural Language:

"NLC" as a Prototype”. In: Proceedings of the Annual Conference, ACM. ACM.

New York, NY, 1979, pp. 228–237.

[13] Alan W Biermann, Bruce W Ballard, and Anne H Sigmon. “An Experimental

Study of Natural Language Programming.” In: International Journal of Man-

Machine Studies 18.1 (1983), pp. 71–87.

[14] D E Knuth. “Literate Programming”. In: The Computer Journal 27.2 (Jan. 1984),

pp. 97–111.

[15] D Price et al. “NaturalJava: A Natural Language Interfaxce for Programming

in Java”. In: Proceedings of the 5th . . . 2000.

142

https://doi.org/10.48550/arxiv.2111.07875
https://doi.org/10.48550/arxiv.2111.07875
2111.07875
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.1145/3558489.3559072
https://doi.org/10.1145/3524842.3528470
https://doi.org/10.48550/arxiv.2210.14699
https://doi.org/10.48550/arxiv.2210.14699
2210.14699

[16] Michael D Ernst. “Natural Language is a Programming Language - Applying

Natural Language Processing to Software Development.” In: SNAPL (2017).

[17] Reyes Juárez-Ramírez, Carlos Huertas, and Sergio Inzunza. “Automated Gen-

eration of User-Interface Prototypes Based on Controlled Natural Language

Description.” In: COMPSAC Workshops (2014).

[18] S P Overmyer et al. “Conceptual modeling through linguistic analysis using

LIDA”. In: ICSE ’01 Proceedings of the 23rd International Conference on Software

Engineering (May 2001).

[19] Mathias Landhaeusser and Ronny Hug. “Text Understanding for Program-

ming in Natural Language - Control Structuresz”. In: RAISE@ICSE (2015),

pp. 7–12.

[20] Tobias Kuhn. “A Survey and Classification of Controlled Natural Languages”.

In: arXiv.org 1 (July 2015), pp. 121–170. arXiv: 1507.01701v1 [40].

[21] Attempto Project. Attempto Project. urlhttp://attempto.ifi.uzh.ch/site/. Ac-

cessed: 2023-3-5. 2013.

[22] Kaarel Kaljurand and Tobias Kuhn. “A Multilingual Semantic Wiki Based

on Attempto Controlled English and Grammatical Framework.” In: ESWC

7882.Chapter 29 (2013), pp. 427–441.

[23] Norbert E Fuchs. “Reasoning in Attempto Controlled English - Non-monotonicity.”

In: CNL 9767.Chapter 2 (2016), pp. 13–24.

[24] Rolf Schwitter et al. “A comparison of three controlled natural languages for

OWL 1.1”. In: OWLED 2008 (Apr. 2008).

[25] Iaakov Exman and Olesya Shapira. “Fast and Reliable Software Translation

of Programming Languages to Natural Language.” In: SKY (2016), pp. 57–64.

143

https://arxiv.org/abs/1507.01701v1

[26] Emdad Khan and Emdad Khan. “Machine Learning Algorithms for Natural

Language Semantics and Cognitive Computing”. In: 2016 International Con-

ference on Computational Science and Computational Intelligence (CSCI) (2016),

pp. 1146–1151. DOI: 10.1109/csci.2016.0217.

[27] K Beck et al. “The agile manifesto”. In: (2001).

[28] Agung Fatwanto. “Specifying translatable software requirements using con-

strained natural language”. In: 2012 7th International Conference on Computer

Science & Education (ICCSE 2012). IEEE, 2012, pp. 1047–1052.

[29] L Williams, E M Maximilien, and M Vouk. “Test-driven development as a

defect-reduction practice”. In: Software Reliability Engineering, 2003. ISSRE

2003. 14th International Symposium on (2003), pp. 34–45.

[30] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley

Professional, Oct. 1999.

[31] Kent Beck. Test-driven Development. By Example. Addison-Wesley Professional,

2003.

[32] Dan North. Introducing BDD. Accessed: 2023-2-28. Mar. 2006. URL: https:

//dannorth.net/introducing-bdd/.

[33] Behaviour-Driven.org. Behaviour Driven Software. http://behaviour-driven.

org. Accessed: 2023-2-28. 2016.

[34] Matt Wynne, Aslak Hellesoy, and Steve Tooke. The cucumber book: behaviour-

driven development for testers and developers. Pragmatic Bookshelf, 2017.

[35] cucumber ltd. Cucumber. https://cucumber.io. Accessed: 2023-2-28. 2018.

[36] jbehave.org. What is jBehave? https://jbehave.org. Accessed: 2023-2-28.

2017.

144

https://doi.org/10.1109/csci.2016.0217
https://dannorth.net/introducing-bdd/
https://dannorth.net/introducing-bdd/
http://behaviour-driven.org
http://behaviour-driven.org
https://cucumber.io
https://jbehave.org

[37] TIOBE Software. TIOBE Index for December 2022. https://www.tiobe.com/

tiobe-index//. [Online; accessed 2022-12-29]. 2022.

[38] Stack Overflow. Stack Overflow Developer Survey 2022. https : / / survey .

stackoverflow.co/2022/. [Online; accessed 2022-12-29]. 2022.

[39] Steve Ferg. Python and Java: A Side-by-Side Comparison. http://pythonconquerstheuniverse.

wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/.

[Online; accessed 2023-2-28]. Oct. 2011.

[40] P Louridas. “Static code analysis”. In: IEEE SOFTWARE (2006).

[41] Stefan Wagner et al. An Evaluation of Two Bug Pattern Tools for Java. IEEE, 2008.

[42] Microsoft. Visual Studio. https://visualstudio.microsoft.com. Accessed:

2023-3-5. 2023.

[43] Eclipse Foundation. The Community for Open Innovation and Collaboration. http:

//www.eclipse.org. Accessed: 2023-3-5. 2023.

[44] Apache 17. Apache NetBeans: Fits the Pieces Together. https://netbeans.org.

Accessed: 2023-3-5. 2022.

[45] JetBrains SRO. IntelliJ IDEA – the Leading Java and Kotlin IDE. https://www.

jetbrains.com/idea/. Accessed: 2019-4-22. 2023.

[46] JetBrains SRO. pyCharm: The Python IDE for Professional Developers. https:

//www.jetbrains.com/pycharm/. Accessed: 2023-3-5. 2023.

[47] Apple, Inc. Xcode 14. https://developer.apple.com/xcode/. Accessed:

2023-3-5. 2023.

[48] Tanya René Beelders and Jean-Pierre du Plessis. “The Influence of Syntax

Highlighting on Scanning and Reading Behaviour for Source Code.” In: SAIC-

SIT (2016).

145

https://www.tiobe.com/tiobe-index//
https://www.tiobe.com/tiobe-index//
https://survey.stackoverflow.co/2022/
https://survey.stackoverflow.co/2022/
http://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/
http://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-comparison/
https://visualstudio.microsoft.com
http://www.eclipse.org
http://www.eclipse.org
https://netbeans.org
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/
https://developer.apple.com/xcode/

[49] Jian Li et al. “Code Completion with Neural Attention and Pointer Networks.”

In: CoRR cs.CL (2017).

[50] Robert W Sebesta. Concepts of Programming Languages. Addison-Wesley, Feb.

2015.

[51] Jayant Varma. SwiftUI for Absolute Beginners. Program Controls and Views for

iPhone, iPad, and Mac Apps. Apress, Nov. 2019.

[52] Chris Barker. Learn SwiftUI. An introductory guide to creating intuitive cross-

platform user interfaces using Swift 5. Packt Publishing Ltd, Apr. 2020.

[53] Wallace Wang. “Designing a User Interface with Constraints”. In: macOS Pro-

gramming for Absolute Beginners: Developing Apps Using Swift and Xcode. Berke-

ley, CA: Apress, 2017, pp. 461–480. ISBN: 978-1-4842-2662-9. DOI: 10.1007/

978-1-4842-2662-9_20. URL: https://doi.org/10.1007/978-1-4842-

2662-9_20.

[54] S Leonard. “The text/markdown Media Type”. In: (2016).

[55] S Leonard. “Guidance on markdown: Design philosophies, stability strate-

gies, and select registrations”. In: (2016).

[56] C Tomer. Lightweight Markup Languages. 2015.

[57] Gruber, John. Introducing Markdown. https://daringfireball.net/2004/

03/introducing_markdown. Accessed: 2022-12-29. 2004.

[58] Gruber, John. Dive Into Markdown. https://daringfireball.net/2004/03/

dive_into_markdown. Accessed: 2022-12-29. 2004.

[59] Xiaoping Jia and Howard Dittmer. “Anomaly detection in dynamic program-

ming languages through heuristics based type inference”. In: 2017 Computing

Conference. IEEE. 2017, pp. 286–293.

146

https://doi.org/10.1007/978-1-4842-2662-9_20
https://doi.org/10.1007/978-1-4842-2662-9_20
https://doi.org/10.1007/978-1-4842-2662-9_20
https://doi.org/10.1007/978-1-4842-2662-9_20
https://daringfireball.net/2004/03/introducing_markdown
https://daringfireball.net/2004/03/introducing_markdown
https://daringfireball.net/2004/03/dive_into_markdown
https://daringfireball.net/2004/03/dive_into_markdown

[60] Howard Dittmer and Xiaoping Jia. “Code Generation Based on Inference and

Controlled Natural Language Input”. In: Computer Science & Information Tech-

nology (CS & IT) 2020 (2020), pp. 89–101. DOI: 10.5121/csit.2020.100408.

[61] Howard Dittmer and Xiaoping Jia. “Programmer Productivity Enhancement

Through Controlled Natural Language Input”. In: International Journal of Soft-

ware Engineering & Applications 11.3 (2020), pp. 1–18. ISSN: 0976-2221. DOI:

10.5121/ijsea.2020.11301.

[62] Lutz Prechelt. “Rethinking Productivity in Software Engineering”. In: (2019),

pp. 3–11. DOI: 10.1007/978-1-4842-4221-6_1.

[63] L Prechelt. “An empirical comparison of seven programming languages”. In:

Computer 33.10 (2020), pp. 23–29. ISSN: 0018-9162. DOI: 10.1109/2.876288.

[64] William R Nichols. “The End to the Myth of Individual Programmer Pro-

ductivity”. In: IEEE Software 36.5 (2019), pp. 71–75. ISSN: 0740-7459. DOI: 10.

1109/ms.2019.2908576.

[65] Yannis Smaragdakis. “Next-Paradigm Programming Languages: What Will

They Look Like and What Changes Will They Bring?” In: (2019). eprint: 1905.

00402.

[66] John F. Pane, Chotirat “Ann” Ratanamahatana, and Brad A. Myers. “Study-

ing the language and structure in non-programmers’ solutions to program-

ming problems”. In: International Journal of Human-Computer Studies 54.2 (2001),

pp. 237–264. ISSN: 1071-5819. DOI: 10.1006/ijhc.2000.0410.

[67] Toby Jia-Jun Li et al. “Interactive Task and Concept Learning from Natural

Language Instructions and GUI Demonstrations”. In: arXiv (2019). eprint:

1909.00031.

147

https://doi.org/10.5121/csit.2020.100408
https://doi.org/10.5121/ijsea.2020.11301
https://doi.org/10.1007/978-1-4842-4221-6_1
https://doi.org/10.1109/2.876288
https://doi.org/10.1109/ms.2019.2908576
https://doi.org/10.1109/ms.2019.2908576
1905.00402
1905.00402
https://doi.org/10.1006/ijhc.2000.0410
1909.00031

[68] Judith Good and Kate Howland. “Programming language, natural language?

Supporting the diverse computational activities of novice programmers.” En-

glish. In: J. Vis. Lang. Comput. 39 (2017), pp. 78–92. ISSN: 1045-926X. DOI: 10.

1016/j.jvlc.2016.10.008.

[69] Tiantian Gao. “Controlled Natural Languages and Default Reasoning”. In:

(2019). eprint: 1905.04422.

[70] Sharvari Nadkarni et al. “Semi natural language algorithm to programming

language interpreter”. In: 2016 International Conference on Advances in Hu-

man Machine Interaction (HMI. 2016, pp. 1–4. ISBN: 978-1-4673-8810-8. DOI:

10.1109/hmi.2016.7449190.

[71] Rada Mihalcea, Hugo Liu, and Henry Lieberman. “Computational Linguis-

tics and Intelligent Text Processing, 7th International Conference, CICLing

2006, Mexico City, Mexico, February 19-25, 2006. Proceedings”. English. In:

vol. 3878. Computational Linguistics and Intelligent Text Processing. 2006,

pp. 319–330. ISBN: 9783540322054.

[72] Sida I Wang et al. “Naturalizing a Programming Language via Interactive

Learning.” In: ACL (2017), pp. 929–938. DOI: 10.18653/v1/p17-1086.

[73] Shuhan Yan et al. “Are the Code Snippets What We Are Searching for? A

Benchmark and an Empirical Study on Code Search with Natural-Language

Queries”. In: 2020 IEEE 27th International Conference on Software Analysis, Evo-

lution and Reengineering (SANER) 00 (2020), pp. 344–354. DOI: 10.1109/saner48275.

2020.9054840.

[74] Miltiadis Allamanis et al. “A Survey of Machine Learning for Big Code and

Naturalness”. In: arXiv (2017). eprint: 1709.06182.

148

https://doi.org/10.1016/j.jvlc.2016.10.008
https://doi.org/10.1016/j.jvlc.2016.10.008
1905.04422
https://doi.org/10.1109/hmi.2016.7449190
https://doi.org/10.18653/v1/p17-1086
https://doi.org/10.1109/saner48275.2020.9054840
https://doi.org/10.1109/saner48275.2020.9054840
1709.06182

	Code generation based on inference and controlled natural language input
	Recommended Citation

	Dissertation Defense Report
	Abstract
	Acknowledgements
	Introduction
	Background
	Machine Learning
	Controlled Natural Languages
	Requirements Capture
	Dynamic Programming Languages
	Static Analysis
	Integrated Development Environments
	Declarative Syntax

	Vision
	Describe the result
	Program housekeeping
	Flexible vocabulary
	Goals

	Approach
	Basic Principles
	Flexible Nomenclature
	Declarative with a Difference

	Notation
	Markdown
	Outline Structure
	Thesaurus
	Natural Language Processing
	Ambiguous Content
	Example Application

	Advantages and Limitations
	Capability of Prototype

	Evaluation
	Research Method
	Code Size
	Easy to Understand
	Confidence of Understanding
	Respondent Feedback
	Quantitative Results
	Qualitative Results

	Discussion
	State of Research
	Preliminary Work
	Future Direction

	Related Work
	Programmer Productivity
	Next Paradigm Programming Languages
	Natural Programming Languages
	Code Snippets

	Conclusions
	Conclusion
	Contribution to Computer Science
	Results

	Code of Example Application
	Examples for Survey
	Example 1, Tip Calculator, Screenshot
	Example 1, Tip Calculator, CABERNET Source Code
	Example 1, Tip Calculator, Swift Source Code
	Example 1, Tip Calculator, SwiftUI Source Code
	Example 2, Real Estate App, Screenshot, page 1 of 2
	Example 2, Real Estate App, Screenshot, page 2 of 2
	Example 2, Real Estate App, CABERNET Source Code
	Example 2, Real Estate App, Swift Source Code
	Example 2, Real Estate App, Swift Acreage Calculator Source Code
	Example 2, Real Estate App, SwiftUI Source Code
	Example 2, Real Estate App, SwiftUI Acreage Calculator Source Code
	Example 3, Real Estate App with Logic, CABERNET Source Code
	Example 3, Real Estate App with Logic, SwiftUI Source Code

	Results of Programmer Survey
	Survey Respondent Comments
	Bibliography

