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Abstract 

 

Energy technology models are required to enable strategic plans for decarbonisation. This requires accurate 

modelling of cost reductions due to technological learning. The premise of this research is to determine if 

new experience curve models could be implemented to reduce the error in cost estimates for solar PV 

technologies. 

Experience curves are used in technology cost models, where technology costs decline as experience is 

gained through production and implementation. Since Wright’s observation of the phenomenon in 1936, 

experience curves have been conventionally written as a linear function of cost and production, assuming 

constant learning over time.   

This research investigates the constant learning rate by evaluating the experience curve slope in relation to 

the shape of the model. It compares conventional (linear) and contemporary (nonlinear) experience curve 

functional forms to determine the most accurate model. 

The application of nonlinear experience curve models, that mathematically allow for a flattening effect, is 

not well explored in literature on emerging technologies in general, and energy technologies to our 

knowledge. Simplicity and ease of use are among reasons of the popularity of conventional models.  

The purpose of this research is to investigate the reliability of contemporary experience curve models in 

forecasting technological cost compared to Wright’s conventional model. This analysis specifically 

examines whether the implementation of Gompertz and the Logistic nonlinear models would reduce the 

error in cost estimates in comparison to Wright’s power-law curve. It is a detailed theoretical and statistical 

review on the performance of these models in the analysis of technological learning. The statistical 

comparison is performed using global Solar Photovoltaic (PV) modules production data.  

By conducting a regression analysis, the results showed a statistically significant reduction in error in 

nonlinear models through the measurement the two error terms, Sum of Squared Errors and Mean Absolute 

Percent Error. This thesis explains in detail how testing was conducted to compare the different experience 

curve methodologies, using 25 years production data for solar PV modules cumulative installed capacity 

and inflation-adjusted costs. The research further justifies the theoretical necessity for models that explain 

the diminishing technological learning rates. It is acknowledged that, in addition to technological progress, 

addressing global challenges through innovation also involves social, political and economic changes.  
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Chapter One: Introduction 

 

1.1 Background  

It is widely accepted that technological innovation is an important driver of economic growth of countries 

and regions. The importance of innovations for social change, global competitiveness, and productivity 

has been thoroughly analysed in recent decades in economic studies. Economic criteria determine the 

success of technological innovation based on various factors such as: market forces, the technology’s 

characteristics, and acquired knowledge via technological learning. The intersection between Economics 

and innovation is where the successful transformation of an idea into a commercial product occurs. 

That been said, information on the economic impact of technological innovation has always been valuable 

for management to make better decisions regarding strategic planning, Research and Development (R&D) 

management, product development and competitiveness, and so forth. Therefore, several mechanisms 

have been proposed to explain technological innovation links with the market (Adler & Clark, 1991; 

Nemet, 2006). In this respect, technological forecasting provided context to understand the economics of 

innovation – the relatively new branch of economics that focuses on the study of technology, science, 

society and business: 

 

 

 

 

                                               

                                               Figure 1.1: Economics of innovation matrix 
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Cost is one of the most important economic measures of success for new technologies. Projecting 

technology performance and cost has been improving over the years (Walk, 2012). Historically, 

technological change has been predicted following various qualitative and quantitative approaches. 

Qualitative approaches mainly depend on expert opinions and consensus as seen in the Delphi method for 

example1. These methods, however, were of limited usefulness due to its impracticality, being hard to 

replicate and the possibility of experts’ bias. In consequence, reliable quantitative forecasting methods 

have been developed that project the growth, diffusion, and the cost of technology over time (e.g.: 

projecting technology substitutions, saturation levels, and performance improvements) (Walk, 2012).  

One of the well-established quantitative methods is based on the concept of experience curves. The theory 

behind the experience curves consists of the conceptualisation of the technological change process at 

some of its aspects: cost and technological learning. Technological cost reduction, due to technological 

learning, is embodied mathematically in the form of experience curves model, which are often used to 

predict and understand the long-term patterns of technological cost. Using a classical econometric model, 

the experience effect is measured in terms of reduction in the unit cost of a product as a function of the 

increase in its output at a certain time. As the technology is developed, accumulated learning due to 

accumulated capacity makes a technology to have a cost reduction pattern in production. 

 

 

 

 

 

                         Figure 1.2: Graphical representation of the experience curve phenomenon 

 
1 More details on qualitative forecasting and the Delphi method can be found in Chapter Two. 
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The first use of the experience curve in economic studies is attributed to T. P. Wright (1936) in his 

famous paper on aircraft production. Since Wright’s observation of the phenomenon, experience curves 

were frequently proposed as a distinct quantification of technological learning; the key phenomenon that 

determines the future cost of technologies. 

Over the years, Wright’s original model has undergone numerous conceptual and methodological 

variations to evolve into the widely accepted model used today. However, most researchers agreed that 

correlating improvements in performance (acquired through learning by doing, skills, efficiency, and 

scale) to cumulative production, and expressing the correlations in a mathematical model provide a 

phenomenological starting point in many industries (Arrow, 1962; Alchian, 1963; Baloff, 1966; BCG, 

1972; Goddard, 1982; McDonald, 2001; Day and Montgomery, 1983; Englmann, 1994; Neij, 1997; Reati, 

1998; Nordhaus, 2014; Rypdal, 2018; Nagy, Hansen 2018). The basic architecture of Wright’s model is:  

                                                                     y = ax-b                                                                 (1.1) 

In this model, y represents the estimated production cost for the xth unit produced where a is the 

production cost of the theoretical first unit produced, and b is a factor of the learning rate which will be 

explained in greater detail in Chapter Three, the Theoretical Literature Review. 

That been said, sustainability and environmental issues, such as climate change, are global challenges that 

require a lot of innovative solutions now and in the future. Economic growth is expected to face a major 

threat at the global level as a result of global warming. Global warming is projected to increase by 1.5 °C 

between 2030 and 2052, which could affect public health, human security, and economic growth. The 

successful research, development, and deployment of new, responsible innovative technologies is a 

cornerstone of the transition towards a low-carbon economy. Such a fact has stimulated the development 

and deployment of new energy technologies to face the growing environmental concerns (Neij, 1997).  
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Despite the environmental benefits, economic factors are the most important drivers of growing 

renewable energy investments. The success of the renewable energy transition can be measured both by 

the level of cost reduction and the extent of market penetration of renewable technologies (Papineau, 

2006). In the past three decades, cost reduction has been more than expected, when in fact market 

penetration has been markedly lower than expected (Darmstadter, 2000). Alas, the globe is still struggling 

to hit the climate emergency brake (Hussain et al., 2017; Koskinen, 2016). Global carbon emissions aren’t 

falling fast enough, in fact, they bounced back up in 2021 in the United States according to Rhodium 

Group in Figure 1.3: 

 

 

 

 

 

 

Figure 1.3: U.S. Greenhouse Gas Emission, By Sector. (Source: Rhodium Group by New York Times) 

 

Additional deployment and adoption of renewable energy technologies requires further development and 

cost cutting through innovation and experience. However, the cost trajectories of emerging energy 

technologies are less certain than those of the conventional fossil fuel technologies. Overcoming the cost 

barriers of promising large-potential technologies, such as solar photovoltaic (PV) technologies, may 

require investing up to several hundred billion US dollars in learning to break-even with conventional 

energy systems. 
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Figure 1.4 shows how experience curves help determining the investment necessary to make a 

technology, such as solar PV, cost competitive. The curve, however, does not forecast when the 

technology will break-even. This time, the break-even time, depends on deployment rates, which can be 

influenced through research and development (R&D), price subsidies, and other forms of deployment 

policies (IEA, 2000): 

 

 

 

 

                     

                    

                         Figure 1.4: Required investments for renewable technologies to become cost competitive. 

 

Understanding the long-term patterns of profitability in energy technologies is crucial for investment 

decisions and public policy planning in the context of climate change. These forecasts must be studied 

and applied at the early stages of projects planning to better predict future technology performance, assure 

the successful selection of new technology, and improve technology management overall (Arrow, 1962).  

For long, technology deployment trajectories and cost competitiveness in energy systems have been 

discussed in scenarios published by international organisations (e.g., International Energy Agency; IEA), 

consultants (e.g., Bloomberg New Energy Finance; BNEF), and academia (e.g., MIT). However, scenario 

results are not projections of the future but a representation of possible developments based on internally 

consistent dynamics (IEA, 2000; Ioannis, 2018). As such, results are possibly affected by uncertain 

parameters such as macro-economic indicators, fossil fuel, technology development and policy changes. 

Therefore, newfound interest in experience curves has arisen recently as governments look for efficient 
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plans to address climate change correctly. Yet, the focus has shifted to endogenous technical change and 

the estimate of reliable technological learning rates as inputs in energy forecasting models instead of 

production planning or strategic management (Papineau, 2006; Shukla et al., 2016; Alizadeh et al., 2020). 

Researchers have focused on evaluating the process of cost reduction due to technological learning, which 

has led to the application of experience curve models to renewable energy technologies. With an 

experience curve, this thesis tries to analyse the cost reduction pattern of Solar Photovoltaic (PV) 

technologies, the most visible example of cost reduction in this context. It aims to study different possible 

geometric shapes of experience models to determine which one fits better for the future cost forecasting 

objectives. 

Solar photovoltaic (PV) systems have come a long way in achieving high growth rates and installed 

capacity in different countries (Asante et al., 2020; Candelise et al., 2013; Chu, 2003; Rodrigues et al., 

2016). The decline in solar PV modules cost, the main component in a solar energy system, has been the 

largest in modern history with 100-fold in the last forty years: 

 

 

 

 

 

 

 

 

                              Figure 1.5: Global solar PV module prices ($/W) vs cumulative capacity (MW) 



27 
 

One of the reasons behind the strong presence of experience curve effect in the solar PV industry is the 

solar power cost determinants. The operating costs of solar power are comparatively low, and they don’t 

pay for any fuel (Candelise et al., 2013; de La Tour et al., 2013). However, what determines the cost in 

such capital-intensive industry is the cost of solar PV technologies used (Chu, 2003; Eising et al., 2020; 

International Energy Agency, 2000; McDonald & Schrattenholzer, 2001; Wagner, 2014). Therefore, to 

understand why and how solar energy can become cost competitive, one must understand the reason why 

solar technologies get cheap and how. This should help decision makers understand the endogenous and 

exogenous factors that affect growth in the PV industry (e.g.: solar power intermittency, the need of land, 

faults that spark fires, feed-in-tariffs, aggressive competition with China, etc.).   

According to the experience curve theory, explained further in Chapter Three, historical cost reduction of 

technologies has been correlated with their cumulative production or installed capacity based on a 

learning rate. In the case of photovoltaic (PV) this could be the capacity of modules produced and/or 

installed (Shukla et al., 2016; Ioannis, 2018). Studies on photovoltaic technology have proposed an 

approximate 20% of cost reduction for each doubling of the capacity output. This reduction can be mainly 

explained by one factor, or by two, or even more, making the model too complex (Muraleedharakurup et 

al., 2010) 

The use of log-linear experience curves that relate reductions in the unit cost of clean energy technologies 

to their cumulative production, has become a common method of representing experience curves in 

energy-economic models. Yet, there are significant uncertainties in the linear model’s formulation whose 

impact on key model results have been insufficiently examined or considered (Yeh & Rubin, 2012). The 

current experience curve model in use today mathematically states that as the cumulative quantity of units 

produced doubled, the cumulative average cost decreased at a constant rate ( Wright, 1936; Yelle, 1979; 

Goddard, 1982) . 

However, empirical research has early emphasised that technological learning is not constant (Carr, 1946; 

Alchian, 1963; Baloff, 1966; Henderson, 1984; Hall & Howell, 1985; McDonald & Schrattenholzer, 
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2001). Carr (1946), Alchian (1963) and Baloff (1966) were among the first who challenged linear 

experience curve models and their inherited constant learning rates. History shows that there is a 

flattening effect near the end of production runs, and technological learning does not remain constant. 

Therefore, a model that assumes constant learning may not be appropriate for accurate experience curve 

estimates. Researchers have demonstrated both theoretically and empirically that the effects of learning 

slow or cease over time:  

 

 

 

 

 

 

Figure 1.6: The effects of learning over time in a technology’s life cycle 

 

Applying the results of an experience curve estimation, when using inappropriate functional form, can 

create exaggerated cost reduction effects and, consequently, misleading results (Hogan et al., 2020). 

Fairly small uncertainties in experience curves proliferate to large uncertainties in estimates and, 

accordingly, cost competitiveness in the market (Neij, 1997). When estimating production runs, especially 

over longer periods of time, the conventional experience curve would likely underestimate the unit costs 

of those farthest out in the future (Yeh & Rubin, 2012). The underestimation would possibly occur 

because the model would estimate a constant learning rate, when in fact actual learning would diminish, 

causing the actuals to be higher than the estimate. The current experience curve could miss significantly 

on cost estimation; because a small error in the percentage of an estimate can still be large in terms of 

dollars (Johnson, 2016). 
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Figure 1.7 explains how different learning slope estimates result in a big differential cost for company A 

and company B, which incurs from choosing between alternatives (Henderson, 1984; Hall & Howell, 

1985; Johnstone, 2015): 

 

 

 

 

 

                                  

                                      

                                                Figure 1.7: Cost differential based on different learning slopes 

 

In recent decades, several non-linear experience curve models have been applied to several manufacturing 

and production settings (Moore, 2015). Contemporary models have attempted to incorporate the decay 

concept to measure the impact of non-constant learning on overall performance. Nonlinear models 

introduce the trend and the boundaries for actual experience cost curve. Surprisingly, few studies on 

technological change in the renewable energy sector have systematically investigated the impact of the 

experience curve functional form on the accuracy of renewable energy technologies cost models and 

estimated learning rates (McDonald & Schrattenholzer, 2001; Candelise et al., 2013; Elshurafa et al., 

2018; Lafond et al., 2018; Eising et al., 2020). 

The aforementioned uncertainties have caused doubts about the dynamics and quantitative estimates of 

costs using experience curves; despite the consensus on the importance of technological learning to 

achieve low-carbon energy system (Takahashi, 2013). To address this gap, this research tries to identify 
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and model modifications to the conventional experience curve model, used in solar PV technology cost 

forecasting, such that the estimated learning rate is modelled as a decreasing learning rate function over 

time as opposed to the constant learning rate that is currently in use (Honious et al., 2016). The next 

section is a review of the problem statement and the research objectives in more detail.  

 

1.2 Problem Statement and Research Objectives 

Rapidly decarbonising the global energy system is critical for addressing climate change, but concerns 

about costs have been a barrier to implementation (Papineau, 2006; Zhou & Gu, 2019). To achieve a 

global transition to a low-carbon energy infrastructure, a series of investment choices in both the public 

and private sectors must be made (Lafond et al., 2018). Making the right choices depends on our beliefs 

about the future cost trajectory of each possible technology. Solar power technologies historically have 

had high upfront technological costs, which makes the experience curve an effective way of looking at 

cost reductions via technological learning. Yet, learning has to be global (IEA, 2000).  

Learning is the product of experience, “it is the very activity of production which gives rise to problems 

for which favourable responses are selected over time” (Papineau, 2006). However, learning associated 

with repetition of essentially the same problem is subject to sharp diminishing returns. Since Carr’s 

observation (1946), empirical evidence from various industries has supported the assumption that 

technological learning is not linear (Baloff, 1966; McDonald & Schrattenholzer, 2001; Schilling & 

Esmundo, 2009; Rypdal, 2018; Hogan et al., 2020). 

A strong empirical evidence came from the Air Force Institute of Technology with tens of studies trying 

to identify the most accurate functional form of experience curves applied to Defence acquisition 

programmes (Badiru, 2012; Moore, 2015; Honious et al., 2016; Johnson, 2016; Boone, 2018). According 

to Wilson (2012), there are always physical limits that prevent the concept of constant learning and 

growth. Wilson (2012) divided the technology’s life cycle into a start or a “formative” stage that is then 
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followed by a rapid growth stage, and a scale where average unit cost sees its major reductions, and 

finally a “levelling off” or mature stage where the unit cost frontier is achieved as shown in Figure 1.8: 

 

 

 

 

 

 

 

                                                            Figure 1.8: Technology life cycle stages 

 

1.2.1 Knowledge Gap Identification 

Wright’s model has been the standard model in renewable technologies cost estimating procedures which 

assumes a constant learning rate. McDonald and Schrattenholzer (2001) analysed the variability and 

evaluated the usefulness of experience curves for applications in long-term energy models and provided 

the foundation for this research (McDonald & Schrattenholzer, 2001). However, where they focused on 

the variability of the actual long-term learning rates between energy technologies, this research directly 

evaluates the flattening effect near the end of production runs using non-linear experience functional 

forms. 

Hansen et al. (2017) attempted to make a model selection between exponential and the non-linear Logistic 

growth of wind and solar power based on standard curve fitting to historical data (Rypdal, 2018). The 

Logistic growth curve is one of the sigmoidal curves that has an initial slow growth followed by an 
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exponential growth phase that converges to a maximum value due to a nonlinear saturation mechanism. 

Hansen et al. (2017) concluded that the logistic curve generally yields “better fit” with a statistically 

significant decline in the relative growth rate (Hansen et al., 2017; Rypdal, 2018). Their findings are 

important, yet the assumption behind their study is built on growth curves analysis, not experience 

curves2. Historically, derived learning rates were sometimes combined with growth projections of a 

certain technology to derive future cost trajectories, yet these two curves are independent (Shukla et al., 

2015). Experience curves are specifically used as a cost forecasting tool that estimates the learning rates 

using cumulative production data as the independent variable of the model.   

Despite the interesting findings by Hansen et al. (2017), the main output was a direct comparison between 

learning rates with no error comparison mechanism between the models found. Another key study on 

growth in the solar PV industry was carried out by Rypdal (2018). Rypdal built on Hansen et al. (2017) 

findings and lead another statistical comparison between models used in solar PV growth curves context 

(Rypdal, 2018). Rypdal provided a better explanation on the methodology used to calculate and compare 

errors between the models.  

That been said, studies that discussed non-linear forecast models on solar PV modules belong largely to 

the growth curves family (Hansen et al., 2017; Rypdal, 2018). Despite similarities, growth curves are 

different in context and assumptions from experience curve as a cost analysis tool. Therefore, the choice 

for energy technologies, and solar PV modules in specific, came as a result of the gap in this field. 

Experience curves remain underdeveloped tools for energy policy in spite of the rich literature on the 

phenomenon and the use of the curves as planning and management tools in technology-intensive 

industries (Badiru, 1998). 

Using simple models as quantitative technology forecasting methods can be possibly explained by the fact 

that emerging technologies offer only short time series potential to begin with (Goswami et al., 2004; 

 
2 More details on growth curves can be found in Chapter Two. 
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Spatti & Liboni, 2016). This is typically further weakened due to governmental regulations and industries 

often seek to protect proprietary information. This resulted in using simple methods with limited theory 

and data. However, the situation has improved for solar PV technologies for example, with almost 30 

years of deployment and progress, which makes today a perfect time to highlight the importance of 

evaluating contemporary models in renewable technologies cost forecasting (Elshurafa et al., 2018; 

Samadi, 2018; Dutta & Das, 2020; Eising et al., 2020). 

The conventional experience curve model is not the only model that describes the relationship between 

cumulative unit numbers and production cost (Yelle, 1979). Other geometric forms of the experience 

curve model have been suggested in different industries since Wright’s paper (1936). Some of the 

geometric models are: (1) the log-linear model, (2) the plateau model, (3) the Stanford-B model, (4) the 

DeJong model, and (5) the S-model (i.e. cubic L-C). 

 

 

 

 

 

 

                      

                 

                      Figure 1.9: Several geometric forms of the experience curve model (Source: Yelle, 1979) 
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As for the solar PV industry, several mechanisms have been proposed to explain the technological 

learning and the observed relationships (Abell and Hammond, 1979; Arthur, 1988; Argote and Epple, 

1990; Adler and Clark, 1991; Nemet, 2006), but generally they revolve around linear models. They 

neglected to reconstruct the shape of the curves or justify constant learning rates for solar PV technologies 

on the long-term (Wene, 2011). 

The basis of this research is that more accurate cost estimates could possibly be made with alternative 

experience models that incorporate some aspects of plateauing and thus a declining learning rate. The 

most accurate function to be used for the slope estimate is what this thesis will attempt to discover 

(Boone, 2018). It aims to compare Gompertz and the Logistic models, two non-linear models that have 

the added precision of diminishing learning effects over time, with Wright’s conventional model, and 

answer the question of whether solar PV modules cost estimates can be significantly improved upon with 

the application of alternative non-linear experience curve models (Moore, 2015; Boone, 2018). This 

implies reducing the forecasting error of the model and improve the dynamics that help understand future 

cost projection of a certain technology (Candelise, 2013). The gap this thesis aims to fill is summarised in 

a knowledge gap funnel below: 
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Figure 1.10: Knowledge Gap Funnel 

 

 

 

 

 

 

The importance of technological innovation in 

economic growth is recognised, and certainly in   

the renewable energy transition where 

technological innovation is a game changer. 

Cost is a key economic measure of technological 

innovation success. To mange the high cost of clean 

energy transition, experience curves were used. 

Linear models, which assumes constant learning rate over 

time, were basically used. Yet the resulted learning rate 

from this functional form violates the empirically proven 

assumption of non-linear technological learning rate.    

Non-linear models were frequently tested to overcome this 

limitation with promising results. In the PV field, no evidence on 

exploring these models in PV cost forecasting experience curves 

except Hansen (2017) and Rypdal (2018) growth curves analysis. 

 Accordingly, to address this gap, this thesis directly compares the 

power-law Wright’s model to non-linear Gompertz and the Logistic 

models to determine which model performs best, using solar PV 

modules cumulative installed capacity and modules cost data. 
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1.2.2 Investigative Questions: 

This research questions the constant learning rate concern by evaluating the experience curve 

performance in relation to the shape of the model applied to solar PV modules costs.  

With this research focus, the following investigative questions are presented: 

1. Can any of the contemporary experience curve models be applied to current solar PV modules 

cost estimating procedures? If so, which ones? 

2. Are experience curve models that account for diminishing learning rates more accurate than the 

conventional experience curve model used toady? If so, which ones? 

3. Which experience curve model is most accurate, with least forecasting error, at predicting the 

actual cost of solar PV modules?  

4. Does Wright’s experience curve truly reflect the production process and the dynamics of the solar 

industry compared to other experience curve models? 

These results could turn out to be outstanding in an ongoing effort to increase estimate accuracy and 

improve the efficiency of solar PV technologies management. Therefore, the following chapters of this 

thesis will attempt to answer the above questions as well as outline the research findings that apply to 

each. 

 

1.2.3 Implications 

This thesis has two contributions. The first is to test the robustness of experience cost curves in solar 

photovoltaic (PV) energy to the alternative nonlinear models, which has been done in experience studies 

for other industries, but not for renewable energy technologies to our knowledge. Estimation is carried out 

on the assumption that cumulative capacity and/or industry production affect experience and thus the fall 

in price (Alchian, 1963). The second contribution is to highlight the importance of the economic-social-
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political (ESP) framework that serves as an embodiment of the critical experience curve dynamics for 

solar PV energy. This research deals directly with the economic aspect of this framework by investigating 

the reliability of one of the most used cost forecasting models.  

If significant results are discovered as stated above, the final piece of analysis will be to determine which 

model serves as the best predictor of actual PV modules costs. A simple and common way to compare the 

models will be to compare which model has the least amount of the standard percent error. The smaller 

the percentage error, the more accurate the model. As things go, if there is evidence that one of the 

contemporary experience curve models (Gompertz or the Logistic model) is more accurate than the 

conventional model used today (Wright’s model), then this result could potentially disclose a more 

accurate experience curve model in solar PV cost analysis, or at a minimum provide a proxy for further 

research.  

 

1.3 Research Paradigm and Methodology 

The premise of this research is to find the most suitable functional form that represents the econometric 

relationship between the production level and cost of the solar PV modules. To understand this reality, 

hypotheses were developed and tested using relevant statistical tests, which represents the epistemological 

approach of this thesis. 

Research hypotheses are directly connected to the main research question and other complementary 

questions that are derived throughout the literature survey (Badiru, 2012). Developing these hypotheses is 

the first step in building the model that will help answer the research questions. Three hypotheses have 

been tested using available data sets that together shed light on the ability for experience curves to 

forecast future technology costs: 
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Hypothesis 1: One or more of the three experience curve models has a MAPE significantly different from 

the other models. 

Hypothesis 2: One or more of the alternative experience curve models is significantly more accurate than 

Wight’s model in predicting solar PV modules costs. 

Hypothesis 3: The non-linear model, which accounts for both previous experience and the plateauing 

effect, has the lowest MAPE being the most accurate predictor of solar PV modules costs. 

 

The epistemological approach of this research implies using the collected secondary data on solar PV 

modules, in statistical tests that will provide evidence to accept or reject the research hypotheses. In solar 

PV modules, the cumulative installed capacity (in MW) at the global3 level is recommended, as well as 

the price (in $/W) of these modules in the global market (de La Tour et al., 2013). 

That been said, the non-linear technological learning, observed in the cost-performance models, is the 

groundwork for the philosophy of this research. This belief is tested by a rigorous statistical comparison 

between the performance of linear and nonlinear models. Gompertz and the Logistic models appear like 

promising candidates with a long history of successful applications as growth curves and cost estimation 

tools (Buchanan et al., 1997; Akın et al., 2020). While it is true that the Logistic and Gompertz curves 

work well in theoretical models, their empirical use demands a widening of the spectrum of the sigmoid 

curves applied in renewable energy studies. Such a widening is the central objective of this paper, where 

the family of S-shaped curves in technology cost experience curves is first extended theoretically, before 

going to apply them empirically to solar PV modules cost models (Shukla et al., 2015; Hansen et al., 

2017). 

 

 
3 There are reasons behind the choice of global data rather than regional data, which are explained in Chapter Four. 
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Once the data are collected and standardised for this research (e.g.: adjusted for inflation), the analysis 

should follow certain steps to answer the research questions. By using curve fitting techniques, each of 

the three models identified in section 1.1 of this chapter will be used to predict total silicon-based solar 

PV module costs. These curve fitting techniques (e.g.: Least Square Estimation) include minimising the 

sum of squared error (SSE) (Moore, 2015; Boone, 2018). The three models and their characteristics will 

be explained in depth in Chapter Four. 

The predicted module costs will be compared to the actual module costs to calculate the error (also known 

as the residual), and then to Wright’s model. The percent error from each one of the models will be 

compared to the rest using an Analysis of Variance (ANOVA), and Dunnett means test, which will each 

be explained fully in Chapter Five (Honious et al., 2016). A significance value (or Alpha, α) of 0.05 will 

be used to figure out whether at least one of the three models has a mean residual value that is different 

from the rest (Boone, 2018).  

 

1.4 Research Philosophy and Approach 

1.4.1 Research Philosophy 

Beyond methodology as such, some practical issues are shared broadly across the science. However, in 

scientific research, the research philosophy acts as the core of the study and underpins the research design 

choices (Head, 2008). It serves as a framework that justifies how the research should be conducted based 

grounded on ideas about reality and the nature of knowledge (Collis and Hussey, 2014). It is therefore key 

to understand the philosophy adopted and the reason behind its choice, which plays an important role in the 

management of the research.  

The two basic research philosophies are positivism and interpretivism. These two philosophies represent 

two fundamentally different approaches on how humans make sense of life and the world.  
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In positivism, reality is independent of us and can be observed objectively by researchers. On the other 

hand, in interpretivism, reality is seen as highly subjective because it is formed by one’s perceptions. 

Interpretivism is concerned with exploring the complexities of social phenomena by achieving an empathic 

understanding of how the researchers view the world (Bryman and Bell, 2011; Saunders et al., 2012), using 

findings from a relatively small sample size (Collis and Hussey, 2014). 

In consequence, this research study is underpinned by the positivist research philosophy. Positivism has 

originally emerged as a result of the perceived inadequacy of interpretivism to meet the needs in the natural 

sciences and scientific testing of hypotheses to find logical or mathematical proof that derives from 

statistical analysis on large sample sizes (Bryman and Bell, 2011; Saunders et al., 2012). This is the basis 

of the research design, which should aim to interpret findings in order to generate theories about the nature 

of the problem and possible solutions. Table 5.1 summarises the main features of both philosophies: 

 

 

  

 

 

 

 

Table 1.1: Summary of the two basic approaches to research methods 

 

 

 



41 
 

1.4.2 Ethics and Credibility 

The research was approved according to the University of Brighton Research Ethics Committee before the 

researcher contacted or involved any potential data collection. Moreover, some guiding principles were 

established when designing this research based on the principles for the ethical conduct of research as 

agreed by University of Brighton Research Ethics Committee (University of Brighton, 2018). The research 

is designed and undertaken to the highest standards of quality, integrity, and ethical propriety.  

Reliability 

In this context, the concept of reliability is defined as “the accuracy and precision of the measurement and 

absence of differences in the results if the research was repeated” (Collis and Hussey, 2014). Producing 

findings with high reliability can impose a challenge in positivist research due to the nature of the dataset 

and potential bias and/or misspecifications in quantitative research methods (Collis and Hussey, 2014).  

Different researchers may collect different data and come to different conclusions at the end because of the 

size of data, the time period used, and the possible sensitivity of the model to certain internal and/or external 

factors (Denscombe, 2014). 

To counteract potential negative impact on the reliability of the results, the researcher remained conscious 

of her own role in the research to eliminate or, at least, minimise potential bias in the findings. The 

researcher was also aware of the inherent human tendency to validate a man’s own beliefs, which is known 

as confirmation bias (Hallihan and Shu, 2013). Researchers may unconsciously emphasise views that fuel 

their pre-existing perspectives, while overlooking options that do not support these personal assumptions. 

In this study, the researcher tried to avoid confirmation bias and produce reliable results by consciously 

treating all data equally and avoiding any temptation to manipulate the analysis of the collected data 

(Denscombe, 2014). Furthermore, discussions and consultation with the research supervisors further 

contributed to avoiding researcher bias. 
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Validity  

Validity is how the researcher assesses the quality of the chosen research design and methods. Should the 

research findings measure the phenomenon they claim to measure, the findings could be considered valid 

(Collis and Hussey, 2014). 

On the appropriateness of the chosen methods of data collection and analysis, the data collected for the 

purpose of this study is pulled from sources that are known to be accurate and appropriate (Denscombe, 

2014). The validity of the findings is further judged by the level of attention paid to ethical issues in the 

research design and the researcher’s attempts to eliminate researcher bias over the research process. 

Generalisability 

Given the positivist research philosophy of this research, generalisation is possible in this study (Collis and 

Hussey, 2014). However, the findings are likely to be generalisable to settings similar to those that have 

been studied only (Honious et al., 2016; Boone, 2018). 

Accordingly, the researcher tried to capture the features and complications of adopting experience curves 

as a strategic tool in technology cost forecasting and gained a comprehensive and deep understanding of 

this forecasting tool. The insights gained from the collected data on solar PV modules have enabled the 

generation of patterns and theories that ought to be true and applicable in other technologies that set out to 

become competitive ((Badiru, 1998; Denscombe, 2014; Moore, 2015; Johnson, 2016; Boone, 2018). 

Code Availability 

The code used in this analysis will be made available upon request. 
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1.5 Research Structure and Conclusion 

In cost forecasting literature, there is a well-established fact that no single forecasting model is the “best” 

for all situations under all circumstances (C.-W. Chu & Zhang, 2003). The “best” is the robust and 

accurate for a long-time horizon that users of the model have confidence to use it repeatedly.  

An interesting possibility is that there exists a non-linear experience curve, and a corresponding non-

linear technological learning, due to differences in the rate of change in unit cost for a given technology 

over time (Muraleedharakurup et al., 2010). In this thesis, we advance the hypothesis that technical 

change, in general, can be ascribed to experience which is subject to diminishing returns (Carr, 1946; 

Baloff, 1966; Schilling & Esmundo, 2009; Hansen, 2017; Rypdal, 2018). The research performs an 

analysis of the experience curves of renewable energy sources, and in particular PV energy, which is the 

most visible example of cost reduction in this context. 

Therefore, the primary goal of this thesis is to address the research question of whether the application of 

modern experience curve models that account for the flattening effect may provide more accurate cost 

prediction estimates than the conventional models often used in solar PV literature. The data analysis 

methodology will statistically compare the accuracy of two selected non-linear experience curve models 

against the conventional power-law model used in renewable energy studies. The identification of the 

most accurate model, supported by significant results, will become a turning point to future 

methodological changes withing renewable energy technologies cost studies. This thesis, however, does 

not go too far and says that the conventional experience curve models are wrong or statistically 

insignificant. 

The next chapter will provide an introduction to the relatively new science of technological forecasting, 

which should help the reader put the research question in context. Chapter Three will provide a more in-

depth look into the literature written on technology forecasting, economic growth and the experience 

curve theory, both in general and within the solar PV industry in specific.  
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Chapter Four covers in more details the characteristics and the attributes of experience curve models, the 

main types of these models, the limitation and econometric considerations, as well as suggested solutions 

to overcome some of them. This chapter will also provide in-depth descriptions of the three models 

presented. Chapter Five will open the discussion on the methodology used to investigate the research 

questions as well as provide more details on the collected data sets for the study. Chapter Six displays the 

data results gathered from the methods described in Chapter Five, and supported with relevant charts and 

graphs from the analysis. The thesis concludes with Chapter Seven, which contains a discussion on the 

conclusions of this research, the significance of the results and their potential impact, limitations of this 

study, as well as recommendations for additional research. 
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Chapter Two: Technology Forecasting in Perspective 

 

 

2.1 Chapter Overview 

As discussed in Chapter One, the emergence of new or improved technologies depends on successful 

completion of the innovation process. The innovation process occurs when a system of organised 

activities transforms an idea to a commercial technology successfully. Accordingly, technological 

forecasting methods provide context for innovation forecasting – one of the most important drivers of 

long-term economic growth (Wagner, 2014). 

Technology forecasting is a widespread tool in the fields of engineering, economics, and public policy. 

Perhaps the most consequential applications are found at the intersection of these disciplines (Bailey et 

al., 2011). In the time of rapid technological change, powerful forecasting techniques are required to 

make adequate forecasts to take advantage of future opportunities (Jabery, 1975). Bright (1972) a pioneer 

in the technological forecasting field, highlighted the need for more integrated methods, and 

acknowledged the declining reliability of forecasts that are based on expert opinions (Bright, 1972). Such 

techniques do exist and using them is discussed within the technology forecasting discipline. 

This chapter will provide a summary of the definition of technology forecasting and the major methods 

and applications in this field as of today. Technological forecasting typically varies by objectives, time 

horizons, approaches, and techniques (Bright, 1972). The chapter further summarises some of key 

methods in technological forecasting field, including qualitative methods (e.g.: intuitive forecasting, 

Delphi method) and quantitative methods (e.g.: trend extrapolation, experience curves, time series 

analysis) and the limitations of these methods (Griffin, 1985). The purpose of this chapter is to provide 

the reader with a background on this key term discussed throughout the research.  
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2.2 Technology Forecasting Definition 

2.2.1 Definition of Technology 

According to the American Heritage Dictionary of the English Language, technology is defined as “the 

entire body of methods and materials used to achieve [industrial or commercial] objectives.” (Martino, 

1972). It is any systemised practical knowledge, based on experimentation and/or scientific theory, which 

is embodied in productive skills, organisation, or machinery (Gendron, 1977). 

Jabery (1975) defined technology as the “society’s pool of knowledge regarding the industrial arts 

(Jabery, 1975). For the purposes of forecasting, Walk (2008) yet defined technology as “any human 

creation that provides a compelling advantage to sustain or improve that creation, such as materials, 

methods, or systems that displace, support, amplify, or enable human activity in meeting human needs”. 

In his book, Technological Forecasting for Decision Making, Martino (1972) added that technology 

means the tools, techniques, and procedures used to accomplish some desired human purposes. “It is the 

practical implementation of intelligence,” said Ferre (Ferre, 1988). Martino (1972) also insisted not to 

restrict the definition of technology to hardware and scientific theories only. He explained that technology 

may include “know-how” and “software” and can be based on practical experience and not only on 

science. Jantsch (1975) agreed with Martino that technology compromises the entire notion of products 

with their total hardware and software contents. This broad definition was confirmed by Grubler et al. 

(1999) and Christensen (1992) who referred to technology as a process, methodology or technique that is 

embodied in a product design or in a manufacturing or service process to transform inputs of labour, 

capital, information, and energy into output of greater service to the industrial society (Christensen, 1992; 

Grübler et al., 1999). Luthans discussed another aspect and linked the concept of technology to its 

relationship with organisations as “mechanical techniques and abstract knowledge that are employed by 

people to help attain organisational objectives”. Dubin (1969) summarised the general meaning of 

technology in two points: 
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1. Tools, instruments, machines, and technical formulas whose employment is necessary to its 

performance; and 

2. The body of ideas which express the goals of the work, its functional importance, and the rationale for 

the methods employed (Dubin, 1969; Jabery, 1975). 

 

2.2.2 Definition of Forecasting 

On the other hand, the American Heritage Dictionary defines Forecasting: “To estimate or calculate in 

advance”. The dictionary adds: “to make a conjecture concerning the future.” (Martino, 1972) It is “a 

probabilistic statement, on a relatively high confidence level, about the future,” said Jantsch (Jantsch, 

1968). Jabery (1975) defined forecast as a reasonably definite statement about the future, yet it provides a 

base for present decisions. This depends, however, on unchanging or slowly changing environment 

(Jabery, 1975).  

Forecasting, in general, aims to identify a desirable future as its final aim, and the ways to reach this aim 

as effectively as possible. According to Quinn (1968) managers must systematically analyse potential 

opportunities and threats in the environment to evaluate the present decision and maintain future growth. 

General forecasting, and especially technology forecasting could, therefore, modify the logical structure 

of decision-making models based on newly created variables (Quinn, 1968; Jabery, 1975). 

 

2.2.3 Definition of Technology Forecasting 

Given the wide range of applications it has, it is no surprise that technology forecasting has numerous 

definitions in literature. In his article, Technology Forecasting Methodologies, Kumar4 defined 

technology forecasting as “the prediction with a stated level of confidence, of the anticipated occurrence 

 
4 The researcher was unable to identify the year in which this article was published by Binay Kumar/ Prof. (NM). 
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of a technological advancement within a given time frame”. Kumar explained that this prediction should 

be supported by data and knowledge of experts in the field. Firat (2008) added that technology forecasting 

“applies to all purposeful and systematic attempts to anticipate and understand the potential direction, 

rate, characteristics, and effects of technological change, especially invention, innovation, adoption, and 

use” (Firat et.al, 2008). Bright (1972) added that technology forecasting may include a measure of 

probability, confidence or certainty (Bright, 1972). In his book, Technology Forecasting and 

Management Action, Jabery defined technology forecasting as a probabilistic assessment of future 

technology transfer based on a relatively high confidence level (Jabery, 1975). It is the ingredient of the 

planning process to define the probable future capabilities of science and technology (Jabery, 1975), and 

an effective tool in order to anticipate and understand the potential direction, rate, and effects of 

technological change (Porter and Roper, 1991). 

In the study, Persistent Forecasting of Disruptive Technologies, published by The National Research 

Council (2010), technology forecasting is defined as “the prediction of the invention, timing, 

characteristics, dimensions, performance, or rate of diffusion of a machine, material, technique, or process 

serving some useful purpose.” (The National Research Council, 2010) The committee at the National 

Research Council modified the original definition of Martino (1972) to reflect the evolving practice of 

technology forecasting over the years5. They added the rate of diffusion as a critical element as well as the 

material used. 

Bright (1972) added a key condition to the definition of technology forecasting: the prediction has to be 

reproducible through a system of reasoning. This implies that results, using a logic to a given set of data, 

should be consistent regardless of the analyst. With this condition, Bright excluded predictions based on 

“rhetoric and intuition” from the definition (Bright, 1972).  

 

 
5 For more details, see Martino (1969) 
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2.2.4 Technology Forecasting and Technological Innovation Chain 

Mansfield (1976) differentiates technological change to be the advance of technology that takes the form 

of producing existing products, or new methods of producing existing products, or the techniques of 

organisation and management. It is the process by which economies change over time in respect of the 

products and services they produce, and the process used to produce them (Mansfield, 1976).  

Therefore, technological change can work to neutralise or disrupt depending on how management actions 

are perceived by the research workers and by the market. These alternations in physical processes have 

impact on the way work is performed and on the efficiency of the enterprise.  

Cetron (1971), on the other hand, described technological change as the link between the past state-of-

the-art and the technology’s present and future states. Cetron (1971) believed that the understanding of 

technological change is key to develop appropriate plans. Doing this, institutes will be able to direct the 

technological change in a manner which will be beneficial to the organisation, and to the general 

advantage of all parties (Cteron, 1971).  

Therefore, to understand the outcome of technological forecasting in a whole, a forecaster must further 

understand the various stages of technological innovation. The forecaster must clearly state the stage for 

which one is forecasting. Mixing of data and methods representing several innovative stages may lead to 

errors and confusion. With that said, Donald Schoen (1969)6 identified the process of technological 

change as having three major stages: 

1. Invention: the stage of creation a new product or process 

2. Innovation: the introduction of that product or process into use 

3. Diffusion: the spread of the product or process beyond its first use (Cetron, 1971). 

 
6 Schoen was not the first to define these stages as it is seen before in Schumpeterian growth model (see Chapter 

Three). However, Schoen formally introduced this process within the technology forecasting discipline. 
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As for technology forecasting science, Cetron (1971) pointed out that it is the diffusion of the technology 

that is more amenable to forecasting than other stages. The argument indicates that technological change 

can be assessed and forecasted, as well as its impact on society. This implies having a standard of 

comparison that allows to determine the worth or value of the technology under scrutiny, and to evaluate 

the technological change with acceptable standards of comparison (Jabery, 1975). With this in mind, 

technological change deserves additional attention. In their book, Persistent Forecasting for Disruptive 

Technologies, The National Research Council (2010) discussed the rationale of creating a new forecasting 

system to deal with the rapid changes government, corporations and institutions are faced with. “Small 

changes in one arena can trigger significant disruptions in others” with shrinking time frames to plan and 

react to disruptions (The National Research Council, 2010) 

 

2.3 Technology Cost Forecasting in Perspective  

Forecasting itself is not a new act as people have long forecast future lives, science, technology and other 

areas (Eto, 2003). According to James Bright (1972), a lead researcher in technology forecasting, 

academic awareness of the general concept of technology forecasting can be found as early as the 1880s 

in the USA (Bright & Little, 1979). There are many thousands of speculations, prophesies, essays and 

studies about technology and the future. “All have their place and serve a role – but not all are technology 

forecasts,” said Bright (1972).  

However, the science of technology forecasting, as known today, is relatively new; dating back to the 

years immediately following World War II (The National Research Council, 2010). As mentioned earlier, 

technology forecasting (TF) attempts to predict the future characteristics of useful technological 

machines, procedures or techniques (Farmer & Lafond, 2015; Jabery, 1975). It is also concerned with the 

investigation of new trends, changes in environment that have also been attributed to technological causes 

as the dominant factor in social changes (Bright & Little, 1979). 
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However, and in the wake of the World War II, there were two realities that most manufacturers faced: 

1. Technologies have become the key driver of the economic growth and technological learning is 

the main cause of improvements and, consequently, cost reductions in manufacturing firms (Jabery, 1975; 

The National Research Council, 2010).  

2. Firms and organisations were expected to maximise the utility from their budgets in a fiscally 

constraints environment (Alchian, 1963). With increased financial scrutiny, great pressure was added on 

the accuracy of cost estimates to ensure the success of businesses (McDonald & Schrattenholzer, 2001). 

Over the years, the purpose of technology forecasting in economic studies has been a source of confusion. 

In fact, like any other forecasts, their purpose is simply to help evaluate the probability and significance 

of various possible future developments so that managers can make better decisions.  

Technological change and improvements in the instructions for mixing together raw materials lay at the 

heart of economic growth. A technological forecast deals with certain characteristics such as levels of 

technical performance (e.g., technical specifications including efficiency, speed, safety, etc.), and rate of 

technological advances (introduction of new techniques, new materials, costs, etc.). That been said, the 

success of the technology’s expansion can be measured by the level of cost reduction, levels of technical 

performance and by the extent of market penetration of these technologies (Rao, 2008). 

Cost is clearly one of the key factors that measures the development of a technology in a market. It is the 

key aspect of technological forecasting discussed in this study and represent the main scope of the 

research among other aspects of technology forecasting science. Jantsch (1968) went too far and 

explained that technological change is the weighted average of the change in factor prices (Jantsch, 1968). 
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Forecasting emerging technologies costs can help governments and enterprises in various countries to 

grasp the key to success in a new round of technological competition. The arrival of new technologies has 

multiple patterns and the development of emerging technologies costs with different emerging patterns 

will have fundamentally different requirements for governments and enterprises (Schilling & Esmundo, 

2009). 

Many policy decisions rely on predictions of how technology cost performance is likely to change as a 

function of time or of human efforts in research or manufacturing. Despite how inherently unpredictable 

the future cost is, it is worth trying to extract information from experts or from data to do better than a 

random guess (Rao, 2008). 

These facts have raised awareness about technology cost methods and estimating tools which provide 

analytical construct to describe and project technology cost developments over the life cycle of a 

technology. They have quickly become very important as technological learning was considered the main 

cause of cost reduction. It is an essential discipline of the technology forecasting science that focuses on 

developing a range of probabilistic forecasting methods to generate estimates of future technology costs 

(Jantsch, 1968; Schilling & Esmundo, 2009; Wagner, 2014).  

Technology cost level is the rate ot technological advances and serves as an indicator for the market share 

and commercialisation of a technology at a current life cycle stage (Wagner, 2014). According to Wagner, 

the development of commercial market shares usually mirrors the cost trajectory which, at the end, 

reflects the success of a technology. This starts with emerging technologies when they first try to enter the 

market commercialisation phase. The importance of understanding the cost level of a technology 

continues over the life cycle of a technology or a product to better understand the profitability at a certain 

point in time. 
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Cost reduction, however, is not constant and it cannot go forever (Papineau, 2006; Schilling & Esmundo, 

2009; Johnstone, 2015). Also, market share growth slows down during maturity, following an S-shaped 

curve while cost development follows a reversed S-curve shape (Schilling & Esmundo, 2009). 

 

 

 

 

 

 

 

 

Figure 2.1 Technology cost reversed S-curve 

 

Estimating technology cost is at the heart of this research. The focus is on this aspect of technology 

forecasting using the appropriate forecasting tools as explained later in this chapter. That includes 

analysing technological risk resulting in cost overruns as part of the technological cost analysis. Also, it is 

important to define the minimum fixed cost a technology cost reduction can achieve which is referred to 

as the floor cost (Alizadeh et al., 2020; Santhakumar et al., 2021). These risks are part of the 

technological cost analysis and cannot be neglected as explained in detail in Chapter Four. 
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2.4 Attributes of Technology Forecasting 

The relatively youthful science of technological forecasting is incompetent unless it is related to action in 

present (Jantsch, 1968) Historically, the U.S. Navy was one of the major organisations which started 

formal technological forecasting to support the planning process and identify the likely opportunities and 

threats from technological setting for the future (Badiru, 2012). Technology forecasting has now assumed 

importance due to the structural reforms introduced in the economic system with a view to creating a 

market driven economy (Rao, 2008). It fosters the communication between various communities such as 

science and technology, industry and politics, and technology and general public and public 

administration (Jabery, 1975). In microeconomic terms, the opportunity cost of resources that is 

essentially stimulated by changes in technology is of prime interest to businesses. Essentially, technology 

forecasting is used for the purpose of anticipating and scanning emerging technological changes. It is also 

used in identifying suitable technologies by evaluating several alternatives (Jantsch, 1968; Neij, 1997; 

Badiru, 1998; The National Research Council, 2010). Among the most important attributes of 

technological forecasting is its role in planning and managerial decision making. These two attributes are 

discussed in more details below. 

 

2.4.1 Technology Forecasting and Planning 

Among a wide range of views, one view is shared which states that, in the long run, technology is the 

factor that most governs growth of the economy, and the cost and the availability of products (Grübler et 

al., 1999). Therefore, useful plans for the future must include a technological plan and estimates of cost 

reductions based on the technological learning. Jantsch (1968) described technological forecasting as one 

of several inputs to the planning process. It helps to perceive feasible technological options to prepare the 

decision-agenda on the technological level (Jantsch, 1968). Moreover, the principal task of technology 

forecasting is enhanced by the predominant role of technology in social change which is assumed to 
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govern the dynamics of society for the planning period. The process includes evaluating the environment 

of technology plan, define the desired results and establish a quantifiable feedback system to measure 

technological progress. This process should help managers assess the life-cycle costs of technology and 

allocate resources and tasks properly. 

 

 

 

 

 

 

 

Figure 2.2: Technology plan and the life-cycle costs of a technology (Source: theintactone.com) 

 

However, Jabery (1975) and others made a clear distinction between technological forecasting and 

planning (Jabery, 1975). Jabery quoted Schoen (1969) form Harvard Business School who explained that 

technological forecasting differs from technological planning. These two terms are often used 

interchangeably to refer to the same phenomenon. However, according to Schoen (1969), a forecaster 

attempts to predict what will happen technologically within the economy, while the planner’s primary 

role is goal setting (Schoen, 1969). 

From this distinction, technological forecasting seems to be a prerequisite for a successful technological 

investment planning (Jabery, 1975; Bright & Little, 1979; Farmer & Lafond, 2015; The National 

Research Council, 2010; Wagner, 2014).  



56 
 

That been said, the role technology forecasting plays in planning and strategic thinking for businesses is 

no more avoidable (Grübler et al., 1999). To make a useful economic forecast, it is critical to include the 

impact of technical change which is a vital dimension necessary for planning (The National Research 

Council, 2010). In today’s rapidly-changing world, it is hard to find an alternative to technological 

solutions in many of the urgent problems – maybe until our knowledge of social engineering has matured 

to make non-technological solutions viable (Janstch, 1968). 

 

2.4.2 Technology Forecasting and Managerial Decision Making 

Anticipating technological change is an important managerial function. It helps managers to plan new 

products and avoid being technologically blind-sided by competitors with technologically superior 

products.  

“The general function of any forecast is to provide a base for present decisions,” said Jabery (Jabery, 

1975). Technological forecasting is used to provide rational analysis to the decision-maker about the 

future technological environment (Janstch, 1968; Jabery, 1975; Grübler et al., 1999). It has taken its place 

as a management tool that is integrated with long-term planning and market and financial forecasting. It 

doesn’t replace any of management’s decision-making power; it mainly helps decision makers to assess 

future possibilities and consequences more adequately (Jabery, 1975).  

Speaking of decision-making, technology forecasting also plays important role in identifying opportunity 

cost of resources. In microeconomic perspective, the opportunity cost of resources is directly affected by 

changes in technology. This is explained by the fact that technology forecasting provides early warning 

concerning potential consequences of new technology, with analysis of alternative measures for decision 

makers to choose from (Jabery, 1975; Boone, 2018). 
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2.5 Technology Forecasting Methods 

The quality of forecasts greatly depends on proper selection and application of appropriate method 

(Bright, 1972). The most appropriate choice of forecasting method depends on what is being attempted to 

forecast, the rate of technological and market change, availability and accuracy of information, the 

planning horizon and the resources available for forecasting (The National research Council, 2010) 

A fundamental distinction in technology forecasting studies, both quantitative and qualitative studies, is 

commonly drawn between exploratory and normative methods. Exploratory methods start at the present 

to see where the end goal might be, while normative methods begin in the future, asking what resources 

are needed to reach a certain goal. 

 

 

 

 

 

Figure 2.3: Exploratory versus Normative technology forecasting methods 

 

2.5.1 Exploratory Technological Forecasting 

Exploratory forecasting techniques start from today’s knowledge and is oriented towards the future (Rao, 

2008). In his book, Jantsch (1968) explains that exploratory technological forecasting begins with the past 

and present as their starting point and project the future in a heuristic manner looking at all available 

possibilities (Jabery, 1975). It typically simulates movement in the direction of technology transfer in 

systems which grow under s specific environment (Robert, 1969, Rao, 2008). 
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Exploratory forecasting includes a variety of methods for predicting the future state of a technology. 

Exploratory methods can be grouped into the following categories: 

 

(a) Intuitive Methods: 

Intuitive methods are based on the ability of one or more experts to assess the future (Rao, 2008). 

Examples on exploratory intuitive methods are: 

 

- Individual forecasting prepared by experts in their field. This method is often biased, and probability of 

failure is high. 

- Opinion polls where opinions are obtained from several individuals and combined (Jabery, 1975). 

- Brainstorming in situations where evaluation of “unconventional alternatives” is needed. 

- The Delphi method which is a group process technique for generally directing expert judgement towards 

a consensus though a several rounds of questionnaires for convergence of opinions (Rao, 2008). The 

Delphi technique has been, however, criticised over the years for being subjective, un-scalable and 

generally untested: 

  

 

 

 

Figure 2.4: Delphi Forecast Method (Source: TRIO) 
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(b) Trend Extrapolation: 

This method uses historical data rate to determine the rate of progress of technology in the past and 

extends it into the future (Roberts, 1969). Trend extrapolation implies that the factors which affected the 

past trends would continue its impact in the same known manner.  

With extrapolation, the future value of a technical capability or production, from a technological activity, 

is an extension of its past performance (Bright, 1972; Persistent Forecasting of Disruptive Technologies, 

2010; Boone, 2018; Santhakumar et al., 2021). Using known, available and in use technological events 

for which data is available, the forecasts are generally obtained using statistical time extrapolation 

technique and then extrapolating the trend in near future. The key concept of trend extrapolation 

methodology is that the past trend will generally continue to act in the same way unless there are obvious 

reasons to expect a change in the trend (Jantsch, 1968; Jabery, 1975). These reasons include the 

introduction of new efficient inventions or methods, or a change in the process of how the interacting 

forces in the market are behaving (The National Research Council, 2010; Kumar et al., 2021).  

 

(c) Growth Curves: 

Similar to the growth curves of biological systems, the evolution of technology as function of time has 

been found to follow same patterns. It is observed that similarities between biological growth and 

technological growth or technological parameters have been noticed over time (Kumar et al., 2021). 

Accordingly, the growth of technologies using biological growth models has been approved in literature 

for forecasting. A forecaster, however, must take into account the uniqueness of each field (The National 

Research Council, 2010). 

Growth curves are one of the oldest techniques in technology forecasting techniques which are widely 

used in practical applications (Schilling & Esmundo, 2009). These curves usually show an “S-shaped” life 
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cycle over years. There is enough evidence in literature that technologies tend to develop in patterns 

similar to the growth curves of biological phenomena (Badiru, 2012; Hansen, 2017; Rypdal, 2018). 

Analysts use growth curves to extrapolate the future, for a set of data, based on present and past trends in 

a deterministic way. Among the most commonly used growth curves are the Logistic and Gompertz 

curves. They have a long history in predicting technological advances since their interception in the field 

of demography years before ( Buchanan et al., 1997; Akın et al., 2020). 

Growth curves have always been popular due to their simplicity over the long history of use in various 

fields. Non-linear growth curves presume that a technology will finally reach its upper limit at a certain 

time in the future. These curves are conducted to predict how and when this upper limit will be reached. 

Therefore, it is critical to estimate the upper limit which can be set by natural, fundamental, physical and 

chemical laws that rule the phenomenon being investigated (Jantsch, 1968; The National Research 

Council, 2010). 

Growth curves are known to reflect how growth is slow initially until barriers are overcome, then the 

growth is more rapid until the limit is approached before the growth slows down again (Schilling & 

Esmundo, 2009). At this point, historical data gives correct coefficients of the chose equation which 

explains the distinguishable effort needed to find representative coefficients based on historical trends. 

Therefore, historical analogies and previous experience with a similar technology are key to forecasting 

technologies more accurately (Tjørve & Tjørve, 2017). 

Like life cycles, experience curves are a type of growth curves that project the progress rate of one 

technology or the deployment of some technology into a market. Learning curve methodology has 

adopted other names along the way such as cost improvement curve, experience curve, or performance 

curve; however, the theory has remained relatively unchanged despite drastic changes in scale and 

technology (Alberth, 2006; The National Research Council, 2010; Takahashi, 2013). 



61 
 

Finally, curve fitting methods are known as a good tool to capture this complex behaviour of new systems 

to characterise technological change in reliable techniques embodied in experience/performance curves 

which is at the heart of this research. They have several advantages such as: the possibility of being 

automated and applied as a unifying conceptual framework to address all types of questions regarding 

technology forecasting. It also has a wider scope, focus and applicability (Sherman, 2020). 

There is an increasing understanding in literature that experience curves have become an important tool 

for modelling and forecasting cost-quantity relationship, and they are treated as an idealised pattern 

describing this kind of technological progress in a regular fashion. Some analysts prefer to employ a 

particular form of the growth model for all technological growth patterns while others may prefer to 

employ mathematical transformations of these models. 

 

(d) Analogy 

In general, analogy is defined as a recognisable similarity or resemblance of form but with no logical 

connection or equivalence as usually found in a model. It is an attempt to predict possible futures by 

systematic comparison of a certain technology with a similar one in an industry by looking at historical 

data (Jabery, 1975). It is somehow a natural process that uses intuition based on similarities and is widely 

used in inductive inference. Thomas O’Connor review provides an insightful introduction and various 

applications of analogical techniques in various fields such as science, economics, and politics (Rao, 

2008; The National Research Council, 2010). 

As previously mentioned, growth curves presented a prevalent type of forecasting by analogy to predict 

the advance of technology. This is influenced by the observation that many technologies and products 

follow an S-shape growth pattern where there is a rapid growth stage that faces constraint as the curve 

reaches its upper limit (technology’s saturation level) (Hansen et al., 2017). 
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Yet, Martino (1972) identified major drawbacks of analogies such as: lack of inherent necessity, 

historically conditioned awareness, and casual analogy. He however asserted that that these challenges 

can be lessened by a systematic approach that measures technological change with regard to several 

dimensions (technological, economic, social, managerial) to compare two analogous (Martino, 1972). 

Moreover, a key factor for a successful forecast by analogy is to choose the right technologies that are 

truly analogous to the one being forecast. That been said, attempts to forecast technological change 

mostly involved exploratory approaches, especially the Delphi technique, in the early decades of 

technology forecasting. However, most of the methods are only variants on simple trend extrapolation 

procedure which is known for (The National Research Council, 2010).  

 

2.5.2 Normative Technological Forecasting 

Normative technology forecasting first assesses future goals, needs, desires and missions, and works 

backwards to the present. In the normative forecast, objectives and goals are specified and, accordingly, 

the forecast works backward to the present to see the available capabilities that exist in the present to meet 

future goals (Rao, 2008). Depending on the situation, goals may force the choice of certain technologies 

over others. Janstch (1968) has stated that among reasons and attitudes that lead normative forecasting 

are: recognition of social responsibility toward the society, recognition of economic potential of some 

sort, hedging against threats or awareness of certain constraints imposed by natural resources, politics, 

etc. Taking these constraints into consideration makes normative forecasting meaningful and more 

reliable according to Jantsch (Jantsch, 1968). Famous normative forecasting techniques are: 

 

       (a) Relevance Tree 

In 1957, C. W. Churchman et al. was first to address the concept of relevance trees linked with decision 

making in their introductory operation research book. Relevance trees are defined as an organised 

normative approach starting with a particular objective and used for forecasting as well as planning 
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(Jabery, 1975). It is an analytic technique that subdivides a broad topic into increasingly smaller subtopics 

thereby showing all possible paths to the objective and provides a forecast of associated costs and 

possibility for each element (Roberts, 1969). The basic structure looks like an organisational chart where 

information is presented in a hierarchical structure. The reason behind using the relevance tree is to 

evaluate systematically all the related technologies that would lead to the success of the intended 

objective (Jabery, 1975; The National Research Council, 2010).  

The branches represent alternatives that are traced to several points from the forecasting perspective. The 

relevance tree provides a framework for identifying the deficiencies that need to be overcome. Relevance 

tress are usually relevant where, at a certain level of complexity, distinct can be identified and can be 

simplified at the same time by further breaking them down (Jabery, 1975). They are used to analyse 

situations with distinct levels of complexity, in which each successive lower level involves finer 

subdivisions. This could be used to identify problems and their solutions, establish feasibility, and deduce 

the performance requirements of specific policies and/or technologies (Roberts, 1969).  

Relevance tree analysis has demonstrated to be a powerful intellectual stimulus to ensure that a given 

problem or issue is illustrated in comprehensive detail and that the important relationships among the 

items considered are shown in both current and potential situations. On the other hand, the development 

of relevance trees or morphological analysis, like most of Foresight methods, requires critical judgement 

thus the possibility of human error is present. Finally, if the underlying thought processes are not 

insightful, the outcomes of this method will be weak (Rao, 2008). 

 

        (b)  Morphological Analysis 

The term “Morphology” was first introduced by J.W von Goethe (1749-1832) in biology. The theoretical 

morphology concept was later eclipsed by Darwinian theory of evolution in the late 19th century. 

However, Max Weber was the one who simplified, generalised and popularised simple concept-

structuring methods applicable to virtually any area of investigation. Developed by Fritz Zwicky in 1942, 
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morphological analysis is a normative technique that provides a framework for exploring all possible 

solutions to a particular problem. This involves the systematic study of the current and future scenarios of 

a particular problem (Jabery, 1975).  

Morphology is identified as one of the most systematic available techniques for forecasting new products. 

The technique relies on a matrix that is usually called a morphological box (The National Research 

Council, 2010). In its simplest form, Morphological analysis allows for two key elements: a systematic 

analysis of the current and future structure of an industry area (or domain) as well as key gaps in that 

structure, and a strong stimulus for the invention of new alternatives that fill these gaps and meet any 

requirements imposed (Jabery, 1975). 

 

2.5.3 Integration of Technology Forecasting Methods 

As technological forecasting becomes firmly integrated into planning, the interaction between exploratory 

and normative technological forecasting finds an increasingly better-defined framework. 

To conclude the discussion of the normative and exploratory technological forecasting approaches, it is 

important to realise that these two forecasting approaches are not competitive but are complementary 

(Jabery, 1975). For that reason, neither is "best," and if the question is asked, "which group of forecasting 

techniques should be used? The answer is "both". 

To achieve the full potential of technology forecasting, knowledge and use of both exploratory and 

normative methods are essential (Jabery, 1975). This recommendation is seen in literature as early as in 

1960s when Jantsch (1968) suggested to perform a complete technological forecasting exercise that 

includes an iterative process between exploratory and normative forecasting (Jantsch, 1968). Jabery 

(1975), also, emphasised how a correct forecast includes a correct interaction between the two elements 

of exploratory and normative forecast. He also explained how both methods are joined ultimately in a 
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feedback cycle (Jabery, 1975). Bright (1972) refers to this way of thinking about technology forecasting 

tools as the integration between the normative and the exploratory methods. 

 Many experts in the field agree that it is advantageous to use several methods simultaneously, as each 

method can only deal with limited aspects of a forecasting case. “The full potential of technological 

forecasting is realised only where exploratory and normative components are joined in an iterative or, 

ultimately, in a feedback cycle,” said Jantsch (Jantsch, 1968). 

Knowledge and use of both exploratory and normative methods are essential for effective technological 

forecasting. Following an iterative process between exploratory and normative forecasting, a complete 

technological forecast exercise is achieved. Cetron (1972) described the complementary relationship 

between exploratory and normative forecasting methods as follows: 

"Visibility and discipline can be gained through the use of exploratory forecasting to define what may be 

possible. Vision and inspiration can be gained through the use of normative forecasting to define what is 

useful and desirable."(Cetron, 1972) 

In his book, Technological forecasting and management action, Jabery (1975) quoted Cetron (1972) on 

the relationship between exploratory and normative forecasting: “exploratory forecasting becomes an 

input to normative forecasting,” said Cetron (Jabery, 1975). Cetron (1972) concluded that industrial 

application of technological forecasting requires that these two forecasting approaches are not competitive 

but are complementary. Therefore, no technological forecast method is the “best”, and both techniques 

should be used for the best results (Jabery, 1975). 

 

 

 

 



66 
 

2.6 Measuring Success in Technology Forecasting 

It may appear that a good forecast is the one that comes true. However, Martino (1972) claimed that there 

are two things wrong with this criterion as follows.  

Technological forecasts do not necessarily need to predict the precise form technology will take in a given 

application at some specific future date to be useful. In reality, technology forecasting is unlikely to be 

able to predict when, where, how, or why some completely new technology will develop (Bailey et al., 

2011; Farmer & Lafond, 2016). It is even less likely to be able to predict who will make that 

breakthrough in the market (Bright, 1972; The National Research Council, 2010; Badiru, 2012).  

That been said, it is important that the forecast quality is not evaluated by whether they came true but by 

its utility for making better decisions and not in whether it eventually comes true. The forecast is useful 

because it led to take an action that made things better. Thus, the value of the forecast is in its usefulness, 

not in its coming true.  

These forecasts are intended to help decision-makers anticipate future events, avoid surprises, and 

allocate resources effectively. To that end, technology forecasts should be both as accurate as possible 

and properly qualified, so that decision-makers know how heavily to rely on them (Walk, 2008). 

 

2.7 Limitations of Technology Forecasting 

Establishing systematic technology innovation management which is capable of predicting technological 

change at the pace of innovation, is extremely important in a rapidly changing market. Although 

forecasters have had long complex algorithmic approaches at their disposal, their ability to effectively 

execute those approaches has been limited by many factors such as the availability of information and 

costs of information and analysis (Abernathy & Wayne, 1974). 



67 
 

The recognition that the development and application of a technology involves a large number of inter-

connected activities makes it easy but unhelpful to describe this collection of activities as a "system". This 

point adds to the challenges that face technology forecasting (Bright, 1972; Boone, 2018). 

Unavailability of data in an area of interest is a major challenge for forecasters. Data is not always stored 

in time-based data sets and commercial data services can be costly when available. However, as the new 

technology matures, the amount of data increase about this technology, which allows the use of more 

sophisticated data-demanding methods (Kochtcheeva, 2016). 

Moreover, findings from different research emphasise the gap between theory and practice in technology 

forecasting. They suggest that usability is probably more critical than theoretical accuracy as technology 

management people seldom implement complex planning techniques and methods (Goddard, 1982; 

McDonald & Schrattenholzer, 2001; Thompson, 2012). 

It is becoming apparent that some of the current exploratory forecasting techniques, with deterministic 

implications, will become either worthless or restricted in their application. This holds, in particular, for 

the currently most widely used technique, time-dependent trend extrapolation. Time-series will be used 

either only on the tactical planning level and for well-defined and complex sets of conditions, or- much 

more likely - they will be replaced by time-independent techniques, such as contextual mapping which 

has not yet been developed very far. Having said this, we emphasise Bright’s theory that technical-

economic forecasting experiences is a very difficult, uncertain business. This field needs improved 

understanding of the process of technological innovation, and much better, practical tools for decision 

making on the technological future (Bright, 1972). 
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2.8 Conclusion 

Anticipating technological change is an important management function (Bright, 1972). Predicting 

technological learning and change has been improving over the years. Several forecasting methods have 

been developed that project innovation and growth of technology in time. This chapter has introduced to 

the reader various practices and forecasting methodologies in the technological innovation context. These 

techniques play an important role serving as an input in the process of strategic planning and decision 

making. Perhaps the most difficult question in technological forecasting is to choose the most appropriate 

method in the correct timeframe (Bright, 1972). 

Moreover, this chapter emphasied the importance of integrating (combining) technological forecasting 

methods to unlock the full potential of different forecasting methods. Using these techniques effectively, 

managers and policy makers would be able to close the gap between analytical and operational tools 

(Jabery, 1975). This is where technology forecasting fits including experience curves, the most used 

technique to quantify technological learning and, consequently, technological cost. 
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Chapter Three: Theoretical Literature Review 

 

3.1 Chapter Overview 

The purpose of this chapter is to summarise previous published research, as appropriate, to experience 

curve phenomenon, and examine how it applies to the energy transition today. It will also lay the 

discussion on how technology cost management has changed over the years and how this may or may not 

affect the way the clean energy technologies are predicted. As stated in Chapter One, many barriers still 

exist that prevent a more rapid diffusion of energy efficiency technologies including budget constraints 

and cost (IEA, 2000). Finding a more accurate experience curve model for predicting cost can make the 

decarbonisation process more efficient and control life cycle costs of technologies. Controlling cost, 

however, does not necessarily mean lowering the costs of the technologies; it means the energy analysts 

and managers will not have a better (or worse) picture of what energy technologies will actually cost 

(Johnson, 2016). Budgeting and cost management accuracy is achievable through accurate cost estimates.  

Experience curves theory has been debated and modified for decades; however, the theory and its 

application to clean energy technologies management has remained relatively unchanged and has not 

adapted the current industrial theory or trend. While there is consensus on the importance of technology 

learning to achieve a low carbon energy system, the application of learning towards manufacturing and 

production is debated (Moore, 2015). Recently, several experience curve models have attempted to 

capture the flattening effect (aka plateauing, decay, or forgetting effect), in which a technology’s 

performance begins to decrease over time. This concept of uneven and even degrading performance over 

time is the root of the flattening effect (or the forgetting theory), and the foundation of this research 

(Boone, 2018). 
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This chapter will deliver an in-depth review of present-day technological learning theories and modern 

“un-learning” curve methodology. The theoretical and empirical overviews will be followed by a 

description of the characteristics of these curves and economic considerations found in literature. It will 

also examine prior research on solar PV technologies in particular including methodologies and 

application used over the past four decades, and accordingly, the knowledge gaps this research is trying to 

fill (Elshurafa, 2018; Samadi, 2018). 
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3.2 Experience Curve Theory Review 

3.2.1 The Smithian Growth Theory and Technological Change 

Adam Smith (1776) and other classical economists provided many of the basic ingredients that appear in 

modern theories of economic growth. Ucak (2015) stated that Adam Smith (1776), David Ricardo (1817), 

Frank Ramsey (1928), and Frank Knight made important contribution to the economic growth theory that 

highlights the basic approaches of competitive behaviour, the role of diminishing returns, and the effects of 

technological progress (Ucak, 2015). 

Smith’s famous theory, that the division of labour (specialisation) improves the economic growth, was a 

profound one and he precisely linked it to technological progress. According to Smith (1776), economic 

growth is affected by factors such as population growth, capital growth, competitive-free traded market 

economy and the division of labour (technological progress).  

 

 

 

 

 

 

 

Figure 3.1: Adam Smith’s virtuous cycle of growth 
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Joseph Schumpeter elaborated on this by explaining that the effects of technological progress are translated 

in the forms of increased specialization of labour and discoveries of new goods and methods of production. 

This idea is intrinsic in the endogenous growth models where knowledge and processes of creating 

knowledge are important parts of the production. In consequence, as firms and workers gain more 

experience on production, they can produce more efficiently, which is called learning-by-doing.  

Despite the criticism, modern economic growth theories have still benefited from the Smith’s thesis on 

economic growth. Technological change is widely recognised as the most important driver of long-term 

economic growth (Solow, 1956). Even if neoclassical economists7 are not on the same wave with Smith, it 

is still relevant to review Smith’s views on the determinant of economic growth to better understand the 

fundamental causes of it such as division of labour, human capital, learning by doing, increasing returns to 

scale and technological change. 

Economists’ research over the years led to the birth of the neoclassical model of economic growth. Among 

well-known growth theories linking economic performance and technological innovation include the 

Schumpeterian growth model (Schumpeter, 1934), Solow–Swan growth model (Solow, 1956; Swan, 1956), 

and endogenous growth theory (Romer, 1986, 1990). According to Schumpeter (1934), the process of 

technological change can be divided into three main phases: invention, innovation and diffusion.  

 
7 Arose in the early twentieth century, neoclassical economics is a comprehensive approach that uses supply and 

demand to understand and describe the production, pricing, consumption, and distribution of products and services 

in the market. It combines the classical economics' cost-of-production theory and the concepts of utility 

maximisation. Among leading names who contributed to the new neoclassical economics are Stanley Jevons, Maria 

Edgeworth, Leon Walras, Vilfredo Pareto, and others. In 1933, neoclassical economics adopted imperfect 

competition models. New tools were used in this era that helped to reduce the sophistication of its mathematical 

approaches, hence fostering the growth of neoclassical economics. Economists integrated Keynesian 

macroeconomic and neoclassical microeconomic ideas in the 1950s. The result of this synthesis was the neoclassical 

synthesis, which has dominated economic reasoning ever since ( Solow, 1957; Eto, 2003; Ucak, 2015). 
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Schumpeter (1934) views this process of technological change as one of creative destruction, where 

technologies are subsequently replaced by newer ones (Schumpeter, 1934). In his model, Schumpeter 

emphasised the importance of innovations for social change, international competition, structural change 

and, most importantly, economic growth. 

 

 

 

Figure 3.2: Schumpeterian growth model 

 

In 1956, Solow and Swan (1956) constructed the neoclassical model of economic growth, where economists 

are primarily interested in the long run development of economies, where investment in physical capital 

and labour are identified as the key driver of growth (Moaniba, 2018). In their model, Solow and Swan 

(1956) seek to better understand what Adam Smith considered the fundamental causes of economic growth 

and the determinants of technological progress.  

However, Arrow (1962) believed that the Solow-Swan model failed to endogenise technological changes 

in their model. Arrow argued that the reason of this was because Solow relaxed the assumption of constant 

relation between capital and labour and missed, according to Arrow, the empirically obvious point that the 

knowledge associated with technological change is continually growing as the result of production 

experience. Arrow (1962) generalised the learning concept and put forward the idea that technical learning 

was a result of experience gained through engaging in the activity itself in a process of “learning-by-doing” 

(Alberth, 2006). Accordingly, endogenous growth models were extended later by a more recent scholar, 

Romer, (1986), who provided a fresh theoretical extension and empirical perspective on the crucial effects 

of technological progress on economic growth (Moaniba, 2018). 
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The basic presumption of the Romer’s endogenous growth theory is that it “provides a theoretical 

framework for analysing persistent growth of output that is determined within the system governing the 

production process” (Moaniba, 2018). This implies that the knowledge and the processes of creating 

knowledge are essential parts of the production. It also emphasises that the more firms, workers and 

industries are experienced in production, the more efficiently they can use resources in advanced manners.  

Many subsequent studies by Muth (1986), Lucas (1988), McDonalds and Schrattenholzer (2001) and 

others, have identified different variables affecting endogenous technological change such as research and 

development, government policies, spillover effects and institutional factors (Goddard, 1982; Alberth, 

2006; Papineau, 2006; Schilling & Esmundo, 2009; Dosi et al., 2017; Grafström & Poudineh, 2021).  

There is evidence in literature that technological learning is the most important input in the process of 

innovation which drives the technological change (Arrow, 1962; Hollander, 1963; McDonald & 

Schrattenholzer, 2001; Alberth, 2006; Nagy et al., 2013). The importance of learning in certain innovative 

industries has been empirically documented and analysed (Ucak, 2015). Technological learning was mostly 

measured through improvements in production and cost due to experience and learning (Alchian, 1963; 

Goddard, 1982; Muth, 1986; Wright, 1936). However, Wene (2011) criticised the lack of a solid theoretical 

platform that explains the hypothesis of technological learning as a fundamental property of the learning 

system (Wene, 2011).  

Different schools of thought describe the accumulation and the distribution of learning within the firm, in 

the economic sector and in innovation system, differently. The conception that learning-induced cost 

reduction as a product of “experience” was first introduced by Arrow in the 1960s. Arrow’s theory (1962) 

relates endogenous technological change to learning by doing and its economic implications. Accordingly, 

the term “learning curve” was frequently used to describe rather a narrow field that usually focused solely 

on labour costs. 
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On the other hand, Conway and Schultz (1959) discarded learning as an important contributor to 

manufacturing cost reduction. They argued that learning was persistent even when labour force had rapid 

turnover (Alberth, 2006; Nemet, 2006; Grafström & Poudineh, 2021). 

That been said, the argument extended in this paper is based on the following premises: technological 

learning lies at the heart of economic growth, and it provides incentives for continued capital investments. 

Thus, technological change emerges mostly because of intentional actions taken by people who respond to 

market incentives. The last and the most fundamental assumption is that endogenous technological learning 

means that the costs are assumed to be a function of prior investments and adapts dynamically with different 

investment choices8. The technology cost forecast is yet an output of system optimisation. 

At first, most studies of new products and technologies have been descriptive, attempting to identify 

consistent patterns in the sources of problem and solutions used, and characteristics of successful 

innovations ( Roberts, 1969; Jabery, 1975; Turoff & Linstone, 2002). Later in literature, different methods 

for estimating the future costs of technologies existed and can be categorised as: (1) “bottom-up estimates”, 

based on state-of-the-art research and engineering (Papineau, 2006; Neij, 2008; Thompson, 2012; Nagy et 

al., 2013), (2) “top-down estimates”, based on extrapolating purely empirical trends (Alchian, 1963; Day 

& Montgomery, 1983; McDonald & Schrattenholzer, 2001; Schilling & Esmundo, 2009; Rypdal, 2018; 

Grafström & Poudineh, 2021), as well as (3) a combination of these two methods (Ferioli and Zwaan, 2009). 

 

 

 

 
8 On the other hand, exogenous learning means that technology cost is purely as a function of time, independent of any 

investment choices made during the energy system optimisation. That is to say, the technology cost forecast can be regarded as 

an input to the model (Kohler et al., 2006). 
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Benefits and drawbacks of the “bottom-up” estimates have been discussed over the years, yet they are out 

of the scope of this thesis. The following section provides a critical overview of the mathematical concept 

of technological cost “top-down” forecast models via experience curves as the scope of this study. In this 

context, technological change was measured and referred to as an improvement in cost due to experience 

and learning as explained below. 

 

3.2.2 Experience Curve Definition 

The roots of the experience curve observation can be traced back to early economic theories on the 

relationship between specialisation and growth, which were based, in part, on individuals developing 

expertise over time (Smith, 1776). The earliest paper that mentioned a concept like the experience curve 

was related to telegraph operators (Bryan and Harter, 1899). The original concept was first documented by 

W.L. Bryan and N. Harter in their study on telegraph operators, “Studies on the Telegraphic Language: 

The Acquisition of a Hierarchy of Habits” (Bryan and Harter, 1899). They published a research summary 

on how “time” is the measurement of the operator’s performance. They measured the performance in words 

per minute (sending and receiving), and time was recorded in weeks from the experiment initiation. 

According to Bryan and Harter (1899), their findings show that performance increased rapidly early, but 

eventually diminished and performance stabilised as the experiment progressed9 (Boone, 2015). 

Early in literature, most learning analysis was done within the field of human psychology to better 

understand the influential factors for memorisation and information retention. Since then, learning analysis 

and studies have been applied to numerous disciplines of groups and organisational performance (Wright, 

1936; Arrow, 1962; Alchian, 1963; Hollander, 1963; Abernathy & Wayne, 1975; Goddard, 1982; Day & 

Montgomery, 1983; Nemet, 2006, Badiru, 2012; Boone, 2018).  

 
9 This is considered the first observation on the flattening effect in the experience curves reported in literature. 



77 
 

Dr. Theodore Paul Wright (1936) is considered the first to formally bring learning analysis in a commercial 

enterprise. In his 1936 paper, Factors Affecting the Cost of Airplanes, and at the height of the pre-World 

War II build-up, Theodore Wright considered human learning among numerous factors that influenced 

aircraft production cost (Wright, 1936). He recognised the mathematical relationship that exists as a 

systematic decline in the number of labour hours required to produce an airplane when estimating and 

evaluating production process performance (Wright, 1936; McDonald & Schrattenholzer, 2001; Badiru, 

2012; Moore, 2015; Boone, 2018; Grafström & Poudineh, 2021).  

Wright theorised that as workers completed the same process, they eventually get better at it at a constant 

rate (Day & Montgomery, 1983; Neij, 2008; Samadi, 2018). From this aspect, Wright’s observation clearly 

resonates with Adam Smith’s economic growth theory and the division of labour explained in the previous 

section of this chapter. Wright’s observation is also tied to the term “technological learning” which assumes 

an improvement in the technology performance as experience accumulates over time. The core idea is that 

when a new product (technology) is introduced to the market, the production cost per unit is initially high, 

but orderly decreases over time as cumulative production increases (Badiru, 1998; Papineau, 2006; Honious 

et al., 2016).  

 

 

 

 

 

                        

                                          Figure 3.3: Simple graphical representation of Wright’s observation 
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Wright’s work remained relatively obscure until it was reviewed, a decade later, by economists at a think 

tank named RAND Corporation. RAND Corporation10, was then founded by U.S Air Force, showed vital 

interest in the application of Wright’s work to the production of war materials. The initial focus of RAND 

was to improve forecasting techniques, developed by RAND, that are based on expert opinion. RAND 

researchers, principally Olaf Helmer and Norman Dalkey, developed what is now known as the Delphi 

technique11; a systematic, interactive forecasting method which relies on a panel of experts. Nevertheless, 

the Delphi technique suffered from many drawbacks as it is still based on opinions. In consequence, several 

RAND’s studies, which are more carefully prepared, lend credence to the experience phenomenon as 

follows. (Eto, 2003; Samadi, 2018; Grafström & Poudineh, 2021)  

After the World War II, and through the RAND corporation, aircraft production data were utilised by 

Alchian (1963) in an attempt to compress the aircraft production experience of that era into a study based 

on Wright’s phenomenon (Alchian, 1963; Hall & Howell, 1985). Alchian’s paper was followed by Asher’s 

classical study (1956) on post-World War II experience which summarises much of unpublished literature 

of that era. The RAND economists continued to be vitally interested in the application of Wright’s work to 

the production of war materials—a phenomenon they eventually called “learning-by-doing” or the 

“learning curve”. 

When later applied to the total cost of a product (rather than to specifically labour cost), Wright’s equation 

became referred to as the “experience curve” model. During the 1960s, the Boston Consulting Group (BCG) 

formalised the experience curve model as it is widely used today based on 24 selected industrial products 

(BCG, 1972; Henderson, 1984). The Boston Consulting Group (BCG) popularised the modern approach of 

 
10 A “think tank” created by the U.S. Air Force in 1946 to develop a complete “science of warfare” during the Cold 

War era. 

11 More details on the Delphi method can be found in Chapter Two 
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the experience curve based on the fall in “cost” that supposedly occurs over the total life of a product12 

(BCG 1968 in IEA 2000, Henderson 1973, Henderson 1984). The experience curve model, as developed 

by the BCG, has typically been applied to the total costs of a product, including the combined effect of 

learning, scale, and potentially other factors (Alchian, 1963). Conley (1970) supported the Boston 

Consulting Group (BCG) argument that the experience curve effect is not limited to manual direct-labour 

tasks, “but is quite general and seemingly applies to most of the activities undertaken within a company”, 

said Conley (1970)13.  

Since then, this formulation (Equation 3.1) has been adopted in empirical studies to characterise learning 

phenomena in a wide range of industries, including studies on computer chips manufacturing (Alchian, 

1963; Muth, 1986), shipbuilding (Rapping, 1965; Thompson, 2001), consumer products (Hollander, 1963; 

Yelle, 1979), energy supply technologies (McDonald & Schrattenholzer, 2001), fuel technology (Zeppini 

& van den Bergh, 2020), energy demand technologies and environmental control technologies (de La Tour 

et al., 2013; Hansen et al., 2017; Rypdal, 2018). 

                                                                       Cn = C1X
-b 

                                                                      (3.1) 

where: 

C1 = direct cost of first unit of production 

Cn = direct cost of nth unit of production 

 
12 It is reported that the full report of the (BCG) is difficult to obtain (Takahashi, 2013). Therefore, Patrick Conley’s 

paper, the vice president of BCG at the time, and Bruce Henderson (1984) are usually quoted on this topic. 

13 In the following years, many researchers started to refer to the model as the experience curve model in their 

studies to reflect the association with technological change. As time has passed, many terminologies have been used 

more interchangeably to refer to the same phenomenon such as experience curves, learning curves, manufacturing 

progress function, performance curve, etc. Dutton (1984), however, urged not to blur important distinctions between 

these terms by using them interchangeably (Dutton & Thomas, 1984). 
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X = cumulative volume of production 

b = experience rate (%) 

Officially labelled as the experience curve by the Boston Consulting Group (1972), this phenomenon has 

had major impact upon corporate strategy, marketing strategy, and the management literature (Goddard, 

1982; Henderson, 1984; Dutton & Thomas, 1984; Muth, 1986; McDonald & Schrattenholzer, 2001; Chu, 

2003)14. Since then, experience curve models have been discussed in many studies and used in various 

areas of work measurement, job design, capacity planning, and cost estimation in many industries. 

The Boston Consulting Group (BCG) files were later used in empirical studies to obtain cost data for 

different products in the chemical, paper, steel, electronic, knit product and mechanical goods industries. 

Wooley (1972) conducted one of these studies and concluded in results that strongly support the experience 

phenomenon with over 80 percent of the coefficient of determination (R2) values above 0.80, and over 80 

percent of the significance level at the 90 percent confidence level (α = 0.10) (Wooley, 1972).  

The popularity of the experience curve reached a peak in the 1970s. In 1979, Yelle (1979) summarised 90 

articles on experience curves analysis. Dutton, Thomas, and Butler (1984) tracked down the history of 

progress functions by examining 300 articles (Dutton and Thomas, 1984). These studies supported Wright’s 

original observation and provided evidence that costs, almost always, decline as cumulative production 

increases. 

Despite this, the Organisation for Economic Cooperation and Development (OECD) cited the experience 

curves, as a technological forecasting construct, as the most neglected research area. “Since then, a new 

journal, Technological Forecasting and Social Change, has been born,” said Yelle (Yelle, 1979). In the 

1970s, Omega journal was born which as well has served as a useful vehicle for the dissemination of 

embryonic knowledge in this area (Yelle, 1979).  

 
14 For a time, it was also called the manufacturing progress function, before it has been tagged later the experience 

curve by the Boston Consulting Group (BCG). 
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In the 1980s, experience curves were less adopted in business management, strategy, and organisational 

research (Goddard, 1982; Argot and Epple, 1990). The experience curve concept was yet found in 

production processes studies such as studies by Dutton and Thomas (1984), Muth (1986), and Hatch and 

Kateregga (1987)15.  

Experience curves have later been utilised to study renewable energy technologies in 1999 by the 

International Energy Association (IEA) as explained in detail later in this chapter (Neij et al., 2003; Jamasb, 

2007; Bhandari and Stadler, 2009; Lindman and Söderholm, 2012; Elshurafa et al., 2018; Yao et al., 2021). 

Despite its popularity, Krawiec et. al (1980) disagreed with the logic behind the experience curve 

phenomenon and argued that the concept of experience is too ambiguous to be useful for cost estimation. 

Krawiec et. al believed that there is no logical reason to believe that costs will decline as a function of 

cumulative production (Krawiec et. al, 1980). In fact, Krawiec was not the only one who had the same point 

of view on the validity of experience curves. Lieberman (1987) said that as “firms were advised to use this 

model to gain a long-term cost advantage over rivals, unfortunately, many of these strategies failed and the 

concept lost its favour” (Lieberman, 1987; Papineau, 2006). Papineau also recalled the fact that this decline 

in cost is not, by all means, automatic; but depends on management's ability to force down costs. 

Mathematically, an experience curve typically describes the relationship between a technology’s specific 

costs (expressed in real terms) as the dependent variable and the technology’s experience as the independent 

variable of the equation. In mathematical form, the relation is traditionally expressed as a power function 

(as seen in equation (3.1): Cn = C1X
-b) 

Taking the logarithm of both sides of Equation (3.1) gives a log-linear model as follows: 

                                             Log (Cn) = Log (C1) + (b)*Log (X)                                                             (3.2) 

 
15 For more studies and surveys see Wene (2000), McDonald and Schrattenholzer (2001), Junginger et al. (2005), 

Albrecht (2007), Hultman and Koomey (2007), and Neij (2008). 
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The experience parameter b in the Equation (3.2) indicates the steepness of the experience curve and can 

be estimated using regression analysis. Most studies use refers to b as the progress ratio, PR, or learning 

rate, LR, to characterise the steepness of the curve. The Progress Ratio (PR) is a widely used ratio of final 

to initial costs associated with a doubling of cumulative output. The learning rate (LR) is the relative 

reduction in price for each doubling of cumulative production. 

The relation between E, LR and PR is given by the following equations: 

                                                                PR = 2-b                                                                                     (3.3) 

                                                               LR = 1 – PR                                                                               (3.4) 

The cumulative production is depicted on the horizontal axis (X-axis) of a two-dimensional coordinate 

system, while the associated costs are depicted on the vertical axis (Y-axis). When plotted on a log-log 

scale, the relation between the cumulative output of the technology and its unit cost takes a linear form:  

 

 

 

 

 

 

 

 

 

Figure 3.4 Graphical representation of linear scale versus double logarithmic scale 
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Over the years, experience curve studies explained the technological cost reductions graphically, but they, 

to a lesser extent, explained how the costs have been reduced (Neij, 1997). Similarly, no answer was found 

for the reasons of variations in the observed rates of the ‘learning’ parameter obtained. The parameters 

prediction dilemma has existed early in the literature on experience curves (Yelle, 1979). Estimation of 

parameters is particularly important as it allows decision makers to plan their activities more carefully. 

Alchian (1963) was among the first to conduct a study searching for factors affecting the parameters of the 

experience curves. “Note how difficult it would be to separate the true learning parameter (b) from the 

tangle of coefficients,” said Alchian (Alchain, 1963). Baloff (1967) and Yelle (1979) also described the 

results of empirical approaches to estimating the experience curve parameters in separate studies (Yelle, 

1979). The results were sufficiently interesting but could not be considered conclusive. According to Yelle 

(1979), the parameter prediction dilemma has never been solved, yet it still exists today with many studies 

published in the field (Yelle, 1979). 

 

3.2.3 Learning Rate Dilemma 

Using wartime airframe data, Alchian found that fitting experience curves with aggregate past performance 

of a single manufacturing in order to predict the future of a specific technology could result in a significant 

margin of error in parameter estimation. The importance of Alchian’s finding stem from the fact that, at 

that time, manufacturers had been operating on the assumption of constant 80% learning rate regardless of 

the differences between airframe types.  

Few years earlier, Conway and Schultz (1959) concluded that the learning rate parameter varies 

substantially among industries, firms, products, and even types of work (Conway and Schultx, 1959). 

Conway and Schultz (1959) made it clear that “there is no such thing as the fundamental law of progress 
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such as the "80% learning curve"16 used in the aircraft industry. No particular slope is universal, and 

probably there is not even a common model. The contention that such exists is most difficult to defend 

either logically or empirically” (Conway and Schultz, 1959). 

In the 1950s as well, Hirsch (1952) found that estimated parameters, and accordingly progress ratios, varied 

between products made by the same manufacturer in a study of seven different machines built by a single 

manufacturer. This fact, along with Alchian’s observation, provided an important basis from literature for 

our research question; as it is directly linked to the constant learning rate concern, and the potential 

consequences of this assumption on the reliability of the experience curves. 

In the 1960s, Billon (1960) also searched for regularity in experience curve parameter estimation in order 

to improve forecasting. Billon (1960) emphasised Conway and Schultz’s (1959) conclusion that the 

experience curve slope varies among firms manufacturing similar product, among non-similar products 

manufactured by a single firm, and also among various models of a basic product type produced by a single 

firm (Billon, 1960).  

  

 

 

 

 

 

 

           Figure 3.5: Variability in observed learning rate parameter 

 
16 The “80% learning curve” is identical to the learning index. 
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Cole17, on the contrary, noted a “very little difference” in progress ratios between different types of 

manufacturing studies. Cole further concluded that “there is no causal relationship between the model’s 

slope and the first unit cost used in parameter estimation”.  

More recently, McDonald and Schrattenholzer (2001) followed up on this argument with an important study 

where they analysed the learning rates variability and evaluated the usefulness of experience curves for 

applications in long-term energy models (McDonald & Schrattenholzer, 2001). 

With this in mind, something has been observed, especially in the older literature on the experience curve 

phenomenon, that 'learning-by-doing', as measured by classic experience curves does not continue 

indefinitely (Carr, 1946; Elshurafa et al., 2018; Dutton & Thomas, 2021; Grafström & Poudineh, 2021). In 

reality, the early stages of the experience curve are rather flat, but later the curve on the log-log axes reverts 

to an S-shape instead of a linear shape (Carr, 1946; Crawford and Strauss, 1947, Baloff, 1966). In his paper, 

Peacetime cost estimating requires new learning curves, Carr (1946) noticed that cost improvement 

eventually stops, or more accurately, falls to a rate so slow that cannot be noticed in practice (Carr, 1946). 

The flattening effect at the end of the curve implies a non-constant learning rate estimated by a model rather 

than Wright’s original power-law model. Carr (1946) referred to Wright’s observation and stated that 

Wright was wrong assuming a linear learning curve model, and, consequently, a constant learning rate.   

This conclusion was made by a large body of studies which supported Carr’s argument (Conway and 

Schultz, 1959; Baloff, 1966; Papineau, 2006; Badiru, 2012; Hansen, 2017; Rypdal, 2018; Grafström & 

Poudineh, 2021). “It is assumed that the learning rate is not linear, but rather smooth and dynamic where 

the learning rate is faster at the beginning and then flattens out,” said Köhler (Köhler, 2006). Even studies 

that reported constant learning rates, have referred to the flat tail at the end of the curve as seen in Wene 

(2015). The International Energy Agency (IEA) yet explained the decreasing learning rate in the experience 

curve as a “structural break” in the experience curve model (IEA, 2000). 

 
17 The researcher was unable to identify the publication year for Cole’s study. 
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Hall and Howell (1985) said that the graphical evidence on this was both direct and indirect. The direct 

evidence is that the linear falling region of the experience curve ceases, and is followed by a region that is 

practically horizontal (Carr, 1946; Crawford, 1947; Hall & Howell, 1985). Asher (1956) reported this 

phenomenon in the aircraft industry (Asher, 1956), while Baloff (1966) quoted this as “commonplace for 

the steel industry (Baloff, 1966). “ 

 

 

 

 

 

 

 

 

Figure 3.6: Non-linear experience curve phases 

 

Hall and Howell (1985) stated that: “the fact that an almost horizontal region has not been encountered can 

never prove that one does not exist, but may simply mean that insufficient output has been achieved to 

approach it yet” (Hall & Howell, 1985). Jarne et al. (2005) talked about the same concept in a different way 

when they described linear models as “incomplete non-linear models” due to insufficient data at a certain 

point in time (Jarnet et al., 2005). The indirect evidence, according to Hall and Howell (1985) is observed 

when a set of experience curves are plotted as straight lines against time. These curves show a tendency to 

converge within the small region. Comparing the slopes of different linear curves provided indirect 

evidence on Carr’s argument (Hall and Howell, 1985).  
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Carr’s hypothesis genuinely highlights the importance of understanding the underlying conditions related 

to constant learning rates using a specific experience curve functional form (Rypdal, 2018). According to 

Carr (1946), following the linear assumption, regardless of cost-created practices and competition level in 

the market, can be dangerous and misleading (Carr, 1946). Carr concluded that, with all operations, 

experience curves can rarely be expressed by straight lines on log-log charts, and a “flat” is reached sooner 

or later on the curve (Baloff, 1966; Elshurafa et al., 2018; Grafström & Poudineh, 2021).  

Reasons behind this observation stem from the fact that the linear model, used to estimate a constant 

learning rate, does not always provide the best fit in all situations. Since the learning effect does not continue 

indefinitely, and cost improvement eventually stops, experience curves do not continue indefinitely as well 

(Baloff, 1966). Typically, in the years of rapid growth of a technology, the learning and advancement occurs 

at a relatively faster rate, yet cost reduction comes about as fast in consequence. However, after a reasonable 

amount of time, achieving additional cost reductions becomes more difficult: a certain level of 

manufacturing ‘maturity’ is reached and doubling the production quantity requires more time (Carr, 1946; 

Jarne et al., 2005; Köhler, 2006; Grafström & Poudineh, 2021).  

Grübler (2015) also argued that technology cost reduction happens quite fast in the early stage of the 

development process, but later phases stagnate and the potential for cost reduction declines drastically as 

the technology matures (Grübler, 2015; Elshurafa, 2018).   

The experience curve (cost curve) can “intuitively” explain the slow-down phenomenon in the log-linear 

relation. Hence, the overall learning rate of a technology does not necessarily have to change “in theory”. 

In a price-based experience curve, the market- and technology-structural change, and cost overruns, are 

found to alter the learning rate estimates. Besides the factors mentioned above, the changes in the data 

periods and the choice of experience curve model specification are also considered to impact the learning 

rate estimates significantly. 
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In the 1960s and 1970s, the observation made by Carr gained less popularity in application compared to 

Wright’s phenomenon with hundreds of linear experience curves, and their inherited constant learning rates, 

have been plotted during this period (Yelle, 1979; Henderson, 1984; McDonald and Schentzler, 2001). 

Nevertheless, in the 1960s, Boeing Company found reasons to consider Carr’s observation and to search 

for something other than Wright’s log-linear model. Boeing, therefore, developed what is then named 

Stanford-B model that was used to incorporate design changes on the Boeing 707 (Baloff, 1966). Alchian 

(1963), Asher (1956), Baloff (1966), and Reis (1977) have reported similar results from various industries.  

Detailed studies on the origin of experience curves models have been carried out by Carlson (1961), Yelle 

(1979), Krawiec and Flaim (1979), Badiru (1998), McDonald and Schentzler (2001) and others. Interested 

readers are referred to these studies for more details on the history of experience curves.  

 

3.2.4 Definition of Experience and Learning Channels 

Experience curve studies showed interest in finding specifications for the aggregate learning effect to select 

better proxies for experience (Alchian, 1963; Hollander, 1963; Goddard, 1982; Muth, 1986; Nemet, 2006; 

Nagy et al., 2013). “Experience” is typically treated as the independent variable of the experience curve 

model. Alchian (1963) was among the first who brought attention to the importance of factors used to form 

the experience curve and serve as surrogate for experience. Adler and Clark (1991) stated that cumulative 

output was originally privileged in the original model that Wright formulated in 1936, and by many later 

studies (Adler and Clark, 1991). Rubin et al. (2007) agreed with Adler and Clark that cumulative production 

or capacity behave as a surrogate for accumulated knowledge gained from various activities whose 

individual contribution cannot be readily discerned (Rubin et al., 2007). 

Cumulative production can be identified as the technology’s cumulative capacity built, cumulative number 

of plants, cumulative electricity generation, or else (Alchian, 1963; Papineau, 2006). Arrow (1962) and 

Sheshinski (1967) suggested cumulative investment as an alternative to cumulative output (Arrow, 1962; 
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Sheshinski, 1967). Time was also used as a complement to cumulative output by Cooper and Charns (1954), 

Moore (1965), Stobaugh and Townsend (1975), Nagy (2012). Day and Montgomery (1983) used market 

share as a surrogate for cost advantage based on the experience curve relationships. “Products which have 

a competitive advantage generate more capital than those that do not” (Day & Montgomery, 1983). Lastly, 

Alberth (2006) identified Research and Development (R&D) expenditure as a representation for the 

experience gained (Alberth, 2006). The bottom line is that choosing an appropriate definition of experience 

is case-sensitive and is again closely related to how the learning system boundary is defined for a specific 

technology (Samadi, 2018). The factors used to represent experience is discussed further in Chapter Four. 

Since Wright’s initial theory, there has been overwhelming literature trying to identify the reasons behind 

the learning process and cost reduction via the experience curve model. Initially, the learning process was 

investigated at individual company level (Asher, 1956). Interestingly, similar significant observations were 

made at industry level18.  Both observations, however, indicate that the knowledge gained by an individual 

company through experience can ultimately be appropriated by other companies. Additionally, the literature 

suggests that experience gained over a certain technology’s life in the market can lead to learning, acnd 

consequently cost reduction, through basic channels such as: 

1. Learning-by-doing: as more units of a product (technology) are produced, workers and managers 

gain experience with the production process and may learn how to improve it (Badiru, 1998; Nemet, 

2006; Papineau, 2006; Elshurafa et al., 2018; Grafström & Poudineh, 2021). Managers may act to 

improve the production process by increasing work specialisation or by reducing waste (Dutton & 

Thomas, 1984). Workers may also become more efficient in their respective tasks as they 

consistently repeat their individual production steps (Wright, 1936). 

 
18 For more details on these studies, readers are referred to Dutton and Thomas (1984) who studied the results of 108 

experience curves in 22 industries (Dutton & Thomas, 1984). 
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2. Learning-by-researching: Research and Development (R&D) may play a larger role at early stages 

of development, while it may slow down in the more mature phases (de La Tour et al., 2013). R&D 

contributes to an expanded knowledge base, which in turn can stimulate further technological 

innovation, cost reductions and technology diffusion in the market (Yeh & Rubin, 2012). 

3. Learning-by-interacting: through interacting with users about problems related to the use of a 

product or a technology, manufacturers learn from actual on-site experiences of the users. They, 

the manufacturers, can use this information to improve their respective products (Alberth, 2006). 

Even users may gain experience by using a technology and learn how to install and operate it more 

efficiently. Those formal user groups who interact with each other can strengthen this kind of 

learning via networking effects (Day & Montgomery, 1983). Accordingly, companies, users and 

other stakeholders – such as research institutes and policy makers – can learn from one another 

through formal and informal information exchange ways (Hollander, 1963; Day & Montgomery, 

1983).   

 

 

 

 

 

 

 

                                              Figure 3.7: Experience curves basic learning channels  
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It is normally difficult to distinguish the contribution of combined effects of a large number of factors to 

the process of learning. Nordhaus (2014) quoted Alchain (1963) saying: “Note how difficult it would be to 

separate the true learning parameter (b) from the tangle of coefficients” (Nordhaus, 2014). Various factors 

such as scale, learning and technology advancement, usually coincide and it becomes hard to measure the 

relative importance of their effects (Abdou & Mahmoud, 1977; Dutton & Thomas, 1984; Elshurafa et al., 

2018; Samadi, 2018). Take economies of scale as an example as, frequently, the technological progress has 

been attributed to the gained scale (Silberston, 1972; Papineau, 2006; Farmer & Lafond, 2015; Healey & 

Grubler, 2015). 

Hollander (1963), however, in a study on the sources of efficiency increases at DuPont rayon plants19 

concluded that “only ten to fifteen percent of the efficiency gains were due to scale effects whereas the 

remainder was accounted for by technology and learning” (Hollander, 1963). Similar results on economies 

of scale relevance as a cost reduction driver were found by Stobough and Townsend (1975) and Liebertnan 

(1981). Stobough and Townsend (1975) reported that static scale economies did not account for price 

changes to the same extent that the confounded experience variables of learning, technology and dynamic 

scale did (Stobough and Townsend, 1975). Liebertnan (1981) found a 71% experience curve when scale, 

new plant introductions, and new competitive entry were confounded with cumulative volume while the 

slope rose to 77% when these variables were separately analysed (Liebertnan, 1981). 

Nevertheless, scale effects remain to be an important source of technological learning (Day & Montgomery, 

1983; Grafström & Poudineh, 2021; Papineau, 2006). Plant-level scale economies result from capital cost 

savings (as the scale of a plant increases, the capital costs increase less fast), an increased potential for 

division of labour, and better utilisation of indivisible resources. Firm level scale economies derive from 

 
19 According to Yelle, Hollander’s study, in 1963, was a significant departure from the classical topics in experience curve 

studies. Hollander addressed the relationship between factors such as technical change, capital investment and increased 

productivity due to experience and learning. “This significant study has not generated the attention it deserves,” said Yelle 

(1979).  
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overhead economies (e.g., R&D and top management), economies in bulk handling (e.g., volume 

discounts), inventory economies, and marketing and financial economies (Hollander, 1963; Farmer & 

Lafond, 2015). Thus, while scale plays an obvious role, it does not, in these instances, appear to be a 

dominant component of the experience effect (Hollander, 1963).  

Neij (2008) took this argument to another extent saying that experience cannot be gained irrespective of 

determined R&D policies and investment strategies by management to enhance development (Neij, 2008), 

neither the passage of time alone will lead to experience gain and cost reductions (McDonald & 

Schrattenholzer, 2001). Mishina supported this argument and stated that managements and organization’s 

decisions, rather than gains in proficiency of the resources themselves, accounted for the overall success of 

the plant. Similar findings on the role of management were noted in a study of a truck assembly plant 

conducted by Dr. Dennis Epple (Argote & Epple, 1990). Learning requires actions! 

Although the passage of time alone doesn’t lead to experience gain and cost reductions, empirical 

experience curves are usually derived from time series of costs and capacities and thus carry invisible time 

labels with potentially interesting information (Nemet, 2006; Rypdal, 2018).  

 

3.4 Limitations of the Experience Curve: Criticism of the Theoretical Concept 

The popularity of the experience curve reached a peak in the mid-1970s, and firms were advised to expand 

output in order to deter entry and gain a long-term cost advantage over rivals (Papineau, 2006). 

Unfortunately, many of these strategies failed because firms did not consider the effect of learning-by-doing 

correctly, and the concept lost its favour (Lieberman, 1987; Papineau, 2006). Experience curves are known 

to be useful as a conceptual framework, however, using experience curves as a basis for policy 

determination imposes serious risks (Dosi et al., 2017; Elshurafa et al., 2018; Alizadeh et al., 2020). Alberth 

(2006) described the use of experience curves as “a temptation to overgeneralise without sufficient 
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understanding of the underlying causes” of the cost reduction process (Alberth, 2006; Takahashi, 2013; 

Kavlak et al., 2018). 

The limitations of experience curve analysis have been early reported by Abernathy & Wayne (1974), 

Goddard (1982), Day and Montgomery (1983), Dutton and Thomas (1984), IEA (2000), McDonald and 

Schrattenholzer (2001), Papineau (2006), Alberth (2006), Neij (2008), Nordhaus (2009), and others. 

More recent literature on experience curves also acknowledged the limitations of this concept (Schilling & 

Esmundo, 2009; de la Tour, 2012; Badiru, 2012; Nordhaus, 2014; Boone, 2018; Rypdal, 2018, Hogan, 

2020). Some authors are highly critical of the traditional experience curve concept in general, and of the 

application and interpretation of experience curve results in particular (Hollander, 1963; Krawiec, 1980; 

Goddard, 1982; de La Tour et al., 2013; Hansen, 2017). 

A key criticism of the implications of the experience curve concept was made by Goddard (1982). Goddard 

criticised combining production data and cost in one single variable in what is called “high level of 

aggregation” (Goddard, 1982). As the concept does not attempt to explain exactly how experience leads to 

cost reductions, “it is a reflection of the forces and factors behind cost reduction not a measurement of it,” 

said Goddard (Goddard, 1982).  

Robert Solow (1957) also observed that, with any simplified model, there are aspects of economic life that 

are left behind (Solow, 1957; Goddard, 1982). The resulted model is so simple in Solow’s sense that it 

cannot be mathematically manipulated to display anything more than it says. All else is speculation (Solow, 

1957). As a result, “the learning curve hides more than it reveals,” said Goddard (Goddard, 1982). For 

example, the significance of learning-by-doing compared to learning-by-using or learning-by-interacting 

cannot be revealed by simple experience curve analysis numbers (Day and Montgomery, 1983; Nordhaus, 

2014). 
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Many academics point out that different factors were found to play significant roles in influencing 

technology cost developments, but these are not explicitly taken into account in experience curve analysis 

(de La Tour et al., 2013; Takahashi, 2013; Hogan et al., 2020). Examples on these factors in literature 

include: Learning through RD&D (Henderson, 1984; Kohler et al., 2006; Way et al., 2022), knowledge 

spillovers from other technologies, economies of scale (mass production) (Hollander, 1963; Nemet, 2006), 

cost changes of input materials and labour (Alberth, 2006; de la Tour, 2012), and changes in regulations 

(Boussaid et al., 2019; Eising et al., 2020).  

With this in mind, Goddard concluded that “there is nothing wrong with the learning curve. But in 

combining annual production and time in the single variable, cumulative production, it hides more than it 

reveals.” (Goddard, 1982) 

Alberth (2006) argued that the theoretical construction of the simple one-factor experience curve model not 

only fail to appreciate these factors’ respective roles in technology cost developments but can also lead to 

omitted variable bias (Alberth, 2006, de la Tour, 2012). Omitted variable bias happens when neglected 

additional independent variables are correlated not only with technology costs but also with experience. 

This often leads to overestimation of the relevance of experience in reducing technology costs and, the 

subsequent learning rates derived from these curves (Nordhaus, 2014). 

Neij (2008) elaborated that experience usually has a strong correlation with time and other relevant 

variables such as knowledge gained through R&D, economies of scale or the suspected influence of inter-

industry spill overs. Therefore, the high correlation between experience and technology costs, as seen in 

many experience curves studies, may actually be a misrepresentation caused by the correlation between 

experience and other key cost reduction driving factors omitted from the analysis (Neij, 2003). 

The strong correlation between technology costs and experience is accepted by some critics, yet this does 

not necessarily mean that experience drives down costs according to them. Instead, Goddard (1982) and 

Lafond (2016) suggested that the causal relationship may mean that cost decreases (brought about by 
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various factors other than experience) lead to more rapid technology deployment as the technology becomes 

economically more attractive (Lafond, 2016). The logic behind this matches the way classical economists 

viewed economic growth for a long time. Classical economists believe that economic growth depends on 

not only main inputs such as land, labour, capital, technology but also depends on social, economic and 

political structures (Abdou & Mahmoud, 1977; Henderson, 1984; Nemet, 2006; Papineau, 2006; Hogan et 

al., 2020). 

To tackle this, de la Tour, for example, tested the potential presence of the omitted variable bias in solar 

PV technologies experience curve analysis. de la Tour et al. found that PV learning rates based on multi-

factor experience curves (MFEC) are noticeably lower than PV learning rates based on models with 

experience only. They conclude that “the experience parameter is seriously biased when it is the only 

explanatory variable as it captures the influence of other drivers.” (de La Tour et al., 2013) 

There is a need to address the criticism of the theoretical concept of the experience curve more extensively. 

Baloff (1966) stated that “the development of this potential will require some broadening of our conceptual 

understanding of what causes the learning phenomenon and, hence, where it is to be found.” (Baloff, 1966) 

This can be done by discussing the possible influences (and interdependencies) of factors other than 

experience on cost changes to derive plausible learning rates that take relevant cost-influencing factors 

other than experience into account. 

Other suggestions are related to prepare in-depth case studies of individual technologies’ learning systems 

to analyse whether past learning may also have reduced non-plant level costs (such as external costs) or not 

(Henderson, 1984, Nemet, 2006).  

Nemet (2006) points out that unlike the original company level experience curve concept, in which learning 

is assumed to stem from internal factors within individual plants, the industry level experience curve 

concept is based on the strong assumption that each company benefits from the collective experience of all 

companies (Nemet, 2006, 2009). In other words, the concept “assumes homogenous knowledge spillovers 
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among firms.” Nemet added that experience curve does not necessarily capture all types of improvements 

in electricity supply technologies. This is because such improvements do not necessarily manifest 

themselves in plant level cost reductions (Nemet, 2009). 

Maybe one of the most useful suggestions came from Henderson (1984), who explained that all these cost 

reducing factors are valid but at different phases of the experience curve (Henderson, 1984). For example, 

at the beginning of a technology’s life cycle, Research and Development (R&D) and learning-by-doing is 

more relevant, then this stops when economies of scale kick in, as shown in Figure 3.10. Unfortunately, 

Henderson (1984) didn’t provide further details on how to test this idea empirically. 

 

 

 

 

 

 

 

 

                                Figure 3.10: Henderson’s cost reducing factors over the technology life cycle 

 

Despite the critiques, experience curves have clearly gained business planners interest to help in strategic 

planning of production in different industrial sectors since the 1970s (Wright, 1936; Alchian, 1963; Preston 

and Keachie, 1964; Oi, 1967; Kopcso and Nemitz, 1983; Chen, 1983) until these days in production 

planning (Ebert, 1976; Muth, 1982; Badiru, 1998), cost estimation and control (Badiru, 1991), resource 

allocation (Liao, 1979), and product pricing (Washburn, 1972; Imhoff, 1978).  
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3.5 Literature Survey on Experience Curves Applied to Solar Photovoltaic Modules 

Experience curve models have a long history in studies of manufacturing productivity (Muth, 1986; Badiru, 

1992). Their perceived successes in technological forecasting have promoted them to be introduced in 

policy models of energy and global warming economics to make the process of technological change 

endogenous (Nordhaus, 2014). 

In macro models, the treatment of technological change is still a major source of cost differences of climate 

change mitigation, despite various research efforts in the last years. Studies on technological change in the 

renewable power generation sector are also case studies on success or failure of specific eco-innovations 

such as windmills or solar panels. Most models compared in OECD and IEA studies set technological 

progress exogenously by assumption (IEA, 2000). Johnstone et al. (2015) examined the effects of public 

policies on innovation in the area of renewable energies in a cross-section of OECD countries over the 

period 1978-2003 (Johnstone, 2015). Johnstone found that the empirical results indicate a strong influence 

of policies on innovation in renewable energy technologies. The main finding is that endogenizing technical 

change using ‘gains from specialisation’ reveals dynamic growth patterns that cannot be reproduced in a 

model with exogenous technical change.  

In the overview of the 1998 Energy Economics special issue on “The Optimal Timing of Climate 

Abatement‟, Carraro and Hourcade emphasised the notable influence that learning appeared to have on the 

calculation of declining costs of renewable energy technologies. They ran a survey, in the context of 

Energy-Economics-Environment (E3) models and concluded that learning introduced around a 50% drop 

in abatements costs.  

In the International Energy Agency (IEA) publication of 2000, the IEA report presented a broad overview 

of the work covered up to the end of the 1990’s and also presents the findings from the 1999 IEA workshop 

on this subject. Among recommendations was that experience effects should be “explicitly considered in 

exploring scenarios to reduce CO2 emissions and calculating the cost of reaching emissions targets.  
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In regard the availability of data, there is uncertainty concerning the data prior 1990 on solar PV systems 

performance and costs (prices). For old data (before 2005), all studies on a global scale except IEA (2000) 

are based on two major data providers: Maycock, a historical expert of the PV industry, and Strategies 

Unlimited, a company specialised in semi-conductors selling market reports ( Neij, 2008; Nagy et al., 2013). 

Since those datasets are the only ones available for old data, this creates a high uncertainty concerning the 

data prior to 1990. To our knowledge, it is not possible to identify the best data source among them. 

Samadi (2018) provided a broad overview of the factors that typically influence the costs of energy 

technologies. He grouped these factors into four main clusters: learning and technological improvements, 

economies of scale, changes in input factor prices, and social and geographical factors. Within the literature 

on energy system models, learning and technological improvements and economies of scale are especially 

important as these can be directly affected by variables in the model. 

The best approach on how to implement experience curves to energy technologies is debated in literature. 

In fact, there is no such a thing as “the best” approach; since models are unique and depend on individual 

technologies. When energy technologies consist of different parts that are assumed to exhibit distinct 

learning rates or different deployment curves, it seems more consistent to construct separate learning rates 

for these individual parts instead of a single learning rate for the entire technology. Speaking on solar PV 

technologies, it has been suggested that separate experience curves should be constructed for each 

component of the Balance Of Systems (BOS), instead of having an aggregated curve (Candelise et al., 2013; 

Elshurafa et al., 2018).  

The PV learning rates listed in literature are either for all types of PV systems on the market (a market 

which has always been dominated by PV systems using silicon-based modules), or specifically for PV 

3systems using silicon-based modules (de La Tour et al., 2013; Eising et al., 2020). Only a few studies have 

looked at learning rates for non-silicon PV technology, such as cadmium-telluride thin film modules, or for 

concentrating PV systems (Chu, 2009). Most of the identified learning rate studies for PV technology 

construct global one factor experience curves using specific module prices. The learning rates of these 
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experience curves are typically between 15% and 25% (Candelise et al., 2013; Feldman, 2016; Grafström 

& Poudineh, 2021). No flattening in the PV cost behaviour was observed in the past until recently in growth 

curves studies (Rypdal, 2018), not experience curves. Most solar PV learning rate studies focus on module 

costs, however, there are indications that balance of system costs have decreased in the past to at least a 

similar extent to PV module costs. 

In his paper, Harmon (2000) stated that “PV (manufacture is a high-technology industry, centered in the 

United States, Japan and Europe” (Harmon, 2000). Interestingly, in 2000, China was not even mentioned 

as one of the big players in solar PV manufacturing. However, China has become in just a few years a major 

player in the global PV industry. In 2021, China's share in all the manufacturing stages of solar panels (such 

as polysilicon, ingots, wafers, cells and modules) exceeds 80% (IEA, 2021). From the perspective of 

industrialised countries, this is disturbing. PV cells or modules manufacturers face tougher competitors and 

lose market share20. It also ruined plans of second movers such as France to create a local industry by 

stimulating the domestic market (de La Tour et al., 2013). 

Equally, industrialised countries bore the cost of expensive incentive policies, the transfer of manufacturing 

capacity to China raises some concerns, as shown by the antidumping trade cases in the US in 2011 and in 

Europe in 2012 (Yang et al., 2018). On the other hand, industrialised countries benefit from these cost 

reductions, as demonstrated by the commercial success of Chinese panels especially in Europe. This 

provides cheaper PV electricity, helping to reach GHG emissions mitigation targets at a lower price, and 

participates in stimulating the manufacturing equipment and local installation business. 

By surveying experience curves applied to solar PV modules in academic publications and reports from the 

International Energy Agency (IEA), and the International Renewable Energy Agency (IRENA), Single 

Factor Experience Curve (SFEC) studies made 85% of the studies on the topic. Only 15% of the studies 

included additional explanatory variables besides experience. More details on the characteristics of both 

 
20 Dozens of companies that filed for bankruptcy in the last years since 2011. 
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SFEC and MFEC can be found in Chapter Four. Table 3.1 summarises key studies on solar PV experience 

curves (Source: de la Tour, 2012): 
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                 Table 3.1: Summary of key studies on single factors experience curves. Source: de la Tour, 2012 
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All experience curves results studies listed in Table 3.1 have the same specification of the dependent 

variable, module prices, and for the explanatory variable, experience. They, however, differ by the data 

source, geographical scope, and the time frame used (Boussaid et al., 2019). The module price is reduced 

by average 20% according to these studies every time cumulative experience doubles with 20% learning 

rate (de la Tour, 2013). 

Besides experience, experience curve studies on solar PV module prices identified four other variables with 

potential significant effects on module cost. The first factor is Research and Development (R&D) through 

learning by searching. Kobos (2006), Alberth (2013) and de La Tour (2013) found that learning by 

searching has a positive effect.  

Scale is another factor that was referred to multiple times in literature (Papineau, 2006; Rypdal, 2018; 

Samadi, 2018; Candelise et al., 2013). However, scale is not recognised in the early phase of the 

development of the PV industry where deployment is low. This is also inconsistent with the constant 

parameters’ hypothesis discussed in this research. There is a variability in the scale parameter found in solar 

PV studies (Candelise et al., 2013).  

The last variable discussed is the raw materials and input prices. The most important input prices discussed 

is the high-silicon, flat glass, and silver. Yu et al. (2011) found a strong positive correlation and effect of 

silicon price on module price. De la Tour (2012) emphasised this finding, while Wene (2015) took the 

argument a bit further to say that input prices are the true determinant of solar PV module cost (price) in 

the market. Wene said: “the fact is that after 2003, the prices for PV modules became very volatile, 

increasing until 2006/2007, stagnating and then falling strongly.  
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The irony is that most of this volatility is due to different national governments launching strong but 

uncoordinated deployment programs, which led to strong growth creating bottlenecks and scarcity costs, 

especially for PV-grade silicon ingots” (Wene, 2015). Figure 3.11 shows the jump in Polysilicon prices 

back then: 

 

 

 

 

 

                             

Figure 3.11: Polysilicon prices during silicon shortage time (Source: BloombergNEF) 

 

The average learning rate found in Mutli Factor Experience Curve (MFEC) studies on solar PV modules 

was much lower than the learning rate from models with experience only as the explanatory variable, with 

average rate of 13.7% (Alberth, 2006; de La Tour et al., 2013).  
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3.6 Conclusion and Gap in Literature 

To conclude this chapter, Figure 3.13 summarises the major milestones in the development of technological 

learning studies, including energy technologies studies in more recent times: 

 

 

 

 

 

 

Figure 3.13 Key milestones in the development of technological learning studies 

 

This chapter has reviewed the vast volume of literature on the theory and application of experience curves 

in general, and in solar PV energy technologies in particular. It has provided a systematic overview of the 

different ways in which such experience curves can be constructed and has discussed the learning rates 

issues from various empirical studies released between 1936 and 2021 for several technologies. The chapter 

has also provided a structured discussion of the limitations of the experience curve theory and its 

application, deriving suggestions on how to adequately address these limitations when constructing 

experience curves and making use of the associated learning rates. Finally, based on the extensive literature 

review, the research question sounds solid given the importance of having reliable learning rates estimates.  

The next chapter, Chapter Four, will complement the Literature Review providing more details on 

empirical studies and efforts that tried to endogenize technological change in economic models of climate 

change mitigation using experience curve models. 
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Chapter Four: The experience curve and its application in the field of solar PV 

technologies 

 

 

4.1 Chapter Overview 

“The notion of experience as a driver of cost reduction is an attractive one,” said Papineau (Papineau, 

2006). The experience curve phenomenon has been found to exist in several industries for the last 90 

years as one of the technology forecasting tools. It has been adopted as a tool to help answer managerial 

questions on technology cost management given the simple quantitative relationship between different 

variables that represent a specific technology (Papineau, 2006; Nagy et al., 2013). The simplicity of the 

model has encouraged researchers to apply it to almost everything from airplane manufacturing to 

chemical processing, textiles production, and nuclear plants (Wright, 1936; Alchian, 1963; Baloff, 1966; 

Yelle, 1979; Neij, 1997; Bailey et al., 2011; Takahashi, 2013; Moore, 2015). Renewable energy was of no 

exception; as experience curves are found in hundreds of studies on low-carbon energy technologies. 

Since the 1970s, when the popularity of the experience curve reached a peak, firms have been advised to 

use this model to gain a long-term cost advantage over rivals (BCG, 1972). Unfortunately, many of these 

strategies failed and the concept lost its favour (Lieberman, 1987; Papineau, 2006). In the climate change 

mitigation field, there is a newfound interest in experience curves as governments search for effective 

policies to meet the climate change goals (Rypdal, 2018; Alizadeh et al., 2020). 

The purpose of this chapter is to complement the historical overview provided in the literature review, 

Chapter Three. It mainly discusses key econometric issues related to the construction of the experience 

curves, along with more details on the proposed non-linear models that are part of this statistical 

comparison. In the second half, this chapter provides more details on the solar PV technologies that were 

subject to technological cost reductions and how this industry is benefiting from technological learning. 
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4.2 Technological Learning and the Experience Curve 

Technology learning is the leading phenomenon that dictates the future cost of a technology (Wene, 

2015). As market actors accumulate experience, cost, and technical performance of a certain technology 

both improve. This incorporates a collaborative effort from various market actors from technology 

producers to technology operators and users (Papineau, 2006). The process is referred to as technological 

learning. Technological learning is often economic in nature and thus results in cost reductions (Day and 

Montgomery, 1983). Assessment of future costs is exceptionally important for emerging technologies that 

are new to the market. It appears as a collective label for features, events, and processes converging 

during the observed time to produce the experience curve (Wene, 2005). Therefore, changes in 

performance, productivity and/or cost (or price) of a technology in relation to the accumulation of 

experience are usually used as a proxy for technological learning-by-doing (IEA, 2000). Whenever a unit 

of a particular technology (e.g. Solar PV modules) is produced, some experience and learning 

accumulates which leads to a reduction in the production cost of the next unit of that technology (Bailey 

et al., 2011; Farmer & Lafond, 2015).  

 Experience curves are one of the most prominent methods to analyse technological learning (Louwen and 

Junginger, 2021). They mainly quantify and measure the results of the technological learning process 

(BCG, 1968; Abell and Hammond, 1979). This means that they could also be the artifact of simultaneous 

processes such as growth and innovation diffusion. In contrast to direct cost-estimate techniques, 

experience curves have the potential to describe cost reductions (or more broadly progress) for a 

technology over a range spanning a volume growth of orders of magnitude (Wene, 2015).  

As explained earlier, the experience curve describes an empirical relationship between cumulative 

production of a technology and its unit costs. First observed by Wright (1936), experience curves analysis 

was measured by the uniform increase in labour’s efficiency only (Badiru, 1998) as a representation for 

learning. It referred to constant changes in the number of direct labour hours required to produce an 

airframe for each doubling of the cumulative production in a labour-intensive economy (Goddard, 1982). 
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In his paper, Debunking the learning curve, Goddard (1982) described Wright’s observation that “the 

trend in unit cost assumed a surprising constancy in slope if the logarithm of unit cost was plotted against 

the logarithm of cumulative production. He called this the learning curve21.” (Goddard, 1982) Day and 

Montgomery (1983) also quoted Yelle’s definition who described the experience curve phenomenon as 

the [constant] systematic decline in the number of labour hours required to produce an airplane (Yelle, 

1979).  

In the mid-1960s, the Boston Consulting Group (BCG) generalised the notion of experience curves to 

apply to all costs such as marketing, distribution, administrative, etc. (Day & Montgomery, 1983). By 

now, the experience curves postulate that all value-added costs (and prices) will decline systematically in 

real terms as volume increases (BCG, 1968). Irwin and Klenow supported this approach by the BCG and 

defined the experience curve phenomenon as “the decline in production costs resulting from greater 

experience with the production process.” (Irwin and Klenow, 1994).  

This decline in cost is not, however, automatic but depends on managements’ ability to force down costs. 

It is the result of an array of different cost-reducing processes (Kahouli-Brahmi, 2008) including various 

learning channels such as learning by doing (Arrow, 1962), learning by researching (Cohen and 

Levinthal, 1989), learning by using (Rosenberg, 1982), learning by scaling (Sahal, 1985) and knowledge 

spillovers) (Sagar and van der Zwaan, 2006). 

The effect of these underlying factors, however, cannot be easily disentangled, which could lead to 

potential masking for the diverse drivers of technology costs as discussed in detail throughout this 

chapter.  

 

 
21 Goddard’s claimed that Wright named his observation as the “learning curve”. However, there is no evidence that 

Wright gave his observation a specific name. 
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Experience curves have been developed for many products and technologies in several industrial fields 

such as manufacturing, consumer products, energy technologies, and environmental control technologies. 

These studies share the empirical evidence for the existence of constant learning rate over time (Wright, 

1936; Goddard, 1982; Henderson, 1984; Neij, 1997; Badiru, 1998; Alberth, 2006; Papineau, 2006; 

Bailey, 2011). Parallelly, they tried to propose a more theoretical clarification of how and why the 

technological learning occurs. Some of these studies are more established and accepted than others. These 

analyses, however, remain far from a generally agreed explanation of the observed robust cost–production 

relation (Ferioli, 2009). 

Calculating the learning rate22, via the experience curve phenomenon, is the main interest for cost analysts 

to project future cost developments. However, implementation of learning rates in a modelling 

environment, to endogenously capture likely future technological learning dynamics, raises several 

questions on the reliability of these technology cost forecasting models (Ferioli, 2009; Wene, 2015; 

Hogan, 2020). While the graphical evidence is impressive, it lacks a more theoretical and empirical 

justification on the constant learning rate in general of experience curves in general. Therefore, even if 

experience curves have proved useful for a number of purposes, they need to be handled carefully in order 

to deliver reliable and robust lessons for decision makers. 

 

 

 

 

 

 
22 See section 4.3 for more information learning rate calculation. 
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4.3. Construction of the Experience Curve 

The experience curve is a well-known analytical concept that describes the cost reduction potential of a 

technology as a function of experience quantified in terms of cumulative production (Karali et al., 2015). 

In cost terms, the classical form of the experience curve is: 

                                                                        Ct,y = C1Qt,y
-b

                                                                                        (4.1) 

 

Where: 

C = Costs of unit production ($/W) 

Q = Cumulative Production (MW) 

b = Learning parameter (i.e, experience index) 

C1 = Cost of first unit (depending on initial conditions) 

t = Technology 

y = Period (year) 

The power law behaviour enables plotting of experience curves as a straight line on a double-logarithmic 

scale (IEA, 2000). This model is linear in the logarithm and may be estimated using regression analysis 

when data are available: 

                                          log Ct,y = logC1 – b * logQt,y                                                                                                                     (4.2) 

                                                          PR = 2-b                                                                                           (4.3) 

                                                         LR = 1 – PR                                                                                     (4.4) 
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PR is the progress ratio, and LR is the learning rate. Typically, the progress ratio expresses the rate at 

which unit production cost (or price) declines for every doubling of cumulative production (experience). 

To elaborate, a progress ratio of 70% equals a learning rate of 30% and thus means that unit production 

cost would decline 30% and reach 70% value every time the production doubles. Initially, the values of 

the progress ratios are expected to be between 0 and 1 (or 0% to 100%). As the ratio gets closer to zero, 

the learning becomes more rapid while getting close to the value of one indicates lower rates of learning. 

 

 

 

 

 

 

 

Figure 4.1: Simple graphical representation on learning rates versus progress ratios 

 

Besides that, PR = 1 means there is no change at unit production cost. Also, PR > 1 indicates a cost 

increase23 and a loss in efficiency as the total production increases (diminishing return instead of cost 

reduction and efficiency improvement). The learning rate might also change considerably depending on 

the data and data period used. This is one crucial issue to be aware of when one uses the experience curve 

 
23 Net cost increases may be observed when, for example, market tightness and commodity price increases offset the 

cost-reducing technology learning effects. 
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methodology (Wene, 2015). These observations may have important repercussions for the extent to which 

experience curves can be extrapolated in the future24.  

Graphically, the experience curve is typically described in a logarithmic scale as stated in equation 4.2. 

Figure 4.2 shows an example for a linear scale (left) and a log linear scale (right) experience curve: 

 

 

 

 

 

 

 

 

Figure 4.2: Linear scale versus log linear scale in experience curves 

 

The basis for experience curves has been observed in empirical studies, as detailed in Chapter Three, but 

its theoretical foundations were first restricted to a much narrower interpretation focusing only on labour 

costs and within individual firms (Grafström & Poudineh, 2021; Henderson, 1984). As mentioned before, 

this has changed as total costs were considered thereafter in experience curve models (Muth, 1986;  

McDonald & Schrattenholzer, 2001; de La Tour et al., 2013). The empirical applications of the 

experience curve requires that choices must be made to build a robust model, which requires the analyst 

to deal with several measurement issues. 

 
24 See section 4.8.3 of this chapter for more details. 



112 
 

For example, the analyst must define the relevant product (service) market and measure the selected 

experience and costs (or prices). To date, no totally satisfactory approach to addressing these issues has 

been identified.  

For some technologies, the experience (or learning) effect is less evident, or even non-existing (for 

hydrogen production or gas pipelines for example) (Schoots et al., 2008; van der Zwaan et al., 2011). In 

other cases, the experience curve relationship can be constructed but the statistical significance is low, 

and annual fluctuations in costs are high which affect the reliability of the model (Abdou & Mahmoud, 

1977).  

The use of the experience curve, as a conceptual tool in models, is widely accepted, however, it becomes 

more difficult when applied to evaluate the efficiency of various components while implementing an 

innovation policy25. (Ferioli, 2009). It is widely recognised that in many cases learning-by-doing may 

improve the overall costs or efficiency of a technology. It is, however, argued that, so far, insufficient 

attention has been devoted to studying the effects of single-component improvements, which, taken 

together, may explain an aggregated form of learning (Papineau, 2006; de la Tour, 2012). 

For an entire technology, the phenomenon of learning-by-doing may possibly result from the learning of 

one or a few individual components only. The cost C of every industrial product can be expressed as the 

sum of the costs of its components, where each component is, in principle, characterised by a different 

learning parameter b (Abdou & Mahmoud, 1977; Louwen & Junginger, 2021). “If one assumes that the 

cost of each component decreases over time according to a power law relation, because of the learning-

by-doing effect, it is thus possible to write the overall cost relation of a generic product as in which the 

index i represents a given cost component” (Ferioli, 2009). The question is that under what conditions it is 

possible to combine experience curves for single components to derive one comprehensive experience 

curve for the total product (Abdou & Mahmoud, 1977). 

 
25 An example of this is the evaluation of the market-pull versus technology-push mechanisms 
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A distinction between different types of innovation can help to alleviate this problem. It has been 

observed that incremental innovations remain well within the boundaries of the existing market and 

technologies/processes of an organisation, benefitting from the accumulated knowledge and innovation 

systems built up on (Auerswald et al., 2000; Bailey et al., 2011). 

 

4.4 Sources of the Experience Effect:  

Dutton and Thomas (1984) quoted Abell and Hammond (1979) who noted that “Experience does not 

cause [cost] reductions but rather provides an opportunity that alert managements can exploit.” (Dutton & 

Thomas, 1984). Given that there is evidence to support the existence of an experience effect, the question 

arises on why this effect appears and what the driving factors are. The experience curve methodology 

quantifies an observed relationship without analytically disaggregates the individual driving factors (i.e., 

the shares caused by learning by searching, learning by doing, economies of scale, etc). The contribution 

of each of the underlying cost-reducing factors is likely to vary over time, depending on the phase of the 

innovation process.  

When first introduced by Wright (1936) in the air frame industry, the learning by the assembly workers 

from the repetition of a complex task was considered to be the cause of this empirical relation, 

consequently, the experience curve model was adopted. Years later, Andress (1954) drew a distinction 

between experience in the literal sense as gained by worker and a whole series of other factors that 

include management decisions and innovations as a learning factor (Alchian, 1963; Henderson, 1984). A 

shortcoming of Andress’ participation is that his observation was restricted to the aircraft industry. A 

possible support from electronic assembly and electro-machine products came from Conway and Schultz 

(1959) who argued that experience gained from repetition of the same task is not very important (Alchian, 

1963). 
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Limiting the experience gained to learning from repetition will restrict the applicability of the experience 

curve to products and industries where this condition applies (Henderson, 1984). Therefore, Conway and 

Schultz (1959) gave more weight to other factors such as tooling, production methods, design and 

volume, improvement in quality, and the quality of managerial decisions (Conway et. al. 1959). Levy 

(1965) divided the sources of experience into three classes as planned, autonomous and exogenous 

learning (Levy, 1965). The first two correspond to the endogenous learning Conway and Schultz (1959) 

referred to in their paper, while the last one implies the improvement based on information acquired 

exogenously from the environment (Levy, 1965). 

It is critical to understand the true reason behind the empirical relationship, and whether it is a correlation 

or a causation relationship between the model’s components. For example, prices of raw materials and 

components produced by third parties may play an important role in the technology’s cost determination. 

Market prices, however, are not a result of any direct experience gained. To better understand this, Ferioli 

et al. (2009) proposed to split up the technology costs into components and allocating the appropriate 

learning effect and learning rate to each cost component (Ferioli, 2009). 

Several possible causes of this phenomenon have been discussed in the literature extensively, hence they 

remain controversial until now (Goddard, 1982; Day and Montgomery, 1983; Henderson, 1984; Alberth, 

2006). Dutton and Thomas (Dutton & Thomas, 1984) described this phenomenon as an “aggregate 

empirical description” where underlying dynamics are masked (Dutton & Thomas, 1984). 

Understanding the experience gain sources helps to strategically apply the experience curve model. It 

does so by allowing management to assess the performance of various sources, enhance the strong ones 

and mitigate the weak points (Dutton & Thomas, 1984). For example, if experience gains are vested in the 

current management and employees, management must focus on the personnel and compensation policies 

that take account of the need to maintain this human capital. Further, as Porter (1979) has noted, if costs 

are falling due to economies of scale- via more efficient, automated facilities and/or vertical integration, 

then cumulative volume may be unimportant to relative cost position.  
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Understanding the reasons why experience accumulates and cost declines in any given situation requires 

understanding the phase of the innovation process which are likely to vary over time (Bailey, 2011). 

These different phases in the historical cost development of the technology may lead to calculating 

different learning rates for the different phases, which would differ from a learning rate for the whole 

dataset (Wene, 2015). 

There are three major sources identified in literature for the experience effect: learning, technological 

advances, and scale effects (Day & Montgomery, 1983). Beyond this point, it is recognised that “the 

experience curve phenomenon serves as a description of the evolution of an industry rather than 

specifying every possible cause of cost reduction and productivity increase” (Day & Montgomery, 1983). 

Day and Montgomery (1983) pointed out that it is difficult to distinguish between the contributions of 

scale, learning and technology. It is those major events that have been observed during the evolution and 

the diffusion of the industry. Most experience curves reflect the joint effects of learning, technological 

advances and scale (Hollander, 1965; Sahal, 1979).  

 

 

 

 

 

 

 

                                             

                                                Figure 4.3: Sources of the experience effect 
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This standpoint is more relevant when the experience gain process is not fixed, and all sources of learning 

come from known minor improvements. In the higher levels, with more than subclass of learning, the 

experience gain mechanism becomes sophisticated in nature, and it gets more difficult to specify exactly 

who learns what (Sahal, 1979). 

1. Learning  

This might be termed the “practice effect,” which encloses the increase in efficiency of all aspects of 

labour input as a result of practice and the exercise of ingenuity and expertise (Sahal, 1979; Day & 

Montgomery, 1983). It includes the discovery of better ways to organise work through improved tools 

and work specialisation26. 

Also, the performance of production equipment will improve as workers become more familiar with 

them. The reason behind it is that with experience workers became more effective in using and 

maintaining the equipment and gained experience in the activity in question (Day & Montgomery, 1983). 

It has been said that technologies do not learn, but organisations learn. It means that the enterprises 

producing and using the technology increase their capacity for effective action (Day & Montgomery, 

1983). The observed learning-by-doing phenomenon is the result of a multitude of different cost reducing 

processes (Kahouli-Brahmi, 2008), including learning by doing (Arrow, 1962), learning by researching 

(Cohen and Levinthal, 1989), learning by using (Rosenberg, 1982), learning by scaling (Sahal, 1979) and 

learning by copying (i.e. knowledge spillovers)(Sagar and van der Zwaan, 2006). That been said, the 

effect of these underlying factors cannot be easily disentangled.   

On technology spillover, it is observed that improvements within a certain technology often benefit from 

advances made in other fields, such as materials research or the benefits of military aircraft research that 

was fruitful for the development of the combined cycle gas turbine for example (Yelle, 1979). 

 
26 Doing one half as much, two times as often! (Day and Montgomery, 1983) 
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Accordingly, it is important to set the appropriate system boundaries to consider spill-over effects across 

sectors (Martinsen, 2011). Depending on the stage of the innovation chain, the system boundaries (as well 

as the regional boundaries) may change. 

2. Technical Advancements  

Innovation can take place on the technology supply side (i.e., production costs), as well as on the demand 

side (i.e., how and why end-users are using a technology). For some technologies (e.g., mobile phones, 

laptops, etc.), it may be easier to quantify the functionality than for other technologies.  

In capital intensive industries, new production processes often contribute to the experience curve effect. 

Changes in the resource mix of technologies, such as automation replacing labour, also support a 

technology-driven base for the experience effect (Adler & Clark, 1991). Moreover, improvement through 

process and product changes participate in adding to the experience effect. This includes product redesign 

and standardisation (Basnet & Magee, 2016). It has been seen in the automobile industry for example by 

modularisation of the engine and transmission production that achieved economies of scale and 

participated to the experience effect. Nevertheless, the role of technical advancement in the experience 

effect is controversial. It was argued that technical advancement is the result of the accumulated 

experience, but do not cause it (Basnet & Magee, 2016).  

3. Economies of Scale 

Economies of scale take place when there is an increased efficiency due to size mainly (Alberth, 2006). It 

is defined as “reductions in average unit costs as output increases” (Healey & Grubler, 2015). It is another 

source of the experience curve effect, and it applies to the majority of investment and operating costs. 

Scale also enables other cost reduction activities. Thus, it creates the potential for volume discounts, 

vertical integration, and the division of labour which in turn facilitates learning (Healey & Grubler, 2015). 
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On the plant level, economies result from capital cost savings27, an increased potential for division of 

labour, and better utilization of indivisible resources (Hollander, 1965). Forms of firm level scale 

economies include overhead economies (e.g., R&D and top management), economies in bulk handling 

(e.g., volume discounts), inventory economies, and marketing and financial economies (Ge et al., 2017). 

According to Quinn (1981), scale seems relatively less important while technology and learning have 

major impact (Quinn, 1981). Quinn introduced a study Hollander (1965) who, in his book, “The Sources 

of Increased Efficiency. A Study of DuPont Rayon Plants,” found that the largest proportion of the 

technology driven cost reductions were due to minor technical changes suggesting adynamic process of 

small incremental change akin to Quinn’s (1981) “logical incrementalism.” 

 

4.5 Which Costs? 

All drivers in a business are intended for profit maximisation at the lowest cost possible. Cost 

characteristics of experience curves can be observed in all types of costs (Alberth, 2006). Technology 

learning could occur not only in investment costs, but in many other aspects of a technology such as 

conversion efficiency, maintenance costs, reliability, etc. (Nordhaus, 2009). Also, cost improvement of 

experience curves can be observed in all types of costs whether they are manufacturing costs, labour 

costs, marketing costs, development costs, overhead costs, etc. (Badiru, 1998). 

Accordingly, the cost of production is vis-à-vis defined as the sum of the costs of individual operations 

(Muth, 1986). Nordhaus (2009) added that the total marginal costs of the experience curves are lower than 

current marginal costs; because an additional unit of output lowers all future costs as producers move 

down the experience curve (Nordhaus, 2009). 

 
27 As the scale of a plant increases, the capital costs increase less fast 
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These are among factors that determine costs, yet they may not be the most important factors. That 

decision, on which of these factors are most important, depends on which components dominate the cost 

structure of a technology. For example, for technologies where the costs are mostly determined by raw 

materials costs, such as steel, costs are mainly determined by market prices and not by learning effects 

(Gunawan, 2009). To understand which cost must be considered in the experience curve model analysis, 

cost analysis requires the assessment of the network of operations within a firm. Accordingly, the type of 

the cost analysed plays a role in the classification of the experience curve model mathematical 

relationship (Muth, 1986).  

Further reading suggests that it is not agreed on in the literature whether to model variable cost, value-

added cost, cash flow, or total cost. Brenneck (1959) suggested that the experience curve is supposed to 

be based on variable cost only. Brenneck argued that the only relevant costs to an experience curve 

calculation are those variable costs that fluctuate due to causes inherent in experience and learning 

(Brenneck, 1959). 

Fixed costs are not reflected in the experience gain since they always move with the output: the greater 

the output, the smaller the fixed per-unit cost (Brenneck, 1959). They are seen irrelevant by a large group 

of analysts since dividing fixed costs by total production will always produce a decreasing curve as 

production increases. Abell & Hammond (1986) claimed that the correct costs to use are the total value-

added costs. Conley added to this argument that to keep or to remove material costs is a relatively minor 

correction in most instances. Most of these arguments on costs are, unfortunately, conceptual without 

solid empirical evidence to support them in the relevant studies. 

Observed costs may show large fluctuations in the short-term for different reasons. Among these are 

changes in the level of capacity utilisation, new production methods wage settlement and others 

(Papineau, 2006; de La Tour, 2013). However, these tend to smooth out after a certain period at the long-

term. Cost fluctuations on the short-term explains the recommendation made by many researchers to use 

experience curves for long-term strategic planning and cost forecasting as short-term forecasts can be 
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illusive. This is one reason why it is recommended to have both a short- and long-term experience curves, 

where possible, to compare results from both models and see what each timeframe tells about the future.  

 

4.5.1 Using Price as a Proxy for Cost 

Despite the recommendation that technology learning should be measured by cost rather than price, 

reliable cost data on the industrial level are often difficult to obtain and the experience curve literature 

usually measures the learning effect on this level by price series (Alberth, 2006; Nagy, 2013; Moore, 

2015; Boone, 2018; Rypdal, 2018). It is therefore crucial to clarify the relationship between cost and 

price. The Boston Consulting Group (BCG)(1968), The international Energy Agency (IEA)(2000), 

Junginger et al. (2010) discussed the complications in analysing price time series to obtain experience 

curves. The Boston Consulting Group (BCG)(1968) argued that the ratio between price and cost remains 

constant in equilibrium markets, i.e. performance measured by price and cost has the same learning rates 

in this case. However, market disequilibrium may initiate price–cost cycles, which show up as systematic 

deviations between costs and prices.  

 

 

 

 

 

 

 

 

          Figure 4.4: Price-cost relationship at different phases of a technology’s life cycle (Source: BCG, 1968) 
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This observation by the Boston Consulting Group (BCG) was supported by the leading study conducted 

by Dutton and Thomas (1984), who compiled 108 cases of cost experience curves measured in firms and 

include manufacturing processes in a wide selection of industries. This resulted in a distribution of 

learning rates that showed a broad peak around 20%. Measurements of price experience curves show the 

same distribution, lending support to the earlier interpretation given by the Boston Consulting Group 

(Dutton and Thomas, 1984).  

Prices are typically set below cost to establish a market. In pre-commercial and niche market stages, 

prices may be set lower than costs in expectation of large profits during the phase of pervasive diffusion. 

As volume and experience reduce cost, the prices are maintained, which should gradually convert the 

negative margin to a positive one. If market structure permits, prices are not reduced at the same rate as 

costs fall at potentially early maturity, where all producers are inclined to use an optimal combination of 

the total cost and profit margin to stay in the market (Henderson, 1968; Henderson, 1984; Nemet, 2006; 

Papineau, 2006; Neij, 2008; Elshurafa et al., 2018). 

Typically, experience curves describe the development of production costs, as a function of accumulated 

produced volume. Market prices, however, determine the actual diffusion of technologies. Prices can 

often differ strongly from the actual production costs, which are accounted for by modelling the supply 

and demand in the market (Bass, 1980; Neij, 1997). It could also lead to the problem of price data which 

is sometimes used in modelling (as it can be easier to collect) not equating to cost data (that could be 

confidential and difficult to obtain). Still, cost data may include some components that are purchased 

from third parties and therefore have their own price effects as well. 
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4.5.2 Floor Costs 

The concept of floor-costs has also been present in the experience curve discussion. Efforts have been 

made to calculate their value with respect to minimum material costs for a specific technology (Alberth, 

2006; Papineau, 2006). The existence of floor costs calculations was not always as accurate as these 

calculations are mainly based on engineering perceptions only (Alberth, 2006). Although this engineering 

perception makes sense in terms of explaining past cost (or price) trends, it may not necessarily be 

accurate when forecasting future costs where new challenges may arise.    

Over the years, the question whether the future cost should be limited by a floor cost, or an absolute lower 

limit to production costs, persisted. On the one hand, it has the advantage of reducing the likelihood of 

overestimating the technology cost reduction potentials (Alberth, 2006). On the other hand, however, 

floor costs may be conservative estimates and may hide opportunities and conserve status quo (Candelise 

et al., 2013). 

 

4.5.3 Company, Industry, or Global Cost Curve? 

An important question to answer is whether technological learning for a specific technology is a global 

phenomenon, or learning simply develops at different rates due to company or regional specific factors 

(Day & Montgomery, 1983). Answering this question will have an important impact on the choice of 

models (global vs. regional) that are suited for endogenously simulating learning. 

The answer is: it depends. In general, a global approach is advised if the technology (e.g., a wind turbine, 

solar PV modules) is the same in all countries (Abdou & Mahmoud, 1977). If so, this leads to a globally 

defined learning rate for this technology (Papineau, 2006; Wene, 2015). In the global marketplace for 

some technologies there can be development and production in one region and installation in another (for 

example wind turbines are produced in Denmark installed in Asian countries).  However, cost 

components relying on local skills and or embedded in local institutions, such as the installation of PV 
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systems on buildings, may not find its way to other regions. This, accordingly, blurs the regional 

differences and complicates data collection (Schilling & Esmundo, 2009; Candelise et al., 2013; de La 

Tour et al., 2013). 

Simultaneously, clustering of industries or companies could help driving faster innovation at specific sites 

that could lead to regional differences in learning rates (Eising et al., 2020). Fuel ethanol from sugarcane 

in Brazil between (1975-1995) is one example. However, any regional diversity in technology economic 

and technical performance is likely to be short lived. This is due to the realisation that the superior 

technology will either conquer or be imitated and thus disperse to all regions (Elshurafa et al., 2018). 

Louwen (2021) supported the establishment of experience curves would represent a whole industry of a 

technology, rather than a single company. This is conditioned, according to Louwen, upon using 

experience curves that include total costs of production, not just labour (Louwen, 2021). Day and 

Montgomery (1983) also emphasised that a single industry price may be misleading if it requires 

averaging across disparate models, features, and accessories, or when competitors use markedly different 

strategies such as full service vs. bare—bones product offerings (Day and Montgomery, 1983). 

 

4.5.4 Dynamic vs Static Costs 

The total cost, the left-hand side variable, in the experience curve estimation could be too general which 

might result in insignificant results. What the equation measures is very important and affects the quality 

of the estimate as previously emphasised. To explain this, Dutton and Thomas (1984) have pointed out 

the difference between ‘dynamic’ and ‘static’ economies (Dutton & Thomas, 1984). 

According to Papineau (2006), dynamic economies bring a downward shift in the cost curve by 

continuous change, whereas static economies cause a movement along the cost curve. This difference is 

important as static economies can be reversed and cost can increase again if output decreases (Papineau, 
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2006). However, if the cost reduction has occurred due to experience, that means the curve has shifted 

downward and fluctuations in output across manufacturers is less likely to affect the cost curve.  

 

 

 

 

 

 

                   

                         Figure 4.5: Cost curve shifts versus moving down the curve (Source: Papineau, 2006) 

 

That been said, most experience curve models have fluctuating static economies embedded in them, 

coupled with the absence of dynamic economies, which affected the statistical significance of the models 

(Dutton et al., 1984; Papineau, 2006). This identification issue has been controversial for so long in 

literature. However, Papineau (2006) correctly claimed that when these issues are pointed out in 

literature, they have generally been ‘relegated’ briefly, leaving the bulk of information and treatment of 

this to the references (Papineau, 2006).  
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4.6 Experience Curves Characteristics: Empirical Issues 

According to Alberth (2006), empirical evidence on experience curves was first discovered in 1925 at the 

Wright-Patterson Air Force Base. They found that plotting an aeroplane’s manufacturing input against 

cumulative number of planes built on a log-log scale produced a linear result (Alberth, 2006). Following 

Wright’s observation in 1936, the next major advancement, reported in experience curves empirical 

literature, was made by Arrow in his 1962 publication (Arrow 1962, IEA 2000). He generalised the learning 

concept and put forward the idea that technical learning was a result of experience gained through engaging 

in the activity itself. Undertaking an activity, Arrow’s suggestion would lead to a situation where only 

“favourable responses are selected over time,” (Arrow, 1962). Söderholm and Sundqvist (2007) discussed 

econometric aspects of experience curves, and the potential impact of quantifying and interpreting the scale 

effect on the reliability of the curve (Söderholm and Sundqvist, 2007). Yu et al., (2011) questioned the 

importance and the consequences of including more than one factor, such as input prices and/or scale-

effects, in the experience curve calculations (Yu et al., 2011). 

Jamasb and Köhler (2008), have contributed with a broad critical assessment on the empirical aspects of 

the experience curve. Ek and Söderholm, (2013) added a good review of some of the key challenges in 

measuring technology learning in the wind power sector. Nordhaus (2014) emphasised, however, that a 

statistical identification problem is present when one tries to separate learning from exogenous 

technological change, which creates upward biases in learning estimations. Nordhaus (2014) reported 

erroneous estimates of the total marginal cost of output which would introduce bias in optimisation models. 

Odam and de Vries (2020) echoed Nordhaus concerns on potential problems with experience curve 

estimation, concluding that experience curves should be interpreted with prudence (Jamasb & Köhler, 

2008; Ek and Söderholm, 2013; Nordhaus, 2014; Odam and de Vries, 2020).  

Montgomery and Day (1983) argued that much of the empirical evidence in support of the experience curve 

phenomenon has been graphical in nature (Day & Montgomery, 1983). Despite the empirical support and 

the advantages of experience curves, “acceptance is waning,” said Montgomery and Day (Day and 
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Montgomery, 1983). They argued that the evidence has not focused on the measurement and econometric 

issues which would be required for a more scientific assessment. Accordingly, the empirical applicability 

of the experience curves to predict the future costs of technologies has an applicability test in real world 

scenarios. The main empirical considerations concentrated around three main issues: first, assuming a 

constant learning rate parameter within linear models. Second, the determinants of the variable(s) used as 

a proxy for experience. And third, the correct number of independent variables that should be used in 

building the model. 

This section is an introduction to the types of experience curves in regard to the number of factors used in 

the model. It summarises the methodological background of both the One-Factor and the Two-Factor-

Experience Curve concepts and investigates possibilities for further refining them. For both concepts it 

looks into methodological challenges, uncertainties in parameters and data availability.  

 

4.6.1 Single-Factor and Multi-Factors Experience Curves: 

The one-factor form of the experience curve uses only experience as the independent variable to explain 

cost changes over time (de La Tour et al., 2013). It is the traditional and most-common experience curve 

model that utilises the cumulative output of the technology as a proxy for overall experience gains and 

results in an aggregated learning rate (LR) estimate. Alberth (2006) discussed reasons behind the Single 

Factor Experience Curve (SFEC) popularity and referred this to the simplicity of its use. Nevertheless, 

Goddard (1982) and de La Tour (2012) reported drawbacks from using one factor model to represent the 

experience effect such as the presence of the omitted variable bias which  occurs when a statistical model 

leaves out one or more relevant variables (Goddard, 1982; de la Tour, 2012). 

Also, Neij (2008) claimed that using experience as the only explanatory variable does not allow any 

flexibility in the pace at which cost decreases with cumulative production, which can be inconsistent with 

economic theory (Neij, 2008). Accordingly, Alberth (2006), Neij (2008), and de La Tour (2013) have 
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supported the construction of multi-factor experience curves (MFEC) and the associated learning rates 

(Alberth, 2006; Neij, 2008; de la Tour, 2012). The logic behind this curve is to identify and isolate the 

combined effect of separate learning factors. This approach would help to derive a “true” learning rate 

according to Alberth (2006). It also assures the consideration of other learning mechanisms like R&D, scale 

effects and others (Neij, 2008; de la Tour, 2012). When using multi-factor experience curve models, the 

learning rate is more sensitive towards the consideration of the factors. Accordingly, lower learning rates 

are reported with MFECs which indicates a likely positive bias in the single factor experience curve (SFEC) 

outcomes that causes higher unrealistic learning rates.  

Single Factor Experience Curves (SFEC) generally calculates higher learning rates which indicates a 

possible bias in the results (Alberth, 2006; de la Tour, 2012). However, there are no enough studies using 

Multi Factor Experience Curve (MFEC) models to make a concrete conclusion in regards to this point. In 

fact, there are “few” MFEC studies in comparison to the SFEC ones (de la Tour, 2012).  

 

(a) Single Factor Experience Curve (SFEC): 

As presented in equation 4.1, the Single Factor Experience Curve (SFEC) relates the unit cost (price) 

development of a technology to the evolution of one factor, the accumulated learning, classically 

represented by accumulated production. It is illustrated by plotting a reduction in technology costs (or 

prices) against its accumulated production (Candelise et al., 2013). 

The unit cost development observed with Single Factor Experience Curve (SFEC) – in which costs reduce 

by a constant fraction for each doubling of cumulative production – can be described by a power law. The 

power law behaviour makes it possible to plot experience curves as a straight line on a double-logarithmic 

scale (Goddard, 1982). Once a learning rate has been calculated the interest for the analyst is to use this 

learning rate to model and analyse future cost developments. 



128 
 

Despite some annual fluctuations, there is a good reliable match between the real cost data of PV and the 

cumulative installed volume. Moreover, extrapolating the line further gives an indication about the 

capacity at which a certain cost level could be reached. 

Using Single Factor Experience Curve (SFEC) benefits from relatively easily accessible data (Alberth, 

2006). Investment costs (prices) and production (or installation) volumes are often well recorded 

compared to other underlying cost drivers, and thus reliable experience curves can be determined for cost 

forecasting purposes (Nemet, 2006).  

Among challenges that faces the application of the Single Factor Experience Curve (SFEC) is the 

technological learning evidence. For a number of technologies, the learning effect is less evident than for 

the case of PV for example. As for hydrogen production or gas pipelines, it is non-existing (Schoots et al., 

2008; van der Zwaan et al., 2011). 

In other cases, the SFEC can be constructed but with low statistical significance, and high annual 

fluctuations in costs (Nemet, 2006). Also, net cost increases may be observed when e.g. market tightness 

and commodity price increases offset the cost-reducing technology learning effects (Alberth, 2006). If 

historical costs are analysed on this partial-learning basis, the analysis could derive vastly different 

learning rates and results and achieve a better match with statistical data (Nagy, 2013; Louwen, 2021). 

One of the strengths the Single Factor Experience Curve (SFEC) has is that it simplifies cost dynamics. 

This is because it groups several underlying drivers of cost reduction in one factor that matches empirical 

data (Henderson, 1984).  

On the other hand, this high level of aggregation is a major criticism of the Single Factor Experience 

Curve (SFEC) concept, because it does not allow the analyst to quantitatively associate the observed cost 

(price) reductions to individual drivers such as learning-by-research, learning-by-doing or learning-by-

investments (Chu & Zhang, 2003, Nemet, 2006). This makes it hard to provide a clear quantitative 
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assessment of the impact of a policy option that addresses just one of these factors, such as R&D 

investments (Alberth, 2006). 

In fact, the Single Factor Experience Curve (SFEC) has been constantly criticised (see for example Neij, 

2003; Nemet, 2006; Nordhaus, 2009; Holmes, 2010) due to the uncertainties associated to the lack and 

treatment of data, and the aggregated approach to innovation mentioned above. In particular, it is 

considered problematic from a methodological viewpoint as well as from a data point of view, which may 

lead to an overestimation of the learning effect. 

Despite uncertainties and criticism, the Single Factor Experience Curve has proven to be a useful 

framework for empirically evaluating technology cost evolutions. However, a split of the Single Factor 

Experience Curve (SFEC) into a Multi Factor Experience Curve (MFEC) has been undertaken by 

Kouvaritakis et al. (2000) and others to tackle the model’s uncertainties.  

The Multi Factor Experience Curve (MFEC) approach tries exactly to do this – in order to better assess 

the impact of diverse cost-reducing drivers, it separates out the effects of learning-by-doing and learning-

by-searching as explained below. 

 

(b) Multi Factor Experience Curve (MFEC): 

Nemet (2006) and Nordhaus (2009) provided critique directly relevant for diagnosis and design the 

experience curve model. Both, Nemet and Nordhaus, argued that most of observable learning is due to 

well-known processes such as R&D and economies of scale (Nemet, 2006; Nordhaus, 2009). Thus, 

ignoring these causes in measuring learning leads to erroneous estimation of future estimations of future 

technology costs.  

Accordingly, the Mutil Factor Experience Curve (MFEC) models were introduced in literature. The Multi 

Factor Experience Curve (MFEC) approach tries to disentangle the diverse underlying drivers of 
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technology cost reduction (Nemet, 2006). This helps to assess the impact of diverse cost-reducing drivers, 

and it separates out the effects of different factors such as learning-by-doing and learning-by-searching. 

However, learning by doing and learning by searching cannot be easily satisfactorily separated. And 

certainly, the one factor cannot substitute the other (Nordhaus, 2009). 

In addition to the previously mentioned factors, market prices of raw materials and components produced 

by third parties may also play an important role in the technology’s cost dynamics such Silicon prices in 

solar PV modules manufacturing (de La Tour et al., 2013). To better address this, Ferioli et al. (2009) 

proposed to split up the technology costs into components and allocating the appropriate learning effect 

and learning rate to each cost component. 

Nemet (2006) analysed seven factors which are assumed to explain the cost development, which among 

them include module efficiency, plant size, silicon cost, and yield. Research and Development (R&D), 

improves module efficiency, plant size represents economies-of-scale, and silicon cost is an input factor. 

Nemet’s model performs poorly for the period from 1975 until 2001. The seven examined factors 

explained less than 60% of the cost reduction, where the most important factors being efficiency, plant 

size, and silicon cost (Nemet, 2006). 

However, applying the model separately between 1975–1979 and 1980–2001 provides interesting results. 

For the first period, the model performed worse with 59% of the change remains unexplained. For the 

second period, there was a significant improvement in the model’s performance leaving only 5% of the 

cost decrease unexplained (Nemet, 2006). The author linked this to a drastic market change over this 

period (e.g., space applications to terrestrial applications).  

Some studies restricted the Multi Factor Experience Curve (MFEC) model to public R&D investments to 

removes many methodological concerns without reducing its usefulness for policy. To further investigate 

this approach, Klaassen el al. (2005) analysed the effect of public R&D on wind energy in Denmark, 

Germany and the UK. Popp, Santen et al. (2012) have proposed using patent counts as a proxy for 
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knowledge stock rather than R&D budgets. Patent counts are a closer indication of innovation and the 

data is relatively accessible, while knowledge spillovers between technologies can also be measured 

through patents (Santen et al.; 2012). 

There is criticism to the proxies used for the knowledge stock, and to the output function. The focus of 

Research and Development (R&D) does not necessarily lie on investment costs but on technological 

improvements such as efficiency, maintenance, safety and other factors, both technological and non-

technological (Nordhaus, 2009). Hence, to use investment costs as the sole output of R&D is a 

misrepresentation, similar to the aggregation point made for the Single Factor Experience Curve (SFEC). 

Moreover, the data on R&D investment is confidential and scarce, in particular when a high level of 

technological disaggregation or private sector investment is needed (Candelise et al., 2013). In the energy 

field, the International Energy Association (IEA) RD&D statistics represents a good source of 

information on energy RD&D budget from its member countries only28. This dataset is a useful starting 

point that reflects public R&D investments.  Data on corporate R&D expenditure are more difficult to 

obtain due to confidentiality, in particular when focusing on the R&D expenditure by technology 

(Jacquier-Roux and Bourgeois, 2002; De Nigris et al., 2008; van Beeck et al., 2009). Furthermore, even if 

data were available, attention needs to be paid to the fact that companies may often over- or underestimate 

them for strategic planning purposes (Jacquier-Roux and Bourgeois, 2002; Gioria, 2007). 

These arguments raised two counterclaims at the organisation level of the learning system analysis: first, 

the distinction between public and private (industrial) R&D is crucial for understanding technology 

learning, and second, ‘public R&D can seed the learning process within the industry but not directly 

influence total cost’ (Alberth, 2006; Papineau, 2006). 

 
28 Despite some related uncertainties that originate from data gaps and differences in the extent to which individual 

member countries include regional funding, institutional budgets and support to demonstration activities in the data 

submitted to the IEA (Wiesenthal et al., 2012) 
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That been said, the question arises on whether it will be better to use exogenous assumptions on future 

R&D investment levels, or to endogenise the calculation in the model. The advantage of the latter is that 

consistent scenarios could be produced, and data gaps would be filled. On the contrary, an endogenous 

calculation of corporate Research and Development (R&D), by assuming a constant R&D intensity 

multiplied with the sector's turnover, implies a risk of exaggerating lock-in effects for certain 

technologies, as with this method increased technology ingestion would not only lead to learning by 

doing but also to increased corporate R&D funding levels (Jacquier-Roux and Bourgeois, 2002; Nemet, 

2006; Gioria, 2007). For the most part, in the absence of a model simulating business Research and 

development (R&D) budgeting on the basis of risk and expectation, it has been commonly advised to 

leave R&D funding exogenously determined by considerations derived from the technology perspective 

analysis (Alberth, 2006). 

Nemet (2012) led a leading study to examine the impact of adding more factors to the experience curve 

model. Nemet concluded that “a much broader set of influences than experience alone contributed to the 

rapid reductions in the past” (Nemet, 2012). While these refinements to the (MFEC) may help reassess 

the traditional learning concept that masks underlying trends, they may cause problems with data 

availability associated to quantifying all the parts of the total cost. 

 

4.6.2 The Shape of the Experience Curve: 

Historically, a number of authors have suggested several models for the shape of an experience curve, 

especially deviations from the conventional log-linear (Equation 4.1) at the beginning and tail end of the 

curve. Forecasting with an experience curve requires selecting an appropriate model, which is as crucial as 

accurately estimating parameters (Martino, 2003; Schilling & Esmundo, 2009; Yeh & Rubin, 2012; 

Elshurafa et al., 2018; Rypdal, 2018). Using an inappropriate model can result in seriously unreliable 

forecasts (Martino, 2003; Chu, Wu, Kao, & Yen, 2009; Yamakawa, Rees, Salas, & Alva, 2013). 
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The conventional experience curve model is not the only model that describes the relationship between 

cumulative unit numbers and production cost (Yelle, 1979). Several geometric forms of the experience 

curve model have been suggested since Wright’s paper (1936). Garg and Milliman (1961) reported the 

importance of studying the possibility that any other specification could fit a model better (Garg and 

Milliman, 1961). Among well-known models in this field are: (1) The log-linear model, (2) The plateau 

model, (3) The Stanford-B model, (4) The DeJong Model, and (5) The S-curve model (i.e.: cubic L-C), as 

shown in Figure 4.6: 

 

 

 

 

 

 

 

 

                                                           Figure 4.6: Geometric shapes of the experience curve 

 

There is strong empirical evidence in literature that experience curves adhere to power law models (Wright, 

1936; Henderson, 1984; Papineau, 2006; Swanson, 2006; Badiru, 2012). However, Carr (1946), Dutton and 

Thomas (1984), Schilling and Esmundo (2009), Wene (2015), Hansen (2017) and Hogan (2020) confirmed 

that many technologies exhibit an S-curve in their performance improvement over their lifetimes (Foster, 

1986; Twiss, 1992; Christensen, 1993, 1994; Ayres, 1994; Schilling & Esmundo, 2009). Carr (1946) was 
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among first who stated that growth is rarely linear and linear models do not provide the best fit for the 

learning process. Carr (1946) and Conway and Schultz (1959) initially reported this phenomenon and Baloff 

(1966, 1971) later researched it in depth as mentioned earlier.  

This S-shape for a particular product or technology can be predicted using different technology forecasting 

methods that are appropriate for time series data as described in section 2.3 of this chapter. These models 

help the modeller to identify the time required for a specific technology adoption, and what might be the 

maximum penetration (Hogan et al., 2020). 

In reality, the logic behind non-linear experience curve shapes is that cost reduction cannot be achieved for 

a technology endlessly29. The performance of a technology typically shows slow initial improvement, 

followed by rapid growth, then diminishing improvement when plotted against the amount of effort and/or 

money invested. At the early stages of a technology, the fundamentals of the technology are poorly 

understood which explains the slow performance improvements. Once scientists or firms gain a deeper 

understanding of the technology, improvement begins to accelerate. As the technology begins to reach its 

limits, the cost of each marginal improvement increases, and the S-curve flattens out. Grübler (2006) 

partially agreed with this observation and argued that technology cost reduction happens quite fast in the 

early stage of the development process, but the potential for cost reduction declines drastically as the 

technology matures.  

A key concept in experience curve estimation and modelling is the idea of a plateauing curve (Carlson, 

1961; Yelle, 1979; Badiru, 2012; Honious et al., 2016; Boone, 2018). Yelle (1979), Badiru (1998), 

McDonald and Schutzer (2000) found reasons to search for something other than Wright’s log-linear model 

and discussed the plateau effect in different industries.  

 
29 One could imagine a minimum fixed cost necessary to build and deliver the technology, fulfilling technical and 

economic constraints. This minimum cost is referred to as technology floor cost that is commonly imposed in cost 

models to prevent the technology costs falling below a specified value. 
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Plateauing, or the “plateau effect”, phenomenon typically indicates the lack of any improvement with 

additional manufacturing. Plateauing was studied by Baloff (1966) in machine-intensive manufacturing. 

Plateauing was observed in twenty out of twenty-eight cases. As for labour-intensive manufacturing, 

plateauing was slower and less evident according to Baloff. This general conclusion was confirmed by 

Yelle (1979) that plateauing is much more likely to occur in machine-intensive industries than in labour-

intensive industries (Yelle, 1979)30. It is also clearly observed in Hirschman’s (1964) data relating to the 

electric power industry. Hirschman (1964) wrote that the experience curve effect is prevalent even in 

machine-intensive industries, and that a similar relationship suggesting experience curves were seen in the 

entire industries of petroleum refining, electric power, and steel. 

Yelle (1979) offers the following reasons for the presence of the plateauing effect in the machine-intensive 

industry: (i) The higher proportion of machine-paced labour to total labour (ii) Management’s unwillingness 

to invest more capital in order to acquire the technological improvements necessary for the learning process 

to continue (iii) Skepticism on the part of management that new goals are not set once previously defined 

goals have been achieved. Following on Yelle’s point of view, it is clear that management’s decisions are 

responsible for the unlearning and relearning in the machine-intensive industries. In other words, to 

overcome plateauing in machine-intensive industries and continue the learning curve effect, management 

should play a much larger role than the labours. 

The flattening effect was further explored and compared to Wright’s conventional model in many studies 

published by the Air Force institute of Technology (AFIT) by Badiru (2012), Moore (2015), Johnson (2016) 

and Boone (2018). Badiru (2012) concluded that forgetting was important to factor into an experience curve 

evaluation and that half-life analysis is important to consider when estimating the effects of the experience 

curve. The concept of half-life, as named by Badiru, is “the amount of time it takes for a quantity to diminish 

to half of its original size through natural processes,” (Badiru, 2012). 

 
30 This observation is particularly important for this thesis when discussing the solar PV industry as a machine-

intensive industry.  
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Forgetting in the production process can be caused by both internal and external factor (Badiru, 2012). 

Internal events can range from complacency of the workforce to policy changes. On the other hand, external 

factors include anything from natural disasters to drastic market swings that cause a halt in production. 

Badiru (2012) focused on the actual phenomenon of learning that is apparent in production and less on how 

the government can use that analysis to generate accurate cost estimates. 

Forgetting, in general, implies that an organisation will experience a decline in performance over time as 

a result of factors such as lack of training, reduced skills and natural forgetting (Badiru, 2012). The 

concept of forgetting and its impact on non-constant learning rates has proven relevant in contemporary 

experience curve research (Hogan, 2020).  

The plateauing phenomenon is a closely connected concept in the contemporary models’ analysis. Jaber 

(2019) stated that “plateauing occurs when the learning process ceases and manufacturing enters a 

production steady state” (Jaber, 2019). When the plateauing occurs, it results in a flattening, or partial 

flattening, of the experience curve corresponding to a zero – or near zero – learning rates (Jaber, 2019; 

Hogan, 2020). However, nonlinear models usually include a linear phase before they complete their life 

cycle. That implies that most linear models are just incomplete non-linear models that need more time to 

mature. 

 

 

 

 

 

 

                                        Figure 4.7: The plateauing phase in contemporary experience curves 
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Empirical studies have shown experience curves to exhibit diminishing learning rates. However, this 

behaviour in the experience curves context has not been well explored in empirical literature. Recently, 

Badiru (2012), Moore (2015) and Boone (2018) analysed the performance of contemporary Stanford-B, 

DeJong and S-curve models in airframe industry. Their research provided insight into how the traditional 

learning curve models become less accurate at the tail-end of production (Badiru, 2012; Moore, 2015; 

Boone, 2018). 

 Johnson (2016) followed up on Moore’s research (2015) and analysed the plateau effect as well. Johnson 

hypothesised that there was a flattening effect at the end of the production process and that learning does 

not continue to happen at a constant rate toward the end of a production cycle. Johnson also states, “it is 

human nature for people to lose focus or concentration at certain times when performing repetitive tasks” 

(Johnson, 2016).  

There are a number of limitations of using the S-curve model as a prescriptive tool. First, it is rare that the 

true limits of a technology are known in advance, and there is often considerable disagreement among firms 

about what the limits of a technology will be. Second, the shape of a technology’s S-curve is not set, simply, 

in stone. Unexpected changes in the market, input prices, component technologies, or complementary 

technologies can shorten or extend the lifecycle of a technology. Furthermore, firms can actively influence 

the shape of the S-curve through the nature of their development activities (Jarne et al., 2015; Shukla et al., 

2015; Hogan et al., 2020). 

In their famous study, Yeh and Rubin (2012) concluded that the shape of experience curve and the 

magnitude of learning rates are uncertain and that the consequences of these uncertainties for policy need 

to be explored (Yeh & Rubin, 2012).  
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Nonlinear curves of technological improvement have been well documented in a wide range of industries, 

including disk drives, automobiles, sailing ships, semiconductors, vacuum tubes, steam engines, and more 

(Foster, 1986; Ayres, 1994; Nagy, 2012). However, it is less used and discussed in literature compared to 

the linear models. 

When it comes, for example, to the S-curve nonlinear models, 53% of articles in the Journal of technological 

forecasting and social change, didn’t mention S-curves at all between 2002 and 2007. Only 4% of the 

articles that mentioned the S-curves were about the characteristics of S-curves applications. Between 1996 

and 2006, more than 1300 articles were written on technology forecasting, where only 11 papers report 

some trials to apply quantitative S-curve analysis in the technology forecasting context. Recent work started 

using and testing nonlinear models more as more dynamic models to generate technology cost forecasts. A 

brief historical overview on the models used for comparison in this research is given in the following 

section: 

 

a. The Gompertz Model 

The Gompertz function is a sigmoid curve, which describes asymptotic growth as being the slowest at the 

end of a given time period or at the maximum of a given variable (Akın et al., 2020). This curve has an S-

shape which is non-symmetrical. It assumes that the period of increasing growth is shorter than the period 

in which this growth is decreasing, and in which the process is adjusting to its saturation level (Franses, 

1994). The model was first suggested and first applied by Benjamin Gompertz in 1825. Since then, it 

became well-known and widely used in many aspects of science (Jarne et al., 2015). Researchers have fitted 

the Gompertz model to almost everything from biology to plant growth, tumour growth, and demand 

forecast with enormous literature. 

In its simplest form, the basic Gompertz growth model can be represented by the equation:    
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-bt 
                                                                   Y(t) = Le-ae

                                                           (4.5) 

Where: 

Y(t) – Expected value (mass, length, population) at time t 

t - Time period 

L – Upper Asymptote (Maximum population, mass, length possible) 

a – Regression coefficient 

b – Growth Rate 

The first attempt to use a least-squares method for the Gompertz model to find the best curve, was attempted 

early in literature (Franses, 1994; Buchanan et al., 1997). Until the 1940s, it was done by log-transforming 

the values to make it easier to determine the sum of squares (Jarne et al., 2015). The saturation level is one 

of the three unknown parameters in the model. Its value is typically assumed a priori or estimated iteratively. 

This value plays a central role in the forecasting of future values of a specific time series. To improve the 

estimation, Gibson, Bratchell, and Roberts (1987, 1988) proposed a four-parameter Gompertz model by 

adding a constant term β to the ordinary Gompertz model Equation.  

 

b. The Logistic Model 

The logistic curve was applied for the first time by Verhulst, who published his research in 1838 in the 

journal “Correspondence Mathematique et Physique”. Almost a century later, in 1920, R. Pearl and L.J. 

Reed rediscovered the logistic curve in the course of their study of the evolution of fly populations. 

The Logistic model has often been used in the fields of demographics, biology and economics, to describe 

the evolution of populations and to model processes of dissemination and self-organization associated with 

the spread of new technologies and products, technological change and, in general, economic growth. The 
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Logistic model has proved applicable to technology driven diffusion and adoptions where new technology 

displaces old technology because it is technically and economically superior (Muraleedharakurup et al., 

2010). The Logistic growth model can be represented by the equation: 

 

                                                      Y(t) = L/ (1+ae-bt)                                                                  (4.6) 

Where: 

Y(t) – Expected value (mass, length, population) at time t 

t - Time period 

L – Upper Asymptote (Maximum population, mass, length possible) 

a – Slope factor 

b – Growth rate 

The very symmetry of the logistic curve means that the period of expansion is equal to that of contraction, 

while in the Gompertz curve the period of acceleration is shorter than that of deceleration 

(Muraleedharakurup et al., 2010). 

 

 

 

 

 

 

                                    Figure 4.8: Graphical representation of Gompertz and the Logistic models 
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To summarise, both Gompertz and the Logistic models challenge the implicit assumption in the 

traditional experience curve theories that learning obtained through experience does not depreciate. 

Empirical evidence demonstrates that learning depreciates at both the individual and the organisational 

levels. Gompertz and the Logistic models make use of the concept of performance decay (commonly 

called forgetting or plateauing) to model non-constant learning rates (Hogan, 2020). 

One goal of this research is to examine the accuracy of Gompertz and the Logistic models in comparison 

to the conventional Wright’s model. The Gompaertz and the Logistic were originally used as growth 

curve, and they have the form of a sigmoid, where the initial exponential growth converges to a maximum 

value due to a nonlinear saturation mechanism. Both models possess similar properties that make them 

useful in both growth and experience curve studies. It does not appear that either curve has any substantial 

advantage over the other in the range of phenomena which it will fit (Akın et al., 2020). 

However, the point of inflection of the Logistic model is equivalent to the point of maximum deployment 

(Franses, 1994). Symmetrical models have a fixed point of inflection where the growth and decline are 

symmetrical around this point (Malyusz & Pem, 2014). On the other hand, asymmetrical models have 

their inflection point at less than 50% with a faster growth than decline. Therefore, this research examines 

the impact of this feature on the accuracy of the forecasting models.  

Another difference between Gompertz and the Logistic models is that growth rate declines linearly in the 

Logistic model, while it declines exponentially in Gompertz model ( Franses, 1994; Buchanan et al., 

1997; Akın et al., 2020). This difference could potentially affect how fast a technology can reach the 

flattening area, and what impact this might have on the prediction power of the model (Moore, 2015). 

Hogan explained that non-linear models typically alter the resulting learning curve slope based on 

alterations to the theoretical first unit cost parameter A. However, the experience curve slopes of these 

models are not directly a function of the number of cumulative units produced. Contemporary models use 

a “step function” to reduce the learning rate to zero. Accordingly, the models amend the learning slope 
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based indirectly on the number of cumulative units but only when interruptions to the production process 

starts to occur (Hogan, 2020). 

Nonlinear experience curve provides an important managerial tool for long-term strategic planning. Once 

a technology reaches the flat end of the forecasting curve, the curve sends a message to managers that it is 

possibly time for change. A new curve is being created and a decision needs to be made on a certain 

technology to keep momentum. Figures 4.9 and 4.10 explains how the nonlinear curve provides 

information on the strategic inflection points at the end of each curve: 

 

 

 

 

 

 

 

                             Figure 4.9: Technology strategic inflection points – Nonlinear experience curve 

 

 

 

 

 

                                       Figure 4.10: Flattening curve strategic inflection point options 



143 
 

4.7 Experience Curves Applications 

The experience curve phenomenon, as labelled by the Boston Consulting Group (BCG), has had major 

impact upon corporate strategy, marketing strategy, and cost management. The experience effect often 

plays a substantial role in determining competition outcome in both local and international markets 

(Jarmin, 1994). The following section highlights the most important experience curve applications. It also 

provides evidence from literature on how useful they have been in reality: 

 

Policy intervention: 

Finding the sources of experience is important, yet finding the correct policies that support the experience 

curve implementation is very critical to unlock the full potential experience curves might provide (Dutton 

& Thomas, 1984). Dutton and Thomas (1984) wrote about “ill-defined task” when it comes to 

implementing policies regarding the experience curves (Dutton & Thomas, 1984). 

In the policy intervention context, experience curves help in setting competitiveness policies, which aims 

at increasing the competitiveness of entrant technologies by increasing their installed capacity and assume 

that costs will decrease as accumulated production increases (Dutton & Thomas, 1984). Experience 

curves can lead in this case for the technology to be increasingly cost competitive in the marketplace and 

solve technology lock-in problem caused by mature technologies.  

Furthermore, correct application of experience curves in policy formation helps defining early 

opportunities in market. It helps to illustrate the benefit of early investment and policy interventions in 

emerging technologies as well as the need for an initial market in order to allow emerging technologies to 

accelerate their cost reductions and reach cost competitiveness with existing technologies in the market 

earlier (Zhou & Gu, 2019). 
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To elaborate, experience curves are often used to extrapolate past cost (price) reductions to future 

cumulative production (or installation) levels to identify the additional investments needed for 

deployment of the entrant technology, while learning effects cover the gap between the costs of the 

entrant technology and the cost level of incumbent technologies (International Energy Agency, 2000). 

Spence (2006) studied market entry and performance under a fairly wide variety of parameter 

specifications. He concluded that experience curves should be applied with caution as a policy 

intervention tool. Spence (2006) warned that experience curves can create substantial barriers to entry. He 

added that moderate rates of learning create the greatest entry barriers. “Where learning is rapid, new 

entrants may catch up quickly with the market leaders. For very low learning rates, only small cost 

advantages accrue to the early entrants” (Spence, 2006). 

 

Strategic Management and cost competitiveness: 

The use of experience curve in formulating corporate and firms’ strategy was early recognised in 1954 by 

Andress (1954), the Boston Consulting Group (1970), Arrow (1963), Dutton and Thomas (1984), Muth 

(1968), and others. Abernathy and Wayne (1974) reconfirmed the usefulness of experience curves for 

strategic planning in marketing, financial planning, and production. They described the experience curve 

as a strategy that “seeks the largest market share at earliest possible date.” (Abernathy and Wayne, 1974; 

Goddard, 1986). This, according to Abernathy and Wayne, doesn’t lead to gains in market penetration 

only; but also advantages over competitors who have not reached equal volume yet. 
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Figure 4.11: Cost competitiveness based on different learning slopes (Source: unknown) 

 

The notion that unit costs and prices decline systematically in real terms as cumulative volume increases 

has been one of the most widely discussed and utilized concepts in the evolution of strategic management 

during the past two decades.  

Strategy consultants early referred to several potential business effects of the experience curve. Business 

growth was always seen as a key strategic variable. “Based upon the experience effect relative costs 

should improve if a company were able to grow faster than competitors, thereby descending its 

experience curve at a faster rate,” (Day and Montgomery, 1983). 

Speaking on the experience curve, in Porter’s (1980) famous presentation of generic business strategies, 

he identifies cost leadership as one of the three generic strategies. Experience based cost advantages 

represent one important way to achieve a cost leadership position. 
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                              Figure 4.12: Porter’s generic competitive strategies (Source: tutor2u.net) 

 

To investigate this, Hall (1980) analysed sixty—four companies in eight industries subject to adverse 

environments, which lent credence to the Porter generic strategies. They achieved these results by 

establishing and maintaining a leadership position in terms of relative delivered product cost or relative 

product differentiation. A couple of companies were able to achieve leadership positions in both, but most 

found it necessary to achieve pre-eminence in one or the other (Hall and Howell, 1980; Day and 

Montgomery, 1983). 

Two years later, Dutton and Thomas (1982) criticised using experience curves to achieve cost leadership 

in the market. They argued that acting on this belief - that the accumulating volume of a firm guarantees 

cost leadership – could leave the firm simply vulnerable to competitors achieving steeper learning slope 

and, accordingly, lower costs at the same – or even less – cumulative volume.  
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Hedley (1976) had earlier commented on the dilemma of the risk of misjudging while using the 

experience curve as a strategic planning tool (Hedley, 1974). Hedley emphasised an interesting point 

which is that the great potential experience curves have in strategic planning is restricted by the 

shortcomings and risks these curves suffer from. This risk, according to Hedley, is related to the 

continuation of a strategy applied based on the experience curve, and how it affects the production 

innovation and cost efficiency. 

To eliminate this risk, Bodde (1976) suggested to use experience curves in long-term strategic planning, 

especially in the formulation of competitive strategy, more than in short-term business plans. In fact, 

Bodde warned of using experience curves to control day-to-day or short-term decision-making process.   

 

Product Pricing: 

Pricing a new product is a difficult task in industries where it is common to see rapid technological 

changes (Hossain, 2010). Experience curves provided an exceptional tool that can rationalise early 

investments and pricing of a technology that is presently uneconomical. For some time, there was a lack 

of research focusing on products and their pricing implications using experience curves (Hossain, 2010). 

“The experience curve has increasingly become an important element in the formulation of many 

marketing models” (Day and Montgomery, 1983). This has been especially relevant for dynamic pricing 

models and models of new product diffusion. Effectively all these models utilise the conventional 

Equation 4.1 form of the experience curve. 

The potential of these technologies can be graphically presented as an experience curve. The success of 

the investment decision made is conditional if a technology can "move down the experience curve," of 

being competitive in the future (Nordhaus, 2009). However, the steepness of cost decline is commonly 

linked to creative managerial efforts, not cumulative volume only (Dutton and Thomas, 1984). It is also 

important to keep in mind that the relative performance of penetration versus skimming pricing strategies 
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depends on the interaction between cost and demand dynamics. In fact, Ericksons (1982) study found that 

the optimal price path was mainly impacted by market price sensitivity and competitive market entry 

rather than the presence of experience effects for the case he studied (Erickson, 1982). 

That been said, using experience curves in product pricing for a portfolio of projects can be dangerous if 

the learning parameters and/or models are incorrectly calculated. Suppose, for example, that the true 

learning parameter is 0.1 and because of the biased discussed above the estimated parameter is 0.3. With a 

3 percent discount rate and a 10 percent growth rate, the learning discount is overestimated by a factor of 

two.  

 

4.8 Econometric Issues and Other Limitations: 

The experience curve term has been frequently questioned in literature for so long. Day and Montgomery 

(1983), Nordhaus (2009) and Wene (2015) argued that present efforts related to the learning phenomenon 

from the economic perspective suffer from a major fallacy. Sahal (1979) asked various question on the 

experience curve definitions and whether they specify the type of improvements included. Is it 

improvements in technologies? The learning and experience of people to do the same job better? Changes 

in the nature and the design of the product? “Not all of these cases have “technology” as the main focus of 

the analysis,” said Sahal (1979). 

The application of experience curves has been criticised (see for example Neij, 2003; Nemet, 2006; 

Nordhaus, 2009; Holmes, 2010) due to the uncertainties associated to the lack and treatment of data, and 

the aggregated approach to innovation. 

The use of experience curves in models to assess the dynamics of future technology yet bears a number of 

problems which could lead to an overestimation of the learning effect. Ultimately, the critique articulates 

the need of complementary tools when analysing emerging, converging, and disruptive technologies. 
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Kiechel (1981) reported that the strategic implications of the experience curve phenomenon have been the 

subject of growing controversy over the years (Kiechel, 1981; Day and Montgomery, 1983). The 

application of this phenomenon “presents a bewildering array of practical problems, whose solution is at 

best only partially understood,” said Day and Montgomery (1983). Among most reported economic 

considerations and limitations of experience curves applications are: 

 

4.8.1 Reliability of the Learning Rate 

The experience curve equation describes a highly dynamic process through mainly two correlated time 

series: input and output of the experience curves ( Schilling & Esmundo, 2009; Candelise et al., 2013). 

Given the empirical nature of experience curves, the fact that the learning rate changes over time leads to 

methodological issues: a constant learning rate is typically one of the fundamental assumptions of the 

conventional experience curve methodology. 

Learning rates are often uncritically assumed to remain constant in the future following conventional 

experience curve models as discussed earlier in the research. This assumption, however, has been criticised 

early in literature since the 1940s (Carr, 1946; Conway and Schultz, 1959). Day and Montgomery (1983), 

Alberth (2006), and Boone (2015) emphasise that it should not be taken for granted that past experience 

curves can always be extrapolated at the same constant rate. 

Assuming that the relationship between experience and cost will remain constant in the future becomes 

even more problematic if the experience curve analysis does not provide details about the deeper cost 

drivers (McDonald & Schrattenholzer, 2001; Papineau, 2006; Schilling & Esmundo, 2009; Hansen et al., 

2017). The critics argued that using constant learning rates leads to a false sense of certainty regarding the 

potential future cost reductions of individual technologies. 
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Moreover, the learning rates can vary significantly across the same data sets using different approaches 

(Henderson, 1984; Hogan, 2020). It is the factor that is most affected by changes and uncertainties which 

makes it more relevant to question the constant learning rate assumption as realised for years in literature.  

Speaking of data, learning rates can also witness differences across various studies and industries. One 

major issue in using experience curves is how to correctly treat the historical data to calculate a learning 

rate (McDonald & Schrattenholzer, 2001, Hogan, 2020). Depending on the spread of the data, it is 

possible to manipulate the data to calculate different learning rates by changing the starting and ending 

point of the analysis and the choice of including or excluding outliers (Rubin et al., 2007; Nordhaus, 

2014). 

McDonald and Schrattenholzer (2001) found that performing these calculations for individual technology 

shows a distribution of learning rates within a single technology that is nearly as broad as that across 

technologies (McDonald and Schrattenholzer, 2001). Other technologies, according to Rubin et al., show 

learning rates becoming negative in early periods before increasing (Rubin et al., 2007). Furthermore, 

historical datasets for new technologies may be very short and thus impose greater uncertainty due to a 

small sample size.  

Another criticism on the learning rate was reported as early as 1947 on the robustness of learning rate to 

model specifications. Crawford and Strauss (1947) examined learning rates from 34 industries assuming 

zero exogenous technological change; only 4 have estimated empirical learning coefficients in the plausible 

range between 0 and 0.5. The conclusion is that estimates of the learning coefficients were not robust to 

specifications. Moreover, the estimates were often well outside the theoretically acceptable range used in 

this study (Crawford and Strauss, 1947). 
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Alchian (1963) reported a great variation in the actual b values experienced in different airframe start-ups 

during World War II (Alchian, 1963). This criticism was confirmed by Bass (1978) who found great 

variability between the slopes of the experience curves for six consumer durables (Bass, 1978). However, 

researchers were reluctant, to cite his results as a refutation of a uniform slope across products, because of 

weaknesses in his methodology. First, he employed price data as a surrogate for cost, leading to obvious 

problems of identification. Secondly, Bass ran regressions on various time periods (e.g.: on monochrome 

televisions, separately for the periods 1948-1960 and 1948-1970). However, BCG data show a break in the 

price series in 1954 which supports Bass’ methodology (BCG, 1970). Variation in learning rates due to 

different data periods can be explained by the nature of the technological innovation. Technological change 

process, from innovation to market maturity, takes considerable time, generally decades. Therefore, the 

longer the technology is under development and deployment in the market, the more records of data 

depicting its progress are available. 

McDonald & Schrattenholzer (2001) lead the most recent comprehensive review on the variability in 

learning rates in energy technologies in which they confirmed earlier observations on this matter 

(McDonald & Schrattenholzer, 2001). Their study became a reference study on this specific issue, learning 

rates variations, for many years. 

That been said, stable learning rate estimates can be achieved. However, the situation can be different for 

emerging technologies, whose market price data is often influenced by the overrepresentation of external 

factors (e.g., market power) and short-term development characteristics (e.g., cost overruns, unit upscaling) 

(Elsharafa, 2018). Therefore, it is vital to recognise whether the experience model omits the influences of 

specific learning mechanisms or factors by excluding observations from the dataset (Alberth, 2006; 

Takahashi, 2013). Should those factors be inherent to the development process, the learning rate estimates 

would be biased. 
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Among suggestions made by Schilling (2009) to tackle this challenge is to perform several models runs 

when modelling the future costs of individual technologies, using ranges of plausible future learning rate 

values in order to reflect the associated uncertainties (Schilling & Esmundo, 2009), or, of course, try 

different functional form to model the experience curve that implies non-constant learning rate. 

To conclude, care must be taken to treat the data in a way that produces a representative learning rate 

(McDonald & Schrattenholzer, 2001; Papineau, 2006). The concept of different cost development phases 

was developed and discussed to help understanding the issue of how to use experience curves when there 

are dramatic changes in the technology itself, such as breakthroughs31, or in a technology’s market 

circumstances, such as the appearance of a competing technology (Nemet, 2006; Rubin et al., 2007). Any 

of these variations could affect the calculation of the proper learning rate from the historical data. 

However, breakthroughs may not be captured by the learning rate, leading to a separate introduction of 

them through varying exogenous assumptions (McDonald & Schrattenholzer, 2001).  

Schoots et al., (2010) claimed that unless economies of scale effect are separated from learning, of 

internal feedback between various ways of learning and technological and national spillover effects, there 

is a risk that learning rates are mostly overestimated. The solution Schoots et al. (2010) suggested is to 

separate the effects of learning from other factors to the extent possible (Schoots et al.; 2010). At the 

least, factors such as commodity prices would be removed by correcting observed data with a commodity 

price index at the least (van der Zwaan et al., 2011). 

Furthermore economies-of-scale should be excluded too as these are based on a different cost reduction 

mechanism and render data from different manufacturers incomparable (Schoots et al., 2010). The issue 

with these suggestions is that neither Schoots et al., nor others provided a solid practical approach on how 

to do so.  

 
31 Which could lead to under or over-estimations of technology future costs. 
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4.8.2 Omitted Variable Bias 

Omitted variable bias is a major issue for experience curves, and can be reduced by the addition of 

explanatory variables as it may distort results (de La Tour et al., 2013). If the omitted variable bias 

prevents from accurately measuring the effect of each variable, the consequence on the accuracy of the 

predictions is not straightforward (Alberth, 2006). To evaluate this, many studies were conducted to 

examine models results without and with additional variables and compare them. Rapping (1965) found 

that omitting raw material prices would tend to bias downward the estimates of capital and labour 

elasticities. Lieberman (1981) found that the price experience slope rose from 71% to 77% when scale, 

new plants, and entry were incorporated into the model (Nemet, 2006).  

 

4.8.3 Data Limitations 

The limited availability of consistent datasets means that elevated uncertainties are associated with the 

estimation of experience curve models. Uncertainty in historic cost data is repeatedly reported in literature 

as a challenge for experience curve estimates. Insufficient empirical data can lead to substantive learning 

rate uncertainty (Alchian, 1963; Henderson, 1984; Grafström & Poudineh, 2021; Way et al., 2022). 

As mentioned before, and for reasons of data availability, market prices are frequently used as a proxy for 

market costs being the dependent variable during the construction of experience curves. This applies to 

many types of datasets needed to estimate the experience effect. For example, data on R&D investment is 

scarce, in particular when a high level of technological disaggregation or private sector investment is 

needed. Data on corporate R&D expenditure are even more difficult to obtain, especially when focusing 

on the R&D expenditure by technology (Jacquier-Roux and Bourgeois, 2002; De Nigris et al., 2008; van 

Beeck et al., 2009). Even if data were available, attention needs to be paid to the fact that companies may 

over- or underestimate them for strategic purposes as mentioned in section 4.7 (Jacquier-Roux and 

Bourgeois, 2002; Gioria, 2007). 
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The R&D data scarcity can be explained by a combination of various factors. No regulation obliges 

private companies to report their R&D investments, unless they are listed on the stock-markets and thus 

need to also present their financial accounting and an annual report32. 

This also makes it difficult to calibrate reliable learning by searching rates. To remedy this, the use of 

patents, as previously suggested, may be one option. However, this solution has its problems too as 

manufacturers may choose their own policies which may limit some companies’ propensity to patent. 

On the other hand, Henderson (1984) stated that, in competitive markets, there is a very close correlation 

between costs and prices that can be assumed. What makes this assumption valid, according to Elshurafa 

(2018), is the fact that if a company charges prices considerably higher than its costs, it will not remain 

competitive (Elshurafa, 2018).  

However, critics point out that this is not necessarily the case in real world markets. It happens that 

individual technology suppliers may exert market power over prolonged periods of time, a situation that 

allows them to charge considerable mark-ups (Day and Montgomery, 1983; Henderson, 1984). If the mark-

up between costs and market price is assumed to be constant while, in reality, it varies considerably over 

time, wrong conclusions about the actual experience curve and its associated learning rate are likely to be 

made (Abdou & Mahmoud, 1977; Henderson, 1984; McDonald & Schrattenholzer, 2001; Jamasb & Köhler, 

2006). 

Despite the concerns, reliable historic cost, and sometimes price data, is often difficult to source. In the 

early years of a technology’s deployment, data is often scarcer and more uncertain. In early years, markets 

are small, and the prices charged in niche markets by only a few market actors are not always publicised. 

Kohler (2006) explained that the risk of uncertainty about early costs or prices can be a problem for 

 
32 There is no clear methodology in the Multi Factor Experience Curve (MFEC) literature that standardises the 

impact of public R&D in relation to learning rates where both R&D and learning by doing effects are included. 
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experience curves as early data points can have a significant influence on the slope of the experience curve 

and, consequently, its learning rate (Kohler et al., 2006). 

Researchers tried to address this criticism on the empirical data by discussing to what extent prices and 

costs might deviate during the observed time period and – if possible – correct observed prices for market 

power (BCG, 1968; Henderson, 1984; Hansen, 2017; Grafström & Poudineh, 2021) . Also, efforts have 

been made to build reliable historic cost or price databases, by carefully analysing existing datasets and 

refraining from using data that appears to be unreliable for research and analysis purposes. 
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4.9 Experience Curves for Solar PV Technologies 

4.9.1 Solar PV Market Growth 

Operating in competitive markets makes individuals and industries do better. This fact is at the heart of 

the experience curve phenomenon which is one of the biggest stories in solar power industry. Hence, the 

focus of this thesis is to analyse how learning through market experience reduces prices for energy 

technologies and how these curves were used to set targets to make new energy technologies commercial. 

The first price outlook of historic PV modules dates back to the 1950s, when the cost of PV energy was 

256$/W in 1956 (Hass et al., 2022). According to Hass (2022), this would be around $2500 today when 

adjusted for inflation. During this era, solar PV energy was mostly used in aerospace before it entered 

other applications around the 1970 (Kavlak et al., 2018). Accordingly, the cost of solar PV modules 

started to drop rapidly with sparked interest in the effect of technological learning on PV systems (Nemet, 

2006; Haas et al., 2022).  

The growth in this industry was also driven by the growing concern for global warming following the 

increased CO2 concentration in the atmosphere and the need for a fast transition to clean energy sources 

(Parente et al., 2002; Farmer et al., 2016; Hansen et al., 2017). This concern is reflected in the agreement 

at the 2022 United Nation Climate Change Conference, COP 27, stating that a cut of greenhouse gas 

emission by 25-30% is necessary by 2030 (Source: IMF report, 2022). Therefore, it is crucial to have 

reliable estimation and forecasting of renewable energy technology costs, for the purpose of reducing the 

uncertainty surrounding policy decisions to help increase clean energy generation (IEA, 2000; Papineau, 

2006). 

The success of the renewable energy industry’s expansion can be measured both by the level of cost 

reduction and the extent of market penetration of renewable technologies (Papineau, 2006). The two are 

linked as the price decline both causes, and is caused by, the increasing number of solar installations. 
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In regard to the solar power industry, it is one of the fastest growing renewable energies in the renewable 

energy market. The applications for solar energy are enormous such as: electricity generation, 

transportation, photochemical, solar propulsion, solar desalination, and room temperate control. With 

more developments in the market, solar energy and its transfer to electricity energy will have the potential 

for wider application and deep impact on our society, so it has attracted the attention of the researchers 

(Y. Chu, 2011). 

Besides the passage of time, these developments need to be accompanied by government support through 

funding Research and Development (R&D) and through price subsidies (IEA, 2000). Over the years, 

Research and Development (R&D) investments contributed to the improved module efficiency and 

gained technological learning in solar PV modules manufacturing (Kavlak et al., 2018).  

The observed learning rate between 1979 and 2012 for solar PV modules was 22%, as calculated by 

IRENA (IRENA, 2021; Haas et al., 2022). Since 2000, the global production of solar photovoltaic (PV) 

modules has grown with a CAGR33 of over 40% (Jäger-Waldau, 2018), but installations varied 

significantly at the country level. The rapid increase of the annual production in China since 2006 has 

created a new global trend in the solar PV growth. Accordingly, Annual new solar PV system installation 

increased from 29.5 GW in 2012 to 168 GW in 2021. Within few years, world-wide PV power has 

quadrupled to more than 940 GW at the end of 2022 (Statista, 2023). Figure 4.12 provides a glimpse on 

the global level of the global cumulative global installed capacity between 2000 and 2021: 

 

 

 

 

 
33 Compound annual growth rate. 
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   Figure 4.13: Cumulative installed solar PV capacity worldwide in MW from 2000 to 2021 (Source: Statista) 

 

Developments in solar PV modules production and installations were accompanied by a dramatic fall in 

the cost of producing solar PV energy (Nemet, 2006; Nagy et al., 2013; Kavlak et al., 2018; Lafond et al., 

2018). It is now the cheapest way to produce electricity in many parts of the world, even in cloudier and 

cooler parts such as the UK. The cost of solar is now reaching “grid parity”, at which the cost of solar is 

the same as the average cost of the overall basket of energy sources for the electricity grid as a whole 

(Dutta & Das, 2020). With more than 40 years of growth, solar PV energy provide a clear example on 

how the development of the experience curve in these emerging technologies34. 

 
34 Selling prices of modules are used as the benchmark for cost in the PV industry for many reasons. Modules can 

essentially be treated as a commodity; several organisations track and publish the spot price of modules. As such, 

monitoring the module price evolution gives a global picture on how the industry is progressing (IEA, 2020). However, 

solar PV demand is driven by policy changes and incentive policy, which might affect the price irrespective of cost. 

Söderholm and Sundqvist (2007) warned that, for models that depend on historical data, that might cause a major 

concern. Söderholm and Sundqvist said that it is a bad practice “to use an estimated econometric model found suitable 

for one time period when attempting to predict what will happen in another period under a different set of policy rules, 

for example with different feed-in tariffs for some major countries.” (Söderholm and Sundqvist, 2007) 
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   4.9.2 Solar PV Technologies 

There are different types of solar technologies that are currently available in the market. However, each of 

them is based on quite different concepts and science and each has its unique advantages (Y. Chu, 2011). 

Nowadays, the major direction of growth in solar technology development is linked to Photovoltaic 

systems. Photovoltaic (PV) technologies, also commonly known as “solar cells”, directly convert the 

solar energy into electrical energy (de La Tour et al., 2013; Elshurafa et al., 2018). “A PV module is an 

array of packaged solar cells that convert solar energy directly into direct-current (DC) electricity” 

(Harmon, 2000).  

 

 

 

 

 

 

                         

                                 Figure 4.14: How a Photovoltaic (PV) cell works (Source: planete-energies.com) 

 

“Silicon is the most common semiconducting material in use in PV modules due to its abundance” 

(Harmon, 2000). Over 90% of solar PV cells market is composed by silicon-based cells, therefore, the 

decreasing cost of silicon is critical for the growth of solar PV sector (Muraleedharakurup et al., 2016). 

Silicon is the main component for the development of solar cells, it also has to be processed to attain the 

required purity for solar PV appliances, usually starting from metallurgical-grade silicon. Table 4.1 

summarises the main elements of a solar PV system and their functions: 
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Table 4.1: Elements of solar PV systems 

 

PV systems consist of two major subsystems of hardware: PV modules and the Balance-of-System 

(BOS). The basic element of photovoltaic technology is the solar panel, while all other parts which 

contribute to the functioning comprise the “Balance of System” usually denoted by the acronym 

(BOS). Technology costs for solar PV technologies include module cost, inverter costs, balance of system 

(BOS), installations, and other indirect costs (Ioannis, 2017). 

Generally, cost of production will fall faster for highly standardised, repeatable, modular products. It will 

fall slower where there is a greater degree of variability, customisation, regional differences or batch 

processing in the design. The price will follow the cost of production unless supply & demand 

imbalances, consumer choice or marketing ploys intervene (Candelise et al., 2013; Elshurafa et al., 2018). 

 

 



161 
 

Solar PV systems are further differentiated based on the size of the photovoltaic sub technologies as 

follows (Ioannis, 2017):  

1. Utility-scale with one-axis tracking, >10 MW  

2. Utility-scale without tracking, >10 MW  

3. Commercial-scale on flat surface, 20 kW - 2 MW  

4. Residential-scale on inclined surface, <20 kW  

 

As for the scope of this research, silicon-based solar PV modules cumulative installed capacity and cost 

data are analysed. The reasons are because they represent more than 90% of the solar PV market, they are 

likely to stay around for longer, and cumulative data (from all systems sizes) are found in well-established 

databases which allow a meaningful analysis. 

 

4.9.3 Experience Curves and the Effectiveness of Solar PV Energy Production 

Since 1990s, experience curves have moved from obscurity to mainstream within energy technology 

policy. Scientists and analysts from academia, industry, and government agencies who were mainly 

participating in a workshop arranged by the International Energy Agency (IEA) in 1999, observed that 

experience curves “are underexploited for public policy analysis” (IEA/OECD 2000; Muraleedharakurup 

et al., 2016; Samadi, 2018). They therefore recommended that experience curves “are used to analyse the 

cost and benefits of programs to promote environment friendly technologies” and “are explicitly 

considered in exploring scenarios to reduce CO2 emissions and calculating the cost of reaching emissions 

targets” (IEA/OECD, 2000). The IEA Committee on Energy Research and Technology (CERT) showed 

support to the findings of the workshop and launched an international collaboration. McDonald and 

Schrattenholzer (2001) provided the first overview of experience curves for energy technology.  
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Since then, major high-level policy documents embrace the insight from experience curves into the 

crucial role of market deployment. Given the increasing interest in how a rapid reduction in the cost of 

solar energy could be, experience curves have been extensively used in the academic literature to explain 

the historically observed cost reductions in solar PV modules and predict future pathways (Nordhaus, 

2014).  

However, there are also indications of fading momentum and expectations on the curves as efficient and 

legitimate tools for scenario analysis and policy making. Solar PV technologies have been analysed  as a 

key example to justify the relationship between a technology’s cost reductions and cumulative installed 

capacity (Nemet, 2006; Swanson, 2006; Candelise et al., 2013; de La Tour et al., 2013; Dutta & Das, 

2020). Despite the strong empirical evidence on the existence of technological learning in solar PV 

technologies, Söderholm and Sundqvist (2007) identified several econometric issues concerning 

experience curves. For example, Söderholm and Sundqvist (2007) highlighted that the learning rate can 

differ across time for the same technology; as a new technology can experience a wave of new 

innovations at the beginning, but after many years the easy opportunities for cost reductions may be 

exhausted (Söderholm and Sundqvist, 2007; Grafström & Poudineh, 2021). However, there was no 

critical assessment on the specifications of the models that could tackle this issue, to our knowledge. 

There are several weak links in the technology-energy-climate chain studies. The status of technology 

learning and uncertainties in extrapolated experience curves and the difficulties in implementing general 

measures globally have already been mentioned. Technologies to increase energy efficiency interact with 

many factors internally and externally which makes it problematic to analyse them separately. 

The importance of addressing these issues stems from the inherited limitations that the solar PV industry 

suffers from despite the impressive growth. Companies operating in this sector are currently faced with 

problems related to the most effective way of solar energy production. Among these limitations are: 



163 
 

1. Physical space limitations: one of the most reported challenges in the solar PV industry is related 

to limited space to build solar PV systems (Grafström & Poudineh, 2021). This challenge is more 

relevant when companies need significant areas of land which are scarce in infrastructure-packed 

city centres for example. Here comes the importance of innovative technological solutions to 

tackle this challenge with more advanced transparent PV glass for example, which represents an 

alternative to the space limitation (Nemet, 2006; Papineau, 2006; Hansen, 2018; Haas, 2022).  

2. Enough access to sunlight: the amount of the solar energy received on earth everyday varies 

depending on weather conditions, geographies, and the type of solar setup  (Ioannis, 2017, Haas, 

2022). The impact of this limitation manly depends on the size of the solar PV installation. For 

example, in smaller-scale solar PV installations, one may argue that sunny weather is needed to 

reap the most solar power, while for efficient large utility-scale solar power plants, companies 

look to high-sunlight desert or semi-desert areas to build large solar power plants. Finally, when it 

comes to the type of solar system used, there are also solar power plants tracking the sun’s 

position for the best solar energy capability (Elshurafa et al., 2018). 

3. Solar’s intermittency (aka. Storage challenge): the mismatch between the peak generation and 

peak demand is a serious challenge for growth in the solar PV industry (Koskinen, 2016; Hansen 

et al., 2017; Lafond et al., 2018). The timing of the sunrise in the morning and sunset in the 

evening, with peak solar power generation in the afternoon does not correspond with the highest 

demand for it (which is when the sun sets). Solar technologies would supply power in excess of 

customer demand in the middle of the day, which demands highly efficient ways of storing 

excessive solar energy for peak demand times to cater to needs at any time. (Schilling & 

Esmundo, 2009; Rypdal, 2018). “Given that solar energy is an intermittent source, it is much 

easier for it to contribute when it supplies only a minority of energy: new supporting technologies 

will be required once it becomes a major player” said Lafond et. al (Lafond et al., 2018). 
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4. Technology lock-in: economies of scale (EOS) have been known to serve as a barrier to entry for 

new competitors in the solar PV modules market (Grafström & Poudineh, 2021). Most solar PV 

modules producers are focusing on aggressive cost-cutting, from the upstream production of 

polysilicon to the downstream deployment of silicon panel-based installations (Nemet, 2009; 

Koskinen, 2016). This tendency puts the industry at risk of technology lock-in, entrenching the 

dominance of silicon solar PV. Economic theories of lock-in suggest that an incumbent dominant 

technology has the advantage over emerging technology upstarts (Nemet, 2006). Even if upstarts 

hold the potential to cost less and perform better, they might flounder in a free market that 

favours first movers. 

By 2030, the cost of electricity from silicon solar PV projects could halve, making silicon an even 

more formidable incumbent (Harmon & Schrattenholzer, 2000; Yeh & Rubin, 2012). Even far 

superior and cheaper technologies might face challenges by slightly incrementally better silicon 

panels (Papineau, 2006). There is no way to tell whether the lock-in might be happening right 

now. Silicon may fall rapidly in cost than currently anticipated. The fall in silicon solar panel 

prices is beneficial in the short term, but the drop makes it harder for emerging technologies. In 

this case, emerging technologies might not be cost competitive before economies of scale kick in 

at mass production to compete in the market in the long run (Haas, 2022). 

5. Law-related and political context: over the years, the actual growth of solar energy 

implementation has been depending heavily on governmental incentives for such projects and 

these vary from country to country. The actual business activities of solar industry entities are 

largely defined by country-specific tax exemptions, energy policies and laws, and state-regulated 

promotion activities for the solar energy sector (Feldman, 2016; Hansen, 2018). Despite the 

benefits of these incentives, the solar PV industry needs to be independent and competitive with 

and/or without the incentives to be able to participate as a game changer in the global energy 

market. 
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6. Solar waste and environmental concerns: As for solar PV panels, there are other safety concerns 

laying in health hazards and pollution risk. Compounds such as: lithium, silicon tetrachloride, 

cadmium telluride, and copper indium selenide, used to manufacture solar energy assets, 

are potential environmental pollutants, in addition to their toxicity for human health. For 

example, lithium (used among others in solar batteries) can pollute tap water and irrigation 

water in areas where lithium batteries are not utilized (Y. Chu, 2011). Effective utilization of 

solar waste is also a challenge. The global volume of solar-panel waste generated annually is 

expected to rise from 30,000 metric tons in 2021 to more than 1 million tons in 2035. To avoid 

posing danger to ecosystems and communities, it’s crucial that solar energy industry companies 

handle these concerns according to regulations as well as circular economy best practices (Haas, 

2022).   

Innovative solutions are recommended to tackle some of the above-mentioned challenges in the PV 

sector. Among solar photovoltaic innovations that are driving the development of the solar PV 

industry are: Thin-film photovoltaic technology (mostly cadmium telluride (CdTe) and copper indium 

gallium diselenide (CIGS) solar cells), Perovskite photovoltaics, solar glass, floating 

photovoltaics (PV on water), bifacial photovoltaics, recycling and reusing outdated solar panels. 

Moreover, companies need to find their niche and competitive advantage to be able to compete at the 

end customer experience level, and launch successful solar products and services supported by 

software solutions. These solutions include performant software that enables users to reap the most 

benefit, regardless of their level of expertise. Examples on innovative software in solar PV industry 

include household energy management software supported by energy management software’s 

functional goals, Solar tracking system tilt automation, Photovoltaic system remote monitoring, and 

addressing solar systems technical issues. 

 

https://news.energysage.com/solar-panels-toxic-environment/
https://enveurope.springeropen.com/articles/10.1186/s12302-020-00333-6
https://enveurope.springeropen.com/articles/10.1186/s12302-020-00333-6
https://www.wsj.com/articles/the-solar-boom-will-create-millions-of-tons-of-junk-panels-11651658402
https://www.wsj.com/articles/the-solar-boom-will-create-millions-of-tons-of-junk-panels-11651658402
https://sauletech.com/
https://www.iberdrola.com/innovation/floating-photovoltaic
https://www.iberdrola.com/innovation/floating-photovoltaic
https://www.solarcycle.us/about
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4.10 Conclusion 

This chapter provided more details on the empirical construction of the experience curves and the factors 

that affect this phenomenon. It also discussed the nature of the analysed costs used in technology 

forecasting. 

This highlights one of the concerns in experience curves literature on the factors that cause the experience 

effect to occur. The chapter yet discussed the number of variables used in the model to estimate 

technology cost, explaining the advantages and disadvantages of each approach. 

Considering the most reported econometric limitations, the chapter provided details on the non-linear 

experience curves used in this research; which are important for the reader before moving to the 

methodology and perform the statistical analysis using these models. 

It is important to move to second part of the study with a clear idea on the whole big picture. Accordingly, 

the chapter concluded with an introduction to the solar PV technologies and the challenges facing this 

industry which will likely affect the learning rates. Whether constant learning rate, via linear experience 

curve model, is appropriate or not for solar PV technology cost forecasting, is what the next chapters will 

try to address. 

To our knowledge, and after this extensive review, testing the flattening effect in solar PV modules 

experience curves against conventional linear models has not yet done, which gives us the opportunity to 

fill this critical gap in literature on technology cost forecasting. This will help derive plausible future 

ranges for technological learning rates for several emerging technologies. 
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Chapter Five: Methodology 

 

5.1 Chapter Overview 

The purpose of the methodology chapter is to fully explain the methods back of the research question that 

contemporary experience curve models may provide better accuracy than conventional models when 

estimating technology production costs using capacity/production data. As explained earlier in Chapter 

Four, technological learning fluctuates and does not remain constant over time. Hansen (2017) and Hogan 

et al. (2020) state that the conventional method lacks the application of the diminishing learning rates (the 

non-constant learning rates). The non-linear models chosen for this analysis encompass the diminishing 

learning rate behaviour and the flattening effect at the end of the curve, in both symmetric and asymmetric 

convergence. By considering these factors, contemporary experience curve models may provide more 

accurate forecasting tool for technological cost. 

Finding methods to increase the accuracy of the experience curves estimates are of great value. It helps 

estimators by increased accuracy that leads to less forecast error. Therefore, the basic method of this 

research is to statistically test which experience curve model is the best predictor of cost. Using the same 

dataset, non-linear experience curve models (Gompertz and the Logistic models) are compared to the 

conventional linear model (Wright’s model) to determine which model’s type is more accurate.  

In this respect, Chapter Five clarifies, in depth, the application of the models, methods for comparison, and 

data analysis. Regression analysis is often used in literature to estimate experience curve models 

coefficients, and yet it is used in this analysis. Each of the predicted solar PV module costs for the alternative 

models will then be compared to Wright’s model and to the actual modules costs to calculate the error. The 

goal is to manifest how and why the methods used were appropriate to answer the research questions, and 

test the hypotheses, presented earlier in Chapter One, based on various measures of significance.  
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5.2 Research Approach and Design 

In line with the positivist research philosophy explained in Chapter One, the research approach adopted for 

this study is a quantitative and deductive analysis that aims to test an established theory on experience 

curves and build onto it with collected data. This means that the research is explanatory and aims to achieve 

“depth” rather than breadth, based on objective findings. A deductively based analytical approach allows 

for results to emerge from the data as it is being collected in order to test hypotheses and relationships 

(Bryman and Bell, 2011; Saunders et al., 2012). Deductive research implies generating and formulating 

specific hypotheses by the researcher about a phenomenon based on existing practical and theoretical 

knowledge (Head, 2008). As mentioned earlier in Chapter One, the hypothesis is then tested under scientific 

experimental conditions explained in steps in this chapter. The result of such an analysis is the confirmation 

or rejection of a hypothesis. Should the data support the hypotheses, then the hypotheses hold. If not, that 

means the theory underlying the hypothesis is challenged or, at least, it has reached its limits (Boone, 2018). 

Quantitative research is the common approach within the positivist research philosophy. It is a common 

practice in the social sciences to test specific theoretically motivated research hypotheses using formal 

statistical procedures. This approach, however, assumes that the research was well designed and carried out 

rigorously (Hyndman and Athanasopoulos, 2018) to avoid misleading results. Accordingly, it is important 

to select the most appropriate method to ensure the validity and accuracy of data and findings.  

The research design decision requires a thorough understanding of the purpose of the research, which is 

explained in detail in Chapter One, and frequently highlighted over the chapters. The strategy implies an 

epistemological approach of having an experimental case study, that allows the researcher to test the 

hypotheses and understand the relationships between the analysed variables. The examined timeframe 

involves studying a sample over a longitudinal timeframe to understand the behaviour of the proposed 

experience curve functional forms. On the next page, Figure 5.1 summarises the flow of the methodology 

applied in this research as way of background: 
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 Figure 5.1: The research methodology flow 
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5.3 Data Collection and Analysis 

5.3.1 Data Collection 

The next step in the research process is collecting the data needed to complete a meaningful statistical 

comparison to decide on the best fit model (Moore, 2012). The data collection method (or methods) depends 

on the type of data the researcher plans to collect (Badiru, 2012). These two are tightly linked to the research 

philosophical approach outlined earlier in this chapter.  

As for the scope of this research, a secondary time series dataset is used to perform the statistical 

comparison between the selected models. For time series datasets, anything that is observed sequentially 

over time is considered a time series. Forecasting time series data typically implies estimating how the 

sequence of observations will continue into the future (Hyndman and Athanasopoulos, 2018). Examples of 

time series data include daily IBM stock prices, monthly rainfall, annual Google profits, etc. 

Data used in this analysis was pulled from many sources, mostly free and openly available on the internet, 

but occasionally via standard university-wide subscription licenses held by the University of Brighton. 

Production and capacity data come mostly from the International Energy Agency (IEA), Our World in 

Data databases, Bloomberg New Energy Finance (BNEF) and Bloomberg L.P. (via Bloomberg Terminal), 

and BP’s Statistical Review of World Energy. More details on data sources can be found in Appendix 1. 

Accurate price data is harder to find and comes from a wide variety of sources including, among others, 

Bloomberg New Energy Finance (BNEF) and Bloomberg L.P. (via Bloomberg Terminal). 

The main challenges while using these sources were: First, most databases are paid and not freely accessible 

for researchers to use. Experience shows that it is not always possible for researchers to pay for expensive 

data sources. For the purpose of this research, University of Brighton granted students access to Bloomberg 

Terminals for data collection purposes, which helped in this research study. As for other sources, only free 

databases were used where available. 
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Second, the size of data available on innovative and emerging technologies in general. It is typically optimal 

to have large samples to ensure robust and reliable results. However, with emerging and new technologies 

studies, the size of the available dataset is likely to be limited. Although it adds to the modelling challenges 

especially with complex models (e.g.: non-linear models), it is part of the whole generation of knowledge 

that researchers need to deal with. This limitation applies to the sample size collected for the sake of this 

research as the Solar PV energy has first started in the 1970s with very low installation levels and high 

prices – an issue that will be discussed in more detail in section 5.3.2 of this chapter.  

Global cumulative installed capacity of solar PV power is gathered from plant-level cumulative installed 

capacity at the global scale. Plant-level cumulative installed capacity represents the stock of installed 

capacity of solar PV modules of particular plants. It is the main variable chosen in this research which to 

act as a surrogate for experience and changes in performance in the solar PV industry at the global level35. 

Our dataset consists of cumulative installed silicon-based solar PV modules capacity at the global level 

measured in Megawatts (MW). This choice is based on PV modules specifications discussed in Chapter 

Four. 

To summarise, only module types with at least twenty years of performance data appear to be a useful 

option for the analysis, which mainly applies to silicon-based solar PV modules. “It is important to have 

data span several years for comparison purposes. The historical data is important because the effects of 

learning are evident. Having data spread over a period of time shows patterns.” (Johnson, 2016) 

In parallel, only silicon-based modules prices were also used for this analysis for a number of reasons. First, 

using silicon-based modules prices allows for the assumption of homogeneity over multiple module types. 

 
35 In his famous paper, “Debunking the learning curve,” Goddard (1982) argued that annual installed capacity has 

advantage over cumulative installed capacity by reflecting the annual changes in the industry (Goddard, 1982). 

Using annual installed capacity is an approach used in literature. However, cumulative installed capacity remained 

largely used for years and it gave robust results (Goddard, 1982). The choice depends on the purpose of the study, 

and which aspect of the experience curve models is being analysed.  
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It makes it possible to compare the prices and continue the assumption of learning over the years. Second, 

silicon-based solar PV modules are expected to dominate the market for a long time due to economies of 

scale, technology lock-in effect and other reasons as explained in Chapter Four. This reality makes silicon-

based solar modules subject to frequent adjustments which increases the opportunity of learning (and un-

learning) according to Badiru et, al. (Badiru, 2012). 

In consequence, data on non-silicon solar PV modules (e.g.: thin film modules), and solar thermal energy 

are omitted because of their high current prices, compared to silicon-based modules, and lack of progress 

historically (de La Tour et al., 2013; Kavlak et al., 2018). There is no universal pattern as solar thermal, for 

example, is very location dependent. Most non-silicon modules have not experienced learning in the way 

silicon-based modules had and, accordingly, they have lower market share (Eising et al., 2020; Grafström 

& Poudineh, 2021). 

With low installed capacity levels and low recent growth rates, their contribution to emissions reduction 

appears unlikely, with less possibility to establish a meaningful analysis based on them. They may well 

improve and play valuable roles several decades from now, but more information would be needed to 

determine whether their costs are likely to drop sufficiently. 

Cost (price) measured in Dollars per watt will remain the baseline metric in analysing the competitiveness 

of solar products in the global market. Accordingly, data sources often provide average global cost (price) 

of all silicon-based modules’ types under one variable, “Modules prices”36, so it can be used in meaningful 

statistical analysis (Alberth, 2006; Candelise et al., 2013; Lafond et al., 2018; Rypdal, 2018). Solar PV 

modules information in the global markets are updated daily as any other commodity in the market. 

Figure 5.2 summarises the variables used in this research and the steps taken to prepare each variable for 

the analysis: 

 
36 Reasons why price data is used instead of cost data were discussed in detail in Chapter Four 
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Figure 5.2: Summary of the variables used in the analysis 

 

5.3.2 Uncertainty Concerning the Data Prior 1995 

The choice of the dataset timeline used in this study (1996-2022) is linked to the emerging nature of the 

data at the early stages of the production process. This is seen in the data prior 1995 as stated in Chapter 

Four (Rypdal, 2018), where high uncertainty in the data, due to low installation and high prices, could 

negatively impact the quality and robustness of the models and add to the noise generated in the data. In 

fact, the first implementations of solar PV systems go back to the 1970s. In 1977, it cost $77 per watt for a 

simple solar cell. The high cost was accompanied by very low installations levels, which highlighted the 

trend in the solar industry of that era. In 1990, the first report of the IPCC (The Intergovernmental Panel on 

Climate Change) found that the planet has warmed by 0.5°C in the past century. 

By 1996, a consensus position formed that greenhouse gases were deeply involved in most climate changes 

and human-caused emissions were bringing discernible global warming. It is when a new era has started 

for the renewable energy transition. Real changes in policies took place which positively affected the solar 
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energy market growth. Accordingly, the first cost experience curve between 1976-1996 slowed down and 

a new curve started to form highlighted by large installations, economies of scale, and governmental 

subsidies and incentives, as shown in Figure 5.3:  

 

 

 

 

 

 

 

 Figure 5.3: Solar PV installations between 1976-1995 (Source: (McDonald & Schrattenholzer, 2001) 

 

To give weight for data with very low installation levels and high prices in current studies could be 

problematic in estimating and interpreting models especially for small sample sizes. It yet gets more 

complicated if the small sample is being split into training and validations subsets. The severe nonlinearity 

in solar PV data before 1995 resulted in a failed convergence, that often occurs due to poor selection of 

initial values for the non-linear models. As for Gompertz and the Logistic nonlinear iterative models, the 

initial value is one of the unknown parameters of the model, and its value is usually assumed a priori or 

calculated iteratively. In this research, this iterative process was repeated for data points between 1996 and 

2017 until a solution converged.  

This also means iteratively estimating the parameters until the sum of squared error (SSE) reaches a 

minimum37 using the least-squares estimation. A solution converged when small changes in the experience 

 
37 Refer to section 5.5 for more details on the Sum of Squared Errors (SSE). 
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curve exponent “b” parameter were calculated between iterations. This process of iterative solving was 

adapted from Hu and Smith’s “Accuracy Matters” (2013). Loss of convergence while estimating nonlinear 

models calls for certain modifications of the underlying computational model. To estimate initial values via 

an iteration process in the real world, it is likely to use software most of the time to perform this task.  

 

5.3.3 Data and Log Transformation 

High non-linearity in the data gives an early signal on the potential presence of non-stationarity (the data 

has a unit-root). Speaking of stationarity, data is considered stationary if it has a mean and a variance that 

doesn’t vary over time (Hyndman and Athanasopoulos, 2018). Conversely, non-stationary datasets show 

strong trends or seasonality observed in the data over time. Non-stationarity can cause problems in 

statistical inference involving time series models and may give superior unrealistic results. As for 

experience curves models, potential reverse causality between the model’s variables will give rise to non-

stationarity over time (Chan & Wang, 2015). 

Dealing with non-stationarity is highly recommended when performing regression analysis to understand 

the relationship between variables to build robust models. Therefore, logarithmic transformation is 

performed on both dependent and independent variables to smooth the data and eliminate stationarity effect 

(Wright, 1936; Papineau, 2006; de La Tour, 2012; Moore, 2015; Johnson, 2016; Hansen, 2017; Rypdal, 

2018). It is one of the easiest modifications usually done to tackle non-linearity and non-stationarity in the 

data. It is important to mention that for non-linear models, the main purpose of using a log transformed 

variables is to tackle non-stationarity and to get a distribution that complies with the nonlinear regression 

assumptions, not to linearise the models. 

Log transformation is one of the data transformation methods. Data transformation methods differ 

depending on the purpose of the data transformation. Transformation of data for least-squares regression 
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greatly expands the utility of the analysis by allowing its application to nonlinear relationships. The 

generated variables used in the models for the purpose of this research are as follows: 

[ln(InstalledCapacity)] generated from the original independent variable InstalledCapacity, and 

[ln(ModuleCost)] generated from the original dependent variable ModuleCost. 

As mentioned before, when the original collected silicon-based solar PV modules prices ($/W) and the 

cumulative installed capacity (MW) were plotted against time, a significant trend becomes evident. Figure 

5.4 below shows the original relationship between the two main variables used in the study. Nonlinearity 

is clear in the data with a flattening tail towards the bottom of the curve. This gives an indication of 

diminishing returns at the end of the production cycle and the rate of improvement is not constant over the 

life of the programme. 

 

 

 

 

  

 

 

        

Figure 5.4: Cumulative installed capacity (MW) and module cost ($/W) against time 
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5.3.4 Data Standardisation: Choosing the Right Deflator 

Once the data collection is done, the dataset will have to be standardised (Badiru, 2012; Moore, 2015; 

Johnson, 2016; Boone, 2018). Standardisation will occur by converting prior years values into a Base Year 

(BY), taking into account the effects of inflation for a fair comaprison.  

There is a debate in literature on the best deflator to use. According to the Eurostat website38, the choice of 

the deflator used for the elimination of prices changes is based on the nominal indicator which must be 

adjusted. Using the CPI values, the dataset for this research is in Then Year dollars (TY$) which are Base 

Year (BY$) inflated/deflated to represent the purchasing power of the funds if they were expended in that 

given year. The silicon-based Solar PV modules are standardised in this research to a Base Year (BY$96) 

value using the 2022 global CPI tables Federal Reserve Economic Data (FRED) Tables39. Price indexes are 

often constructed by government agencies40. 

Adjusting for inflation is done through three steps: acquiring the Base Year (BY) CPI value, finding the 

inflation adjustment factor in percentage between the reference period and a subsequent period, and 

dividing this factor by the original cost (price) in the database. Equations used to acquire the inflation-

adjusted cost are: 

 

                    Inflation Adjustment Factor (CPI YoY) = (CPI YoY n-1)*(1+(CPIn/100))                             (5.1) 

                                                        CPI %n = CPI YoYn/100                                                                    (5.2) 

                                 Adjust cost for inflation = original module costn/CPI%n                                        (5.3)    

 
38 https://ec.europa.eu/eurostat  
39 https://fred.stlouisfed.org/  

40 FRED database is one of them; it is an online database consisting of hundreds of thousands of economic time-series 

data from scores of national, international, public, and private sources. FRED’s Consumer Price Index (CPI) tables 

are used in this research from FRED’s databases.  

 

https://ec.europa.eu/eurostat
https://fred.stlouisfed.org/
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The result adjusted cost is plotted against original dataset. The variation between inflation-adjusted cost 

and original cost is seen in Figure 5.5: 

 

 

 

 

 

 

 

 

     Figure 5.5: Module cost versus inflation-adjusted module cost ($/W) 

 

5.3.5 Dataset Splitting: In and Out of Sample 

It is important to evaluate forecast accuracy using genuine forecasts (Hyndman and Athanasopoulos, 2018). 

Yet, the reliability and the accuracy of forecasts can be better determined on new data that were not used 

when fitting the model to consider how well a model performs (Moore, 2015; Hyndman and 

Athanasopoulos, 2018). When choosing models, it is common for a researcher to separate the available data 

into two portions, training and test41 data. The training data is used to estimate any parameters of the model 

using a forecasting method, and the test data is used to evaluate its accuracy. The test data is supposed to 

 
41 The test dataset is frequently referred to as validation dataset in this analysis.  



179 
 

provide a reliable indication of how well the model is likely to forecast on new data since it is not used in 

training the model: 

 

 

Figure 5.6: Data splitting timeline 

 

There is no one answer on the size of each subset, but it mainly depends on how long the sample is and 

how far ahead the forecast is. However, the size of the test set is typically 20% of the total sample, with 

80% in the training set (Kuvulmaz et al., 2005). It should be noted that a model which fits the training data 

well doesn’t guarantee a good forecast. The same applies to adding more parameters to the model to achieve 

a better fit. Either way, an analyst should be careful of overfitting the model, which is as bad as failing to 

identify any systematic pattern in the data (e.g.: non-linearity). Over-fitting is a problem that comes with 

using the in-sample error (that results from the training dataset estimates) and it is related to over-optimism 

(Hyndman and Athanasopoulos, 2018).  

The total data points used for this analysis is 27 (between 1996 and 2022). The training dataset contains 22 

data points, with 5 data points left out for the model validation process. However, an analyst should treat 

the dataset carefully while deciding on data splitting. This becomes more relevant when the sample size is 

small, and splitting the data might negatively affect the performance of the model. Therefore, it is case-

dependent whether to split the data or use all available observations which is also a valid approach followed 

in literature. 
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5.4 Experience Curve Models 

5.4.1 Wright’s Experience Curve Model 

Since first used, the status quo for the experience curve models is Wright’s model which takes the form of: 

                                                                       Yn = Y1X
-b 

                                                                         (5.4) 

where: 

Y1 = direct cost of first unit of production 

Yn = direct cost of nth unit of production 

X = cumulative volume of production 

b = experience rate (%) 

 

The model’s specifications and the parameters of the model are detailed in both Chapter Three and Chapter 

Four. The two parameters that must be estimated are C1 and b. In common cost estimating practice, b and 

Y1 are determined through a linear regression42 on a plot of the natural log of cumulative installed capacity 

[ln(InstalledCapacity)] against the natural log of the actual reported costs [ln(ModuleCost)].  

When applying linear regression models to data on technologies with falling costs, two features of the 

model must be stressed. First, the Wright’s law model does not simply “assume” that if costs fell in the past 

then they will certainly fall in future. In practice, costs are predicted to rise with a non-zero probability that 

depends directly on observed data in the past. Second, despite the downward trends, all cost forecast 

distributions are always strictly positive since costs develop in a log-log space (Wright, 1936 Way et al., 

2019). 

 
42 More details on the regression technique used can be found in the following section (5.5) of this chapter. 
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5.4.2 Gompertz Experience Curve Model 

Gompertz model is one of the contemporary experience curve models considered for comparison in this 

research as explained in detail in Chapter Four. Gompertz model has been used for long as a growth curve 

before it has been used as an experience curve. The nature of growth rate in this model is exponential; 

which makes faster than other curves to reach the maximum level and slow down to the flat area of the 

curve (Buchanan et al., 1997; Akın et al., 2020). Gompertz model has different forms but, for actual 

purposes and ease of use, a recent form has been developed which is widely used today. For the sake of this 

analysis, it is represented in regression analysis by: 

                                             Yi = β0 + β1*exp(-exp(-β2*(Xi – β3)))                                            (5.5) 

 

Where: 

Yi = Cumulative average cost of producing x units (solar PV modules in this case) 

Xi = Cumulative installed capacity 

β0 = location parameter (added to allow for smooth conversion) 

β1 = Upper Asymptote (Maximum installed capacity) 

β2 = Slope factor 

β3 = Experience rate  

 

Slope of the curve is expected to be positive for finite values of x and approaches zero for infinite values of 

x (Akın et al., 2020). The decay factor is one of the properties that defines Gompertz model’s usefulness. 

The decay factor in Gompertz model highlights the effects of diminishing technological learning.  
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Winsor (1923) explained the need for four constants to introduce skewness into a growth curve, and to 

allow for a successful convergence and iteration of the model. In this analysis, adding a fourth parameter 

(the constant parameter) to Gompertz model was useful given the small size sample and the data splitting 

which makes the data set used to train the model even smaller. 

 

5.4.3 The Logistic Experience Curve Model 

According to Walk (2012), “researchers in the United States such as Lenz (Lenz, 1985), Martino (Martino, 

1972, 1973), and Vanston (Vanston, 1988), and others around the world, such as the very prolific Marchetti 

(Marchetti 1977, 1994, 1996) refined forecasting methods and showed that the logistic model was an 

excellent construct for forecasting technological change”. 

In the late 20th Century, “the logistic displayed virtually universal application for modelling technology 

adoption, as well as for modeling effectively many other individual and social behaviors” (Walk, 2012). 

The logistic curve is given by: 

 

                                               Yi = β0 + β1/(1 + exp(-β2*(Xi – β3)))                                                            (5.6) 

Where: 

Yi = Cumulative average cost of producing x units (solar PV modules in this case) 

Xi = Cumulative installed capacity 

β0 = location parameter (added to allow for smooth conversion) 

β1 = Upper Asymptote (Maximum installed capacity) 

β2 = Slope factor 

β3 = Growth rate  
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The same observation on adding the fourth parameter (the constant parameter) applies to the Logistic curve 

to achieve a valid comparison between the models. This also allowed for a successful convergence and 

iteration of the model, given the small size sample and the data splitting which makes the data set used to 

train the model even smaller. 

 

5.5 Analysis Methods  

In the social sciences studies, it is an accepted practice to test specific theoretically driven research 

hypotheses using formal statistical procedures. There is a wide range of quantitative forecasting methods 

that were developed within specific disciplines for specific purposes. Each method has its own 

characteristics, accuracies, and costs that must be considered when choosing a specific method. 

Most quantitative prediction problems use either time series data (collected at regular intervals over time) 

or cross-sectional data (collected at a single point in time). They are used to estimate certain parameters of 

interest, and their relevant standard errors individually across different experimental conditions, and to 

observe whether the resulted pattern of parameter estimates supports or contradicts some proposed 

hypothesis (Kuvulmaz et al., 2005; Qureshi et al., 2020).  

 

5.5.1 Regression Analysis 

Probabilistic mathematical modelling is the central analytical technique employed in this study. In general, 

a probabilistic model or function is one that has a deterministic aspect as well as a random error component 

(McClave and others, 2014). 

The functions used to model the data are often the basis of the deterministic component. As a consequence, 

the random error is found through the regression analysis techniques. The basic concept is that the time 

series, y, forecast assuming that it has a linear relationship with other time series, x. 
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Regression analysis commonly models the relationships between a response variable and one (or more) 

predictor variables. Based on the values of the predictors, a regression model is commonly used to 

understand how changes in the predictor values are associated with changes in the response mean.  

The simplest functional form of the regression model allows for a [linear] relationship between the 

dependent (forecast) variable y, and a [single] independent (predictor) variable x, to estimate the model’s 

parameters, β0 and β1: 

                                                           yt = β0 + β1xt + ɛt                                                                                    (5.7) 

 

Figure 5.7 shows an example of a result from such a model. The coefficients β0 and β1 denote the intercept 

and the slope of the line respectively. The intercept β0 represents the predicted value of y when x = 0. The 

slope of the model, β1, represents the average predicted change in y resulting from a one unit increase in x. 

Each observation can be seen as the explained part of the model, β0 + β1xt, and the random “error”, the 

residuals, ɛ. 

 

 

 

 

 

 

 

                Figure 5.7: Simple linear regression outcome 
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The “error” term does not necessarily imply a mistake in the model, but rather a deviation from the 

underlying straight-line model. It normally captures all the other elements that affect the dependent 

variable plus any random elements. 

Regression analysis was chosen for various reasons such as: First, the long history of reliable and good 

forecasts that regression analysis has in literature (McDonald & Schrattenholzer, 2001; Kuvulmaz et al., 

2005; Papineau, 2006; Akın et al., 2020; Nagy et al., 2013; Moore, 2015; Johnson, 2016; Hansen et al., 

2017; Rypdal, 2018). Second, for small sample sizes, regression analysis showed less bias than other 

estimation techniques such as the Maximum Likelihood (ML) estimation which, despite its reliability as an 

estimation method, can be heavily biased for small samples. 

There are a variety of regression techniques that are available based on the research question, the type of 

response variable, the type of model that is required to provide an adequate fit to the data to answer the 

research question, and the estimation method. The correct use of regression models techniques, in general, 

requires that several critical assumptions be satisfied based on the chosen regression method as follows.  

 

5.5.2 Least Squares Estimation Method 

In practice, the values of the coefficients β0, β1, …., βk need to be estimated based on a collection of observed 

data. The least squares principle provides a way of estimating the coefficients effectively by simply 

minimising the sum of the squared errors as follows: 

 

                                                  SSE = ∑ε2
t = ∑n

i= 0 (yi - f(xi))
2                                                              (5.8) 

Where: 

SSE – Sum of Squared Error 

yi – the ith value of the variable to be predicted 
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f(xi) – the predicted value 

xi – the ith value of the explanatory variable 

The sum of squares in statistics is a tool that is used to evaluate the dispersion of a dataset. This estimation 

technique is named the least squares estimation as it gives the least value possible for the sum of squared 

errors (SSE). The goal is to minimise the sum of squared errors (SSE) of the regression model to test how 

well a model estimates the coefficients based on a given set of data. The process of finding the best estimates 

of a coefficient is often called “fitting” the model to the data, or “training” the model (Young &  Keith Ord, 

1985). Estimated coefficients are referred to using the notation β0̂, β1̂, …., βk̂. The value of the sum of squared 

errors (SSE) is calculated by taking the vertical distance between the actual data point and the prediction 

line. The rule of thumb is as follows: the smaller the sum of squared errors, the better the model, indicating 

less variation in the data (Moore, 2015; Boone, 2018). 

Depending on the functional form of the model, the least squares technique can take different approaches 

to provide the most accurate estimation. Famous types of this technique are the Ordinary Least Squares 

(OLS), for linear models’ estimations, and the Nonlinear Least Squares (NLS), for nonlinear models’ 

estimations (Gulledge et al., 1990; Chan & Wang, 2015). Both techniques were needed in this comparative 

study given the different types of models used.  

 

(a) Linear Least Squares Estimation Method (Ordinary Least Squares OLS) 

The ordinary least squares (OLS) method is a type of linear regression technique that is used to estimate 

the unknown parameters in a linear regression model. As explained earlier, the method relies on minimizing 

the sum of squared residuals between the actual and predicted values (Young & Keith Ord, 1985; Badiru, 

2012). The Ordinary Least Squares (OLS) is the most popular method in least squares estimation technique, 

because it is easy to use and yet produces decent results. 
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The previously mentioned simple linear regression mathematical form, with a single regressor (independent 

variable) x that has a relationship with a response (dependent or target) y, is the standard equation of the 

OLS procedure: 

                                                        yi = β0 + β1 xi + ε                                                             (5.9) 

Where: 

β0: Model intercept 

β1: Slope (unknown constant) 

ε: Random error component 

 

The outcome is a line where y is the predicted dependent variable, x is the independent variable, and β0 and 

β1 are the estimated coefficients. There are assumptions that should be implicitly made about the model and 

the error values when using linear regression models (Moore, 2015). 

As for the model, it is assumed that the model is a reasonable approximation to reality, and that the 

relationship between the forecast variable, y, and the predictor variable, x, satisfies a linear relationship 

(Badiru, 2012). Consequently, the predictor variable, x, should not be a random variable. The nature of 

most observed data in business and economics is the reason behind the existence of the latter assumption. 

Contrary to controlled lab experiments, it is not typically easy to control the value of the variable x in 

observational time-series data. 

As for the error values, there is no consensus on the number of the assumptions, yet many can be found in 

literature. However, there are key assumptions that are well-known to be the most important such as: 
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1. Linearity: The relationship between x and y must be linear in parameters of the specific functional 

form chosen. This assumption is usually checked by examining a scatterplot of x and y. If the scatter 

plot follows a linear pattern (i.e., not a curvilinear pattern), it shows that the linearity assumption 

is met (de La Tour et al., 2013; Elshurafa et al., 2018). If non-linearity persisted, then non-linear 

transformations of independent variables of the regression can be done by taking, for example, 

logX instead of X as the independent variable, and then check for linearity. The same applies to the 

dependent variable which will be logY in this case (Moore, 2015). 

2. Independence/ No Autocorrelation: this means there is no relationship between the residuals and 

the predicted values. This assumption is firstly checked by examining a scatterplot of “residuals 

versus predicted values.” The correlation should be approximately zero, otherwise, the result of the 

forecast is considered inefficient since there is more information in the data that is left behind (de 

La Tour et al., 2013).  

Autocorrelated errors signal model misspecification. Ideally, model errors should be i.i.d 

(independent and identically distributed), which means they should have no patterns in them. If 

they do, there is some information left unextracted; some more modelling can be done to extract 

the pattern (Honious et al., 2015).  

The first step is to test for autocorrelation in residuals. A popular test among practitioners is the 

well-known Durbin-Watson (DW) test. The Durbin-Watson test generally follows a reasonably 

easy procedure (Badiru, 2012). The DW statistic ranges from zero to four, with a value of 2.0 

indicating zero autocorrelation. Values below 2.0 mean there is positive autocorrelation and value 

above 2.0 indicate negative autocorrelation. However, it should be performed with caution as it 

performs poorly except for long time series and large autocorrelation (Turner et al., 2020). 
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Autocorrelated errors, if found, should be handled correctly to ensure reliable outcomes. The 

Newey-West (NW) estimator is frequently used to overcome autocorrelation in residuals of the 

regression model often applied to time series data while keeping the original model. “The NW 

estimator of the variance of the regression parameters estimated using OLS accommodates 

autocorrelation and heteroskedasticity of the error terms in the regression model” (Turner et al., 

2020). It is one of the so-called heteroscedasticity and autocorrelation consistent (HAC) 

estimators of the covariance matrix. It is not the only estimator available, yet it works for any 

combination where heteroscedasticity and autocorrelation are present. The Newey-West (NW) 

test should be available in any major statistical software package (Badiru, 2012; Rypdal; 2018).  

3. Normality: It is usually useful, but not necessary, to have the errors normally distributed to easily 

produce prediction intervals. However, this assumption is more critical for small sample sizes than 

for larger sample sizes. Therefore, it was tested graphically using a histogram to visually observe 

normality. Also, it was statistically tested using the famous Shapiro-Wilk test for normality. 

The hypotheses of this test are as follows: 

 

H0: Residuals are normally distributed 

H1: Residuals are not normally distributed. 

 

Should the resulted p-value support the rejection of the null hypothesis, normality cannot be 

assumed in residuals. Otherwise, if the null hypothesis was accepted, residuals would be 

considered normally distributed. It is worth mentioning that the normality assumption applies to 

the distribution of residuals not to the data distribution (Hyndman and Athanasopoulos, 2018; 

Turner et al., 2020). 
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4.  Homoscedasticity: Homoscedasticity is an assumption of equal or similar variances in different 

groups being compared. If errors are heteroscedastic (i.e. OLS assumption is violated), the forecasts 

will be considered biased.  To elaborate, the standard error is central to conducting significance 

tests and calculating confidence intervals, which means biased standard errors often lead to 

incorrect conclusions about the significance of the regression coefficients. The impact of violating 

the assumption of homoscedasticity is a matter of degree, increasing as heteroscedasticity increases.  

Many statistical packages provide an option of robust standard errors to correct this bias. One 

approach for dealing with heteroscedasticity is to transform the dependent variable using one of the 

variance stabilizing transformations (e.g.: Logarithmic transformation) (Hyndman and 

Athanasopoulos, 2018). Figure 5.8 shows a simple graphical presentation of homoscedasticity and 

heteroscedasticity: 

 

 

 

 

 

 

    Figure 5.8: Simple graphical representation of homoscedasticity and heteroscedasticity (Source: Laerd Statistics) 
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(b) Non-Linear Least Squares (NLS) Estimation Method 

In many circumstances, nonlinear models cannot be avoided. The nonlinear model theory is derived from 

the classical linear model, in which at least one parameter is not specified in a linear manner.  It extends 

linear least squares regression for use with a much larger and more general class of functions. As for the 

scope of this research, nonlinear models are analysed, hence it explains the importance of providing more 

details on this estimation method. 

Although the linear relationship, discussed so far in this chapter, is often adequate, there are many cases 

where a nonlinear functional form is found more suitable. To keep things simple in this section, the Single 

Factor Experience Curve (SFEC) model is used, with one predictor x. The simplest way of modelling a 

nonlinear relationship is to log-transform the forecast variable y and/or the predictor variable x before 

estimating a regression model. 

The goal of the Non-Linear Least Squares (NLS) estimation is the same as the Ordinary Least Squares 

(OLS): to minimise the sum of squared residuals between the actual and predicted values. The nonlinear 

least squares (NLS) estimator is known to be asymptotically unbiased. In this research, as in several research 

papers, the Gauss–Newton algorithm is specifically used to solve non-linear least squares problems, which 

is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for 

finding a minimum of a non-linear function. 

The Gauss-Newton method is an iterative algorithm to solve nonlinear least squares problems. “Iterative” 

means that the algorithm uses a series of calculations (based on guesses for x-values) to find the solution. 

It is a modification of Newton’s method, which finds x-intercepts (minimums) in calculus. The Gauss-

Newton is usually used to find the best fit theoretical model although it could also be used to locate a single 

point (Srinivasan & Mason, 1986; Stock & Watson, 1998). Given the complicated nature of the non-linear 

least squares procedure, it is almost exclusively performed with software.  
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Assumptions on nonlinear regression models heavily depend on your model and how you want to estimate 

your model. Yet, there are key assumptions that need to be met in the presence of the Nonlinear Least 

Squares (NLS) method: 

1. The most relevant assumption of Nonlinear Least Squares (NLS) is that the model fits the data well. 

Data might suggest the model is too complex for the data, and a simpler model should be considered 

(Boone, 2018). 

2. Normality: As defined and tested in the previous section, normality assumption is recommended 

for the Nonlinear Least Squares (NLS) estimated residuals. However, Motulsky and Christopoulos 

(2003) argued that the normality assumption is not necessary for nonlinear regression. It is often 

used because it's convenient. Normality is tested for non-linear models following the same tests as 

previously explained in section (Motulsky and Christopoulos, 2003). 

3. Homoscedasticity: Again, the variances should be the same regardless of the predicted values. The 

variance of the residuals should be consistent in predicted values. This assumption is examined by 

performing the scatterplot of “residuals versus fits.” The variance of the residuals should be 

consistent across the x-axis. If the plot shows a pattern, then variances are not consistent, and this 

assumption has not been met (Badiru, 2012; Boone, 2018). 

 

 

 

 

 

 

Figure 5.9: Assumptions summary for regression models errors 
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5.6 Evaluation Metric for Regression Models  

5.6.1 Fitted Values and Goodness-of-fit 

An observation in a time series can be forecast using previous observations. This is what is commonly 

called fitted values. They are donated by ŷt-1 and they always involve one-step forecasts. The hat above the 

y reminds us that this is an estimate (Moore, 2015).  

A commonly used approach to summarise how well a regression model fits the data is to calculate the 

coefficient of determination, or R2. It is the square of the correlation between the observed values y, and the 

predicted values ŷ, and is written as follows: 

                                            R2 = Σ(ŷt − ȳ)2/Σ(yt − ȳ)2
                                                                                            (5.10) 

 

The result reflects the proportion of variation in the forecast variable that is accounted for (or explained) by 

the regression model. R2 lies between 0 and 1. If the predictions of the model are close to the actual values, 

then R2 is expected to be close to 1 (assuming there is an intercept).  

 

5.6.2 Standard Error of the Regression: The Residuals 

The “residuals” in a time series model are typically what is left over after fitting a model. It is, for most 

time series models, the difference between the observations, yt and the corresponding fitted values, ŷt: 

                                                                 et = yt - ŷt                                                             (5.11) 

 

The standard deviation of the residuals, which is often known as the “residual standard error” is another 

measure of how well the model has fitted the data. The lower the value of the residuals, the better the 

model’s forecast. The residuals are uncorrelated, or they should be (IEA, 2000). Correlations between 
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residuals indicate that there is information left in the residuals that should have been used in computing 

forecasts. Moreover, as mentioned earlier, the residuals have zero mean, otherwise the forecasts are biased 

(Hyndman and Athanasopoulos, 2018). If either of these properties was not met, then the forecasting 

method should be improved to give better forecasts. However, that does not mean that forecasting methods 

that satisfy these properties are necessarily the best.  

In addition to the graphical plots, there is an array of plots that can be produced, to double check the 

underlying assumptions of the model, and understand the outcomes of the model by analysing the residuals: 

 

Breusch-Godfrey Test  

When fitting a regression model to time series data, a useful test of autocorrelated errors in the residuals is 

the Breusch-Godfrey test, which is designed to detect serial autocorrelation. It works on the basis of testing 

the joint hypothesis that there is no autocorrelation in the residuals up to a given confidence level. A small 

p-value indicates there is significant autocorrelation present in the residuals (Hyndman and 

Athanasopoulos, 2018). 

 

Histogram and Kernel Density Estimation for the Residuals 

Histograms are useful and easy solution to check whether the residuals are normally distributed or not. 

Although the normal distribution assumption is not essential for forecasting, it does make the intervals 

prediction much easier (Moore, 2015; Hyndman and Athanasopoulos, 2018).  

 

Plotting Residuals Against Predictors and Fitted Values 

Residuals are expected to be randomly scattered with no systematic pattern present. A simple way to check 

this is to establish scatterplots of the residuals against each of the predictor’s variables. Should the 
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scatterplots show a pattern, the model would need to be modified accordingly (Alberth, 2006; Papineau, 

2006; Badiru, 2012; Moore, 2015).  

Another plot of the residuals against the fitted values should also show no pattern. A pattern in this plot 

may indicate the presence of “heteroscedasticity” in the errors (Moore, 2015; Johnson, 2016). 

Heteroscedasticity implies that the variance of the residuals may not be constant over time, which requires 

an appropriate transformation of the predictor variable such as a logarithmic, square root, and so on (Moore, 

2015; Rypdal, 2018).  

 

5.6.3 Forecast Errors  

As mentioned before, a forecast error doesn’t usually mean a mistake, it simply means the difference 

between an observed value and its forecast, which is the unpredictable part of an observation (Badiru, 2012). 

Forecast errors, in practical, are calculated using the residuals, yet they are different in many ways. As for 

the scope of this research, the following forecast error metrics are used: 

 

A. Scale-dependent Errors 

The two most used scale-dependent measures are based on the absolute errors or squared error are the Mean 

Absolute Error (MAE), and the Root Mean Squared Error (RMSE). The MAE is a useful measure widely 

used in model evaluation, while the RMSE has been frequently used as a standard evaluation metric to 

measure model performance in many climate research studies (Hodson, 2022). Equations used for both 

measures calculations are as follows with yn as the observed value, ŷt as the predicted value, and n as the 

number of observations: 

 

 



196 
 

                                                                                                                                                         (5.12) 

                                                                                                                                                   

                                                                                                                                                         (5.13) 

  

They have both been used to assess model performance for many years, there is, however, no consensus on 

the most appropriate metric for models’ errors, with a historical argument favouring one metric or the other. 

The choice of error metric should meet with the expected probability distribution of the errors; otherwise, 

any inference will be biased. For example, RMSE is optimal for normal (Gaussian) errors, while MAE is 

optimal for other error distributions, and so on (Hyndman and Athanasopoulos, 2018). 

 

B. Percentage Errors 

Percentage errors typically have the advantage of being unit-free, and so are used to compare forecast 

performances between different data sets. The Mean Absolute Percent Error (MAPE) is one of the most 

used measures and is usually calculated as: 

 

                                                                                                                                                          (5.14)       

 

Where: 

M – Mean Absolute Percent Error (MAPE) 

n – Number of observations 

At – Actual value  

Ft – Forecast value 
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MAPE is considered one of the best measures of forecast accuracy. In MAPE’s equation, the absolute value 

is taken to avoid any cancellation between positive and negative error values which can affect the accuracy 

of the model (Bailey et al., 2011; Moore, 2015). MAPE provides a unitless measure of accuracy and can be 

interpreted as the average percentage error of the model. 

Expressed as a percentage, it allows a comparison of how the model works and the accuracy of different 

experience curve models. MAPE typically takes the same error term that is found in the Sum of Squared 

Error (SSE) equation and divides it by the actual value of the unit, then takes the mean (arithmetic average) 

of all of the data points. The rule of thumb is: Lower the MAPE, better fit is the model. However, there is 

no specific number that can be considered as the right number for MAPE. 

MAPE is the main metric on which the research hypotheses are built. Therefore, if contemporary models 

reduced both SSE and MAPE when compared to the SSE and MAPE of Wright’s prediction, then a 

conclusion could be made that the contemporary models would be a more accurate model to use when 

conducting experience curve analyses (Moore, 2015; Boone, 2018; Hyndman and Athanasopoulos, 2018). 

MAPE is robust to outliers, so the effects of outliers do not extremely influence this measure. The output 

of the MAPE’s equation is used in this research to evaluate the forecasting performance of the competing 

models. 

 

5.7 Research Hypotheses Testing 

The theory behind this comparative study is that cumulative installed capacity, and module prices data may 

provide a more realistic assumption for solar PV growth and eventually a more accurate predictor of actual 

costs using a modern experience curve model (Moore, 2015; Rypdal, 2018). The main hypothesis states 

that the Mean Absolute Percent Error (MAPE) is significantly different between the predicted module 

prices for alternative models (Gompertz and the Logistic models) when compared to the conventional 
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Wright’s model. MAPE, as previously explained, is ultimately defined as the average measure of variation 

that takes the error both positive and negative as a percentage (Hyndman and Athanasopoulos, 2018).  

 

5.7.1 Research Hypotheses 

As stated in the introduction of this research, this thesis mainly aims to answer the following questions: 

1. Can any of the contemporary experience curve models be applied to current solar PV modules cost 

estimating procedures? If so, which ones? 

2. Are experience curve models that account for diminishing learning rates more accurate than the 

conventional experience curve model used toady? If so, which ones? 

3. Which experience curve model is most accurate, with least forecasting error, at predicting the actual 

cost of solar PV modules?  

Here are the hypotheses that were developed and tested to complete the statistical comparison between the 

three experience curve models. They can be summarised as follows: 

H1: One or more of the three experience curve models has a MAPE significantly different from the other 

models. 

H2: One or more of the alternative experience curve models is significantly more accurate than Wright’s 

model in predicting solar PV modules costs (have significantly lower MAPE). 

H3: The nonlinear model, which accounts for both previous experience and the flattening effect, has the 

lowest MAPE as the most accurate predictor of solar PV modules costs. 
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The hypothesis is a simple proposition that can be proved or disproved through various scientific 

techniques. It establishes the relationship between independent and some dependent variables. It is capable 

of being tested and verified to ascertain its validity, by an unbiased examination. Testing of a hypothesis 

attempts to make clear whether or not the supposition is valid (Badiru, 2012; Hyndman and 

Athanasopoulos, 2018). 

The null hypothesis (H0) for the first hypothesis in this analysis is that µ1 = µ2 = µ3, which means all of the 

MAPE values are the same, against the alternative hypothesis (H1) that al least one the three models has a 

mean that is significantly different. If the null hypothesis can be rejected, with enough evidence to support 

a significant difference, then the next step is to test each of the contemporary experience curve models 

against the conventional model. 

The second null hypothesis (H0) mathematically states that µ1 = µi, where i = 2,3. This hypothesis is tested 

against the alternative hypothesis (H1) that µ1 > µi. These hypotheses test whether at least one of the 

alternative experience curve models has MAPE that is significantly lower than the conventional model. 

The final test is for the third hypothesis which will investigate which of these alternative models, that have 

provided significantly smaller mean errors from the conventional model, is the best predictor. The third 

null hypothesis (H0) states that µi = µj, where i and j are both significantly lower than µ1. This hypothesis 

is to be tested against the alternative hypothesis (H1) that µi < µj. That analysis will provide an answer to 

the initial question of this thesis of determining if there is an alternative best fit model that is more accurate 

than Wright’s model.  

 

5.7.2 Hypotheses Testing 

Hypothesis testing is the act of testing an assumption regarding a population parameter (Bailey, 2011). The 

methodology used by the analyst was basically determined based on the nature of the data used and the 

main study hypotheses. Some of these tests require certain assumptions to be met, otherwise they can’t be 
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used. Tests that make assumptions about the parameters of the population distribution from which the 

sample is drawn, are called parametric tests.  Typically, this is the assumption that the population data are 

normally distributed. On the contrary, non-parametric tests are “distribution-free” and, consequently, can 

be used for non-Normal variables.  

Once the Sum of Squared Error (SSE) and Mean Absolute Percent Error (MAPE) values were calculated 

for each experience curve equation, hypotheses are tested to determine whether the difference between the 

error values between the three functional forms were statistically different. First, it is important to 

understand the behaviour of the data to determine whether parametric or non-parametric tests are supposed 

to be used. The Absolute Percent Error (APE) values, derived from the validation data subset results, are 

used to test hypotheses as follows: 

As for the first hypothesis: a statistical test is needed to determine whether at least two of the populations 

means are statistically different from each other. One-Way ANOVA and Kruskal methods are frequently 

used for testing whether samples originated from the same distribution (Moore, 2015; Boone, 2018). 

The parametric One-way ANOVA (ANalysis Of VAriance) is a statistical test to determine whether two or 

more population means are different. In other words, it is used to compare two or more groups to see if they 

are significantly different. The Kruskal-Wallis is the non-parametric method used to compare k independent 

samples. It is roughly equivalent to a parametric one-way ANOVA with the data replaced by their ranks.  

The choice between parametric test (One-way ANOVA) and non-parametric test (Kruskal-Wallis) is made 

based on the assumptions of each method. One-way ANOVA requires three conditions for valid results. 

The first condition is related to the random selection of the samples from the population. The second 

condition is that the samples must have an approximately normal distribution. Lastly, the population 

variances must be equal (Moore, 2015). 
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As for the randomness assumptions, samples are considered random as there was no specific selection 

process from the data samples collected. Next, the normality of the data is here tested for the three samples 

using the previously mentioned Shapiro-Wilk test for normality as follows: 

H0: APE values are normally distributed 

H1: APE values are not normally distributed. 

Should the resulted p-value support the rejection of the null hypothesis, normality cannot be assumed in the 

absolute percent error sample. Otherwise, if the null hypothesis was accepted, then the absolute percent 

error would be considered normally distributed (Turner et al., 2020).  

Equality of variance, the third assumption, is tested by simply dividing the largest sample standard deviation 

by the smallest standard deviation (Moore, 2015). The equality of variances is tested by dividing the largest 

sample standard deviation by the smallest standard deviation. For example, suppose sample 1 has a variance 

of 24.5 and sample 2 has a variance of 15.2. The ratio of the larger sample variance to the smaller sample 

variance would be calculated as 24.5 / 15.2 = 1.61. As a rule of thumb, if that resulted value is 4 or less, 

then the variances can be assumed equal.  

If these conditions are not met, a non-parametric test will be used to investigate the first hypothesis of this 

analysis. The non-parametric Kruskal-Wallis test does not assume normal distribution of the underlying 

data. The result of this test is an f-statistic falling within a Chi-distribution. 

Once the values are filled in tables, checked, and populated, the first hypothesis will be checked on whether 

μ1 = μ2 = μ3 of the three tested models, by comparing the set of mean absolute percent errors using either 

an ANOVA or Kruskal-Wallis test. The hypotheses would be as follows: 

H0: the mean ranks of the groups are the same (no significant statistical difference) 

H1: the mean ranks of the groups are not the same (mean ranks are statistically different) 
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The second hypothesis indicates that at least one of the alternative models is more accurate by having a 

lower MAPE than Wright’s model MAPE. Dunnett’s method is a particularly useful method to analyse 

samples, while having control groups, based on modified t-test statistics (Dunnett’s t-distribution). It is a 

powerful statistic and, therefore, can discover relatively small but significant differences among groups or 

combinations of groups (Moore, 2015). As Dunnett’s compares two groups, it acts similarly to a t-test. The 

Dunnett test is used by researchers interested in testing two or more experimental groups against a single 

control group. It is worth mentioning that Dunnett’s test is non-parametric and doesn’t require that the 

assumption of normal distribution and equal variances to be met. 

If the outcome of the second hypothesis showed a significant result, the next step in the post hoc analysis 

will be to test the third hypothesis on which model is most accurate. A paired difference t-test is necessary 

to answer this question. This choice was made because the paired t-test statistical test is a widely accepted 

statistical method used to test whether the mean difference between pairs of measurements is zero or not. 

It is a comparison of two different methods of measurement or two different measurements where the 

measurements are applied to the same subjects (Boone, 2018). 

This t-statistic typically falls within a student-t distribution that can either support or reject the null 

hypothesis given a certain confidence level. Paired t-test estimate has the following hypothesis: 

H0: the mean of the paired differences equals zero in the population  

H1: the mean of the paired differences does not equal zero in the population. 

If the p-value is less than 0.05 (the significance level), then there will be enough evidence to reject the null 

hypothesis. This will lead to a conclusion with strong evidence that the mean paired difference does not 

equal zero in the population (Moore, 2015). To successfully perform a parametric paired t-test, the 

distribution of differences between the paired measurements should be normally distributed. Also, equal 

variances assumption should be met. It is the same assumption that was previously checked for parametric 

One-Way ANOVA test in hypothesis one. 
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However, if there was a concern about data being non-normally distributed, the Wilcoxon-Mann-Whitney 

test will have more power than the t-test in this case. It is a 2-group non-parametric comparison test 

equivalent to the parametric t-test that can be used to test treatment effects when data are not normally 

distributed. Wilcoxon-Mann-Whitney test computes a z-score, and the corresponding probability of the z-

score for the sum of the ranks within the two groups (Turner et al., 2020). Also, the Wilcoxon-Mann-

Whitney test will have comparable power if the data are normally distributed. 

The hypotheses for a Mann-Whitney test are as follows:  

H0: the two populations are equal, 

H1: the two populations are not equal.  

As for this study, the confidence level of 95% will be used with an α of 0.05. This α means here that f-

statistic or t-statistic with a resulting p-value < 0.05 will reject the null hypotheses and provide evidence 

that supports the alternative hypothesis (that the mean values between the models are different).  

 

 

 

 

 

 

 

 

Figure 5.10: Summary of research hypotheses testing process 
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5.8 Testing Structural Changes and Coefficients Stability 

5.8.1 Structural Breaks Estimation Framework 

This section covers methodological approaches related to estimation, testing and computation of potential 

structural breaks in the models. Structural breaks have been observed in many economic and financial time 

series according to Stock and Watson (1996). Identifying structural breaks, or change points, is a crucial 

step in time series analysis where a key assumption is that the coefficients do not change over time (Boot 

and Pick, 2017; Casini et al., 2018). Hence, this assumption is unlikely to hold over time, and the model 

parameters might change as a result of major disruptive events. Parameters instability can have harmful 

impact on estimation and inference and can potentially lead to costly errors in decision-making (Ditzen et 

al., 2022).  

Structural breaks in a model serve as one possible reason for poor forecast performance in out-of-sample 

forecasts (Casini et al., 2018). A fixed parameter model cannot be expected to forecast well if the true 

parameters of the model change over time. Conversely, if the model isn't forecasting well, it may be worth 

considering if model instabilities could be playing a role (Leeb, 2008). 

In this analysis, and within the validation data points, there are two important factors that require more 

investigation on the impact they might have had on the accuracy of the models forecast. The first factor is 

related to the reduced policy support for deployment in China that hit the global solar PV market in the 

second half of 2018. As China is by far the world’s largest solar market, the effect of these policies was 

expected to spread globally. “Oversupply is universal”, according to a note by Bloomberg New Energy 

Finance (BNEF) which predicted a market panic in the short term (BNEF note, 2018).  

This was followed by the global Covid-19 pandemic at the end of 2019 which affected global shipping 

prices and supply chains at many levels (Ditzen et al., 2022). With lockdown taking place in most countries, 

shipping prices skyrocketed, and commodities prices struggled to stay resilient. Therefore, years from 2018 
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on towards the end of the forecast period represent a point of interest to be tested for possible unusual 

deviation and coefficients stability. 

Testing for structural breaks represents a rich area of research. The test for structural breaks and which test 

to implement depends on several factors (Boot and Pick, 2017). For example, among the most important 

factors is whether the break date is known for the analyst or not. Therefore, it is essential to understand the 

statistical characteristics of both the breaks and the data to ensure the plausible method is implemented 

(Ditzen et al., 2022).  

 

5.8.2 Dummy Variables and Chow Test 

A dummy variable is a variable which takes the value of 0 except in the one observation for a specific date 

(Ditzen et al., 2022). Dummy variables are broadly used to include numerous potential effects on the model. 

They can be used to identify seasonal effects, changes in intercept, and changes in the slope of the regression 

line (Leeb, 2008).  

The dummy variable approach to testing for a structural break implies running two regressions. The first is 

the basic restricted model without the dummy variables, then the second model is the unrestricted version 

of the model including the intercept, the slope and dummy variables. This is followed by the usual f-test 

testing for the difference between the two models (Boot and Pick, 2017). By estimating the coefficients 

separately using two separate sub-samples, it is possible to obtain a better fit to the data.  

In this case, a dummy variable taking the value 0 before 2018 and 1 afterwards could then be used to 

represent potential structural breaks effect. 

Time = 0 if year <= 2018 

Time = 1 if year > 2018 
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Since the break date is known, the Chow test is used to examine whether the model’s parameters of one 

group are different from those of other groups. A Chow test (1960) is a statistical test developed by 

economist Gregory Chow that is used to test whether the coefficients in two different regression models on 

different datasets are equal at some point. It is built on the theory that if parameters are constant then out-

of-sample forecasts should be unbiased. 

Chow test uses an f-test to determine whether a single regression is more efficient than two separate 

regressions involving splitting the data into two sub-samples. This could occur as follows, where in the 

second case we have a structural break at time t: 

 

 

 

 

 

 

 

 

Figure 5.11: Restricted (Left: Case 1) versus unrestricted models (Right: Case 2) 

 

In the first case we have just a single regression line to fit the data points (scatterplot), it can be expressed 

as: 

                                                                ttt uxy ++= 10 
                                                             (5.15) 
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(5.16) 

In the second case, where there is a structural break, we have two separate models, expressed as: 

ttt

ttt

uxy

uxy

221

121

++=

++=





 

For the Chow test, there is a need to create an interaction term (breakx) of the regressor, Cumulative 

Installed Capacity, and the dummy variable, break. With this done, a regression model with the interaction 

and the dummy variables are fitted accordingly. The coefficient of breakx is the deviation of the validation 

period intercept from the training period intercept (break=0).  

This suggests that model 1 applies before the break at time t, then model 2 applies after the structural break. 

If the parameters in the above models are the same, i.e. 𝛽1 = 𝛿1,  𝛽2 = 𝛿2, then models 1 and 2 can be 

expressed as a single model as in case 1, where there is a single regression line. 

Chow test can be performed by running the regression using all the data, before and after the structural 

break, collect RSSc. This is followed by two separate regressions on the data before and after the structural 

break, collecting the RSS in both cases, giving RSS1 and RSS2. 

Using these three values, calculate the test statistic from the following formula: 

knRSSRSS

kRSSRSSRSS
F c

2/

/)(

21

21

−+

+−
−

 

The resulted f-test should provide the critical values in the f-test tables, which is in this case it has F(k, n-

2k) degrees of freedom. In most of the cases, this formula is strictly calculated using statistical software 

packages, and not manually. With this done, a conclusion can be made whether to accept or reject the null 

hypothesis of the test as follows: 

H0: There is no structural breaks 

H1: There is a structural break at a certain point in time 
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It is worth mentioning that the Chow test should only be used when the possible structural break is at 

a known time. In other words, the test shouldn’t be used repeatedly to determine if any point in time can be 

considered a structural break. 

 

5.9 Conclusion 

In this chapter, the focus was on methods to evaluate predictions, for many reasons. First, the goal of the 

model is to “predict”. Second, if a model can’t even predict well, it’s hard to see how it could be right 

scientifically. Third, one of the best ways of checking a scientific model is to turn some of its implications 

into statistical predictions. 

In the forecasting literature, it is an established fact that no single forecasting model is the best for all 

situations under all circumstances (Makridakis et al., 1982). Therefore, the ‘‘best’ model in most real-world 

forecasting situations should be the one that is robust and accurate for a long-time horizon and thus users 

can have confidence to use the model repeatedly. 

This chapter explained how the proposed models will be applied to the data in this study, which methods 

will be used to compare them, the data analysed in this research, and limitations in the data that will need 

to be addressed. 

If the hypotheses are supported and diminishing learning effects are found to be significant, then this 

research can provide a valuable proxy into future research and application of solar PV cost estimation 

models. It may contribute to the emerging technologies cost estimating communities understanding by: 

first, developing a cost modeling tool that incorporates a plateauing factor into experience curve models. 

Second, refining the methodology of the estimation process so that it can be used in other areas of climate 

change technologies for the benefit of not only the energy industry, but the public at large. 
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Theoretically, it appears that the nonlinear modeling is a viable alternative to the constant linear and other 

conventional forecasting models in forecasting technological substitutions. Hence, an appropriate scientific 

methodology is what evaluates the performance of both linear and nonlinear models, using the data at hand 

to select the best model for forecasting purposes based on the results displayed in Chapter Six. 
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Chapter Six: Results and Analysis 

 

6.1 Chapter Overview 

Chapter six highlights the results from the methodology and tests described in the previous chapter. Using 

Wright, Gompertz and the Logistic experience models results, this chapter attempts to answer the 

questions presented earlier in the research: first, how does the incorporation of the saturation level impact 

the accuracy of solar PV modules cost estimates? Second, at what point does Wright’s experience curve 

become less accurate in reflecting costs compared to other experience models? And third, will using 

contemporary nonlinear models reduce forecast error compared to the conventional estimation models? 

The parameters of these models were estimated by Least Squares Estimation function (Ordinary Least 

Squares (OLS) and Nonlinear Least Squares (NLS)). The chapter also shows the results of the research 

hypotheses testing performed to complete the models’ comparison. 

Comparison is based on the resulted p-values of parameters, adjusted R-squared, SSE (Sum of Squared 

Error), RMSE (root mean square error), MAE (mean absolute error), MAPE (Mean Absolute Percent 

Error). Stata statistical software package was used to estimate the model and perform the post-hoc 

analysis.  

The following graphs and charts illustrate and explain how the procedure, that was previously laid out, 

was used to complete this analysis. It was conducted on a period of 25 years (ranging between 1997 and 

2021) of global silicon-based solar PV modules cumulative installed capacity and prices data points, 

while forecasts were made into the future until 2030. The focus of this chapter is on displaying the results 

only. Further analysis, conclusions, limitations, and the implications of this research will be discussed in 

chapter seven.  

 

 



211 
 

0

1

2

3

4

5

6

7

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Year Cumulative capacity Solar PV Module Cost ($/W)

6.2 Data Description and Analysis 

Historical time series dataset was analysed and refined as described in Chapter Five. The data includes 

global prices of silicon-based solar PV modules measured in $/W, and cumulative solar PV installed 

capacity measured in MW. It avoids high uncertainty of the data prior 1996 for the reasons explained in 

Chapter Five.43 Despite fluctuations in the market, the curves tend to look like smooth curves on the long-

term. These holds correct for the cumulative installed capacity line as seen in Figure 6.1. However, the 

price line, even on the long-term, is less smooth. The graph plot shows fluctuations in prices over the 

estimation period. It also shows that cost reduction curve is getting slow, slower than the installed 

capacity curve, towards the end of the production cycle. Prices are not falling, as fast as they previously 

did, after a certain point in time regardless of the installed capacity size. 

 

 

 

 

 

 

 

 

 

  

 

Figure 6.1: Cumulative installed capacity (MW) and module cost ($/W) against time 

 

 
43 Sources of data are listed in Appendix 1 
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In 2020, high shipping prices, due to the COVID-19 pandemic and lockdown in many countries, put 

pressure on the solar PV industry growth expectations and caused a bottleneck in the raw materials supply 

chain. The consequences were, in return, a reverse in the modules prices curve after many years of gains in 

the industry. An earlier example on a reverse in the price curve is seen on the chart during the silicon 

shortage crisis between 2004 and 2009, which resulted in a sharp increase in silicon-based modules’ prices 

as described in Chapter Three. 

 

6.2.1 Inflation-Adjusted Costs 

Figure 6.2 highlights the result of the price inflation-adjustment procedure that was applied on the original 

prices dataset.  By plotting the original prices data and inflation-adjusted prices along with installed 

capacity against years, the difference became obvious between the two lines. Beyond this point, inflation-

adjusted price data was used throughout this analysis to ensure more reliable results.  

 

 

 

 

 

 

 

 

Figure 6.2: Inflation-adjusted module price ($/W) versus cumulative capacity (MW) over years 
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6.2.2 Log Transformation 

After adjusting prices for inflation, the dataset was tested for a potential trend or skewness. High 

skewness was detected using boxplots (see Figure 6.3 and 6.4 below) and in the data summary, shown in 

Table 6.1:  

 

 

 

 

 

 

                                                           Figure 6.3: Cumulative Capacity Boxplot  

 

 

 

 

 

 

 

                                                              Figure 6.4: Inflation-Adjusted Cost Boxplot 
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Table 6.1: Detailed summary on inflation-adjusted cost and cumulative installed capacity variables 

 

The ideal value to aim for in regard to the skewness is zero. If skewness is less than -1 or greater than 1, 

the distribution is highly skewed. If skewness is between -1 and -0.5 or between 0.5 and 1, the 

distribution is moderately skewed. If skewness is between -0.5 and 0.5, the distribution is approximately 

symmetric. 

The solution for the skewness, as suggested in Chapter Five, was to transform the data. Log 

transformation is recommended for both the dependent and the independent variables. Both log-

transformed variables will be used throughout this analysis. As discussed, log-transformation is also 

applied to remove any potential presence of unit-root as well. 

 The new introduced variables are LnModuleCost and LnInstalledCapacity which are the natural 

logarithms for ModuleCost and InstalledCapacity variables respectively. Based on this criterion, the 

improvement in the data is confirmed graphically for log-transformed variables in Figure 6.5 boxplot and 

in Table 6.2 below: 
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Figure 6.5: Log-transformed data boxplots 

 

 

 

 

 

 

 

 

 

 

 

Table 6.2: Detailed summary on log-transformed cost and capacity variables 
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6.2.3 Dataset Splitting 

The dataset was split into two subsets: training, validating. There is no rule of thumb on how to split the 

dataset, yet it requires deep understanding to the data and the problem being solved. Typically, most 

researchers go with the 80/20 rule; which means 80 percent of the data points are used to train (estimate) 

the model, and 20 percent is used to validate the results. In this research, nonlinear models are estimated 

which means data points are needed to ensure a successful convergence and iteration of the model. 

Therefore, 81% of the data was used to train the model, and 19% was used to validate the model as shown 

in Table 6.3. Finally, data for forecast (testing) is collected from Bloomberg New Energy Finance 

(BNEF) future forecasts on cumulative installed capacity (MW) to establish future scenarios using 

various estimated models: 

 

Training data  1996-2017 22 years/ data points 

Validation data  2018-2022 5 years/ data points 

Testing data  2023-2030 8 years/ data points 

 

Table 6.3: Data Splitting Structure 
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              _cons     4.658695   .2712279    17.18   0.000     4.092924    5.224467

LnInstalledCapacity    -.4552378   .0284932   -15.98   0.000    -.5146735   -.3958021

                                                                                     

       LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                     

       Total    27.2629926        21  1.29823774   Root MSE        =    .31471

                                                   Adj R-squared   =    0.9237

    Residual    1.98083661        20   .09904183   R-squared       =    0.9273

       Model    25.2821559         1  25.2821559   Prob > F        =    0.0000

                                                   F(1, 20)        =    255.27

      Source         SS           df       MS      Number of obs   =        22

. reg LnModuleCost LnInstalledCapacity in 1/22

6.3 Regression Analysis Results: 

 

6.3.1 Ordinary Least Squares (OLS) Estimation Result 

Using the Ordinary Least Squares (OLS) technique, Wright’s power law regression resulted in Table 6.4: 

 

 

 

 

 

 

 

Table 6.4: The ANOVA table for the OLS Wright regression model 

 

Table 6.4 contains the result of the OLS estimation which includes the ANOVA table as expected, the R2 

value and the Mean Squared Error (MSE) values. Results of the coefficients estimation are significant 

(with p-values less than 0.05 at the 95% confidence level and α = 5%) in the ANOVA table, and high R2, 

which gives a statistically significant starting point to analyse the result.  

 

a. Fitted Values, Coefficients and Goodness-of-fit 

The OLS estimation of Wright’s power law model resulted in 0.9273 and a slightly lower adjusted R2 

value of 0.9237 using the training dataset. This means that approximately 92% variance in the dependent 

variable (inflation-adjusted prices) can be explained by the independent variable (cumulative installed 

capacity) in the estimated model.  

The estimated learning coefficient, b, named LnInstalledCapacity in the ANOVA table, is the slope of the 

linear regression model (-0.455). In the experience curve analysis context, the importance of this value is 

in its role in calculating the progress ratio and, consequently, the learning rate of the experience curve 
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model. According to Wright’s model, the cost is reduced by b% every time the production capacity 

doubles. The result of this calculation provides the progress ratio of the model as follows: 

Progress Ratio (PR) = 2-b  = 2-0.455 = 0.73                                                                                          (6.1) 

Learning Rate = 1 – PR = 1 – 0.73 = 0.27 = 27%                                                                             (6.2) 

 

Using these equations, Wright’s model estimated a 27% constant learning rate over time. Also, the 

inverse relationship between the progress ratio and the learning rate is observed. The higher the progress 

ratio, the lower the learning rate of the model, and vice versa. 

The intercept of the linear regression model, named (_cons) in the ANOVA table, is the natural log of the 

theoretical first unit, Y1 value. This is calculated by raising the mathematical constant e to the estimated 

value of the intercept which in this case is 4.65 as follows: 

Cost of first unit ($) = e intercept = e 4.65 = $104.6                                                                                 (6.3) 

 

Estimated coefficients are used as the new inputs of the model to predict solar PV modules prices based 

on the trained model. Predictions are made for both the training data subset (observations 1 to 22) and the 

validation subset (observations 23 to 27) to understand how the model performed as shown in Figure 6.6: 
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                                   Figure 6.6: Actual prices versus predicted prices ($/W), Wright’s Model 

 

b. Standard Error of the Regression: Model and Error’s Assumptions 

Once predicted data is obtained, residuals of the model are calculated by measuring the distance between 

predicted values of y (dependent variable) and observed values of y: 

                              Residualsi = actual yi value − predicted yi value                           (6.4) 

 

Using the results from equation (6.4), it is critical to check that all model’s assumptions explained in 

Chapter Five, are met, and satisfied correctly. This step helps to achieve reliable outcomes from the 

model. Accordingly, it is also important to fix any violation of these assumptions if found. An array of 

graphical and statistical tests were performed on the residuals as follows: 
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                        H0: no serial correlation

                                                                           

       1               15.315               1                   0.0001

                                                                           

    lags(p)             chi2               df                 Prob > chi2

                                                                           

Breusch-Godfrey LM test for autocorrelation

1. Linearity: the equation used for this analysis is linear in the parameters as estimated by the 

Ordinary Least Squares (OLS) method. Linearity between the dependent variable, LnModuleCost, 

and the independent variable, LnInstalledCapacity, is confirmed graphically in Figure 6.7: 

 

 

 

 

 

 

 

 

 

 

  

Figure 6.7: Relationship between the dependent and the independent variables 

 

2. Independence of errors (No-Autocorrelation): this assumption is statistically examined using 

the well-known Breusch-Godfrey test for autocorrelation. The null hypothesis (H0) indicates that 

there is no serial correlation, while the alternative hypothesis (H1) indicates that residuals are 

serially correlated. In real life, most software packages offer this test after the Ordinary Least 

Squares (OLS) model estimate. As for the estimated model, the Breusch-Godfrey test result is as 

shown in Table 6.5: 

 

 

 

                                           

                                          Table 6.5: Breusch-Godfrey statistics result 
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The results above indicate a p-value of 0.0001 which is significant and provides enough evidence 

to reject the null hypothesis that there is no serial correlation. This means that there is a serial 

correlation (autocorrelation) in the model’s errors. One more confirmation is given through the 

Durbin-Watson (DW) test for autocorrelation. The statistic of the Durbin-Watson test is (0.25) 

which is much lower than (2): the level where no-autocorrelation can be assumed. Graphically, 

autocorrelation can be seen as follows in Figure 6.8 and Figure 6.9: 

 

 

 

 

 

 

  

                                         Figure 6.8: A plot for Residuals versus Time 

 

   

 

 

 

 

 

 

 

                                  Figure 6.9: A plot for residuals versus Predicted Values 
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              _cons     4.658695   .3430509    13.58   0.000     3.943104    5.374287

LnInstalledCapacity    -.4552378   .0362645   -12.55   0.000    -.5308842   -.3795914

                                                                                     

       LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                  Newey-West

                                                                                     

                                                Prob > F          =     0.0000

maximum lag: 1                                  F(  1,        20) =     157.58

Regression with Newey-West standard errors      Number of obs     =         22

Despite being popular in time-series analysis, Autocorrelation is still a worry and can affect the 

model’s reliability. Therefore, another step was taken to solve this issue. As explained in detail in 

Chapter Five, the Newey-West (NW) test is among the frequently used methods to correct for 

autocorrelation where the original model can be retained. 

This estimate works to have more precise confidence intervals for the estimated coefficients to 

account for autocorrelation and heteroscedasticity. The newly specified confidence intervals on 

the estimated coefficients (lag = 1) are displayed in Table 6.6: 

 

 

 

 

 

 

Table 6.6: Newey-West regression result 

 

Outcomes from the Newey-West test were as follows: the p-value of the f-test is significant which 

means the estimation of updated confidence intervals of estimated coefficients is statistically 

significant at the 95% confidence level (α = 5%). However, confidence intervals are narrower 

from the original models which is expected as a result of the Newey-West regression. 

 

3. Normality: Normality in residuals is recommended, but not compulsory. It is checked using a 

statistical estimate using Shapiro-Wilk test for normality, and graphically through Histograms 

which measure the deviation of the residuals from the normal density. As for the Shapiro-Wilk 

test, the null hypothesis of the test (H0) is that data are normally distributed, while the alternative 

hypothesis (H1) indicates that data are not normally distributed. The result of the test came back 

as seen in Table 6.7: 
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   Residuals           27    0.92670      2.155     1.577    0.05738

                                                                    

    Variable          Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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                   Table 6.7: Shapiro-Wilk test for normality in the residuals (Wright Model) 

 

As seen above, at the 95% confidence level, the test result didn’t provide enough evidence to 

reject the null hypothesis. The resulted p-value is slightly higher than the significance level 0.05 

(α = 0.05). Therefore, the null hypothesis is accepted that the residuals are normally distributed. 

Next, a histogram was built on the residuals which showed an approximately normally distributed 

residuals as in Figure 6.10: 

 

 

 

 

 

 

 

  

                                            Figure 6.10: Residuals versus time Histogram 
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  Parameter b0 taken as constant term in model & ANOVA table

                                                                              

         /b3     11.47631   .3733145    30.74   0.000       10.692    12.26061

         /b2    -.5491614   .0834467    -6.58   0.000    -.7244765   -.3738464

         /b1     3.781151    .505241     7.48   0.000     2.719679    4.842623

         /b0       -1.991   .4211003    -4.73   0.000    -2.875699   -1.106301

                                                                              

LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

4-parameter Gompertz function, LnModuleCost = b0 + b1*exp(-exp(-b2*(LnInstalledCapacity - b3)))

       Total    27.262993         21  1.29823774    Res. dev.     =  -30.62674

                                                    Root MSE      =    .133365

    Residual    .32015203         18  .017786224    Adj R-squared =     0.9863

       Model    26.942841          3  8.98094684    R-squared     =     0.9883

                                                    Number of obs =         22

      Source        SS            df       MS

4. Equality of Variance (Homoscedasticity): Using Newey-West test to correct for autocorrelation, 

this model also accounts for and is robust to heteroskedasticity (unequal variance of the 

residuals). Accordingly, the equality of variance assumption can be assumed as a satisfied 

assumption. 

 

6.3.2 Nonlinear Least Squares (NLS) Estimation Result: Gompertz and the Logistic Model 

 

Gompertz Model: 

As for Gompertz model, non-linear least squares (NLS) technique is used to estimate the model’s 

parameters. Using the interactive version of the nonlinear least squares techniques in modern software 

packages, the nonlinear least squares method became a more user-friendly function that was directly 

applied to the Gompertz equation to estimate the model’s parameters as shown in Table 6.8:  

 

 

 

 

 

 

 

              Table 6.8: Gompertz Nonlinear Least Squares (NLS) Estimate Results 
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a. Fitted Values, Coefficients and Goodness-of-fit 

The Goodness-of-fit, R2, value is high with 0.9883 and 0.9863 in the Adjusted R-squared. It means that 

98.6% variance in the dependent variable (inflation-adjusted prices) can be explained by the independent 

variable (cumulative installed capacity) in the estimated model. However, this significant result might be 

a sign of overfitting in the model as discussed in Chapter Seven. 

The R2
 value is for the evaluation and understanding of Gompertz model only. Due to the different 

number of parameters between linear and nonlinear models, it is not possible to use this value for model 

comparison later in Chapter Seven. However, it will be compared with the R2 value for the following 4-

parameter Logistic model. 

Estimated coefficients have different meanings from conventional linear models. The constant parameter, 

b0, is -1.9 which was basically added to improve the model’s specification, and to allow for a smooth and 

successful convergence in the model given the small sample size. The second parameter, b1, with 3.78 

value is the maximum capacity. Parameter b2, is the initial rate of growth at -0.54. The upper asymptote, 

b3, 11.47 is the slope factor of the model. The Gompertz model is a double-exponential asymmetrical 

model, which means the inflection point doesn’t happen exactly half-way the curve, and the flattening of 

the curve is expected to take place faster. 

Those parameters are used to predict solar PV modules prices based on the estimated model. Predictions 

are made for both the training period and the validation period to understand how well the model 

performed as shown in Figure 6.11: 
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              Figure 6.11: Gompertz Model Predicted modules prices versus actual prices $/W 

 

b. Standard Error of the Regression: Model and Error’s Assumptions 

 

Once predicted data is obtained, residuals of Gompertz model are calculated using the same equation for 

residuals, Equation 6.4 (Residualsi = actual yi value − predicted yi value). 

Regarding the calculated errors, it is critical to check that all nonlinear regression model and error’s 

assumptions explained in Chapter Five, are met and satisfied correctly to ensure the robustness of the 

model. It is also important to fix any violation of these assumptions if found. A number of graphical and 

statistical tests was performed on the residuals as follows: 
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   Residuals           27    0.95329      1.373     0.651    0.25740

                                                                    

    Variable          Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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1. The model fits the data well: the estimated model results show good harmony between the 

model’s function and the data used to estimate the model. 

2. Normality: as discussed for linear models, Normality in residuals is recommended, but not 

compulsory. It is, however, checked through the Shapiro-Wilk test, and graphically through 

Histograms. Shapiro-Wilk test result was as follows in Table 6.9: 

 

 

 

Table 6.9: Shapiro-Wilk test for normality in Gompertz model residuals 

 

The resulted p-value of Shapiro-Wilk test is not significant (p-value = 0.25), which doesn’t 

provide enough evidence to reject the null hypothesis (H0) that residuals are normally distributed. 

A histogram was plotted of the residuals which confirmed the Shapiro-Wilk test result of 

normally distributed residuals as seen in Figure 6.12: 

 

 

 

 

 

 

 

 

 

 

                                        Figure 6.12: Histogram: Residuals versus time 
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Therefore, and according to Shapiro-Wilk test and the plotted histogram, residuals are normally 

distributed as recommended. 

3. Variances are homogeneous: plotting the residuals against time confirms that errors of the 

Gompertz model are homogenous, scattered randomly around the zero line with few outliers, as 

seen in Figure 6.13: 

 

 

 

 

 

 

 

 

 

                          Figure 6.13: Predicted values versus residuals around the zero line 

 

The Logistic Model: 

The non-linear least squares (NLS) technique is used to estimate the Logistic model parameters. Using the 

same version of the nonlinear least squares (NLS) technique in statistical software packages, the nonlinear 

least squares method was directly applied to the Logistic equation using the training dataset, to compute 

the regression results shown in Table 6.10:  
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  Parameter b0 taken as constant term in model & ANOVA table

                                                                              

         /b3     11.75085   .7807123    15.05   0.000     10.11063    13.39107

         /b2    -.5775522   .1236991    -4.67   0.000    -.8374343     -.31767

         /b1     5.156406   1.291738     3.99   0.001     2.442565    7.870247

         /b0     -3.36151   1.184632    -2.84   0.011    -5.850331     -.87269

                                                                              

LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                              

4-parameter logistic function, LnModuleCost = b0 + b1/(1 + exp(-b2*(LnInstalledCapacity - b3)))

       Total    27.262993         21  1.29823774    Res. dev.     =  -28.97259

                                                    Root MSE      =   .1384742

    Residual    .34515197         18  .019175109    Adj R-squared =     0.9852

       Model    26.917841          3  8.97261353    R-squared     =     0.9873

                                                    Number of obs =         22

      Source        SS            df       MS 

 

 

 

 

 

 

 
                     

                 Table 6.10: The Logistic Nonlinear Least Squares (NLS) Estimate Results 

 

 

 

 

a. Fitted Values, Coefficients and Goodness-of-fit 

 

The Goodness-of-fit, R2, value is very high with 0.9873 and 0.9852 in the Adjusted R-squared. It means 

that 98.5% variance in the dependent variable (inflation-adjusted prices) can be explained by the 

independent variable (cumulative installed capacity) in the estimated model using 22 data points (the 

training period). Potential overfitting, based on this result, will be discussed in chapter seven.  

The R2
 value is also for the evaluation and understanding of Logisitc model, and for comparison with 

Gompertz 4-parameter model only. Due to the different number of parameters between linear and 

nonlinear models, this value is not used for model comparison with Wright’s model.  

As stated earlier, estimated coefficients have different meanings from conventional linear models. The 

constant parameter, b0, is -3.36. This constant parameter helps to improve the model’s specification, and 

to allow for a smooth and successful convergence in the model. The second parameter, b1, with 5.15 value 

is the maximum capacity. Parameter b2, is the initial rate of growth at -0.577. The upper asymptote, b3, 

11.75 is where the model reaches its maximum value and starts to decay. 
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The Logistic model is a symmetrical model, which means the inflection point occurs exactly half-way the 

curve. The curve also converges linearly towards the zero which makes it slower than the double 

exponential Gompertz curve.  

The estimated parameters are used to predict solar PV modules prices and compare it to actual values. 

Predictions are made for both the training data subset and the validation subset to understand how well 

the model performed as shown in Figure 6.14: 

 

 

 

 

 

 

 

 

                                              Figure 6.14: Predicted prices versus actual prices $/W 

 

b. Standard Error of the Regression: Model’s Assumptions 

 

Once predicted data is obtained, residuals of the Logistic regression are calculated by measuring the 

distance between each point and the graph using Equation 6.4. Regarding the fitted model and the 

calculated errors, it is important to check that all nonlinear regression model’s assumptions explained in 

Chapter Five, are met and satisfied correctly, and fix any violation of these assumptions if found. 

Assumptions of the model were checked as follows: 
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   Residuals           27    0.93681      1.858     1.272    0.10164

                                                                    

    Variable          Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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1. The model fits the data well: the Logistic model shows reasonable fit between the model’s 

function and the data used to estimate the model’s parameters using the NLS technique. 

2. Normality: as discussed for previous models, Normality in residuals is recommended, but not 

compulsory. It is again checked graphically through Histograms and by running the Shapiro-Wilk 

test for normality as follows in Table 6.11: 

 

 

 

           

                                       Table 6.11: Shapiro-Wilk test for normality result 

 

The resulted p-value of Shapiro-Wilk test is significant (p-value = 0.10) which does not provide 

enough evidence to reject the null hypothesis (H0) that residuals are normally distributed. A 

histogram was plotted on the residuals which confirmed the Shapiro-Wilk test result: 

 

 

 

 

 

 

 

 

 

                                       Figure 6.15: Histogram: Residuals versus time 
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According to Shapiro-Wilk test and the plotted histogram, residuals are normally distributed.  

3. Variances are homogeneous: plotting the residuals against time confirms that errors of the 

Logistic model are homogenous, scattered randomly around the zero line, yet with few outliers as 

seen in Figure 6.16: 

 

 

 

 

 

 

 

 

 

                    

                           Figure 6.16: Predicted values versus residuals around the zero line 
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6.4 Forecast Errors 

 

There are many available metrics to evaluate the performance of the estimated models, which indicates 

the need for a strategy on how to perform the model’s evaluation. It is however recommended to use more 

than one evaluation method, which gives more confidence in the robustness of the estimated model. 

Empirical results have demonstrated that using such a mix of error measures instead of just one leads to 

overall better, robust and generalisable results even when the final evaluation is performed with just one 

of those measures. As mentioned before, residuals of the model is calculated using the simple equation of:  

et = yt – ŷt 

where: 

e is the calculated error, yt is the actual value of y at time t, and ŷt is the predicted value of yt at time t.  

Using calculated errors for each model (Wright, Gompertz and the Logistic), certain measures are 

considered for models’ evaluation. What is needed is to populate the error’s values in a table, calculate 

the squared error, the absolute value of the error, and the Absolute Percent Error (APE); the absolute 

value of the error at time t, divided by the actual cost during t for each model.  

 

6.4.1 Scale-dependent Errors 

The resulted values of the scale-dependent errors (Sum of Squared Error (SSE), Mean Absolute Error 

(MAE), Mean Absolute Error (MSE), and the Root Mean Squared Error (RMSE)) for the training and the 

validation periods are summarised in Table 6.12 as follows:  
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                                                 Table 6.12: Values of Scale-dependent Error measurements 

 

6.4.2 Percentage Errors 

For both the training and the validation, the unit-free Mean Absolute Percent Error (MAPE) calculated 

using the previously mentioned equation in Chapter Five, and results came out as follows in Table 6.13: 

 

 

 

 

                                           

 

 

 

 

 

                                           Table 6.13: Values of Percent Error measurements 
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6.5 Research Hypotheses Testing 

 

Following the methodology stated in Chapter Five, statistical tests were performed to test the following 

research hypotheses: 

H1: One or more of the three experience curve models has a MAPE significantly different from the other 

models. 

H2: One or more of the alternative experience curve models is significantly more accurate than Wright’s 

model in predicting solar PV modules costs. 

H3: The nonlinear model, which accounts for both previous experience and the plateauing effect, has the 

lowest MAPE, being the most accurate predictor of solar PV modules costs. 

 

As for the first hypothesis, there was a need to test whether it was possible to use a parametric test to 

compare the mean of the absolute percent error between the three models. Parametric one-way ANOVA 

test requires three conditions to be met for valid results: the samples must be randomly selected from the 

population; the samples have distributions that are approximately normal, and the population variances 

must be equal (McClave, Benson, Sincich 2011). The samples are random in the sense that there was no 

selection process from the data. The second condition of the parametric test is normality of the data. As 

for the Absolute Percent Error (APE) data for the three models, normality is checked by applying the 

Shapiro-Wilk test for normality, and graphically by plotting histograms for the APE values against time 

as follows. 

The null hypothesis (H0) of Shapiro-Wilk test for normality indicates that APE values are normally 

distributed. The alternative hypothesis (H1) indicates that these values are not normally distributed. The 

test result came back as shown in Table 6.14: 
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 LogisticAPE            5    0.95640      0.515    -0.781    0.78271

 GompertzAPE            5    0.85716      1.686     0.778    0.21824

   WrightAPE            5    0.82319      2.087     1.157    0.12355

                                                                    

    Variable          Obs       W           V         z       Prob>z

                   Shapiro-Wilk W test for normal data
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Table 6.14: Shapiro-Wilk test for normality result 

 

From Table 6.14, the resulted p-value for all variables is not significant and doesn’t provide enough 

evidence to reject the null hypothesis of normally distributed variables. It is much higher than the critical 

value (α=0.05), therefore the null hypothesis is accepted. 

Histograms below provide another clarification on how data points are approximately normally 

distributed: 

 

 

 

 

 

 

 

 

                   

                            Figure 6.17: Histograms for the APE values for Wright’s Model 

 

 

 



237 
 

0
2

4
6

8

D
en

si
ty

0 .05 .1 .15 .2
Gom APE

0
5

1
0

1
5

D
en

si
ty

.02 .04 .06 .08 .1
Log APE

 

 

 

 

 

 

 

                          Figure 6.18: Histograms for the APE values for Gompertz Model 

 

 

 

 

 

 

 

 

                           Figure 6.19: Histograms for the APE values for the Logisitc Model 

 

Normality in the APE values is confirmed for the last time by looking at the close-to-zero skewness 

values for Wright, Gomopertz and the Logistic models which are 0.95, 0.13 and -0.10 respectively.  
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Bartlett's test for equal variances:  chi2(2) =   3.7127  Prob>chi2 = 0.156

    Total           .133880026     14   .009562859

                                                                        

 Within groups      .046262559     12   .003855213

Between groups      .087617467      2   .043808734     11.36     0.0017

                                                                        

    Source              SS         df      MS            F     Prob > F

                        Analysis of Variance

      Total     .12999511   .09778987          15

                                                 

          3     .06287312   .02938181           5

          2     .09018904   .08706698           5

          1     .23692316   .05587208           5

                                                 

      Group          Mean   Std. Dev.       Freq.

                        Summary of APEs

. oneway apes group, tabulate

The last assumption, to determine whether a parametric or a non-parametric test should be used, is on the 

equality of variances. The rule of thumb for testing variance is to divide the largest sample standard 

deviation by the smallest. According to the descriptive statistics, Gompertz model has the largest standard 

deviation (0.0.87067) and the Logistic model has the smallest one (0.0293818). If the outcome value is 

less than four, the assumption of equal variances will be acceptable. The division’s result is 2.9 with 

which equal variance can be assumed and one-way ANOVA test for equal means can be used.  

That been said, One-Way ANOVA test was used to compare the means of the three groups in order to 

determine whether there is statistical evidence that the associated means are significantly different. F-test 

statistic will provide insight into the first hypothesis. The null hypothesis (H0) states that all means are 

equal, while the alternative hypothesis (H1) indicates that at least one group has a mean that is 

significantly different form other groups’ means.  If the F-statistic is significant, then there is enough 

evidence to reject the null hypothesis and at least one of the sample means is different as follows in Table 

6.15: 

 

 

 

 

 

 

 

 

 

Table 6.15: One-Way ANOVA test for means comparison 
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probability =     0.0090

chi-squared with ties =     9.420 with 2 d.f.

probability =     0.0090

chi-squared =     9.420 with 2 d.f.

                               

      Wright     5      65.00  

    Logistic     5      26.00  

     Gomertz     5      29.00  

                               

       model   Obs   Rank Sum  

                               

Kruskal-Wallis equality-of-populations rank test

. kwallis apes, by(model)

The resulted One-Way ANOVA table provided a p-value of 0.0017 which is less than the critical level of 

5% (α=0.05) at the 95% confidence level. Therefore, the null hypothesis was rejected as there was enough 

evidence that at least one group has a mean that is significantly different from other groups’ means. The 

One-Way ANOVA test was supported by the non-parametric Kruskal-Wallis test, which confirmed the 

same significant result at the 95% confidence level as shown in Table 6.16: 

 

 

 

 

 

                

       

 

                                     Table 6.16: Non-parametric Kruskal-Wallis equality of means rank test 

 

The resulted f-statistic 0.009 is significant at the 95% confidence level (α=0.05) which confirms what the 

parametric ANOVA test previously found that at least one group has a mean that is significantly different 

from other groups’ means.  

As for the second hypothesis, the previous result paves the way to investigate if one or more of the 

nonlinear contemporary models is more accurate than Wright’s conventional model. To perform 

Dunnett’s test as explained in chapter five, the status quo Wright’s model was held as a reference model 

to compare Gompertz and the Logistic models against it and determine if they are different. 

Assuming equal variances, the test statistically compares Wright’s model MAPE to other nonlinear 

models MAPE values and decide whether they are statistically different. The result of Dunnett’s test is 

shown in Table 6.17 for both Gompertz (Group 2) and the Logistic models (Group 3) respectively, which 
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     3 vs 2     -.0273159   .0392694    -0.70   0.500

     3 vs 1       -.17405   .0392694    -4.43   0.001

     2 vs 1     -.1467341   .0392694    -3.74   0.003

       group  

                                                     

        apes     Contrast   Std. Err.      t    P>|t|

                                          Unadjusted

                                                     

                                                              

          3      .0628731   .0277677      .0023726    .1233736

          2       .090189   .0277677      .0296885    .1506896

          1      .2369232   .0277677      .1764226    .2974237

       group  

                                                              

        apes         Mean   Std. Err.     [95% Conf. Interval]

                                               Unadjusted

                                                              

over         : group

Pairwise comparisons of means with equal variances

. pwmean apes, over(group) cimeans pveffects effects

confirms a statistical difference between the MAPE values between Wright (Group 1) and at least one of 

the alternative models: 

 

 

 

 

 

 

                                    

 

 

 

 

                        Table 6.17: Dunnett’s test result for Gompertz and the Logistic versus Wright’s model 

 

From the above results, the p-value is significant for both the Logistic and Gompertz models against 

Wright’s model (p = 0.001 and 0.003 respectively) at the 95% confidence level (α=0.05). However, 

Gompertz didn’t show statistical difference from Wright’s using this test (p = 0.50). 

Based on the initial results on MAPE values in section 6.4.2 of this chapter, the third hypothesis was 

tested to determine whether one the estimated Gompertz and the Logistic experience curve models 

reduced the Mean Absolute Percent Error (MAPE) value significantly more than the other model. 

Therefore, the next step was to compare the lowest MAPE values observed in Gompertz and the Logistic 

models, to answer to the third hypothesis of this research on which model is the best and the most 

accurate forecasting model. Accordingly, a paired difference t-test was performed. The null hypothesis of 
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 Pr(T < t) = 0.0000         Pr(|T| > |t|) = 0.0000          Pr(T > t) = 1.0000

 Ha: mean(diff) < 0           Ha: mean(diff) != 0           Ha: mean(diff) > 0

 Ho: mean(diff) = 0                              degrees of freedom =        9

     mean(diff) = mean(apeh3 - modelh3)                           t = -14.0644

                                                                              

    diff        10   -2.423469    .1723118    .5448976   -2.813265   -2.033673

                                                                              

 modelh3        10         2.5    .1666667    .5270463    2.122974    2.877026

   apeh3        10    .0765311    .0199001    .0629296     .031514    .1215482

                                                                              

Variable       Obs        Mean    Std. Err.   Std. Dev.   [95% Conf. Interval]

                                                                              

Paired t test

the t-test (H0) indicates that there is no significant statistical difference between the two MAPE values 

(for Gompertz and the Logistic models). The alternative hypothesis (H1) indicates that there is a 

significant statistical difference between the two MAPE values. At 95% confidence level, if t-test Statistic 

is less than the 5% critical value (α = 0.05), then there is enough evidence to reject the null hypothesis and 

conclude that one of these two models performed best as seen in Table 6.19: 

 

 

 

 

 

 

 

 

                                                Table 6.18: Paired t-test result on equal means 

 

The t-statistic (0.00) provides enough evidence that Gompertz and the Logistic models means are not 

equal. That been said, the paired t-test suggested that, at the 95% confidence level, there is a reason to 

believe that the Logistic model is the most accurate model among the three anlaysed models with the 

lowest MAPE 6.28%. 
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6.6 Structural Breaks and Chow Test 

Following the recommendation made in Chapter Five to test the validation period of the model for 

structural changes around Covid-19 pandemic years, a dummy variable (break) was added to the model 

which took the value 1 after 2018. Moreover, an interaction variable (breakx) of the regressor, 

LnInstalledCapacity, and the dummy variable, break, was also added to allow for the test. 

Based on the results from the three models, observed cost data between 1996 and 2022 was plotted along 

with predicted values from the three estimated models against the installed capacity levels over the same 

period of time. Results came out as follows: 

 

 

 

 

 

 

 

 

 

            Figure 6.20: Observed price data and predicted prices against cumulative capacity levels (1996-2022) 

 

Figure 6.20 shows that Wright’s model provided results that are far from observed prices in the original 

data set; predictions that are less accurate compared Gompertz and the Logistic models according to the 

chart. Therefore, Wright’s model represents the model where the risk of having structural breaks resides. 
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              _cons     4.733042   .2552267    18.54   0.000     4.205066    5.261019

             breakx    -.0887445   .5734205    -0.15   0.878    -1.274955    1.097466

              break     .7513203   7.859652     0.10   0.925    -15.50761    17.01025

LnInstalledCapacity      -.46476   .0262994   -17.67   0.000    -.5191644   -.4103556

                                                                                     

       LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                     

       Total     52.608819        26  2.02341612   Root MSE        =    .30746

                                                   Adj R-squared   =    0.9533

    Residual     2.1742274        23  .094531626   R-squared       =    0.9587

       Model    50.4345916         3  16.8115305   Prob > F        =    0.0000

                                                   F(3, 23)        =    177.84

      Source         SS           df       MS      Number of obs   =        27

            Prob > F =    0.9247

       F(  1,    23) =    0.01

 ( 1)  break = 0

Consequently, the structural break test in this analysis focused on Wright’s model but could be run to test 

other models if there is a need (based on the linear regression structural breaks test results). Should 

Wright’s model support the null hypothesis of no structural breaks, it would be more relevant to make the 

same conclusion on both Gompertz and the Logistic models. 

With that said, regression model was performed with the two new coefficients to measure the stability of 

the original model’s coefficients, and test for potential of change in the slope from 2019 as follows: 

 

 

 

 

 

 

 

 

Table 6.19: Regression with dummy and interaction variables (2019 and beyond) 

 

 

The resulted p-value for both coefficients are insignificant. However, in order to decide on the presence of 

structural breaks, Chow test is performed which results in F-test statistic that helps accept or reject the 

null hypothesis (H0) that there is no structural breaks. If the p-value is significant, this should provide 

enough evidence to reject the null hypothesis and confirm that there is a structural break. Tests of 

coefficients break and breakx resulted in the following: 

 

 

 

                                        Table 6.20: F-statistic for the dummy variable on structural break 
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            Prob > F =    0.8784

       F(  1,    23) =    0.02

 ( 1)  breakx = 0

                                                                                     

              _cons     4.658695   .2589959    17.99   0.000     4.122921    5.194469

             breakx     -.196732   .4067246    -0.48   0.633    -1.038106    .6446419

              break     2.188177     5.5256     0.40   0.696    -9.242398    13.61875

LnInstalledCapacity    -.4552378   .0272082   -16.73   0.000    -.5115222   -.3989534

                                                                                     

       LnModuleCost        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]

                                                                                     

       Total     52.608819        26  2.02341612   Root MSE        =    .30052

                                                   Adj R-squared   =    0.9554

    Residual    2.07712984        23  .090309993   R-squared       =    0.9605

       Model    50.5316892         3  16.8438964   Prob > F        =    0.0000

                                                   F(3, 23)        =    186.51

      Source         SS           df       MS      Number of obs   =        27

. reg LnModuleCost LnInstalledCapacity break breakx

And for breakx it was: 

 

 

 

Table 6.21: F-statistic for the interaction variable on structural break 

 

Both results didn’t provide enough evidence to reject the null hypothesis of Chow test. Therefore, The 

null hypothesis was accepted that there is no structural breaks in the model after 2018. 

To confirm the result, and since the policy change in China happened in the second half of 2018, it is 

worth adding a dummy variable and check whether 2018 was affected by any potential structural break 

following changes in the market. The same procedure was done but dummy variable “break” started in 

2018 this time instead of 2019. The following regression result was obtained as seen in Table 6.20: 

 

 

 

 

 

Table 6.22 Regression with dummy and interaction variables (2018 and beyond) 

 

The observed p-value for both coefficients are still insignificant for 2018 and beyond. Chow test is 

performed again to obtain F-test statistic result that helps deciding on the presence of structural breaks. If 

the p-value is significant, this should provide enough evidence to reject the null hypothesis and confirm 

that there is a structural break. Tests of coefficients break and breakx are seen on Table 6.23 and Table 

6.24 respectively: 
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            Prob > F =    0.6957

       F(  1,    23) =    0.16

 ( 1)  break = 0

            Prob > F =    0.6332

       F(  1,    23) =    0.23

 ( 1)  breakx = 0

 

 

Table 6.23: F-statistic for the dummy variable on structural break 

 

 

 

Table 6.24: F-statistic for the interaction variable on structural break 

 

One more time, both results didn’t provide enough evidence to reject the null hypothesis of Chow test. 

Therefore, the null hypothesis was accepted that there are no structural breaks in the model from 2018 and 

beyond. However, caution must be taken around major disruptive events such as policy changes in China, 

or the global Covid-19 pandemic where several factors affected the market unexpectedly.  
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6.7 Cost Forecasts until 2030 

Using the Bloomberg New Energy Finance (BNEF) 10-year forecast dataset on cumulative installed 

capacity and production forecasts, scenarios were made on solar PV modules cost between 2023 and 2030 

using the estimated models. BNEF forecasts predict 19% increase in installed capacity for 2023 from 

2022. However, forecasts towards 2030 decrease on yearly basis compared to previous year. For example, 

the increase from 2029 to 2030 is 12% only which indicates possible saturation levels in the market. 

Results are plotted against time as seen in Figure 6.21. A detailed discussion on these results will be 

carried out in Chapter Seven:  

 

 

 

 

 

 

 

 

 

 

 

                               

Figure 6.21: Models Forecasts until 2030 versus time 

 

Forecast and predicted values were plotted again against the installed capacity (the independent variable 

used to estimate the models) as shown in Figure 6.22 and Figure 6.23 (with the reference line to the 

forecast period): 

 

2023 
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Figure 6.22: Models Cost Forecasts Values ($/W) versus Installed Capacity (MW) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.23: Models Forecasts Values versus Installed Capacity (MW) – Reference line 
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Figure 6.22 and Figure 6.23 show how Wright’s model is forecasting a constant decrease in solar PV 

module prices, yet it is higher than current levels in the market and will remain higher until it matches the 

real observed prices according to the estimated model. Moreover, Gomeprtz model is close to Wright’s 

observations at the beginning of the forecast period but flattens out quickly and the price decrease stops. 

On the other hand, the Logistic model is the only model that has a forecast of ongoing decreasing prices 

from current levels, but flattens out slower than Gompertz at the end tail of the curve. 

6.8 Summary 

This chapter explained how the data was collected, refined and used in this research. Data splitting helped 

to run regression models on the training subsets and keep some of the observations out for validation. All 

regression models came out with significant results on coefficients estimation. High R2 values in models 

might hold the risk of the presence of over-fitting in the models. The fitted lines for Gompertz and the 

Logistic look more reliable than Wright’s line, which under- and overestimated cost at many points. 

Gompertz model estimated faster initial growth rate which could be explained by the speed of the double 

exponential slope coefficient. Models’ assumptions on the residuals were met with few outliers in 

Gomeprtz and the Logistic models when residuals were plotted against time.  

Using the APE values from the three models on the validation dataset, the Logistic model gave the lowest 

SSE, MAE, MSE and RMSE values among the three models. It was followed by Gompertz which 

behaved better than Wright. MAPE value was the lowest in the Logistic model as well. Again, Gompertz 

gave lower MAPE than Wright using the validation APE values. 

Looking at the training dataset, all forecast error measurements were significantly lower, which justifies 

the data splitting and highlights the risk of biased unreliable models if the estimation is judged based on 

the training dataset. 

The hypotheses testing helped answering the three research questions. The MAPE values are significantly 

different between the three models. This result allowed the researcher to test the second hypothesis where 
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the Logistic model’s MAPE was significantly lower than Wright’s. Gompertz model was equally good as 

Wright at this point. The third hypothesis was run to determine which model is the best performing model 

between the contemporary models, Gompertz and the Logistic. The Logistic model is significantly 

different from Gompertz which means it is the best performing model based on this analysis. 

When the forecast was made until 2030, the flattening effect was clear in the contemporary models. 

However, Gompertz appeared to have flattened much faster than other models given the double-

exponential nature of the model.  

 

6.9 Conclusion 

 

The purpose of this chapter was to highlight the results of the statistical analysis, using the methods 

described in Chapter Five, to determine if the nonlinear experience curve equation could reduce error 

compared to Wright’s conventional experience curve model, and if the reduction in error is statistically 

different between the proposed models. Tables and graphs are included in this chapter to display and 

confirm the results. Regression models’ evaluation metrics were used to evaluate the models performance 

through the goodness-of-fit values and the residuals. The results were also reported for the standard error 

of the regression models which includes MAPE value. The results varied between models as the 

functional form changed.  Non-linear experience curve equations reduced the error significantly at 95% 

confidence level (α=0.05). However, Wright’s model showed significant values and behaved well with 

training, validating and test datasets.  

Next chapter will discuss in detail these findings, the practical significance of this research, contribution 

to knowledge, recommendations for the renewable energy cost analysis methods, limitations of the 

research and potential future research topics to further enhance our understanding of the effects of 

experience and learning in the manufacturing process. 
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Chapter Seven: Conclusions and Recommendations 

 

7.1 Chapter Overview 

The purpose of this thesis was to determine if contemporary experience curve models, that 

mathematically allow for a “flattening effect” later in the production process, could be implemented to 

reduce the error in the cost estimates for solar PV modules. To do this, three models were investigated in 

this comparative study. Wright’s conventional power-law model was used as the reference model. 

Nonlinear Gomprtz and the Logistic models were the contemporary curves in the comparison. These two 

models were then statistically compared to Wright’s experience curve using solar PV production data. 

Experience curves have been widely used as a strategic cost forecasting and planning tool. Conventional 

experience curve theory assumes a constant learning rate regardless of the number of the units produced 

(Hogan, 2020). However, theoretical and empirical evidence indicates that the learning process ceases, 

and manufacturing enters a production steady state (Jaber, 2019).  

Consequently, contemporary experience curve models attempted to incorporate plateauing (forgetting) 

components into experience curves (Badiru, 2012). Building on earlier literature on renewable energy 

technologies ( Nemet, 2006; Rubin et al., 2007; Schilling & Esmundo, 2009; Hansen et al., 2017; Rypdal, 

2018), an area of increasing interest was the study how far contemporary models can influence the overall 

performance of the solar PV technologies cost forecasting models. 

This chapter contains the context for the results provided in the previous chapter, as well as the 

conclusions of the research. This is followed by a discussion on the potential implications of the results at 

the technological cost analysis in general. The chapter will conclude with the limitations of the study, as 

well as conclusions and recommendations drawn from this research.  
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7.2 Conclusions of the Research 

Based on the results stated in Chapter Six, the major contribution to the literature is that there is evidence 

for a more accurate alternative model, predicting the effects technological learning within solar energy 

industry, than Wright’s conventional experience curve. 

Both Gompertz and the Logistic improved upon Wright’s model estimates with a reduction of 

approximately 14.6% and 17.4% in MAPE values respectively. The same applies to other error 

measurements where contemporary models successfully reduced the forecast error compared to Wright’s 

model. The lowest SSE, MSE and RMSE values were seen in the Logistic model, followed by Gompertz 

model. 

The hypotheses testing provided evidence that the mean is different between the three samples, and at 

least one of the contemporary models are statistically better than Wright’s model. This model was the 

Logistic model, while Gompertz didn’t show statistical difference from Wright despite the lower MAPE 

value. On the third hypothesis, there was enough evidence to say that the Logistic model is different from 

Gompertz, being the best performing model among the three models. 

By now, these conclusions answered the first, the second and the third questions that this research aimed 

to investigate. Figure 7.1 shows how Wright’s model was less accurate at the beginning of the forecast 

period compared to Gompertz and the Logistic model. In fact, contemporary models were found to be 

more accurate– as models – than Wright’s model throughout the entire process, especially when 

compared to the Logistic curve performance: 
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Figure 7.1: Estimated models performance against cumulative capacity (Logarithmic) 

 

From Figure 7.1, Gompertz and the Logistic model performed very well in the training period with some 

fluctuation caused in early 2000s due to Silicon shortage. The validation period was tested for structural 

breaks from 2019 onwards to measure the effect of Covid-19 pandemic pressure on supply chains and 

global shipping prices. There was no statistical evidence of structural breaks, hence, caution is 

recommended when dealing with forecast models during major disruptive events such as the pandemic 

period. Wright’s model, however, was closest to the actual observations in the middle when the fall in 

cost was “linear”, while performing less accurately at the beginning and at the end of the forecast period. 

In cost terms, this difference in estimates could result in big savings (or losses) in investments and, 

indeed, better resource allocation. 
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7.3 Implications and Significance of the research 

 

In cost forecasting literature, there is a well-established fact that no single forecasting model is the “best” 

for all situations under all circumstances. In reality the “best” is the robust and accurate for a long-time 

horizon and, accordingly, users of the model have confidence to use it repeatedly (C.-W. Chu & Zhang, 

2003).  

Results from the analysis show that there is reason to believe that models that allow the flattening effect 

can potentially provide more accurate cost forecasts. They also show that Wright’s experience curve may 

not be the best method for estimating costs. By extrapolating from actuals, the method for Wright’s model 

may not incorporate enough of the variability of technological learning. The results emphasise that 

Wright model is valid and accurate, however, with time passes, the amount of error increases. The 

conclusions from that study are there is potential for a more accurate cost estimating model using non-

linear models. Gompertz and the Logistic curves show promise as a way to improve emerging 

technologies cost estimating.  

This study was unique in three primary areas. (1) It statistically investigates non-constant learning rates in 

renewable energy cost estimates, through models that allow for the flattening effect, using solar PV 

modules costs – one of the most promising renewable energy technologies. (2) It introduces Gompertz 

and the Logistic models as potential experience curve models in energy technologies experience curves 

field. (3) it emphasises the need for a theoretical framework to analyse technological change that includes 

Economic-Social-Political (ESP) elements. All technological changes are affected by these three factors. 

This research dealt with one the economic (E) factors, cost. However, more research is needed to 

formulate a solid framework that reflects true changes in the market. 

Using the future forecast until 2030, analysts and decision makers could also use these forecasts to 

understand different scenarios on possible future outcomes. Today, there is no way to determine which 
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scenario will be true in 2030. However, managers can establish strategies today around these three 

possibilities to prepare better for the future. 

For example, forecast from Gompertz model can be used to draw the conservative cost estimate scenarios. 

This is because the cost curve “stops” faster in the double exponential Gompertz curve. On the contrary, 

the Logistic model and Wright’s models could serve more ambitious forecasts. Based on this, managers 

and policy makers can consider different potential outcomes in their future plans. 

 

 

 

 

 

   

                                 

                               Figure 7.2: Potential future scenarios based on estimated models 

 

Gompertz curve and the logistic possess similar properties which make them useful for the empirical 

representation of the experience curve phenomenon. It does not appear in literature that either curve has 

any substantial advantage over the other in the range of phenomena which it will fit. However, it has been 

found in practice that the symmetric logistic gives better fits on cost data showing an inflection about 

midway between the asymptotes, which is slightly different from Gompertz asymmetric model. 
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Analysing renewable energies from nonlinear curves perspective could reveal some surprising and 

important implications for both government and industry. Therefore, non-linear models might be used as 

a framework for planning technological change. They introduce the trend and the boundaries for actual 

experience curve cost curve. Non-linear experience curves can serve as tools for designing entry and exit 

strategy for public policy formation and/or managerial interventions on certain technologies. Not only 

they provide a target for the entry or intervention, but also to design exit strategy from a certain market or 

for the direct subsidies. The end of each non-linear curve provides an opportunity for managers and 

policy makers to decide on the next step that determines the future of a certain technology (IEA, 2000). 

For example, in solar PV market, more radical innovations might be needed to break the technological 

lock-in in this industry, or it could be a redesign decision for current modules as current product is not 

improving anymore (technological learning has stopped). Following a profitability analysis, sometimes 

management decides to retire certain products once they reach the end of the tail. 

Nevertheless, there was no clear evidence of any “first mover” benefits using these curves given the slow 

initial starting phase. However, Christensen (1992) saw this as an advantage that non-linear curves have 

where in some cases it helps avoid the disadvantage of entering the market too early.  

This research agrees with Henderson’s conclusion long time ago when he said: “The experience curve is a 

valuable conceptual framework for long-range strategy development. It is not suitable for cost control or 

forecasting over short time spans. For effective application, it requires careful analysis of the definitions 

of cost components and the definitions of products and markets. It can be misleading when applied to 

policy decisions if it is used without reference to the effects that will be common to competitors” 

(Henderson, 1984). 
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7.4 Limitations of the Research 

 

Understanding the limitations of the research conducted is important to draw reliable conclusions and 

recommendations. One limitation is related to the dynamics of analysing emerging technologies, which is 

part of the whole knowledge generation process. Studying emerging technologies implies dealing with 

limited data and theories, which might be challenging for the forecasting process. This could prevent 

analysts form using certain useful techniques due to the shortage in data (e.g.: nonlinear models) and 

leave the research vulnerable to data uncertainties. At the end, this is how knowledge is built as part of the 

whole knowledge generation process. Therefore, for research purposes, access to cost data must be made 

easier - especially for emerging technologies. 

Another limitation is the accuracy of the reported data as actual prices. However, the fact that many 

studies from different countries have used these datasets and come with reliable results should help 

reduce this risk. 

The results presented here emphasise the caution against the estimation of experience curves in general on 

the basis of a single right-hand side variable as a surrogate for experience. After analysing literature on 

experience curves, this cost/performance model may mask underlying statistical insignificance. The 

methods used were backed up by the best practice methods used in studies on experience curves. The 

accuracy of the estimated learning rates remains a major issue. Cross-technology studies can help to 

increase confidence in estimated learning rates using contemporary models. This observation, however, 

makes it hard to generalise the result of this research to any other emerging technologies. It would be hard 

to draw conclusions outside the solar PV modules field without further research and analysis.  

Although non-linear experience curves in technology forecasting seem to provide useful insights at an 

aggregate industry level (e.g.: solar PV industry) about the potential for future improvements, the 

application of this framework at the managerial level, to plan component technology development, seems 

to be unclear yet (Christensen, 1992). 
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7.5 Recommendations for Future Research 

 

Future research is needed to provide a proof on technological learning. The relative stability of the 

learning curve over a large spectrum of technologies and over time supports the hypothesis of technology 

learning as a fundamental property of the learning system. However, proof will require a solid theoretical 

platform but would increase the predictive value of learning curves and provide reliable extrapolation 

procedures. 

There is also a need for more research into the nature of the real processes that experience curves tend to 

capture. To unlock the full potential of experience curves, they should be part of a proper learning system 

in the organisation for each technology. This learning system includes key data and information that help 

understand the dynamics of the resulted learning rates and cost predictions. 

Moreover, the promising results of both Gomeprtz and the Logistic models opens the door to further 

research that help understand other aspects of these curves and test them using different methodologies. 

They should be tested on various emerging technologies to determine whether they can be used in 

different fields. There are other curves that account for the flattening effect (e.g.: DeJong, Boone’s, etc.) 

that could be investigated to see whether they provide similar significant results.  
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7.6 Summary 

 

Carrying out a quantitative technology experience curve analysis includes gathering historic data related 

to production and cost changes in a technology of interest and comparing the rate of technology change 

over time against recognised characteristic patterns of technology performance changes. Once a classic 

pattern is identified, a reliable projection of technology change can be made, and appropriate action taken 

to plan for or meet specific technology function or performance objectives.  

This thesis has reviewed a large volume of literature on the experience curve theory, its applications, and 

limitations, and has challenged the constant learning rate in technological cost forecasting models 

represented in the experience curves.. The review has provided a systematic overview of the different 

functional forms of the experience curve models, their advantages and limitations in analysing the 

technological change process, and how to address those limitations when estimating technological 

learning rates. It also emphasised that energy-economic models now also include experience curve 

relationships to endogenously include technology dynamics. Finally, the developments of solar PV 

energy technologies were reviewed focusing on solar PV modules, and the applications of the experience 

curve approach in predicting their technological developments were examined. The first part of the 

conclusion summarises the key insights gained from the review of the experience curve approach, and 

then, the suggestions for future analyses foreseeing emerging technologies are outlined. 

This research sought to contribute to a deeper understanding of the problem of climate change and, 

specifically, of the effects of technological innovation on climate change mitigation efforts, and 

environmental patents on economic growth.  

Happy Forecasting! 
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Appendix 1: Data Sources 

 

1. Bloomberg New Energy Finance (BNEF) and Bloomberg L.P (Bloomberg Terminal) 

2. Our World in Data: https://ourworldindata.org/  

Our World in Data is a database that was produced as a collaborative effort between researchers at 

the University of Oxford and a non-profit organisation called Global Change Data Lab. Data from 

their databases is fed by contributions from scientists and researchers from all over the world. Their 

databases are trusted in research and media (e.g: Royal Statistical Society, BBC, Science, The 

Guardian), and they are used in teaching at leading universities such as University of Cambridge, 

University of Oxford, MIT, and Harvard University. All these are resources available to solar PV 

technologies cost (price) analysts as they store historical data on renewable energy technologies 

and other technologies from different industries (Nagy et al., 2013; Lafond et al., 2018).  

3. International Energy Agency (IEA): https://www.iea.org/data-and-statistics  

By way of background, the International Energy Agency (IEA) is an intergovernmental 

organisation that was established in 1974 in the wake of the 1973 oil crisis. Since then, the IEA 

has been working with governments and industry on various energy projects providing analysis, 

data, and policy recommendations. Data collection has always been at the heart of the IEA’s work 

with official energy statistics from more than 100 countries, according to the IEA (IEA, 2012). 

4. Statista website: https://www.statista.com/ 
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