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Abstract: Current conventional methods of evaluating microstructures are characterized by a high
degree of subjectivity and a lack of reproducibility. Modern machine learning (ML) approaches have
already shown great potential in overcoming these challenges. Once trained with representative
data in combination with objective ground truth, the ML model is able to perform a task properly
in a reproducible and automated manner. However, in highly complex use cases, it is often not
possible to create a definite ground truth. This study addresses this problem using the underlying
showcase of microstructures of highly complex quenched and quenched and tempered (Q/QT) steels.
A patch-wise classification approach combined with a sliding window technique provides a solution
for segmenting entire microphotographs where pixel-wise segmentation is not applicable since it
is hardly feasible to create reproducible training masks. Using correlative microscopy, consisting
of light optical microscope (LOM) and scanning electron microscope (SEM) micrographs, as well
as corresponding data from electron backscatter diffraction (EBSD), a training dataset of reference
states that covers a wide range of microstructures was acquired in order to train accurate and robust
ML models in order to classify LOM or SEM images. Despite the enormous complexity associated
with the steels treated here, classification accuracies of 88.8% in the case of LOM images and 93.7%
for high-resolution SEM images were achieved. These high accuracies are close to super-human
performance, especially in consideration of the reproducibility of the automated ML approaches
compared to conventional methods based on subjective evaluations through experts.

Keywords: microstructure classification; microstructure segmentation; machine learning; quenched
steel; martensite; bainite

1. Introduction

Due to the excellent combination of properties, the ability to selectively adjust the
desired properties at relatively low costs, and the high sustainability in its value chain
through high recyclability, steel is justifiably one of the most widely used materials of
our time. The complexity of microstructures in modern high-strength steels is increasing
enormously because of ever-higher demands on the material and constant optimization
of the manufacturing processes as well as ever-tighter tolerances in quality control due to
customer demands. Thus, modern steels have a large number of different microstructural
constituents, not all of which can be easily distinguished from one another. Reliable analysis
and characterization of the complex steel microstructure are essential to establish, on the
one hand, a well-founded development of new materials accompanied by substantial
quality control, as well as later process–property correlations to better understand the
influences of the process parameters on the resulting microstructure and ultimately, on the
properties of the material. The status quo of conventional microstructure analysis is still
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characterized by a high degree of subjectivity, as well as the experience of the respective
metallographer, and is clearly limited by the resolution of the methodology used. Thus,
the microstructures are usually evaluated only qualitatively, or only rough estimates of the
fractions of the microstructural constituents are given. The experts’ assessments are also
characterized by poor reproducibility and a lack of objectivity. This also depends strongly
on the type and quality of the underlying etching method used to observe the steels.

The use of modern computer vision approaches holds enormous potential for se-
rial application in microstructure analysis, especially in the quantitative evaluation of
those, which still is subject to a high degree of subjectivity and a lack of reproducibility.
Previous publications demonstrate the valuable advantages of machine learning (ML) in
microstructural analysis, particularly the increase in efficiency through automation, as well
as the associated reproducibility combined with objectivity, insofar as the ground truth
is well-funded.

Stuckner et al. [1] could transfer common deep learning (DL) approaches to suc-
cessfully segment microstructures based on a large microscopy dataset in general. De
Cost et al. [2] were able to distinguish different microstructural image data classes through
an image classification approach according to general microstructural classes, such as brass,
different types of cast iron, and hypoeutectoid steel, among others. More specifically, in the
case of steels, Azimi et al. [3] could implement a sophisticated approach in order to segment
more complex microstructures: they succeeded in performing a pixel-wise segmentation
approach using a fully connected neural network (FCNN) in dual-phase steels with the aid
of correlative microscopy using a light optical microscope (LOM) and scanning electron
microscope (SEM) images. The final model was able to successfully and robustly segment
the matrix as well as the second phase based on microscopic images and identify the
second phase object according to the distinguished classes martensite, tempered martensite,
bainite, and pearlite. Müller et al. [4] extended this classification approach and further
differentiated between very complex bainite subclasses. There, morphological features,
as well as textural features, were used in a traditional ML approach. In the case of even
more complex segmentation problems, UNets, which originally were developed in order to
segment medical images [5], could show their superior performance on microstructural
images. Through a sophisticated approach, correlative electron backscatter diffraction
(EBSD) measurements could help to create objective ground truths in the form of annotated
masks to train UNets for semantic segmentation. Here, Durmaz et al. [6] succeeded in
training the complex features of lath-shaped bainite to a DL model capable of separating it
from polygonal ferrite.

Work on ML-based classification approaches for quenched steels is still limited to date.
Tsuitsui et al. [7] used specially heat-treated low-carbon steels to classify entire types of
microstructures using SEM images with the aid of texture-based information in the form
of Haralick features. A similar approach was followed by Zhu et al. [8], who compared
classification based on textural features using conventional ML with DL approaches in the
form of a convolutional neural network (CNN) for feature extraction. Bachmann et al. [9]
succeeded in using EBSD reconstructions to automatically create masks for an efficient
and reproducible segmentation of prior austenite grain boundaries (PAGB) based on
Nital-etched microstructural images of quenched steels using only optical microscopy. The
authors have no knowledge of other approaches that aim at a direct multiclass segmentation
of entire microstructural images, neither on the basis of LOM nor SEM images of quenched
or quenched and tempered steels. This would be of great added value for quality control
and microstructure-based process development of these complex steels.

The steels investigated in this work are quenched, as well as quenched and tempered
steels with low carbon contents. This type of steel is characterized by a particularly high
degree of complexity since the constituents of the steel often differ morphologically only in
very fine features. The most common phases found in quenched and tempered steels are
martensite, tempered martensite, lower bainite, and partially upper bainite, illustrated in
Figure 1.
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Martensite is formed during cooling from the high-temperature phase austenite at very
high cooling rates. The cooling rate required for martensitic transformation depends mainly
on the chemical composition of the steel. Martensite is identifiable by its plate/lath-like
structure. Due to the diffusionless and displacing character of the martensitic transfor-
mation, the carbon has no time to diffuse or to precipitate in the form of carbides but is
forcibly dissolved within the solid solution, leading to a tetragonal distortion of the cubic
lattice [10]. The individual martensite laths can be identified with the help of the clearly
pronounced topographical differences after contrasting.

Tempered martensite is formed by tempering processes within the martensite. This
tempered state can be created either by an annealing process adjacent to the cooling step or
by self-tempering effects due to residual heat within the material during the cooling process
itself [11]. During the tempering, the trapped carbon precipitates from the tetragonally
distorted lattice by temporarily allowing diffusion in the form of carbides, which represents
its main distinguishing criterion from conventional martensite.

Bainite formation exhibits both a diffusion-controlled and a displacive character [12].
Thus, it also forms at cooling rates intermediate between those of martensite and those of
fully diffusion-controlled pearlite. Lower bainite is constituted of lath-shaped featureless
ferrite with cementite precipitated within the ferrite laths. The upper bainite is composed
of similar lath-like ferrite with continuous cementite precipitates at the boundaries of the
laths. Hereby, the cooling rate of lower bainite is higher than the cooling rate at which
upper bainite forms. The resulting more restricted diffusion is thus responsible for the
different appearances of cementite precipitation within the different bainitic phases. For
the sake of simplicity and clarity, no further subdivision, as seen in [4], is used in this study
investigating complex Q/QT steels.
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Figure 1. Schematic Illustration of the morphology of the common microstructural constituents
(martensite and tempered martensite—modified from [13], and upper and lower bainite—modified
from [14] in Q/QT steels.

Despite the different microstructure development mechanisms, all these different
phases can occur simultaneously within a microstructure in industrial plates. The main
reasons for this are the limited thermal conductivity associated with high material thick-
nesses and chemical irregularities such as segregation leading to inhomogeneous critical
cooling rates along the plate thickness. For the reproducible characterization of these
highly complex microstructures, a precise identification of the fine differences is required
to identify the present phases.

The biggest obstacle in applying computer vision approaches to the field of materials
science is establishing a representative and objective ground truth. In every one of the
aforementioned works, it was possible to create appropriate training masks with the help
of corresponding domain expertise, as well as correlative microscopy, if necessary. This
allowed DL models to be trained in order to be able to apply the learned knowledge to
unseen images and segment them entirely.

Unfortunately, this is not readily possible with the complex microstructures of Q/QT
steels. Even based on the high-resolution SEM images, there are many regions where
a clear and doubtless assignment to a class is not possible. The identification of the
boundaries between the different structural components is particularly complex, as they
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frequently merge into one another. This is due to the formation process of the microstructure
components. Diffusion in quenched steels is strongly limited, and even small differences in
local chemical composition have a significant influence on the microstructure development.

Furthermore, the characteristic morphological features of the different phases are
mostly, if at all, only visible in high-resolution images. These include the spatial distribution
and the shape of the carbide precipitates. Only based on LOM images in most cases, even
experienced experts cannot clearly identify these characteristics.

To make the analysis of such complex microstructures more reproducible and efficient,
this work aims to combine modern methods of microstructure analysis with promising
deep learning approaches from the field of computer vision.

2. Materials and Methods
2.1. Material

Due to the high level of complexity combined with a variety of different manifestations
of the individual microstructural constituents in QT steels, sample selection is critical to the
success of the interdisciplinary approach. In order to cover a sufficient number of features
that occur in industrial QT steels, a total of 22 specimens were fully investigated. These
include 10 industrial samples from heavy plates taken after being thermo-mechanically
treated and 12 dilatometry samples. All samples have a carbon content between 0.16
and 0.22%.

The dilatometry samples were cooled down continuously at different cooling rates
(8–278 K/s) after being fully austenitized at 1273 K for 10 min. In addition, the sample with
the highest cooling rate, entirely consisting of martensite, was annealed at 773 K for 60 min
to form reference sections of tempered martensite. Furthermore, other reference samples of
the same chemical composition were isothermally cooled to generate additional bainitic
reference states. After austenitizing, these were cooled at 50 K/s to the respective holding
temperature (698 K, 748 K, 798 K) and held there for a certain time (300 s, or 500 s at 798 K)
and then cooled again at 50 K/s to room temperature. All dilatometry samples used in the
scope of this study are taken from [4].

The industrial samples were taken from five different heavy plates with thicknesses of
15 mm, 20 mm, 30 mm, and 180 mm. The latter was divided into five different samples in
order to map the entire plate thickness. The heavy plates went through different process
routes, including direct quenching and conventional quenching, and partially, subsequent
annealing. In the case of direct quenching, the quenching process immediately takes place
after the thermomechanical rolling. For conventional quenching, the heavy plate gets time
to cool down after rolling before it is heated up again to be quenched [15]. Due to the
high material strength of the 180 mm heavy plate and the hereby limited heat transfer, self-
annealing effects after the quenching influenced the material’s microstructure significantly.
Overall, the hereby used materials mainly consist of martensite (M), tempered martensite
(MST), and lower (LB), as well as upper bainite (UB).

Figure 2 shows respective LOM and SEM images of representative and homogeneous
areas of some of the specimens used for this study, illustrating distinct features of the
different microstructural constituents. The different colorations in the micrographs are
attributed to different phases, originating from different dissolved carbon concentrations,
as well as to an orientation influence [16,17]. The high resolution of the SEM images reveals
the highly complex features of each phase. Only with the help of those fine details a clear
identification of the different microstructural sections can be made. Figure 2a illustrates
the significant coloring of a martensitic microstructure in combination with the strongly
pronounced topography of the disordered needle structure. MST in (b) shows a decrease in
coloration due to the tempering process. Nevertheless, the coloration is much stronger than
with LB or UB. In the SEM image, the topography and the disordered carbide precipitates
can be identified. In the case of the LB (c) and the UB (d), the ordered lath structure is
noticeable. The main focus here is on the differences in the carbide precipitates. In LB,
shown in (c), the carbon is precipitated in a preferential orientation within the laths in the
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form of fine carbides. In the case of UB, shown in (d), coherent carbides form between the
bainitic laths.
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Figure 2. Representative micrographs from LOM (upper row) and corresponding SEM images (lower
row) showing the described microstructural constituents: (a)—martensite, (b)—tempered martensite,
(c)—lower bainite, (d)—upper bainite.

Figure 3, on the other hand, shows areas where a clear identification of the present
phases and, especially, an identification of the borders between them is no longer possible
without further ado (red arrows). Thus, various sections show characteristic features of
different microstructural constituents at the same time. Furthermore, the characteristic areas
are extremely diffuse and interwoven so that no clear boundaries can be drawn. Another
problem lies in the multi-layered contrasts of the different microstructural constituents,
which are intensified on the one hand by the underlying contrasting technique, which is
well known to be limited in terms of reproducibility, and on the other hand by the respective
imaging settings of the microscopes.
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2.2. Correlative Microscopy

In order to guarantee a reliable application of modern DL approaches in the field
of material science, high-quality data are essential. To establish an objective and well-
founded ground truth, it is often not sufficient to limit oneself to a single methodology
used for such complex steels, as demonstrated in Figures 2 and 3. Therefore, all samples
were characterized using LOM, SEM, as well as EBSD. In correlative microscopy, these
methods were combined to benefit from the advantages of the different approaches and to
eliminate their respective disadvantages and thereby overcome their limits. In this way,
the complementary information necessary for a holistic characterization can be collected
on different length scales and from different contrasting mechanisms. However, the goal
behind the correlative microscopy approach is to apply the detailed information obtained
from more advanced methods to the simplest methodology possible.

All specimens were first ground with 80–1200 grit SiC abrasive paper and then sub-
jected to diamond polishing using 6, 3, and 1 µm suspension. Subsequently, the sample
preparation was completed by a colloidal OPS polish to achieve the best possible surface
quality for the subsequent EBSD measurement. The respective region of interest (ROI) with
a size of 400 × 400 µm, at which the correlative microscopy is being conducted, are marked
using hardness indentations.

After each EBSD measurement, which was made on a Zeiss Merlin (Zeiss, Oberkochen,
Germany) with an EDAX detector (EDAX, Pleasanton, CA, USA) under an accelerating
voltage of 25 kV and a beam current of 10 nA at a working distance of 15 mm with a
step size of 0.35 µm, the sample was briefly polished again using OP-S to remove the
contamination layer before further optical examination.

The EBSD data were post-processed with the help of the EDAX OIM software (Version
7, TSL Solutions, Nishihashimoto, Japan). For this purpose, a standard routine with a filter
operation for poorly indexed measurement points was applied.

Subsequently, the samples were contrasted for 25 s using a 2.5% alcoholic Nital
solution, and the micrographs of the respective ROIs were captured in LOM and SEM.
As LOM, an Olympus LEXT OLS 4100 laser scanning microscope (Olympus, Shinjuku,
Japan) was used, and the images were taken at a 1000× magnification, resulting in a
pixel size of 126.6 nm. The SEM images were acquired using a ZEISS Supra SEM (Zeiss,
Oberkochen, Germany) using a secondary electron contrast, using an acceleration voltage
of 5 kV and a working distance of 5 mm, at a magnification of 850× with a respective
image size of 2048 × 1536 px corresponding to a pixel size of 47.5 nm. The brightness
and contrast settings were adjusted so that the gray-level histogram was approximately
normally distributed. In order to capture an entire ROI, several single images need to be
taken with a respective overlap and, subsequently, stitched together. Therefore, Microsoft
Image Composite Editor was used.

In order to superimpose the different image data congruently, image registration is nec-
essary due to the different contrast generation mechanisms as well as unequal perspectives
on the respective sample location. For the registration operation, the ImageJ [18] Plugin
bUnwarpJ [19], as proposed in [16,20], was used. In contrast to their presented procedure,
however, the individual features within the different images had to be selected manually.
No corresponding features could be found using common automated feature extraction
algorithms such as SIFT (Scale-Invariant Feature Transform), due to the high complexity,
as well as the fine visual features of the microstructural images of the investigated steels.
First, the high-resolution SEM image was registered on the corresponding image quality
(IQ) map of the EBSD measurement. Afterward, the LOM micrograph was registered on
the already registered SEM image.

Another obstacle here is the different resolutions of the individual methods: either the
lower-resolution method must be scaled up and thus interpolated, or important details
of the higher-resolution methods may be lost when scaling down. Since the microscopy
images are later used in DL algorithms, it is reasonable to adjust, for the sake of simplicity,
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the image dimensions to powers of 2. Here, it is recommended to deviate as little as possible
from the native resolutions of the microscopes.

Hence, the final DL approaches take LOM as well as SEM images as input; the EBSD
mappings will be resized to the native resolution of LOM/SEM in order to properly create
the ground truth annotations using all complementary information. This results in image
dimensions of 4096 × 4096 px for LOM and 8192 × 8192 px for SEM for respective imaging
of the mentioned sample sections of 400 × 400 µm. The EBSD mappings with a native
resolution of 1320 × 1320 px, measured in a hexagonal grid using the mentioned step size
of 0.35 µm, were resized accordingly.

Thus, the correlative datasets of the respective samples were aligned and congruent to
be used directly as complementary information for the later annotations being used in the
deep learning methodology.

Figure 4 shows a section of a correlative data set consisting of LOM, SEM, and EBSD
data containing all phases to be distinguished. There, the corresponding added value of
the complementary information for the identification of the occurring phases becomes
clear. With the help of the high resolution of the SEM, fine carbide precipitates can be
clearly identified, and thus LB and MST can be reliably detected. In addition, a distinction
between LB and UB is possible based on the localization and orientation of the fine carbides,
which would not always be the case based purely on light microscopy images. Furthermore,
contrasting artifacts, as well as ambiguous morphologies, can be considered with the help of
crystallographic EBSD information. Though, the most helpful information from EBSD data
for identifying the different microstructural constituents is provided by the misorientation.
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misorientation (KAM) (d), and thresholded misorientation borders (red—2◦, green—5◦, blue—15◦)
(e) overlayed with SEM, respectively. This region contains representative areas of all four considered
microstructural constituents (labeled arrows). The magnifications show the slight differences between
Martensite (green) and tempered Martensite (red) with the finely precipitated carbides (red arrows).
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2.3. Used Quantification Approach: Patchwise Classification as Alternative to
Semantic Segmentation

Semantic segmentation is the common DL approach for segmenting more complex
problems that cannot be solved using conventional approaches, such as threshold segmen-
tation. It is a pixelwise classification: each pixel of the image is assigned a class, and thereby,
the entire image is segmented [21]. Additionally, it is possible to carry out segmentation
with more than two classes in the same segmentation step, which offers great added value.
In order to train a model for semantic segmentation, masks must be created in which every
pixel can clearly be assigned to a specific class.

In contrast to most segmentation problems, for the microstructures of Q/QT steels,
it is not straightforward to create unambiguous masks to train a DL segmentation ap-
proach. In the case of dual-phase and complex-phase steels, the complementary informa-
tion of the correlative images is sufficient to clearly identify the respective microstructural
constituents. There, the respective phases can be clearly separated from each other by
grain/phase boundaries [3,6]. Morphology and corresponding misorientation information
allow us to confidently differentiate one phase from another. Due to the complex formation
mechanisms in Q/QT steels and the resulting interwoven structure of the microstructural
constituents, it is not possible to reproducibly define the boundaries of the different phase
regions. In addition, various areas of the microstructure often cannot be clearly assigned to
a corresponding class. Even crystallographic EBSD information, as well as corresponding
high-resolution imaging techniques, often do not allow annotation with required confi-
dence according to the common classification schemes, which is illustrated in Figure 5.
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Figure 5. Excerpt of correlative datasets from two different samples (in a row) containing LOM
(a,d) as well as SEM (b,e) micrographs and the corresponding IQ overlayed with inverse pole figure
(IPF) (c,f). Many different microconstituents can be identified (MST—purple, LB—green, UB—blue),
but also regions that cannot properly be identified (red—dashed). Furthermore, the underlying
problem of the definition of clear borders becomes clear.

A reasonable approach would be to annotate only unambiguous regions and then
assign the ambiguous regions to a common mixed class. An obvious disadvantage of this
would be the great diversity of the resulting mixed class. This would accordingly mix up the
characteristic visual features of the individual classes. Accordingly, it can be assumed that
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the significance of the decisive features for determining the clearly defined classes would
decrease. Therefore, an alternative approach to segment the different microstructural
constituents in Q/QT steels as reliably and unambiguously as possible was chosen in
this work.

In contrast to the pixel-by-pixel approach used in semantic segmentation, this ap-
proach reduces the microstructural images to individual patches. These patches are classi-
fied individually, and the result is considered representative of the particular microstructure
section, as illustrated in Figure 6. In order to be able to characterize an entire microstructure,
the individual microstructural images are scanned and segmented by a CNN patch by patch
using a sliding window approach [22]. Thereby, the complex problem of segmentation is
reduced to a simple classification. This saves a decent amount of time during annotation or
makes annotation possible in the first place in complex cases.
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Figure 6. Illustration of the proposed approach of segmentation of an entire input image (1024 px)
using the patch-wise classification approach using a sliding window technique (orange square) with
respective step-sizes (128 px, 64 px, 32 px) resulting in different resolutions for segmentation.

The respective patch size is predefined by the CNN architecture’s input size. How-
ever, in order to achieve a higher “segmentation resolution” and to better map the fine
transitions between the areas of the individual microstructural components, the step size
can be adjusted in the scanning process. The smaller the step size, the higher the resolution
of the resulting classification map. As a result, the possible resolution of the result depends
on the original resolution of the entire recording, as well as the step size with the corre-
sponding input size, and is, thus, dependent on the total amount of input images, limited
by computing resources.

In this approach, a classification model is trained with patches of reference states
that are representative of the structural constituents that are present. With respect to the
patches to be selected for training the models, only relatively unambiguous reference states
are selected. Inconclusive patches are left out. The idea behind this is to classify these
objectively and reproducibly by the ML model. Due to the versatility of the individual
phases occurring in Q/QT steels, the training data must cover the widest possible spectrum
of microstructural features and represent their high variance as accurately as possible.
There is a trade-off between the amount of data and the confidence with which the data is
labeled. Hence, 22 correlative data sets from the above-mentioned samples were elaborately
created in the course of this work and used to extract sufficient high-quality data to build a
final training dataset.

The probabilistic character of the CNN classification approach makes it possible
to take the uncertainty of the ambiguous regions into account when evaluating entire
microstructural images. Usually, classification CNNs give the corresponding probabilities
of the available classes as output, from which a final prediction can be derived. A confidence
component can be built into this approach by using appropriate thresholds with respect to
the class probabilities. Thus, individual patches can be declared as uncertain with no clear
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class affiliation, which is an analogy to the microstructural regions that are ambiguous for
experts during the characterization of the respective microstructure. This means that even
ambiguous structure sections containing a combination of different phases can be identified
and considered in the evaluation routine by summarizing the uncertain predictions in a
separate class.

2.4. Annotations and Final Data Set

Based on the microscopy images, a comparison of the respective structural components
can be made using the morphological information after appropriate contrast. In the case of
LOM, further information is obtained by looking at the coloration. The major advantage of
SEM methodology is the ability to resolve substructures, such as carbides and finer lath
boundaries, which delivers essential information about class affiliation. Considering the
related step size of 0.35 µm, the resolution of the EBSD is behind those of LOM and SEM.
Nevertheless, the crystallographic and misorientation information provides crucial added
value in contributing to an objective labeling process.

Thus, upper and lower bainite can be distinguished on the basis of the quantity and
type of misorientations or boundaries that occur [14]. Upper bainite contains a higher
fraction of low misorientations (<20◦), as well as a low proportion of misorientations (>40◦).
In the case of the lower bainite, this situation is reversed. Bainitic objects also exhibit
more global misorientations that create intra-structural gradients visible in the inverse pole
figure (IPF). Furthermore, the packet size can provide information about the distinction
between martensite and the different bainite types [23]. In addition, the IQ can be used to
compare local dislocation densities qualitatively. Thus, this information can provide further
evidence for an assignment to the ground truth [24,25]. Due to the displacive forming
mechanism, martensite exhibits the highest misorientations, as well as the highest density
of dislocations. The individual martensite plates are very well visible and separable from
each other in the IPF as well as in the IQ map [26]. Their lath boundaries are strongly
contrasted and characterized by high misorientations (>50◦). It was observed that the
contrast of the lath boundaries is weaker in tempered martensite within the IQ map. In
general, the contours become more blurred. The amount of high misorientations decreases
slightly, whereas the amount of smaller misorientations increases during the tempering
process. This is shown in Figure 7b by the number of green interfaces. This is the same
material as in Figure 7a, except that it has been subjected to a subsequent annealing process.
These phenomena can be attributed to carbon diffusion during the tempering process.

The key to this approach of quantitative structural evaluation via patch-wise classifi-
cation lies in the creation of representative and well-founded data sets. A crucial parameter
for the creation of the datasets is the choice of the patch size. To use the native resolutions
of the microscopes to avoid resizing and thus falsification of the morphological features
by interpolation, the size scales of the microstructural constituents within the specimens
examined were used as a guide. As a result, it was decided to create two separate datasets,
each optimized with respect to the different microscope types, LOM and SEM. To achieve
the highest possible classification resolution in the evaluation routine described above, it
makes sense to keep the size of the squared patches to be classified as small as possible. The
size of the characteristic morphological features of the different structural components is
another limiting factor. A patch should therefore be as small as possible, but it must contain
enough information to be able to assign a well-founded and objective label for the ground
truth. As a result, a patch size of 128 px was chosen for the SEM-optimized dataset, which
corresponds to a size of 6.25 µm. Due to the lower resolution of the LOM, a patch size of
128 px was selected, which in this case corresponds to an actual length of 12.5 µm. In the
labeling process of each dataset, the corresponding microscopy images of SEM and LOM,
respectively, were first inspected. Each section, which could be a candidate to be added
to the training dataset, was validated with the help of the corresponding complementary
information from correlative microscopy.
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Figure 7. LOM micrograph, SEM + overlayed boundaries (red—2◦, green—5◦, blue—15◦), and IQ
map of a fully martensitic dilatometry sample (a) and the identical sample after annealing (b). The
tempering process can be presumed to reduce major misorientations. Instead, the density of lower
misorientations (red and green) is apparently higher. Furthermore, the boundaries of the individual
battens within the structure appear less pronounced.

The different representations were overlaid in an image processing program to extract
the patches. For this purpose, LOM, SEM images, as well as the EBSD information in
the form of IPF, IQ, and kernel average misorientation (KAM) maps and, mostly, the
representation of the different misorientations in the form of boundaries with the threshold
values 2, 5, and 15 degrees, were used. To mark the labeled sections, a square brush tool
was used to create masks of the respective four classes, respectively, for the LOM and the
SEM optimized dataset. These binary masks were then used to automatically extract the
corresponding labeled patches from LOM and SEM images, respectively.

When creating the SEM data set, superimposed representations of the misorientations
combined with the SEM images were used in order to be able to reproducible assign more
of the unclear areas to one of the classes, which may have appeared ambiguous due to
possible contrasting artifacts. The crucial information, e.g., regarding the orientation of the
precipitated carbides, which is to be regarded as a decisive distinguishing criterion, is most
evident in the SEM images themselves, as it is the highest-resolution method. Therefore,
although it proved to be very time-consuming to create a well-founded data set from SEM
patches due to the volume of information as well as the criteria to be considered, it can be
evaluated with great confidence as objective and representative.

Figure 8 shows a selection of characteristic features of the individual classes within
the different complementary information sources. Thus, LB, shown in (a) and (b), is
characterized by moderate misorientations, as well as the orientation and size of the
carbides within the laths. The IPF overlay shows similar orientations of the adjacent laths.
UB, as shown in (c) and (d), is characterized by elongated carbide precipitation between the
laths, which have a homogeneous orientation by comparison, sometimes with pronounced
gradients within the laths and the least misorientation. For the remaining structural
components M, shown in (e) and (f), and MST, shown in (g) and (h), the disordered
orientation of the individual laths can be confirmed by looking at the IPF. Here, MST can
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be identified by the fine and disordered carbide precipitates visible in the high-resolution
SEM image.
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Figure 8. Overview of selected representative patches of the SEM-optimized dataset (6.25 µm)
showing LB (a,b), UB (c,d), M (e,f), and MST (g,h). In addition, the corresponding correlative
information is shown as overlays (SEM + misorientation boundaries (red—2◦, green—5◦, blue—15◦),
and SEM + IPF, see Figure 5 for color-coding), which was consulted for labeling.

The creation of the LOM data set proved to be much more complex. In order to be
able to train a model that is able to assign the patches to a class, the input image must
have sufficient characteristic visual features. For some patches that can be clearly assigned
to a class based on the SEM image, a clear classification based on the LOM images was
not possible. The resolution of the LOM was simply not sufficient to represent the fine
microstructural features appropriately. For this reason, the corresponding input size of the
LOM dataset was adjusted upward, as mentioned above, to capture more context and more
global characteristics in the dataset accordingly. When selecting the LOM patches, care had
to be taken to ensure that the decisive features could be identified solely based on the LOM
image. The corresponding correlative information from SEM and EBSD should therefore
only be consulted as additional information. Due to the increased input size, the number
of possible representative areas was reduced. The reason for this is that the consideration
of larger sample areas, accompanied by larger patch size, results in fewer homogeneous
areas that can be predominantly assigned to one microstructural constituent. This results,
on the one hand, in a smaller amount of training data, which is not insignificant for DL
applications, and, on the other hand, in patches that also include more visual features of
further microstructural components in comparison to the SEM patches.

Figure 9 shows a selection of labeled patches based on the LOM dataset. Using the
same characteristics outlined in the case of Figure 8, the potential reference ranges were
validated using the complementary information from the correlative datasets.
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Figure 9. Overview of selected representative patches of the LOM-optimized dataset (12.5 µm)
showing LB (a,b), UB (c,d), M (e,f), and MST (g,h). In addition, the corresponding correlative
information is shown (SEM and Overlay: SEM + misorientation boundaries (red—2◦, green—5◦,
blue—15◦)), which was consulted for labeling.

However, the explained compromise regarding the adjusted patch size of the LOM
dataset leads to the fact that many, especially bainitic areas, are too small to fill an entire
patch (Figure 8d)). As a result, features of the adjacent phases are also visible on these
patches, which is unavoidable considering the amount of data required to capture the
variety of the phases occurring in real Q/QT steels. Thereby, care was taken to ensure
that the characteristic areas occupy most of the patch area and are located in the center.
However, this could prove to be advantageous for the evaluation routine explained since
the patches often contain more than one phase when the sliding window approach is used.

An intensive review of the correlative data sets in a cross-scale and holistic approach
revealed fundamental problems in assigning well-founded ground truth when no comple-
mentary information was available and only the LOM images were used for the labeling
processes. In the process, not only are the present micrographs accepted as such, but they
are critically scrutinized throughout the entire process of data acquisition. Thus, additional
information, such as differences in chemical composition and the manufacturing processes
of the samples, as well as contrasting and methodological influences, are also considered.
Here, correlative microscopy enhances the interpretation of this information.

Figure 10 illustrates patches of the LOM-optimized dataset with a size of 12.5 µm, for
which the exclusive use of LOM images for the labeling process could be quite misleading.
Here, based on the visual characteristics, it can quickly lead to false labels regarding the
assignment of ground truth.

Thus, Figure 10a appears to be lower bainite based on the LOM patch. This is indicated
by the visible preferred orientation of the bainite plates, as well as the brownish coloration,
which is caused by the finely precipitated carbides. However, if we now look at the high-
resolution SEM image, it becomes apparent that the majority of the carbides have not
precipitated within the laths but that they have formed between the very fine bainitic laths.
Thus, this is extremely fine upper bainite according to the common classification schemes.
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might lead to false labels. The necessary information for correct classification can only be taken from
the high-resolution SEM image (lower row). In (a), LB can be assumed based on the lom. The SEM
first resolves the carbide sufficiently, whereupon one can assume UB. In (b), the finely precipitated
carbides of the MST are only visible on the basis of the SEM. Thanks to the brown coloration, M can
be assumed for (c). However, closer examination under the SEM reveals a morphology of the carbides
that can be assigned to UB. Due to the lack of topographic information from the LOM, no clear
distinction can be made between LB and MST. The SEM image is again supportive in this respect. In
(d), confusion between MST and LB can easily occur. This is due to missing topography information
based on the LOM. Only on the basis of the SEM the martensitic needles can be recognized.

Looking at the LOM micrograph of the patch Figure 10b, one would possibly choose
martensite for classification as an experienced expert. This is supported by the disordered,
lathlike morphology and the distinct coloration of the features. However, with the aid of
the corresponding SEM image, the extremely fine, disordered precipitation of the cementite
particles becomes clear, which in combination with the previously named morphology, is a
characteristic of tempered martensite.

Based on the pronounced dark brown coloration, as well as misinterpreting lath
boundaries, the LOM patch shown in Figure 10c indicates a martensitic affiliation. Like
Figure 10a, however, the coloration can be attributed to the fineness of the cementite
lamellae, which is even more pronounced in this case. Again, it can be assumed that
according to the characteristics, it deals with very fine upper bainite.

Due to the dark spots in combination with a light brown coloration, both correspond-
ing to a fine dispersion of small cementite precipitations, one expects an assignment to
lower bainite or tempered martensite for Figure 10d. With the help of the SEM, the dis-
tinct topography becomes visible, which provides higher confidence in an assignment to
the latter.

The holistic approach via correlative microscopy, which also takes into account the
significant influence of contrasting as part of specimen preparation with regard to imaging,
can identify further misleading factors.

Figure 11 again illustrates the problematic reproducibility of electrochemical etching
processes. After contrasting under apparently identical conditions Figure 11b,c, the correla-
tive LOM images reveal an obvious difference. In Figure 11c, especially the precipitated
carbides within the microstructure, which was identified as tempered martensite, are clearly
more pronounced, which simplifies an assessment as such. Based on Figure 11b, one could
also assume that it is martensite. Once again, only the high-resolution SEM image provides
clarity regarding an unambiguous assignment.
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Figure 11. Example of the influence of contrasting methods using the same electrochemical etching
procedure (a) as corresponding correlative SEM micrograph to (b). Though etching under similar
conditions at different times, the micrograph (c) shows a significantly stronger etching effect, resulting
in more distinct visual features. This can lead to a shift in the significance of the individual features,
which has a significant influence on the corresponding classification.

An orientation dependence of the Nital etching was observed across all specimens.
Crystal orientations of <100> show a significantly reduced etching effect, as shown in
Figure 12 [17]. As a result, the areas in the LOM appear bright, similar to areas associated
with upper bainite. Though, the high-resolution SEM micrograph reveals the presence of
martensitic topography, which due to the reduced etchability, is not as pronounced as those
regions with different crystal orientations. Therefore, it is not visible in the LOM image.
Additionally, selective contrasting of the lath boundaries of the martensite reinforces the
false impression so that confusion with upper bainite can quickly arise (red marking).

Metals 2023, 13, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 12. Correlative micrographs of the same sample region (a)—LOM, (b)—LOM + IPF, (c)—
SEM, (d)—SEM + IPF). The orientation dependence of the Nital etchant becomes clear: Regions with 
<100> orientation topography (reddish in IPF) show a significantly weaker etching effect with a cor-
respondingly softer topography (only visible in SEM). 

Considering the problems demonstrated in this section, it can be concluded again 
that the most challenging problem behind the application of modern ML approaches in 
the field of materials science is finding an absolute ground truth. Considering the availa-
ble complementary information, as well as the occurring misleading factors, two final da-
tasets were created based on the 22 correlative datasets optimized for SEM and LOM im-
ages, respectively. Unfortunately, these can only be compared indirectly due to different 
patch sizes and different underlying slices. In conclusion, it can be stated that despite the 
reduction to the most homogeneous patches possible, it is not possible to guarantee the 
correctness of all labels. Nevertheless, a lot of time and consideration of all complementary 
information was used to work out the underlying ground truth. This represents, at the 
current state of research, the best approach to a classification in terms of the structural 
constituents that occur in combination with the samples investigated and taking into ac-
count the widely recognized identification criteria of the common phases occurring in 
modern steels. In order to train the model to a certain degree of variance and to make it as 
robust as possible, more critical patches were also included in the data set. These partially 
deviate from the reference states of the respective microstructural constituents to be able 
to characterize real Q/QT steels as successfully as possible. Ultimately, an SEM-optimized 
training data set of 6680 individual patches (14% LB—41% M—25% MST—20% UB), as 
well as a LOM-optimized training data set of 2246 individual patches (17% LB—40% M—

Figure 12. Correlative micrographs of the same sample region (a)—LOM, (b)—LOM + IPF, (c)—SEM,
(d)—SEM + IPF). The orientation dependence of the Nital etchant becomes clear: Regions with
<100> orientation topography (reddish in IPF) show a significantly weaker etching effect with a
correspondingly softer topography (only visible in SEM).
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Considering the problems demonstrated in this section, it can be concluded again
that the most challenging problem behind the application of modern ML approaches
in the field of materials science is finding an absolute ground truth. Considering the
available complementary information, as well as the occurring misleading factors, two final
datasets were created based on the 22 correlative datasets optimized for SEM and LOM
images, respectively. Unfortunately, these can only be compared indirectly due to different
patch sizes and different underlying slices. In conclusion, it can be stated that despite the
reduction to the most homogeneous patches possible, it is not possible to guarantee the
correctness of all labels. Nevertheless, a lot of time and consideration of all complementary
information was used to work out the underlying ground truth. This represents, at the
current state of research, the best approach to a classification in terms of the structural
constituents that occur in combination with the samples investigated and taking into
account the widely recognized identification criteria of the common phases occurring in
modern steels. In order to train the model to a certain degree of variance and to make it as
robust as possible, more critical patches were also included in the data set. These partially
deviate from the reference states of the respective microstructural constituents to be able to
characterize real Q/QT steels as successfully as possible. Ultimately, an SEM-optimized
training data set of 6680 individual patches (14% LB—41% M—25% MST—20% UB), as well
as a LOM-optimized training data set of 2246 individual patches (17% LB—40% M—27%
MST—15% UB), has successfully been created to train respective DL Classification models
as good as possible.

2.5. Deep Learning Methodology

From DL’s perspective, this results in a multiclass classification problem with the four
introduced classes. To include additional objectivity, three independent models based on
different architectures have been trained. For each of the three independent models, a
pre-trained CNN is used based on the principle of transfer learning [27]. This is performed
by taking advantage of the fact that each model is already capable of reliably recognizing
important visual features and extracting corresponding low- and high-level features in
order to allow accurate classification of the respective structures. Several publications could
confirm that transfer learning, using pretrained weights, even using data from different
domains, is beneficial to the training process and the final model’s performance in material
science [27–29], especially if, compared to usual DL applications, only little amount of data
is accessible.

As model backbones, Xception [30], ResNet50 [31], and DenseNet201 [32] seemed
to yield the best results in the scope of the pre-tests. Each of the architectures was used
without the respective dense layers. After the convolution layers as feature extraction,
a GlobalMaxPooling operation was implemented to reduce the features to a 1D feature
vector [33], which is fed into a fully connected network. The latter consists of a dense layer
with 64 neurons that are connected to a dense layer with four neurons, corresponding to the
respective number of classes. The final prediction layer uses the SoftMax activation function
to be able to interpret its entries as classification probability. To reduce the overfitting, an
additional dropout layer has been added after the feature extraction part and the dense
layer with 64 neurons.

For both SEM and LOM dataset, 128 pixels has been selected as input size in order to
use the native resolution of the respective microscope, corresponding to the earlier men-
tioned sample section of 6.25 µm tiles for SEM and 12.5 µm tiles for LOM, respectively. As
a preparation step, the default preprocessing function of the individual CNN architectures
has been used, zero-centering each color channel with respect to the ImageNet dataset,
which was used to pre-train the weights. Afterward, each dataset was normalized to a max-
imum value of 1 to be processible by the CNNs. The image labels were one-hot-encoded
prior to the training process. The training dataset was divided into a training and a test
set (75–25%). To tackle the problem of class imbalance, class weights according to the total
number of images with respect to each class within the training dataset were included [34].
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As a loss function, the categorical cross-entropy was used in combination with classification
accuracy as a validation metric.

In terms of data augmentation, common operations such as zoom (70–130%), rotations
(0–360◦), random contrast and brightness adjustments (0–10%), as well as vertical and
horizontal flips, were selected. The thereby emerging empty areas are filled using the
“reflect” argument.

Each model was trained for 25 epochs using the Adam optimizer at a learning rate of
0.0001 and subsequently, for 10 epochs at a learning rate of 0.00001 as fine-tuning, using
the Keras API of the Tensorflow implementation [35] in Google Colab Pro with access to an
NVIDIA Tesla T4 GPU.

2.6. Post-Processing: Combining Predictions of Different Models

Since different CNN architectures learn, extract, and process visual features in dif-
ferent ways, it seems reasonable to combine the predictions of several different models.
This allows for increased objectivity, as well as higher robustness. For this work, three
independent optimized models were trained with the same data sets. In the scope of a
combined evaluation, each of these models independently classify the individual patches
of the microstructure image to be analyzed. The corresponding predictions then contribute
accordingly to the final classification. These are summarized and equally influence the final
prediction within the framework of the majority voting approach used.

In the majority voting approach, the final prediction emerges based on the majority
occurrence of the predictions after consideration of the respective threshold value. Accord-
ingly, the final prediction must correspond to at least two of the three predictions resulting
from the models used. In case either three different predictions are made by the separate
models, or in case the majority of the predictions are to be assigned to the additional class
of uncertainty after filtering by the confidence threshold, this will thus be the prognosis as
the final prediction.

A subsequent median filter with a kernel size corresponding to the corresponding step
size leads to the removal of undesired artifacts, as well as a smoothing of the boundaries of
the respective phase regions.

3. Results and Discussion
3.1. Classification Model Results

After training the respective architectures with each dataset, LOM, and SEM, the
following performance could be achieved on the unseen test sets. As mentioned in the
methodology part, model A is based on Xception, model B uses a DenseNet backbone,
whereas model C consists of a ResNet. The classification results on the test-sets of the
respective models are summarised in Table 1.

Overall, the three models could achieve an average accuracy of 88.8% for the LOM
and 93.7% for the SEM dataset, respectively. These are exceptional results considering the
high complexity due to the fine differences between the microstructural patches. With a
standard deviation of 0.7% between the different architectures and 0.6% in the case of the
SEM dataset, the performance between the models is quite homogeneous on both datasets.

Using the SEM patches delivers significantly higher performances. For example,
the mean precision in the classification of martensite reached a value of 98.3%. Thus,
martensite was most reliably identified as such among all the classes due to its distinct
morphology, which differs more from the other classes. Surprisingly, in the SEM dataset,
the objects belonging to the UB class achieved the lowest relative accuracy. During the
annotation process, usually, the UB class was the easiest to assign since it has very distinctive
characteristics due to the morphology of the elongated carbide precipitations between the
bainitic laths. In the LOM dataset, however, the UB patches were the second best identified
as such. There, the martensite class also achieves the highest precision. Thus, in the case of
the SEM images, each model was able to detect the subtle differences between LB and MST.
From this, it can be concluded that the models in relation to SEM images are successfully
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able to identify and process the differences in topography, as well as the fine discrimination
criteria regarding the precipitation of the carbides in microscopic images of Q/QT steels.
Once again, the extraordinary ability of modern DL approaches to independently learn
decisive criteria based on visual features and to apply them in a reproducible manner
became evident.

Table 1. Summary of the confidence matrix combined with respective metrics, such as precision,
recall, and F1 score and overall accuracy of the three different architectures (Model A, B, and C) for
being trained on the SEM and LOM datasets.

Model A—SEM Dataset Model A—LOM Dataset

Accuracy: 93.4% Accuracy: 88.1%

Label Label Label Label Class Label Label Label Label Class

LB M MST UB Precision LB M MST UB Precision
Pred. LB 201 0 5 15 92% Pred. LB 86 0 4 4 70%
Pred. M 1 645 16 14 98% Pred. M 4 224 6 4 97%
Pred. MST 10 10 401 20 93% Pred. MST 31 6 112 5 92%
Pred. UB 6 3 11 312 86% Pred. UB 1 2 0 73 85%

Class recall 91% 95% 91% 94% Class recall 91% 94% 73% 96%

Class F1 score 92% 97% 92% 90% Class F1 score 80% 95% 81% 90%

Model B—SEM Dataset Model B—LOM Dataset

Accuracy: 93.5% Accuracy: 89.8%

Label Label Label Label Class Label Label Label Label Class

LB M MST UB Precision LB M MST UB Precision
Pred. LB 210 0 3 8 87% Pred. LB 84 0 9 1 76%
Pred. M 3 640 21 12 99% Pred. M 3 223 7 5 98%
Pred. MST 14 5 407 15 92% Pred. MST 23 4 125 2 88%
Pred. UB 14 3 11 304 90% Pred. UB 1 1 1 73 90%

Class recall 95% 95% 92% 92% Class recall 89% 94% 81% 96%

Class F1 score 91% 97% 92% 91% Class F1 score 82% 96% 84% 93%

Model C—SEM Dataset Model C—LOM Dataset

Accuracy: 93.1% Accuracy: 88.6%

Label Label Label Label Class Label Label Label Label Class

LB M MST UB Precision LB M MST UB Precision
Pred. LB 209 0 3 9 89% Pred. LB 83 0 10 1 75%
Pred. M 1 638 26 11 98% Pred. M 3 221 10 4 97%
Pred. MST 15 8 399 19 91% Pred. MST 24 4 121 5 86%
Pred. UB 9 4 10 309 89% Pred. UB 0 3 0 73 88%

Class recall 95% 94% 90% 93% Class recall 88% 93% 79% 96%

Class F1 score 92% 96% 91% 91% Class F1 score 81% 95% 82% 92%

When looking at the LOM data, however, the comparatively low precision of averaged
73.7% in the classification of the LB class is noticeable. This also reflects the problems and
resulting concerns during the annotation process of the LOM images. Based purely on
LOM images, it was often not possible to distinguish LB from MST, so the corresponding
SEM images had to be consulted. Representing this fact, most of the misclassified patches
of the LB class are assigned to the class of the MST.
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Despite the remarkable classification accuracies, it is of great importance to investigate
the models’ misclassifications in detail. Only in this way can the possibilities and limits
of the models really be assessed. When considering the misclassified patches of the SEM
dataset, it must be admitted that almost none of the misclassified excerpts can undoubtedly
be assigned to the corresponding label. Often, these examples were assigned to the respec-
tive ground truth class on the basis of complementary information and a more global view,
with the aim of being able to represent as much variance as possible. Most of them leave
some room for interpretation and a residual degree of subjectivity.

Patch (a), shown in Figure 13, was incorrectly classified as UB from two of the three
models. It clearly shows oriented lath-like structures with slightly pronounced carbides
along the axis (red arrows). Due to the majority of particles being precipitated within the
laths, it was labeled as LB (black arrows). However, this lack of clarity is expressed in
a low prediction probability of less than 60% for each model. The counterpart to this is
provided by (b). Here, due to the fact that the majority of the carbides run coherently along
the laths, a classification to class UB was chosen (black arrows). Nevertheless, carbide
precipitates also occur occasionally within the laths (red arrows), which would confirm the
prediction of the model. In contrast to the first two examples, patch (c) was assigned to
the wrong class with high confidence (>90% probability). Due to the pronounced parallel
and comparatively homogeneous edges throughout the patch, these boundaries of the
martensitic laths were misinterpreted as those of the UB (red arrows). However, additional
global information (e.g., a larger range for a given input size) could lead to a correction by
the model by identifying it at martensite.
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Figure 13. Showing misclassified patches based on the SEM dataset with a corresponding patch size
of 6.25 µm. (a) was labeled as LB and classified as UB. (b) was classified as LB but has UB as label.
(c) was labeled as martensite but classified as UB, and (d) has MST as label, but was classified as LB.

In MST patch (d), which was labeled as such based-on topography, the significance of
the aligned laths in combination with the carbides precipitated within them (black arrows)
apparently predominated, so the model classified this as LB.

In summary, using the SEM dataset, no misclassified patches could be identified, for
which the model’s prediction could be considered totally inconclusive. Thus, no decisive
argument can be found to question the general validity and reliability of the models in
view of a given similarity to the specimens being considered within this study at this point.

For the LOM dataset, the number of correctly classified patches in the LB, M, and UB
classes differs only marginally. Here, the greatest difference between the different architec-
tures is expressed in the MST class. For the majority of the overall misclassified patches,
the insufficient resolution of the LOM was found to be the cause. For the corresponding
patches, the respective ground truth was selected based on the underlying complementary
information. Minimal misinterpretations already lead to incorrect decisions by the model,
which is, however, very comprehensible on closer examination.

For the classification of the LOM images, patch (a) from Figure 14 was predicted as
UB and LB, whereas it was labeled as MST. These decisions are both understandable due
to the slightly brownish coloration in combination with the precipitated carbides, as well
as due to possible contrasting lath boundaries of the avoidable bainite. However, due to
the needle-like topography, which is only enhanced on the SEM image, the decision was
made in favor of MST during the labeling process. Though, since all three models predicted
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different classes, the interpretability will be represented as an unclear label in the following
post-processing routine during the quantification of an entire microstructural image.
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Figure 14. Showing misclassified patches based on the LOM dataset (upper row) with a corresponding
patch size of 12.5µm and correlative SEM patch (lower row) for clarification. (a) was labeled as MST
and classified as UB and LB. (b) was classified as LB from two models but had MST as label. (c) was
labeled as M but classified as UB from all three models, and (d) has M as label but was classified as
UB. The SEM image of (d) is partially overlayed with the corresponding IPF (consult Figure 5 for
color-coding) map in order to identify the orientation dependence of the Nital etchant.

A similar case occurs in patch (b). Here, the as M incorrectly classified patch (c) with
ground truth UB represents the problem that already has been shown in Figure 10c in
an even more difficult way. There, the bainitic laths are extremely fine, which allows
misinterpretation towards the martensitic class. Additionally, in contrast to the previous
example from Figure 10c, the bainitic features do not fill the entire patch but are additionally
surrounded by martensitic regions. Hence, this was one of the most ambiguous examples
within the test dataset.

In patch (d), an inverse misclassification compared to (c) can be seen. There, the
white shimmering areas between the sufficiently contrasted lath boundaries on the upper
center, as well as the white region on the lower right, lead through the otherwise brownish
coloration of the microstructure to a falsified impression. Through looking at the IPF, the
assignment of those areas to the <100> orientation can be found. Thus, the orientation
contrast observed during the labeling process is also involved in a misjudgment of the
CNN. However, the fine and disordered needle structure of the martensite plates can be
identified by SEM, which is why this class was chosen in the labeling process.

In summary, the classification of LOM patches performed much better than expected
at the beginning. Compared to the SEM images, the biggest bottleneck of using the LOM
images is the resolution, which is accompanied by a lack of crucial detailed information.
Nevertheless, very high accuracies were achieved, and the wrong decisions of CNN could
be comprehended in most cases and, most likely, would be confirmed by human experts in
a similar manner.

All in all, based on the results presented here, it can be concluded that the trained mod-
els are very well able to perform a good differentiation between the individual classes based
on both LOM and SEM images. The surprisingly high accuracies, despite the underlying
complexity, illustrate the adaptability of the modern DL approaches. Despite the inevitable
room for interpretation in a classification based on the given classification schemes and the
residual subjectivity that is unavoidable in these approaches to microstructure evaluation,
the classification approaches have the ability to successfully recognize and process the fine
discriminatory criteria. It can be assumed that the performance of the models trained here
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is very close to that of an experienced expert, given the richness of the complementary
information used to find an objective ground truth and its overwhelming ability to apply
this knowledge. Nevertheless, this knowledge is limited to exactly these types of Q/QT
steels with which the model was trained. The great added value here, however, is the
existing reproducibility compared to conventional expert opinions.

3.2. Patch-Wise Classification Using a Sliding Window Technique as Segmentation Approach

In the following section, the trained models are used to quantify entire microstructural
images. The sliding window approach used for this purpose allows segmentation using
classification models that need a fixed patch size of 128 px, respectively, as an input.

Here, the results of LOM recordings and SEM images are compared with each other,
and the similarities and differences are discussed. Thereby the aim is to clarify to what
extent a quantification based on the LOM images is sufficient as the simplest and fastest
method and to what extent more complex high-resolution SEM images are needed for a
representative evaluation.

In Figure 15a–c, the different segmentation results of the trained models can be exam-
ined separately. It is noticeable that the majority of the color-coded predictions (LB—green,
M—yellow, MST—purple, UB—blue, uncertain—red) are very comparable between the
individual models. Nevertheless, there are isolated areas in which the different models also
produce different estimates. As described in the methodology section, the final decision is
made by a majority vote. This allows an increase in objectivity and a reduction of errors,
similar to consultation between experts.

Metals 2023, 13, x FOR PEER REVIEW 22 of 28 
 

 

of the complementary information used to find an objective ground truth and its over-
whelming ability to apply this knowledge. Nevertheless, this knowledge is limited to ex-
actly these types of Q/QT steels with which the model was trained. The great added value 
here, however, is the existing reproducibility compared to conventional expert opinions. 

3.2. Patch-Wise Classification Using a Sliding Window Technique as Segmentation Approach 
In the following section, the trained models are used to quantify entire microstruc-

tural images. The sliding window approach used for this purpose allows segmentation 
using classification models that need a fixed patch size of 128 px, respectively, as an input. 

Here, the results of LOM recordings and SEM images are compared with each other, 
and the similarities and differences are discussed. Thereby the aim is to clarify to what 
extent a quantification based on the LOM images is sufficient as the simplest and fastest 
method and to what extent more complex high-resolution SEM images are needed for a 
representative evaluation. 

In Figure 15a–c, the different segmentation results of the trained models can be ex-
amined separately. It is noticeable that the majority of the color-coded predictions (LB—
green, M—yellow, MST—purple, UB—blue, uncertain—red) are very comparable be-
tween the individual models. Nevertheless, there are isolated areas in which the different 
models also produce different estimates. As described in the methodology section, the 
final decision is made by a majority vote. This allows an increase in objectivity and a re-
duction of errors, similar to consultation between experts.  

 
Figure 15. Showing an overview of the segmentation result using the proposed patch-wise classifi-
cation approach. (a–c) show the respective results using each model, A, B, and C, based on an SEM 
micrograph independently. (d) shows the combined result using the MaxVoting approach. (e) shows 
the combined result after applying a median filter with a kernel size corresponding to the selected 
step size of the sliding window technique to smooth the borders and eliminate artifacts. The colors 
correspond to the following classes: green—LB, yellow—M, purple—MST, blue—UB, and red—un-
certain. (f) shows the result as shown in (e) overlayed with the respective input SEM image. 

In order to eliminate individual artifacts and to smooth the boundaries of the de-
tected phase ranges, a median filter with a kernel size corresponding to the respective step 
size is used as the final step of post-processing. 

Figure 15. Showing an overview of the segmentation result using the proposed patch-wise classi-
fication approach. (a–c) show the respective results using each model, A, B, and C, based on an
SEM micrograph independently. (d) shows the combined result using the MaxVoting approach.
(e) shows the combined result after applying a median filter with a kernel size corresponding to the
selected step size of the sliding window technique to smooth the borders and eliminate artifacts. The
colors correspond to the following classes: green—LB, yellow—M, purple—MST, blue—UB, and
red—uncertain. (f) shows the result as shown in (e) overlayed with the respective input SEM image.

In order to eliminate individual artifacts and to smooth the boundaries of the detected
phase ranges, a median filter with a kernel size corresponding to the respective step size is
used as the final step of post-processing.
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Consequently, an evaluation of the majority vote requires a classification by each of the
models used and then unification of the predictions. The quantification of a 200 × 200 µm
test area with a high-resolution SEM image with a step size of 16 px (approx. 0.8 µm)
required 3 min in the Colab environment used for this purpose. The duration is thus
dependent on the dimension of the section to be quantified, as well as the step size, which
corresponds to the resolution of the evaluation, and can thus be adjusted accordingly.

The confidence threshold for decision-making in this case was deliberately chosen to
be extremely high at 75%. This is usually the majority, i.e., 50%. In this case, however, this
illustrates the problems discussed in the segmentation of complex Q/QT steels. Similar to
the labeling process by experts, the transition zones between two phase areas have been
classified as ambiguous (red). This was the basic idea behind the patch-wise approach: to
be able to precisely map this uncertainty without having to add a separate class within the
training data, which then contains characteristic visual features of various other classes.

Looking at Figure 16, at first glance, a large part of the segmented areas between
LOM and SEM image matches. The discrepancies become clearer in the enlarged section
(red). There, the UB fraction (blue) in the LOM is overestimated. This is due to the strong
expression of the laths in the LOM. A closer look at the SEM confirms the prediction
of the model based on the SEM data regarding classification in favor of the MST class.
Furthermore, there are occasional confusions between UB (blue) and LB (green) within the
LOM. As explained in the section above, this is due to the insufficient resolution of the
precipitated carbides between and within the ferritic laths, again representing the greatest
limitation of an evaluation based on LOM as a simpler methodology.
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Figure 16. Segmentation results as colored overlay for the sample shown in Figures 4 and 15 due to
its wide variety in occurring phases based on correlative LOM (a) and SEM (b), including magnified
regions. The colors correspond to the following classes: green—LB, yellow—M, purple—MST,
blue—UB, and red—uncertain.
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It would be desirable to reduce the proportion of misclassifications and to increase the
lack of unambiguity by an increased uncertainty expressed by a larger proportion of the
corresponding uncertain class. This can be achieved by adjusting the confidence threshold
upward. Thus, in general, the proportion of the additional class representing the model un-
certainty can be interpreted as a measure of the complexity of the analyzed microstructure.

This martensitic (yellow) steel with areas of upper bainite (blue) illustrates the ro-
bustness of the underlying models (see Figure 17). The quantification based on the LOM
image corresponds, apart from minimal differences, to that of the SEM image. Thus, it
can be concluded that there are applications in which the evaluation based on the easier-
to-generate LOM image is undoubtedly sufficient for reliable characterization. Although
the corresponding UB areas are relatively small and the differences in the visual features
of the UB, in this case to that of the M, are only minor, the model was able to identify all
corresponding areas from the LOM image.
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Figure 17. Correlative LOM (a) and SEM (b) images of an unseen sample that was not included in
the training datasets, including the respective overlay of the segmentation results of the combined
approach at a confidence threshold of 75% after using the smoothing operation. The colors correspond
to the following classes: yellow—M, blue—UB, and red—uncertain.

In contrast, Figure 18 again illustrates the limitations of evaluating only LOM images.
Based on the LOM image, most of this section is assigned to the LB phase. Based on the
SEM image, the majority can be assigned to the UB phase. Both decisions are comprehen-
sible based on the respective images. However, only the SEM image reveals the specific
morphology of the precipitated carbides. Although these are also finely distributed and
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not excessively coherent, a closer look reveals that they were precipitated between the
extremely fine laths along their boundaries, which confirms the assessment as UB. Thus,
it can be concluded once again that the evaluation of both recording methods can also be
carried out on unseen steels, but that the significance of the LOM recording depends on the
complexity and fineness of the present structure. If the characteristic features are too fine, it
is not possible to evaluate the LOM recording alone to yield the desired result. Nevertheless,
even in the LOM, the isolated areas belonging to the MST class (purple) could be correctly
identified, which reduces the aforementioned concerns about limited distinguishability
between LB and MST. In this case, the topography of the MST is sufficiently contrasted so
that it can be reliably distinguished from the LB based on the LOM micrograph.
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Figure 18. Correlative LOM (a) and SEM (b) images of another unseen sample that was not included
in the training datasets, including the respective overlay of the segmentation results of the combined
approach at a confidence threshold of 60% after using the smoothing operation. The colors correspond
to the following classes: green—LB, yellow—M, purple—MST, blue—UB, and red—uncertain.

In summary, the functionality and applicability of the proposed approach could be
demonstrated. The relatively high variance within the elaborate datasets, consisting of
22 samples, allowed us to train a robust model that allows a successful application of the
learned criteria and characteristic visual features. Thus, LOM and SEM microstructural
images that included the diverse microstructural constituents were successfully segmented
and quantified. An example was used to show the extent to which it is sufficient to carry
out quantification using the simpler LOM methodology and where its limitations are. Thus,
high-resolution SEM images are necessary for a meaningful evaluation of the fine and
more complex microstructural constituents. However, this also applies to a conventional
evaluation by a metallographer. The great added value in the automation of this evaluation
routine by the DL approach presented here, therefore, also lies in reproducibility. Assuming
reproducible contrasting and constant recording conditions for comparable steels, the
quantifications by this approach are preferable to the subjective evaluations by different
experts. In order to further improve the robustness and reliability of this approach, it is
recommended to generate additional well-founded training data, which may additionally
represent an even higher variance with respect to chemical composition, process conditions,
as well as acquisition conditions, including more variable contrasting methods.

4. Conclusions

Quenched as well as quenched and tempered steels are known for their wide range of
applications and high complexity of microstructures which can often mainly be qualitatively
assessed using higher-resolution microscopy methods due to their fine microstructural fea-
tures. For the segmentation of these types of steel microstructures, an automated, objective,
and reproducible machine learning (ML) approach is proposed. The four microstructural
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constituents martensite, tempered martensite, lower bainite, and upper bainite are consid-
ered for the segmentation, which can all be present simultaneously in a single region of
interest. Instead of the typical semantic segmentation, a patch-wise classification is used,
which significantly simplifies the annotations required for the ML approach. An advanced
sliding window approach combined with suitable post-processing nevertheless enables a
finely resolved segmentation based on the classifications.

The foundation for a successful implementation is a correlative microscopy approach,
combining light optical microscope (LOM), scanning electron microscope (SEM), and
electron backscatter diffraction (EBSD). Additional information from EBSD was essential
for a well-funded and objective assignment of the ground truth. From this correlative
characterization, datasets with a large microstructural diversity were generated for a LOM
and an SEM classification aiming to evaluate the limits of the proposed model’s robustness.

The ML models achieved an accuracy of 88.8% for the LOM patches and 93.7% for the
SEM patches. Building on this, the segmentation of new unseen images was demonstrated.
The possibilities and limitations of segmentation, also with regard to potential uncertainties
in the assignment of the ground truth, were discussed in detail. In addition, the authors
specifically investigated which performance is still achievable using only low-resolution
LOM images and for which use cases higher resolution SEM images are preferable. The
presented approach offers a universally valid alternative to a quantitative evaluation of
highly-complex microstructures, where an unambiguous generation of pixel-wise training
masks is not possible in a reproducible way, similar to this showcase of Q/QT steels. This
ML-based quantification is noted for its automation, objectivity, and reproducibility, and
enables microstructural analyses of previously unfeasible quality and detail and, thus,
can form the basis for future process–microstructure–property correlations as well as for
improving industrial quality control.
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