
Inductive Theorem Proving Using Refined
Unfailing Completion Techniques

Bernhard Gramlich
SEKI Report SR—89-14

Inductive Theorem Proving Using Refined
Unfailing Completion Techniques

Bernhard Gramlich

Fachbereich Irg’ormatik, Universität Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern, W.-Germany

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2).

Inductive Theorem Proving Using Refined
Unfailing Completion Techniques

Bernhard Gramlich

Universität Kaiserlautem
Fachbereich Informatik

Postfach 3049
D-6750 Kaiserslautern

E—mail: gramlich@uklirb.uucp

Abstract

We present a brief overview on completion based inductive theorem proving techniques, point out
the key concepts for the underlying "proof by consistency" - paradigm and isolate an abstract
description of what is necessary for an algorithmic realization of such methods.

In particular, we give several versions of proof orderings, which - under certain conditions -
are well-suited for that purpose. Together with corresponding notions of (positive and negative)
covering sets we get abstract "positive" and "negative" characterizations of inductive validity. As a
consequence we can generalize lmown criteria for inductive validity, even for the cases where some
of the conjectures may not be orientable or where the base system is terminating but not necessarily
ground confluent.

Furthermore we consider several refinements and optimizations of completion based inductive
theorem proving techniques. In particular, sufficient criteria for being a covering set including
restrictions of critical pairs (and the usage of non-equational inductive knowledge) are discussed.

Moreover a couple of lemma generation methods are briefly summan'zed and classified. A new
techniques of save generalization is particularly interesting, since it provides means for syntactic
generalizations, i.e. simplifications, of conjectures without loosing semantic equivalence.

Finally we present the main features and characteristics of UNICOM, an inductive theorem
prover with refined unfailing completion techniques and built on top of TRSPEC, a term rewriting
based system for investigating algebraic specifications.

1 Introduction

Equational reasoning is a fundamental basis for many fields of computer science like functional
programming, abstract data type specifications, program synthesis and verification. It is
well-known that the validity of an equation in all models of a set of equations can easily be
characterized syntactically by the inference rules of instantiation and replacement of equals by
equals.The corresponding characterization of inductive validity, i.e. validity in the standard initial
model, involves inference rules with infinitely many premises. Thus inductive validity is much
harder to obtain than general validity. A common approach for proving such inductive theorems

2

consists in using explicitely inductive proof techniques based on any well-founded ordering on

(ground) terms (e.g. [Bu69], [BoMo79]). Starting with the work of Musser ([Mu80]), Goguen

([Go80]) and Huet/Hullot ([I-IuH082]) an alternate approach of "proof by consistency" using

completion techniques for term rewriting has been developed and further refined by many people.
We provide a brief overview of these approaches and point out the key concepts using the
theoretical framework of proof orderings and proof simplification (cf. [Ba87],[B a88]). In
particular, we show that inductive theorem proving may be considered from an abstract "positive"
or "negative" point of view. This leads to a better understanding and generalizations of various
sufficient operational criteria for inductive validity (cf. [JOK086], [Kü87], [HoKu88]).

Furthermore we consider and discuss several refinements and Optimizations of completion
based inductive theorem proving techniques which are very important from a practical point of
view. The crucial aspects and problems are illustrated by instructive examples.

Moreover various basic techniques for lemma generation by means of generalization including
a classification scheme are presented and discussed. A new techniques of save generalization is
particularly interesting, since it provides means for syntactic generalizations, i.e. simplifications, of
conjectures without loosing semantic equivalence.

Finally we present the main features and characteristics of UNTCOM, an inductive theorem
prover with refined unfailing completion techniques and built on top of TRSPEC, a term rewriting
based system for investigating algebraic specifications (cf. [AvGrGöMaS7], [Sc88]).

2 Definitions and Notations

We assume familiarity with the basic notions of term algebras, equational logic and rewriting
systems (cf. [Hq80]). For the sake of readability we restrict ourselves to the one-sorted case.
The results easily carry over to the many-sorted case. In the following we recall the essential
terminology used subsequently. We are dealing with first order terms over some set of operator
symbols F and some set of variables V. We assume that F contains at least one constant. Thus the
set of ground terms T is non-empty. By t/p we denote the subterm of t at position p and by 6t the
result of applying a substitution 6 to t. We write u[s] to indicate that the term u contains 5 as a

subterm and (ambiguously) denote by u[t] the result of replacing a particular occurrence of s in u by
t. An equation is a pair of terms, written s = t. A rewrite rule is a directed equation, written s —> t. A
term rewriting system (TRS) R is a set of rewrite rules. For a set E of equations we denote by E“
the symmetric closure of E. For a binary relation —+ on terms the symbols -——=—>‚ , L), i). H
denote the reflexive, transitive, reflexive-transitive and symmetric closure of —>‚ respectively. The
relation <- is the inverse of -—>. By —>R we denote the reduction relation generated by R and by HE
the (one-step) equality relation induced by E. The equational theory of E is defined to be Th(E) :=
{s = tl s <i>}? t} and the inductive theory is given by ITh(E) := {s = t | 6s <—*—>E 6t for all ground
substitutions 6 } . Equations from Th(E) and ITh(E) are called equational and inductive theorems of
B, respectively.

By CP(R,R') we denote the set of critical pairs obtained from overlapping the rules of R into
those of R'. If p is a non-variable position of a term 1 then CP(R,p,1 —> r) denotes the set of critical

3

pairs obtained by overlapping R into 1 —> r at position p . Accordingly CP(R,P,1—> r) denotes the set
of critical pairs obtained by overlapping R into 1-9 r at non-variable positions from P.

A TRS R is terminating if —+—>R is a well-founded (strict partial) ordering. R is confluent if
‚(<—”5— ° LRS- —*——>R ° R<—*— and Church—Rosser if «im <; LR » R<—*— . It is ground confluent
(ground Church-Rosser) if it is confluent (Church—Rosser) on ground terms. Note that the (ground)
Church-Rosser property is equivalent to (ground) confluence. R is (ground) convergent if i t is
terminating and (ground) confluent. A reduction ordering > i s a well-founded ordering on terms
which is monotonic w.r.t. to replacement (s > t => u[s] > u[t]) and substitution (s > t=> ö s > 6t). A
simplification ordering i s a reduction ordering that satisfies the subterm property (s[t] 2 t).

By a proof in E we mean a sequence of equational replacements to <—>E t1 <———>E +—>E tn.
A proof in E U R consists of proof steps of the form ti<—>E ti„ , t —>R ti+1 or t_R<— ti+1 . If E and
R are unimportant or clear from the context we also denote a proof of the form t0 <—"i->EuR t n by the

sequence (to, . . . ,tn) of its intermediate results. Two proofs of the form s e i eEuR t and
u <—*->E.UR- v are said to be equivalent if s "=- u and t E v (5 means syntactical equality). Proofs of
the form . ——*—>R . R<—*—— ° are called rewrite proofs. Fer a proof P we denote by 6P the proof
obtained from P by instantiating all intermediate results with 6 . The notion P[P'] ambiguously

indicates that P contains P' as a subproof. For a proof P = (t°,...,tn) and a term c we denote by
c[P] the proof (c[to],. . .,c[tn]). A proof ordering is a (strict partial) ordering >> on proofs. It is said
to be a proof reduction ordering if it is well-founded and monotonic w.r.t. replacement
(P >> P ' => c[P] >> c[P'])‚ substitution (P >> P ' => 6 P >> 6 F) and embedding
(P >> P ' => Q[P] >> Q[P']). A proof P (in E U R) of the form s «äeEuk t is said to be
(equivalently) simplifiable into a proof P' (in E' U R') if P' is of the form s ‘J‘fimmt (see
[Ba87] for a more detailed introduction of equational proofs).

3 Foundations of Completion Based Inductive Theorem Proving

Assume that we are given a set E of equations represented by a ground equivalent term TRS R, i.e.
<—L>E = eleR on T. The inductive validity of an equational conjecture s = t may then be
equivalently expressed as follows:

s = t e ITh(E) (1)
iff 6 s <—*—>E 6 t for all ground substitutions 6
iff o s <i>!z 6 t for all ground substitutions 6
iff <i>R = ‘L’Ruts-n} on T
iff T/<L>R 5 T/ AMA“) (2)

This characterization reveals that proving inductive validity of s = t (1) amounts to showing
consistency (2), i.e. the initial algebra defined by E is not destroyed by adding s = t.

Now, if we do not assume any special properties of R the only possibility of establishing (1)
seems to consist in trying an explicit inductive proof using some correct (and appropriate) induction
scheme for the variables occurring in s = t. Of course, from the viewpoint of automated reasoning

4

this is not very satisfactory since all the problems concerning automated equational reasoning are
still present. If however we know that R satisfies certain properties, we can use the proof by
consistency approach in a more or less automated way. Perhaps the most interesting and often
satisfied case for that purpose i s given, when E can be represented by a ground convergent,
rewrite system R. In this case the search for an inconsistency can be automated as follows. A key
observation i s that for ground convergent R the algebra of unique ground normal forms of R is
(isomorphic to) the initial algebra T/<-’-"—>R. This leads to the following characterization for being an
inductive theorem.

Lemma 3.1 ([De82])

Let R be a ground convergent rewrite system and C be a set of equational conjectures. Then all
equations of C are inductive consequences of R iff for every ground instance 65 = 6 t of an equation
5 = t e C , 65 and 6 t have identical normal forms w.r.t. R. I

This result implies a necessary criterion for being inductively valid.

Lemma 3.2
Let > be a reduction ordering, R a >-ordered ground convergent rewrite system and s = t be an
inductive consequence of R . Then the following properties hold:
(a) s > t => every ground instance 65 of s i s R—reducible, and
(b) s < -> t = for every ground instance 65 = 6 t with 65 $ 6 t we have

65 > 6 t © 65 is R-reducible
65 < > 6 t => 65 or 6 t is R-reducible.

Proof:
(a) Assume some ground instance 65 of s is R—irreducible and let u be the R-normal form of 6t .

From 5 > t and 6 t LR u,we get 6 s > 6 t 2 u and thus 65 $ u contradicting lemma 3.1.
(b) Straightforward using the same argument as in (a) for the case 65 > 6t, and using lemma 3.1

else. I

This motivates the notion of inductive reducibility (also called quasi- or ground reducibility) which ,
was first introduced in [JoKoSö] for terms and generalized to equations, i.e. pairs of terms, in
[Ba88].

Definition 3.1
A term s is inductively (R-) reducible iff all its ground instances are (R-) reducible. An
equation 5 = t is inductively (R-) reducible iff 65 or 6 t i s (R-) reducible for every ground
instance 65 = 6 t of 5 = t with 65 $ 6t .

With this notion lemma 3.2 may be reformulated in a slightly weaker version as

Corollary 3.3
Let > be a reduction ordering, R a >-ordered ground convergent rewrite system and s = t be an
inductive consequence of R. Then we have
(a) s > t => s i s inductively reducible, and
(b) 3 < > t => s = t is inductively reducible. I

The necessary conditions (a) and (b) for being inductively valid can effectively be tested dueto
decidability of inductive reducibility (assuming decidability of >). This was first shown in [P185].
Various methods and algorithms for solving the problem of inductive reducibility (which has an
exponential complexity even for left-linear R ([KaNaRt87])) more efficiently for practical cases,

have been proposed (cf. [IoKo86], [KaNaZh86], [Ku88], [BüKü89]). For theories with
constructors the set of ground substitutions to be tested is reduced and in the important subcase of
free constructors the problem becomes trivial (cf. [HuHu80], [JoKo86]). The results on
decidability, complexity and algorithmic solutions for inductive reducibility are easily generalized
from terms to eQUatiOns, i.e. pairs of terms. This may be done using the well-known technique of

encoding equations 5 = t into terms eq(s,t) where eq is a new binary function symbol, and adding
to R a rule with left-hand side eq(x,x).

The following result now uses the notion of inductive reducibility and provides a
characterization of inductive validity of equations that can be oriented w.r.t. the underlying
reduction ordering for R. It is a generalized version of theorem 1 in [JoKo86].

Theo rem 3.4
Let > be a reduction ordering, R a >-ordered ground convergent rewrite system and l = r an
equation with l > r. Then 1 = r is an inductive theorem of R iff 1 is inductively R—reducible and
R U {1—) r] is ground convergent.

Proof: If 1 = r e ITH(R) then Corollary 3.3 implies that l is inductively reducible. Since in an
arbitrary ground proof every 1—> r — step can be replaced by a sequence of R—steps we can use the
assumption that R i s ground convergent and conclude that R U {l —> r } also must be ground
convergent. Conversely, if 61 = o r is any ground instance o f] = r, then the normal forms of 61 and
61' w.r.t. R are also normal forms want. R U {1—) r} due to inductive reducibility of 1. Moreover
these normal forms must coincide because R U {1-> r} is ground convergent. I

In fact, theorem 3.4 can be used now to design a completion based inductive proof technique,
which roughly spoken, proceeds as follows: The inductive conjecture s = t is added as a rewrite
rule 3 —> t with s > t to the ground convergent >-ordered base system R. If ground completion, i.e.
completion for verifying ground confluence of R U {s —> t} yields a ground convergent rewrite
system R' such that all left-hand sides of R' are inductively R—reducible, then s = t as well as all
other generated rules (equations) are inductive consequences of R. Note that for terminating rewrite
systems there exists no finite test for ground confluence - in contrast to the critical pair test for
general confluence. Convergence of critical pairs i s only a sufficient criterion for ground

6

confluence, but not a necessary one in general.
The main drawback of the method up to now i s its inability of handling non-orientable

equations. But using the concepts of proof orderings and unfailing completion (cf. [HsRu86],
[BaDeHs86], [Ba87], [BaDePl87]) this problem can also be solved - at least partially.

Formally this approach has been developped in [Ba88] resulting in a refutationally complete
method for (equational) proofs by consistency. In [Sc88] the idea of unfailing ground completion

has also been used in combination with ground confluence criteria and various other improvements
(cf. [Kü87]) to provide a refined completion based proof technique. Later we will describe the
resulting system UNICOM (cf. [Sc88]) which has been implemented on top of TRSPEC (cf.

[AvGöGrMaSt87]), a rewriting based system for the specification, verification and rapid

prototyping of algebraic specifications.
Before going into details let us roughly explain why the framework of (equational) proof

transformation, simplification and proof orderings is much better suited to understand and to solve
many problems related to completion based reasoning than any specific completion algorithm. First
of all, using the notiOn of equational proofs, we can clearly state the problem in mind and identify
problematic situations. For example, if we want to construct a convergent rewrite system R
equivalent to a given set E0 U R0 of equations and rewrite rules, the problem consists in finding for

all equational proofs of the form s "Lüäouko t equivalent rewrite proofs, i.e. proofs of the form
s -3'-‘->R - RA t . Here, problematic situations are given by proofs containing subproofs of the
form . “Bo o (equality pattern) or ° Ra‘— . "Ro . (peak). Such problematic situations may be
eliminated by transforming (E°,R°) into an equivalent pair (B1,R1) using an appropriate
equivalence preserving inference rule for pairs (Ei,Ri) (here: orienting an equation and adding an
equational consequence, respectively). If one can additionally specify a well-founded proof

ordering such that eliminating problematic proof patterns as above results in proof simplification
w.r.t. this ordering the original problem has been transformed into a proof simplification problem.
Thus, appropriate equivalence preserving systems of inference rules provide the logical basis for
completion based reasoning, whereas abstract conditions concerning the control of inference mle
application (fairness conditions) may be designed in order to guarantee terminating proof

simplication of any problematic proof pattern. Within such a general framework specific correct
completion procedures are easily derived by fixing a specific fair control structure. The clear
distinction between logic and control for solving problems related to completion techniques greatly
simplifies correctness proofs and leads to a better understanding of what is going on. This situation
is similar to approaches for unification and disunification (or more general: equational) problems
(cf. [C088]) where the separation of solution techniques into a logical and a control component has
turned out to be very successful.

Let u s now come back to inductive proofs. We assume in the following that > is a reduction
ordering and R a >-ordered ground convergent rewrite system.

An important abstract observation is the following: The problem of proving the inductive
validity or invalidity of a set of equational conjectures C may be considered either from a positive or
from a negative point of view. In the negative case one tries to find an inconsistency whereas in the

'7

positive case the aim consists in showing that every ground proof using R U C may be replaced by
an equivalent ground proof using only R. We shall present both the negative and the positive
approach within a unified framework. Whereas the negative approach essentially is a reformulation
of the main ideas of [Ba88] the positive approach is new and will be useful for generalizing known
results.

Wham

As already mentioned, the notion of inductive reducibility may be used to detect direct or provable
inconsistency of an equational conjecture s = t. This leads to

Definit ion 3.2 (cf. [Ba88])

Let C be a set of equational conjectures. An inconsistency witness for C is any ground proof of
the form s' R<—”-5— 6s HC 6 t —*—>R t', such that s' and t' are distinct (R-) irreducible ground terms and
the C-step is an application of s = t e C at top position.An inconsistency witneSs for C is said to be
indirect if it is of the above form and additionally s' Ret— 6s and 1(t > s).It is direct, if it is not
indirect, i.e. if it is of the above form with s' E 65 and additionally s > t o r else s < > t and t' E ot. C
is said to be inconsistent if there i s an inconsistency witness for C. C is said to be provably
inconsistent if there is a direct inconsistency witness, i.e. if it contains an equation that is not
inductively reducible or an equation s = t such that s > t and s i s not inductively reducible. C is
consistent if it is not inconsistent.

Obviously, consistency of C is equivalent to inductive validity of C and provable inconsistency
implies inconsistency. It is also clear that provable inconsistency is decidable because inductive
reducibility is decidable.

Now, if C is inconsistent but not provably inconsistent, then there is an indirect inconsistency
witness. By deducing appropriate equations from R and C any such proof may be simplified w.r.t.
an appropiate proof ordering until eventually a smaller direct inconsistency witness is obtained. For
that purpose the critical pair mechanism is crucial. This is reflected in Bachmair's inference system
1’ for proofs by consistency by the deduction rule. Here, C is any set of equational conjectures and
L any set of lemmas, i.e. inductive consequences of R.

L,C
Deduction —— ‚if s eel, CH t

L,C U{s=t} (R')

L,C
Induction —-—————-— , if s = t e ITh(R)

LU{s= t} ‚C

L,CU{s= t}
Deletion —-———— ‚ i f s= t e ITh(R)

L,C

L,CU{s=t} , ifs>u andeither s<—‘3—>RuLuor
Simplification —— s HC u by an equation v = w such

L,CU{u=t} tha t svvandv>w.

Here » denotes the proper specialization ordering: s > v iff some subterm of s is an instance of v but
not vice versa. The application of one of the above inference rules to L,C yielding L',C' is denoted

by L,C I—1P L',C'. A (possibly infinite) sequence of such steps L0,C0 "? L1‚C'1 "2 is a
derivation from L0 and Co.

The proof ordering mentioned above is tailored to inconsistency witnesses and designed such that
applying the simplification rule does not increase the complexity of proofs. Assume that >' is any
simplification ordering containing R and the given reduction ordering >. One may take for instance
for >' the transitive closure of the union of > and the proper subterm ordering. Then the complexity
cneg(6s,6t) of a single proof stepßs HC 6t (using s = t e C at top position) is given by

({68} , S , 6 t) , if S > t

cneg(ösßt) := ({6t} , t, 6 s) , if t > s

([63 ,6 t } , "! ') ! if S (> t

If P is an inconsistency witness for C of the form s' Ri ös HC 6t —*—>R t', then cneg(P) :=
cneg(ö s,6t). For all other proofs P let cneg(P) := max. The symbol max is taken to be maximal in
the ordering >°“°8‚ which is defined to be the lexicographic combination of the multiset ordering > >'
induced by >' , the proper specialization ordering > and the simplification ordering >'. The ordering
>°n°8 is well-founded because the component orderings are well-founded. Clearly >“! defined by
P >n°8 P' iff cneg(P) >cnég cneg(P') is also well-founded. With these definitions it can be shown
by case analysis that every Fi,-step does not increase the complexity of proofs.

Lemma 3.5 ([Ba88])
Whenever L,C t-fL',C' and P is a proof in R U C then there is a proof P' in R U C' with P gms P'.

I
To assure simplification of inconsistency witnesses of a set C which is inconsistent, but not
provably inconsistent, the notion of a covering set is introduced.

Definition 3.3 (cf. [Ba88])
C' is said to be a (negative) covering set for C (w.r.t. R and >1“) iff we have C E ITh(R) <=»

C U C' S ITh(R) and for every indirect inconsistency witness of C there is another inconsistency
witness of C U C' which is smaller (w.r.t >“°8).

This definition of a covering set slighty differs from the one give in [Ba88] in that we require 0 to
satisfy additionally C E ITh(R) (=» C U C' ; ITh(R). This restriction is motivated by the fact that

9

we don't want to introduce arbitrary new conjectures C‘ that have nothing to do with the original C.

As it can be easily verified the set CP(R,C"’) of critical pairs obtained by overlapping R into C”
is a (negative) covering set for C.

To state Bachmair's main result the following definitions of [Ba88] are needed. A proof by
consistency procedure i s any program accepting as input a reduction ordering >, a ground
convergent >-ordered rewrite system R, a set L of inductive theorems and a set C of conjectures,
and generates a derivation from L and C. A derivation L0,C0 "w L1.Cl "2 i s fair iff the set
U i Ci of all deduced equations is a (negative) covering set for the set U i (WJ-Zi Cj of all persisting
equations. A proof by consistency procedure is fair iff it produces only fair derivations.

Theorem 3.6 ([Ba88])
Every fair proof by consistency procedure is refutationally complete, i.e. from every inconsistent
set of conjectures Co it generates a derivatiOn such that some set Ci is provably inconsistent.

Proof idea: Using the fairness assumption and the definition of a covering set one can show:
Starting from an inconsistent but not provably inconsistent set C0 and any indirect inconsistency
witness Pic := P0 for Cio := C0 it is possible to construct a sequence of inconsistency witnesses Pi]-
for R U Cij such that Pic >“g Pir >113g Piz >11"g . Since >neg is well-founded this sequence must
terminate so that for some j > 0, Pij is a direct inconsistency witness of Cij, i.e. Cij is provably
inconsistent. I

Now, in practice fairness may be guaranteed by some marking scheme for the computation of
covering sets analogous to standard completion. Inductive validity is characterized by

Lemma 3.7

A set C of equations i s inductively valid (w.r.t. R) iff C is a (negative) covering set for itself and is
not provably inconsistent.

Proof: The only—if-direction is trivial using the definition of (negative) covering set and provable
inconsistency. Conversely assume that C is a covering set for itself and i s not provably
inconsistent and that there exists an equation 5 = t e C with s = t es ITh(R). Then one can construct
an infinite sequence of indirect inconsistency witnesses which is strictly decreasing _w.r.t. >“°8.
This yields a contradiction to the well-foundedness of)nes, I

Hence, for successful inductive proofs we have to compute (and simplify) covering sets using the
inference system 1’ until eventually a verifiably self-covering set of conjectures i s obtained such
that no provable inconsistency has been encountered.

10

I! . I . !

As already mentioned proving inductive validity of a set of equational conjectures C from a positive

point of view can be considered as the following problem: . Show that any ground proof using

R U C can be transformed into an equivalent ground proof using only R, i.e. any C-step can be

eliminated. In order to turn this task into a proof simplification problem, too, we use Bachmair’s
inference system 1’ and define an appropriate ordering on proofs (similar to [BaDeP187]) as
follows:

If (u,v) is a proof step of the form u HC v applying an equation s = t e C at position p then its

complexity is defined by
({u}, u/p, s , v) , if s > t

cpos(u‚v) := ({v}, v/p, t, u) , if t > s
((u ,v) , - , - , -) , if s < > t

The complexity of a proof P in R U C is defined to be the multiset of the complexities of all its
C-steps. Complexities of proofs are ordered by the multiset extension > >°P°s of >°P°s- The ordering
>°P°s i s defined to be the lexicographic combination of the multiset extension > > of the reduction

ordering >, the proper subterm ordering, the proper subsumption ordering and the reduction

ordering >. Clearly >cPos as well as > >°P°s is well-founded. Thus the induced ordering >P°s on
proOfs i s also well-founded. Moreover, i t is easily verified analogous to [B'aDePl87] that >hP°s is
monotonic w.r.t. embedding, replacement and substitution. Thus it i s a proof reduction ordering.

Note that there i s a unique minimal complexity among proofs, namely the empty multiset (of

quadruplets) which corresponds to proofs using only R—steps.

Analogous to lemma 3.5 one can prove now by case analysis, that the application of an inference
rule of Tdoes not increase the complexity of ground proofs.

Lemma 3.8
Whenever L,C Fr.» L',C' and P is a ground proof in R U C then there is an equivalent ground proof
P ' inRUC'wi t t lmP ' . I

Now, in order to enable proof simplification we may again define and use a corresponding notion

of a (positive) covering set as follows:

Definit ion 3.4 (cf. definition 3.3)

C' is said to be a (positive) covering set for C (w.r.t. R and >P°s) iff we have C E ITh(R) <=»

C U C' <; ITh(R) and for every ground proof P in R U C with at least one C-step there is an

equivalent ground proof P' with P >pos P'.

Again we obtain a characterization for inductive validity as follows:

11

Lemma 3.9
A set C of equations is inductively valid (w.r.t. R) iff C is a (positive) covering set for itself.

Proof: The only-if-direction is trivial using the definition of a (positive) covering set. Conversely,

assume that C is a (positive) covering set for itself and that there is an equation s = t in C which is
not inductively valid. Then there exists an inconsistency witness s' Ri 6s HC 6t LR t'. Since in
any ground proof of the form 6s ‘L’Ruc 6 t there must be a C-step which is not valid (w.r.t. R)
we can construct an infinite sequence of equivalent ground proofs starting from s s "‘c fi t with

strictly decreasing complexity (note that the monotonicity properties of >P°s w.r.t. embedding and

replacement are needed here !). Hence we have a contradiction to >P°s being well-founded. I

Now, if C is not provably inconsistent, but we don't know already whether C is inductively valid,
i.e. a covering set for itself, then we have to compute a covering set for it. Again this is done by
cOnStructing critical'pairs between R and C“ as we will see below. But if we simply add such a
critical pair to C, and try to simplify it later according to the inference system 1’, an important
infOrmation concerning simplifiability has been lost. Namely, the superposition term belonging to
the corresponding critical overlap has been ignored. By taking into account this additional
information we get the following abstract characterization of inductive validity be means of
sirnplifiability of ground instances of critical pair overlaps.

Lemma 3.10
A set C of equational conjectures is inductively valid (w.r.t. R) iff
(1) C is not provably inconsistent, and ‚
(2) all ground instances of critical pair overlaps corresponding to CP(R‚C"") are equivalently

simplifiable with R union C (w.r.t. >P°S).

Proof: The only-if-direction is obvious. For the converse let u HC v be any ground proof using
one C-step, say s = t at position p, i.e. u' := u/p = 68, v' := v/p = fit for some u', v', 6 such that
1(t > s) w.l.o. g. Since C is not provably inconsistent, we may assume that e s is R-reducible say
to s' with one application of a rule 1 —> r in R. Then the usual case analysis for rewriting ambiguities -
reveals that we either have a variable or a critical overlap. In the first case the ground proof
6s HC (it may be equivalently replaced by a smaller proof of the form 63 L)”, . HC = „(i 6t .
In the latter case the critical overlap is a ground instance of a critical pair overlap which by
assumption i s simplifiable. Using the monotonicity property of >P°s w.r.t. replacement we may
infer that the original ground proof u <—>c v can be replaced by an equivalent but simpler ground
proof using R union C. Well-foundedness of >P°s implies that by recursively constructing such
simpler ground proofs we eventually obtain a proof of the form 11 <—*——>Rv. I

Note that this result essentially i s a generalized version of theorem 14 in [Kii87], in the sense that it
does not require all conjectures to be >-orientable. Indeed, for the above characterization of

12

inductive validity, a slightly weaker form of the ordering >Pos suffices, too. Namely, we only have
to take into account the first component of the complexity of C-steps. This yields a "standar "
ordering .>P°51 where the corresponding ordering >°P°SI for proof complexities is defined by
double multiset extension of the underlying reduction ordering >, i.e. >°P°sl := > > > >. Thus we get
a straightforward sufficient operational criterion for inductive validity as follows:

Corollary 3.11
Let > be a reduction ordering, R a >-ordered ground convergent rewrite system, C a set of
conjectures which i s not provably inconsistent, and L a set of inductive lemmas, i.e. L ; ITh(R).
Assume further that
(*) for all critical pairs (s,t) e CP(R,CH) with corresponding superposition term o we can find a

proof for s = t o f the form s <i>RucuL t such that all intermediate results are either smaller
than 0 or smaller than t (w.r.t. >).

Then we can conclude: C E I'Ih(R).

Proof: Straightforward using the ordering >¢P°SI and the fact that in every ground proof each
L-step may be equivalently replaced by R-steps which do not contribute to ground proof

complexities. I

Note that condition (*) above i s not yet effectively testable in general. But i t may be replaced for
instance by the following stronger condition:
(**) for all critical pairs (s,t) & CP(R,CT) U CP(R,CUH) with corresponding superposition term o

there exists a proof for s = t of the form s _)L’RucruLT ° "="LcU ° RucruLT‘i t, where
C = CT U CU and L = LT U LU with CT,LT >-ordered and CU,LU >-uncomparable.

Here, all intermediate results are automatically either smaller than 0 or smaller than t. And moreover
the existence of such a proof is clearly decidable.

Note that taking CP(R,CT) U CP(R,CUH) as a covering set instead of CP(R,CUH) is
possible in the previous results, too, whenever we have a partition of C into >-ordered conjectures
CT and >-uncomparable conjectures CU”. This is easily verified and conforms to the usual

practice in completion procedures.

Using the proof ordering >P°s, the notion of a (positive) covering set and corresponding
definitions of a fair derivation and a fair proof by consistency procedure one may easily state and
prove a refutational completeness result analogous to theorem 3 .6 within this "positive"
framework.

Summarizing one can say that the presented negative and positive approaches to proofs by
consistency essentially yield the same results for ground convergent base systems. The technical

differences concerning the underlying notions of orderings on proofs and covering sets reflect the
duality of the corresponding viewpoint of the problem.

But within our positive approach we may even relaxe the preconditions concerning the base

system R and still provide a sufficient condition for inductive validity as follows.

13

Assume that R is terminating with a reduction ordering > but not necessarily ground confluent.
Then the notion of (provable) inconsistency is not adequate any more. Indeed, a ground proof of
the form 5' Ri 6S <—>C 6t LR t' with s = t e C and s',t' R-irreducible and distinct does
not necessarily indicate inductive invalidity of the conjecture s = t, because s' +—’—"—+R t' may still be
possible. But the following modified version of lemma 3.10 still holds using the same proof
simplification argument as before.

Lemma 3.12
Let > be a reduction ordering and R a >-ordered rewrite system. Assume further that a set
C = CT U CU of equational conjectures with CT >-ordered and CU >-uncomparable is given
such that all left hand sides of CI‘ and all equations of CU are inductively reducible.
Then C E ITh(R) if all ground instances of critical pair overlaps corresponding to
CP(R,CT) U CP(R,CUH) are equivalently sirnplifiable with R union C (w.r.t. >P°s).

I
A sufficient operational criterion for this context is again provided by corollary 3.11which also
holds if R is not necessarily ground convergent. Of course one has to replace the condition, that C
is not provably inconsistent, by a corresponding inductive reducibility condition.

The main result of [HoKu88] is still another sufficient operational condition for inductive validity
w.r.t. a terminating, but not necessarily ground convergent system R.

Lemma 3.13 ([HoKu8 8])
Let R, C = CT U CU, L = LT 0 LU be rewrite systems such that
(1) R U CT U LT is terminating,

(2) L ‘2 ITh(R).

(3) the left hand sides of C are inductively reducible,
(4) for every critical pair (s,t) e CP(R,CT):

(*) S “L’Rucruur ° “="CU ° "L’L ° RUCI‘ULT(—*' t
(5) for every critical pair (s,t) e CP(R,CU):

(**) S _*_>RUCTULT ° "="cv ' “Lit
Thc=CTUCUEITh(R) . I

In [HoKu88] this is proved by noetherian induction according to the well-founded ordering
JARUCI‘ULT‘ Using our positive approach for inductive proofs the above result can be proved more
elegantly even in a generalized version. For that purpose we define another "positive" complexity
cpos2 of proofs using R U C as follows.

The complexity of a single proof step s —>C t o r t C(— s is the multiset {s}. The complexity
cpos2(P) of a proof P of the form s0 "L’Ruc srl is defined to be the multiset union of the
complexities of all C—steps in C. Complexities of proofs are compared by >°P°52, which is taken to
be the multiset extension of eRuLTUcr. Then we define P >P°S2 P' iff cposZ(P) >°P°82 (P'). Again,
>P°S2 is a proof reduction ordering. With these definitions it is easily verified that for every ground

14

instance of a critical overlap of
(4) s R<—- ° ""cr t and (S) s Re— ° ecu t the corresponding ground instance of (*) and (**),

respectively, i s equivalent but smaller w.r.t. >P°sz (after replacing the L- steps by R-steps).

Moreover, this simplifiability argument still applies if instead of (*) we use
(*I) S L’RUCTULT ° "='*cu ° ‘L’L ° CU“=" ° RocroLT‘i ‘-

Even more generally we may allow in (*) and (**) any mixture of R,L and C-steps provided that

certain conditions for C-steps are satisfied, i.e. we can replace (4) and (5) by

(6) For every critical pair overlap s R<— o —>CTU€U t there exists a proof P for s = t of the form
s (“*—’RuLuc t such that for every proof step in P of the form u ——>CTUCU v or v cruCU‘_ u we

have 0 > u, where > is any reduction ordering containing _’RuCI'uLT'

We have seen that the framework of proof orderings together with the concepts of inductive

reducibility and (positive or negative) covering sets provide the basis for completion based

inductive theorem proving. Algorithmic realizations of the method now consist in testing
conjectures on inductiVe reducibility and Computing (and simplifying) covering sets until a provably
inconsistent conjecture is detected or a self-covering set is obtained. For ground convergent base

systems R the method is unfailing in the sense that no failure case is possible due to situations
where one does not know how to continue, and refutationally complete under some reasonable
fairness assumption.

> If the requirement that R must be ground confluent i s omitted, our positive approach still
provides sufficient (abstract and operational) criteria for inductive validity but in this case failure
situations are possible.

Under certain conditions the method may also be generalized to non-terminating base systems
R. This is achieved by using equational rewriting and completion techniques (cf. [JoKi86]) and

testing for inductive reducibility w.r.t. the corresponding equational rewriting relation as it has been
sketched in [JoK086]. Whereas inductive reducibility remains decidable for the AC—case (cf.
[JoKo86]), i.e. the equational part of the base system consists of the associativity and
commutativity axioms for some function symbols, this problem becomes undecidable in general as
shown in [KaNaRt87]. The details of such an extension of completion based inductive proof

techniques to equational rewriting. systems (as well as to conditional systems) still have to be

worked out and constitute an interesting field of current and future research.

4. Refinements and Optimizations

Let us assume in the following that again > is a reduction ordering, and R a >-ordered ground

convergent rewrite system.

M' i ' l ' EC 'S I

As we have seen the computation of covering sets is fundamental for completion based inductive

15

proof techniques, both in the negative and positive approach. In order to obtain terminating

inductive proofs for an initial starting set C of not provably inconsistent conjectures it is necessary

to compute covering sets until eventually a self-covering set C' is reached. Hence the minimization

of covering sets is crucial in order to avoid infinite computations. As mentioned before a first

(standard) optimization consists in computing only CP(R,CT) U CP(R,CU"’) instead of

CP(R,C“’) where C = CT U CU and CT,CU denote the sets of >-orientab1e and >-uncomparable

conjectures. Stronger restrictions are possible if R-reducibility of all ground instances of s (for

= t e C, 1 (t > s)) i s given at certain positions in s . This observation leads to

Def in i t ion 4.1 ([Fr86])

A position p in a term s is said to be (inductively) complete (w.r.t. R) if for every ground instance

es with 6x (R-) irreducible for every x e V(s), 6 s is (R-) reducible at position p.

p i s a complete position in s for s = t e C, -1(t > s), then it suffices to take CP(R,p, {s —> t}) as a

coVering set for s = t. It is straightforward to generalize this idea to a complete set P of positions for

s yielding CP(R, P , {s —> t}) as a covering set for {s = t}, 1(t > 3) (cf. [Kü87]). Moreover, one

may get an even smaller covering set CP(R', P, {s -> t}) with R' E R, if for establishing the
completeness property of P the subset R' of R suffices (cf. [Kü87]). Thus, if we think of R as a
base set of function definitions, we may use alternate equivalent definitions for a completion based
inductive proof. Such a usage of alternate function definitions has already been described in [G685]
but without restricting the computation of critical pairs to complete (sets of) positions. Compared to

classical inductive theorem proving choosing a complete position corresponds to fixing an

induction term and the induction variable(s), whereas choosing a specific function definition

corresponds to fixing the induction scheme. Due to this analogy techniques from classical inductive

theorem proving for finding "good" induction terms and induction schemes (cf. [BoMo79]) now
can also be used for completion based inductive proofs. Note that different choices of a complete
(set of) positions together with a corresponding set of definition rules allow to perform independent
inductive proofs in parallel.

l m In

Another observation may also be very useful in practice to minimize covering sets. Assume that the
set of conjectures C contains two equations 5 = t and u[6 s] = u[6 t] . Then the latter conjecture i s

subsumed by s = t and can be safely eliminated because any covering set for s = t also is a covering
set for u[6 s] = u[6t]. Note that this subsumption principle i s inherent in the refined version of

corollary 3.11 (using condition (**)).

- ' n l i n i kn]

We have seen that equational lemmas may be used for simplifying conjectures and covering sets.

But it is also possible to profit of non-equational inductive knowledge, in particular implications

16

and equivalences (cf. [Pa84]). This may considerably speed up the proof or disproof of

conjectures. For instance, if we take the usual specification for natural numbers, we may provide

the following non-equational inductive knowledge which is either positive, e. g.

(1) x+y = x+ z =) y =

(2) 800*)! = S(X)*z => Y = Z
or negative, e. g.
(3) X+S(y) = 0 => true = false
(4) S(X)*S(y) = 0 = true = false,

where true = false indicates inconsistency. Thus, if a conjecture s = t entails a covering set
containing an equation e.g. of the form u+v = u+w, we may deduce v = w and hence delete
u+v = u+w due to the subsumption principle. In the case that we have a conjecture of the form
u+s(v) = O, we can immediately infer disproof from (3), whereas without (3) the inconsistency
might be detected much later. The form of the inference rules (1) - (4) may be generalized to Horn
clauses where equality is the only predicate. Applying such a Horn clause for inferring a new

equation from a set of conjectures then amounts to what is called hyperresolution in resolution
theorem proving (cf. [Pa84]).

WW

If R i s a ground convergent base system over a signature F = C U D such that the set T(C) of
ground terms built over C exactly consists of all ground normal forms of R, then the operators
from C and D are called (free) constructors and defined operators, respectively. In this practically
important case which has been studied in detail in [I-IuI-Iu82]), the problem of inductive reducibility

which is very hard in general becomes trivial, because any term s i s inductively reducible iff it
contains a defined function symbol. Moreover the following non-equational inductive knowledge is
provided gratuitously:

For every constructor c e C, say of arity n, we have ,
c(s1,...,sn) = c(tl,...,tn) e ITh(R) (=> s l = t1,...‚sn = the ITh(R).

Hence { s l = t1,..., 3“ = tn} i s a covering set for {c(s1‚...,sn) = c(t1,...,tn)}. Moreover every

conjecture of the form c1(...) = c2(...), where c l , c2 are distinct constructors, cannot be an
inductive theorem of R. This negative knowledge may even be generalized to conjectures of the
form c(...) = x or x = y, provided that at least two different constructors (for the corresponding

sort) exist.

BE' I I I II' EI ! I' C ! I ' E II

If inductive completion starts with an initial set C of conjectures and eventually encounters an
inconsistency, we know that there is an equation in C that is not inductively valid. But there may be
others which have indeed been proved. In order to improve such an incomplete knowledge one

17

may incorporate some kind of memory mechanism into the inductive completion procedure. For
that purpose it is necessary to keep for every conjecture the information where it stems from, i.e.
whether i t was produced as an element of a covering set of a former conjecture or obtained by
simplification of another conjecture. In the latter case the conjectures used for simplification have to
be stored, too. From the resulting conjecture dependency graph valid partial proofs can then be
extracted (cf. [Kü87]). But in general such an approach may be very complicated and expensive.

A reasonable compromise in practice consists in proceeding incrementally. That means, try
first to prove simple, basic and auxiliary conjectures, before attacking the main conjecture(s). Of

course, the question which auxiliary lemmas might be useful to succeed in a proof for a main
conjecture is very difficult in general. Inductive completion may be seen as a straightforward way

of producing auxiliary conjectures. Namely, if an initial conjecture s = t entails a covering set C
then any equation from C that cannot be simplified to a trivial equation may be considered to be a
non-trivial auxiliary conjecture for proving s=t. But, as it is well-known from practical experience,
this mechanism often is not sufficient for successful inductive proofs. Technically such a situation
is reflected by divergence of inductive completion methods, i.e. more and more auxiliary
conjectures are generated. This phenomen closely corresponds in the classical approach to the

situation, that for succeeding in the induction step, a new lemma is needed the proof of which again
leads to a "gap" in the corresponding induction step, and so on.

I l . o . I . l " . l . u l . o I

As mentioned above it is possible to restrict the computation of critical pairs of R u C to
overlapping R into C at complete positions. Doing so, divergence of general completion may often
be avoided. As an example (cf. [Fr86]) let R be the definition of natural number addition given by
0+x —> x, s(x)+y —> s(x+y) and C consist of the conjecture A : x+(y+z) = (x+y)+z. Here, general
completion provided with an appropriate reduction ordering that directs A from left to right
diverges, i.e. does not terminate. But identifying the top position 8 in the left hand side of A as a
complete position and restricting the covering set to be computed to CP(R,€,C) leads to a

successful proof. But in other cases such a restriction leads to divergence whereas general
completion successfully terminates. A famous example (cf. [HuHu82]) for this phenomenon is the
proof of the involution property C: rev(rev(x)) = x for reversing lists, where R consists of the usual
recursive definitions for app(end) and rev(erse) using constructors nil and cons. Restricting critical
pairs to CP(R,C) results in divergence, wher’eas computing all critical pairs lead to a successful
proof producing the auxiliary lemma rev(app(x,cons(n,nil))) = cons(n,rev(x)). These observations
may be exploited as follows (cf. [Kü87]). One may compute all critical pairs of R U C, in particular
also CP(C‚C) by overlapping conjectures, but distinguish between those that contribute to covering
sets ("essential" critical pairs) and others that are not really necessary ("inessential" ones).
Inessential critical pairs may then be useful to simplify essential ones. If such a simplification step
is performed during completion then the correctness of this step of course depends on the inductive
validity of the inessential equation used. Thus it has to be turned into an essential one which also
has to be proved. Note that such a refined version of inductive completion also requires an

18

appropriate mechanism for keeping track of dependencies between conjectures. Although such a
refinement is helpful in some cases for producing important auxiliary conjectures, it is in general
very expensive. This is due to the amount of bookkeeping work that has to be performed and to the
potentially huge number of inessential critical pairs. Moreover, it is in a sense a purely syntactic
and relatively blind method for deducing new conjectures in that it i s not goal-directed. That means

when computing an inessential critical pair we do not know in advance whether it will ever be
useful for the original proof task.

WWW

Assume again that > i s a reduction ordering, R a >—ordered ground convergent base system,
C =CT U CU a set of not provably inconsistent conjectures and L = LT U LU a set of inductive
lemmas, such that CT, LT are >-ordered and CU, LU >-uncomparable. Now, it may be the case
that for some critical pair (s,t) e CP(R,CT) U CP(R,CUH) with superposition term 0 it is

impossible to find a proof P for s = t of the form
(**) S L’RvCTULT ° <‘="LUUCU ° RocruLT‘it (see Corollary 3-11)-

Nevertheless it may be possible that an equivalent proof P' of the form
(*) S ‘J‘fizucUL t
exists, such that the complexity (cposl) of each C—step in P' i s smaller than cpos1(o,t). But
whereas (**) may be effectively tested, this is not possible in general for (*). What can instead be
done is to use some heuristics for finding a proof of the form (*). Closely related to this problem is
the choice of the underlying reduction ordering > as well as the choice of some appropriate subset

of already available lemmas. Let us illustrate these aspects a little bit more detailed by means of an

example borrowed from [HoKu88]. ‚

Example 4.1 (binomial coefficients)
Assume that we are given the following specification Ro U R1 for natural numbers with addition
and binomial coefficients.
Ro: (a l) 0+y ‚ => y

(a2) s(x)+y => s(x+y)

R1: (bl) b(0‚s(k)) => 0
(b2) b(n,0) => s(O)
(b3) b(s(n),s(k)) => . b(n,s(k)) + b(n,k)

Taking the recursive path ordering induced by the precedence >F with b >F + > s as reduction >

ordering, R := R() U R1 is >-ordered and ground convergent (it is even convergent). Assume
further that the following set L of (>-ordered) inductive lemmas of R0 (as well as of R) is available:

L: (a3) x+0 => x
(a4) x+s(y) => s(x+y)

Let us now try to prove that
(b4) b(n,n+s(m)) = 0

is an inductive consequence of R. Computation of a covering set for (b4) requires to consider the

19

critical overlaps corresponding to CP({(a1),(a2)},2,(b4):
(i) b(0,s(m) (a1)‘_ b(0,0+s(m)) ——9(b4) 0 which is simplified. to

b(0,s(m)) ——>(b1) O, and
(ii) b(s(n),s(n+s(m)) (fif— b(s(n),s(n)+s(m)) —>(b4) O . Here simplification yields

b(s(n),s(n+s(m))) —>(b3) b(n,s(n+s(m))) + b(n,n+s(m))
—>(b4) b(n,s(n+s(m))) + O ——>(a3) b(n,s(n+s(m))), but

b(s(n),s(n+s(m)) —l"-—>RuLU{b4} ° RuLUmri 0 is impossible.
Thus the simple version of inductive completion requiring rewrite proofs for critical pairs diverges
producing the infinite sequence of rules

(b4k) b(n,sk(n+s(m)) —> 0,
if only (a3) is used as a lemma, or

(b4k') b(n,sk+1(n+m)) —> 0,
if (a3) and (a4) are available as lemmas. In order to close the "gap" above between b(n,s(n+s(m)))
and O we use an L—step in reverse direction as follows:

b(n,s(n+s(m)) (a4)<— b(n,n+s(s(m))) —>(b4) 0.
But we. have to verify that b(n,n+s(s(m))) is smaller than the corresponding superposition term
b(s(n),s(n)+s(m)). This is not the case for > as above. But when we modify > into a recursive path
ordering >' with status such that status(b) = left-to-right this condition is satisfied and all equations
of R U L U [b4} are oriented as before. Using still another reduction ordering based on monotonic
interpretations (cf. [De87] one may even get a rewrite proof equivalent to (ii) (cf. [HoKu8 8]).

Indeed, it turns out that in order to succeed in the above example some non-trivial intelligent
decisions are necessary. Useful heuristics for the question which equation (from R U L U C)
should be used at which step in a proof simplification process as above might be developed from a
more goal-directed approach. In the example the goal to prove b(n,s(n)+s(m)) = 0 can be reduced
to the subgoal of how to transform b(n,s(n+s(m))) into another term such that the "induction
hypothesis" (b4) b(n,n+s(m)) => 0 becomes applicable (again). For that purpose one may try to
eliminate the "bad" parts of b(n,s(n+s(m))). Here, instead of the subterm s(n+s(m)) we need a
subterm of the form n+s(m') to make (b4) applicable. Indeed, the problematic "context s" at top
position can be moved "downward" using (a4) in reverse direction yielding n+s(s(m)) which is of
the desired form. An attempt to formalize such ideas of goal-directed (equational) reasoning and an
extended example is given in [Hu89] (for classical inductive theorem proving).

1111

A further technique for obtaining simpler proofs for ground instances of critical overlaps consists in
splitting the problem into (hopefully simpler) subproblems. Let us demonstrate this technique again
via an example (from [Gö88]).

Example 4 .2
Let > be the rpos induced by an empty precedence on [e,f} and with status (0 = left-to-right, and

20

R, C be given as follows in >-ordered form:
R: (1) f(e,x) —> x

(2) f(f(x‚y)‚Z) -> f(x‚f(y‚Z))

C: (3) f(x,x) —> x

In order to show that (3) is an inductive consequence of R = {(1),(2)} we first verify that the left
hand side f(x,x) of (3) obviously is inductively reducible. The first critical overlap corresponding to
CP((1),(3)) to be considered i s trivial, but for the second one we have to simplify all ground
instances of the proof
P: f(x‚f<y‚f(x‚y)))

(2, — f(f(x‚y)‚f<x‚y>> —>(3‚ f(x‚y)

Now, it i s impossible to simplify P itself but i t would also suffice to simplify P1 := 61P and

P2 := 62F with 61 := {x <— e}, 62 := {x e- f(u,v)], because 61 and 62 consitute a complete case
distinction for the ground case. Hence we get
Pl : f(e,f(y,f(e,y))) (2)(— f(f(e,y),f(e,y)) —->(3) f(e,y), which can be simplified to

P13 f(e,f(y,f(e,y)) —’(1) f(eafly’Y» —’(3) f(e’Y) and
P2: f(f(u‚V)‚f(y‚f(f(u‚V)‚y)))

(„<-—
f(f(f(u‚V)‚y)‚f(f(u‚V)‚y)) —>(3) f(f(u.V).Y)

which is simplifiable to
Pi : f(f(u‚V)‚f(y‚f(f(u‚V)‚y))) -—>(1) f(f(u‚V)‚f(y‚f(u‚f(V‚Y))))

(„<— f(f(f(u‚v)‚y>‚f(u‚f(v‚y)» —>(1‚ f(f(u‚f<v‚y»‚f(u‚f(v‚y>»

"*(3) f(u9f(VvY)) (D‘— f (f (u:v) :Y)-

Note in particular that the intermediate "peak" result f(f(f(u,v),y),f(u,f(v,y))) in P2' is smaller than

the superposition term f(f(f(u,v),y),f(f(u,v),y)) (w.r.t. >). Hence (3) i s indeed an inductive
consequence of R. Using inductive completion without such an elaborate case analysis again results
in divergence. The question of how to perform a case analysis as above is treated in detail in

[Gö88] where a general ground confluence criterion is developed. In fact the different cases are
obtained there by overlapping again into the original superposition term. Of course one has to
verify that the resulting case distinction is complete, and if not, to consider the remaining cases,
too.

5 . Generalization Techniques

All the refinements and optimizations presented in the previous chapter are not sufficient in many
cases for successful inductive proofs. This may be due to the lack of some important auxiliary
lemma. But it may also be the case that the induction hypothesis provided by the conjecture is too
weak to be applicable within the induction step. Or in other words, it may be easier to prove a
conjecture which is more general than the original one, because the corresponding induction
hypothesis is also stronger and thus may become applicable now. Within the field of classical
inductive theorem proving generalization techniques and heuristics have been extensively studied
(cf. [Au79],[BoMo79],[Ca85],[VyAb85],[I-Iu87] among others). All these techniques can also be
used (in more or less modified form) for completion based inductive theorem proving. In the
following we will briefly summarize some of these techniques including a classification scheme.
Moreover a new technique for save generalization is presented. Let us start with

21

Definition 5 .1

Let E, C, C' be sets of equations over a fixed signature. We say that
C' is an (equational) generalization of C (w.r.t. E) if C E Th(EUC')
C' i s a syntactical generalization of C if C E Th(C')
C' is an inductive generalization of C (w.r.t. E) if C S ITh(EUC').

Clearly every syntactical generalization C' of C also is an equational generalization (w.r.t. an
arbitrary E) and every equational generalization C' of C (w.r.t. some E) also i s an inductive
generalization of C (w.r.t. the same E). Now, most generalization techniques are based on

equational or even syntactical generalization since appropriate and non-trivial inductive
generalizations are hard to obtain. Syntactical generalizations are constructed according to the
replacement and substitution axioms of equality. This yields the following generalization rules:

. . h . i - r .

Iffor all u = v e C there exists s = t e C' and 6 with 6 s = u and 6 t = v then C' i s a syntactical

generalization of C.
If we consider equations as ordered pairs of terms and require the generalization to be a single

equation, then there exists a minimal generalization which is unique up to variable renaming and“
may be effectively computed (cf. [Hu80]).

In practice one often considers a single equation s = t as a candidate for generalization. In order

not to generalize too strong, one may then search for minimal non-variable common subterms in s
and t and replace (some of) them by a new variable. This can be restricted to independent common
subterms of s = t, i.e. the variables in the subterms of s = t to be replaced do not occur anywhere
else in s = t. Thus variable bindings between the common subterms to be replaced and the context
in s = t won't get lost.

Example: (x+y)+0 = x+y —> 2+0 = z.

Another elementary generalization step consists in splitting variables, i.e. replace some
occurrence(s) of a variable in s = t by a new variable.

Example: x+(x+x) = (x+x)+x —> y+(x+x) = (x+x)+y.

By combining both kinds of generalization steps we obtain for instance
x+(x+x) = (x+x)+x -9 y+z = z+y.

22

G l . I. l E IP | .

According to the replacement axiom for equality one may establish f(s1,...,sn) = f(tl,...,tn) by
extracting and equating the corresponding argument pairs yielding s1 = t1,...‚sn = tn. Of course, we
may ignore any resulting trivial equation.

Example: x+((y+0)+z) = x+(y+z)
—> (y+0)+z = y+z

-> y+0 = y

E I ' IG l ' l '

Equational generalizations (w.r.t. E) are obtained by combining syntactical generalization steps
with E—steps.

Example: (x+y)+0 = y+x —) z+0 = z, with E = {x+y = y+x}.

The technique of accumulator introduction also falls into this category (cf. [Au79]).

Example 5.1 4
Assume for illustration that app(end) and rev(erse) for lists over some element type are defined by

(1) app(ni1‚y) —> y
(2) app(con8(n‚X)‚y) + con8(n‚app(x‚y))

‘ (3) rev(nil) —> nil

(4) rev(cons(n,x)) —> app(rev(x),cons(n,ni1))

and
(L1) app(x,nil) = x

(L2) app(app(x,y),2) = app(x,app(y.2))

are available as inductive lemmas. Assume further that another function revit on lists is defined as
follows:

(5) revit(ni1,y) —> y

(6) revit(cons(n,x),y) —> revit(x,cons(n,y))
Then the conjecture (7) revit(x,ni1) = rev(x) saying that revit provides an alternative (iterative)

version for reversing lists may be equationally generalized to
(8) revit(x‚y) = app(reV(X)‚y)

using E = {(L1)}. A completion based inductive proof for (8) i s easily performed (with an

appropriate reduction ordering and making use of (1.2)) whereas a proof of (7) fails due to
divergence.

Another subcase of equational generalization which is very important in practice, will also be
demonstrated via the following simple but extended

23

Example 5.2

Assume that the addition on natural numbers is defined by
(1) 0+x = x

(2) S(X)+y = H80)

and that we want to prove the inductive conjecture
(Lo) x+0 = x .
Now, inductive completion starting with (1) - (3) ordered from left to right (by an appropriate Ipos)
diverges producing

(LI) x+s(0) = s(x)

(L2) X+S(S(0)) = S(S(X))

(Ln) x+sn(0) = sncx>

The new equations (rules) (Ln) cannot be generalized syntactically to a common generalization that
will still be inductively valid. But combining (Ln) with (I..n+1) as follows leads to (infinitely many)
new equations (Ln') that can be generalized syntactically into a non-trivial new conjecture (cf.
[Gr85]). Identifying the subterm of the right hand side of (Ln+1) at position 1 as the right hand side
of (Ln).and replacing this subterm by the corresponding left hand side of (Ln) we obtain:

(Lamm: x+s(0) = we (Lo')
(Lanz): x+s(s(0» = s(x+s<0» (Ll‘)

(Loam): x+s(sn<0» = s(x+sn(0)> (Ln')

Obviously, all these equations (Ln') can now be generalized syntactically into (L) x+s(y) = s(x+y)
by replacing the (independent) common subterm s“(0) by the new variable y. Inductive completion
with conjecture set C = {(Lo),(L)} now immediately succeeds. This technique of combination of
equations plus subsequent generalization of non-trivial common subterms corresponds to what is
called cross-fertilization in classical inductive theorem proving (see e.g. [BoMo79]).

Now, all presented generalization techniques as well as many (more or less sophisticated)
refinement entail the danger that the property of being inductively valid does not remain invariant.
Hence, if a generalization turns out not to be inductively valid, we can in general conclude nothing
about the inductive validity of the original conjecture. But in some cases we can get rid of this
uncertainty as follows:

' l i z i

Definit ion 5 .2

Let E , C, C' be sets of equations over a fixed signature. We say that C' is a safe (inductive)
generalization of C (w.r.t. E) iff C :- ITh(EUC') and additionally C E I'I'h(E) (=» C' ‘; I'I'h(E).

24

One important application of safe generalization is provided in [Gr85] for the case of specifications

with constructors. Assume that EO is a base specification over F0 and E = E() U E1 is a complete
and consistent enrichment of E0 over F = Fo U F1. In this case Fo may be considered to be a set of
constructors (which are free for Eo = @) and F1 the set of defined operators.

Definition 5.3
Let EO, F0, E1, F1 be given as above. Then we say that a term t e T(F,V) i s complete for T(Fo)

(w.r.t. E) iff for every t' e T(Fo) there exists a ground instance 6 t 6 T(F) such that 6 t =13 t'.

Examples for complete terms are x+y in example 5.2 or rev(x) in example 5.1 whereas x+x and

app(x,x) are not complete. We can now safely generalize an inductive conjecture by replacing
independent complete subterms of a conjecture by new variables.

Lemma 5.1
Let EO, FO, E1. F1 be given as above and let s = t be an inductive conjecture over F = Fo U F1.

Assume further that r & T(F,V) occurs as subterrn of 3 at positions u1,...,um and as subterm of t at
positions v1,...,vn such that the variables of r do not occur in s and t outside of the subterms s/ui
and t/vj, respectively. Moreover, let s' = t' be the syntactical generalization obtained from s = t by
replacing all the s/ui, t/vj by the (same) new variable z. Then s' = t' is a safe generalization of s = t if
r is complete for T(Fo).

Proof: see [Gr85]. I

For instance, in example 5.1we may safely generalize the conjecture app(rev(x)‚nil) = rev(x) into
the syntactically simpler form app(z,nil) = z.

In practice this technique of save generalization may be supported by collecting the information that
certain terms possess the above completeness property in a kind of inductive knowledge base.

6 . UNICOM: A Refined Completion Based Inductive Theorem Prover

Based on the presented theoretical framework we have implemented UNICOM, a system for
refined unfailing inductive completion which is described in detail in [Sc88]. UNICOM is a
central tool of TRSPEC, a term rewriting based system for investigating algebraic specifications
(cf. [AvGöGrMaSt87]. TRSPEC i s able to treat hierarchically structured many-sorted
specifications of functions (rewrite programs) and inductive conjectures (properties to be proved).
Input specifications have to satisfy the following conditions. Constructors have to be declared and
are required to be free. The left hand sides of the definition rules for a (n-ary) non-constructor
symbol f have to be of the form f(t1,...,tn), where all ti are constructor terms. The system

25

comprises the following tools:

The parser checks the syntax of input specifications, imports used subspecifications and produces
an internal representation.

The checker tests the function definitions for completeness and consistency using the syntactical,
restrictions mentioned above. In particular, termination of the definition rules is established by
automatically generating a suitable recursive path ordering with status which is also used for
subsequent inductive proofs. Ground convergence is established by investigating critical pairs. A
special feature of the implemented completeness test allows to identify minimal complete sets of
defining rules for the same function symbol, i.e. alternate but equivalent function definitions.

The compiler provides a means for rapid prototyping by translating correct specifications (only
the definition part) into executable LISP code.

The central part of the system is the prover which tries to prove or disprove the inductive
conjectures of the actual specification. The original completion based prover of TRSPEC was
already able to handle certain non-orientable conjectures leading to globally finite instead of
terminating rewriting systems (cf. [Gö85]). UNICOM now admits arbitrary possibly
non-orientable conjectures.

The following features are characteristic for UNICOM and partly also for the old prover:

- parallel independent inductive proofs are possible according to the different possibilities of
choosing complete positions in conjectures together with corresponding minimal complete
function definitions

- inessential critical pairs may be computed as potentially useful auxiliary conjectures

- a simple generalization technique (looking for minimal non-variable common subterms) is
available

- elimination of subsumed non-orientable conjectures is integrated

- non-equational inductive knowledge about free constructors is used for speeding up the proof
or disproof of conjectures

- various user interface parameters allow for switching on/off optional features (e. g. generaliza-
tion, computation of inessential critical pairs) and enable a fully automatic or more or less
strongly user-controlled running mode.

26

Numerous experiments with UNTCOM have shown that many inductive properties of common

abstract specifications for booleans, natural numbers, lists, stacks etc. can easily be proved using
such a flexible completion based inductive proof technique (see the appendix for an example
session). But there are also interesting examples where the method fails, i.e. diverges generating

more and more equations. In such cases a more careful analysis and good heuristics for applying
the refinements, optimizations and generalization techniques discussed above are necessary.

7 . Conc lus ion

We have presented an overview of completion based inductive theorem proving techniques. The
key concepts of the underlying theoretical framework have been pointed out. In particular we have
shown how to get "positive" and "negative" abstract characterizations of inductive validity as well
as easily understable and generalized operational criteria. Furthermore we have presented and
discussed various practically irnportant refinements, optimizations and generalization techniques.
The theoretical investigations as well as practical experiments with our implementation of UNICOM
indicate that challenging problems remain to be solved, e.g.:
(1) How can we design good strategies and heuristics for applying and combining the

refinements, optimizations and generalization techniques presented ?
(2) What should a powerful, comprehensible and flexible completion based inductive theorem

prover look like, that is able to combine automatic tools as well as human intuition and
intelligence ?

References

[Au79] Aubin, R. : Mechanizing Structural Induction, Part I : Formal System, Part I I :
Strategies, TCS, Vol. 9, 1979

[AvGöGrMaSt87] Avenhaus, J., Göbel , R. , Gramlich, B . , Madlener, K, Ste inbach , J . :
TRSPEC: A Term Rewriting Based System for Algebraic Specifications, Proc.
of the 1St International Workshop on Conditional Term Rewriting Systems,
Orsay, France, 1987, LNCS 308, eds. S. Kaplan, J.-P. Jouannaud, 1988

[Ba87] Bachmair, L : Proof Methods for Equational Theories, PhD Thesis , Univ. of
Illinois, Urbana Champaign, 1987

[Ba88] Bachmair, L.: Proof by Consistency in Equational Theories, Proc. of LICS,
pp. 228-233, 1988

[BaDeHs86] Bachmair, L., Dershowitz, N., Hsiang,J.: Orderings for equational proofs,
Proc. of Symb. Logic in Computer Science, Bostin, Massachusetts, pp.
346—357, 1986 '

[BaDePl87] Bachmair, I...; Dershowitz, N., Plaisted, D.A.: Completion without failure,
CREAs Proc., Lakeway, Texas, 1987

[BoMo79] Boyer, R . , Moore, J .: A Computational Logic, Academic Press, 1979

[BüKü89] Biindgen, R., Küchlin, W.: Computing Ground Reducibility and Inductively

[Bu69]

[Ca85]

[D682]

[Fr86]

[G080]

[6685]

[6587]

[6588]

[Gr85]

[110K088]

[HsRu86]

[Hu80]

[Hu87]

[Hu89]

[HnHll82]

[Hq80]

[JoKi86]

27

Complete Positions, Proc. 3rd RTA, Chapel Hill, North Carolina, USA, LNCS
355, pp. 59-75, 1989

Burstall, R.: Proving properties of programs by structural induction, Computer
Journal 12/1. Pp. 41-48, 1969

Castaing, I . : How to facili tate the proof of theorems by using
induction-matching and by generalization, Proc. 9th UCAI, Los Angeles, pp.
1208-1213. 1985

Dershowitz, N.: Applications of the Knuth-Bendix completion procedure, in
Proc. of the Seminaire d'Informatique Theorique, pp. 95-111, Paris, France,
1982

Fribourg, L.: A strong restriction of the inductive completion procedure, Proc.
13th ICALP, Rennes, France, LNCS 226, pp. 105-116, 1986

Goguen, I.A.: How to prove algebraic inductive hypotheses without induction,
Proc. of 5th CADE, ed. W. Bibel and R . Kowalski, LNCS 87, pp. 356-373,
1980

Göbel, R.: Completion of Globally Finite Term Rewriting Systems for
Inductive Proofs, Proc. of GWAI 85, Springer Verlag, 1985

Göbel, R . : Ground Confluence, Proc. 2nd RTA, Bordeaux, France, LNCS
256, 1987 ,

Göbel, R.: A Completion Procedure for Generating Ground Confluent Term
Rewriting Systems, Dissertation, FB Informatik, Universität Kaiserslautern,
Feb. 1988

Gramlich, B.: Zum Beweisen durch Reduktion und Induktion, Diplomarbeit,
Fakultät fiir Informatik I, Universität Karlsruhe, 1985

Hofbauer, D . , Kutsche, R . -D. : Proving inductive theorems based on term
rewriting systems, Techn. Report 88-12, TU Berlin, 1988, see also Proc. of an
International Workshop on Algebraic and Logic Programming, Gaussig, GDR,
Nov. 1988

Hsiang, J., Rusinowitch, M.: On word problems in equational theories, Techn.
Rep. 86/29, SUNY at Stony Brook, USA, 1986

Huet, G.: Confluent reductions: abstract properties and applications to term
rewriting systems, JCSS 25, pp. 239-266, 1982

Hummel, B.: An investigation of formula generalization heuristics for induction
proo f s , I n t . Be r i ch t 6 /87 , In s t i t u t f . Log ik , Komplex i t ä t und
Deduktionssysteme, Univ. Karlsruhe, 1987

Hutter, D.: Verwendung von Induktionshypothesen in Induktionsbeweisen,
Workshop Verifikation, Konstruktion und Synthese von Programmen,
Karlsruhe, April 1989

Huet, G., Hullot, J . : Proofs by Induction in Equational Theories with
Constructors, JACM 25(2), 1982

Huet, G., Oppen, D.C.: Equations and rewrite rules: A survey, in Formal
Language Theory: Perspectives and Open Problems, pp. 349-405, ed. R.
Book, New York, Academic Press, 1980

Iouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of
equations, SIAM J . Comp., 15/4, pp. 1155-1194, 1986

[JOK086]

[KaNaRoZl87]

[KaNafil86]

[Ki84]

[Kü87]

[Ku88]

[1380]

[1381]

[Mu80]

[P384]

[P185]

[3088]

[VyAb85]

28

Jouannaud, J.-P., Kounalis, E.: Automatic proofs by induction in equational
theories without constructors, Proc. Symb. Logic in Computer Science,
pp. 358-366, Boston, Massachusetts, 1986

Kapur, D.; Narendran, P. , Rosenkrantz, D.J., Zhang, H.: Sufficient
Completeness, Quasi-Reducibility and Their Complexity, Techn. Rep. 87-26,
Dept. of Comp. Sci., State Univ. of New York at Albany

Kapur, D. , Narendran, P., Zhang, H.: Proof by induction using test sets,
Proc. of 8th CADE, pp. 99-117, ed. J . Siekmann, LNCS 230, 1986

Kirchner, H.: A general inductive completion algorithm and application to
abstract data types, Proc. of 7th CADE, LNCS 170, pp. 282-302, 1984

Küchlin, W.: Inductive Completion by Ground Proof Transformation, Proc.
CREAS, Lakeway, Texas, 1987

Kucherov, G.: A new quasi-reducibility testing algorithm and its applications to
proof by induction, Proc. of an Int. Workshop on Algebraic and Logic
Programming, Gaussig, GDR, 1988

Lankford, D.: Some remarks on inductionless induction, Techn. Report
MTP- l l , Mathematics Department, Louisiana Tech. Univ . , Ruston, USA,
1980

Lankford, D.: A simple explanation of inductionless induction, Techn. Report
MTP-l4, Mathematics Department, Louisiana Tech. Univ., Ruston, USA,
1981

Musser, D.: On proving inductive properties of abstract data types, Proc. 7th
ACM Symp. on Principles of Programming Languages, pp . 154-162, Las
Vegas, Nevada, USA, 1980

Paul, E.: Proof by induction in equational theories with relations between
constructors, Proc. of 9th CAAP, ed. B . Courcelle, Cambridge Univ. Press,
1984

Plaisted, D.A.: Semantic confluence tests and completion methods, Information
and Control 65, pp. 182-2151985

Schere r , R . : UNICOM: Ein verfeinerter Rewrite-basierter Beweiser für
induktive Theoreme, Diplomarbeit, FB Informatik, Universität Kaiserslautern,
1988 '

Vytopil, I . , Abdali, S.K.: Generalization Heuristics for Theorems Related to
Recursively Defined Functions, Proc. of the National Conference on Artificial
Intelligence, Univ. of Texas, at Austin, pp. 1-5, 1984

Z:

Appendix: An example session with UNICOM

The following is an example session with UNICOM which
should provide a rough idea of how to work with the
system. For the sake of readability user inputs are
preceded by a “#" and meta comments explaining what
is going on start with a ";".

; Starting UNICOM produces the following top—level menue

* *

* Program parameter UNICOM : *
* *

single-step : YES
generalize : NO
protocol : NO

* *

Program menue UNICOM

PARSE-SPECIFICATION
CHECK-SPECIFICATION
PROVE-SPECIFICATION
PARSE-CHECK-AND-PROVE-SPEC
COMPILE-SPECIFICATION
RUN-SPECIFICATION
EDIT-SPECIFICATION
CHANGE-STATUS-SINGLE-STEP
CHANGE-STATUS-GENERALIZE
CHANGE-STATUS-PROTOCOL
EXITH

F
J

H
<
3
u
>
m
—
J
o
s
m
.
ß
u
a
w
r
4

**
**
>
E
*

**

*

**
>
+
*

**

**
*
>
+
*

*

* *

Type any symbol ———>‘ #4

You Choose PARSE-CHECK-AND-PROVE-SPEC

Type the filename —-—> #boolean

We first want to investigate the following specification
o f booleans, i n particular we would like t o show that
the given equations are inductive theorems of the set of
definition rules for "or" and "not" (interpreted as equations).
First the parser is invoked producing the following output.

w
.

\
.

\
.

\
.

-

SPEC boolean

SORTS bool

OPS t , f : ——> bool
not : bool ——> bool
o r : bool bool ——> bool

CONSTRUCTORS t, f

EQUATIONS or(x,y) = or(y,x)
or(or(x,y)‚z) = or(x,or(y‚z))

RULES not(f) ——> t
not(t) ——> f

or(f,x) ——> x

or(t,x) --> t

ENDSPEC

Next the checker tests the specification for various
properties, which assure in particular that all
functions which are non-constructors (here: "not" and "or")
are completely and consistently defined. Note that
termination is proved by automatically generating an
appropiate recursive path ordering with status (rpos).

s
.

\
.

\
.

\
.

\
.

&
.

Checking left hand sides of rules

All left hand sides o f rules are correct !

Checking termination of rules

System is terminating !

Checking confluence

System is confluent !

Checking totality of definitions

Checking totality of NOT

1 definition for the function symbol NOT generated !

Checking totality of OR

1 definition for the function symbol OR generated !

All functions are totally defined !

If the "RULES“-part of the specification contains
several alternate but equivalent definitions for
a non—constructor function this is recognized and
used later on for inductive proofs. Here there is
only one definition for "not" and for "or".

&
.

\
.

w
.

\
.

w
.

\
.

Now the prover is invoked trying to prove inductive
validity of the two equations. This is done in
parallel and independently for both conjectures
(hypotheses). Internally the smallest equation is
processed first (here: commutativity of "or").

\
-

\
.

&
.

\
.

s
.

* *

STOP
NEXT
CONTINUE
HYPS
ACCEPTED-HYPS
REJECTED-HYPS
RULES
UNCOMP-RULES
CHANGE-PARAMETER

K
)
®
—
J
O
\
U
1
#
(
M
B
J
H

*

**
*

>
P
*

*
*

**

**

*

* *

a a

Type any symbol ———> # 3

You have chosen CONTINUE

In order to be as flexible as possible the user
is asked what t o do when equations are processed
that cannot be directed with the current rpos
(or a possible extension). A save automatic
variant would be t o consider every non—orientable
equation as oriented "twoway"._

.
-

s
.

u
.

\
.

-

Orient uncomparable equation OR(Y,X) == OR(X‚Y)

Straight (1), Reverse (2) or Twoway (3) ——> #3

; O f course, this i s the only sound possibiliy here!

New uncomparable equation generated :
(BOOLEAN 5) : OR(Y,X) == OR(X,Y)

New rule generated
LHS BOOLEAN 5, BOOLEAN 3 ==> (BOOLEAN 6): OR(X,F) ——> X

New rule generated :
LHS BOOLEAN 5 , BOOLEAN 4 ==> (BOOLEAN 7) : OR(X,T) ——> T

Hypothesis accepted : OR(Y,X) == OR(X,Y)

; Now, commutativity o f " o r " has been proved
; generating the additional inductive

theorems "(BOOLEAN 6) " and "(BOOLEAN 7)".

Next the other conjecture i s processed

Orient uncomparable equation OR(OR(X,Y),Z) == OR(X‚OR(Y‚Z))

Straight (1), Reverse (2) or Twoway (3) ——> #1

; Note that this orientation is sound considering
; an rpos with status(or) = left—to-right. But the

proof would also succeed choosing the save "twoway"—orientation.

New rule generated : (BOOLEAN 8) : OR(OR(X,Y),Z) --> OR(X,OR(Y,Z))

Hypothesis aCCepted : OR(OR(X,Y)‚Z) == OR(X‚OR(Y,Z))

* *

STOP
HYPS
ACCEPTED-HYPS
REJECTED-HYPS
RULES
UNCOMP-RULES

O
\
m
.
b
L
D
h
J
H

>
&
*

*
i
-
*

**

*
*
*
*
*
*
*
*
*
* *

Type any symbol ———> # 1

You have chosen STOP

; All proved conjectures are stored and the system
p r e t u r n s t o top—level.

a :

* *

* Program parameter UNICOM : *
* *

single—step : YES
generalize : NO
protocol : NO

* *

Program menue UNICOM

PARSE-SPECIFICATION
CHECK-SPECIFICATION
PROVE-SPECIFICATION
PARSE*CHECK-AND-PROVE-SPEC
COMPILE-SPECIFICATION
RUN-SPECIFICATION
EDIT-SPECIFICATION
CHANGE-STATUS-SINGLE-STEP
CHANGE-STATUS—GENERALIZE

1 0 CHANGE-STATUS-PROTOCOL
1 1 EXIT

K
>
m
-
J
O
\
U
I
h
(
p
h
J
H

*
>
fi
*

*
>
+
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

Type any symbol ———> # 4

You choose PARSE-CHECK—AND—PROVE—SPEC

Type the filename ———> #natural

; Now we shall prove the transitivity property of
; the less-or-equal (le) predicate on natural
‚ numbers.

SPEC natural

USE‘boolean

SORTS nat

OP S o : — — > nat
s : nat — — > nat
l e : nat nat ——> bool

CONSTRUCTORS o, s

EQUATIONS or(not(le(x,y)),or(not(le(y,z)),le(x,z))) = t

RULES le(o,x) ——> t
le(s(x),o) ——> f
le(S(X),s(y)) -—> lé(XrY)

ENDSPEC

Checking left hand sides o f rules

All left hand sides o f rules are correct !

Checking termination o f rules

System is terminating !

9 0

Checking confluence

System i s confluent !

Checking totality of definitions

Checking totality of LE

1 definition for the function symbol LE generated !

All functions are totally defined !

* *

STOP
NEXT
CONTINUE
HYPS
ACCEPTED—HYPS
REJECTED—HYPS
RULES
UNCOMP—RULES
CHANGE—PARAMETER

w
(
D
—
J
O
\
U
1
Ö
(
Q
B
J
H

*
‘
*

*
*
=
+
*
'
*

*
**

*

*
>
F
*

*

* *

Type any symbol ———> #3

You have chosen CONTINUE

RULE :

(NATURAL 4): OR(NOT(LE(Y‚X))‚OR(NOT(LE(X‚Z)),LE(Y‚Z))) ——> T

* *

inductively complete positions are*

*

*

* 1 ((1 1
* 2 ((2 2))

* 3 ((2 1 1))

* *

*

*

*

>) *
*

*

*

Type any symbol ——-> #1

; The current default concerning inductively complete positions i s
; to choose only one. If there are more than one such positions the
; decision which to take is left to the user.

You have chosen ((1 1))

New rule generated :
(NATURAL 4): OR(NOT(LE(Y‚X))‚OR(NOT(LE(X,Z))‚LE(Y‚Z))) ——> T

NATURAL 4, NATURAL 3 ==> (NATURAL 5):
OR(NOT(LE(Y,X)),OR(NOT(LE(S(X),Z)),LE(S(Y),Z))) —-> T

* *

o x

inductively complete positions are*

*

*

*

*

*

*

H H v

*
*

*
*

*
*

*

* *

Type any symbol ———> #2

You have chosen ((2 2))

New rule generated : NATURAL 4, NATURAL 3 ==> (NATURAL 5):
OR(NOT(LE(Y‚X)),OR(NOT(LE(S(X),Z)),LE(S(Y),Z))) ——> T

Hypothesis accepted : OR(NOT(LE(Y,X))‚OR(NOT(LE(X,Z)),LE(Y‚Z))) == T

; Again the proof was successful producing an additional lemma,
; namely (NATURAL 5).

* *

STOP
HYPS
ACCEPTED—HYPS
REJECTED—HYPS
RULES
UNCOMP-RULES

*

**
*

O
5
U
1
¢
I
U
)
N
>
H

*
*

*
*

*
*

*
*

*
*

* *

Type any symbol ———> #1

You have chosen STOP

* *

* “Program parameter UNICOM : *
* *

single—step : YES
generalize : NO
protocol : NO

* *

Program menue UNICOM

PARSE-SPECIFICATION
CHECK-SPECIFICATION
PROVE-SPECIFICATION
PARSE-CHECK-AND—PROVE—SPEC
COMPILE-SPECIFICATION
RUN-SPECIFICATION
EDIT-SPECIFICATION
CHANGE-STATUS-SINGLE-STEP
CHANGE-STATUS-GENERALIZE
CHANGE-STATUS-PROTOCOL
EXIT

H
t
D
‘
O
t
b
—
J
O
X
U
1
ß
l
ß
I
O
I
J

*
=
+
*
-
*

**
*

*

H
&
4

*
*

*
*

*
*

*
*

*
*

*
*

*
*

*

* *

; Let us now prove transitivity of "1e" again, but by performing
; automatically inductive proofs in parallel according to all

inductively complete positions in the left hand side of the
conjecture.

Type any symbol - - -> #3

You choose PROVEeSPECIFICATION

Type the filename —--> #natural

* *

S T O P '
NEXT
CONTINUE
HYPS
ACCEPTED-HYPS
REJECTED-HYPS
RULES
UNCOMP-RULES
CHANGE-PARAMETER

*

*
**

*
*

u
>
m
—
q
a
\
m
.
b
u
a
m
r
4

**

**
*

*
>
&
*

*

* *

Type any symbol - - -> #9

You have chosen CHANGE—PARAMETER

* *

* Program parameter UNICOM are : *
* *

compute inesscritical-pairs : NO
change inesscritical-pairs to esscritical—pairs : NO
choose only one inductively—complete—position : YES
generalize : NO
protocol : NO

* *

change program parameter unicom :

CHANGE-STATUS-COMPUTE-INESSCRITICAL—PAIRS
CHANGE-STATUS-CHANGE-INESSCRITICAL-PAIRS-TO-ESSCRITICAL-PAIRS
CHANGE-STATUS-CHOOSE-ONLY-ONE-INDUCTIVELY-COMPLETE-POSITION
CHANGE-STATUS-GENERALIZE
EXIT

U
1
®
(
D
R
J
H

*
*

*
*

*
*

*
*

**

*

*

*

*

*

*

*

*

* *

Type any symbol —--> #3

You have chosen CHANGE-STATUS-CHOOSE-ONLY-ONE-INDUCTIVELY-COMPLETE-POSITIOI

* *

* Program parameter UNICOM are : *
* *

compute inesscritical—pairs : NO
change inesscritical—pairs to esscritical—pairs : NO
choose only one inductively—complete—position : NO
generalize : NO
protocol : NO

* *

change program parameter unicom :

l CHANGE—STATUS—COMPUTE—INESSCRITICAL—PAIRS
2 CHANGE-STATUS-CHANGE-INESSCRITICAL-PAIRS-TO-ESSCRITICAL—PAIRS
3 CHANGE—STATUS—CHOOSE-ONLY-ONE—INDUCTIVELY-COMPLETE-POSITION
4 CHANGE-STATUS-GENERALIZE
5 EXIT

u
-
a
t
-
u
-
a
-
a
t
-
s
r
w
q

*
-
*

*
*
-
*

*

* *

Type any symbol ———> # 5

s h a v e c h o s e n E XI T

* *

STOP
NEXT
CONTINUE
HYPS
ACCEPTED—HYPS
REJECTED-HYPS
RULES
UNCOMP-RULES
CHANGE—PARAMETER

K
>
m
~
4
0
\
m
r
b
U
)
N
F
4

*
—
*

*
fl
-
*

*
*
-
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* *

Type any symbol ——-> #3

You have chosen CONTINUE

New rule generated : NATURAL 4 , NATURAL 1 ==>
(NATURAL 5) : O R (N O T (L E (X , O)) , L E (X , Y)) — — > T

New rule generated : NATURAL 4 , NATURAL 2 ==
(NATURAL 6): OR(NOT(LE(S(X)‚Y))‚NOT(LE(Y‚O))) ——> T

New rule generated : NATURAL 4 , NATURAL 3 ==
(NATURAL 7): OR(NOT(LE(Y,S(X))),OR(NOT(LE(X,Z)),LE(Y,S(Z)))) ——> T

Hypothesis accepted : OR(NOT(LE(Y,X)),OR(NOT(LE(X,Z)),LE(Y,Z))) == T

This time all three inductive proof attempts are run in parallel.
As soon a s the f i r s t o f them has succeeded the whole process stops
successfully. Equations (rules) deduced so far within the other proof
environments are a l l inductively valid then and are collected a s
additional lemmas. Here the proof attempt corresponding to the
inductively complete position (2 l l) was the first t o succeed.

\
.

\
.

\
.

\
.

\
.

\
.

\
.

If the user wants t o get more detailed information and better control
over the proof process he (or she) can switch o n the single step mode
and e.g. inspect the status o f every proof environment.

\
.

\
.

\
.

* *

STOP
HYPS
ACCEPTED—HYPS
REJECTED—HYPS
RULES

*
*

*
**

**

U
1
ß
t
ü
h
J
H

* 6 UNCOMP-RULES *
* *
* *

Type any symbol ———> #1

You have chosen STOP

* *

* Program parameter UNICOM : *
* *

single-step : YES
generalize : NO
protocol : NO

* *

Program menue UNICOM

PARSE—SPECIFICATION
CHECK—SPECIFICATION
PROVE—SPECIFICATION
PARSE—CHECK—AND—PROVE—SPEC
COMPILE—SPECIFICATION
RUN-SPECIFICATION
EDIT-SPECIFICATION
CHANGE-STATUS-SINGLE-STEP
CHANGE-STATUS-GENERALIZE
CHANGE-STATUS—PROTOCOL
EXIT

H
<
D
u
>
®
—
J
O
\
U
1
ß
(
»
h
J
H

F
'
H

**
x
-
*

**
x
-
*

*
x
—
»

*
x
-
*

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* *

Type any symbol -——> #11

You choose EXIT

; Now the system returns to (COMMON) LISP top—level.

