
F
o

ch
b

e
re

ic
h

In
fo

rm
a

ti
k

E
£
:
9
€

3- o~
:93
4—00
”E.:
. äo

(DO
22%
C030 .

SE
KI

-
R

EP
O

R
T

D-
67

5O

Ka
ise

rs
la

ut
er

n

Multiple Knowledge
Acquisition Strategies in

MOLTKE

K. D. Althoff, F. Maurer, R. Rehbold
SEKI Report SR-90-21 (SFB)

Multiple Knowledge Acquisition
•Strategies ID

Klaus-Dieter Althoff, Frank Maurer, Robert Rehbold

University of KaiseJSlautem

Dept. of Computer Science

P.O. Box 3049, D-6750 Kaiserslautem

West Germany

Abstract

In this paper we will present a design model (in the sense of KADS)
for the domain of technical diagnosis. Based on this we will describe
the fully implemented expert system shell MOLTKE 3.0, which
integrates common knowledge acquisition methods with techniques
developed in the fields of Model-Based Diagnosis and Machine
Learning, especially Case-Based Reasoning.

1. Introduction
When starting a real world expert system project knowledge acquisition is the bottleneck. A main
reason for this is the gap between the languages of the domain expert and that used for the
implementation by the knowledge engineer. This gap reflects the difference between the cognitive
models of the application area the two involved persons have. According to the KADS-group to
overcome these shortcomings a conceptual model of the domain has to be developed [1]. Then this
conceptual model has to be transfered into a design model.

We think that developing a conceptual model has a few drawbacks:

•	 The knowledge of an expert includes static and dynamic parts. Static knowledge can be

represented in semantic networks whereas it is not easy to express the dynamic parts

which describe how a problem is solved. The interpretation model often lacks a clear

(i.e. formal) semantics.

•	 Ifpeople express knowledge without having an inference engine in mind the transfer of
the developed representation into a running expert system may be hard. It becomes
harder the bigger the gap between the conceptual model and the language of the used
shell is.

1	 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs
bereich314: "Artificial Intelligence- Knowledge-Based Systems", projects X6 and X9.

1

Mult iple Knowledge Acquisi t ion
Strategies in

| | J ' l

Klaus-Dieter Althoff, Frank Maurer, Robert Rehbold
University of Kaiserslautern
Dept. of computer Science

PO. Box 3049, D-6750 Kaiserslautern
West Germany

Abstract

In this paper we will present a design model (in the sense of KADS)
for the domain of technical diagnosis. Based on this we will describe
the fully implemented expert system shell MOLTKE 3.0, which
integrates common knowledge acquisition methods with techniques
developed in the fields of Model-Based Diagnosis and Machine
Learning, especially Case-Based Reasoning.

1. Introduction

When starting a real world expert system project knowledge acquisition is the bottleneck. A main
reason for this i s the gap between the languages of the domain expert and that used for the
implementation by the knowledge engineer. This gap reflects the difference between the cognitive
models of the application area the two involved persons have. According to the KADS- group to
overcome these shortcomings a conceptual model of the domain has to be developed [1]. Then this
conceptual model has to be transfered into a design model.
We think- that developing a conceptual model has a few drawbacks:

° The knowledge of an expert includes static and dynamic parts. Static lmowledge can be
represented in semantic networks whereas it is not easy to express the dynamic parts
which describe how a problem is solved. The interpretation model often lacks a clear
(i.e. formal) semantics.

° If people express knowledge without having an inference engine in mind the transfer of
the developed representation into a running expert system may be hard. It becomes
harder the bigger the gap between the conceptual model and the language of the used
shell is.

1 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs-
bereich'3 l4i "Artificial Intelligence— Knowledge-Based Systems", projects X6 and X9.

• Primitives of particular technical application domains are easily found, e.g. in diagnosis
one always talks about symptoms, faults and tests.

Our approach to reduce the knowledge acquisition bottleneck is to describe a design model which
reflects the primitives of the application domain. It has to include an inference engine for the
knowledge. The task of knowledge acquisition is to fill the templates of the shell with the expert's
knowledge. If the primitives really reflect the concepts of the application area the communication
between the knowledge engineer and the expert is improved because they speak the same language.

Starting from a real world application we developed a design model for technical diagnosis,
implemented its basic vocabulary and an interpreter. The MOLTKE 3.0 Shell, which is described in
the next section, reflects the application domain concepts like symptoms, tests and failures. Building
up on this kernel more sophisticated tools were developed:

•	 A compiler which generates the core of an expert system for diagnosis out of a deep

model of the technical device.

• Case-based reasoning techniques to enlarge the knowledge acquisition process.

As techniques of three general approaches (deep modelling, machine learning and manual
knowledge acquisition) are fully integrated, the MOLTKE system is able to use multiple sources of
knowledge.

2. A Design Model for Technical Diagnosis

In the MOLTKE project we defined a design model for technical diagnosis. We believe that
diagnosis can be described as follows:

Diagnosis = Classification + Test Selection.

The state of a technical device is described by a list of symptoms (where symptom means something
that is measurable, e.g. voltage). A symptom can be low level, e.g. the real voltage at a special
measuring point, or more abstract, e.g. "voltage is too high". Therefore a shell for diagnosis has to
include mechanisms for data abstraction. Furthermore there is a need for expressing time-dependent
symptoms, so called temporally distributed symptoms (TDS) (the integration ofIDS in MOLTKE
3.0 is described in [2]).

At any point in time a symptom can have only one value. A list of actual symptom values is called a
situation. In a situation a symptom may also be unknown. A failure in a technical device can be
expressed in terms of particular values. Therefore; a fault hypothesis is correlated with a set of
symptom values. If the actual situation matches these, the failure is established.

Often some symptom values determine others, e.g. if the light in a room is on one can infer that the
wires are working. For that reason an expert system must handle relations between symptom
values. Moreover this reduces the search space because the determined symptoms need not to be
asked.

The search space for diagnosis is described by a graph where nodes are situations and arcs between
situations are labelled with a test. A test determines the value of symptoms (by asking the user or by
getting sensor information). Tests are executed if according to the actual situation no failure can be
proved. In technical diagnosis the processing of symptom values must be both demand-driven (the
system decides what to measure next) and data-driven (asynchronous incoming data is processed
immediately).

Diagnosis is a process: a situation where no failure is provt?Cl must be transformed by executing tests
into one where the description of a fault matches the actual symptom values. A strategy describes the

2

° Primitives of partiCular technical application domains are easily found, e.g. in diagnosis
one always talks about symptoms, faults and tests.

Our approach to reduce the knowledge acquisition bottleneck is to describe a design model which
reflects the primitives of the application domain. It has to include an inference engine for the
knowledge. The task of knowledge acquisition is to fill the templates of the shell with the expert’s
knowledge. If the primitives really reflect the concepts of the application area the communication
between the knowledge engineer and the expert is improved because they speak the same language.
Starting from a real world application we developed a design model for technical diagnosis,
implemented its basic vocabulary and an interpreter. The MOLTKE 3.0 Shell, which is described in
the next section, reflects the application domain concepts like symptoms, tests and failures. Building
up on this kernel more sophisticated tools were developed:

° A compiler which generates the core of an expert system for diagnosis out of a deep
model of the technical device.

° Case-based reasoning techniques to enlarge the knowledge acquisition process.
As techniques of three general approaches (deep modelling, machine learning and manual
knowledge acquisition) are fully integrated, the MOLTKE system is able to use multiple sources of
knowledge.

2. A Design Model for Technical Diagnosis
In the MOLTKE project we defined a design model for technical diagnosis. We believe that
diagnosis can be described as follows:

Diagnosis = Classification + Test Selection.

The state of a technical device is described by a list of symptom (where symptom means something
that is measurable, e.g. voltage). A symptom can be low level, e.g. the real voltage at a special
measuring point, or more abstract, e.g. "voltage is too high". Therefore a shell for diagnosis has to
include mechanisms for data abstraction. Furthermore there is a need for expressing time-dependent
symptoms, so called temporally distributed symptoms (TDS) (the integration of TDS in MOLTKE
3.0 is described in [2]).
At any point in time a symptom can have only one value. 'A list of actual symptom values is called a
situation. In a situation a symptom may also be unknown. A failure in a technical device can be
expressed in terms of particular values. Therefore; a fault hypothesis is correlated with a set of
symptom values. If the actual situation matches these, the failure is established.
Often some symptom values determine others, e.g. if the light in a room is on one can infer that the
wires are working. For that reason an expert system must handle relations between symptom
values. Moreover this reduces the search space because the determined symptoms need not to be
asked.
The search space for diagnosis is described by a graph where nodes are situations and arcs between
situations are labelled with a test. A test determines the value of symptoms (by asking the user or by
getting sensor information). Tests are executed if according to the actual situation no failure can be
proved. In technical diagnosis the processing of symptom values must be both demand-driven (the
system decides what to measure next) and data-driven (asynchronous incoming data is processed
immediately).
Diagnosis is a process: a situation where no failure is proved must be transformed by executing tests
into one where the description of a fault matches the actual symptom values. A strategy describes the

2

order of testing and should reflect the experience and heuristics of diagnostic experts as e.g. service
technicians.

Modularisation always is a means of software engineering which improves the maintainability of a
program. Expert systems shall use the advantages of modularisation. Therefore, knowledge about
failures and about strategies shall be separated for reasons of a horizontal modularisation. Vertically
the expert system is split in a hierarchy of rough, intermediate, and final diagnoses. The
modularisation helps to integrate the knowledge of multiple experts.

3. The MOLTKE Project· An Overview

MOLTKE means MOdels, Learning and Temporal Knowledge in Expert systems for technical
diagnosis. Within the MOLTKE project (see e.g. [3,4]) we developed an expert system toolbox
the MOLTKE system - and several applications. Figure 1 gives an overview of the MOLTKE
system. The shaded part in the center is the kernel, the MOLTKE 3.0 shell. The model component
on the left hand side and the case-based reaso~ing part on the right hand side are described later in
this paper.

Knowledge KAC
Acquisition Cases
Component (KAC)
Models

Model description
language

Compiler

Internal
representatio
for technical
models

Graphical
Knowledge
Acquisition
Interface

Figure 1: The MOLTKE System

The MOLTKE system is a modularized toolbox for the development of expert systems in the domain
of technical diagnosis. It integrates common knowledge acquisition techniques with deep modelling
and machine learning. For the interpretation of a knowledge base several interpreters were
implemented which allow to integrate different sources of knowledge (see chapter 8).

3

order of testing and should reflect the experience and heuristics of diagnostic experts as e. g. service
technicians.
Modularisation always is a means of software engineering which improves the maintainability of a
program. Expert systems shall use the advantages of modularisation. Therefore, knowledge about
failures and about strategies shall be separated for reasons of a horizontal modularisation. Vertically
the expert system is split in a hierarchy of rough, intermediate, and final diagnoses. The
modularisation helps to integrate the knowledge of multiple experts.

3. The MOLTKE Project - An Overview
MOLTKE means M_Ode1s, Learning and _'I_‘emporal Knowledge i n Expert systems for technical
diagnosis. Within the MOLTKE project (see e.g. [3,4]) we developed an expert system toolbox -
the MOLTKE system - and several applications. Figure 1 gives an overview of the MOLTKE
system. The shaded part in the center is the kernel, the MOLTKE 3.0 shell. The model component
on the left hand side and the case-based reasoning part on the right hand side are described later in
this paper.

GraphicalKnowledge KAG KnowledgeAcquisition Cases Acquisition
goorälägnent (KAG) Interface

Model description
language

Figure l : The MOLTKE System

The MOLTKE system is a modularized toolbox for the development of expert systems in the domain
of technical diagnosis. I t integrates common knowledge acquisition techniques with deep modelling
and machine learning. For the interpretation of a knowledge base several interpreters were
implemented which allow to integrate different sources of knowledge (see chapter 8).

4. The MOLTKE 3.0 Shell

4.1. The Static Knowledge Base
i

The static knowledge base represents the knowledge about the technical system. Here we describe
its basic vocabulary: .

A symptom class relates a name to a list of possible values (e.g.Valve --> {open, closed}) whereas
symptom instances reflect the actual state of a part of the technical device (e.g. Valve 21)"5 -->
open). The actual value may be either unknown or an element of the possible value list lin the
corresponding class.

The set of all symptom instances is called a situation. In the context of predicate calculus the/actual
situation is the base for the interpretation of a language offormulas. It stores the bindings!of the
variables1• We use a three-valued logic with true,false and unknown. For reasons of an" efficient
evaluation all formulas are stored in network similar to the Rete-Network of OPS5. r
A test ascertains the value of one or more symptom instances2• Every test has an associated
precondition (e.g. for specifying that a test can only be executed if the technician has a particular
level of skill we would use a precondition like (= skill level high». A test is only executed if the
corresponding precondition is evaluated to true. The sequence of testing is determined by ai set of
ordering rules where the left hand side is a formula and the right part contains the symptom instance
to test (e.g. (if (= Valve 21Y5 open) then OUT30 test».

To express relations between symptom values shortcut rules are used (e.g. (if (= lamp room on)
then wires := working». To express uncertainty every rule may have a list of associated qualitative
certainty factors called determination factors3. Uncertain shortcut rules are called partial in opposite
to the total ones which are certain with respect to the underlying deep model. These rules are called
shortcuts because they abbreviate the diagnostic process, i.e. symptom values which are determined
by shortcut rules need not to be asked anymore.

Contexts are one of the means for modularisation in MOLTKE 3.0. A context represents a rough,
intermediate, or [mal diagnosis. If its precondition is true, the associated failure is said to be proven
and the related correction is executed. Any context contains a set of ordering rules which lbeally
prescribe the strategy of testing. Additionally, a context includes a set,of shortcut rules. pvery
context contains a slot for a context interpreter which determines the next symptom to be tested. The
default context interpreter uses the ordering rules for test selection4.

A correction describes what has to be done when a special fault occurs. Up to now a description
how to repair the device is given to the user. For monitoring tasks this may easily be extended to
manipulating control units.

The contexts are organized in a context graph. Its arcs have the semantics "is-refinement-of' (e.g.
the contextfailure-in-electric is a refinement offailure-in-car.).

1 Every symptom instance is a variable in the calculus. "

2 In the fonnal sense of modal logic a test describes the transition from one world to another where the inteqJetation
of the fonnulas differs in the bindings of the examined variables.

3 The processing of these factors is described in section 7.5.

4 yve developed neural network associators and model-based components which can replace the default ~ontext
mte~~. .

4

4. The MOLTKE 3.0 Shell]

4.1. The Static Knowledge Base i

The static knowledge base represents the knowledge about the technical system Here we describe
its basic vocabulary:
A symptom class relates a name to a list of possible values (e g. Valve --> {open, closed}) whereas
symptom instances reflect the actual state of a part of the technical device (e g Valve 21Y5 -->
open). The actual value may be either unknown or an element of the possible value listlin the
corresponding class.
The set of all symptom instances is called a situation. In the context of predicate calculus the/actual
situation is the base for the interpretation of a language of formulas It stores the bindings! of the
variablesl. We use a three—valued logic with true, false and unknown. For reasons of an e 1cient
evaluation all formulas are stored in network similar to the Rete-Network of OPSS.
A test aseertains the value of one or more symptom instancesz. Every test has an associated
precondition (e.g. for specifying that a test can only be executed if the technician has a particular
level of skill we would use a precondition like (= skill level high)). A test is only executed if the
corresponding precondition is evaluated to true. The sequence of testing i s determined by a: set of
ordering rules where the left hand side is a formula and the right part contains the symptom instance
to test (e. g. (if (= Valve 21Y5 open) then OUT30 test)).
To express relations between symptom values shortcut rules are used (e. g. (if (= lamp room on)
then wires:= working». To express uncertainty every rule may have a list of associated quahtative
certainty factors called determination factors3. Uncertain shortcut rules are called partial m opposite
to the total ones which are certain with respect to the underlying deep model. These rules are called
shortcuts because they abbreviate the diagnostic process, i.e. symptom values which are determined
by shortcut rules need not to be asked anymore.
Contexts are one of the means for modularisation in MOLTKE 3.0. A context represents a r'ough,
intermediate, or final diagnosis. If its precondition is true, the associated failure is said to be proven
and the related correction is executed. Any context contains a set of ordering rules which locally
prescribe the strategy of testing. Additionally, a context includes a setlof shortcut rules. livery
context contains a slot for a context interpreter which determines the next symptom to be tested. The
default context interpreter uses the ordering rules for test selection4.
A correction describes what has to be done when a special fault occurs. Up to now a description
how to repair the device 1s given to the user. For monitoring tasks this may easily be extended to
manipulating control units.
The contexts are organized in a context graph. Its arcs have the semantics "is-refinement—of" (e.g.
the context failure-in-electric is a refinement of failure-in-car.).

1 Every symptom instance is a variable 1n the calculus.
2 In the formal sense of modal logic a test describes the transition from one world to another where the interpietation

of the formulas differs m the bindings of the examined variables. I
3 The processing of these factors is described in section 7.5. ,

We developed neural network associators and model-based components which can replace the default context
interpreter.

|
l
l

“&

4.2. The .Interpreter

The processing of a knowledge base is done by a global interpreter which is easy to adapt and to
maintain because it is organized in small modules. The default interpreter realizes an establish-and
refine-strateJ;?;Y (see fiJ;?;ure 2).
Algorithm of the default interpreter:

actualContext := Root of context graph;
while actualContext not a final diagnosis do

process all shorteut rules with a true precondition;
rule := select-an-ordering-rule(actualContext, actualSituation);
value:= test-the-selected-symptom(rule);
propagate the symptom value through a rete-network;
if the actualContext has refinements with a true precondition

then actualContext := this refinement;

if all refinements of the actual context are false

then backtrackin.l!;;

Figure 2: The algorithm of the global interpreter

The diagnostic process walks through the context graph by testing symptoms according to the
ordering rules of the actual context and switching to a refinement when its precondition becomes
(the logical value) true. If a leaf is reached the system stops.

The system is able to reset a symptom value to unknown and to reject all inferences by shortcut rules
based on its old value. This facility is used when the user or the system retracts uncertain symptom
values.

Sensor data are propagated through the formula network when they arrive l . Every time the system
asks for a special symptom value the user is able to enter the value of another symptom instance.
According to the actual state the system determines the actual context.

5. Knowledge Acquisition with 'the MOLTKE Kernel

The MOLTKE 3.0 kernel includes a comfortable knowledge base browser based on the facilities of
the Smalltalk-80 system. The browser combines a menu-oriented interface with different editors for
symptoms, contexts, tests, etc. Editing an object means filling a template. In a graphic window the
context graph can be edited. The editors include syntax- and type-checkers. If other objects are
referenced2 their availability in the knowledge base is tested.

While editing a knowledge base the system is always able to run. If in a context no ordering rule can
fire, the system asks for a symptom value which is used in the preconditions of its refinements. We
will extend this facility by asking the user what symptom shall be tested and then generate an
appropriate ordering rule for the context.

For testing a knowledge base trace- and debug-facilities were implemented. The user is able to set or
reset arbitrary symptom values and inspect the state of all formulas and the formula network
according to the actual situation. At the moment we are developing a consistency checker for the
knowledge base.

The runtime environment is menu-oriented. Additionally the user is able to enter symptom values by
mouse-clicking in some graphics of the technical device. The kernel includes an editor for these
graphics.

1 So a data-driven updating of the actual situation is possible.

2 For example symPtom instances referenced in formulas.

5

4.2. The Interpreter

The processing of a knowledge base is done by a global interpreter which is easy to adapt and to
maintain because it is organized in small modules. The default interpreter realizes an establish-and-
refine-strategy (see figure 2).
Algorithm of the default interpreter:

actualContext := Root of context graph;
while actualContext not a final diagnosis do

process all shortcut rules with a true precondition;
rule := select-an-ordering—ruldactualContext, actualSituation);
value := test-the-selected—symptom(mle);
propagate the symptom value through a rete-network;
if the actualContext has refinements with a true precondition

then actualContext := this refinement;
if all refinements of the actual context are false

then backtracking;

Figure 2: The algorithm of the global interpreter

The diagnostic process walks through the context graph by testing symptoms according to the
ordering rules of the actual context and switching to a refinement when its precondition becomes
(the logical value) true. If a leaf is reached the system stops.
The system is able to reset a symptom value to unknown and to reject all inferences by shortcut rules
based on its old value. This facility is used when the user or the system retracts uncertain symptom
values.
Sensor data are propagated through the formula network when they arrivel. Every time the system
asks for a special symptom value the user is able to enter the value of another symptom instance.
According to the actual state the system determines the actual context.

5. Knowledge Acquisition with the MOLTKE Kernel
The MOLTKE 3.0 kernel includes a comfortable knowledge base browser based on the facilities of
the Smalltalk-80 system. The browser combines a menu-oriented interface with different editors for
symptoms, contexts, tests, etc. Editing an object means filling a template. In a graphic window the
context graph can be edited. The editors include syntax- and type-checkers. If other objects are
referenced2 their availability in the knowledge base is tested.
While editing a knowledge base the system is always able to run. If in a context no ordering rule can
fire, the system asks for a symptom value which is used in the preconditions of its refinements. We
will extend this facility by asking the user what symptom shall be tested and then generate an
appropriate ordering rule for the context.
For testing a knowledge‘base trace- and debug—facilities were implemented. The user is able to set or
reset arbitrary symptom values and inspect the state of all formulas and the formula network
according to the actual situation. At the moment we are developing a consistency checker for the
knowledge base.
The runtime environment is menu-oriented. Addifionally the user is able to enter symptom values by
mouse-clicking in some graphics of the technical device. The kernel includes an editor for these
graphics.

1 So a data-driven updating of the actual situation is possible.
2 For example symptom instances referenced in formulas.

6. Knowledge Acquisition Using Deep Models

Complex technical devices often have a common property: Due to task customization and rapid
further developments only few fully identical instances of a given type are built. This makes it
difficult to find somebody who is really an expert for the maintenance of this special machine,
especially if the type is relatively new. Service technicians troubleshooting such a new machine
cannot rely on machine-specific heuristics, but have to use general technical knowledge, a detailed
description of structure and behavior of the machine and a general understanding of the functionality
of the device to find any faults.

Since diagnostic expert systems are expected to be able to assist in troubleshooting right after the
release of a new type of machine they haye to use structural, behavioral and subpart information
first, too. As time goes by technicians learn more about a special machine type through the faults
they are confronted with during their work. This learning from cases has to be embodied in a
sophisticated expert system too, giving the need for a knowledge representation that equally suits the
causal (model-based) as well as the heuristic (case-based) knowledge. Furthermore an existing
expert system should be easily adaptable to a slightly changed machine, e.g. from a new series or
with different optional subdevices (cf. [5]).

6.1. Causal Knowledge and Deep Models

We will use the word "causal" in this paper to distinguish things that can be trac((d back directly and
with absolute certainty to structure, behavior and function of a single concrete physical device from
those that do not, either since they lack a clear correlation to the physical facts (these we will call
"heuristic") or since they depend on many instances of a device and are not certain (called
"statistic"). Thus causal knowledge in a technical domain consists of all the facts on structure,
behavior and function of the device together with information on how connected parts interact and
can be considered synonymous to the term "deep knowledge". From the causal knowledge of a
device a representation can be build which in this chapter we will call a deep model, or just a model.

6.2. The Task: Getting the Causal Knowledge into the System

A possible approach to get some of the causal knowledge about a device into the expert system
could be to have an engineer (Le. someone with sufficient "technical common sense", not
necessarily an expert) look at the design plans and diagrams of a concrete machine and write down
the information in form of failure detection flowcharts which are then translated into rules of
different types. The order in the flowchart would be based on a priori failure probabilities and
directly influence the ordering and priorities of the- rules. When we tried this way of knowledge
acquisition for the first application in project MOLTKE, which was an expert system for the
diagnosis of CNCl machining centers, it turned out that it was quite time consuming, since the
process required several iterations and the fmal flowcharts were by no means complete (with respect
to the underlying descriptions). Worse, new machine series or, even more, types required much of
that work again, since most diagrams had to be revisited to check for changes (e.g. new components
with new failure probabilities or even new failures).
This caused us to build a tool (MAKE =Model-based Automatic Knowledge Extractor) [6] to do the
work of that engineer. MAKE gets diagrams (Le. the structure) of the machine and uses its built-in
knowledge of electrical and mechanical engineering (Le. its "technical common sense") - e.g. the
behavior of typical components - to form a (deep) model of the machine and to derive rules fhr test

1 Computerized Numerical Control

6

6. Knowledge Acquisition Using Deep Models
Complex technical devices often have a common property: Due to task customization and rapid
further developments only few fully identical instances of a given type are built. This makes it
difficult to find somebody who is really an expert for the maintenance of this special machine,
especially if the type i s relatively new. Service technicians troubleshooting such a new machine
cannot rely on machine-specific heuristics, but have to use general technical knowledge, a detailed
description of structure and behavior of the machine and a general understanding of the functionality
of the device to find any faults.
Since diagnostic expert systems are expected to be able to assist in troubleshooting right after the
release of a new type of machine they have to use structural, behavioral and subpart information
first, too. As time goes by technicians learn more about a special machine type through the faults
they are confronted with during their work. This learning from cases has to be embodied in a
sophisticated expert system too, giving the need for a knowledge representation that equally suits the
causal (model-based) as well as the heuristic (case-based) knowledge. Furthermore an existing
expert system should be easily adaptable to a slightly changed machine, e.g. from a new series or
with different optional subdevices (cf. [5]).

6.1. Causal Knowledge and Deep Models

We will use the word "causal" in this paper to distinguish things that can be traced back directly and
with absolute certainty to structure, behavior and function of a single concrete physical device from
those that do not, either since they lack a clear correlation to the physical facts (these we will call
"heuristic") or since they depend on many instances of a device and are not certain (called
"statistic"). Thus causal knowledge in a technical domain consists of all the facts on structure,
behavior and function of the device together with information on how connected parts interact and
can be considered synonymous to the term "deep knowledge". From the causal knowledge of a
device a representation can be build which in this chapter we will call a deep model, or just a model.

6.2. The Task: Getting the Causal Knowledge into the System

A possible approach to get some of the causal knowledge about a device into the expert system
could be to have an engineer (i.e. someone with sufficient "technical common sense", not
necessarily an expert) look at the design plans and diagrams of a concrete machine and write down
the information in form of failure detection flowcharts which are then translated into rules of
different types. The order in the flowchart would be based on a priori failure probabilities and
directly influence the ordering and priorities of the rules. When we tried this way of knowledge
acquisition for the first application in project MOLTKE, which was an expert system for the
diagnosis of CNC1 machining centers, it turned out that it was quite time consuming, since the
process required several iterations and the final flowcharts were by no means complete (with respect
to the underlying descriptions). Worse, new machine series or, even more, types required much of
that work again, since most diagrams had to be revisited to check for changes (e.g. new components
with new failure probabilities or even new failures). .

This caused us to build a tool (MAKE = Model-based Automatic Knowledge Extractor) [6] to do the
work of that engineer. MAKE gets diagrams (i.e. the structure) of the machine and uses its built—in
knowledge of electrical and mechanical engineering (i.e. its "technical common sense") - eig. the
behavior of typical components - to form a (deep) model of the machine and to derive rules för test

1 computerized flumerical control

suggestion and determination of yet unmeasured symptoms (shortcut rules) from this model.
Furthermore MAKE is able to organize the rules into contexts and to create corresponding
preconditions for them. We call such an expert system without any machine specific heuristic
knowledge basic expert system.

An important point is that the diagrams can be entered by anyone; there is no need for the special
knowledge of an engineer to do that. An engineer (the expert) is needed only to provide information
about the typical atomic parts in the descriptions, e.g. valves, switches, contactors, hydraulic
pistons. Some statistic knowledge about a priori failure probabilities and additional information on
measurement costs have been integrated into the model to allow a more sophisticated test selection;
thus the model is no longer purely causal, but contains other knowledge, tool.

Note that the application domain of the whole MOLTKE system (and therefore of MAKE) is not as
simple as digital circuits, the usual example domain for model-based diagnosis.

6.3. Available Knowledge when the First Machine is Built

As heuristic knowledge of a new machine will not be available when the basic expert system is to be
built, one has to restrain oneself to the information available at that point of time:

•	 knowledge about the primitive (and maybe complex2) parts (components) used

*	 possible connections (ports), i.e. how the component may be connected to others

* behavior, Le. how the component is expected to react to changes in connected
components

*	 misbehavior(s), Le. what typical faults may occur, how they change the expected
behavior and how common they are3

•	 knowledge about the connectivity of the components, Le. a structure description

•	 knowledge about measuring costs at certain points4

•	 knowledge about the intended functionality of the machine as a whole, Le. which set of

inputs should cause which set of outputs.

The "birth" of a basic experts system then consists of four major steps:

1) An expert builds up a library ofthe primitive (and maybe common complex) components that are
used. This task needs an expert since it should be done as precisely and completely as possible for
the sake of the resulting expert system. Of course the library can be used for many different
machines thus an expert is not needed for every single machine type or series.

2) A person with technical skill - at least he/she shall be able to read, understand and reproduce
technical structure descriptions - is needed to enter the connectivity of a given machine, Le. to build
up the structural model. He/she will select parts from the library and build them together to more
complex ones finally describing the whole machine. A graphical editor that allows to mimic the
technical diagrams helps to accomplish this step. Note that this task is independent from the
availability of a diagnosis expert if the library (cf. step 1) completely covers all components used.

1	 However, all the knowledge (information) used by MAKE is available when the first machine of a type is delivered
to the customer, i.e. no heuristic information on the special machine type is used.

2	 Often information will be available on more complex subdevices if they have already been used before in other
machine types. However, the relevance of this information is not always clear (and is therefore subject to be
changed by a mechanism to adapt it from e.g. cases).

3	 This information usually comes from the manufacturer of the primitive component. However, the a priori failure
rate can vary dramatically with the position of the part in the machine. Learning from cases can adjust either the
heuristic information embedded in the model or the diagnostic system itself to such special situations.

4	 All complex machines have sensors etc. attached to them and provide designated measuring points where data can
be gathered inexpensively.

7

suggestion and determination of yet unmeasured symptoms (shortcut rules) from this model.
Furthermore MAKE is able to organize the rules into contexts and to create corresponding
preconditions for them. We call such an expert system without any machine specific heuristic
knowledge basic expert system.
An important point is that the diagrams can be entered by anyone; there is no need for the special
knowledge of an engineer to do that. An engineer (the expert) is needed only to provide information
about the typical atomic parts in the descriptions, e.g. valves, switches, contactors, hydraulic
pistons. Some statistic knowledge about a priori failure probabilities and additional information on
measurement costs have been integrated into the model to allow a more sophisticated test selection;
thus the model is no longer purely causal, but contains other knowledge, tool.
Note that the application domain of the whole MOLTKE system (and therefore of MAKE) is not as
simple as digital circuits, the usual example domain for model-based diagnosis.

6.3. Available Knowledge when the First Machine is Built

As heuristic knowledge of a new machine will not be available when the basic expert system is to be
built, one has to restrain oneself to the information available at that point of time:

° knowledge about the primitive (and maybe complex?) parts (components) used
* possible connections (ports), i.e. how the component may be connected to others
* behavior, i.e. how the component is expected to react to changes in connected

components
* misbehavior(s), i.e. what typical faults may occur, how they change the expected

behavior and how common they are3
' knowledge about the connectivity of the components, i.e. a structure description
° knowledge about measuring costs at certain points4
. knowledge about the intended functionality of the machine as a whole, i.e. which set of

inputs should cause which set of outputs.
The "birth" of a basic experts system then consists of four major steps:
1) An expert builds up a library of the primitive (and maybe common complex) components that are
used. This task needs an expert since it should be done as precisely and completely as possible for
the sake of the resulting expert system. Of course the library can be used for many different
machines thus an expert is not needed for every single machine type or series.
2) A person with technical skill - at least he/she shall be able to read, understand and reproduce
technical structure descriptions - is needed to enter the connectivity of a given machine, i.e. to build
up the structural model. He/she will select parts from the library and build them together to more
complex ones finally describing the whole machine. A graphical editor that allows to mimic the
technical diagrams helps to accomplish this step. Note that this task is independent from the
availability of a diagnosis expert if the library (cf. step 1) completely covers all components used.

1 However, all the knowledge (information) used by MAKE is available when the first machine of a type is delivered
to the customer, i.e. no heuristic information on the special machine type is used.

2 Often information will be available on more complex subdevices if they have already been used before in other
machine types. However, the relevance of this information is not always clear (and is therefore subject to be
changed by a mechanism to adapt it from e.g. cases).

3 This information usually comes from the manufacturer of the primitive component. However, the a priori failure
rate can vary dramatically with the position of the part in the machine. Learning from cases can adjust either the
heuristic information embedded in the model or the diagnostic system itself to such special situations.

4 All complex machines have sensors etc. attached to them and provide designated measuring points where data can
be gathered inexpensively.

With a fully computerized design, developement and production system (CIMl) it should be
possible to get the connectivity infonnation immediately from the design data.

3) The designer of the machine can specify the desired functionality in form of input/output
behavior. While this infonnation can be left out (MAKE could simulate all input/output behavior
from the given knowledge itself) it is helpful to cut down all possible (and maybe unintended or
unused) behaviors to the intended and used ones. When dealing with machines with a control
component, e.g. a CNC, the CNC programs give infonnation on what functions the machine is
expected to perfonn.

4) Finally, the MAKE system transfonns the model of the machine (put together from the library
and the connectivity) with help of the desired input/output behavior into a knowledge base for the
expert system shell MOLTKE.

6.4. The Model

We use a component oriented, hierarchical qualitative model of the machine. What is considered an
atomic component is determined by the granularity of the used diagrams and the exchangeability of
the parts (e.g. since relays are completely replaced if found faulty, there is no need to model the
parts of a relay). Infonnation on typical primitive (atomic) components like valves, switches etc. is
stored in a library. Using these parts, new assembly groups (called complex components) can be
built and so on; this way a hierarchical model is built up where the top component represents the
entire machine. The general description of a component is found in the component class, its
instances represent the concrete components. Connections can be internally modeled as components,
but need not to be entered explicitly, since they can be added automatically (e.g. if the user connects
two hydraulic ports the system automatically assumes a pipe between them).

A component class stores the following knowledge:

•	 name of the component type

•	 ports to other components (optionally with test costs)

•	 possible internal states (optionally with test costs)

Internal states can be made available to other components using them as ports.

•	 behavior of the component

The behavior is given either in fonn of tables or by rules: the if-part contains predicates

on port values and states that allow to conclude the value of some other port or state in

the then-part. These tables/rules represent the constraints the component sets up

between its ports and states. Note that components do know about their function, as the

"no-function-in-structure" principle2 is deliberately abandoned to enable the generation

of better causal rules from the model.

•	 subparts and their interconnections (only if the component is non-atomic)

•	 typical malfunctions with name and effects (if available)

These typical malfunctions model the behavior of the component when a common

failure occurred and enable the system to reason faster. There is always the possibility

to fall back to the total suspension of the constraints of the component ("unknown

failure"), which is the usual approach of model-based troubleshooting3 [7].

1 Computer Integrated Manufacturing

2 'This principle is often demanded in the literature on model-based reasoning and qualitative simulation. Its
generality, however, while being useful in the prediction of unknown behavior, disallows us some interesting
conclusions that we can draw since we already know the function of the part.

3	 Note, however, that shorteut rules will only be 100% correct if the malfunctions listed here are the only ones
possible. If "unknown failure" is among the possible misbehaviors of a component class, no certain shortcut rules

8

8

With a fully computerized design, developement and production system (CIMl) it should be
possible to get the connectivity information immediately from the design data.
3) The designer of the machine can specify the desired functionality in form of input/output
behavior. While this information can be left out (MAKE could simulate all input/output behavior
from the given knowledge itself) it is helpful to cut down all possible (and maybe unintended or
unused) behaviors to the intended and used ones. When dealing with machines with a control
component, e.g. a CNC, the CNC programs give information on what functions the machine is
expected to perform.
4) Finally, the MAKE system transforms the model of the machine (put together from the library
and the connectivity) with help of the desired input/output behavior into a knowledge base for the
expert system shell MOLTIGE.

6 .4 . The Model

We use a component oriented, hierarchical qualitative model of the machine. What is considered an
atomic component is determined by the granularity of the used diagrams and the exchangeability of
the parts (e.g. since relays are completely replaced if found faulty, there is no need to model the
parts of a relay). Information on typical primitive (atomic) components like valves, switches etc. is
stored in a library. Using these parts, new assembly groups (called complex components) can be
built and so on; this way a hierarchical model is built up where the top component represents the
entire machine. The general description of a component is found in the component class, its
instances represent the concrete components. Connections can be internally modeled as components,
but need not to be entered explicitly, since they can be added automatically (e. g. if the user connects
two hydraulic ports the system automatically assumes a pipe between them).
A component class stores the following knowledge:

' name of the component type
' ports to other components (optionally with test costs)
' possible internal states (optionally with test costs)

Internal states can be made available to other components using them as ports.
° behavior of the component

The behavior is given either in form of tables or by rules: the if-part contains predicates
on port values and states that allow to conclude the value of some other port or state in
the then-part. These tables/rules represent the constraints the component sets up
between its ports and states. Note that components do know about their function, as the
"no-function-in-structure" principle2 is deliberately abandoned to enable the generation
of better causal rules from the model.

' subparts and their interconnections (only if the component is non-atomic)
' typical malfunctions with name and effects (if available)

These typical malfunctions model the behavior of the component when a common
failure occurred and enable the system to reason faster. There is always the possibility
to fall back to the total suspension of the constraints of the component ("unknown
failure"), which is the usual approach of model-based troubleshooting3 [7].

1 computer Integrated Manufacturing
2 'This principle is often demanded in the literature on model-based reasoning and qualitative simulation. _Its

generality, however, while being useful in the prediction of unknown behavior, disallows us some interesting
conclusions that we can draw since we already know the function of the part.

3 Note, however, that shortcut rules will only be 100% correct if the malfunctions listed here are the only ones
possible. If "unknown failure" is among the possible misbehaviors of a component class, no certain shortcut rules

8

8

• a priori probability of failure (if available)
An actual component is an instance of its class which additionally knows its name, location,
neighbors (Le. which of its ports is connected to which port of which (possibly) other instance),
names of its subcomponents (if any) and position in the diagram. Note that each port of each
component instance later becomes a symptom in the basic expert system generated by MAKE.

Component classes are immediately cross-checked: topology, states and behavior must be fully
specified, all ports of subparts must be connected by connections of the correct type l and states
must appear in the behavior. When actual parts (instances) are entered, they are cross-checked too to
ensure that every subpart class exists and is of proper type and that the connections to the neighbors
are ok. Currently a special editor to support the creation of component classes and instances is under
development together with a graphic tool ~to enter the structure of the machine.

6.5. Functionality Description

The expected functionality of a device has to be entered as relations between its input and ouput
ports. When dealing with computerized numerically controlled (CNC) machines (e.g. MOLTKE's
first application: CNC machining centers) even more than these relations can be taken from the CNC
programs. These programs do not only provide us with input/output information but usually also
contain data on failures the CNC is able to detect. When the CNC detects such a failure it stops the
machine and displays a failure number that provides us with first information about where the
malfunction happened. .

These failure messages are issued if some feedback signal to a started machine order misses or is
wrong (e.g. a limit switch did not operate within a given time)2. This information allows to focus
the attention to a certain part of the machine and is therefore a valuable starting point for the
diagnosis. Each failure is associated with a certain machine subcycle that performs a special
operation starting with some control system output signals and ending with some feedback input
signals. It is possible to conclude from the model which valves, switches etc. are related to these 10
signals and are therefore under suspect.

When no CNC is used MAKE has to simulate the device itself to be able to detect deviations from
the expected input/output relations and to cross-check the correctness of the functionality specified
by the designer. In these cases important inputs and outputs have to be measured before the focus of
attention can be moved to a certain part of the machine.

If no functionality at all is specified MAKE must generate all possible input combinations and
simulate them through the model to get the respective expected output values. The input/output
relations thus generated can than be used as if entered by the designer.

6.5.1. Building Contexts from the Model

The best" way to choose contexts is to ask the experts; but since we want to build the basic causal
expert system without their help, we have to build the contexts ourselves. Naturally, automatically
generated contexts may be not as good as those from the experts, but our experience with the
manually chosen contexts showed some typical patterns that will most often fit. Each context
(intermediate diagnosis) leads to several more special diagnoses that are its subcontexts. Leaf

can be generated from the model since it is impossible to make any conclusions about the behavior of the
component Of course, a case based reasoning mechanism still can derive uncertain shortcuts in such a situation.

1	 Ports have types and directions to ensure proper modeling.

2	 This shows an additional advantage of diagnosis of a CNC-controlled machine: The CNC observes the inputs and
outputs of the machine automatically, so we already know these values when the diagnosis starts.

9

' a priori probability of failure (if available)
An actual component is an instance of its class which additionally knows its name, location,
neighbors (i.e. which of its ports is connected to which port of which (possibly) other instance),
names of its subcomponents (if any) and position in the diagram. Note that each port of each
component instance later becomes a symptom in the basic expert system generated by MAKE.
Component classes are immediately cross—checked: topology, states and behavior must be fully
specified, all ports of subparts must be connected by connections of the correct type1 and states
must appear in the behavior. When actual parts (instances) are entered, they are cross-checked too to
ensure that every subpart class exists and is of proper type and that the connections to the neighbors
are ok. Currently a special editor to support the creation of component classes and instances is under
development together with a graphic tool _to enter the structure of the machine.

6.5. Functionality Description

The expected functionality of a device has to be entered as relations between its input and ouput
ports. When dealing with computerized numerically controlled (CNC) machines (e. g. MOLTKE's
first application: CNC machining centers) even more than these relations can be taken from the CNC
programs. These programs do not only provide us with input/output information but usually also
contain data on failures the CNC is able to detect. When the CNC detects such a failure it stops the
machine and displays a failure number that provides us with first information about where the
malfunction happened. '
These failure messages are issued if some feedback signal to a started machine order misses or is
wrong (e.g. a limit switch did not operate within a given time)? This information allows to focus
the attention to a certain part of the machine and is therefore a valuable starting point for the
diagnosis. Each failure is associated with a certain machine subcycle that performs a special
operation starting with some control system output signals and ending with some feedback input
signals. It is possible to conclude from the model which valves, switches etc. are related to these IO
signals and are therefore under suspect.
When no CNC is used MAKE has to simulate the device itself to be able to detect deviations from
the expected input/output relations and to cross-check the correctness of the functionality specified
by the designer. In these cases important inputs and outputs have to be measured before the focus of
attention can be moved to a certain part of the machine.
If no functionality at all i s specified MAKE must generate all possible input combinations and
simulate them through the model to get the respective expected output values. The input/output
relations thus generated can than be used as if entered by the designer.

6.5.1. Building Contexts from the Model

The best” way to choOse contexts is to ask the experts; but since we want to build the basic causal
expert system without their help, we have to build the contexts ourselves. Naturally, automatically
generated contexts may be not as good as those from the experts, but our experience with the
manually chosen contexts showed some typical patterns that will most often fit. Each context
(intermediate diagnosis) leads to several more special diagnoses that are its subcontexts. Leaf

can be generated from the model since it is impossible to make any conclusions about the behavior of the
component. Of course, a case based reasoning mechanism still can derive uncertain shortcuts in such a situation.

1 Ports have types and directions to ensure proper modeling.
2 This shows an additional advantage of diagnosis of a CNC-controlled machine: The CNC observes the inputs and

outputs of the machine automatically, so we already know these values when the diagnosis starts.

contexts correspond to final diagnoses. An example for a part of a context heterarchy is given in
figure 3.

MachineFailure _

----~--/ ~~===::-----FailureI55 FailureI57 FailureI59 FailureI60
/1' /1' ~ " /1'

CNC.IN32=O __CNC.IN36=O
_~ --r\ /1'

IOCardDefective LimitSwitch5S2.Switch=Open

-------- I ~-----LimitSwitchStuck Valve5Yl.Slide=Open PipeBroken MechanicFault

________ I"~
valVeMagnetDef~li~~

CNC.OUT7=~K7·lwitch=Closed SwitchNoContact

SwitchMagnetDefective CNC.OUT~
WireBroken

Figure 3: Example of a context heterarchy

The most abstract context and root of the context heterarchy is a context called
MachineFailure. Its first level of subcontexts is induced by the possiblities of how the
inputlouput relations given in the functionality description can go wrong. When a CNC with a
integrated diagnostic system is present, this is the level of control system failure messages, Le. each
failure number has its own context (e.g. Fa i 1u re I 5 9 in fig. 3). Each of these top level failure
contexts now gets subcontexts of its own for each (control) system input that could have been
responsible for that failure (e.g. IN32=O). Since the same fault could lead to different top level
failures, depending on the machine cycle it occurred in (Le. the inputs), the contexts are organized in
a heterarchy instead of a hierarchy to avoid multiple instances of the same context.

MAKE builds a context class C for each possible faulty value V on outport 0 of component class Co
(primitive and complex). The name of C is automatically generated as "Co.O=Y" (e.g.
ValveSelection. Switch=Open). It may seem as if this method creates a very large amount
of contexts, but since contexts are only generated for those outports and values that actually force
faulty output values in the whole machine, not all combinations will be created. The number of
contexts generated thus depends not only on the number of different components and the number of
their outports and value ranges, but especially on' the constraints in the expected input/output
relations given in the functionality description.

There are three basic strategies how to decide from the model what subcontexts a given context gets;
each of them constructs a precondition for them that is both necessary and sufficient to establish the
diagnosis the context represents:

1) hierarchical strategy
This strategy works strictly top-down according to the hierarchical model of the machine, Le. it first
makes sure that the fault occurred inside a component Co (by testing that Co's inputs are as expected
while at least one of its outputs is not, e.g. outport 0 has the unexpected value V) and then switches
to the context C for Co. The precondition for entering C thus becomes "all inputs of Co have
expected values and output 0 has unexpected value V". All contexts of the form "SCoi.Oi,j'=Vi,j"
become subcontexts of C, if SCOj is a subcomponent of Co and value Vi,j at SCOj's outport Oi,j can
cause value V at Co's outport O.

10

contexts correspond to final diagnoses. An example for a part of a context heterarchy is given in
figure 3.

MaChineFa i lure \ \

Fa i lu re ISS Fa i lu r e157 Fa i lu r e ISQ Fa i lu re IGO
l 1 ‘ \ I 1 ‘ \ 1//, \\\ I ' I \

CNC.IN32=0 CNC. IN36=O

//N’ " \
IOCardDefect ive L imi tSwi t chSSZ.Swi t ch=0pen

Limi tSwi t chS tuck Va lvesy l . 31 ide=0pen P ipeBroken Mechan icFau l t

/
ValveMagnetDefect ive Swi t ch5K1 .Swi t ch=Open

\T\\\
CNC . OUT7=0/Switch2 1K7 . Swi t ch=Closed Swi t chNoCon tac t

SwitchMagnetDefect ive CNC.OUT24=1

' WireBroken

Figure 3: Example of a context heterarchy

The most abstract context and root of the context heterarchy is a context called
Ma ch ineFa i lu re . Its first level of subcontexts i s induced by the possiblities of how the
input/ouput relations given in the functionality description can go wrong. When a CNC with a
integrated diagnostic system is present, this is the level of control system failure messages, i.e. each
failure number has its own context (e.g. Fa i l u r e IS 9 in fig. 3). Each of these top level failure
contexts now gets subcontexts of its own for each (control) system input that could have been
responsible for that failure (e.g. IN32=O). Since the same fault could lead to different top level
failures, depending on the machine cycle it occurred in (i.e. the inputs), the contexts are organized in
a heterarchy instead of a hierarchy to avoid multiple instances of the same context.
MAKE builds a context class C for each possible faulty value V on outport O of component class Co
(primitive and complex). The name of C is automatically generated as "Co.O=Y" (e. g.
Va lveSe lec t i on . Switch=0pen). It may seem as if this method creates a very large amount
of contexts, but since contexts are only generated for those outports and values that actually force
faulty output values in the whole machine, not all combinations will be created. The number of
contexts generated thus depends not only on the number of different components and the number of
their outports and value ranges, but especially on‘ the constraints in the expected input/output
relations given in the functionality description.
There are three basic strategies how to decide from the model what subcontexts a given context gets;
each of them constructs a precondition for them that is both necessary and sufficient to establish the
diagnosis the context represents:
1) hierarchical strategy
This strategy works strictly top-down according to the hierarchical model of the machine, i.e. it first
makes sure that the fault occurred inside a component Co (by testing that Co's inputs are as expected
while at least one of its outputs is not, e . g. outport O has the unexpected value V) and then switches
to the context C for Co. The precondition for entering C thus becomes "all inputs of Co have
expected values and output 0 has unexpected value V". All contexts of the form "SCoi.Oi‚j‘-—-Vi‚j"
become subcontexts of C, if SCoi is a subcomponent of Co and value Vi‚j at SCoi's outport 01,5 can
cause value V at Co's outport O.

10

2) sequential strategy
Unlike the hierarchical strategy the sequential one does not use the hierarchical structure of the
model. Instead, it traces the simulated behavior from the outputs of the machine back to its inputs on
the lowest component level thereby necessarily detecting the malfunctioning primitive component.
The precondition of a context for the sequential strategy therefore consists only of the fact "Co's
outport 0 has the unexpected value V". All contexts of the form "Coi.Oi,j=Vi,j" become
subcontexts of C, either if COi is a subcomponent of Co, COi's outport Oi,j is directly connected to
Co's outport 0 and Vi,j = V, or if COi's outport Oi,j is directly connected to one of Co's inports
and a value of Vi,j at that inport can cause value V at Co's outport O.

3) mixed strategy
This strategy is a mixture of the hierarchical and the sequential ones. It performs backward tracing
like the sequential one on a given level, but moves down in the hierarchy only if it can make sure the
failure lies within the subcomponent. As we found out this is the strategy the typical service
technician seems to follow: He/she traces the faulty output backwards on the top level until he/she
comes to a component with correct inputs and, faulty output. He/she then moves one level down in
the hierarchy and again performs backtracing on that level. The precondition of a context in the
mixed strategy therefore is the same as in. the hierarchical case, while the subcontexts are selected
like in the sequential case.

6.5.2. Construction of Shortcut Rules

A shortcut rule tries to establish facts about yet unmeasured port values from already acquired data.
Deriving them from a model requires knowledge about the way connected components interact.
Shortcut rules derived from the model are total (certain) if all possible failures of components are
modeled. Since these rules cannot assume any component to work correctly, too many different
possible failures make it impossible to derive any shortcut rule at all. If an unmodeled fault occurs
the shortcut rules may conclude wrong port values, but this kind of failure can be found by direct
use of the model, e.g. by constraint suspension [7] or similar techniques which, however, will be
quite costly. Alternatively, this is also a situation where case-based reasoning can be used.

We have different contexts for the same component with state, one for each possible output value,
but the shortcut rules are the same for all of them, since they are only based on the model of the
working device. We derive the shortcut rules for a component as follows:

i) Each behavior rule is copied as a shortcut rule iff there is no modeled failure that
produces an unexpected (different) output1 on the same inputs.

ii) The inversion2 of each behavior rule is copied as a shortcut rule if! there is no modeled
failure that produces the same output on different inputs.

Inside the context, the shortcut rules of each component are collected together with some rules that
state the equality of connected ports.

EXAMPLE:

Given (current In = X)-> (currentOut = X) as the behavior rule for
Wi re and (Broken (currentOut = 0» as the failure of Wi re, we can
conclude the following:

1 Outputs here are ports or states that appear on the right side of a behavior rule; inputs appear on the left side.

2 By inversion we mean the rule that is created by swapping the precondition and the conclusion of the original rule.

11

2) sequential strategy
Unlike the hierarchical strategy the sequential one does not use the hierarchical structure of the
model. Instead, it traces the simulated behavior from the outputs of the machine back to its inputs on
the lowest component level thereby necessarily detecting the malfunctioning primitive component.
The precondition of a context for the sequential strategy therefore consists only of the fact "Co's
outport O has the unexpected value V". All contexts of the form "Coi.Oi‚j=Vi‚j " become
subcontexts of C, either if C01 is a subcomponent of Co, Coi's outport Oi‚j is directly connected to
Co's outport O and Vi‚j = V, or if Coi's outport OiJ is directly connected to one of Co's inports
and a value of Vi‚j at that inport can cause value V at Co's outport O.
3) mixed strategy
This strategy is a mixture of the hierarchical and the sequential ones. It performs backward tracing
like the sequential one on a given level, but moves down in the hierarchy only if it can make sure the
failure lies within the subcomponent. As we found out this is the strategy the typical service
technician seems to follow: He/she traces the faulty output backwards on the top level until he/she
comes to a component with correct inputs and‘faulty output. He/she then moves one level down in
the hierarchy and again performs backtracing on that level. The precondition of a context in the
mixed strategy therefore is the same as in the hierarchical case, while the subcontexts are selected
like in the sequential case.

6.5.2. Construction o f Shortcut Rules

A shortcut rule tries to establish facts about yet unmeasured port values from already acquired data.
Deriving them from a model requires knowledge about the way connected components interact.
Shortcut rules derived from the model are total (certain) if all possible failures of components are
modeled. Since these rules cannot assume any component to work correctly, too many different
possible failures make it impossible to derive any shortcut rule at all. If an unmodeled fault occurs
the shortcut rules may conclude wrong port values, but this kind of failure can be found by direct
use of the model, e.g. by constraint suspension [7] or similar techniques which, however, will be
quite costly. Alternatively, this is also a situation where case—based reasoning can be used.
We have different contexts for the same component with state, one for each possible output value,
but the shortcut rules are the same for all of them, since they are only based on the model of the
working device. We derive the shortcut rules for a component as follows:

i) Each behavior rule i s copied as a shortcut rule ifl there is no modeled failure that
produces an unexpected (different) output1 on the same inputs.

ii) The inversion2 of each behavior rule is copied as a shortcut rule ifi‘ there i s no modeled
failure that produces the same output on different inputs.

Inside the context, the shortcut rules of each component are collected together with some rules that
state the equality of connected ports. '

EMI-E
Given (cu r r en t In = X) .—> (cu r r en tOu t = X) asthe behavior rule for
Wire and (Broken (cu r r en tOu t = 0)) as the failure of Wi re , we can
conclude the following:

1 Outputs here are ports or states that appear on the right side of a behavior rule; inputs appear on the left side.
2 By inversion we mean the rule that is created by swapping the precondition and the conclusion of the original rule.

11

Since for all X~ Broken produces a different (unexpected) output (Le. 0) on input X
than the behavior rule, i) can only be used for X=O. Thus i) leads to the following
shorteut rule:

(currentln = 0) -> (currentOut = 0)
Broken produces output 0 for every input, not just on O. Thus, according to ii), we
must exclude X=O from the inversion of the behavior rule and can conclude the shortcut
rule

(currentOut = X) (X * 0) -> (currentln = X)
In the last two sections the question may have arisen why we fIrst model the component with its
correct and faulty behavior and then mechanically derive contexts with preconditions and shortcut
rules out of it instead of writing them down immediately. Beneath the fact that the representation of
the connectivity would be more diffIcult and that consistency checks would have to be reduced the
chosen representation is much clearer, easier to produce and can be used for other tasks too (e.g.
construction of ordering knowledge - see next section).

6.5.3. Construction of Ordering Knowledge

Our augmentation of the model with failure probabilities and measurement complexity allows us to
produce a list of applicable tests ordered according to some chooseable criteria for any situation. To
evaluate all possible testing points inside the component a context belongs to (i.e. all the ports of the
component and its subcomponents) we build up a dependency graph containing the expected values
of these testing points as well as the already measured datal. If measured and expected value of
some port (node) inside the graph agree, all testing points downward from there can be discarded as
long as there is no other connection between them and the root of the graph. If expected and
measured value differ this point (node) becomes the new root of the graph (thus cutting all testing
points above it) since we found a port nearer to the machine inputs where things went wrong2. As
can be concluded from this, internal nodes of an existing graph only contain yet unmeasured ports
(testing points).

How do we select the next measurement from a given graph? First we examine the information gain
we would get if we knew the value of an internal node. This information gain is measured by
looking at the resulting graph after each possible outcome of the measurement. The resulting graphs
are weighed with the a priori failure probability of the components they include and the resulting
value is set off against the diffIculty to actually measure the value. How exactly the weights are is
determined by the chosen strategy, e.g. whether lots of easy measurements are preferrable to only
few but diffIcult ones. An optimal measuring point wouid be easy to measure and would split the
graph into two equally weighted halfs.

7. Knowledge Acquisition Using Empirical Cases

7.1. Motivation and Overview

As the task of an expert system which builds up on the MOLTKE toolbox is to simulate the
diagnostic problem solving behavior of the respective expert, it is a necessity to represent at least the
dynamical parts of the expert's problem solving behavior which have a great influence on his/her
problem solving performance. Especially his/her learning behavior - with respect to the diagnostic
task, of course - is of great importance here. The pragmatic solution within the MOLTKE project is,

1 Root of this graph is the outport 0 of the component that showed the wrong value.

2 If we would allow multiple faults, we could not cut the graph this way.

12

Since for all X¢O Broken produces a different (unexpected) output (i.e. 0) on input X
than the behavior rule, i) can only be used for X=0. Thus i) leads to the following
shortcut rule:

(cu r r en t In = 0) -> (currentOut = 0)
Broken produces output 0 for every input, not just on 0. Thus, according to i i) , we
must exclude X=0 from the inversion of the behavior rule and can conclude the shortcut
rule

(cu r r en tOu t = X) (X == 0) -> (cu r r en t In = X)
In the last two sections the question may have arisen why we first model the component with its
correct and faulty behavior and then mechanically derive contexts with preconditions and shortcut
rules out of it instead of writing them down immediately. Beneath the fact that the representation of
the connectivity would be more difficult and that consistency checks would have to be reduced the
chosen representation is much clearer, easier to produce and can be used for other taskstoo (e.g.
construction of ordering knowledge - see next section).

6.5.3. Construction of Ordering Knowledge

Our augmentation of the model with failure probabilities and measurement complexity allows us to
produce a list of applicable tests ordered according to some chooseable criteria for any situation. To
evaluate all possible testing points inside the component a context belongs to (i.e. all the ports of the
component and its subcomponents) we build up a dependency graph containing the expected values
of these testing points as well as the already measured datal. If measured and expected value of
some port (node) inside the graph agree, all testing points downward from there can be discarded as
long as there is no other connection between them and the root of the graph. If expected and
measured value differ this point (node) becomes the new root of the graph (thus cutting all testing
points above it) since we found a port nearer to the machine inputs where things went wrong? As
can be concluded from this, internal nodes of an existing graph only contain yet unmeasured ports
(testing points).
How do we select the next measurement from a given graph? First we examine the information gain
we would get if we knew the value of an internal node. This information gain i s measured by
looking at the resulting graph after each possible outcome of the measurement. The resulting graphs
are weighed with the a priori failure probability of the components they include and the resulting
value is set off against the difficulty to actually measure the value. How exactly the weights are is
determined by the chosen strategy, e.g. whether lots of easy measurements are preferrable to only
few but difficult ones. An optimal measuring point would be easy to measure and would split the
graph into two equally weighted halfs.

7. Knowledge Acquisition Using Empirical Cases

7.1. Motivation and Overview

As the task of an expert system which builds up on the MOLTKE toolbox is to simulate the
diagnostic problem solving behavior of the respective expert, i t is a necessity to represent at least the
dynamical parts of the expert’s problem solving behavior which have a great influence on his/her
problem solving performance. Especially his/her learning behavior - with respect to the diagnostic
task, of course - is of great importance here. The pragmatic solution within the MOLTKE project is,

1 Root of this graph is the oulport O of the component that showed the wrong value.

2 If we would allow multiple faults, we could not cut the graph this way.

12

as a first approximation, to distinguish between two basic learning strategies of the expert. The
motivation for this is a real world application's point of view. Therefore it is sufficient for our
purposes here. The expert's basic strategies are:

• Learning from examples

Examples are a kind of problem solving traces which form the expert's problem solving
experience. The expert learns while memorizing such examples and using them as a
positive or negative feedback for enhancing his problem solving knowledge.

• Analogy
The expert uses analogies between the given actual problem and known examples to
guide and focus his problem solving process. During this process the expert learns new
and/or better examples.

Both abilities (in regard of the given task) are acquired during the expert's normal work. The goal
within the MOLTKE project is to utilize both techniques for solving complex problems. The system
therefore has a component that memorizes the "learned" examples! (which we call cases) and applies
analogical reasoning techniques for solving problems based on these concrete cases. The underlying
basic hypotheses of our approach are that learning by memory adaptation and analogical problem
solving are fundamental techniques which experts (and, as we believe, human beings in general)
apply during problem solving. Thus, using them as the system's central mechanisms maximizes its
transparency with respect to the expert's learning behavior, increases the user's acceptance
concerning the system and decisively improves the knowledge acquisition support.

In this connection the MOLTKE project concentrates on two points of emphasis. The first one is the
direct interpretation of the learned cases which allows the application of analogical problem solving
as the system's central mechanism. For further details see [8,9]. Secondly, we stress the usage of
an adaptation and extension of the determination-based analogical reasoning approach of [10].
Determinations2 are similar to MOLTKE's shortcut rules in the sense that the latter are compilations
of analogical inferences which are justified by determinations. Thus, from a simplifying point of
view a shortcut rule (if situation] then symptorn2 := value) can be interpreted in such a manner that
situation I determines symptom2. The latter approach enables analogical inferences which are
justified with certain restrictions, as the main problem is the acquisition of such determinations/
shortcut rules. Our answer is the automatic generation of total shortcuts from the deep model of the
underlying technical system (by the MAKE system, see chapter 6) and of partial shortcuts from the
empirical case base using explanation-based learning (by the GenRule3 system).

The next section gives an overview of the representation(s) of empirical knowledge in MOLTKE
and its (respective) principal organization. The generation of partial shortcut rules based on an
algorithm presented in [11] is discussed in 7.3. Then our approach of extracting ordering
information from the empirical cases is introduced. We complete this chapter with a description of
the kernel system's capabilities for the handling of partial shortcut rules.

7.2. Representation of Empirical Knowledge

In MOLTKE empirical knowledge is represented by a collection of examples which we call cases.
The .respective knowledge sources could be documentation material like service reports, test bench
protocols, and test cases or the expert's remembered experiences. Cases are not only well suited for
the representation of such knowledge, but also for the modelling of vague information. In case of

1 Learning by memory adaptation, i.e. storing and updating of individual experiences and statistical information.

2 For a definition of determinations within MOLTKE see [11].

3 !knerator of empirical MOLTKE Rules

13

as a first approximation, to distinguish between two basic learning strategies of the expert. The
motivation for this is a real world application’s point of view. Therefore i t i s sufficient for our
purposes here. The expert’s basic strategies are:

° Learning fiom examples
Examples are a kind of problem solving traces which form the expert’s problem solving
experience. The expert learns while memorizing such examples and using them as a
positive or negative feedback for enhancing his problem solving knowledge.

° Analogy
The expert uses analogies between the given actual problem and known examples to
guide and focus his problem solving process. During this process the expert learns new
and/or better examples.

Both abilities (in regard of the given task) are acquired during the expert’s normal work. The goal
within the MOLTKE project is to utilize both techniques for solving complex problems. The system
therefore has a component that memorizes the "learned" examples1 (which we call cases) and applies
analogical reasoning techniques for solving problems based on these concrete cases. The underlying
basic hypotheses of Our approach are that learning by memory adaptation and analogical problem
solving are fundamental techniques which experts (and, as we believe, human beings in general)
apply during problem solving. Thus, using them as the system’s central mechanisms maximizes its
transparency with respect to the expert’s learning behavior, increases the user’s acceptance
concerning the system and decisively improves the knowledge acquisition support.
In this connection the MOLTKE project concentrates on two points of emphasis. The first one is the
direct interpretation of the learned cases which allows the application of analogical problem solving
as the system’s central mechanism. For further details see [8,9]. Secondly, we stress the usage of
an adaptation and extension of the determination-based analogical reasoning approach of [10].
Determinations2 are similar to MOLTKE’s shortcut rules in the sense that the latter are compilations
of analogical inferences which are justified by determinations. Thus, from a simplifying point of
view a shortcut rule (if situation] then symptomZ := value) can be interpreted in such a manner that
situationl determines symptom2. The latter approach enables analogical inferences which are
justified with certain restrictions, as the main problem is the acquisition of such determinations]
shortcut rules. Our answer is the automatic generation of total shortcuts from the deep model of the
underlying technical system (by the MAKE system, see chapter 6) and of partial shortcuts from the
empirical case base using explanation-based learning (by the GenRule3 system).
The next section gives an overview of the representation(s) of empirical knowledge in MOLTKE
and its (respective) principal organization. The generation of partial shortcut rules based on an
algorithm presented in [1 1] is discussed in 7.3. Then our approach of extracting ordering
information from the empirical cases is introduced. We complete this chapter with a description of
the kernel system’s capabilities for the handling of partial shortcut rules.

7.2. Representation of Empirical Knowledge

In MOLTKE empirical knowledge is represented by a collection of examples which we call cases.
The respective knowledge sources could be documentation material like service reports, test bench
protocols, and test cases or the expert ’s remembered experiences. Cases are not only well suited for
the representation of such knowledge, but also for the modelling of vague information. In case of

1 Learning by memory adaptation, i.e. storing and updating of individual experiences and statistical information.
2 For a definition of determinations within MOLTKE see [11] .

3 Generator of empirical MOLTKE Rules

13

the application on CNC machining centers this affects relations of machine faults to symptoms
which depend on smelling, hearing, seeing, feeling, or the geometry of workpieces. From an
abstract point of view typical cases can be described as follows:

djalmostjc case strategy case

symptom1 = 1 symptoml = 1

symptom2=O symptom2=O

symptom3 =2 symptom3 = 2

symptom4=3 symptom4= 3

diagnosis1 symptom5

The part above the line is the description of an empirical situation l in the form of a list of symptom
values. The part below the line is the solution of the case, Le. the (empirical) result of the described
situation. We distinguish between diagnostic and strategy cases. For the first type, the result of the
situation has been to make a diagnosis, for the second, to ascertain a symptom~ The diagnostic cases
are used for support in the classification task, the strategy cases for the selection of tests. As the
symptom values within the description of the case situation are ordered, strategy cases can be
automatically derived out of the diagnostic cases. Thus, only diagnostic cases must be acquired.
E.g., the following four strategy cases can be derived from the above mentioned diagnostic case:

symptom1 = 1 symptoml = 1 symptoml = 1

symptoml symptom2 = 0 symptom2 = 0

symptom2 symptom3 = 2

symptom3

symptom4

Cases are organized in a hierarchical case memory which is an integration of the experience graph of
the PAIDEX system (see figure 5) and of an adaptation and specialization of the conceptual memory
described in [12]. While there exists only one global case memory for diagnostic cases, strategy
case memories can be considered as locally defined for each context. They support the generation of

. ordering rules for the respective context. The diagnostic case memory is the starting-point for the
generation of shortcut rules for all contexts of the kernel system. As the direct interpretation of case
memories is beyond the scope of this paper, we must refer to [9] where the fundamental procedure
has been described in detail. We now focus on the GenRule system and the kernel system's
capabilities of handling uncertain information like partial shorteut rules.

7.3. Knowledge Base Refinement Using an Explanation-Based Learning Technique

One important task of the case-based component is the generation of (partial) shortcut rules by the
GenRule system. Two basic procedures exist for doing this: the first one has been published in [13]
and compares diagnostic cases, which have the same diagnosis, with one another. The second one
has been published in [11]. It is more efficient than the first one because cases are compared to
minimal diagnosis paths that have been reconstructed out of the MOLTKE knowledge base. It uses a
hierarchical case memory of diagnostic cases as starting-point. From an explanation-based learning
point of view (see figure 4) the MOLTKE 3.0 knowledge base is the underlying domain theory, the

1 All symptoms which are not mentioned in the case description are assumed to have the value unknown.

14

the application on CNC machining centers this affects relations of machine faults to symptoms
which depend on smelling, hearing, seeing, feeling, or the geometry of workpieces. From an
abstract point of view typical cases can be described as follows:

diamsfiuase Mm
symptoml = 1 symptoml = 1
symptom2 = 0 symptom2 = 0
symptom3 = 2 symptom3 = 2
symptom4 = 3 symptom4 = 3

diagnosis] symptomS

The part above the line is the description of an empirical situation1 in the form of a list of symptom
values. The part below the line is the solution of the case, i.e. the (empirical) result of the described
situation. We distinguish between diagnostic and strategy cases. For the first type, the result of the
situation has been to make a diagnosis, for the second, to ascertain a symptom; The diagnostic cases
are used for support in the classification task, the strategy cases for the selection of tests. As the
symptom values within the description of the case situation are ordered, strategy cases can be
automatically derived out of the diagnostic cases. Thus, only diagnostic cases must be acquired.
E . g., the following four strategy cases can be derived from the above mentioned diagnostic case:

................ symptoml =1 symptoml = 1 symptoml = 1
symptoml ----------------- symptom2 = 0 symptom2 = 0

symptom2 ----------------- symptom3 = 2
symptom3 -----------------

symptom4

Cases are organized in a hierarchical case memory which is an integration of the experience graph of
the PATDEX system (see figure 5) and of an adaptation and specialization of the conceptual memory
described in [12] . While there exists only one global case memory for diagnostic cases, strategy
case memories can be considered as locally defined for each context. They support the generation of

‘ordering rules for the respective context. The diagnostic case memory is the starting-point for the
generation of shortcut rules for all contexts of the kernel system. As the direct interpretation of case
memories is beyond the scope of this paper, we must refer to [9] where the fundamental procedure
has been described in detail. We now focus on the GenRule system and the kernel system’s
capabilities of handling uncertain information like partial shortcut rules.

7.3. Knowledge Base Refinement Using an Explanation-Based Learning Technique

One important task of the case-based component is the generation of (partial) shortcut rules by the
GenRule system. Two basic procedures exist for doing this: the first one has been published in [13]
and compares diagnostic cases, which have the same diagnosis, with one another. The second one
has been published in [11]. I t is more efficient than the first one because cases are compared to
minimal diagnosis paths that have been reconstructed out of the MOLTKE knowledge base. It uses a
hierarchical case memory of diagnostic cases as starting-point. From an explanation-based learning
point of view (see figure 4) the MOLTKE 3.0 knowledge base is the underlying domain theory, the

1 All symptoms which are not mentioned in the case description are assumed to have the value unknown.

14

goal concept is to improve the diagnosis, Le. having to ask for as few symptom values as possible,
the examples are the cases and the operationality criterion is the shortened list of symptoms for
which still has to be asked, Le. the removal of possible tests is the smallest grain size of
improvement that is wanted. If a case is presented it is compared to the 'reconstructed diagnosis path
which has the same diagnosis. If the case is "shorter" than the diagnosis path, Le. it is a positive
example in the sense of the goal concept, then GenRule creates a new shortcut rule and adds it to the
shortcut rule base of the respective context (if the determination factor exceeds a certain threshold).
Thus, the improved domain theory is the starting-point for the next case that is to be processed.
Therefore the described procedure is a closed-loop learning mechanism. In the case of a negative
example, Le. the case is not shorter then the diagnosis path, the procedure does nothing. The formal
definitions, the description of the underlying algorithm, the computation of the determination (or
certainty) factor, and the categorization of the shorteut rules according to their attached determination
factors are given in [11].

Training Example Domain Theory

~
cases MOLTKE3.0

,
....

Proof Goal Concept

.... improved diagnosis <c

... Operationalization

shortcut rule
~

Operationality Criterion

shortened symptom list

Figure 4: Adapting explanation-based learning for MOLTKE

7.4. Extracting Ordering Information from Strategy Cases

Based on the strategy case memories of the respective context the case-based component is able to
generate ordering rules for the kernel system. This results in an explicit representation of ordering
information which is snapshot-like. An alternative approach is the direct interpretation of the strategy
case memory which enables the application of an incremental and closed-loop learning technique.
Within this paper we will concentrate on the first approach.

For the extraction of ordering information from the case memory it is sufficient to describe the case
memory as in figure 5. Empirical knowledge is represented by means of a weighted directed graph.
While the nodes in this graph represent situations, the weights of the directed edges between these

15

goal concept is to improve the diagnosis, i.e. having to ask for as few symptom values as possible,
the examples are the cases and the operationality criterion is the shortened list of symptoms for
which still has to be asked, i .e . the removal of possible tests i s the smallest grain size of
improvement that is wanted. If a case is presented it is compared to the reconstructed diagnosis path
which has the same diagnosis. If the case is “shorter” than the diagnosis path, i.e. it is a positive
example in the sense of the goal concept, then GenRule creates a new shortcut rule and adds it to the
shortcut rule base of the respective context (if the determination factor exceeds a certain threshold).
Thus, the improved domain theory i s the starting-point for the next case that i s to be processed.
Therefore the described procedure is a closed-loop learning mechanism. In the case of a negative
example, i.e. the case is not shorter then the diagnosis path, the procedure does nothing. The formal
definitions, the description of the underlying algorithm, the computation of the determination (or
certainty) factor, and the categorization of the shortcut rules according to their attached determination
factors are given in [11].

Training Example _ Domain Theory

cases _ MOLTKE 3.0

Proof Goal Concept

< c 4—— improved diagnosis

Operationalization

shortcut rule

I
Operationality Criterion

shortened symptom list

Figure 4: Adapting explanation-based learning for MOLTKE

7.4. Extracting Ordering Information from Strategy Cases

Based on the strategy case memories of the respective context the case-based component is able to
generate ordering rules for the kernel system. This results in an explicit representation of ordering
information which is snapshot-like. An alternative approach is the direct interpretation of the strategy
case memory which enables the application of an incremental and closed-loop learning technique.
Within this paper we will concentrate on the first approach.
For the extraction of ordering information from the case memory it is sufficient to describe the case
memory as in figure 5. Empirical knowledge is represented by means of a weighted directed graph.
While the nodes in this graph represent situations, the weights of the directed edges between these

15

nodes represent the conditional probability of one situation (represented by the end node of the
specific arc) occurring next in the diagnostic process under the assumption that another situation
(represented by the start node of the arc) describes the current onel . Every time the strategy case
memory is asked for a new symptom, which should be ascertained, the statistical information
represented in the network is used to find out the (more comprehensive) situation which, by prior

experience, suggests the best suited symptom to ascertain. This task is accomplished by running a
heuristic-driven search through the graph. The result of the search process will be a situation and the
additional symptom within this situation will be the one looked for.

The GenRule gives an empty situation to the strategy case memory which answers with a symptom
that should be tested. Depending on the answered symptoms GenRule then systematically creates all
possible situations which are all given to the case memory. This loop stops when all leaf nodes of
the most probable paths are reached. The ordering rules are then built by the association of a
situation, given as input to the strategy case memory, with the symptom that is answered by the
memory.

Case 1
Symptoms A
Hypothesis 1

Nodes: situations

Edges: probability of the next
situation

Path: way to a case using
known symptoms and
prior experience by
heuristic-driven search

Figure 5: Representation of empirical knowledge

7.5. Utilization of Empirical Knowledge in the Kernel System

A basic requirement from a real world application in the domain of technical diagnosis (as in many
others) is to make the problem solving process as transparent as possible. One of its consequences
is to treat uncertainty in a rather simple manner. Within the kernel system only the partial shortcut
rules are uncertain. This uncertainty is described by a list of three determination factors. All factors
are computed using the arithmetic expression given in [11] but are related to different sets of cases
of the diagnostic case memory. The third value depends on the set of all cases and is therefore the
most conservative estimation. The second value depends on the set of cases which all have the same
diagnosis and have been responsible for the generation of the considered shortcut rule. This
estimation is the most optimistic one. Both values are computed by GenRule. The first value is
dynamically computed by the kernel system after a diagnosis has been made. This value depends on
the set of all the cases that have the same diagnosis as the actual one, unified with the set of cases

1	 The role of the weights is similar to that of certainty factors for probabilities where the underlying distribution
function is not known, lOO.

16

nodes represent the conditional probability of one situation (represented by the end node of the
specific are) occurring next in the diagnostic process under the assumption that another situation
(represented by the start node of the arc) describes the current onel. Every time the strategy case
memory is asked for. a new symptom, which should be ascertained, the statistical information
represented in the network is used to find out the (more comprehensive) situation which, by prior
experience, suggests the best suited symptom to ascertain. This task is accomplished by running a
heuristic-driven search through the graph. The result of the search process will be a situation and the
additional symptom within this situation will be the one looked for.
The GenRule gives an empty situation to the strategy case memory which answers with a symptom
that should be tested. Depending on the answered symptoms GenRule then systematically creates all
possible situations which are all given to the case memory. This loop stops when all leaf nodes of
the most probable paths are reached. The ordering rules are then built by the association of a
situation, given as input to the strategy case memory, with the symptom that i s answered by the
memory. .

root Nodes : situations

Edges: probability of the next
situation0,1

0’4 o 1 Path: way to a case using
6 ' known symptoms and

prior experience by
1 0 .8 heuristic-driven search

@ 1
Case 1 88° 2 ase 3
Symptoms A ymptoms A ymptoms B,C .”.
Hypothesis 1 ypothesis 7 ypothesis 4

Figure 5: Representation of empirical knowledge

7.5. Utilization of Empirical Knowledge in the Kernel System

A basic requirement from a real world application in the domain of technical diagnosis (as in many
others) is to make the problem solving process as transparent as possible. One of its consequences
is to treat uncertainty in a rather simple manner. Within the kernel system only the partial shortcut
rules are uncertain. This uncertainty is described by a list of three determination factors. All factors
are computed using the arithmetic expression given in [11] but are related to different sets of cases
of the diagnostic case memory. The third value depends on the set of all cases and is therefore the
most conservative estimation. The second value depends on the set of cases which all have the same
diagnosis and have been responsible for the generation of the considered shortcut rule. This
estimation is the most optimistic one. Both values are computed by GenRule. The first value is
dynamically computed by the kernel system after a diagnosis has been made. This value depends on
the set of all the cases that have the same diagnosis as the actual one, unified with the set of cases

1 The role of the weights is similar to that of certainty factors for probabilities where the underlying distribution
function is not known, too. -

16

that is the basis for the second value. IT the actual diagnosis is identical to the one mentioned in

connection with the second factor the fIrst and the second factor are equal.

MOLTKE-s heuristic-based treatment of uncertainty encompasses the following:

• the kernel system does not compute any probability value during a diagnosis session

• the user can specify:

• the worst probability category of shortcut rules that is still accepted by the user

• how many partial shortcut rules are allowed to fIre during one diagnosis session

• how many uncertain symptom values are allowed to be used for getting shortcut
rules (including the total ones) fIred. This is tested by the shortcut rule interpreter.

If a diagnosis has been made all ascertained symptoms, especially all uncertain ones, are shown to
the user. For the uncertain symptoms the corresponding shortcut rules, including their (first)
determination factors, are mentioned. If the user states that the presented diagnosis is wrong the
system makes several suggestions what to do then:

• change of (arbitrary) selected symptom values

• verifIcation of special uncertain symptom values

• another interpretation of the knowledge base without usage of uncertain information

• another interpretation of the knowledge base with corrected symptom values

• another interpretation of the knowledge base with additional symptom values

As the kernel systems maintains a Rete-like formula network all these actions can be carried out
easily. During runtime the system has to remember all uncertain symptoms and to count the number
of evaluations of partial shortcut rules and the number of evaluations of shortcut rules with uncertain
symptoms. The uncertainty of a symptom affects only the shortcut rule interpreter.

Besides the determination of symptom values partial (and also the total) shortcut rules can be used to
defIne a special ordering strategy, namely to try to ascertain symptoms in a manner that maximizes
the number of shortcut rules that can fIre.

8. The Integration of the Multiple Knowledge Sources

In project MOLTKE two ways of integrating deep and case knowledge into the kernel system are
realized. First, compilers can generate the objects used by the shell: this is done in an offline process
by MAKE and GenRule (see sections above). For the shell the resulting system is not different from
a user defIned one. Thus, the whole knowledge acquisition environment of the shell can be used for
editing the automatically generated knowledge base. This allows to combine deep modelling with
case-based reasoning and common knowledge acquisition techniques.

Second, case and deep knowledge can be used online by different interpreters. We will describe this
feature now in more detail.

The default interpreter uses ordering rules as compiled knowledge about strategies. Every context
contains an interpreter which evaluates the ordering rule set according to the actual situation.
Replacing this context interpreter by a case- or model-based one is easy because of the
modularisation of the system. The new interpreter gets the actual situation as input and has to return
the symptom instance to test. Thus, the main work is not the integration of the new interpreter into
the kernel system but the implementation of the new facility itself.

As described above, we implemented, according to the given specifIcation, an interpreter for model
based ordering knowledge. One possible online interpretation of the strategy case base has been
described as the underlying mechanism for the generation of ordering rules. The appropriate modul
can easily replace the default context interpreter. The integration of a neural network which was
trained with a set of strategy cases is completed. This network gets the actual situation as input and

17

that is the basis for the second value. If the actual diagnosis is identical to the one mentioned in
connection with the second factor the first and the second factor are equal.
MOLTKE’s heuristic-based treatment of uncertainty encompasses the following:

° the kernel system does not compute any probability value during a diagnosis session
° the user can specify:

° the worst probability category of shortcut rules that is still accepted by the user
. how many partial shortcut rules are allowed to fire during one diagnosis session
° how many uncertain symptom values are allowed to be used for getting shortcut

rules (including the total ones) fired. This is tested by the shortcut rule interpreter.
If a diagnosis has been made all ascertained symptoms, especially all uncertain ones, are shown to
the user. For the uncertain symptoms the corresponding shortcut rules, including their (first)
determination factors, are mentioned. If the user states that the presented diagnosis i s wrong the
system makes several suggestions what to do then:

° change of (arbitrary) selected symptom values
° verification of special uncertain symptom values
° another interpretation of the knowledge base without usage of uncertain information
° another interpretation of the knowledge base with corrected symptom values
° another interpretation of the knowledge base with additional symptom values

As the kernel systems maintains a Rete-like formula network all these actions can be carried out
easily. During runtime the system has to remember all uncertain symptoms and to count the number
of evaluations of partial shortcut rules and the number of evaluations of shortcut rules with uncertain
symptoms. The uncertainty of a symptom affects only the shortcut rule interpreter.
Besides the determination of symptom values partial (and also the total) shortcut rules can be used to
define a special ordering strategy, namely to try to ascertain symptoms in a manner that maximizes
the number of shortcut rules that can fire.

8 . The Integration of the Multiple Knowledge Sources

In project MOLTKE two ways of integrating deep and case knowledge into the kernel system are
realized. First, compilers can generate the objects used by the shell: this is done in an offline process
by MAKE and GenRule (see sections above). For the shell the resulting system is not different from
a user defined one. 'I'hus, the whole knowledge acquisition environment of the shell can be used for
editing the automatically generated knowledge base. This allows to combine deep modelling with
case-based reasoning and common knowledge acquisition techniques.
Second, case and deep knowledge can be used online by different interpreters. We will describe this
feature now in more detail.
The default interpreter uses ordering rules as compiled knowledge about strategies. Every context
contains an interpreter which evaluates the ordering rule set according to the actual situation.
Replacing this context interpreter by a case- or model-based one i s easy because of the
modularisation of the system. The new interpreter gets the actual situation as input and has to return
the symptom instance to test. Thus, the main work is not the integration of the new interpreter into
the kernel system but the implementation of the new facility itself.
As described above, we implemented, according to the given specification, an interpreter for model-
based ordering knowledge. One possible online interpretation of the strategy case base has been
described as the underlying mechanism for the generation of ordering rules. The appropriate modul
can easily replace the default context interpreter. The integration of a neural network which was
trained with a set of strategy cases is completed. This network gets the actual situation as input and

17

returns the symptom to test. A detailed description of this approach is not within the scope of this
paper.

As the interpretation of ordering knowledge depends only on the context interpreter of a particular
context, the system is able to combine the strategy interpreters, Le. in context A the neural network
is used whereas in context B the model-based approach detennines the strategy. The use of more
than one technique inside a single context would be easy to implement but does not seem to be
promising to us.

Besides the described two levels of integration the case- and the model-based component can interact
with each other. The case-based component can ask the model-based one for a plausibility check of
its cases whereas the model-based part can retrieve statistic information from the case memory.

9. Discussion

The starting point for the MOLTKE project has been the end of 1986. It has been a cooperation
between our expert system research group at Kaiserslautern (Prof. Dr. M.M. Richter) and the
"Laboratorium fUr Werkzeugmaschinen und Betriebslehre" (WZL) of the Technical University of
Aachen (Prof. Dr.-Ing. T. Pfeifer), a world-wide distinguished mechanical engineering institute.
The aim of project X6 was to improve the expert system technology for the diagnosis of technical
systems. Therefore a complex real world domain (CNC machining centers) has been chosen to
allow a deep analysis of the requirements which arise from such a domain and to enable us to
develop the proper solutions. Important requirements are: representation and processing of a huge
amount of knowledge, sufficient overall performance, ease of adaptability to new sets and types of
the technical system, transparency of the diagnostic process, representation and processing of
temporally distributed symptoms, flexibility of the diagnostic procedure and automation of the
diagnostic process (as far as possible). These requirements are the generalized result of the analysis
of the cooperating mechanical engineering research institute. The results have been obtained by a
rather complex process and have not been clear in their whole breadth and depth at the beginning of
the project. Therefore many different prototypes and specialized architectures (up to now: 10) have
been implemented to enable experimental evaluation by the engineering institute.

A comparison of these architectures and the evaluation which of the just mentioned requirements are
met by the MOLTKE toolbox (and how far) is beyond the scope of this paperl . Anyway, expert
system evaluation is a hot research topic and there are no commonly accepted evaluation schemes up
to now, especially not for integrated toolboxes. However, we will present an overview of our
internal evaluation scheme:

•	 A comparison ofmanually and automatically developed knowledge bases

This is currently under develoment for the domain of CNC machining centers.

•	 An analysis of the transferability to other machines of the same domain (of CNC

machines)

In cooperation with a mechanical engineering research institute at the University of
Kaiserslautern we have successfully implemented a knowledge base for a 3D-CNC
measuring machine.

•	 An analysis ofthe transferability to similar domains

At the moment we are developing a knowledge base for the diagnosis of driving
machines in mining.

1	 The basic assumptions and hypotheses, an overview of the domain of CNC machining centers, the arising
requirements and necessary solutions, the main results and an overview of the implemented architectures for
technical diagnosis will be published in a book, probably at the end of 1990

18

returns the symptom to test. A detailed description of this approach is not within the scope of this
paper. .
As the interpretation of ordering knowledge depends only on the context interpreter of a particular
context, the system is able to combine the strategy interpreters, i.e. in context A the neural network
i s used whereas in context B the model-based approach determines the strategy. The use of more
than one technique inside a single context would be easy to implement but does not seem to be
promising to us.
Besides the described two levels of integration the case- and the model-based component can interact
with each other. The case-based component can ask the model-based one for a plausibility check of
its cases whereas the model-based part can retrieve statistic information from the case memory.

9 . Discussion

The starting point for the MOLTKE project has been the end of . 1986 . It has been a cooperation
between our expert system research group at Kaiserslautern (Prof. Dr. M.M. Richter) and the
“Laboratorium fiir Werkzeugmaschinen und Betriebslehre” (WZL) of the Technical University of
Aachen (Prof. Dr.-Ing. T. Pfeifer), a world-wide distinguished mechanical engineering institute.
The aim of project X6 was to improve the expert system technology for the diagnosis of technical
systems. Therefore a complex real world domain (CNC machining centers) has been chosen to
allow a deep analysis of the requirements which arise from such a domain and to enable us to
develop the proper solutions. Important requirements are: representation and processing of a huge
amount of lmowledge, sufficient overall performance, ease of adaptability to new sets and types of
the technical system, transparency of the diagnostic process, representation and processing of
temporally distributed symptoms, flexibility of the diagnostic procedure and automation of the
diagnostic process (as far as possible). These requirements are the generalized result of the analysis
of the cooperating mechanical engineering research institute. The results have been obtained by a
rather complex process and have not been clear in their whole breadth and depth at the beginning of
the project. Therefore many different prototypes and specialized architectures (up to now: 10) have
been implemented to enable experimental evaluation by the engineering institute.
A comparison of these architectures and the evaluation which of the just mentioned requirements are
met by the MOLTKE toolbox (and how far) is beyond the scope of this paperl. Anyway, expert
system evaluation is a hot research topic and there are no commonly accepted evaluation schemes up
to now, especially not for integrated toolboxes. However, we will present an overview of our
internal evaluation scheme:

. A comparison of manually and automatically developed knowledge bases
This is currently under develornent for the domain of CNC machining centers.

° An analysis of the transferability to other machines of the same domain (of CNC
machines)
In cooperation with a mechanical engineering research institute at the University of
Kaiserslautern we have successfully implemented a knowledge base for a 3D-CNC
measuring machine.

' An analysis of the transferability to similar domains
At the moment we are developing a knowledge base for the diagnosis of driving
machines in mining.

1 The basic assumptions and hypotheses, an overview of the domain of CNC machining centers, the arising
requirements and necessary solutions, the main results and an overview of the implemented architectures for
technical diagnosis will be published in a book, probably at the end of 1990

18

• An analysis of the transferability to other technical domains
As an example for a quite different technical domain a diagnostic knowledge base for
heterogenous computer networks is currently developed.

• Adaptation ofknowledge to new series and typ'es ofthe same machine
This is a special research objective within our project [5].

• A comparison ofthe model-based and case-based component with other approaches

This has partially been done up to now (e.g. for the case-based reasoner of the toolbox
[9]; for the model-based component [6]), but the completion is forthcoming.

• A comparison ofalternative mechanisms within the toolbox
In this point we hope to get a deeper insight when all the above mentioned applications
are completed.

• An overall evaluation ofthe complete MOLTKE toolbox

We believe that the successful integration of methods from several complicated areas
into one toolbox is the real research progress we can offer. The ongoing applications
will help us to show the usefulness of MOLTKE and provide us with further realistic
evaluation.

10. State of Realization

The kernel MOLTKE 3.0 is fully implemented including MAKE and GenRule. A case-based
reasoner (PATDEX) was implemented as a stand-alone system. The integration into MOLTKE 3.0
is currently in work.

Using the MOLTKE toolbox we implemented an expert system for fault diagnosis of CNC
machining centers (see [11,14]) and one for the diagnosis of 3D-CNC measuring machine [15].
Currently expert systems for the diagnosis of failures in heterogenous computer networks and for
the diagnosis of driving machines in mining are developed.

The MOLTKE system is implemented in Smalltalk-80 on Sun-, Apollo- and HP-Unix-workstations.
It runs on all machines for which the respective virtual machine for Smalltalk-80 was implemented
including DECstations, MacH, 80386-PCs etc.

11.	 References

[l]	 J.Breuker, B.Wielinga: Model-Driven Knowledge Acquisition: Interpretation Models, Memo 87, Deliverable
task AI, Esprit Project 1098; 1987

[2]	 Nokel, K.: Temporal Matching: Recognizing Dynamic Situations from Discrete Measurements, in: Proc. ilCAl
1989

[3]	 Althoff, K.-D., De la Ossa, A., Faupel, B., Maurer, F., Nokel, K., Rehbold, R.: MOLTKE 3.0, in: Extended
abstracts of the GI-workshop on knowledge-based diagnosis systems, University of Kaiserslautem, Febr. 1990

[4]	 Althoff, K.-D., Nokel, K., Rehbold, R., Richter, M.M.: A Sophisticated Expert System for the Diagnosis of a
CNC Machining Center, Zeitsehrift fiir Operations Research (32), 1988, pp. 251-269

[5]	 De la Ossa, A.: Adaptation of Knowledge to Changes in the Physical System, Technical Report, University of
Kaiserslautem 1990

[6]	 Rehbold, R.: Model-Based Knowledge Acquisition from Structure Descriptions in a Technical Diagnosis
Domain, Proc. Avignon 1989

[7]	 Davis, R.: Diagnostic Reasoning Based on Structure and Behavior. in: Artificial Intelligence 24 (3), 1984, pp.
347-410

[8]	 Althoff, K.-D., De la Ossa, A., Maurer, F., Stadler, M., WeB, S.: Adaptive Learning in the Domain of
Technical Diagnosis, Proc. Workshop on Adaptive Learning, FAW VIm, 1989

19

' An analysis of the transferability to other technical domains
As an example for a quite different technical domain a diagnostic knowledge base for
heterogenous computer networks is currently developed.

° Adaptation of knowledge to new series and types of the same machine
This is a special research objective within our project [5].

' A comparison of the model-based and case—based component with other approaches
This has partially been done up to now (e.g. for the case-based reasoner of the toolbox
[9]; for the model-based component [6]), but the completion is forthcoming.

° A comparison of alternative mechanisms within the toolbox
In this point we hope to get a deeper insight when all the above mentioned applications
are completed.

0 An overall evaluation of the complete MOLTKE toolbox
We believe that the successful integration of methods from several complicated areas
into one toolbox is the real research progress we can offer. The ongoing applications
will help us to show the usefulness of MOLTKE and provide us with further realistic
evaluation. .

10. State of Realization

The kernel MOLTKE 3.0 is fully implemented including MAKE and GenRule. A case-based
reasoner (PATDEX) was implemented as a stand-alone system. The integration into MOLTKE 3.0
is currently in work.
Using the MOLTKE toolbox we implemented an expert system for fault diagnosis of CNC
machining centers (see [11,14]) and one for the diagnosis of 3D-CNC measuring machine [15].
Currently expert systems for the diagnosis of failures in heterogenous computer networks and for
the diagnosis of driving machines in mining are developed.
The MOLTKE system i s implemented in Smalltalk-8O on Sun-, Apollo- and HP-Unix—workstations.
It runs on all machines for which the respective virtual machine for Smalltalk-80 was implemented
including DECstations, MacII, 80386-PCs etc.

11. References

[1] J.Breuker, B.Wielinga: Model-Driven Knowledge Acquisition: Interpretation Models, Memo 87, Deliverable
task A l , Esprit Prdject 1098; 1987

[2] Nökel, K.: Temporal Matching: Recognizing Dynamic Situations from Discrete Measurements, in: Proc. UCAI
1989 .

[3] Althoff, K.-D.‚ De 1a Ossa, A., Faupel, B., Maurer, F., Nökel, K., Rehbold, R.: MOLTKE 3.0, in: Extended
abstracts of the GI-woflcshop on knowledge-based diagnosis systems, University of Kaiserslautern, Febr. 1990

[4] Althoff, K.-D., Nökel, K., Rehbold, R., Richter, M.M.: A Sophisticated Expert System for the Diagnosis of a
CNC Machining Center, Zeitschrift für Operations Research (32), 1988, pp. 251-269

[5] De la Ossa, A.: Adaptation of Knowledge to Changes in the Physical System, Technical Report, University of
Kaiserslautem 1990

[6] Rehbold, R. : Model-Based Knowledge Acquisition from Structure Descriptions in a Technical Diagnosis
Domain, Proc. Avignon 1989

[7] Davis, R.: Diagnostic Reasoning Based on Structure and Behavior, in: Artificial Intelligence 24 (3), 1984, pp.
347-410

[8] Allhoff, K.-D., De la Ossa, A. , Maurer, F . , Stadler, M., Weß, S.: Adaptive Learning in the Domain of
Technical Diagnosis, Proc. Workshop on Adaptive Learning, FAW Ulm, 1989

19

[9]	 Althoff, K.-D., De la Ossa, A., Maurer, F., Stadler, M., WeB, S.: Case-Based Reasoning for Real World

Applications, Technical Report, University of Kaiserslautem 1990

[10]	 Davies, T., Russel, S.J.: A Logical Approach to Reasoning by Analogy, in: Peoc. UCA1l987, pp. 264-270

[11]	 Althoff, K.-D., Faupel, B., Kocksldimper, S., TrapMner, R., Wemicke, W.: Knowledge Acquisition in the

Domain ofCNC Machining Centers: the MOLTKE Approach, in: Proc. EKAW 1989, pp. 180-195

[12]	 Kolodner, J.L.: Maintaining Organization in a Dynamic Long-Term Memory, Cognitive Science (7), pp. 243

280, 1983

[13]	 Althoff, K.-D., Kocksldimper, S., Maurer, E, Stadler, M., WeB, S.: Ein System zur fallbasierten Wissens

verarbeitung in technischen Diagnosesituationen, in: Peoc. Austrian Conference on Artificial Intelligence,

Innsbruck, 1989, pp. 65-70

[14]	 Pfeifer, T. Held, H.-J., Faupel, B.: Aufbau einer Wissensbasis fiir Fehlerdiagnosesysteme von Bearbeitungs

zentren.- VDI-Z VDI-Verlag 10, 1988

[15]	 Droste, K., Kaul, U.: Ein System zur Diagnose einer 3D-CNC-MeBmaschine, project thesis, University of

Kaiserslautem, 1990

20

[9]

[10]
[11]

[12]

[13]

[14]

[15]

Althoff, K.-D., De la Ossa, A., Maurer, F., Stadler, M., Weß, S.: Case-Based Reasoning for Real World
Applications, Technical Report, University of Kaiserslautern 1990
Davies, T., Russel, 8.1.: A Logical Approach to Reasoning by Analogy, in: Proc. IICAI 1987, pp. 264-270
Althoff, K.-D., Faupel, B., Kockskämper, S., Traphöner, R., Wemicke, W.: Knowledge Acquisition in the
Domain of CNC Machining Centers: the MOLTKE Approach, in: Proc. EKAW 1989, pp. 180-195

Kolodner, IL : Maintaining Organization in a Dynamic Long-Term Memory, Cognitive Science (7), pp. 243-
280, 1983
Althoff, K.-D., Kockskämper, S . , Maurer, F., Stadler, M., Wes, S.: Ein System zur fallbasierten Wissens-
verarbeitung in technischen Diagnosesituationen, in: Proc. Austrian Conference on Artificial Intelligence,
Innsbruck, 1989, pp. 65—70

Pfeifer, T. Held, H.-J., Faupel, B.: Aufbau einer Wissensbasis für Fehlerdiagnosesysteme von Bearbeitungs-
zemren: VDI-Z VDI-Verlag 10, 1988
Droste, K., Kaul, U.: Ein System zur Diagnose einer 3D-CNÖ-Meßmaschine, project thesis, University of
Kaiserslautern, 1990 _ .

20

