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Abstract 

In this paper we will present a design model (in the sense of KADS) 
for the domain of technical diagnosis. Based on this we will describe 
the fully implemented expert system shell MOLTKE 3.0, which 
integrates common knowledge acquisition methods with techniques 
developed in the fields of Model-Based Diagnosis and Machine 
Learning, especially Case-Based Reasoning. 

1. Introduction 
When starting a real world expert system project knowledge acquisition is the bottleneck. A main 
reason for this is the gap between the languages of the domain expert and that used for the 
implementation by the knowledge engineer. This gap reflects the difference between the cognitive 
models of the application area the two involved persons have. According to the KADS-group to 
overcome these shortcomings a conceptual model of the domain has to be developed [1]. Then this 
conceptual model has to be transfered into a design model. 

We think that developing a conceptual model has a few drawbacks: 

•	 The knowledge of an expert includes static and dynamic parts. Static knowledge can be
 
represented in semantic networks whereas it is not easy to express the dynamic parts
 
which describe how a problem is solved. The interpretation model often lacks a clear
 
(i.e. formal) semantics. 

•	 Ifpeople express knowledge without having an inference engine in mind the transfer of 
the developed representation into a running expert system may be hard. It becomes 
harder the bigger the gap between the conceptual model and the language of the used 
shell is. 

1	 The work presented herein was partially supported by the Deutsche Forschungsgemeinschaft, Sonderforschungs
bereich314: "Artificial Intelligence- Knowledge-Based Systems", projects X6 and X9. 
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• Primitives of particular technical application domains are easily found, e.g. in diagnosis 
one always talks about symptoms, faults and tests. 

Our approach to reduce the knowledge acquisition bottleneck is to describe a design model which 
reflects the primitives of the application domain. It has to include an inference engine for the 
knowledge. The task of knowledge acquisition is to fill the templates of the shell with the expert's 
knowledge. If the primitives really reflect the concepts of the application area the communication 
between the knowledge engineer and the expert is improved because they speak the same language. 

Starting from a real world application we developed a design model for technical diagnosis, 
implemented its basic vocabulary and an interpreter. The MOLTKE 3.0 Shell, which is described in 
the next section, reflects the application domain concepts like symptoms, tests and failures. Building 
up on this kernel more sophisticated tools were developed: 

•	 A compiler which generates the core of an expert system for diagnosis out of a deep
 
model of the technical device.
 

• Case-based reasoning techniques to enlarge the knowledge acquisition process. 

As techniques of three general approaches (deep modelling, machine learning and manual 
knowledge acquisition) are fully integrated, the MOLTKE system is able to use multiple sources of 
knowledge. 

2. A Design Model for Technical Diagnosis 

In the MOLTKE project we defined a design model for technical diagnosis. We believe that 
diagnosis can be described as follows: 

Diagnosis = Classification + Test Selection. 

The state of a technical device is described by a list of symptoms (where symptom means something 
that is measurable, e.g. voltage). A symptom can be low level, e.g. the real voltage at a special 
measuring point, or more abstract, e.g. "voltage is too high". Therefore a shell for diagnosis has to 
include mechanisms for data abstraction. Furthermore there is a need for expressing time-dependent 
symptoms, so called temporally distributed symptoms (TDS) (the integration ofIDS in MOLTKE 
3.0 is described in [2]). 

At any point in time a symptom can have only one value. A list of actual symptom values is called a 
situation. In a situation a symptom may also be unknown. A failure in a technical device can be 
expressed in terms of particular values. Therefore; a fault hypothesis is correlated with a set of 
symptom values. If the actual situation matches these, the failure is established. 

Often some symptom values determine others, e.g. if the light in a room is on one can infer that the 
wires are working. For that reason an expert system must handle relations between symptom 
values. Moreover this reduces the search space because the determined symptoms need not to be 
asked. 

The search space for diagnosis is described by a graph where nodes are situations and arcs between 
situations are labelled with a test. A test determines the value of symptoms (by asking the user or by 
getting sensor information). Tests are executed if according to the actual situation no failure can be 
proved. In technical diagnosis the processing of symptom values must be both demand-driven (the 
system decides what to measure next) and data-driven (asynchronous incoming data is processed 
immediately). 

Diagnosis is a process: a situation where no failure is provt?Cl must be transformed by executing tests 
into one where the description of a fault matches the actual symptom values. A strategy describes the 
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order of testing and should reflect the experience and heuristics of diagnostic experts as e.g. service 
technicians. 

Modularisation always is a means of software engineering which improves the maintainability of a 
program. Expert systems shall use the advantages of modularisation. Therefore, knowledge about 
failures and about strategies shall be separated for reasons of a horizontal modularisation. Vertically 
the expert system is split in a hierarchy of rough, intermediate, and final diagnoses. The 
modularisation helps to integrate the knowledge of multiple experts. 

3. The MOLTKE Project· An Overview 

MOLTKE means MOdels, Learning and Temporal Knowledge in Expert systems for technical 
diagnosis. Within the MOLTKE project (see e.g. [3,4]) we developed an expert system toolbox 
the MOLTKE system - and several applications. Figure 1 gives an overview of the MOLTKE 
system. The shaded part in the center is the kernel, the MOLTKE 3.0 shell. The model component 
on the left hand side and the case-based reaso~ing part on the right hand side are described later in 
this paper. 

Knowledge KAC 
Acquisition Cases 
Component (KAC) 
Models 

Model description 
language 

Compiler 

Internal 
representatio 
for technical 
models 

Graphical 
Knowledge 
Acquisition 
Interface 

Figure 1: The MOLTKE System 

The MOLTKE system is a modularized toolbox for the development of expert systems in the domain 
of technical diagnosis. It integrates common knowledge acquisition techniques with deep modelling 
and machine learning. For the interpretation of a knowledge base several interpreters were 
implemented which allow to integrate different sources of knowledge (see chapter 8). 
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The MOLTKE system is a modularized toolbox for the development of expert systems in the domain
of technical diagnosis. I t  integrates common knowledge acquisition techniques with deep modelling
and machine learning. For the interpretation of a knowledge base several interpreters were
implemented which allow to integrate different sources of knowledge (see chapter 8).



4. The MOLTKE 3.0 Shell 

4.1. The Static Knowledge Base 
i 

The static knowledge base represents the knowledge about the technical system. Here we describe 
its basic vocabulary: . 

A symptom class relates a name to a list of possible values (e.g.Valve --> {open, closed}) whereas 
symptom instances reflect the actual state of a part of the technical device (e.g. Valve 21)"5 --> 
open). The actual value may be either unknown or an element of the possible value list lin the 
corresponding class. 

The set of all symptom instances is called a situation. In the context of predicate calculus the/actual 
situation is the base for the interpretation of a language offormulas. It stores the bindings!of the 
variables1• We use a three-valued logic with true,false and unknown. For reasons of an" efficient 
evaluation all formulas are stored in network similar to the Rete-Network of OPS5. r 
A test ascertains the value of one or more symptom instances2• Every test has an associated 
precondition (e.g. for specifying that a test can only be executed if the technician has a particular 
level of skill we would use a precondition like (= skill level high». A test is only executed if the 
corresponding precondition is evaluated to true. The sequence of testing is determined by ai set of 
ordering rules where the left hand side is a formula and the right part contains the symptom instance 
to test (e.g. (if (= Valve 21Y5 open) then OUT30 test». 

To express relations between symptom values shortcut rules are used (e.g. (if (= lamp room on) 
then wires := working». To express uncertainty every rule may have a list of associated qualitative 
certainty factors called determination factors3. Uncertain shortcut rules are called partial in opposite 
to the total ones which are certain with respect to the underlying deep model. These rules are called 
shortcuts because they abbreviate the diagnostic process, i.e. symptom values which are determined 
by shortcut rules need not to be asked anymore. 

Contexts are one of the means for modularisation in MOLTKE 3.0. A context represents a rough, 
intermediate, or [mal diagnosis. If its precondition is true, the associated failure is said to be proven 
and the related correction is executed. Any context contains a set of ordering rules which lbeally 
prescribe the strategy of testing. Additionally, a context includes a set,of shortcut rules. pvery 
context contains a slot for a context interpreter which determines the next symptom to be tested. The 
default context interpreter uses the ordering rules for test selection4. 

A correction describes what has to be done when a special fault occurs. Up to now a description 
how to repair the device is given to the user. For monitoring tasks this may easily be extended to 
manipulating control units. 

The contexts are organized in a context graph. Its arcs have the semantics "is-refinement-of' (e.g. 
the contextfailure-in-electric is a refinement offailure-in-car.). 

1 Every symptom instance is a variable in the calculus. " 

2 In the fonnal sense of modal logic a test describes the transition from one world to another where the inteqJetation 
of the fonnulas differs in the bindings of the examined variables. 

3 The processing of these factors is described in section 7.5. 

4 yve developed neural network associators and model-based components which can replace the default ~ontext 
mte~~. . 
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4.2. The .Interpreter 

The processing of a knowledge base is done by a global interpreter which is easy to adapt and to 
maintain because it is organized in small modules. The default interpreter realizes an establish-and
refine-strateJ;?;Y (see fiJ;?;ure 2). 
Algorithm of the default interpreter: 

actualContext := Root of context graph; 
while actualContext not a final diagnosis do 

process all shorteut rules with a true precondition; 
rule := select-an-ordering-rule(actualContext, actualSituation); 
value:= test-the-selected-symptom(rule); 
propagate the symptom value through a rete-network; 
if the actualContext has refinements with a true precondition 

then actualContext := this refinement;
 
if all refinements of the actual context are false
 

then backtrackin.l!;;
 

Figure 2: The algorithm of the global interpreter 

The diagnostic process walks through the context graph by testing symptoms according to the 
ordering rules of the actual context and switching to a refinement when its precondition becomes 
(the logical value) true. If a leaf is reached the system stops. 

The system is able to reset a symptom value to unknown and to reject all inferences by shortcut rules 
based on its old value. This facility is used when the user or the system retracts uncertain symptom 
values. 

Sensor data are propagated through the formula network when they arrive l . Every time the system 
asks for a special symptom value the user is able to enter the value of another symptom instance. 
According to the actual state the system determines the actual context. 

5. Knowledge Acquisition with 'the MOLTKE Kernel 

The MOLTKE 3.0 kernel includes a comfortable knowledge base browser based on the facilities of 
the Smalltalk-80 system. The browser combines a menu-oriented interface with different editors for 
symptoms, contexts, tests, etc. Editing an object means filling a template. In a graphic window the 
context graph can be edited. The editors include syntax- and type-checkers. If other objects are 
referenced2 their availability in the knowledge base is tested. 

While editing a knowledge base the system is always able to run. If in a context no ordering rule can 
fire, the system asks for a symptom value which is used in the preconditions of its refinements. We 
will extend this facility by asking the user what symptom shall be tested and then generate an 
appropriate ordering rule for the context. 

For testing a knowledge base trace- and debug-facilities were implemented. The user is able to set or 
reset arbitrary symptom values and inspect the state of all formulas and the formula network 
according to the actual situation. At the moment we are developing a consistency checker for the 
knowledge base. 

The runtime environment is menu-oriented. Additionally the user is able to enter symptom values by 
mouse-clicking in some graphics of the technical device. The kernel includes an editor for these 
graphics. 

1 So a data-driven updating of the actual situation is possible. 

2 For example symPtom instances referenced in formulas. 
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6. Knowledge Acquisition Using Deep Models 

Complex technical devices often have a common property: Due to task customization and rapid 
further developments only few fully identical instances of a given type are built. This makes it 
difficult to find somebody who is really an expert for the maintenance of this special machine, 
especially if the type is relatively new. Service technicians troubleshooting such a new machine 
cannot rely on machine-specific heuristics, but have to use general technical knowledge, a detailed 
description of structure and behavior of the machine and a general understanding of the functionality 
of the device to find any faults. 

Since diagnostic expert systems are expected to be able to assist in troubleshooting right after the 
release of a new type of machine they haye to use structural, behavioral and subpart information 
first, too. As time goes by technicians learn more about a special machine type through the faults 
they are confronted with during their work. This learning from cases has to be embodied in a 
sophisticated expert system too, giving the need for a knowledge representation that equally suits the 
causal (model-based) as well as the heuristic (case-based) knowledge. Furthermore an existing 
expert system should be easily adaptable to a slightly changed machine, e.g. from a new series or 
with different optional subdevices (cf. [5]). 

6.1. Causal Knowledge and Deep Models 

We will use the word "causal" in this paper to distinguish things that can be trac((d back directly and 
with absolute certainty to structure, behavior and function of a single concrete physical device from 
those that do not, either since they lack a clear correlation to the physical facts (these we will call 
"heuristic") or since they depend on many instances of a device and are not certain (called 
"statistic"). Thus causal knowledge in a technical domain consists of all the facts on structure, 
behavior and function of the device together with information on how connected parts interact and 
can be considered synonymous to the term "deep knowledge". From the causal knowledge of a 
device a representation can be build which in this chapter we will call a deep model, or just a model. 

6.2. The Task: Getting the Causal Knowledge into the System 

A possible approach to get some of the causal knowledge about a device into the expert system 
could be to have an engineer (Le. someone with sufficient "technical common sense", not 
necessarily an expert) look at the design plans and diagrams of a concrete machine and write down 
the information in form of failure detection flowcharts which are then translated into rules of 
different types. The order in the flowchart would be based on a priori failure probabilities and 
directly influence the ordering and priorities of the- rules. When we tried this way of knowledge 
acquisition for the first application in project MOLTKE, which was an expert system for the 
diagnosis of CNCl machining centers, it turned out that it was quite time consuming, since the 
process required several iterations and the fmal flowcharts were by no means complete (with respect 
to the underlying descriptions). Worse, new machine series or, even more, types required much of 
that work again, since most diagrams had to be revisited to check for changes (e.g. new components 
with new failure probabilities or even new failures). 
This caused us to build a tool (MAKE =Model-based Automatic Knowledge Extractor) [6] to do the 
work of that engineer. MAKE gets diagrams (Le. the structure) of the machine and uses its built-in 
knowledge of electrical and mechanical engineering (Le. its "technical common sense") - e.g. the 
behavior of typical components - to form a (deep) model of the machine and to derive rules fhr test 

1 Computerized Numerical Control 
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suggestion and determination of yet unmeasured symptoms (shortcut rules) from this model. 
Furthermore MAKE is able to organize the rules into contexts and to create corresponding 
preconditions for them. We call such an expert system without any machine specific heuristic 
knowledge basic expert system. 

An important point is that the diagrams can be entered by anyone; there is no need for the special 
knowledge of an engineer to do that. An engineer (the expert) is needed only to provide information 
about the typical atomic parts in the descriptions, e.g. valves, switches, contactors, hydraulic 
pistons. Some statistic knowledge about a priori failure probabilities and additional information on 
measurement costs have been integrated into the model to allow a more sophisticated test selection; 
thus the model is no longer purely causal, but contains other knowledge, tool. 

Note that the application domain of the whole MOLTKE system (and therefore of MAKE) is not as 
simple as digital circuits, the usual example domain for model-based diagnosis. 

6.3. Available Knowledge when the First Machine is Built 

As heuristic knowledge of a new machine will not be available when the basic expert system is to be 
built, one has to restrain oneself to the information available at that point of time: 

•	 knowledge about the primitive (and maybe complex2) parts (components) used 

*	 possible connections (ports), i.e. how the component may be connected to others 

* behavior, Le. how the component is expected to react to changes in connected 
components 

*	 misbehavior(s), Le. what typical faults may occur, how they change the expected 
behavior and how common they are3 

•	 knowledge about the connectivity of the components, Le. a structure description 

•	 knowledge about measuring costs at certain points4 

•	 knowledge about the intended functionality of the machine as a whole, Le. which set of
 
inputs should cause which set of outputs.
 

The "birth" of a basic experts system then consists of four major steps: 

1) An expert builds up a library ofthe primitive (and maybe common complex) components that are 
used. This task needs an expert since it should be done as precisely and completely as possible for 
the sake of the resulting expert system. Of course the library can be used for many different 
machines thus an expert is not needed for every single machine type or series. 

2) A person with technical skill - at least he/she shall be able to read, understand and reproduce 
technical structure descriptions - is needed to enter the connectivity of a given machine, Le. to build 
up the structural model. He/she will select parts from the library and build them together to more 
complex ones finally describing the whole machine. A graphical editor that allows to mimic the 
technical diagrams helps to accomplish this step. Note that this task is independent from the 
availability of a diagnosis expert if the library (cf. step 1) completely covers all components used. 

1	 However, all the knowledge (information) used by MAKE is available when the first machine of a type is delivered 
to the customer, i.e. no heuristic information on the special machine type is used. 

2	 Often information will be available on more complex subdevices if they have already been used before in other 
machine types. However, the relevance of this information is not always clear (and is therefore subject to be 
changed by a mechanism to adapt it from e.g. cases). 

3	 This information usually comes from the manufacturer of the primitive component. However, the a priori failure 
rate can vary dramatically with the position of the part in the machine. Learning from cases can adjust either the 
heuristic information embedded in the model or the diagnostic system itself to such special situations. 

4	 All complex machines have sensors etc. attached to them and provide designated measuring points where data can 
be gathered inexpensively. 
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With a fully computerized design, developement and production system (CIMl) it should be 
possible to get the connectivity infonnation immediately from the design data. 

3) The designer of the machine can specify the desired functionality in form of input/output 
behavior. While this infonnation can be left out (MAKE could simulate all input/output behavior 
from the given knowledge itself) it is helpful to cut down all possible (and maybe unintended or 
unused) behaviors to the intended and used ones. When dealing with machines with a control 
component, e.g. a CNC, the CNC programs give infonnation on what functions the machine is 
expected to perfonn. 

4) Finally, the MAKE system transfonns the model of the machine (put together from the library 
and the connectivity) with help of the desired input/output behavior into a knowledge base for the 
expert system shell MOLTKE. 

6.4. The Model 

We use a component oriented, hierarchical qualitative model of the machine. What is considered an 
atomic component is determined by the granularity of the used diagrams and the exchangeability of 
the parts (e.g. since relays are completely replaced if found faulty, there is no need to model the 
parts of a relay). Infonnation on typical primitive (atomic) components like valves, switches etc. is 
stored in a library. Using these parts, new assembly groups (called complex components) can be 
built and so on; this way a hierarchical model is built up where the top component represents the 
entire machine. The general description of a component is found in the component class, its 
instances represent the concrete components. Connections can be internally modeled as components, 
but need not to be entered explicitly, since they can be added automatically (e.g. if the user connects 
two hydraulic ports the system automatically assumes a pipe between them). 

A component class stores the following knowledge: 

•	 name of the component type 

•	 ports to other components (optionally with test costs) 

•	 possible internal states (optionally with test costs)
 
Internal states can be made available to other components using them as ports.
 

•	 behavior of the component
 
The behavior is given either in fonn of tables or by rules: the if-part contains predicates
 
on port values and states that allow to conclude the value of some other port or state in
 
the then-part. These tables/rules represent the constraints the component sets up
 
between its ports and states. Note that components do know about their function, as the
 
"no-function-in-structure" principle2 is deliberately abandoned to enable the generation
 
of better causal rules from the model.
 

•	 subparts and their interconnections (only if the component is non-atomic) 

•	 typical malfunctions with name and effects (if available)
 
These typical malfunctions model the behavior of the component when a common
 
failure occurred and enable the system to reason faster. There is always the possibility
 
to fall back to the total suspension of the constraints of the component ("unknown
 
failure"), which is the usual approach of model-based troubleshooting3 [7].
 

1 Computer Integrated Manufacturing 

2 'This principle is often demanded in the literature on model-based reasoning and qualitative simulation. Its 
generality, however, while being useful in the prediction of unknown behavior, disallows us some interesting 
conclusions that we can draw since we already know the function of the part. 

3	 Note, however, that shorteut rules will only be 100% correct if the malfunctions listed here are the only ones 
possible. If "unknown failure" is among the possible misbehaviors of a component class, no certain shortcut rules 
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• a priori probability of failure (if available) 
An actual component is an instance of its class which additionally knows its name, location, 
neighbors (Le. which of its ports is connected to which port of which (possibly) other instance), 
names of its subcomponents (if any) and position in the diagram. Note that each port of each 
component instance later becomes a symptom in the basic expert system generated by MAKE. 

Component classes are immediately cross-checked: topology, states and behavior must be fully 
specified, all ports of subparts must be connected by connections of the correct type l and states 
must appear in the behavior. When actual parts (instances) are entered, they are cross-checked too to 
ensure that every subpart class exists and is of proper type and that the connections to the neighbors 
are ok. Currently a special editor to support the creation of component classes and instances is under 
development together with a graphic tool ~to enter the structure of the machine. 

6.5. Functionality Description 

The expected functionality of a device has to be entered as relations between its input and ouput 
ports. When dealing with computerized numerically controlled (CNC) machines (e.g. MOLTKE's 
first application: CNC machining centers) even more than these relations can be taken from the CNC 
programs. These programs do not only provide us with input/output information but usually also 
contain data on failures the CNC is able to detect. When the CNC detects such a failure it stops the 
machine and displays a failure number that provides us with first information about where the 
malfunction happened. . 

These failure messages are issued if some feedback signal to a started machine order misses or is 
wrong (e.g. a limit switch did not operate within a given time)2. This information allows to focus 
the attention to a certain part of the machine and is therefore a valuable starting point for the 
diagnosis. Each failure is associated with a certain machine subcycle that performs a special 
operation starting with some control system output signals and ending with some feedback input 
signals. It is possible to conclude from the model which valves, switches etc. are related to these 10 
signals and are therefore under suspect. 

When no CNC is used MAKE has to simulate the device itself to be able to detect deviations from 
the expected input/output relations and to cross-check the correctness of the functionality specified 
by the designer. In these cases important inputs and outputs have to be measured before the focus of 
attention can be moved to a certain part of the machine. 

If no functionality at all is specified MAKE must generate all possible input combinations and 
simulate them through the model to get the respective expected output values. The input/output 
relations thus generated can than be used as if entered by the designer. 

6.5.1. Building Contexts from the Model 

The best" way to choose contexts is to ask the experts; but since we want to build the basic causal 
expert system without their help, we have to build the contexts ourselves. Naturally, automatically 
generated contexts may be not as good as those from the experts, but our experience with the 
manually chosen contexts showed some typical patterns that will most often fit. Each context 
(intermediate diagnosis) leads to several more special diagnoses that are its subcontexts. Leaf 

can be generated from the model since it is impossible to make any conclusions about the behavior of the 
component Of course, a case based reasoning mechanism still can derive uncertain shortcuts in such a situation. 

1	 Ports have types and directions to ensure proper modeling. 

2	 This shows an additional advantage of diagnosis of a CNC-controlled machine: The CNC observes the inputs and 
outputs of the machine automatically, so we already know these values when the diagnosis starts. 
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contexts correspond to final diagnoses. An example for a part of a context heterarchy is given in 
figure 3. 

MachineFailure _ 

----~--/ ~~===::-----FailureI55 FailureI57 FailureI59 FailureI60 
/1' /1' ~ " /1' 

CNC.IN32=O __CNC.IN36=O 
_~ --r\ /1' 

IOCardDefective LimitSwitch5S2.Switch=Open 

-------- I ~-----LimitSwitchStuck Valve5Yl.Slide=Open PipeBroken MechanicFault 

________ I"~ 
valVeMagnetDef~li~~ 

CNC.OUT7=~K7·lwitch=Closed SwitchNoContact 

SwitchMagnetDefective CNC.OUT~ 
WireBroken 

Figure 3: Example of a context heterarchy 

The most abstract context and root of the context heterarchy is a context called 
MachineFailure. Its first level of subcontexts is induced by the possiblities of how the 
inputlouput relations given in the functionality description can go wrong. When a CNC with a 
integrated diagnostic system is present, this is the level of control system failure messages, Le. each 
failure number has its own context (e.g. Fa i 1u re I 5 9 in fig. 3). Each of these top level failure 
contexts now gets subcontexts of its own for each (control) system input that could have been 
responsible for that failure (e.g. IN32=O). Since the same fault could lead to different top level 
failures, depending on the machine cycle it occurred in (Le. the inputs), the contexts are organized in 
a heterarchy instead of a hierarchy to avoid multiple instances of the same context. 

MAKE builds a context class C for each possible faulty value V on outport 0 of component class Co 
(primitive and complex). The name of C is automatically generated as "Co.O=Y" (e.g. 
ValveSelection. Switch=Open). It may seem as if this method creates a very large amount 
of contexts, but since contexts are only generated for those outports and values that actually force 
faulty output values in the whole machine, not all combinations will be created. The number of 
contexts generated thus depends not only on the number of different components and the number of 
their outports and value ranges, but especially on' the constraints in the expected input/output 
relations given in the functionality description. 

There are three basic strategies how to decide from the model what subcontexts a given context gets; 
each of them constructs a precondition for them that is both necessary and sufficient to establish the 
diagnosis the context represents: 

1) hierarchical strategy 
This strategy works strictly top-down according to the hierarchical model of the machine, Le. it first 
makes sure that the fault occurred inside a component Co (by testing that Co's inputs are as expected 
while at least one of its outputs is not, e.g. outport 0 has the unexpected value V) and then switches 
to the context C for Co. The precondition for entering C thus becomes "all inputs of Co have 
expected values and output 0 has unexpected value V". All contexts of the form "SCoi.Oi,j'=Vi,j" 
become subcontexts of C, if SCOj is a subcomponent of Co and value Vi,j at SCOj's outport Oi,j can 
cause value V at Co's outport O. 
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input/ouput relations given in the functionality description can go wrong. When a CNC with a
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failure number has its own context (e.g. Fa i l u r e IS  9 in fig. 3). Each of these top level failure
contexts now gets subcontexts of its own for each (control) system input that could have been
responsible for that failure (e.g. IN32=O). Since the same fault could lead to different top level
failures, depending on the machine cycle it occurred in (i.e. the inputs), the contexts are organized in
a heterarchy instead of a hierarchy to avoid multiple instances of the same context.
MAKE builds a context class C for each possible faulty value V on outport O of component class Co
(primitive and complex). The name of C is  automatically generated as "Co.O=Y" (e. g.
Va lveSe lec t i on  . Switch=0pen).  It may seem as if this method creates a very large amount
of contexts, but since contexts are only generated for those outports and values that actually force
faulty output values in the whole machine, not all combinations will be created. The number of
contexts generated thus depends not only on the number of different components and the number of
their outports and value ranges, but especially on‘ the constraints in  the expected input/output
relations given in the functionality description.
There are three basic strategies how to decide from the model what subcontexts a given context gets;
each of them constructs a precondition for them that is  both necessary and sufficient to establish the
diagnosis the context represents:
1) hierarchical strategy
This strategy works strictly top-down according to the hierarchical model of the machine, i.e. it first
makes sure that the fault occurred inside a component Co (by testing that Co's inputs are as expected
while at least one of its outputs is not, e .  g. outport O has the unexpected value V) and then switches
to the context C for Co. The precondition for entering C thus becomes "all inputs of Co have
expected values and output 0 has unexpected value V". All contexts of the form "SCoi.Oi‚j‘-—-Vi‚j"
become subcontexts of C, if SCoi is a subcomponent of Co and value Vi‚j at SCoi's outport 01,5 can
cause value V at Co's outport O.
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2) sequential strategy 
Unlike the hierarchical strategy the sequential one does not use the hierarchical structure of the 
model. Instead, it traces the simulated behavior from the outputs of the machine back to its inputs on 
the lowest component level thereby necessarily detecting the malfunctioning primitive component. 
The precondition of a context for the sequential strategy therefore consists only of the fact "Co's 
outport 0 has the unexpected value V". All contexts of the form "Coi.Oi,j=Vi,j" become 
subcontexts of C, either if COi is a subcomponent of Co, COi's outport Oi,j is directly connected to 
Co's outport 0 and Vi,j = V, or if COi's outport Oi,j is directly connected to one of Co's inports 
and a value of Vi,j at that inport can cause value V at Co's outport O. 

3) mixed strategy 
This strategy is a mixture of the hierarchical and the sequential ones. It performs backward tracing 
like the sequential one on a given level, but moves down in the hierarchy only if it can make sure the 
failure lies within the subcomponent. As we found out this is the strategy the typical service 
technician seems to follow: He/she traces the faulty output backwards on the top level until he/she 
comes to a component with correct inputs and, faulty output. He/she then moves one level down in 
the hierarchy and again performs backtracing on that level. The precondition of a context in the 
mixed strategy therefore is the same as in. the hierarchical case, while the subcontexts are selected 
like in the sequential case. 

6.5.2. Construction of Shortcut Rules 

A shortcut rule tries to establish facts about yet unmeasured port values from already acquired data. 
Deriving them from a model requires knowledge about the way connected components interact. 
Shortcut rules derived from the model are total (certain) if all possible failures of components are 
modeled. Since these rules cannot assume any component to work correctly, too many different 
possible failures make it impossible to derive any shortcut rule at all. If an unmodeled fault occurs 
the shortcut rules may conclude wrong port values, but this kind of failure can be found by direct 
use of the model, e.g. by constraint suspension [7] or similar techniques which, however, will be 
quite costly. Alternatively, this is also a situation where case-based reasoning can be used. 

We have different contexts for the same component with state, one for each possible output value, 
but the shortcut rules are the same for all of them, since they are only based on the model of the 
working device. We derive the shortcut rules for a component as follows: 

i) Each behavior rule is copied as a shortcut rule iff there is no modeled failure that 
produces an unexpected (different) output1 on the same inputs. 

ii) The inversion2 of each behavior rule is copied as a shortcut rule if! there is no modeled 
failure that produces the same output on different inputs. 

Inside the context, the shortcut rules of each component are collected together with some rules that 
state the equality of connected ports. 

EXAMPLE: 

Given (current In = X)-> (currentOut = X) as the behavior rule for 
Wi re and (Broken (currentOut = 0» as the failure of Wi re, we can 
conclude the following: 

1 Outputs here are ports or states that appear on the right side of a behavior rule; inputs appear on the left side. 

2 By inversion we mean the rule that is created by swapping the precondition and the conclusion of the original rule. 
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modeled. Since these rules cannot assume any component to work correctly, too many different
possible failures make it  impossible to derive any shortcut rule at all. If an unmodeled fault occurs
the shortcut rules may conclude wrong port values, but this kind of failure can be found by direct
use of the model, e.g. by constraint suspension [7] or similar techniques which, however, will be
quite costly. Alternatively, this is  also a situation where case—based reasoning can be used.
We have different contexts for the same component with state, one for each possible output value,
but the shortcut rules are the same for all of them, since they are only based on the model of the
working device. We derive the shortcut rules for a component as follows:

i) Each behavior rule i s  copied as a shortcut rule ifl there is  no modeled failure that
produces an unexpected (different) output1 on the same inputs.

ii) The inversion2 of each behavior rule is  copied as a shortcut rule ifi‘ there i s  no modeled
failure that produces the same output on different inputs.

Inside the context, the shortcut rules of each component are collected together with some rules that
state the equality of connected ports. '

EMI-E
Given ( cu r r en t In  = X) .—> ( cu r r en tOu t  = X) asthe behavior rule for
Wire  and (Broken  ( cu r r en tOu t  = 0) )  as the failure of Wi re ,  we can
conclude the following:

1 Outputs here are ports or states that appear on the right side of a behavior rule; inputs appear on the left side.
2 By inversion we mean the rule that is created by swapping the precondition and the conclusion of the original rule.
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Since for all X~ Broken produces a different (unexpected) output (Le. 0) on input X 
than the behavior rule, i) can only be used for X=O. Thus i) leads to the following 
shorteut rule: 

(currentln = 0) -> (currentOut = 0) 
Broken produces output 0 for every input, not just on O. Thus, according to ii), we 
must exclude X=O from the inversion of the behavior rule and can conclude the shortcut 
rule 

(currentOut = X) (X * 0) -> (currentln = X) 
In the last two sections the question may have arisen why we fIrst model the component with its 
correct and faulty behavior and then mechanically derive contexts with preconditions and shortcut 
rules out of it instead of writing them down immediately. Beneath the fact that the representation of 
the connectivity would be more diffIcult and that consistency checks would have to be reduced the 
chosen representation is much clearer, easier to produce and can be used for other tasks too (e.g. 
construction of ordering knowledge - see next section). 

6.5.3. Construction of Ordering Knowledge 

Our augmentation of the model with failure probabilities and measurement complexity allows us to 
produce a list of applicable tests ordered according to some chooseable criteria for any situation. To 
evaluate all possible testing points inside the component a context belongs to (i.e. all the ports of the 
component and its subcomponents) we build up a dependency graph containing the expected values 
of these testing points as well as the already measured datal. If measured and expected value of 
some port (node) inside the graph agree, all testing points downward from there can be discarded as 
long as there is no other connection between them and the root of the graph. If expected and 
measured value differ this point (node) becomes the new root of the graph (thus cutting all testing 
points above it) since we found a port nearer to the machine inputs where things went wrong2. As 
can be concluded from this, internal nodes of an existing graph only contain yet unmeasured ports 
(testing points). 

How do we select the next measurement from a given graph? First we examine the information gain 
we would get if we knew the value of an internal node. This information gain is measured by 
looking at the resulting graph after each possible outcome of the measurement. The resulting graphs 
are weighed with the a priori failure probability of the components they include and the resulting 
value is set off against the diffIculty to actually measure the value. How exactly the weights are is 
determined by the chosen strategy, e.g. whether lots of easy measurements are preferrable to only 
few but diffIcult ones. An optimal measuring point wouid be easy to measure and would split the 
graph into two equally weighted halfs. 

7. Knowledge Acquisition Using Empirical Cases 

7.1. Motivation and Overview 

As the task of an expert system which builds up on the MOLTKE toolbox is to simulate the 
diagnostic problem solving behavior of the respective expert, it is a necessity to represent at least the 
dynamical parts of the expert's problem solving behavior which have a great influence on his/her 
problem solving performance. Especially his/her learning behavior - with respect to the diagnostic 
task, of course - is of great importance here. The pragmatic solution within the MOLTKE project is, 

1 Root of this graph is the outport 0 of the component that showed the wrong value. 

2 If we would allow multiple faults, we could not cut the graph this way. 
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long as there is no other connection between them and the root of the graph. If expected and
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points above it) since we found a port nearer to the machine inputs where things went wrong? As
can be concluded from this, internal nodes of an existing graph only contain yet unmeasured ports
(testing points).
How do we select the next measurement from a given graph? First we examine the information gain
we would get if we knew the value of an internal node. This information gain i s  measured by
looking at the resulting graph after each possible outcome of the measurement. The resulting graphs
are weighed with the a priori failure probability of the components they include and the resulting
value is set off against the difficulty to actually measure the value. How exactly the weights are is
determined by the chosen strategy, e.g. whether lots of easy measurements are preferrable to only
few but difficult ones. An optimal measuring point would be easy to measure and would split the
graph into two equally weighted halfs.

7. Knowledge Acquisition Using Empirical Cases

7.1.  Motivation and Overview

As the task of an expert system which builds up on the MOLTKE toolbox is to simulate the
diagnostic problem solving behavior of the respective expert, i t  is  a necessity to represent at least the
dynamical parts of the expert’s problem solving behavior which have a great influence on his/her
problem solving performance. Especially his/her learning behavior - with respect to the diagnostic
task, of course - is  of great importance here. The pragmatic solution within the MOLTKE project is,

1 Root of this graph is the oulport O of the component that showed the wrong value.

2 If we would allow multiple faults, we could not cut the graph this way.
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as a first approximation, to distinguish between two basic learning strategies of the expert. The 
motivation for this is a real world application's point of view. Therefore it is sufficient for our 
purposes here. The expert's basic strategies are: 

• Learning from examples 

Examples are a kind of problem solving traces which form the expert's problem solving 
experience. The expert learns while memorizing such examples and using them as a 
positive or negative feedback for enhancing his problem solving knowledge. 

• Analogy 
The expert uses analogies between the given actual problem and known examples to 
guide and focus his problem solving process. During this process the expert learns new 
and/or better examples. 

Both abilities (in regard of the given task) are acquired during the expert's normal work. The goal 
within the MOLTKE project is to utilize both techniques for solving complex problems. The system 
therefore has a component that memorizes the "learned" examples! (which we call cases) and applies 
analogical reasoning techniques for solving problems based on these concrete cases. The underlying 
basic hypotheses of our approach are that learning by memory adaptation and analogical problem 
solving are fundamental techniques which experts (and, as we believe, human beings in general) 
apply during problem solving. Thus, using them as the system's central mechanisms maximizes its 
transparency with respect to the expert's learning behavior, increases the user's acceptance 
concerning the system and decisively improves the knowledge acquisition support. 

In this connection the MOLTKE project concentrates on two points of emphasis. The first one is the 
direct interpretation of the learned cases which allows the application of analogical problem solving 
as the system's central mechanism. For further details see [8,9]. Secondly, we stress the usage of 
an adaptation and extension of the determination-based analogical reasoning approach of [10]. 
Determinations2 are similar to MOLTKE's shortcut rules in the sense that the latter are compilations 
of analogical inferences which are justified by determinations. Thus, from a simplifying point of 
view a shortcut rule (if situation] then symptorn2 := value) can be interpreted in such a manner that 
situation I determines symptom2. The latter approach enables analogical inferences which are 
justified with certain restrictions, as the main problem is the acquisition of such determinations/ 
shortcut rules. Our answer is the automatic generation of total shortcuts from the deep model of the 
underlying technical system (by the MAKE system, see chapter 6) and of partial shortcuts from the 
empirical case base using explanation-based learning (by the GenRule3 system). 

The next section gives an overview of the representation(s) of empirical knowledge in MOLTKE 
and its (respective) principal organization. The generation of partial shortcut rules based on an 
algorithm presented in [11] is discussed in 7.3. Then our approach of extracting ordering 
information from the empirical cases is introduced. We complete this chapter with a description of 
the kernel system's capabilities for the handling of partial shortcut rules. 

7.2. Representation of Empirical Knowledge 

In MOLTKE empirical knowledge is represented by a collection of examples which we call cases. 
The .respective knowledge sources could be documentation material like service reports, test bench 
protocols, and test cases or the expert's remembered experiences. Cases are not only well suited for 
the representation of such knowledge, but also for the modelling of vague information. In case of 

1 Learning by memory adaptation, i.e. storing and updating of individual experiences and statistical information. 

2 For a definition of determinations within MOLTKE see [11]. 

3 !knerator of empirical MOLTKE Rules 
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transparency with respect to the expert’s learning behavior, increases the user’s acceptance
concerning the system and decisively improves the knowledge acquisition support.
In this connection the MOLTKE project concentrates on two points of emphasis. The first one is the
direct interpretation of the learned cases which allows the application of analogical problem solving
as the system’s central mechanism. For further details see [8,9]. Secondly, we stress the usage of
an adaptation and extension of the determination-based analogical reasoning approach of [10].
Determinations2 are similar to MOLTKE’s shortcut rules in the sense that the latter are compilations
of analogical inferences which are justified by determinations. Thus, from a simplifying point of
view a shortcut rule (if situation] then symptomZ :=  value) can be interpreted in such a manner that
situationl determines symptom2. The latter approach enables analogical inferences which are
justified with certain restrictions, as the main problem is the acquisition of such determinations]
shortcut rules. Our answer is the automatic generation of total shortcuts from the deep model of the
underlying technical system (by the MAKE system, see chapter 6) and of partial shortcuts from the
empirical case base using explanation-based learning (by the GenRule3 system).
The next section gives an overview of the representation(s) of empirical knowledge in MOLTKE
and its (respective) principal organization. The generation of partial shortcut rules based on an
algorithm presented in [1  1] is discussed in 7.3. Then our approach of extracting ordering
information from the empirical cases is introduced. We complete this chapter with a description of
the kernel system’s capabilities for the handling of partial shortcut rules.

7.2. Representation of Empirical Knowledge

In MOLTKE empirical knowledge is  represented by a collection of examples which we call cases.
The respective knowledge sources could be documentation material like service reports, test bench
protocols, and test cases or the expert ’s remembered experiences. Cases are not only well suited for
the representation of such knowledge, but also for the modelling of  vague information. In case of

1 Learning by memory adaptation, i.e. storing and updating of individual experiences and statistical information.
2 For a definition of determinations within MOLTKE see [11 ] .
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the application on CNC machining centers this affects relations of machine faults to symptoms 
which depend on smelling, hearing, seeing, feeling, or the geometry of workpieces. From an 
abstract point of view typical cases can be described as follows: 

djalmostjc case strategy case
 

symptom1 = 1 symptoml = 1
 

symptom2=O symptom2=O
 

symptom3 =2 symptom3 = 2
 

symptom4=3 symptom4= 3
 

diagnosis1 symptom5 

The part above the line is the description of an empirical situation l in the form of a list of symptom 
values. The part below the line is the solution of the case, Le. the (empirical) result of the described 
situation. We distinguish between diagnostic and strategy cases. For the first type, the result of the 
situation has been to make a diagnosis, for the second, to ascertain a symptom~ The diagnostic cases 
are used for support in the classification task, the strategy cases for the selection of tests. As the 
symptom values within the description of the case situation are ordered, strategy cases can be 
automatically derived out of the diagnostic cases. Thus, only diagnostic cases must be acquired. 
E.g., the following four strategy cases can be derived from the above mentioned diagnostic case: 

symptom1 = 1 symptoml = 1 symptoml = 1 

symptoml symptom2 = 0 symptom2 = 0 

symptom2 symptom3 = 2 

symptom3 

symptom4 

Cases are organized in a hierarchical case memory which is an integration of the experience graph of 
the PAIDEX system (see figure 5) and of an adaptation and specialization of the conceptual memory 
described in [12]. While there exists only one global case memory for diagnostic cases, strategy 
case memories can be considered as locally defined for each context. They support the generation of 

. ordering rules for the respective context. The diagnostic case memory is the starting-point for the 
generation of shortcut rules for all contexts of the kernel system. As the direct interpretation of case 
memories is beyond the scope of this paper, we must refer to [9] where the fundamental procedure 
has been described in detail. We now focus on the GenRule system and the kernel system's 
capabilities of handling uncertain information like partial shorteut rules. 

7.3. Knowledge Base Refinement Using an Explanation-Based Learning Technique 

One important task of the case-based component is the generation of (partial) shortcut rules by the 
GenRule system. Two basic procedures exist for doing this: the first one has been published in [13] 
and compares diagnostic cases, which have the same diagnosis, with one another. The second one 
has been published in [11]. It is more efficient than the first one because cases are compared to 
minimal diagnosis paths that have been reconstructed out of the MOLTKE knowledge base. It uses a 
hierarchical case memory of diagnostic cases as starting-point. From an explanation-based learning 
point of view (see figure 4) the MOLTKE 3.0 knowledge base is the underlying domain theory, the 

1 All symptoms which are not mentioned in the case description are assumed to have the value unknown. 
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which depend on  smelling, hearing, seeing, feeling, or the geometry of workpieces. From an
abstract point of view typical cases can be described as follows:

diamsfiuase Mm
symptoml = 1 symptoml = 1
symptom2 = 0 symptom2 = 0
symptom3 = 2 symptom3 = 2
symptom4 = 3 symptom4 = 3

diagnosis] symptomS

The part above the line is  the description of an empirical situation1 in the form of a list of symptom
values. The part below the line is  the solution of the case, i.e. the (empirical) result of the described
situation. We distinguish between diagnostic and strategy cases. For the first type, the result of the
situation has been to make a diagnosis, for the second, to ascertain a symptom; The diagnostic cases
are used for support in the classification task, the strategy cases for the selection of tests. As the
symptom values within the description of the case situation are ordered, strategy cases can be
automatically derived out of the diagnostic cases. Thus, only diagnostic cases must be acquired.
E .  g., the following four strategy cases can be derived from the above mentioned diagnostic case:

................ symptoml =1  symptoml = 1 symptoml = 1
symptoml ----------------- symptom2 = 0 symptom2 = 0

symptom2 ----------------- symptom3 = 2
symptom3 -----------------

symptom4

Cases are organized in a hierarchical case memory which is an integration of the experience graph of
the PATDEX system (see figure 5) and of an adaptation and specialization of the conceptual memory
described in [12] .  While there exists only one global case memory for diagnostic cases,  strategy
case memories can be considered as locally defined for each context. They support the generation of
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has been described in detail. We now focus on the GenRule system and the kernel system’s
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7.3. Knowledge Base Refinement Using an Explanation-Based Learning Technique
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goal concept is to improve the diagnosis, Le. having to ask for as few symptom values as possible, 
the examples are the cases and the operationality criterion is the shortened list of symptoms for 
which still has to be asked, Le. the removal of possible tests is the smallest grain size of 
improvement that is wanted. If a case is presented it is compared to the 'reconstructed diagnosis path 
which has the same diagnosis. If the case is "shorter" than the diagnosis path, Le. it is a positive 
example in the sense of the goal concept, then GenRule creates a new shortcut rule and adds it to the 
shortcut rule base of the respective context (if the determination factor exceeds a certain threshold). 
Thus, the improved domain theory is the starting-point for the next case that is to be processed. 
Therefore the described procedure is a closed-loop learning mechanism. In the case of a negative 
example, Le. the case is not shorter then the diagnosis path, the procedure does nothing. The formal 
definitions, the description of the underlying algorithm, the computation of the determination (or 
certainty) factor, and the categorization of the shorteut rules according to their attached determination 
factors are given in [11]. 

Training Example Domain Theory 

~ 
cases MOLTKE3.0 

, 
.... 

Proof Goal Concept 

.... improved diagnosis <c 

... Operationalization 

shortcut rule 
~ 

Operationality Criterion 

shortened symptom list 

Figure 4: Adapting explanation-based learning for MOLTKE 

7.4. Extracting Ordering Information from Strategy Cases 

Based on the strategy case memories of the respective context the case-based component is able to 
generate ordering rules for the kernel system. This results in an explicit representation of ordering 
information which is snapshot-like. An alternative approach is the direct interpretation of the strategy 
case memory which enables the application of an incremental and closed-loop learning technique. 
Within this paper we will concentrate on the first approach. 

For the extraction of ordering information from the case memory it is sufficient to describe the case 
memory as in figure 5. Empirical knowledge is represented by means of a weighted directed graph. 
While the nodes in this graph represent situations, the weights of the directed edges between these 
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15



nodes represent the conditional probability of one situation (represented by the end node of the 
specific arc) occurring next in the diagnostic process under the assumption that another situation 
(represented by the start node of the arc) describes the current onel . Every time the strategy case 
memory is asked for a new symptom, which should be ascertained, the statistical information 
represented in the network is used to find out the (more comprehensive) situation which, by prior 

experience, suggests the best suited symptom to ascertain. This task is accomplished by running a 
heuristic-driven search through the graph. The result of the search process will be a situation and the 
additional symptom within this situation will be the one looked for. 

The GenRule gives an empty situation to the strategy case memory which answers with a symptom 
that should be tested. Depending on the answered symptoms GenRule then systematically creates all 
possible situations which are all given to the case memory. This loop stops when all leaf nodes of 
the most probable paths are reached. The ordering rules are then built by the association of a 
situation, given as input to the strategy case memory, with the symptom that is answered by the 
memory. 

Case 1 
Symptoms A 
Hypothesis 1 

Nodes: situations 

Edges: probability of the next 
situation 

Path: way to a case using 
known symptoms and 
prior experience by 
heuristic-driven search 

Figure 5: Representation of empirical knowledge 

7.5. Utilization of Empirical Knowledge in the Kernel System 

A basic requirement from a real world application in the domain of technical diagnosis (as in many 
others) is to make the problem solving process as transparent as possible. One of its consequences 
is to treat uncertainty in a rather simple manner. Within the kernel system only the partial shortcut 
rules are uncertain. This uncertainty is described by a list of three determination factors. All factors 
are computed using the arithmetic expression given in [11] but are related to different sets of cases 
of the diagnostic case memory. The third value depends on the set of all cases and is therefore the 
most conservative estimation. The second value depends on the set of cases which all have the same 
diagnosis and have been responsible for the generation of the considered shortcut rule. This 
estimation is the most optimistic one. Both values are computed by GenRule. The first value is 
dynamically computed by the kernel system after a diagnosis has been made. This value depends on 
the set of all the cases that have the same diagnosis as the actual one, unified with the set of cases 

1	 The role of the weights is similar to that of certainty factors for probabilities where the underlying distribution 
function is not known, lOO. 
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A basic requirement from a real world application in the domain of technical diagnosis (as in many
others) is to make the problem solving process as transparent as possible. One of its consequences
is to treat uncertainty in a rather simple manner. Within the kernel system only the partial shortcut
rules are uncertain. This uncertainty is described by a list of three determination factors. All factors
are computed using the arithmetic expression given in [11] but are related to different sets of cases
of the diagnostic case memory. The third value depends on the set of all cases and is therefore the
most conservative estimation. The second value depends on the set of cases which all have the same
diagnosis and have been responsible for the generation of the considered shortcut rule. This
estimation is the most optimistic one. Both values are computed by GenRule. The first value is
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that is the basis for the second value. IT the actual diagnosis is identical to the one mentioned in
 
connection with the second factor the fIrst and the second factor are equal.
 

MOLTKE-s heuristic-based treatment of uncertainty encompasses the following:
 

• the kernel system does not compute any probability value during a diagnosis session 

• the user can specify: 

• the worst probability category of shortcut rules that is still accepted by the user 

• how many partial shortcut rules are allowed to fIre during one diagnosis session 

• how many uncertain symptom values are allowed to be used for getting shortcut 
rules (including the total ones) fIred. This is tested by the shortcut rule interpreter. 

If a diagnosis has been made all ascertained symptoms, especially all uncertain ones, are shown to 
the user. For the uncertain symptoms the corresponding shortcut rules, including their (first) 
determination factors, are mentioned. If the user states that the presented diagnosis is wrong the 
system makes several suggestions what to do then: 

• change of (arbitrary) selected symptom values 

• verifIcation of special uncertain symptom values 

• another interpretation of the knowledge base without usage of uncertain information 

• another interpretation of the knowledge base with corrected symptom values 

• another interpretation of the knowledge base with additional symptom values 

As the kernel systems maintains a Rete-like formula network all these actions can be carried out 
easily. During runtime the system has to remember all uncertain symptoms and to count the number 
of evaluations of partial shortcut rules and the number of evaluations of shortcut rules with uncertain 
symptoms. The uncertainty of a symptom affects only the shortcut rule interpreter. 

Besides the determination of symptom values partial (and also the total) shortcut rules can be used to 
defIne a special ordering strategy, namely to try to ascertain symptoms in a manner that maximizes 
the number of shortcut rules that can fIre. 

8. The Integration of the Multiple Knowledge Sources 

In project MOLTKE two ways of integrating deep and case knowledge into the kernel system are 
realized. First, compilers can generate the objects used by the shell: this is done in an offline process 
by MAKE and GenRule (see sections above). For the shell the resulting system is not different from 
a user defIned one. Thus, the whole knowledge acquisition environment of the shell can be used for 
editing the automatically generated knowledge base. This allows to combine deep modelling with 
case-based reasoning and common knowledge acquisition techniques. 

Second, case and deep knowledge can be used online by different interpreters. We will describe this 
feature now in more detail. 

The default interpreter uses ordering rules as compiled knowledge about strategies. Every context 
contains an interpreter which evaluates the ordering rule set according to the actual situation. 
Replacing this context interpreter by a case- or model-based one is easy because of the 
modularisation of the system. The new interpreter gets the actual situation as input and has to return 
the symptom instance to test. Thus, the main work is not the integration of the new interpreter into 
the kernel system but the implementation of the new facility itself. 

As described above, we implemented, according to the given specifIcation, an interpreter for model
based ordering knowledge. One possible online interpretation of the strategy case base has been 
described as the underlying mechanism for the generation of ordering rules. The appropriate modul 
can easily replace the default context interpreter. The integration of a neural network which was 
trained with a set of strategy cases is completed. This network gets the actual situation as input and 
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that is the basis for the second value. If the actual diagnosis is  identical to the one mentioned in
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realized. First, compilers can generate the objects used by the shell: this is done in an offline process
by MAKE and GenRule (see sections above). For the shell the resulting system is not different from
a user defined one. 'I'hus, the whole knowledge acquisition environment of the shell can be used for
editing the automatically generated knowledge base. This allows to combine deep modelling with
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feature now in more detail.
The default interpreter uses ordering rules as  compiled knowledge about strategies. Every context
contains an interpreter which evaluates the ordering rule set according to the actual situation.
Replacing this context interpreter by a case- or model-based one i s  easy because of the
modularisation of the system. The new interpreter gets the actual situation as input and has to return
the symptom instance to test. Thus, the main work is not the integration of the new interpreter into
the kernel system but the implementation of the new facility itself.
As  described above, we implemented, according to the given specification, an interpreter for model-
based ordering knowledge. One possible online interpretation of the strategy case base has been
described as the underlying mechanism for the generation of ordering rules. The appropriate modul
can easily replace the default context interpreter. The integration of a neural network which was
trained with a set of strategy cases is completed. This network gets the actual situation as input and
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returns the symptom to test. A detailed description of this approach is not within the scope of this 
paper. 

As the interpretation of ordering knowledge depends only on the context interpreter of a particular 
context, the system is able to combine the strategy interpreters, Le. in context A the neural network 
is used whereas in context B the model-based approach detennines the strategy. The use of more 
than one technique inside a single context would be easy to implement but does not seem to be 
promising to us. 

Besides the described two levels of integration the case- and the model-based component can interact 
with each other. The case-based component can ask the model-based one for a plausibility check of 
its cases whereas the model-based part can retrieve statistic information from the case memory. 

9. Discussion 

The starting point for the MOLTKE project has been the end of 1986. It has been a cooperation 
between our expert system research group at Kaiserslautern (Prof. Dr. M.M. Richter) and the 
"Laboratorium fUr Werkzeugmaschinen und Betriebslehre" (WZL) of the Technical University of 
Aachen (Prof. Dr.-Ing. T. Pfeifer), a world-wide distinguished mechanical engineering institute. 
The aim of project X6 was to improve the expert system technology for the diagnosis of technical 
systems. Therefore a complex real world domain (CNC machining centers) has been chosen to 
allow a deep analysis of the requirements which arise from such a domain and to enable us to 
develop the proper solutions. Important requirements are: representation and processing of a huge 
amount of knowledge, sufficient overall performance, ease of adaptability to new sets and types of 
the technical system, transparency of the diagnostic process, representation and processing of 
temporally distributed symptoms, flexibility of the diagnostic procedure and automation of the 
diagnostic process (as far as possible). These requirements are the generalized result of the analysis 
of the cooperating mechanical engineering research institute. The results have been obtained by a 
rather complex process and have not been clear in their whole breadth and depth at the beginning of 
the project. Therefore many different prototypes and specialized architectures (up to now: 10) have 
been implemented to enable experimental evaluation by the engineering institute. 

A comparison of these architectures and the evaluation which of the just mentioned requirements are 
met by the MOLTKE toolbox (and how far) is beyond the scope of this paperl . Anyway, expert 
system evaluation is a hot research topic and there are no commonly accepted evaluation schemes up 
to now, especially not for integrated toolboxes. However, we will present an overview of our 
internal evaluation scheme: 

•	 A comparison ofmanually and automatically developed knowledge bases 

This is currently under develoment for the domain of CNC machining centers. 

•	 An analysis of the transferability to other machines of the same domain (of CNC
 
machines)
 

In cooperation with a mechanical engineering research institute at the University of 
Kaiserslautern we have successfully implemented a knowledge base for a 3D-CNC 
measuring machine. 

•	 An analysis ofthe transferability to similar domains 

At the moment we are developing a knowledge base for the diagnosis of driving 
machines in mining. 

1	 The basic assumptions and hypotheses, an overview of the domain of CNC machining centers, the arising 
requirements and necessary solutions, the main results and an overview of the implemented architectures for 
technical diagnosis will be published in a book, probably at the end of 1990 
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• An analysis of the transferability to other technical domains 
As an example for a quite different technical domain a diagnostic knowledge base for 
heterogenous computer networks is currently developed. 

• Adaptation ofknowledge to new series and typ'es ofthe same machine 
This is a special research objective within our project [5]. 

• A comparison ofthe model-based and case-based component with other approaches 

This has partially been done up to now (e.g. for the case-based reasoner of the toolbox 
[9]; for the model-based component [6]), but the completion is forthcoming. 

• A comparison ofalternative mechanisms within the toolbox 
In this point we hope to get a deeper insight when all the above mentioned applications 
are completed. 

• An overall evaluation ofthe complete MOLTKE toolbox 

We believe that the successful integration of methods from several complicated areas 
into one toolbox is the real research progress we can offer. The ongoing applications 
will help us to show the usefulness of MOLTKE and provide us with further realistic 
evaluation. 

10. State of Realization 

The kernel MOLTKE 3.0 is fully implemented including MAKE and GenRule. A case-based 
reasoner (PATDEX) was implemented as a stand-alone system. The integration into MOLTKE 3.0 
is currently in work. 

Using the MOLTKE toolbox we implemented an expert system for fault diagnosis of CNC 
machining centers (see [11,14]) and one for the diagnosis of 3D-CNC measuring machine [15]. 
Currently expert systems for the diagnosis of failures in heterogenous computer networks and for 
the diagnosis of driving machines in mining are developed. 

The MOLTKE system is implemented in Smalltalk-80 on Sun-, Apollo- and HP-Unix-workstations. 
It runs on all machines for which the respective virtual machine for Smalltalk-80 was implemented 
including DECstations, MacH, 80386-PCs etc. 
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As an example for a quite different technical domain a diagnostic knowledge base for
heterogenous computer networks is  currently developed.

° Adaptation of knowledge to new series and types of the same machine
This is  a special research objective within our project [5].

' A comparison of the model-based and case—based component with other approaches
This has partially been done up to now (e.g. for the case-based reasoner of the toolbox
[9]; for the model-based component [6]), but the completion is  forthcoming.

° A comparison of alternative mechanisms within the toolbox
In this point we hope to get a deeper insight when all the above mentioned applications
are completed.

0 An overall evaluation of the complete MOLTKE toolbox
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into one toolbox is the real research progress we can offer. The ongoing applications
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