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Abstract 

Multiset orderings are usually used to prove the termination of production 

systems in comparing elements directly 'III1ith respect to a given precedence 

ordering. Topographical multiset orderings are based on the position of elements 

in the graph induced by the precedence. This concept results in more flexible 

and stronger multiset orderings. To support the dynamic aspect of incremental 

refinement of a multiset ordering the notion of Depth Graphs is introduced. This 

concept leads to the use of a graph of 'III1hich the nodes are terms (instead of 

constants and function symbols). It replaces the standard precedence graph. 

Moreover, it can be used to define a ne'lll1 recursive decomposition ordering on 

terms 'III1hich is stronger than the original one. 

Abstrac t

Mul t i s e t  o rde r ings  a r e  u sua l ly  u s e d  t o  p rove  t he  t e rmina t ion  o f  p roduc t ion
sys t ems  in  compar ing  e l emen t s  direc t ly  w i th  r e spec t  t o  a g iven  p recedence
orde r ing .  Topograph ica l  mu l t i s e t  o rde r ings  a r e  based  on  the  pos i t i on  o f  e l ements

i n  t he  g raph  induced  by  the  p recedence .  Th i s  concep t  r e su l t s  i n  more  f l ex ib l e
and  s t ronge r  mu l t i s e t  o rde r ings .  To  suppor t .  t he  dynamic  a spec t  o f  i nc remen ta l
r e f inemen t  o f  a mu l t i s e t  o rde r ing  t he  no t ion  o f  Dep th  Graphs  i s  i n t roduced .  Th i s
concep t  l e ads  t o  t he  u se  o f  a graph  o f  wh ich  t he  nodes  a r e  t e rms  [ i n s t ead  o f
cons t an t s  and  func t ion  symbo l s ] .  I t  r ep l aces  t he  s t anda rd  p recedence  g raph .
Moreove r ,  i t  c an  be  u sed  to  de f ine  a new r ecu r s ive  decompos i t i on  o rde r ing  on

t e rms  wh ich  i s  s t ronge r  t han  the  o r ig ina l  one .



1 lVIotivation. 

"Suppose you have a big box filled with red, green and blue balls", said 

the fox. "And suppose further that you are allowed to throwaway any red ball 

you can find in the box, but you have to put in thousand green balls for each 

blue one you remove and each green one has to be replaced by a million of reds. 

Do you think that you can ever succeed in emptying the box?" "Yes, I do", 

replied the owl. "Are you sure?" "Of course, I can prove it", answered the owl, 

with a twinkle in her eyes. 

The sophisticated owl knows about the concept of multi set orderings. Beside 
solving puzzles, multiset orderings are used to prove termination of programs and 
processes [[DM79]) and they serve as a basis for many recursive term orderings 
which in turn are used in proofs for the well-foundedness of term rewriting 
systems [[AMS9J, [DeS7J, [HOSOJ, [RuS7J, [StS9]). Their properties have been 
studied in [JLS2J, [MaS9J, [StS6J, [MSS6J, [FeSSJ. Especially, for the improvement 

of term orderings they are very helpful since the term ordering will be stronger 
if the underlying mul tiset ordering gets stronger. 

"Well", said the fox, "but what happens if you are in addition allowed to 
replace balls by boxes of balls. Say, blue balls might be replaced by boxes 
with any number of green and red balls. Green ones may be replaced by two 
boxes filled with red balls. You may also handle the balls as before and any 
empty box will be thrown away. So now you will have boxes in boxes which 
contain boxes and balls, etc. Do you think that you will end up eventually 
with one empty box?" "Sure" said the owl, "it's the same story." 

If complex objects °,°2 must be compared, we usually have a partial ordering1
on the simple objects. Thus, complex objects are decomposed into [multi-] sets 
of less complex objects and the task of comparing 01'02 is reduced to comparing 
these sets. By decreasing the complexity of the objects stepwise we eventually 
genera te sets of simple objects which are compared with respect to the given 
ordering. If terms, treated as complex objects, have to be compared, we usually 
have a precedence ordering on the function symbols. For example, we would like 
to compare h[f[a],b] and h[g[a],b] with respect to [w.r.t.] the well-known 
recursive path ordering [see [DeS7J]. The given objects are incomparable since 
the precedence is empty. We may refine the precedence by f l> g and will get 
f[a] > g[a]. This relation implies h[f[a],b] > h[g[a],b] to be valid since it is 
equivalent to {f[a],b} ». {g[a]'b}. But, for the sake of receiving f[a] > g[a] we have 
fixed the value of other comparisons, as welL For instance, f[g[a]) > g[f[a]) 
inducing h[f[g[a)],b) > h[g[f[a)),b) is derived. Thus, it is impossible to have 
h[g[f[a)),b] > h[f[g[a]],b] under the precondition that f(g(a)) > g[f[a]). 
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1 Mot iva t ion

"Suppose you  have  a big box f i l led with red, green and  b lue  bal ls",  sa id
the  fox. "And suppose further that  you are allowed t o  throw away  any  red bal l
you can find in the  box, bu t  you  have t o  pu t  in thousand green balls for each
b lue  one  you remove and  each green one  has  t o  be  replaced by a mill ion of reds.
Do you think that  you  can ever succeed in emptying the  box?" ”Yes, I do",
replied the owl. “Are you sure?“ "Of course, I can prove i t " ,  answered the owl,
with  a twinkle  in her  eyes.

The  soph i s t i ca t ed  owl  knows  abou t  the  concep t  of mu l t i se t  order ings .  Bes ide
so l v ing  puzz l e s .  mul t i s e t  o rder ings  a re  used  to  p rove  t e rmina t ion  of p rograms  and
processes [[DM791] and they  serve as a basis for many recursive term orderings
which  in  turn  are  used  in  proof s  for the  we l l—foundedness  of t e rm rewr i t ing
sy s t ems  [ [AM89], [De87l, [H0801 [Ru87]‚ [St891]. Their properties have been
s tud ied  in  [ JL82 ] ,  [Ma89],  [St86],  [M586],  [Fe88]. Espec ia l l y ,  for the  improvement
of t e rm order ings  they  a re  ve ry  he lp fu l  s ince  the  t e rm order ing  w i l l  be  s t ronger
if the  unde r l y i ng  mu l t i se t  order ing  ge t s  s t ronger .

"Well”, said the  fox, “bu t  what  happens if you  are in addi t ion a l lowed t o
replace balls by  boxes of balls.  Say, b lue  balls  might  be  replaced by boxes
wi th any  number  of green and  red balls. Green ones may  be  replaced by  two
boxes filled wi th red balls. You may  also handle the  bal ls as  before and  any
empty box will be  thrown away.  So now you  will ha  ve  boxes in boxes which
contain boxes and  balls, etc.  Do you  th ink  t ha t  you  will end  up even tua l l y
with one empty box?” ”Sure" said the  owl, " i t 's the  same story."

If comp lex  ob jec ts  01 ,02  mus t  be  compared ,  we  usua l l y  have  a par t i a l  o rder ing
on  the  s imp le  objects .  Thus, complex  ob jec t s  a re  decomposed  in to  [multi-] s e t s
of less comp lex  ob jec ts  and  the  t ask  of compar i ng  01 ,02  i s  reduced  t o  compar ing
these  s e t s .  By  decreas ing  the  complex i t y  of the  ob j ec t s  s t epwi se  we  even tua l l y
genera t e  s e t s  of s imp le  ob jec ts  wh i ch  are  compared  w i t h  respec t  t o  the  g i ven
order ing .  If t e rms ,  t r ea t ed  a s  complex  ob jec ts ,  have  t o  be  compared ,  we  usua l l y
have  a p recedence  o rder ing  on  the  func t ion  symbo l s .  For example .  we  wou ld  l i ke
t o  compare  h[f[a],b] and h[g[a],b] w i th  r e spec t  t o  [w.r.t.] the  we l l -known
recurs i ve  pa th  order ing  [ s ee  [De87]] .  The  g i ven  ob jec t s  a re  incomparab le  s ince
the  precedence  i s  emp ty .  We  may  re f ine  the  p recedence  by  i [> g and  w i l l  ge t
f[a] > g[a]. This relat ion imp l i e s  h[f[a],b] > h[g[a],b] t o  be  va l id  since i t  is
equivalent to  {f[a],b} ». {g[a]‚b}. But. for the sake of receiving {[a] > g[a] we have
f ixed the  va lue  of other comparisons,  a s  wel l .  For ins tance ,  f[g[a]] > g [ f [ a ] ]

inducing h[f[g[a]],b] > h[g[f[a]]‚b] is derived. Thus, it is  impossible to  have
h[g[f[a]].b] > h[f[g[a]],b] under  the  precondit ion that  f[g[a]] > g[f[a]].



This example illustrates that a precedence determines the comparison of a class 

of object pairs. In order to weaken this inflexible approach of extending a 

precedence we will refine the ordering in a more moderate way. The original 
ordering compares two objects by comparing parts of these objects as multisets. 
We will generalize a precedence to a graph of complex objects [not only function 

symbols) by simultaneously using a stronger ordering on multisets of objects 

called dynamic depth ordering. The dynamic depth ordering is a topographical 

multiset ordering which compares two objects by using their depths (natural 

numbers) w.r.t. the precedence graph. 

After a brief description of the classical multi set ordering we will explain the 

technique of topographical multiset orderings by presenting some examples of 

orderings. Section 2.3 will deal with the definition of the dynamic depth 

ordering which can be used as part of a term ordering. The incorporation of 

this multi set ordering in a recursive decomposition ordering (by using a graph 
instead of a precedence) will be the main part of chapter 3. 
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Thi s  example  i l l u s t r a t e s  t ha t  a p r ecedence  de t e rmines  t he  compar i son  of a c l a s s
of ob j ec t  pa i r s .  I n  o rde r  t o  weaken  th i s  i n f l ex ib l e  app roach  of ex t end ing  a
precedence  we  wi l l  r e f i ne  t he  o rde r ing  i n  a more  mode ra t e  way .  The  o r ig ina l

orde r ing  compares  two  ob jec t s  by  compar ing  pa r t s  of t he se  ob j ec t s  a s  mu l t i s e t s .
We  Wi l l  gene ra l i ze  a p r ecedence  t o  a g r aph  of complex  ob j ec t s  [no t  on ly  func t ion
symbo l s ]  by  s imu l t aneous ly  u s ing  a s t ronge r  o rde r ing  on  mu l t i s e t s  of ob j ec t s
ca l l ed  dynamic  dep th  o rde r ing .  The  dynamic  dep th  o rde r ing  i s  a t opograph ica l
mu l t i s e t  o rde r ing  wh ich  compares  two  objec t s  by  u s ing  the i r  dep ths  [na tu ra l
number s ]  w . r . t .  t he  p recedence  g raph .

Af te r  a b r i e f  de sc r ip t i on  of t he  c l a s s i ca l  mu l t i s e t  o rde r ing  we  wi l l  exp l a in  t he
t echn ique  of t opograph ica l  mu l t i s e t  o rde r ings  by  p re sen t ing  some  examples  of
o rde r ings .  Sec t ion  2 .3  w i l l  dea l  w i th  t he  de f in i t i on  of t he  dynamic  dep th
o rde r ing  wh ich  can  be  u sed  a s  pa r t  of a t e rm  o rde r ing .  The  inco rpo ra t i on  of
t h i s  mu l t i s e t  o rde r ing  i n  a r ecu r s ive  decompos i t i on  o rde r ing  [by  us ing  a g r aph

i n s t ead  of a p r ecedence ]  w i l l  be  t he  ma in  pa r t  of chap te r  3 .



2 lVIultiset Orderings 

Intuitively, a multi set is a collection of elements of one set. In contrast to subsets 
every element of a multi set can possibly occur more than once. More formally, a 

multiset M on S is a mapping from S to the natural numbers. Each element of 

S is associated with the number of times it appears in the multiset M. 

Definition	 Let S be any set. 
A mapping M: S ...." IN is called a multiset on S. • 

However, we will use the informal" bracket" notation to describe the contents 
of a multiset, e.g. M = {a,b,b,b,c} instead of M[a) = M[c] = 1, M[b] = 3. 

Note that multi sets on S, with elements occurring once at the most [i.e.: M[x] ~ 1, 

Vx E S], can be identified with the subsets of S. Based on operations with 

natural numbers, the common operations known of sets, such as union, 

intersection, difference and inclusion, can also be defined on multisets. We 
expect the reader to be familiar with these operations [an exact definition is 

included in [H080J, [Fe88J and [St86J, for example]. In order to preserve 

computability, we are exclusively interested in the class of all multisets 

containing a finite number of elements. 

Definition	 Let S be any set. 
MUlt[S] := { M : S ...." IN I M is finite} 

is called the set of all finite mul tisets on S. • 

Note that Mult[S] is closed under multiset union, intersection and difference. 

2.1 Standard lVIultiset Ordering 

We focus our interest on comparing finite multi sets by defining well-founded 

partial orderings on Mult(S). A partial ordering on a set S is a rei a tion > c S x S 

which is irreflexive and transitive. If x, yES are incomparable (w.r.t. >] we 

write x n y. A partial ordering> on S is well-founded if there exists no infinite 
decreasing sequence Xl> x 2 > '" of elements of S. 

One way to define a multiset ordering over S [a partial ordering on Mult[S]] is 
to "lift" a given partial ordering > on S to Mult[S). Reasonably, the resulting 

multiset ordering » should be an extension of > to multi sets [i.e. x > y implies 
{x} » {y}, VX,y E S]. 
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2 Mul t i s i e t  Orde r ings

In tu i t i ve ly ,  a mu l t i s e t  i s  a co l l ec t i on  of e l emen t s  of one  set. In  con t r a s t  t o  subsets

eve ry  e l emen t  o f  a mu l t i s e t  c an  pos s ib ly  occu r  more  t han  once .  More  fo rma l ly ,  a

mul t i s e t  M on  S i s  a mapp ing  f rom S t o  t he  na tu ra l  number s .  Each  e l emen t  of

S i s  a s soc i a t ed  w i th  t he  number  of t imes  i t  appea r s  i n  t he  mu l t i s e t  M.

Def in i t i on  Le t  S be  any  se t .
A mapp ing  M : S +—> IN i s  ca l l ed  a mu l t i s e t  on  S.  .

However ,  we  wi l l  u se  t he  in fo rma l  "b racke t "  no t a t i on  t o  desc r ibe  t he  con ten t s
of a mu l t i s e t .  e.g. M = {a,b,b,b.c} i n s t ead  of M[a] = M[c] = l ,  M[b] = 3.

Note  t ha t  mu l t i s e t s  on  S, w i th  e l emen t s  occu r r ing  once  a t  t he  mos t  [i.e.: M[x] s l ,
Vx e S], c an  be  i den t i f i ed  w i th  t he  subse t s  of S.  Based  on  ope ra t i ons  w i th
na tu ra l  number s ,  t he  common  ope ra t i ons  known  of  s e t s .  such  a s  un ion ,

i n t e r sec t i on ,  d i f f e r ence  and  inc lu s ion ,  can  a l so  be  de f ined  on  mu l t i s e t s .  We
expec t  t he  r eade r  t o  be  f ami l i a r  w i th  t he se  ope ra t i ons  [ an  exac t  de f in i t i on  i s

i nc luded  in  [H080 ] ,  [Fe88]  and  [S t86 ] ,  f o r  example ] .  I n  o rde r  t o  p r e se rve

compu tab i l i t y ,  we  a r e  exc lus ive ly  i n t e r e s t ed  i n  t he  c l a s s  o f  a l l  mu l t i s e t s

con ta in ing  a f i n i t e  number  of e l emen t s .

Def in i t ion  Le t  S be  any  se t .
Mult[S] == { M : s » IN | M is finite }
i s  c a l l ed  t he  s e t  o f  a l l  f i n i t e  mu l t i s e t s  on  S .  I

Note  t ha t  Mul t [S ]  i s  c lo sed  unde r  mu l t i s e t  un ion ,  i n t e r sec t i on  and  d i f f e r ence .

2 .1  S t anda rd  Mul t i s e t  Orde r ing

We focus  ou r  i n t e r e s t  on  compar ing  f i n i t e  mu l t i s e t s  by  de f in ing  we l l - founded
pa r t i a l  o rde r ings  on  Mul t [S ] .  A pa r t i a l  o rde r ing  on  a s e t  S i s  a r e l a t i on  > C S x S
which is  irreflexive and  transitive. If X,y E S are  incomparable [w.r.t. >] we
wr i t e  x tt y .  A pa r t i a l  o rde r ing  > on  S i s  we l l - founded  if t he re  ex i s t s  no  i n f in i t e
dec reas ing  s equence  x1>  x2  > of  e l emen t s  o f  S .

One  way  to  de f ine  a mu l t i s e t  o rde r ing  ove r  S [a  pa r t i a l  o rde r ing  on  Mult[S]] is
t o  "lift" a g iven  pa r t i a l  o rde r ing  > on S t o  Mult[S]. Reasonably ,  t he  r e su l t i ng
mul t i s e t  o rde r ing  » shou ld  be  an  ex t ens ion  of > t o  mu l t i s e t s  [ i .e .  x > y imp l i e s

{x} » {y}, Vx.y E s].



Following this idea. Detshowitz and Manna have presented a multiset ordering 

that is induced by a partial ordering> on the underlying set S. 

Definition	 [Multiset ordering of Dershowitz-Manna, [DM79J ) 

Let > be a partial	 ordering on Sand M.N E Mult[S). 

M »DM N	 iff 3X. Y E Mul t[S) such that 
i) et>:j: X C	 M 

ii) [M \ X)	 u Y = N 
iii) Vy E Y	 3x E X x > y • 

A lot of definitions of multi set' orderings equivalent to the one of Dershowitz and 

Manna exist (see for example [St86J). Therefore. we call »DM the Standard 
Multiset Ordering and will simply refer to it by ». 

We present an example to illustrate the definiton of the Standard Multiset 

Ordering. This example also indicates the disadvantages of ». Therefore. it will 

be used throughout this paper to demonstrate the differences between the 

presented orderings. 

Example	 Let S = {a.b.c,d,e,n and a > c > e. c > f. b > d > f 

Hasse diagram: a b 

I 
c d 

~ I 
e f 

Further.	 M = {a.c} N = {c.c.e.f.f.f} 
M' = {b.e} N' = {b.d} 

M" = {a.c.d} N" = {b.d.e,f} 

M » N since	 [M \ {a}) u {c.e,f.f.f} = N and 

a > c ,a > e. a > f 

M' t:t N'	 since (M' \ {e}) u {d} = N' and e t:t d 

or [N' \ {d}] u {e} = M' and d t:t e 

M" t:t NU	 since [MU \ {a.d) u {b.e.n = N" and a l:1 b. c t:t b 

or [N" \ {b.e.f}) u{a,c} = M" and b l:1 a, e < a, t < a • 

Intuitively. one can imagine that M' is smaller than N' and MU dominates N". 

Therefore. the result of comparing these multisets with» requires the search for 

more powerful multiset orderings. 
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Fo l lowing  th i s  i dea ,  Der ‘ showi tz  and  Manna  have  p re sen t ed  a mu l t i s e t  o rde r ing
tha t  i s  i nduced  by  a pa r t i a l  o rde r ing  > on  the  unde r ly ing  s e t  S.

Def in i t ion  [ Mul t i s e t  o rde r ing  o f  De r showi t z -Manna ,  [DM79]  ]

Let  > be  a pa r t i a l  o rde r ing  on  S and  MN 6 Mult[S].
M »DM N ifi 3x‚Y e Mult[S] such that

i] (I) $ X c M
ii] [M \ X] u Y = N
iii] VyEY 3xeX:  x>y  I

A l o t  of de f in i t i ons  of mu l t i s e t  o rde r ings  equ iva l en t  t o  t he  one  of De r showi t z  and
Manna  ex i s t  [ s ee  fo r  example  [S t861 ] .  The re fo re ,  we  ca l l  »DM the  S t anda rd

Mul t i s e t  Orde r ing  and  wi l l  s imp ly  r e f e r  t o  i t  by  » .

We  p re sen t  an  example  t o  i l l u s t r a t e  t he  de f in i t on  of t he  S t anda rd  Mul t i s e t
Orde r ing .  Th i s  example  a l so  i nd i ca t e s  t he  d i s advan tages  of » .  The re fo re ,  i t  w i l l
be  used  th roughou t  t h i s  pape r  t o  demons t r a t e  t he  d i f fe rences  be tween  the
presen t ed  o rde r ings .

Example Le t  S = {a.b,c ,d,e , f}  and  a > c > e, c > f, b > d > {

Hasse  d i ag ram:  a b

| |
c d

| \ |
e f

Fur the r ,  M = {a ,c}  N = {c‚c‚e‚f‚f‚f}
M' = {b,e} N' = {b‚d}
M" = {a ‚c ‚d}  N"  = {b‚d‚e‚f}

M » N since [M \ {a}] U {c,e,f‚f‚f} = N and
a > c . a > e ,  a > f

M' n N' since [M' \ {e}] u {’d} = N' and e n d
M'  and  due

N"  and  a n b ‚ c n b

M” and  bna , e<a . f<a  .

or [N' \ {d}] U {e}
M" n N" since [M" \{a ‚c}]  U {be i}

or [N"  \ {b‚e‚f}] U {a,c}

In tu i t i ve ly ,  one  can  imag ine  t ha t  M '  i s  sma l l e r  t han  N '  and  M"  domina t e s  N".
Therefore, t he  r e su l t  of compar ing  the se  mu l t i s e t s  w i th  » r equ i r e s  t he  s ea rch  for
more  power fu l  mu l t i s e t  o rde r ings .



2.2 Topogra.ph.ical lVIultiset Orderin.gs 

Our new multiset orderings are based on the topographical aspects of the 

graphical representation of a given ordering on S. The basic idea is: "The higher 

an element is situated, the bigger it is"! More precisely, we introduce the 

depth of an element which characterizes its position in the underlying partial 

ordering on S. 

Definition [Depth of an element ] 

Let > be a partial ordering on S. DS : S ~ IN with 
DS[x] := max { DS[y] I x < yES } + 1 [ where max[ (j)] = 0 ] 

is called the depth of x in S. • 

In general, it should be noted that the existence of the depth is not guaranteed 

for all elements of S. In fact, most of the interesting orderings [especially those 

presented in the second part of this paper) do not have the desired property, Le. 

there are some elements with an infinite depth. A partial ordering> with all 

elements of S possessing finite depth is called co-bounded [i.e. < is bounded]. 

Now, we connect the notion of the depth of elements of S with multi sets on S 

resulting in definitions which are used to construct some topographical multi set 
orderings. 

Definition [Optimum, hierarchy level and depth multiset ] 

Let> be a co-bounded partial ordering on S, ME Mult[S] and n E IN.
 

Opts: Mult[S] ~ IN U { 00 } with
 

OptS[M] := min {DS[x] I x EM} [ where OptS[(j)] = 00 ]
 

is called the optimum of M..
 

LS : Mult[S] x IN ~ Mult[S] with 
LS[M,n] := { X E M I DS[x] = n} 

[exactly: LS[M,n][x]:= M[x] if! DS[x] = n ] 

is called the n-th hierarchy level of M. 

DS : Mult[S] ~ Mu1t[IN] with
 

DS [M] := {DS [x] I x EM} [exactly: DS [M][n] .- ILs [M,n]1 ]
 
is called the depth multiset of M.
 • 

We will write D[x] [and Opt[M], L[M,n], D[M]J. if it is obvious which set S is 
referred to. 
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2.2 T o p o g r a p h i c a l  Mul t i s e t  Orde r ings

Our new mul t i s e t  orderings are based on the t opograph ica l  aspects of the

graphical representation of a g iven  ordering on S. The basic idea is: "The higher
an element is situated, the bigger it is"! More precisely, we introduce the
depth of an element which characterizes its position in the underlying partial
ordering on S.

Definition [ Depth of an element ]

Let > be a partial ordering on S. DS : S +-> IN with
Ds[x] == max { Ds[y] I x < y E S } + 1 [ where max[(])] = O ]
is called the depth of x in S. .

In general, it should be noted that the existence of the depth is not guaranteed
for all elements of S. In f ac t ,  mos t  of the i n t e r e s t i ng  orderings [especially those

presented in the second part of this paper] do not have the desired property, i.e.
there are some elements with an infinite depth. A partial ordering > with all
elements of S possessing finite depth is called co-bounded [i.e. < is bounded].
Now. we connect the notion of the dep th  of e l emen t s  of S wi th  mu l t i s e t s  on S
resulting in definitions which are used to construct some topographical multiset
orderings.

Definition [ Optimum, hierarchy level and depth multiset ]

Let > be a co-bounded partial ordering on S. MEMul t [S]  and n € IN.
Opts: Mult[S] e [N u {00} with
Opts[M] == min { Ds[x] l x € M } [ where Opts[(D] = oo ]
is ca l l ed  the Optimum of M.-

LS: Mult[S] x N a Mult[S] with
LSIM.n] == { x e M | Ds[x] = n}

[ exactly: LS[M,n][X] == M[x] iff DS[X] = n ]
is called the n—th hierarchy level of M.

DS: Mult[S] »—> Mult[lN] with
DS[M] == {DS[x] I x e M } [ exactly: DS[M][n] := |Ls[M‚n]| ]
i s  c a l l ed  the dep th  mul t i se t  of M. .

We will wr i t e  D[X] [and Opt[M], L[M‚n]‚ D[M]], if it is obvious which set S is
referred to.



The fundamental idea of the following multiset ordering (see [St86:1) is, that a 

multiset M is bigger than a multiset N if its biggest element (w.r.t. » is 

"higher" than that of N. Therefore, this multiset ordering follows from the idea 
given above. 

Definition (Optimum Ordering ) 

Let> be a co-bounded partial ordering on S. 

M »0 N iff OptS (M\N) < OptS (N\M) • 

The presented example will illustrate how the Optimum Ordering works. 

Example Let S,	 > and six multisets be as in the example above. 

M »0 N since	 Opt(M\N) = Opt({a}) = D(a) = 1 and 

Opt(N\M) = Opt({c,e,f,f,f} ) = min{2,3,3,3,3 } = 2 

M' <0 N' since	 Opt(M'\N') = Opt({ e}) = D(e) = 3 and 

Opt[N'\M') = Opt[{d}) = D[d) = 2 

M" no N" since	 Opt(M"\N") = Opt({a,c}) = min{1,2} = and 

Opt(N"\M") = Opt({b,e,f}) = min{1,3,3} = • 

In addition to M and N, M' and N' are now comparable in the desired manner. 

In fact, »0 is stronger than the Standard Multiset Ordering, but M" and N" remain 

incomparable. Moreover, the Optimum Ordering demands the ordering on S to be 

co-bounded, Le. the depths of all elements must be finite. To overcome this 

restriction, the definition of »0 may be altered in such a way that the depths 

of the elements are computed w.r.t. a finite subset of S. For a comparison, this 

subset must contain all the elements needed. The first attempt in generalizing 

the Optimum Ordering in this manner is based on the following concept (see 

[St86J): When comparing two multisets M and N the required depths are computed 

W.r.t. set[MuN] which denotes the set of elements contained in the union of M 

and N. 

Definition (General Optimum Ordering ) 

Let (S,» be a partially ordered set and M,N E Mult[S}. 
M »~ N iff OptsetCMUN) (M\N) < OptsetCMUN)[N\M) • 

As our example will prove, the General Optimum Ordering differs from the 
original one (see the second comparison). 
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The fundamen ta l  i dea  of the following multiset ordering [see [St862l] is, t ha t  a

multiset M is bigger t han  a multiset N if its biggest element [w.r.t. >] is

"higher" t han  t ha t  of N. There fo re ,  this multiset ordering follows from the idea
given above.

Definition [ Optimum Ordering ]

Let > be  a co-bounded partial ordering on S.

M »o N m Opts[M\N] < Opts[N\M] .

The presented example will illustrate how the Optimum Ordering works.

Example Let S, > and six multisets be as in the example above.

M ”o N since Opt[M\N] = Opt[{a}] = D[a] = 1 and

Opt[N\M] = Opt[{c,e,f,f,f}] = min{2,3,3,3,3} = 2

M' “o N' s ince  Opt[M'\N’] = Opt[{e}] = D[e] = 3 and
Opt[N\M] = Opt[{d}] = D[d] = 2

M” no  N" since Opt[M"\N"] = Opt[{a.c}] = min{1‚2} = 1 and
Opt [N" \M"]  = Opt [ {b ‚e ‚ f } ]  = min{ l , 3 ‚3}  = 1 I

In addition to M and N, M' and N' are now comparable in the desired manner.

In fact, ”0 is stronger than the Standard Multiset Ordering, but M "  and N "  remain
incomparable. Moreover, the Optimum  Ordering demands the ordering on S to be
co-bounded, i.e. the depths of all elements must be finite. To overcome this

restriction, the definition of ”o may be altered in such a way that the depths

of the elements are computed w.r.t. a finite subset of S. For a comparison, this

subset must contain all the elements needed. The first attempt in generalizing

the Optimum Ordering in this manner is based on the following concept [see

[St86]] :  When  comparing two  multisets M and N the required depths are computed

w.r.t. set[ML/N] which denotes the set of elements contained in the union of M

and N.

Definition [ General Optimum Ordering ]

Let [S,>] be a partially ordered set and MN € Mu1t[S].
M »}; N m Optse‘mummw] < Optse‘(MUN)[N\M] .

As our example will prove, the General Optimum Ordering differs from the

original one [see the second comparison].



Example Let S > and six m ultisets be as in the example above. 

»u since OptSetCMUN)(M\N) Opt{a,c,e,f}{ a }) D{a,c,e,f} [a) = 1M N = = 
0 

Optset(MUN)[N\M) Opt{a,c,ej}({ c, e, f, f, f }) min{2,3,3,3,3 }and = = = 2 

»U Optset(M'UN')[M'\N') Opt{h,d,e} [{e }) D{h,d,e}[e)
M' N' since = = = 1 

0 
Optset(M'UN')[N'\M') Opt{h,d,e}[{d} ) [){b,d,e}[d)

and = = = 2 

OptsetCM"UN")[M"\N") = OptS[{a,c}) min{1,2}M" nU
0 

N" since = = 
and Optset(M"UN")[N"\M'~) = OptS[{b.e,f}) = min{1,3,3} = 

• 

Notethat »~ is still stronger than the Standard Multiset Ordering. Moreover, the 

General Optimum Ordering is equivalent to the multiset ordering based on 
disjunctive partitions [»M) of Jouannaud and Lescanne [[JL82J). Thus, the 
definition of »~ gives useful hints for an efficient implementation of the 

Disjunctive Partition Based Ordering, 

A closer look at the definition of »~ shows that. in general. set[MuN) contains 

elements whose depths are never needed in the comparison process. These are 
elements appearing equally in number in both multi sets, Therefore. another 
version of the Optimum Ordering can be constructed. where the depths are 
computed w,r.t. set[M0N} that denotes the set of elements occurring in either M 
or N but not in equal quantities in both multi sets, 

Definition [Basic Optimum Ordering ) 

Let [S.» be a partially ordered set and M,N E Mult[S), 
M »~ N iff Optset(M~N)[M\N) < Optset(M~N)(N\M) • 

It is easy to see that the comparison of the multi sets of our example with the 
Basic Optimum Ordering provides the same results as with the Standard 
Multiset Ordering. Moreover. »~ and» are equivalent, Le. the Basic Optimum 
Ordering is a topographical definition of ». Like »g . the definition of »~ is 
very useful to efficiently implement the well-known Standard Multiset Ordering. 

Now. we will concentrate on the problem that the example still contains two 

incomparable multisets [M" and N"). All Optimum Orderings only use the topmost 

elements to decide which of the two compared multisets is the greater one. If 

the optima are equal. the two multi sets are incomparable. no matter what 
depths the smaller elements possess. The following multi set ordering (CSt86)) 
solves this problem. It compares lexicographically the number of elements on 
each hierarchy level. 
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Example Le t  s ,  > and  s ix  mu l t i s e t s  be  a s  i n  t he  example  above.

M »‘6 N since OptM(MUN)[M\N] = Opt :fi£ : : {a} ]  = t 'efl la]  = 1
and Optm(MUN)[N\M] = Opt "9 [{c,e,i.f.f}] = min{2‚3‚3‚3‚3} = 2

M' »8 N' since Optset(M:UN:)[M'\N'] = OptZd'eZHeH = D:’:’e:[e] = 1
and Optset‘MUN’[N'\M'] = Opt ”[{d}] = D "°[d] = 2

M" 113 N" since OptMM'LUN?[M"\N"] : Opts[{a‚c}] = min{l‚2} : 1
and Opt"am UN)[N”\M’- ' ]  = Opts[{b.e.i}] = min{1 .3 .3}  = 1

Note  that  »3 i s  s t i l l  s t ronge r  t han  the  S t anda rd  Mul t i s e t  Orde r ing .  Moreove r ,  t he

Gene ra l  Op t imum Orde r ing  i s  equ iva l en t  t o  t he  mu l t i s e t  o rde r ing  based  on
disjunctive partitions [»M] of Jouannaud and Lescanne [[JL821]. Thus, the
de f in i t i on  of »ä g ives  u se fu l  h in t s  fo r  an  e f f i c i en t  imp lemen ta t i on  of t he
Di s junc t ive  Pa r t i t i on  Based  Orde r ing .

A c loser  look a t  t he  def in i t ion  of »‘5 shows  that ,  i n  gene ra l ,  set[MUN] con ta ins
e l emen t s  whose  dep ths  a r e  neve r  needed  in  t he  compar i son  p roces s .  These  a r e
e l emen t s  appea r ing  equa l ly  i n  number  i n  bo th  mu l t i s e t s .  The re fo re ,  ano the r
ve r s ion  of t he  Op t imum Orde r ing  can  be  cons t ruc t ed ,  whe re  t he  dep ths  a r e
compu ted  w.r.t. set[M@N] tha t  deno te s  t he  s e t  of e l emen t s  occu r r ing  i n  e i t he r  M
or  N bu t  no t  i n  equa l  quan t i t i e s  i n  bo th  mu l t i s e t s .

Definition [ Bas ic  Op t imum Order ing  ]

Let  [S.>] be  a pa r t i a l l y  o rde red  se t  and  MN 6 Mult[s] .
M »g N m Optset‘MQNkMW] < Optset(M°N)[N\M] .

I t  i s  e a sy  t o  s ee  t ha t  t he  compar i son  of t he  mu l t i s e t s  of ou r  example  w i th  t he
Bas i c  Op t imum Orde r ing  p rov ides  t he  s ame  r e su l t s  a s  w i th  t he  S t anda rd
Mul t i s e t  Orde r ing .  Moreove r ,  »‘3, and  » a re  equ iva l en t ,  i .e.  t he  Bas i c  Op t imum
Orde r ing  i s  a t opograph ica l  de f in i t i on  of » .  L ike  »g , t he  de f in i t i on  of »© i so
ve ry  u se fu l  t o  e f f i c i en t ly  imp lemen t  t he  we l l -known  S tanda rd  Mul t i s e t  Orde r ing .

Now,  we  wi l l  concen t r a t e  on  t he  p rob lem tha t  t he  example  s t i l l  con t a in s  two
i ncomparab le  mul t i se t s  [M"  and  N"]. Al l  Opt imum Orde r ings  on ly  u se  the  t opmos t
e l emen t s  t o  dec ide  wh ich  of t he  two  compared  mu l t i s e t s  i s  t he  g rea t e r  one .  If
t he  op t ima  a r e  equa l .  t he  two  mul t i s e t s  a r e  i ncomparab l e ,  no  ma t t e r  wha t
dep ths  t he  sma l l e r  e l emen t s  pos se s s .  The  fo l l owing  mu l t i s e t  o rde r ing  [ [S t861 ]
so lves  t h i s  p rob l em.  I t  compares  l ex i cog raph ica l l y  t he  number  of e l emen t s  on
each  h i e r a r chy  l eve l .



Definition (Level	 Ordering ] 

Let> be a co-bounded partial ordering on S. 
M »L N iff 3k E IN such that 

i] ILS(M,i]1 = ILS(N,nl Vi < k 

ii] ILS(M,k]1 > ILS[N,k]1 • 

If the topmost elements are of the same depth, they are neglected. The comparison 

process will proceed by recursively comparing the remaining multi sets until a 

decision can be made or the multisets are empty. Thus, we may call »L a "recursive 

version" of »0' From this point of view, it seems natural that the Level Ordering 

is in fact stronger than the Optimum Ordering. To illustra te the definition of »L' 

we again use the example given above. 

Example Let S,	 > and six multisets be as in the example above. 

M »L N since	 IL(M,l ]1 = l{a}1 = 1 > 0 = \cD 1 = IL(N, 1]\ 

M' «L N' since	 IL(M',1 ]1 = l{b}1 = 1 = l{b}1 = IL(N', 1]1 and 

IL[M',2]1 = \cDI = o < 1 = l{d}1 = IL[N',2]1 

M" »L N" since	 IL(M", 1]1 = l{a}1 = 1 = l{b}1 = IL[N", 1]1 and 

IL(M",2]1 = l{c,d}1 = 2 > 1 = l{d}1 = IL(N",2)1 • 

In contrast to all the Optimum Orderings, M" and N" are comparable. Since 

O(a] =O(b] = 1. both elements are removed from the two multisets. M" is at least 

greater than N" since it contains more elements than N" on the second hierarchy 

level. 
v 

We deduce another definition of a multi set ordering straight from the extension 

of the depth function to multi sets (i.e. the depth multi sets). 

Definition (Oepth Ordering ] 

Let> be a co-bounded partial ordering on S.
 
Further. let »< be the Standard Multiset Ordering on Mu1t(IN) that
 

respects the ordering < on IN.
 
M »D N iff OS(M] »< OS[N] •
 

The ordering »< is the multi set extension of the reverse ordering on IN. Le. 
1 > 2 > .... Note that »< differs from «, e.g. {1,3} »< {2} but also {1.3} » {2}. Since the 

natural numbers are totally ordered, a comparison of two multisets with »D can 

be done by sorting the corresponding depth multisets (w.r.t. <) and comparing 
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Definition [ Level Ordering ]

Le t  > be  a co—bounded  pa r t i a l  ordering on  S.
M »L  N i f f  Hk  € [N s u c h  t ha t

i ]  lLS[M,i]I = ILS[N,i]| Vi <k
ii] |LS[M‚k]| > |LS[N‚k]| .

If t he  t opmos t  e l emen t s  a r e  of t he  s ame  dep th ,  t hey  a r e  neg l ec t ed .  The  compar i son
p roces s  w i l l  p roceed  by  r ecu r s ive ly  compar ing  the  r ema in ing  mu l t i s e t s  un t i l  a
dec i s ion  can  be  made  o r  t he  mu l t i s e t s  a r e  empty .  Thus ,  we  may  ca l l  >>L a " r ecu r s ive
version” of ”0 '  F rom th i s  po in t  of View, i t  s eems  na tu ra l  t ha t  t he  Leve l  Order ing
i s  i n  f ac t  s t ronge r  t han  the  Op t imum Orde r ing .  To  i l l u s t r a t e  t he  de f in i t i on  of ”r..-
we aga in  u se  t he  example  g iven  above .

Example Let  S, > and  s ix  mu l t i s e t s  be  a s  i n  t he  example  above .

M »L N since IL[M‚1]| = |{a}l = 1 > 0 = |q = |L[N‚1]|
M' «L N' since |L[M',1]l = |{b}| = 1 = |{b}| = |L[N',1]l and

|L[M'‚2]l = |<I>| = 0 < 1 = |{d}| = |L[N'.2]|
M" »L N" since IL[M“,1]I= |{a}| = 1 = |{b}| = |L[N"‚1]| and

|L[M".2]| = |{c,d}l = 2 > 1 = |{d}| = |L[N".2]| -

In  con t r a s t  t o  a l l  t he  Op t imum Orde r ings ,  M"  and  N"  a r e  comparab l e .  S ince
D[a] = D[b] = 1, bo th  e l emen t s  a r e  r emoved  f rom the  two  mul t i se t s .  M"  i s  a t  l e a s t
grea t e r  t han  N”  s ince  i t  con t a in s  more  e l emen t s  t han  N"  on  the  s econd  h i e r a r chy
leve l .

We  deduce  ano the r  defin i t i on  of a mu l t i s e t  o rde r ing  s t r a igh t  f rom the  ex t ens ion
of t he  dep th  func t ion  t o  mu l t i s e t s  [ i .e .  t he  dep th  mu l t i s e t s ] .

Defini t ion [ Depth  Orde r ing  ]

Le t  > be  a co—bounded  pa r t i a l  o rde r ing  on  S.
Fur the r .  l e t  »< be  t he  S t anda rd  Mul t i s e t  Orde r ing  on  Mul t [ lN]  t ha t

respects the  ordering < on [N.
M »D N m DS[M] »< DS[N] .

The  o rde r ing  »< i s  t he  mu l t i s e t  ex t ens ion  o f  t he  r eve r se  o rde r ing  on  IN. i . e .

1 > 2 > . Note  t ha t  »< di f fers  f rom «, e.g. {1,3} »< {2} bu t  a l so  {1,3} » {2}. Since  t he
na tu ra l  number s  a r e  t o t a l l y  o rde red .  a compar i son  of two  mul t i s e t s  w i th  »D can

be  done  by  so r t i ng  t he  co r r e spond ing  dep th  mu l t i s e t s  [w . r . t .  <] and  compar ing



them lexicographically [w.r.t. <). This process reveals a certain similarity between 
»L and »0' Later on, we will state that they are not only similar but equal. 

The definition of the technical term hierarchy level [resp. depth multiset) 

demands the same restrictions on »L (resp. »0 ) as on »0' But, if we try to 
overcome these restrictions in the same fashion as we did with the Optimum 
Ordering, we lose the transitivity property. Therefore, »~ [resp. »g) would not 
be an ordering at all. This fact is shown by the following example. 

Example Let S = {a,b,c,d} and b > C, d > a. 

Hasse diagram: b d 

c a 

Further, let AB,C E MUlt[S) with A = {a,a,a} , B = {b,b} , C = {c,d}. 
Assume the "General Level Ordering" [»£:) is developed from »L as 

»~ from »0' When computing the depths of the elements W.r.t. 
set(AuB) (resp. set(BuC) and set(AuC)), it is easy to see that 
A »i: B »i: C »i: A. This contradicts transitivity, because A »~ Band 

B »~C must imply A »i: C. • 

2.3 Dynamic:: Depth Ordering 

The loss of transitivity by generalizing the Depth [Level) Ordering is caused 
by the fact that several elements appear on the same level one time and on 
different levels at another time. Each comparison generates its own environment 
of depths. The decision which of two multi sets is the greater one strongly 
depends on this environment. Furthermore, the comparison process of the Depth 
Ordering does not respect any other environment than the current one. A possible 
way out of this awkward situation is given by dynamically generating a 
singleton depth function. It has to be constructed by "freezing" each environment 
once generated. Following this idea we introduce the notion of a Depth Graph. 

It simply relates depths with the elements of an appropriate subset of S. 

Definition (Graph) 

Let > be a partial ordering on S, PeS and D P ~ IN.
 

G := (P,D) is called a graph from S
 
iff VX,y E P: X > Y ~ D(x) < D(y)
 • 
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t hem l ex i cog raph ica l l y  [w . r . t .  < ] .  Th i s  p roces s  r evea l s  a c e r t a in  s imi l a r i t y  be tween

»L and  »D. La t e r  on .  we  wi l l  s t a t e  t ha t  t hey  a r e  no t  on ly  S imi l a r  bu t  equa l .

The  de f in i t i on  of t he  t echn ica l  t e rm  hierarchy l eve l  [ r e sp .  depth mul t i s e t ]

demands  t he  s ame  r e s t r i c t i ons  on  »L [ resp .  »D ] as  on  ”0 '  But .  if we  t ry  t o
ove rcome  these  r e s t r i c t i ons  i n  t he  s ame  f a sh ion  a s  we  d id  w i th  t he  Op t imum

Orde r ing ,  we  lo se  t he  t r ans i t i v i t y  p rope r ty .  The re fo re ,  »: [ r e sp .  »g ]  wou ld  no t

be  an  o rde r ing  a t  a l l .  Th i s  f ac t  i s  shown  by  the  fo l l owing  example .

Example Let  S = {a,b,c,d} and  b > c .  d > a .

Hasse  d i ag ram:  b d

C a

Fur ther ,  l e t  A.B.C e Mult[S] w i th  A = {a,a ,a} , B = {b,b}  , C = {c,d}.
Assume  the  "Gene ra l  Leve l  Orde r ing"  [»5] i s  deve loped  f rom ”r. a s
»}5 f rom ”0 -  When  compu t ing  t he  dep ths  o f  t he  e l emen t s  w.r . t .

set[AUB] [ resp .  set[BUC] and  set[AUC]], i t  i s  e a sy  t o  s ee  t ha t
A ”E B »E C »i’ A. This contradicts transitivity, because A »E B and
B »i’ C must imply A »f C. n

2 .3  Dynamic  Dep th  Orde r ing

The  lo s s  of t r ans i t i v i t y  by  gene ra l i z ing  t he  Dep th  [Leve l ]  Orde r ing  i s  c aused
by  the  fac t  t ha t  s eve ra l  e l emen t s  appea r  on  t he  s ame  l eve l  one  t ime  and  on
d i f f e r en t  l eve l s  a t  ano the r  t ime .  Each  compar i son  gene ra t e s  i t s  own  env i ronmen t

of dep ths .  The  dec i s ion  wh ich  of two  mul t i s e t s  i s  t he  g rea t e r  one  s t rong ly
depends  on  th i s  env i ronmen t .  Fur the rmore .  t he  compar i son  p roces s  of t he  Dep th
Orde r ing  does  no t  r e spec t  any  o the r  env i ronmen t  t han  the  cu r r en t  one .  A poss ib l e
way  ou t  of t h i s  awkward  s i t ua t i on  i s  g iven  by  dynamica l ly  gene ra t i ng  a
s ing l e ton  dep th  funct ion .  It  ha s  t o  be  cons t ruc t ed  by  ”freezing" each  env i ronmen t
once  gene ra t ed .  Fo l lowing  th i s  i dea  we  in t roduce  t he  no t ion  of a Depth Graph.
I t  s imp ly  r e l a t e s  dep ths  w i th  t he  e l emen t s  of an  app rop r i a t e  subse t  of 5 .

Definition [ Graph  ]

Le t  > be  a pa r t i a l  o rde r ing  on  S,  P c S and  D : P r—> [N.
G == [P,D] i s  c a l l ed  a graph from S
iff Vx,y E P: x > y => D[x] < D[y] I
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Later on, we will discuss how to expand a graph dynamically without destroying 

the present depth relations. The notions of hierarchy level and depth multiset 

can easily be adapted to graphs. They are denoted by LO[M,n] [resp. DO[M]] 
wi th the corresponding depth graph G as index. 

Now, we are able to redefine the Depth [Level] Ordering by exchanging the 

originally used depth function with the one given by an underlying depth graph. 

Definition [Dynamic Depth Ordering ] 

Let [S,» be a partially ordered set, G = [P,D) a graph from S,
 

M,N E Mult[P) and »< the Standard Multiset Ordering over IN that
 

respects the ordering < on IN.
 
M »g N iff DO[M) »< DO[N] •
 

Only multisets over P <: S can be compared wi th»g. The definition says nothing 

about the elements of Mult[S), in general. This doesn't satisfy our goal since 

we are not only interested in a multiset ordering on subsets of S but also on the 

whole set S. At this point the dynamic extendability of the depth graph takes 

effect. When comparing two multisets over S W.r.t. an underlying depth graph 

G, the first thing to do is to extend G, such that it contains all the elements 

needed for the comparison. The extension of a depth graph has to be done 

carefully, in order to preserve the [frozen] results of all previous comparisons. 

This can be guaranteed if the extension does not destroy existing hierarchy 
levels. Also, one can show the existence of such an extension independent of 

the actual depth graph and the underlying ordering> on S. Proofs of these two 

statements are included in [Fe88J. 

Example Let S = {a,b,c,d} and b > C, d > a. 

Hasse diagram: b d 

c a 

Further, let AB,e E Mult[S) with A = {a,a,a}, B = {b,b}, e = {c,d}. 

Let G = [{a,b} ,D] with D[a) = D[b) = 1. G is a depth graph from S.
 
A »g B since DO(A] = {t,t,l} »< {t,t} = DO[B]
 

Let G' = [{a,b,c,d},D'] with D'[a] = D'[b] = 2, D'[c] = 3 and D'[d] = 1.
 

G' is an extension of G that preserves A »g B.
 
e »g' A since DO'[e] = {1,3} »< {2,2,2} = DO'[A]
 

e »g' B since DO'[e) = {1,3} »< {2,2} = DO'(B) •
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La te r  on, w e  will discuss how to expand  a graph dynamica l ly  w i thou t  destroying

the present depth relations. The notions of hierarchy level and depth multiset

can eas i l y  be adap ted  t o  graphs. They are denoted by LG[M‚n] [ resp .  DG[M]]
with the co r r e spond ing  depth graph G as i ndex .

Now, we are ab le  t o  redefine the Depth [Level] Ordering by exchanging the
originally used depth function with the one  given b y  a n  underlying depth graph.

Definition [ Dynamic Depth Ordering ]

Let [S,>] be a partially ordered set, G = [P,D] a graph from S,
MN 6 Mult[P] a n d  »< the Standa rd  Mul t i s e t  Ordering over \N t ha t

r e spec t s  the orde r ing  < on N.
M »g N iff DG[M] »< DG[N] .

Only multisets over P C S can be compared with -»S. The defin i t i on  says no th ing
abou t  the elements of Mult[S], in general. This doesn't satisfy our goal since
we are not only interested in a multiset ordering on subsets of S bu t  also on the
whole set S. At this point the dynamic extendability of the depth graph takes

effect. When comparing two multisets over S w.r.t. an underlying depth graph
G, the first thing to do is to extend G, such  tha t  i t  contains all the elements
needed for the comparison. The extension of a depth graph has to be done

carefully. in order to preserve the [frozen] results of all previous comparisons.

This c a n  b e  guaranteed if the extension does not destroy existing hierarchy

levels. Also. one can show the existence of such an extension independent of

the actual depth graph and the underlying ordering > on S. Proofs of these two
statements are included in [Fe88].

Example Let S = {a.b,c.d} and b > c, d > a.

Hasse diagram: b d

C a

Fur ther ,  let A‚B,C 6 Mult[S] With A = {a,a,a}. B = {b.b}, C = {c.d}.

Let G = [{a,b},D] with D[a] = D[b] = 1. G is a depth graph from S.
A „g B since DG[A] = {1.1.1} »< {1,1} = DG[B]
Let G' = [{a‚b‚c‚d}‚D'] w i th  D'[a] = D'[b] = 2. D'[c] = 3 and D'[d] = l.
G' is an extension of G that preserves A »g B.
c A since DG'[c] = {1,3} »< {2,2,2}
C B since DGTC] {1.3} >>< {2,2}

$

”
9
.
0
0
.

DGTA]

D G T B ]  I8 II

I
I
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2.4 Co:rn.parin.g the in.troduced orderings 

In this section we summarize the comparisons between the presented orderings. 

There are three possible relations: Two orderings can be equivalent [» = ») , one 

ordering can be properly included in the other [» c ») or they overlap each 

other [» !:t »]. Two orderings overlap each other if there exist multi sets M, N, 

M', N' such tha t M » N A M ~ N and M' » N' A M' ~ N'. 

The proofs of the	 following lemmata can be found in [Fe88J. 

Lemma	 Let> be a partial ordering on S. Then the following holds: 
»6» = o 

» C »u	 = o 
» C »0 C »L = »0 ' if > is co-bounded 

»u !:t »L0 
»0 !:t »u , restricted to P0 0
 
»0 !:t
 »L0 

Graphical representation: 

GJ [;] 
I

»L 
I »gI 

11 »0 11 I I 

,,====:;;;11=»=»~==:dil 
• 

Lemma	 Let > be a total ordering on S. 

Then, all the orderings presented are equivalent: 
» = »6	 = =»u = o »M 0 

=	 = [ if > is co-bounded) 

[ r~stricted to P ) • 

2.0 Properties of the introduced orderings 

All the presented orderings are really partial orderings [irreflexive and 

transitive relations) on Mult[S), of course. We want to point out a few other 

characteristics of the topographical multiset orderings. The proofs of all 
statements are included in [Fe88J. 
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2.4-  Compar ing  the  i n t roduced  o r d e r i n g s

In  t h i s  s ec t i on  we  summar i ze  t he  compar i sons  be tween  the  p re sen t ed  o rde r ings .

There  a r e  t h r ee  poss ib le  re la t ions :  Two o rde r ings  can  be  equiva lent  [» = >>] , one

orde r ing  can  be  proper ly  included in  t he  o the r  [» C >>] or t hey  over lap  each

o the r  [» n >>]. Two o rde r ings  ove r l ap  each o the r  if t he re  ex i s t  mu l t i s e t s  M, N,

M' ,  N '  such  tha t  M » N A M >l>N and  M '  >> N '  A M'  +N' .

The  p roo f s  of t he  fo l l owing  l emmata  can  be  found  in  [Fe88] .

Lemma Le t  > be  a pa r t i a l  o rde r ing  on  S.  Then  the  fo l l owing  ho lds :
» = „g

» C »3 = »M

» c ”o c »L = »D , if > i s  co -bounded

»o „ »:s == »L
» c »g n „(UB , r e s t r i c t ed  t o  P
»o 11 »g H „I..

Graph ica l  r ep re sen t a t i on :

»D

>>M »L »G

»U Do
”o

» »©0

I

Lemma Le t  > be  a t o t a l  o rde r ing  on  S.
Then ,  a l l  t he  o rde r ings  p re sen t ed  a r e  equ iva l en t :

» = »g = »M = »ä :

”o = „L = »D = [ i f  > i s  co -bounded]
»g' [ r e s t r i c t ed  t o  P ] u

2 .5  P rope r t i e s  o f  t he  i n t roduced  o rde r ings

Al l  t he  p re sen t ed  o rde r ings  a r e  r ea l l y  pa r t i a l  o rde r ings  [ i r r e f l ex ive  and
transitive relations] on Mult[S], of course. We  wan t  to point out  a few other
cha rac t e r i s t i c s  of t he  t opograph ica l  mu l t i s e t  o rde r ings . The  p roo f s  of a l l
s t a t emen t s  a r e  i nc luded  in  [Fe88] .
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It is very useful for implementation purposes to have multiset orderings which 

are additive (EMaS9J) and closed under difference (EStS6J). If a comparison result 

never changes by adding [deleting) equal elements to (from) both multi sets. the 
used ordering is called additive (closed under difference). Only the General 

Optimum Ordering (»~) is neither additive nor closed under difference. All of 

the other orderings possess both properties. 

For termination proofs. it is important to know under which conditions a 

multiset ordering is well-founded. The Basic [»~) and General (»g) Optimum 

Ordering (just like the Standard Multiset Ordering) are well-founded if and only 

if the ordering > on S is well-founded. The Optimum Ordering (»0) itself as 
well as the Depth (Level) Ordering (»D = »L) and its dynamic version (»g) are 

well-founded if and only if the val ues of the corresponding depth functions 

have an upper bound. 

The Standard Multiset Ordering (») is a monotonous extension of > on S to 
multisets. i.e. a stronger ordering on S implies a stronger multi set ordering. As 
Jouannaud and Lescanne (EJL82J) have shown. » is the maximal multiset ordering 

possessing this property (called incrementality). Therefore. none of the presented 

topographical multiset orderings has this property [except the Basic Optimum 

Ordering since it is equivalent to »). 

The Dynamic Depth Ordering (»g) features monotony W.r.t. depth graphs which 

is similar to the monotony of the Standard Multiset Ordering. This property 

leads to the concept of dynamical extensions of »g stated above. It also reveals 

the great difference to all other topographical multiset orderings. A comparison 

result not only reflects a fixed relation. The relation itself is constructed during 

the comparison process. Therefore. it is possible to specify desirable results in 

order to dynamically adapt »g to the multisets to be compared. 

It seems possible to simulate the adaptation process of the Dynamic Depth 

Ordering (»g) with the Standard Multiset Ordering using appropriate extensions 

of > on S. The simulation requires that> can be extended in any desired 
direction. but this does not hold for each partially ordered set (see the second 
part of this paper). 

We now present an application of the Dynamic Depth Ordering. 
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I t  i s  ve ry  use fu l  fo r  imp lemen ta t i on  pu rposes  t o  have  mu l t i s e t  o rde r ings  wh ich
a re  add i t ive  [[MaSQJ] and  closed under  difference [[St861]. If a compar i son  r e su l t
neve r  changes  by  add ing  [de le t ing ]  equa l  e l emen t s  t o  [from] bo th  mul t i se t s ,  t he
used  o rde r ing  i s  c a l l ed  add i t i ve  [ c lo sed  unde r  d i f f e r ence ] .  On ly  t he  Gene ra l

Opt imum Orde r ing  [»ä]  i s  ne i t he r  add i t i ve  nor c lo sed  unde r  difference.  All  of
t he  o the r  o rde r ings  pos se s s  bo th  p rope r t i e s .

Fo r  t e rmina t ion  p roo f s ,  i t  i s  impor t an t  t o  know unde r  wh ich  cond i t i ons  a
mul t i s e t  o rde r ing  i s  we l l - founded .  The  Bas ic  [»g] and  Gene ra l  [»ä] Opt imum
Orde r ing  [ jus t  l i ke  t he  S t anda rd  Mul t i se t  Order ing]  a r e  well—founded if and  on ly
if  t he  o rde r ing  > on  S i s  we l l—founded .  The  Op t imum Orde r ing  [»O]  i t s e l f  a s

wel l  a s  t he  Dep th  [Level]  Orde r ing  [»D = L]  and  i t s  dynamic  ve rs ion  [»S’] a re
wel l - founded  if and  on ly  if t he  va lues  of t he  co r r e spond ing  dep th  func t ions
have  an  uppe r  bound .

The  S t anda rd  Mul t i s e t  Orde r ing  [» ]  i s  a mono tonous  ex t ens ion  of > on  S t o
mul t i s e t s ,  Le. a s t ronge r  o rde r ing  on  S imp l i e s  a s t ronge r  mu l t i s e t  o rde r ing .  As
Jouannaud  and  Lescanne  [[JL82]] have  shown ,  » i s  t he  max ima l  mu l t i s e t  o rder ing
possessing! this  property [called incrementality]. Therefore. none of the  presented
t opograph ica l  mu l t i s e t  o rde r ings  has  t h i s  p rope r ty  [ excep t  t he  Bas i c  Op t imum
Order ing  s ince  i t  i s  equ iva l en t  t o  »].

The  Dynamic  Dep th  Orde r ing  [ »g ]  f ea tu re s  mono tony  w.r . t .  dep th  g raphs  wh ich
i s  s imi l a r  t o  t he  mono tony  of t he  S t anda rd  Mul t i s e t  Orde r ing .  Th i s  p rope r ty
l e ads  t o  t he  concep t  of dynamica l  ex t ens ions  of »g' s t a t ed  above .  I t  a l so  r evea l s
t he  g rea t  d i f f e r ence  t o  a l l  o the r  t opograph ica l  mu l t i s e t  o rde r ings .  A compar i son
re su l t  no t  on ly  r e f l ec t s  a f i xed  r e l a t i on .  The  r e l a t i on  i t s e l f  i s  cons t ruc t ed  du r ing
the  compar i son  p roces s .  The re fo re ,  i t  i s  pos s ib l e  t o  spec i fy  des i r ab l e  r e su l t s  i n
o rde r  t o  dynamica l ly  adap t  »8 t o  t he  mu l t i s e t s  t o  be  compared .

I t  s eems  poss ib l e  t o  s imu la t e  t he  adap ta t i on  p roces s  of t he  Dynamic  Dep th
Orde r ing  [»g ' ]  w i th  t he  S t anda rd  Mul t i s e t  Orde r ing  u s ing  app rop r i a t e  ex t ens ions
of > on  S.  The  s imu la t i on  r equ i r e s  t ha t  > can  be  ex t ended  in  any  des i r ed
d i r ec t i on ,  bu t  t h i s  does  no t  ho ld  fo r  each  pa r t i a l l y  o rde red  s e t  [ s ee  t he  s econd
part of this paper].

We now p re sen t  an  app l i ca t i on  of t he  Dynamic  Dep th  Orde r ing .
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3 Term. Orderin.gs 

Term rewriting provides a simple mechanism that can be applied to reasoning in 

structures defined by equations. The effective calculation using term rewriting 

systems presumes termination. Orderings on terms are able to guarantee this 

property. Most of the published term orderings are recursively constructed 

by applying the definition to the multisets of the subterms. The multiset ordering 
needed is the standard one. This chapter deals with the substitution of this 

weaker multi set ordering by the Dynamic Depth Ordering. 

First of all, we briefly recapitulate the most important notions concerning term 

rewriting systems and their termination. A detailed description is presented 

in [HOBO] and [AMB91 

A term rewriting system [TRS] is a set of rules lR, each of the form I -'? r. 

I and r are terms built from a set of function symbols l5 and a set of variables 

~. A TRS lR defines a binary relation ~~ on the set of terms which is called 

reduction relation. A term 5 can be reduced to another term t under the TRS 

lR [s ~~ t] if and only if there exists a rule 1 -'? r E lR and a match from 1 

into 5. By replacing the matched subterm of s with an instance of r, t is 

derived from s. A more formal introduction to TRS theory is contained in 

[HOBO] or [AMB9], for example. 

A TRS terminates if and only if each reduction sequence starting with any term 
ends after a finite number of steps in an irreducible term. Proving the 

termination of an arbitrary TRS lR is an important but generally undecidable 

problem. Nevertheless, some methods have been developed that can prove the 

termination of a large number of TRSs. A very successful method is to search 

for a well-founded ordering on terms which includes the reduction relation. If 

such a reduction ordering exists, the TRS must terminate. Moreover, the 

existence of a simplification ordering (a special kind of reduction ordering] is 

sufficient to guarantee the termination of a TRS [[DeB7]]. An ordering on terms 

is a simplification ordering if and only if it possesses the subterm and the 

replacement property. The subterm property guarantees that a term is bigger 

than any of its proper subterms. The replacement property ensures that the 

val ue of a term will be decreased if anyone of its subterms is decreased. 

To prove the inclusion of a given reduction relation in a simplification ordering >, 

it is sufficient to show that 0[1] > o(r] for all ground substitutions 0 of each 

rule 1 -'? r E lR. To obtain a finite termination proof [of a finite TRS] the chosen 

simplification ordering is required to be stable w.r.t. substitutions [i.e. 
s > t ~ o[s] > o[t], for all 0]. 
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3 Term Orde r ings

Term r ewr i t i ng  p rov ides  a s imp le  mechan i sm tha t  can  be  app l i ed  t o  r ea son ing  in

s t ruc tu re s  de f ined  by  equa t ions .  The  e f f ec t i ve  ca l cu l a t i on  u s ing  t e rm r ewr i t i ng

sys t ems  p re sumes  t e rmina t ion .  Orde r ings  on  t e rms  a r e  ab l e  t o  gua ran t ee  t h i s

proper ty .  Mos t  of t he  pub l i shed  t e rm o rde r ings  a r e  r ecu r s ive ly  cons t ruc t ed
by  app ly ing  the  de f in i t i on  t o  t he  mu l t i s e t s  of t he  sub t e rms .  The  mu l t i s e t  o rde r ing
needed  i s  t he  s t anda rd  one .  Th i s  chap te r  dea l s  w i th  t he  subs t i t u t i on  of t h i s

weake r  mu l t i s e t  o rde r ing  by  the  Dynamic  Dep th  Orde r ing .

F i r s t  of a l l ,  we  b r i e f ly  r ecap i tu l a t e  t he  mos t  impor t an t  no t ions  conce rn ing  t e rm

r ewr i t i ng  sys t ems  and  the i r  t e rmina t ion .  A de ta i l ed  desc r ip t i on  i s  p r e sen t ed
in  [H080] and  EAM891

A t e rm  r ewr i t i ng  sys t em [TRS]  i s  a s e t  o f  ru l e s  %.  each of  t he  fo rm l -> r .

l and  r a r e  t e rms  bu i l t  f rom a s e t  of func t ion  symbo l s  % and  a se t  of va r i ab l e s

QB. A TRS 9% de f ines  a b ina ry  r e l a t i on  =?“ on  t he  s e t  of t e rms  wh ich  i s  ca l l ed
reduc t ion  r e l a t i on .  A t e rm  5 can  be  r educed  to  ano the r  t e rm  t unde r  t he  TRS
3% [s =>“ t] if and  only if there exists a rule 1 -> r e St and  a match from 1
i n to  5. By  r ep l ac ing  the  ma tched  sub te rm of s wi th  an  i n s t ance  of r, t i s

de r ived  f rom s .  A more  fo rma l  i n t roduc t ion  t o  TRS theo ry  i s  con ta ined  in
[H080] or  [AM89] ,  fo r  example .

A TRS t e rmina t e s  if and  on ly  if e ach  r educ t ion  s equence  s t a r t i ng  w i th  any  t e rm
ends  a f t e r  a f i n i t e  number  of s t eps  i n  an  i r r educ ib l e  t e rm .  P rov ing  the
t e rmina t ion  of an  a rb i t r a ry  TRS 9‘ i s  an  impor t an t  bu t  gene ra l l y  undec idab le
problem.  Never the less ,  some  me thods  have  been  deve loped  tha t  can  p rove  t he
t e rmina t ion  of a l a rge  number  of TRSs .  A ve ry  succes s fu l  me thod  i s  t o  s ea rch
fo r  a we l l - founded  o rde r ing  on  t e rms  wh ich  inc ludes  t he  r educ t ion  r e l a t i on .  If

such  a r educ t ion  o rde r ing  ex i s t s ,  t he  TRS  mus t  t e rmina t e .  Moreove r .  t he

existence of a simplification ordering [a special kind of reduction ordering] is
su f f i c i en t  t o  gua ran t ee  t he  t e rmina t ion  of  a TRS  [ [De87 l ] .  An  o rde r ing  on  t e rms

i s  a simplification ordering if and  on ly  if i t  pos se s se s  t he  sub t e rm and  the
rep l acemen t  p rope r ty .  The  sub te rm property gua ran t ee s  t ha t  a t e rm  i s  b igge r
than  any  of i t s  p rope r  sub t e rms .  The  r ep l acemen t  p rope r ty  ensu re s  t ha t  t he
va lue  of a t e rm  wi l l  be  dec reased  if any  one  of i t s  sub t e rms  i s  dec reased .

To  p rove  t he  i nc lu s ion  of a g iven  r educ t ion  r e l a t i on  i n  a s imp l i f i ca t i on  o rde r ing  >,
i t  i s  suf f ic ient  t o  show tha t  o[l] > o[r] for a l l  g round  subs t i t u t i ons  o of each
ru l e  I -> r 6 9%. To ob ta in  a f in i t e  t e rmina t ion  proof [of a f in i t e  TRS] t he  chosen
s imp l i f i ca t i on  o rde r ing  i s  r equ i r ed  t o  be  s t ab l e  w . r . t .  subs t i t u t i ons  [ i . e .
s > t :> o[s] > o[t]‚ for a l l  o].
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A large class of simplification orderings is known as path orderings (cDe87], 

[St89)). Each definition of a path ordering contains recursive calls to a multiset 

ordering. Traditionally, the Standard Multiset Ordering is used in these 
definitions. We will demonstrate the possible usage of the Dynamic Depth 

Ordering in the definition of the Improved Recursive Decomposition Ordering 

IRD [CRu87J, [St89]). During the first attempt we restrict the definition to ground 

terms. But first of all, we need some notation. 

The leading function symbol of a term t is referred to by top[ t). Terms are 

labelled with sequences of natural numbers to identify the positions of their 

subterms. The set of all labels of a term t is called set of all occurrences of 

t, O[ t). Ot[ t) denotes the set of all terminal occurrences of the term t, Le. the 

labels of its leaves. A specific subterm of a term t is determined by t I u with 
u E O[t). 

Definition [Occurrences and Subterm ] 

O(f[t
1

•...,tn )] = {e} u {iu I u E o[td, 1 ,;: i ,;: n} 

Ot[t) = {u E O[t] I \/v :F E \/w E O[t): w :F uv} 

tiE = t f[t1,·· .• t )liu = tilun • 

We now introduce the notion of the decomposition of a term which is used to 

define the IRD. Our notation is influenced by [StSg] but it is not exactly the 

same. This notation (hopefUlly] provides a somewhat easier definition of the IRD. 

. 
Definition [Decomposition) 

decE(t) = <D deciu [f[t1,.... t ]] = {t) u dec)t i]n
 
dec[t) = {dec)t) I u E Ot( t) }
 • 

The decomposition of a term t is a multiset consisting of multisets of elementary 

decompositions. In our notation, an elementary decomposition looks like a 

[proper] subterm of t. Note that additional information is needed for an exact 

characterization of an elementary decomposition, Le. an elementary decomposition 
is closely related to its multi set. A term s is greater that a term t (w.r.t. the 

IRDl if the decomposition of s is greater than the decomposition of t. The 

ordering on these multisets [» ») is an extension of the basic ordering on terms 

[» to multisets of multisets. 
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A l a rge  c l a s s  o f  s imp l i f i ca t i on  o rde r ings  i s  known  a s  pa th  o rde r ings  [ [De87] ,

[S t891 ] .  Each  de f in i t i on  o f  a pa th  o rde r ing  con ta in s  r ecu r s ive  ca l l s  t o  a mu l t i s e t

o rde r ing .  T rad i t i ona l ly ,  t he  S t anda rd  Mul t i s e t  Orde r ing  i s  u sed  i n  t he se

de f in i t i ons .  We  wi l l  demons t r a t e  t he  pos s ib l e  u sage  of t he  Dynamic  Dep th
Orde r ing  i n  t he  de f in i t i on  of t he  Improved  Recu r s ive  Decompos i t i on  Orde r ing
IRD [[Ru87]. [St89]]. Dur ing  the  fi r s t  a t t emp t  we  r e s t r i c t  t he  def in i t ion  t o  g round
t e rms .  Bu t  f i r s t  o f  a l l ,  we  need  some  no ta t i on .

The leading function symbol of a term t is referred t o  by top[t]. Terms are
l abe l l ed  w i th  s equences  of na tu ra l  number s  t o  i den t i fy  t he  pos i t i ons  of t he i r
sub t e rms .  The  s e t  of a l l  l abe l s  of a t e rm  t i s  c a l l ed  s e t  of a l l  occu r r ences  of
t,  O[t]. Ot[t]  deno te s  t he  s e t  of a l l  t e rmina l  occu r r ences  of t he  t e rm  t, i.e. t he
l abe l s  of i t s  l e aves .  A spec i f i c  sub t e rm of a t e rm  t i s  de t e rmined  by  t l  u wi th
u E O[t].

Def in i t i on  [ Occur rences  and  Sub te r rn  ]

o[f[t„.„‚tn]] = {s} u {iu I u 6 out], 1 s i s n}
Ot[t]  = {u  e O[t] l Vv $ a VW E O[t]: w # uv}
tls = t f[t1,...,tn]liu = tilu .

We now in t roduce  t he  no t ion  of t he  decompos i t i on  of a t e rm  wh ich  i s  u sed  t o
de f ine  t he  IRD.  Our  no t a t i on  i s  i n f luenced  by  [S t89 ]  bu t  i t  i s  no t  exac t ly  t he
same .  Th i s  no t a t i on  [hope fu l ly ]  p rov ides  a somewha t  ea s i e r  de f in i t i on  of t he  IRD.

Defini t ion [ Decompos i t i on ]

dec£[t]
dec[ t ]

@ deciu[f[t1‚...‚tn]] : {ti} U decu[ t i ]
{decu[ t ]  I u e Ot[t] } .

The decompos i t i on  of a t e rm  t i s  a mu l t i s e t  cons i s t i ng  of mu l t i s e t s  of e l emen ta ry
decompos i t ions .  In  ou r  no ta t ion .  an  e l emen ta ry  decompos i t ion  looks  l ike  a
[p rope r ]  sub t e rm of t .  No te  t ha t  add i t i ona l  i n fo rma t ion  i s  needed  fo r  an  exac t
cha rac t e r i za t i on  of an  e l emen ta ry  decompos i t i on .  i .e. an  e l emen ta ry  decompos i t i on
i s  c lo se ly  r e l a t ed  t o  i t s  mu l t i s e t .  A t e rm  s i s  g r ea t e r  t ha t  a t e rm  t [w. r . t .  t he
IRD] if t he  decompos i t i on  of s i s  g r ea t e r  t han  t he  decompos i t i on  of t .  The
o rde r ing  on  the se  mu l t i s e t s  [» »] i s  an  ex t ens ion  of t he  bas i c  o rde r ing  on  t e rms
[>] t o  mu l t i s e t s  of mu l t i s e t s .
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Definition [Improved Recursive Decomposition Ordering, CRu87] ) 

Let ~ be a partial ordering on the set of function symbols and I an additional 

unary function symbol. 

iff dec[1 [s)) »» dec[1 [t)) 

sip = s' > l' ~ tlq E decqy[t) 

iff 
top[s') ~ top[1') 

dec)s') » decy[t') 
dec[s') »» dec[t') • 

The evaluation of the conditions is marked by hyphens: s > t iff - s >1 t, - s >2 t 

stands for s > t iff S >1 t or [s =1 t A S >2 t). Here, the equality sign =1 is the 

congruence relation induced by the quasi-ordering 21. Two terms are equivalent 

under =IRD if they are the same up to eqUivalent function symbols and 

permutations of subterms. 

Before modifying the !RD we explain its definition with a simple example. 

Example Let ~ = {a,f,g} and f ~ g. 

. f[a) >IRD g[a) since dec[ I [f[ a))) = {{ f[a),a H, 

dec[1 [g[a))) = {{g[a),aH 

and dec11 [I [f[a))) f[a) > g[a) E decll [f [g[a))) 

. f[g[a)) >IRD g[f[a)) since dec[f [f[g[a)))) = {{ f[g[a)),g[a),a H, 
dec[1 [g'[f[a)))) = {{g[f[a)).f[a),aH 

and dec [I [f[g[a)))) f[g[a)) > f[a) E decll1 [I [g[f[a)))),m 
decm [I [f[g[a)))) f[g[a)) > g[f[a)) E decm [I [g[f[a)))) 

• 

Further, we are going to improve this decomposition ordering by using the 

Dynamic Depth Ordering instead of the Standard Mul tiset Ordering, Le. the 

precedence of the !RD will be replaced by the more flexible structure of a depth 
graph. We change the definition of the IRD at the "inner" one of its two 

multiset comparisons. In the dynamic version the !RD will compare multisets 
of elementary decompositions with the Dynamic Depth Ordering [»gJ instead 
of the Standard Multiset Ordering. Therefore, we need a depth graph consisting 

of elementary decompositions. The depth graph has to respect an ordering on 
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Def in i t ion  [ Improved  Recurs ive  Decompos i t i on  Order ing .  [Ru87]  ]

Let  [> be  a part ia l  order ing  on  the  s e t  of func t ion  symbol s  and  ! an  add i t iona l

unary  func t ion  symbol .

5 >IRD t iff dec [ f [ s ] ]  » >> dec [ f [ t ] ]

decpu[s]  s lp  : s '  > t' F t e decqv[t ]
i f f

— top[s ' ]  [> top[ t ' ]
- decu[s']  » decv[t ' ]
- dec[s’] » » dec[ t ' ]  .

The  eva lua t ion  of the  cond i t ions  i s  marked  by  hyphens :  s > t iff — s >1 t, — s >2 t

stands for s > t iff 5 >1 t or [5 =1 t A 5 >2 t]. Here, the equality sign =1 is the
congruence  re la t ion  induced  by  the  quas i -order ing  21 .  Two terms  are  equ iva len t

under  :mD if they  are  the  same  up  to  equ iva len t  func t ion  symbol s  and

permutat ions  of subterms .

Before  modi fy ing  the  IRD we  exp la in  i t s  de f in i t i on  wi th  a s imple  example .

Example Let g = {a,f,g} and f»  g.

- {[a] >IRD g[a] since dec[f[f[a]]] {{ f [ a ] . a } } ‚

dec[f [g[a]]] { {g [a ] .a } }

and dec„[![i[a]]] f [ a ]>  g[a] € deC„[ f [g [a ] ] ]

' f[g[a]] flap  glflall since deC[ f [ f [g [a ] ] ] ]  { { f [g [a ] ] . g [a ] .a } } .

dec{ f [g ' [ f [a ] ] ] ]  {{g[f[a]].f[a].a}}
and decm[f [ f [g [a ] ] ] ]  f[g[a]] > f[a] e decm[f[g[f[a]]]],

decm[ f [ f [g [a ] ] ] ]  f [g [a ] ]  > g[f[a]] e decml f  [g[f[a]]]]

Fur the r ,  we are  going to  improve  th i s  decompos i t i on  order ing  by  us ing  the
Dynamic  Depth  Order ing  ins tead  of the  S tandard  Mul t i s e t  Order ing ,  i.e. the
precedence  of the  IRD wi l l  be  replaced by  the  more f lexible  structure of a depth
graph. We  change  the  definition of the  IRD a t  the  "inner" one  of i t s  two
mult i s e t  compar i sons .  In  the  dynamic  vers ion  the  IRD wi l l  compare  mul t i s e t s
of e l ementary  decompos i t i ons  w i th  the  Dynamic  Depth  Order ing  [»g ]  ins t ead
of the  S tandard  Mul t i s e t  Order ing .  Therefore ,  we  need  a depth  graph  cons i s t ing
of e l ementary  decompos i t i ons .  The  depth  graph  has  to  re spec t  an  order ing  on
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its elements. We choose a modified version of > on elementary decompositions 

to construct our depth graph. The modification is the same as with the IRO: 

multisets of elementary decompositions are compared with »;5'. 

Definition (Dynamic IRO ] 

Let l> be a partial ordering on the set of function symbols, I an additional 
unary function symbol and G a depth graph containing all elementary 
decompositions appearing in dec(1 (s)) U dec(l [t)). 

S >DIRD t iff dec[1 [s)) »»;5' dec(l [t)) 

with 

decp)s] :3 sip 
iff 

= S' >DEL t' = tlq E decqy(t] 

top[s'] l> top[ f) 
dec)s'] »;5' decy[t'] 
dec[s'] »»;5' dec( f] • 

It is easy to see that two elementary decompositions sand t can only be 
compared with DEL if the corresponding depth graph contains all elementary 
decompositions occurring in dec(s] U dec(t]. This reveals the indirect recursion of 

DIRO: before inserting a term into a depth graph, all of its arguments have to be 

inserted recursively. In contrast to the originals, DEL and OIRO themselves are 
not recursive. We decided on using the [strongest] decomposition ordering since 
the needed partition into subterms represents a simple and efficient method for 

determining the order in which the terms are integrated in the depth graph. 

Example Let ~ = {a,f,g}. 

Let G = [(a,f[a],g[a]},O] with O(a] = 3, O[f(a)) = 2 and O[g[a)) = 

g(a] >DIRD f[a] since OG[decll [f [g(a]])] = {1,3}, 

OG[dec
ll 

[f [t(a)))) = {2,3} 

and {1, 3} »< { 2, 3 } 
Let 0' = [{a,f[a],g(a].f[g[a]],g[f[a]]},O'] with 

O'[a] = 5, O'[f[a)) = 4, O'[g(a)) = 3, O'(g(f[a]]] = 2 and O'(f(g(a))) = 1. 

G' is an extension of G which respects g(a) >DIRD f[a]. 
f(g(a)) >DIRD g(f(a)) since OG[dec111 [I (f[g(a))))) = {1,3,5}, 

OG[dec111 [f (g(f(a))]]] = {2,4,5} 
and {1,3,5} »< {2,4,5} • 
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i t s  e l emen t s .  We  choose  a modif ied  ve rs ion  of > on  e l emen ta ry  decompos i t ions
t o  cons t ruc t  ou r  dep th  graph. The  mod i f i ca t i on  i s  t he  s ame  a s  w i th  t he  IRD:

mul t i s e t s  of e l emen ta ry  decompos i t i ons  a r e  compared  wi th  »8.

Definit ion [ Dynamic  IRD ]

Le t  D be  a pa r t i a l  o rde r ing  on  the  s e t  of func t ion  symbo l s ,  f an  add i t i ona l
una ry  func t ion  symbo l  and  G a dep th  g raph  con ta in ing  a l l  e l emen ta ry
decompos i t i ons  appea r ing  i n  dec [ f  [S]] U dec [ f  [i]].

s >DIRD t iii dec[i[s]]  >> »§ deCUl t I ]

wi th

i i i
- top[s ' ]  [> top[ t ' ]
- decu[s'] »g decv[t']
- dec [ s ' ]  »»g  dec [ t ' ]  .

I t  i s  e a sy  t o  s ee  t ha t  two  e l emen ta ry  decompos i t i ons  s and  t c an  on ly  be
compared  wi th  DEL if t he  co r r e spond ing  dep th  g raph  con ta in s  a l l  e l emen ta ry
decompos i t i ons  occu r r ing  i n  dec[s ]  U dec[t] .  This  r evea l s  t he  i nd i r ec t  recurs ion  of
DIRD: be fo re  i n se r t i ng  a t e rm  in to  a dep th  g raph ,  a l l  of i t s  a rgumen t s  have  t o  be
in se r t ed  r ecu r s ive ly .  I n  con t r a s t  t o  t he  o r ig ina l s ,  DEL and  DIRD t hemse lves  a r e
no t  r ecu r s ive .  We  dec ided  on  us ing  the  [ s t ronges t ]  decompos i t i on  o rde r ing  s ince
the  needed  pa r t i t i on  i n to  sub t e rms  r ep re sen t s  a s imp le  and  e f f i c i en t  me thod  for
de t e rmin ing  the  o rde r  i n  wh ich  t he  t e rms  a r e  i n t eg ra t ed  i n  t he  dep th  g raph .

Example Let 8 = {a‚f‚g}.

Let  G = [{a,i[a],g[a]},D] w i th  D[a] = 3. D[f[a]] = 2 and  D[g[a]] = 1

g[a] am i ta l  since DGIdecu i i i g i a l l l l  = {1,3}.
Dc ' ldecn l f l f l am]  = {2,3}

and  {1,3} »< {2.3}
Let G'  = [{a.f[a].g[a].f[g[a]].g[f[a]]}‚D'] with
D'[a ]  = 5 .  D'[ f [a ] ]  = 4 .  D'[g[a]] = 3 .  D ' [g [ f [ a ] ] ]  = 2 and D' [ f [g [a ] ] ]  = 1-

G’  i s  an  ex t ens ion  of G wh ich  r e spec t s  g[a]  >DIRD f[a].
f[g[a]] bran  g[flall since D°[decm[ ! [ f [g [a ] ] ] ] ]  = {1,3,5},

DGldec lgHIaJHH = {2,4,5}
and  {1,3,5} »< {24 .5}  '
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Note tha t this result cannot be obtained with the original IRD, irrespecti ve of the 

chosen precedence: g(a) >IRD f(a) requires g I> f. but f[g[a)) >IRD g[f[a)) requires 

f I> g which contradicts the former choice of 1>. 

The IRD is monotonous W.r.t. the precedence which permits an incremental 

generation of the precedence. This property demands the multiset ordering to 

be a monotonous extension function. Therefore. we cannot hope to transfer the 

precedence monotony to the DIRD. But we have replaced it by a similar 

property. Owing to the characteristics of »g. the Dynamic IRD is monotonous 

W.r.t. the depth graph. As you can see in the example above, this concept 

allows a very flexible adaptation of the DIRD to the set of terms to compare. It 

is more flexible than adynamic generation of the precedence. 

To be usable as a tool for proving the termination of a TRS, the DIRD has to 

possess certain characteristics. Of course. it has to be a partial ordering. 

Furthermore, the condition of being a simplification ordering [subterm and 

replacement property) has to be fulfilled. In addition, the Dynamic IRD should 

be an extension of the original one in order to justify its definition. 

We formulate lemmata about the characteristics of DIRD and will prove them. 

Lemma	 DIRD is a simplification ordering. 

Proof	 Let G = [P,D) be a depth graph which contains all elementary 

decomposi tions needed for the proof. 

a)	 DIRD is irreflexive and transitive since the Standard Multiset 

Ordering [») as well as the Dynamic Depth Ordering [»g) is a partial 
ordering. 

b)	 DIRD has the subterm property: 
Let be E:j: U E O[ t)
 

===J> t >IRD t I u , since the IRD has the subterm property
 

===J> t >DIRD t I u , since IRD c DIRD [see below)
 

c) DIRD has the replacement property:
 

Let be s >DIRD s·. We have to show that
 

t = f[t1•· .. ,s.... ,t ) >DIRD f[t1... ·,s·, .... t = t'
 n	 n ) 

~ dec[f[ t)) »»g dec(i (f)) 

~ VVEOt(i(f)) :JuEOt(i(t)) dec)f[tJ) 
since dec(i [tll n dee[! [t')) = cD 
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Note  t ha t  t h i s  r e su l t  c anno t  be  ob t a ined  wi th  t he  o r ig ina l  IRD. i r r e spec t ive  of t he
chosen  p recedence :  g[a]  >IRD f[a] r equ i r e s  g [> f, bu t  f[g[a]] >IRD g[f[a]] r equ i r e s
f D g which  cou t r ad i c t s  t he  fo rmer  cho ice  of D.

The  IRD i s  mono tonous  w. r . t .  t he  p recedence  wh ich  pe rmi t s  an  i nc remen ta l
gene ra t i on  of t he  p recedence .  Th i s  p rope r ty  demands  t he  mu l t i s e t  o rde r ing  t o
be  a mono tonous  ex t ens ion  func t ion .  The re fo re .  we  canno t  hope  t o  t r ans fe r  t he
p recedence  mono tony  to  t he  DIRD.  Bu t  we  have  r ep l aced  i t  by  a s imi l a r
proper ty .  Owing  to  t he  cha rac t e r i s t i c s  of »G, t he  Dynamic  IRD i s  monotonous
w.r . t .  t he  dep th  g raph .  As  you  can  s ee  i n  t he  example  above ,  t h i s  concep t
a l lows  a ve ry  f l ex ib le  adap ta t i on  of t he  DIRD to  t he  s e t  of t e rms  to  compare .  I t
i s  more  f l ex ib l e  t han  a dynamic  gene ra t i on  of t he  p recedence .

To  be  u sab l e  a s  a t oo l  fo r  p rov ing  the  t e rmina t ion  of a TRS, t he  DIRD has  t o
posse s s  ce r t a in  cha rac t e r i s t i c s .  Of cou r se ,  i t  ha s  t o  be  a pa r t i a l  o rde r ing .
Fu r the rmore .  t he  cond i t i on  of be ing  a s imp l i f i ca t i on  o rde r ing  [ sub t e rm and
rep l acemen t  p rope r ty ]  ha s  t o  be  fu l f i l l ed .  I n  add i t i on ,  t he  Dynamic  IRD shou ld
be  an  ex t ens ion  of t he  o r ig ina l  one  i n  o rde r  t o  j u s t i fy  i t s  de f in i t i on .

We formula te  l emmata  abou t  t he  cha rac t e r i s t i c s  of DIRD and  wi l l  p rove  t hem.

Lemma DIRD i s  a s imp l i f i ca t i on  o rde r ing .

Proof Let G = [P.D] be  a depth  graph which contains all  elementary
decompos i t i ons  needed  for t he  proof.

a ]  DIRD i s  i r r e f l ex ive  and  t r ans i t i ve  s ince  t he  S t anda rd  Mul t i s e t
Orde r ing  [»] a s  we l l  a s  t he  Dynamic  Dep th  Orde r ing  [»8'] i s  a par t i a l
orde r ing .

b] DIRD has  the  subterm property:
Let  be  s # u e O[t]
=D t >IRD t l  u , s ince  t he  IRD has  t he  sub t e rm p rope r ty
=D t >DIRD t lu  , s ince  IRD ; DIRD [ see  be low]

c ]  DIRD has  t he  r ep l acemen t  p rope r ty :
Le t  be  5 >DIRD s ' .  We  have  t o  show tha t

t = f[t„...‚s‚...‚tn] >DIRD f[t1,...,s',...,tn] = t '
<=» dec[f[t]] » »g dec[f[t']]
@ w e mum]  an 6 0mm]  : decu[![t]] »g decv[f[t']]

s ince  dec [ f [ t ] ]  n dec [ f [ t ' ] ]  = (D
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This is	 true because
 

"Iv E Ot(1 (f)) :3u E Ot(1 [t)):
 

dec)1 (tJJ t >DEL t' E decv(f (f)) 
(case distinction whether v determines a position in s' or notJ 

t >DEL t' ===t> D( tJ < D( t'] since G respects DEL 

dec(f (s)) »»g dec(1 [s')) by precondition [s >DIRD s'] 

»g is addi tive • 

The property of being a simplification ordering authorizes the DIRD to guarantee 

the termination of a ground term rewriting system. The following lemma gives 

preference to the DIRD since it is stronger than the !RD. 

Lemma IRD!: DIRD 

Proof	 >!: >DEL: By induction on the structure of terms and ow.ing to 

the construction of the depth graph (s >DEL t ===t> D[sJ < D[ t]] 

• S >IRD t 
~ dec(i [s)) » » dec(1 [t)) ( Def. of the IRD ] 

~ dec(i (s)) dec(1 (t)) ( since> !: >DEL ] 
===t> dec(i [s)) dec[1 [t)) ( G respects DEL ] 

~ s >DIRD t	 [ Def. of the DIRD ] • 

Neither in the definition nor in the proofs of the properties of the DIRD. the 

restriction to ground terms is needed. The question arises why we have 

demanded it at the beginning? Well, the utilization of terms containing 

variables causes some problems which we wanted to neglect. Firstly. the 

treatment of terms which are identical except for the names of their variables 

cannot yet be specified. This class of terms raises both practical and theoretical 

questions. For reasons of efficiency, it is desirable to avoid redundant 

information in the depth graph. From a theoretical point of view, this problem 

is connected with the general question of how to construct a depth graph 

correctly? A correctly constructed depth graph guarantees the stability W.r.t. 

substitutions of the DIRD. 

Up to now, we have no solution to this problem. It is, however. obvious that 

the definition of the depth graph must be altered. With the presented version it 

is probably impossible to guarantee the stability W.r.t. substitutions. Suppose 

a (> b to be constants and x to be a variable. x is incomparable with both a 

and b with all simplification orderings stable W.r.t. substitutions (because x is 
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Thi s  i s  t r ue  because
VV 6 Ot[f[ t ' ] ]  au e Ot [ f [ t ] ] :

decu [ f [ t ] ]  t >DEL t '  E decv [ f [ t ' ] ]
[ ca se  d i s t i nc t i on  whe the r  v de t e rmines  a pos i t i on  i n  s '  o r  no t ]
t >DEL t '  :D D[t] < D[ t ' ]  s ince  G r e spec t s  DEL
dec[![s]] » „g dec[f[s']] by precondition [s >DIRD s']
»8 i s  add i t i ve  I

The  p rope r ty  of be ing  a s imp l i f i ca t i on  o rde r ing  au tho r i ze s  t he  DIRD t o  gua ran t ee
the  t e rmina t ion  of a g round  t e rm r ewr i t i ng  sys t em.  The  fo l l owing  l emma  g ives
p re fe r ence  t o  t he  DIRD s ince  i t  i s  s t ronge r  t han  the  1RD.

Lemma IRD C DIRD

Proof - > C >DEL: By  induc t ion  on  the  s t ruc tu re  of t e rms  and  owing to
the  cons t ruc t ion  oi t he  dep th  g raph  [3 >DEL t =D D[s] < D[t]]

s >IRD *-
«=D dec [ f [ s ] ]  » » dec[f[t]] [ Def. of t he  IRD ]
=> dec[f[s]] » »DEL dec[f[ t]]  [ s ince > c >DEL ]
=D dec [ f [ s ] ]  » »g dec[f[t]] [ G re spec t s  DEL ]
«:=» s >DIRD t [ Def. of the DIRD ] .

Nei the r  i n  t he  de f in i t i on  no r  i n  t he  p roo f s  of t he  p rope r t i e s  of t he  DIRD.  t he
re s t r i c t i on  t o  g round  t e rms  i s  needed .  The  ques t i on  a r i s e s  why  we  have
demanded  i t  a t  t he  beg inn ing?  Wel l ,  t he  u t i l i z a t i on  of  t e rms  con ta in ing

va r i ab l e s  causes  some  p rob lems  wh ich  we  wan ted  t o  neg l ec t .  F i r s t l y ,  t he
t r ea tmen t  of t e rms  wh ich  a r e  i den t i ca l  excep t  fo r  t he  names  of t he i r  va r i ab l e s
canno t  ye t  be  spec i f i ed .  Th i s  c l a s s  of t e rms  r a i s e s  bo th  p rac t i ca l  and  theo re t i ca l
ques t i ons .  Fo r  r ea sons  of e f f i c i ency ,  i t  i s  de s i r ab l e  t o  avo id  r edundan t
in fo rma t ion  i n  t he  dep th  g raph .  F rom a t heo re t i ca l  po in t  of v i ew ,  t h i s  p rob l em
is  connec t ed  w i th  t he  gene ra l  ques t i on  of how to  cons t ruc t  a dep th  g raph
co r r ec t l y?  A co r r ec t l y  cons t ruc t ed  dep th  g raph  gua ran t ee s  t he  s t ab i l i t y  w.r . t .
subs t i t u t i ons  of t he  DIRD.

Up  to  now,  we  have  no  so lu t i on  t o  t h i s  p rob l em.  I t  i s ,  howeve r ,  obv ious  t ha t
t he  de f in i t i on  of t he  dep th  g raph  mus t  be  a l t e r ed .  Wi th  t he  p re sen t ed  ve r s ion  i t
i s  p robab ly  imposs ib l e  t o  gua ran t ee  t he  s t ab i l i t y  w. r . t .  subs t i t u t i ons .  Suppose
a > b t o  be  cons t an t s  and  x t o  be  a va r i ab l e .  x i s  i ncomparab l e  w i th  bo th  a
and  b wi th  a l l  s imp l i f i ca t i on  o rde r ings  s t ab l e  w.r . t .  subs t i t u t i ons  [because  x i s
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unifiable with both constants). To receive the same results with DIRD we have 

to construct a depth graph with the restriction D[a) = D[x) = D(b) concerning 

the depth function. But the precedence (a t> b) demands D[a) < D[b) since 

a >DEL b. Obviously. it is impossible to satisfy both constraints. 

- 19 

un i f i ab l e  w i th  bo th  cons t an t s ] .  To  r ece ive  t he  s ame  r e su l t s  w i th  DIRD we  have

t o  cons t ruc t  a dep th  g raph  wi th  t he  r e s t r i c t ion  D[a] = D[x] = D[b] conce rn ing
the  dep th  funct ion .  Bu t  t he  p recedence  [a  [> b ]  demands  D[a] < D[b] s ince
a >DEL b. Obvious ly ,  i t  i s  imposs ib le  t o  s a t i s fy  bo th  cons t r a in t s .
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4 Con.clusion. 

We have developed new multi set orderings which are classified to be 
topographical. All presented orderings are equal to or stronger than the Standard 

Multiset Ordering (on similar conditions]. The Dynamic Depth Ordering [{;] is 

incrementally adaptable to the multisets to be compared. It is not a fixed 

relation, but is generated during the comparison process. This unique flexibility 

also causes some problems when >{~ is used in a term ordering environment. 
We have altered the improved recursive decomposition ordering [IRD) by 

replacing the Standard Multiset Ordering with »g. The resulting DIRD is a 

simplification ordering but it is not stable W.r.t. substitutions. We hope to find 

a modification of the depth graph to gain back this property. Our future work 

is influenced by the idea of not only characterizing the depth of an element 

by a single natural number, but by an interval. 
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4 Conc lus ion

We have  deve loped  new mul t i s e t  o rde r ings  which  a re  c l a s s i f i ed  t o  be
t opograph ica l .  A l l  p r e sen t ed  o rde r ings  a r e  equa l  t o  o r  s t ronge r  t han  the  S t anda rd

Mul t i s e t  Orde r ing  [on  s imi l a r  cond i t i ons ] .  The  Dynamic  Dep th  Orde r ing  [»g'] i s

i nc remen ta l l y  adap tab l e  t o  t he  mu l t i s e t s  t o  be  compared .  I t  i s  no t  a f i xed
re l a t i on ,  bu t  i s  gene ra t ed  du r ing  t he  compar i son  p roces s .  Th i s  un ique  f l ex ib i l i t y
a l so  causes  some  p rob lems  when  »3 i s  u sed  i n  a t e rm  o rde r ing  env i ronmen t .
We have  a l t e r ed  t he  improved  r ecu r s ive  decompos i t i on  o rde r ing  [1RD] by
r ep l ac ing  the  S t anda rd  Mul t i s e t  Orde r ing  w i th  »S'. The  r e su l t i ng  DIRD i s  a
s imp l i f i ca t i on  o rde r ing  bu t  i t  i s  no t  s t ab l e  w. r . t .  subs t i t u t i ons .  We  hope  to  f i nd
a mod i f i ca t i on  of t he  dep th  g raph  to  ga in  back  th i s  p rope r ty .  Our  fu tu re  work
i s  i n f luenced  by  the  i dea  of no t  on ly  cha rac t e r i z ing  t he  dep th  of an  e l emen t
by  a s i ng l e  na tu ra l  number ,  bu t  by  an  i n t e rva l .
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