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1 Introduction 

The equality predicate can be described in a logical calculus by specifying the following three axioms and two 
axiom schemata which are sufficient to define equality in first order logic. It is done in this or a very similar 
way in all introductory books about logic like these of E. Mendelson [Men87, 3rd edition], H.-D. Ebbinghaus, 
J. Flum, and W. Thomas [EFT78], and V. Sperschneider [Spe84]. 

Definition 1.1 (Equality Axioms) 

• 'Ix: x = x (reflexivity) 

• 'Ix, y: x =y ::} y =x (symmetry) 

• 'Ix, y, z: x = y 1\ Y = z ::} x =z (transitivity) 

• For each function symbol f and each argtlment of this function an axiom: 

"Ixl' ... , x n , Y: Xi = Y ::} fXl . " Xi· .. Xn = fXl ... y ... X n 

• For each predicate symbol P and each of its arguments an axiom: 

"lxI, ... , X n , y: PXl ... Xi • •• X n 1\ Xi = Y ::} PXl .•• y ... X n 

Of course it is very inefficient to handle the equality predicate automatically using these axioms. Hence research 
on the mechanization of the equality predicate has led to a variety of different special calculi. Some of them, for 
example paramodulation [RW69] and RUE-Resolution [Dig79], integrate a new rule into the existing resolution 
calculus, others like E-Resolution (Mor69] and the more recent general E-unification approaches [Bla86,YS86] 
ignore the context of the local equality problem and consider only equations without conditions. 

There are some approaches to classify equality reasoning methods. One of them distinguishes between term 
replacement and difference reduction methods [Bla86]. Term replacement works by substituting terms using 
equations, difference reduction considers at least two terms and tries to make them equal by inserting equations 
at top level and revising the subterms recursively for terms with the same function symbol. 

The term "difference reduction" is used at two levels of abstraction. Firstly it denotes term decomposition as 
explained above. This is on the same level as term replacement. Secondly it means that the whole approach is 
on a higher (AI) level and reduces semantical differences [Bla86]. 

We propose a further classification according to the axioms and theorems containing the equality predicate but 
we shall not focus on it in this paper. It concerns the structure of equations with regard to similarity of their left 
and right hand sides, and with accordance to similarities between whole equations. Commutativity for example 
is an axiom, which is itself structured in the sense that its left and right hand side are very similar. The single 
axioms for left and right zero however are examples for formulae without such a structure. Corresponding 
properties can be attached to theorems. Additionally theorems can be classified according to their relation to 
axioms. Especially induction theorems have themselves structure and a strong relation to their hypotheses (for 
example x(y + z) = xy + xz ::} (x + l)(y + z) = (x + l)y + (x + l)z) [Hut89]. Another dimension for the 
classification is whether there is just one theorem or several theorems. Many theorems can occur when equality 
is imbedded in a resolution prover via E-Resolution, namely one for each pair of literals with the same predicate 
and opposite sign. 

This classification induces corresponding reasoning methods. Structure in the axioms induces the usage of a 
decomposition approach, structure in the theorems induces special transformation methods [Hut89]. Many 
theorems in combination with structured axioms induce a graph based decomposition method to store partial 
solutions to be shared such that they can be used at different positions. In the unstructured case rewriting 
should bring the literals to normal form, and then they should be unifiable. 
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axiom schemata which are sufficient to define equality in first order logic. It is done in this or a. very similar
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But the most interesting case of equality reasoning is when conditional equations occur. All advanced equality 
reasoning methods mentioned above are led astray when formulae like A :::} x = y or A:::} x = c (see examples 
5.2 and 5.4) are among the axioms. Such conditional equations are typical for real situations and neither do 
they have structure nor are they directable, and there is no reason to believe that the "equality problem" is 
solved when a satisfactory procedure for handling the unit equations is found. 

Nevertheless we also focus our attention on sets of unit equations because these theories are so far better 
researched and must be the entry point for an efficient and powerful equality prover. 

Equality Reasoning 

Research on the mechanization of the equality predicate can be classified into three areas: unification theory, 
the development of special deduction rules for equality, and term rewriting systems. We shall briefly sketch the 
work in these areas. 

Unification The simplest case of working with equality is to make two objects equal by the replacement of 
subobjeets by others. Unification is the process to find a uniform replacement for the variables in terms such 
that these terms become syntactically equal, which means that they can be written as the same string. The 
endomorphism describing the replacement for the variables is called a substitution. A unifier is a substitution 
that makes the terms equal. {x 1-+ b, y 1-+ a}, for example, is a unifier of f(x, a) and f(b, y). In the following we 
often discard the parentheses of the terms, when the arities of the function symbols are clear. 

To come closer to the mathematical equality relation the notion of unification can be extended to E-unification, 
where a set E of equations is given as axioms, which induce an equivalence relation that is written =E. An 
example for a unifier of f(a,x) and f(b,y) under the theory E={f(x,y) = f(y,x)} ofcommutativity is {x 1-+ 

b,Yl-+a}. 

In general a unification problem can have more than one solution. J. Robinson [Rob65] proved that in the case 
with empty E there exists (up to renaming of variables) a unique most general unifier representing the whole set 
of solutions whenever this set is not empty. In arbitrary theories there is not necessarily such a representative 
unique unifier. The next step was to extend the concept to sets of unifiers, which fulfill the requirements to 
be correct, complete, and minimal. But there are theories for which such sets do not exist. Hence equational 
theories can be classified as to whether for each unifiable set of terms the set of most general unifiers has only 
one element, is finite, infinite, or does not exist at all [Sie88]. The corresponding theories are called unitary, 
finitary, infinitary, and nullary. 

One task in unification theory is to develop algorithms to compute sets of unifiers. A universal unification 
algorithm is one working for all theories, usually this notion is also used for algorithms handling whole classes 
of theories. One main goal in this area is to combine known unification algorithms for special theories to 
new ones for more complex theories. However there are problems: for example the algorithms for associative 
unification and commutative unification could not be combined to an algorithm for theories that have both 
properties, and this is the case for almost all theories. In general a new algorithm must be designed for such 
combined theories. Currently the most advanced approach is M. Schmidt-SchauB' method for the combination 
of unification algorithms [S887]. It works for arbitrary disjunct theories and free function symbols. 

Deduction A general purpose deduction system must handle all combinations of equations, even if they occur 
together with other predicates in the same formula, as for example in 'In: Even(n) {:> (3m: n =2m). 

The handling of equality via the axioms in definition 1.1 is very inefficient and hence J. Darlington [Dar68], E. 
Siebert [Sib69], J. Robinson [Rob65], and G. Robinson and L. Wos [RW69] incorporated the equality relation 
into automated deduction systems by designing new inference rules. The best known inference rule is paramod
ulation, which works on two clauses where one of them contains an equality literal. One side of the equation 
must be unifiable with a term t in the other clause by a substitution u. Then the paramodulant consists of all 
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Siebert [Sib69], J. Robinson [Rob65], and G. Robinson and L. Wos [RW69] incorporated the equality relation
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ulation, which works on two clauses where one of them contains an equality literal. One side of the equation
must be unifiable with a term t in the other clause by a substitution 0'. Then the paramodulant consists of all



literals of the two clauses without the equality literal after replacing the term t by the other side of the equation 
and applying the substitution <T to all literals of the new clause. R. Kowalski showed [Kow75] that using the 
paramodulation rule enhances the power of deduction systems. 

Paramodulation is a deduction rule that is applicable 'almost everywhere' making search graphs very bushy 
[Bun83], and so it should only be used if the result is of overriding importance for other arguments in the proof. 

To transt:orm two literals into resolvable ones using equations is the motivation of E-Resolution [Mor69] and 
RUE-Resolution [Dig79] and we shall come back to this type of reasoning in section 3. 

Rewriting The observation that equations can be 'applied' to terms led to a term replacement approach 
for the treatment of the equality relation. To obtain an algorithm to prove the equality of two terms one can 
successively apply equations to the terms. Such an algorithm only decides the equality of the terms but can 
not make them equal by computing an instantiation of their variables as required for resolution based systems. 
The main idea is to consider the equations as rules that can only be applied in one direction. The direction is 
determined by an ordering on the set of terms. 

A method to decide the equality of two terms under special equality theories can then be obtained by "reducing" 
the terms to a unique normal form using the directed equations. The theory axioms must obey certain conditions, 
they must be confluent and Noetherian, to ensure completeness and termination of the decision procedure. The 
equations defining the theory must be directable and must have the properties above or it must be possible 
to add other equations such that the new system is equivalent to the old one and has the desired properties. 
This procedure developed by D. Knuth and P. Bendix [KB70] is called completion. The new system of directed 
equations constitutes a set of rewriting rules. 

When computing a normal form of a term all situations where two rules can be applied to derive different 
successors are dangerous because it must be ensured that both cases later on lead to the same normal form. D. 
Knuth and P. Bendix showed that it is enough to consider critical pairs between rules and to add corresponding 
equations to ensure this property. Critical pairs can be constructed from two rules or two instances of the same 
rule if the left hand sides of the rules overlap, that means that some subterm of the left hand side can be unified 
with the other left hand side. One term of the critical pair is the right hand side of the first rule with the unifier 
applied to it. For the other term the unifiable subterm in the one left hand side is replaced by the other right 
hand side and again the unifier is applied to the result. 

In principle the Knuth-Bendix completion algorithm then works as follows [KB70,H080,Buc85,Der87,JL87]: 
Beginning with a set of undirected equations, an empty set of directed rules, and a reduction ordering it tries 
to derive a convergent set of rules from the equations. It applies the following steps until no equations remain: 
Take an equation, apply all rules to the equation, direct the equation according to the given reduction ordering, 
and put it into the set of rules. Generate all critical pairs, that is, terms for which rule applications overlap, 
between the new rule and the set of rules and put them into the set of equations. If this algorithm terminates, 
it produces a set of rules that can be used to decide the equality of arbitrary terms of the given theory. 

A rule is applicable to a term if the left hand side of the rule matches the term or a subterm of it. If a rule 
is applied to an object with subterms to which it is applicable, then these are replaced by the right hand side 
of the rule with the matcher applied to it. In the field of Automated Deduction the application of the rules is 
often called demodulation [WRCS67,WOLB84] and we will use this term here too. 

Of course there are interrelations between unification theory and term rewriting systems and one goal is to 
combine rewriting techniques and unification algorithms. 

Some results of the research in term rewriting systems led to universal unification algorithms restricted to so 
called confluent or canonical theories. F. Fages (Fag83], J. HuUot [HuI80], J.-P. Jouannaud, C. Kirchner, H. 
Kirchner [JKK83], J. You, P. Subramayou (YS86], A. Martelli, C. Moiso, G. Rossi (MMR86], and C. Kirchner 
[Kir85] defined systems for this purpose. 
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Sometimes special theory unification algorithms are used in completion systems. Such a method was used for 
example by M. Stickel (Sti85] to prove ring commutativity from x 3 :::: x. We shall recourse to this point in 
section 5. 

There are also interrelations between special deduction rules and rewriting systems; we shall come back to them 
in section 5 too. 

Decomposition 

Decomposition was first used by J. Herbrand in his thesis [Her30]. With this concept we mean the method to 
derive unifiers for the subterms of the given terms and to combine these solutions to solve the equality problem 
for the whole terms. A. Martelli and U. Montanari (MM82] exploited this 'divide and conquer' strategy for an 
alternative to the unification algorithm of J. Robinson [Rob65]. The kernel of the unification algorithm based 
on decomposition is given in definition 3.1. 

Definition 3.1 (Unification by Transformation Rules) 
A unification problem is a set of equations. It is in solved form when each equation has the form x :::: t with x 

not occurring anywhere else in the equation set. The following rules are performed on a set of equations until 
no rule is applicable. If the system is in solved form in this final situation the derived set of equations represents 
a solution, else no solution exists. 

1.	 Switching: Replace an equation t:::: x by x:::: t. 

2.	 Deletion: Delete t :::: t. 

3.	 Decomposition: Replace f81 ... Sn = ft1 ... t n by Sl :::: t1,"" Sn :::: in. 

4.	 Elimination: replace all occurrences of x by t in all other equations if x :::: t is an equation where x does 
not occur in t. 

A. Martelli and U. Montanari refined this version using special datastructures and labelings and obtained 
an almost linear unification algorithm. Of course they used another representation of unifiers because the 
exponentiality of Robinson-unification stems from the term replacement property of idempotent unifiers. 

One advantage of the usage of nondeterministic rules is that the order of operations is easier to control and 
unessential conditions need not be checked in the control mechanism. This can make correctness and complete
ness proofs for theory unification algorithms much easier. 

C. Kirchner [Kir85] invented a conceptual framework to include special equality theories in such a rule based 
algorithm. J. Gallier [GS86,GS89] and K. Bliisius [Bla,86] concurrently described universal unification algorithms 
via rules. J. Gallier used a Martelli-Montanari-like version for the pure unification part, whereas K. Blasius 
unifies with a Robinson procedure. In addition K. Blasius' approach is more implementation oriented and 
proposes special graph structures for storing the information about the unification state. 

The basis for our work was the system of K. Blasius and so we implemented an improved version of his rule 
system, where the Robinson rules are replaced by Martelli-Montanari-rules because these fit better into the 
general framework. 

We demonstrate the usage of the rules with the help of a classical example, namely that - - x = x in a group. 
Unsolved subproblems are indicated by dashed lines, solved subproblems by complete lines labeled with unifiers. 
Equality chains are written in the text term! - 11 = r1 - ... - In :::: rn - term2, two terms concatenated 
with - must always have the same function symbol or must be variables, no equation is allowed to occur more 
than once in one chain. 
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on decomposition is given in definition 3.1.

Definition 3.1 (Unification by Transformation Rules)
A unification problem is a set  of equations. It is in  solved form when each equation has  the form z = t with a:

no t  occurring anywhere else in  the equation set.  The following rules are performed on a. se t  of equations until
no  rule is applicable. If the system is  in  solved form in this final  s i tuat ion the  derived se t  of equations represents
a solution, else no  solution exists.

1. Switching: Replace an equation t = .v by a: = t .

Deletion: Delete t = t .

Decomposition: Replace f s l  . . .  s„  : f t l  . . . t,1 by 31 = t1 ,  . . . , s,. = t n .

”5
5°

!“

Elimination: replace al l  occurrences of:: by t in all o ther  equations ifs  = t is an  equation where :: does
not  occur in t .

A .  Martelli and U .  Montanari refined this version using special datastructures and labelings and obtained
an almost linear unification algorithm. Of  course they used another representation of unifiers because the
exponentiality of Robinson-unification stems from the term replacement property of idempotent unifiers.

One advantage of the usage of nondeterministic rules is that the order of operations is easier to control and
unessential conditions need not be  checked in the  control mechanism. This can make correctness and complete-
ness proofs for theory unification algorithms much easier.

C .  Kirchner [Kir85] invented a conceptual framework to  include special equality theories in such a rule based
algorithm. J .  Gallier [GSS6,G589] and K. Bläsius [B1ä86] concurrently described universal unification algorithms
via rules. J. Gallier used a Martelli-Montanari—like version for the pure unification part ,  whereas K.  Bläsius
unifies with a Robinson procedure. In  addition K .  Blasius’ approach is more implementation oriented and
proposes special graph structures for storing the information about the unification state.
The basis for our work was the system of K.  Bläsius and so we implemented an improved version of his rule
system, where the Robinson rules are replaced by Martelli-Montanari—rules because these fit better into the
general framework.

We demonstrate the usage of the rules with the help of a classical example, namely that —- -— :1: = a: in a group.
Unsolved subproblems are indicated by dashed lines, solved subproblems by  complete lines labeled with unifiers.
Equality chains are written in the text terml — 11 = r1 —— . .  - —— 1,, = r,1 -— termz, two terms concatenated
with — must always have the same function symbol or must be variables, no equation is allowed to occur more
than once in one chain.

“



Example 3.2 (Group, Involution) 
- - a	 

is the initial termgraph, that is, - - a and a are to be made equal. The dashed line 
indicates the problem to be solved. 

a 

- - a	 - - a
is the graph after the insertion The first and fourth subproblems 
of the equality chain 11, = +11,0  are solved, the second and third /uH_-a 
+x+yz = ++xyz - +Ov = v.	 are decomposed again into sub

-it = fUO	 Four subproblems indicated by problems, where two of them can 
the dashed lines must be solved u./t~x be trivially solved. Note that 
and their solutions must be com/., the subproblems 0 = +yz and 

+x+yz = t+xyz bined to solve the whole problem.	 +xy = 0 are structurally equal. 
+x+yz ~:~7~ ZThe chains to be inserted must
 

have the property that the terms
 ./
of each arising subproblem have 

+Ov = ~	 +Ov = V
the same top level symbol. In 
this case: 11, -	 -, + - +, +  !~a 
+, and v - a 

a 

- - a 

/uH_-a 
U =+11,0 

;:. ::: 

...... 0'= +-ww 
: U l--+ x .. ·· . ..0 

.' 

+x+yz = ++xyz 

+-w'w' = 0 
.............
 

VHZ 

a 

a 

The solved subproblems - - a All considered subprob
are indicated by lines [ems are solved and the /u~--a 
marked with the corres unifiers can be succes
ponding unifier. Two sively combined to de
chains can be inserted rive 5.'~1 
to solve the nontrivial 
subproblems of the last 0= +-ww 
graph. 

~:~w
 
+x+yz = ++xyz

(//I / I" ~ -w' 

z ~ w 
l 

~Z'
+Ov = v 

!~a
 
a 

In this example only the successful steps of the algorithm are depicted, however as everybody knows who works 
in the field there is also an enormous amount of useless steps in the search space. The power of an equality 
prover lies in its facility to avoid such useless steps as much as possible. Even the duplicate steps, like for 
example the second one with the axiom + - ww = 0 in the above example, should be avoided. 

K. Blasius and V. Lotz [LoBS] used several heuristics in the first implementation of the system and the main 
power of the program stems from these heuristics. But the results are still unsatisfactory if we consider the 
standard problems of equality reasoning. Only the first two examples proposed by E. Lusk and R. Overbeek 
[L084] could be solved by the program. 
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Example 3.2 (Group, Involution)
-—a

{J:—MO

:f—a:+yz : :I—+zyz

+0v=v

ll-z-hyz = -_l-+:cyz

:.; _‘Inwyw’ _=.”a

'+'o';‚=v
VH3

VH2

is the initial termgraph, that  is, - - a and a are t o  be made equal. The dashed line
indicates the problem to be solved.

is the graph after the insertion
of the equality chain a : +140 —
+z+yz = ++ryz —— +0v = v.
Four sabproblems indicated by
the dashed lines must be solved
and their  solutions must be com-
bined to  solve the whole problem.
The chains to be inserted must
have the property that the terms
of each arising sabproblem have
the same top level symbol. In
this case: ?; —-‚  + — +,  + —-
+,  and v — a

The solved subproblems
are indicated by lines
marked with the corres-
ponding unifier. Two
chains can be inserted
to  solve the nontrivial
subproblems of the last
graph.

The first and fourth subproblems
are solved, the second and third
are decomposed again into sub-
problems, where two of them can
be trivially solved. Note that
the subproblems 0 : +yz  and
+:vy = 0 are structurally equal.

All considered subprob-
Iems are solved and the
anifiers can be succes-
sively combined to  de-
rive e .

In this example only the  successful steps of the algorithm are depicted, however as everybody knows who works
in  the field there is also an enormous amount of useless steps in the search space. The power of an equality
prover lies in its facility to  avoid such useless steps as much as possible. Even the duplicate steps, like for
example the  second one with the axiom + — ww = 0 in the above example, should be  avoided.

K. Bläsius and V .  Lotz [L088] used several heuristics in the first implementation of the system and the main
power of the  program stems from these heuristics. But  the results are still unsatisfactory if we  consider the
standard problems of equality reasoning. Only the first two examples proposed by E. Lusk and R. Overbeek
[L084] could be solved by the program.



In the following we try to illustrate what went wrong using this decomposition technique but first we describe 
our own extensions of the system. 

The global strategy was to switch off all heuristics of K. Blasius' system to detect and eliminate the weaknesses 
in the inference mechanism. The first change was the introduction of A. Martelli and U. Montanari's multi 
equation framework to make the combination with theory unification more feasible, since these algorithms are 
mostly formulated using such transformation rules. Naturally this change of representation did not give the 
prover more power. The second and more essential change was to use structure sharing of subproblems to realize 
the 'subgraph replacement' proposed by K. Bliisius. 

We shall now focus on some details of the second change. To use different solutions of structurally identical 
subproblems at different positions in the graph all subproblems with their graphs are organized in a hashtable. 
The hashkey is computed from the structure of the two terms of the equality problem. The test for equality of 
two such pairs of terms (two equality problems) is made efficient by using the same variable, theory-free constant, 
and theory-free function symbols, that is, fClC2 = fC2X is structurally the same problem as fC2Cl = fClY when 
Cl and C2 are Skolem constants (not occurring in a theory) and z and y are variables. This approach is similar 
to the usual indexing mechanisms in automated theorem proving [OL80,Ohl89]. Everywhere in the graph a 
"renaming" to the standard representation is stored instead of commonly used subproblems, in the just given 
example {x 1-+ xd and {C2 1-+ Cl, Cl 1-+ C2, Y 1-+ xd. Solutions for the subproblems are then simply propagated 
to all superproblems applying the inverse of the "renaming" to the solutions. 

Example 3.3 (Structure Sharing) 
-  a 

lu~--a 
This is a variant of the fourth graph of example 3.2. 
The same (up to renaming) subproblem 0 = +XlX2 

occurs at two different positions. The renaming sub
u =+uO stitutions are depicted in the boxes. 

o 

v~z 

+x+yZ = +fxyz --..... 

Experiments with the system showed that it often ran into cycles producing arbitrary many unifiers for the 
same subproblem and propagating them as partial solutions to superproblems. For example it generated the 
unifiers {x 1-+ a}, {x 1-+ -a}, {x 1-+ - - O} for the problem x = 0, that is, it tried to enumerate all unifiers 
{{x 1-+ on} I n E N} instead of postponing the computation until nothing better could be done which was 
normally controlled by the heuristics. Another possibility of avoiding such situations is to use demodulation to 
reduce all solutions to the simplest ones. The principle of demodulation was introduced and promoted by L. 
Wos [WRCS67,WOLB84]. Equations are directed and applied to all occurring terms. When using demodulation 
it is clear that new good demodulators should be computed during the search of a proof and this directly leads 
to the usage of the Knuth-Bendix completion algorithm. 
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In the following we try to illustrate what went wrong using this decomposition technique but first we describe
our own extensions of the  system.

The global strategy was to switch off all heuristics of K .  Bläsius’ system to  detect and eliminate the weaknesses
in the inference mechanism The first change was the introduction of A. Martelli and U. Montanari’s multi
equation framework to make the combination with theory unification more feasible, since these algorithms are
mostly formulated using such transformation rules. Naturally this change of representation did not give the
prover more power. The second and more essential change was to use structure sharing of subproblems to  realize
the ‘subgraph replacement’ proposed by  K .  Bläsius.

We shall now focus on some details of the second change. To use different solutions of structurally identical
subproblems at  different positions in the graph all subproblems with their graphs are organized in a hashtable.
The hashkey is computed from the structure of the two terms of the equality problem. The test for equality of
two such pairs of terms ( two equality problems) is made efficient by using the same variable, theory-free constant,
and theory-free function symbols, that is, fc1c2 = f cz: is structurally the same problem as fogcl : fc ly  when
c1 and cz are Skolem constants (not occurring in a theory) and :: and y are variables. This approach is similar
to the usual indexing mechanisms in automated theorem proving [OL80,0h189]. Everywhere in  the graph a
“renaming” to the standard representation is stored instead of commonly used subproblems, in the just given
example {z  H 1:1} and {02 H c1,c1 H c2, g H 2:1}. Solutions for the subproblems are then simply propagated
to all superproblems applying the inverse of the “renaming” to  the  solutions.

Example 3 .3  (Structure Sharing)

‚ '  _ a This is a variant of the fourth graph of example 3.2.
u . . .  - - a The same  (up to  renaming) subproblem O = +z lx2

occurs a t  two dijferent positions The renaming sub-
u = +u0  stiiutions are depicted in the bores.

s l ,  s z

lfm—Hz = :I-fryz

( c r—>31 ,  yn—rmz

Experiments with the system showed that it often ran into cycles producing arbitrary many unifiers for the
same subproblem and propagating them as partial solutions to superproblems. For example it generated the
unifiers {m H 0 } ‚ { z  H —0}‚ {z  H -— — 0} for the problem z = 0, that is, i t  tried to  enumerate all unifiers
{{:c H 0"} | 11 E N} instead of postponing the computation until nothing better could be done which was
normally controlled by the heuristics. Another possibility of avoiding such situations is to  use demodulation to
reduce all solutions t o  the simplest ones. The principle of demodulation was introduced and promoted by L .
Wos [VVRCSG7,WOLB84]. Equations are directed and applied to all occurring terms. When using demodulation
it  is clear that new good demodulators should be computed during the search of a proof and this directly leads
to the usage of the Knuth—Bendix completion algorithm.



4 Orientation of Equations in Clause Graphs 

Many authors as for example J. Siekmann, [Sie75), A. Bundy [Bun83], and K. Blasius [Bla86] discussed the 
complexity of automatically finding a proof for the problem "every group with x + x = 0 is commutative" 
depending on the number of inference steps in the different calculi. 

A resolution prover with explicit usage of the equality axioms as stated above based on breadth first search 
must generate about 1021 resolvents to prove this theorem. For a similarly uninformed paramodulation prover 
the situation is "slightly" better: it "only" has to create approximately 1210 (~ 6 . 1010) clauses. This smaller 
number of steps comes from the fact that paramodulation search trees are not as deep as resolution search 
trees, but they are much more bushy, and so the amount of reduction is less than hoped for by the inventors of 
paramodulation. 

It is intuitive that an orientation of the equations, that is, their usage in only one direction, leads to another 
drastic reduction of unnecessary steps. However the reduction is more enormous than someone can imagine, 
who does not know the Knuth-Bendix completion method. A comparable inference step is to choose a critical 
pair and incorporate it as a rule. Administrating the critical pairs with a FIFO-strategy which simulates the 
breadth first search leads to a proof in less than 100 steps. With some simple refinements the number of steps 
is reduced to 7 (Example 4.2). 

This example alone shows that completion is indispensible for equality reasoning and should be placed into the 
centre of every efficient equality reasoning program. So the question arises why this approach was ignored in 
almost all theorem proving systems based on the traditional methods of AI. 

First of all the application of rewriting seemed to be restricted to some special cases where a canonical rewriting 
system can be derived. But even if the Knuth-Bendix procedure diverges enough interesting results can be 
derived as examplified in problems 4.4 and 4.6. With help of the examples we shall demonstrate that most 
generated clauses are useful lemmas to finally find the proofs for the theorems. 

In these cases completion may be superior to the other methods dealing with equality. Many researchers 
overlooked the capacity for development imbedded in this approach. Meanwhile there are results in handling 
undirectable equations [BDP87] and using special theory unification and matching algorithms [Sti85,KZ89]. 
In addition there are attempts to use rewrite systems to construct universal unification algorithms [Kir87] 
and to integrate this work with conditional equations [Ric83a,Pet83,Kap84,ZR85,JW86,JL87,Rus87,ZK88] but 
unfortunately all these attempts are not as convincing as the pure method when unit equations are directable. 

Another disadvantage of completion not yet mentioned is that completion represents a forward reasoning method 
without goal and that no possibility exists to distinguish between different abstraction levels. The parameters 
to be set are only the reduction ordering and the selection strategy to choose critical pairs to be directed. 

E. Lusk and R. Overbeek [L084] published a set of six equality problems without conditions that should be 
useful to check the power of an equality reasoning procedure. Finishing this section we show the results of 
the experiments solving the first five examples of E. Lusk and R. Overbeek with a conventional resolution and 
paramodulation based theorem prover. 

Here we have to throw a view on the inards of the Markgraf-Karl system, say the clause graph calculus. More 
detailed descriptions can be found in [BBB+84,OS89,EOP89,Eis89). A clause graph consists of a set of clauses, 
each of them a multi set of literals, and a set of links, which join pairs of literals with unifiable atoms. A link 
joining a positive and a negative literal is called an R-link (Resolution), while an S-link (Subsumption) joins 
two literals with the same sign. If the literals incident with a link belong to two different clauses, it is an R2- or 
S2-link. If both literals belong to the same clause, the link is called R1- or SI-link. In this case it may be that 
the atoms of the literals are unifiable only after renaming their variables apart, then we speak of a weak link. 

The different kinds of links provide immediate access to different kinds of operations involving a given literal 
occurrence. Most notably, R2-links represent the possible applications ofthe resolution rule and S1-links indicate 
faetoring. When applying such deduction rules, we have to add to the graph the new clause along with the links 
connecting the new literals to the just existing graph. If the new literals are instances of ancestor literals already 
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4 Orientation of Equations in Clause Graphs

Many authors as for example J .  Siekmann, [Sie75], A. Bundy [Bun83], and K.  Bläsius [Blä86] discussed the
complexity of automatically finding a proof for the problem “every group with z + a: = 0 is commutative”
depending on the number of inference steps in the different calculi.
A resolution prover with explicit usage of the equality axioms as stated above based on breadth first search
must generate about 1021 resolvents to  prove this theorem. For a similarly uninformed paramodulation prover
the situation is “slightly” better:  it  “only” has to  create approximately 1210 (z  6 -  101°) clauses. This smaller
number of steps comes from the fact that paramodulation search trees are not as deep as resolution search
trees, but they are much more bushy, and so  the amount of reduction is less than hoped for by  the inventors of
paramodulation.

I t  is intuitive that an orientation of the equations, that is, their usage in only one direction, leads to  another
drastic reduction of unnecessary steps. However the reduction i s  more enormous than someone can imagine,
who does not know the Knuth—Bendix completion method. A comparable inference step is to choose a critical
pair and incorporate it as a. rule. Administrating the critical pairs with a FIFO-strategy which simulates the
breadth first search leads to a proof in less than 100 steps. With some simple refinements the number of steps
is reduced to  7 (Example 4.2).
This example alone shows that completion is indispensible for equality reasoning and should be placed into the
centre of every efficient equality reasoning program. So the question arises why this approach was ignored in
almost all theorem proving systems based on the traditional methods of AI.
First of all the application of rewriting seemed to be restricted to some special cases where a canonical rewriting
system can be derived. But even if the Knuth-Bendix procedure diverges enough interesting results can be
derived as examplified in problems 4.4 and 4.6. With help of the examples we shall demonstrate that most
generated clauses are useful lemmas to  finally find the proofs for the theorems.

In  these cases completion may be  superior to  the other methods dealing with equality. Many researchers
overlooked the capacity for development imbedded in this approach. Meanwhile there are results in  handling
undirectable equations [BDP87] and using special theory unification and matching algorithms [Sti85,KZ89].
In addition there are attempts to  use rewrite systems to  construct universal unification algorithms [Kir87]
and to  integrate this  work with conditional equations [Ric83a,Pet83,Kap84,ZR85,JW86,JL87,Rus87,ZK88] but
unfortunately all these attempts are not as convincing as the pure method when unit equations are directable.
Another disadvantage of completion not yet mentioned is that  completion represents a forward reasoning method
without goal and that no possibility exists to distinguish between different abstraction levels. The parameters
to  be set are only the reduction ordering and the selection strategy to  choose critical pairs to be directed.

E.  Lusk and R. Overbeek [L084] published a set of six equality problems without conditions that should be
useful to check the power of an equality reasoning procedure. Finishing this section we show the results of
the experiments solving the first five examples of E.  Lusk and R.  Overbeek with a. conventional resolution and
paramodulation based theorem prover.
Here we have to throw a view on the inards of the Markgraf—Karl system, say the clause graph calculus. More
detailed descriptions can be  found in  [BBB+84,0589,EOP89,Eis89].  A clause graph consists of a set  of  clauses,
each of them a multi set of literals, and a set of links, which join pairs of literals with unifiable atoms. A link
joining a positive and a negative literal is called an R—link (Resolution), while an  S-link (Subsumption) joins
two literals with the same sign. If the literals incident with a link belong to  two different clauses, it is an R2— or
S2-link. If both literals belong to  the same clause, the link is called Rl— or Sl- l ink.  In  this case it may be  that
the atoms of the literals are unifiable only after renaming their variables apart, then we speak of a weak link.
The different kinds of links provide immediate access t o  different kinds of operations involving a given literal
occurrence. Most notably, R2-links represent the possible applications of the resolution rule and Sl—links indicate
factoring. When applying such deduction rules, we have to add to  the graph the new clause along with the links
connecting the new literals t o  the  just existing graph. If the new literals are instances of ancestor literals already



present in the graph, the new links can be obtained without searching by a simple inheritance process. This 
inheritance was invented by R. Kowalski [Kow75] and later extended to RI-links by M. Bruynooghe [Bru75]. 
For a detailed explanation of the mechanism in the MKRP-system see H. J. Ohlbach [OhI87]. The transfer to 
S-links is trivial. For new literals that are not obtained by instantiating others, for example the paramodulated 
literal in a paramodulation step, this form of link inheritance does not work. 

In the case of paramodulation there have also been attempts at approaches based on links and inheritance 
[SW80]. Links to be paramodulated upon do not join literals, they join one side of a positive literal with 
equality predicate with an arbitrary unifiable term in another literal. They are P2-links if the other literal is in 
another clause, PI-links if they are in the same. Such a link mechanism was implemented in our system, but 
unfortunately P-link inheritance can not work as this for R-links because in each resolution or paramodulation 
step unifiers are applied and therefore completely new terms are generated. Hence our first task was to repair 
this inheritance mechanism to produce the lacking links. This is simply done by newly generating all P-links. 

In addition we made two changes to the theorem prover. The first one concerns the strategy of selecting the 
links to operate upon. First all demodulating paramodulation links are selected, then possible resolutions are 
done according to the selected resolution strategy, and the next steps are paramodulation steps corresponding 
to the generation of critical pairs. 

Definition 4.1 (Control Strategy) 

while empty clause is not derived 
if demodulation P-links exist 

then operate on one of them 
else if R-links exist 

then operate on this link selected by the corresponding selection function 
else if P-links exist 

then operate on one of them producing the smallest critical pair 
else error: graph collapsed 

The second change is for efficiency. When our paramodulation strategy is selected, only these paramodulation 
links are generated that are applicable in the sense of completion. In this way only P-links are generated, which 
represent critical pairs. The reduction of generated P-links is illustrated in the following table. 

Number of initial links Wos 1 Wos 2 Wos3 Wos 4 Woss Wos 6 

Using completion 5 1 16 5 12 28 
Without completion 38 21 158 68 69 161 

In the actual version of the system we lose the main advantage of connection graphs, which is the inheritance 
mechanism for links, but this idea fails for equality links, because equality operations drastically change the 
term structure. But with a (not yet implemented) link construction tool based on an indexing mechansim 
[OL80,OhI89] we think that the generation of the necessary paramodulation links enhances the advantages of 
storing this information explicitly. The strategy 4.1 is an obviously incomplete restriction strategy but very 
useful for many examples in practice where unconditional equations occur. 

A first improvement of the method is to handle demodulating P-links separately like all other clause graph 
reduction rules as for example purity, subsumption, tautolgy, replacement factoring, and replacement resolution. 
This reduces the number of performed paramodulation steps but not really the time spent for the refutation 
and in particular it does not really change the strategy. 

But of course it can be changed to a complete one such that R- and P-links are considered to have equal rights, 
that is, the same weight function is applied to both types of links. For example we can choose the link producing 
the smallest clause and adding its depth in the search space. Such a strategy is selected for the examples 5.7 
and 5.8 and given in definition 5.6. 

Now we come to the examples. The default reduction ordering for the system is a lexicographic recursive path 
ordering with the precedence * > - > + > 1 > O. We changed it for the examples 4.5 and 4.6. The selected 
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present in the graph, the  new links can be  obtained without searching by a simple inheritance process. This
inheritance was invented by R. Kowalski [Kow75] and later extended to Rl-links by M. Bruynooghe [Bru75].
For a detailed explanation of the mechanism in the MKRP-system see H. J. Ohlbach [Oh187]. The transfer to
S-links is trivial. For new literals that are not obtained by  instantiating others, for example the paramodulated
literal in a paramodulation step, this form of link inheritance does not work.

In the case of paramodulation there have also been attempts at  approaches based on links and inheritance
[SW80]. Links to be paramodulated upon do not join literals, they join one side of a positive literal with
equality predicate with an arbitrary unifiable term in another literal. They are P2—links if the other literal is in
another clause, Pl-links if they are in the same. Such a link mechanism was implemented in our system, but
unfortunately P—link inheritance can not work as this for R—links because in each resolution or paramodulation
step unifiers are applied and therefore completely new terms are generated. Hence our first task was to  repair
this inheritance mechanism to  produce the lacking links. This is simply done by  newly generating all P—links.

In addition we made two changes to the theorem prover. The first one concerns the strategy of selecting the
links to operate upon. First all demodulating paramodulation links are selected, then possible resolutions are
done according to  the selected resolution strategy, and the next steps are paramodulation steps corresponding
to the generation of critical pairs.

Definition 4.1 (Control Strategy)

while empty clause is not derived
i f  demodulation P-links exist

then operate on  one o f  them
e l se  if  B-links exist

then operate on  this link se lected  by the corresponding s e l ec t ion  function
else  i f  P-1inks exist

then operate on one o f  them producing the smallest crit ical  pair
else  error: graph collapsed

The second change is for efficiency. When our paramodulation strategy i s  selected, only these paramodulation
links are generated that are applicable in the sense of completion. In this way only P-links are generated, which
represent critical pairs. The reduction of generated P-links is illustrated in the following table.

Number of initial links W031 W032 W083 W054 W055 W036
Using completion 5 1 16 5 12 28

Without completion 38 21 158 68 69 161
In the actual version of the system we lose the main advantage of connection graphs, which is the inheritance
mechanism for links, but  this idea fails for equality links, because equality operations drastically change the
term structure. But with a (not yet implemented) link construction tool based on an indexing mechansim
[OL80,0hl89] we think that the generation of the necessary paramodulation links enhances the advantages of
storing this information explicitly. The strategy 4.1 is an obviously incomplete restriction strategy but very
useful for many examples in practice where unconditional equations occur.
A first improvement of the method is to  handle demodulating P-links separately like all other clause graph
reduction rules as for example purity, subsumption, tautolgy, replacement factoring, and replacement resolution.
This reduces the number of performed paramodulation steps but not really the time spent for the refutation
and in particular i t  does not really change the strategy.

But  of course it  can be  changed to  a complete one such that R— and P-links are considered to  have equal rights,
that is, the  same weight function is applied to  both types of links. For example we can choose the link producing
the smallest clause and adding its depth in the search space. Such a strategy is selected for the examples 5.7
and 5.8 and given in definition 5.6.

Now we come to  the examples. The default reduction ordering for the system is a lexicographic recursive path
ordering with the precedence * > — > + > 1 > O. We changed it for the examples 4.5 and 4.6. The selected



one is explained there. The number of paramodulation steps really performed is not depicted in the protocol 
and so we give it after the examples in a separate table. 

The asterisks in the protocols label the axioms and derived clauses really used in the proof. 

The first theorem states that every group with x + x =0 is commutative, and this problem is very trivial using 
the completion technique. 

Example 4.2 (Wos 1) 

Set of Axiom Clauses Resulting from Normalization 
================-=====.==============s==~=c===== 

Ai: All x:Any + =(x x) 
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x») 
* A3: All x:Any + =(+(0 x) x)
 

A4: All x:Any + =(+(-(x) x) 0)
 
* A5: All x:Any + =(+(x x) 0) 

Set of Theorem Clauses Resulting from Normalization 
=============~===--=;=================== 

Refutation: 

A5,l t 12,1 --> * P1: All x,y:Any + =(+(0 y) +(x +(x y»)
 
Pl,l I; 13 --> * RW2: All x,y:Any + =(y +(x +(x y»)
 
A5,1 t RW2,1 --> * P3: All x:Any + =(x +(x 0»
 
A5,1 t 12,1 --> * PS: All x,y:Any + =(0 +(y +(x +(y x»»
 
PS, 1 8: RW2, 1 --> * pg: All x,y:Any + =(+(y +(x y» +(x 0»
 
pg ,1 8: P3 --> * RW10: All x,y:Any + =(+(y +(x y» x)
 
R"10,l 8: R"2,1 --> * P12: All x,y:Any + =(+(y x) +(x y»
 
P12,1 8: T6,1 --> * R13: []
 

q.e.d. 

The second theorem states that the inverse of a group is an involution, and this problem is trivial too, especially 
because for a non-commutative group there exists a complete and confluent rewrite system, such that in this 
theory all purely equational theorems can be solved. 

Example 4.3 (Wos 2) 

Set of Axiom Clauses Resulting from lormalization 
=============:~~=============================== 

Ai: All x:Any + =(x x) 
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x») 
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one is explained there. The number of paramodulation steps really performed is not depicted in the protocol
and so we  give it after the examples in a separate table.

The asterisks in the protocols label the axioms and derived clauses really used in the proof.

The first theorem states that every group with :c + z = 0 is commutative, and this problem is very trivial using
the completion technique.

Example 4.2 (Was 1)

Set  of Axiom Clauses Resulting from Normalization

A1: All x:Any + =( :  x)
* A2: All  x ,y , z :Any  + - (+ (+ (z  y) x) + (z  + (y  x ) ) )
* A3: All lny + =(+(0 x)  x)

M:  All x:Any + =(+( - (x)  x) 0)
* A5: A11 sny + =(+(x : )  0)

Set  o f  Theorem Clauses Resulting from Normalization

* T6: — - (+(c-2  c_1) +(c_1 c__2))

Refutation:

55,1  t A2,1 -—> * P1: A11 x,y:Any + =(+(0 y) +(x +(x y ) ) )
P1‚1 t A3 - ->  a: m:  A11 x,y:Any + =(y +0: +0: y ) ) )
A5,1 & “2 ,1  - ->  * P3: All x:Any + =(:  +(x 0 ) )
A5,1 & A2‚1 ——> * P8: All x,y:Any + =(0 +(y +(x +(y x ) ) ) )
P8,1  & “2 .1  —-> * P9: All x,y=Any + =(+<y +(x y) )  +(x 0 ) )
P9,1 z P3 - ->  * “10: All x.y:Any + =(+(y +(x y ) )  !)
nw1o‚1 a “2 ,1  —-> * P12: A11 x ,y :Any  + =(+(y  x )  + (x  y ) )
P12‚1 : T6‚1 - ->  * R13: [ ]

q .e .d .

The second theorem states that the inverse of a. group is an involution, and this problem is trivial too, especially
because for a. non—commutative group there exists a complete and confluent rewrite system, such that in this
theory all purely equational theorems can be  solved.

Example 4 .3  (Was 2 )

Set  o f  Axiom Clauses Resulting from Normalization

A1: All sny + =(x  x)
* A2: Al l  x,y,z:Any + =(+(+(z y) :) +(z  +(y : ) ) )

10



All x:Any + =(+(0 x) x) • A3: 
All x:Any + =(+(-(x) x) 0)• A4: 

Set of Theorem Clauses Resulting from Normalization 
========================~=-======-==~=:==~======= 

Refutation: 
========== 

A4,1 i; A2,1 --> • Pi: All x,y:Any + =(+(0 y) +(-(x) +(x y»)
 
P1,1 i; A3 --> • RW2: All x,y:Any + =(y +(-(x) +(x y»)
 
A4,1 i; RW2,1 --> • P4: All x:Any + =(x +(-(-(x» 0»
 
P4,1 i; RW2,1 --> • P8: All x:Any + =(0 +(-(-(-(x») x»
 
P8,1 i; RW2,1 --> • P9: All x:Any + =(x +(-(-(-(-(x»» 0»
 
P9,1 I: P4 --> • RW10: All x:Any + =(x -(-(x»)
 
RW10,1 I: T5,1 --> • R11: []
 

q.e.d. 

The third example comes from ring theory and is therefore more complicated but not really difficult because 
the commutativity of addition is not involved and so no undirectable equations must be applied. 

Example 4.4 (Wos 3) 

Set of Axiom Clauses Resulting from Normalization 

Ai:	 All x:Any + =(x x)
 
All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
• A2: 

* A3: All x:Any + =(+(0 x) x) 
* A4: All x:Any + =(+(-(x) x) 0)
 

A5: All x,y:Any + =(+(y x).+(x y»
 
A6: All x,y,z:Any + =(*(.(z y) x) .(z *(y x»)
 

* A7: All x,y,z:Any + =(.(+(z y) x) +(*(z x) .(y x») 
* A8: All x,y,z:Any + =(.(z +(y x» +(*(z y) .(z x»)
 

All x:Any + =(.(x x) x)
 • A9: 

Set of Theorem Clauses Resulting from Normalization 
==================================== 
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* A3: A11 sny + =-(+(0 x)  x)
* A4: A11 x:Any + =(+(- (x)  x) 0 )

Set  of Theorem Clauses Resulting from Normalization

* T5: — =(—(-(c_1)) C-1)

Refutation:

A4,1  l A2,1  - -> * P1: All x ,y :Any  + =(+ (0  y) +C- (x )  + (x  y )»
P1,1 I: A3 - ->  t kHz: A11 x,y:Any + =(}! + ( - (x )  + (x  y ) ) )
A4,1 & “2 ,1  - ->  =- P4: All x:Any + =(x +( - ( - ( x ) )  0) )
134.1 I RH2‚1 - ->  * P8 .  Al l  x:Any + = (0  +( - ( - (—(x ) ) )  X))
P8,1 & RW2‚1 - ->  * P9: All x:Any + =( :  + ( - ( - ( - ( - (x ) ) ) )  0 ) )
P9 ,1  & P4  -—> * RH10: All z:Any + =(x  - (—(x ) ) )
RH10 ,1  & T5 ,1  - ->  * R11:  []

q .e .d .

The third example comes from ring theory and is  therefore more complicated but  not really difficult because
the commutativity of addition is not involved and so no undirectable equations must be applied.

Example 4.4 (Was 3 )

Set  of Axiom Clauses Resulting from Normalization

A1 A11 sny + = ( !  x)
A2. A11 x,y,z:Any + =(+(+(z y) ! )  +(z +(y x ) ) )

* A3: A11 sny + =(+(0 : )  x)
A4 A11 sny + =(+(-(x)  x) 0)
A5: A11 x ,y :Any  + =(+(y  x ) .+ (x  y ) )
A6: A11 x,y,z:Any + =( * ( * ( z  y) x) * ( z  * (y  x ) ) )

* A7: A11 x,y,z:Any + =(*(+(z y) x) +(* (z  x) ‘"(y x ) ) )
* AB: All x ,y , z :Any  + =( * ( z  +(y  x ) )  + (* (z  y )  * ( z  x ) ) )
* A9: A11 x:Any + =(*(x x) I)

Set  o f  Theorem Clauses Resulting from Normalization

* T10: - - ( * (c_ ,1  c_2) * (c_2  c__1))

11



------------------------------------------------------------------------------------------------------

Refutation: 

A4,l i; A2,l 
Pl,l i; A3 
A4,l I; RW2, 1 
P4,1 I; RW2,1 
PH,l i; RW2, 1 
P12,1 It P4 
P4,1 I; RW13 
RW13,1 I; A4,1 
P16,1 I; A2,1 
P18,1 It RW2,1 
P19,l It RW15 
RW15,1 &: A7,1 
P22,1 It RW2,1 
P23,l It A4 
A4,1 I; A7,l 
P26,1 I; RW24 
A9,l I; RW27 ,1 
P28 , 1 I; RW2, 1 
P29,1 11; RW15 
RW30,1 It RW13,1 
RW13,1 &: P31,1 
P34,l I; RW13 
RW15,l I; A8,l 
P45 , 1 I; RW2, 1 
P46!1 I; A4 
A4,1 It A8,1 
P49,1 I; RW47 
RW35,1 i; RW50, 1 
P51,1 I; A9 
RW52,l i; RW2, 1 
P53,l It RW15 
RW54 
·RW20,1 I; RS55 
A2,1 t RW61,l 
RW61,l t P66,l 
P74,1 i; A2 
A9,l t A7,1 
P85,1 i; A8 
RW86,1 t A9 
RW87,l t A8 
RW8S,1 I; A2 
RW89,l I; A9 
RW90, 1 I; RW75, 1 
P91,l I; A2 
R1l92,1 It R1l61 
R1l93,1 &: R1l61 
R1l94,1 &: Tl0,l 

--> * Pl: 
--> * RW2: 
--> * P4: 
--> * PH: 
--> * P12: 
--> * RV13: 
--> * RW15: 
--> * P16: 
--> * P18: 
--> * P19: 
--> * RW20: 
--> • P22: 
--> • P23: 

--> * RW24: 
--> * P26: 
--> * RV27: 
--> * P28: 
--> * P29: 
--> * RW30: 
--> * P31: 
--> * P34: 
--> * RW35: 
--> * P45: 
--> * P46: 
--> * RW47: 
--> * P49: 
--> * RW50: 
--> * P51: 
--> * RW52: 
--> * P53: 
--> * RW54: 
--> * RS55: 
--> * R1l61: 
--> * P66: 
--> * P74: 
--> * RV75: 
--> * P85: 
--> * RW86: 
--> * RW87: 
--> * RW8: 
--> * RW89: 
--> * RW90: 
--> * P91: 
--> * RW92: 
--> * RW93: 
--> * RW94: 
--> * R95: 

All x,y:Any + =(+(0 y) +(-(x) +(x y») 
All x,y:Any + =(y +(-(x) +(x y») 
All x:Any + -(x +(-(-(x» 0» 
All x:Any + =(0 +(-(-(-(x») x» 
All x:Any + =(x +(-(-(-(-(x»» 0» 
All x:Any + =(x -(-(x») 
All x:Any + -(x +(x 0» 
All x:Any + =(+(x -(x» 0) 
All x,y:Any + =(0 +(y +(x -(+(y x»») 
All x,y:Any + =(+(y -(+(x y») +(-(x) 0» 
All x,y:Any + =(+(y -(+(x y») -(x» 
All x,y:Any + =(*(y x) +(*(y x) *(0 x») 
All x,y:Any + =(*(0 y) +(-(*(x y» *(x y») 
All x:Any + =(*(0 x) 0) 
All x,y:Any + =(*(0 y) +(*(-(x) y) *(x y»)
 
All x,y:Any + =(0 +(*(-(y) x) *(y x»)
 
All x:Any + =(0 +(*(-(x) x) x»
 
All x:Any + =(x +(-(*(-(x) x» 0»
 
All x:Any + =(x -(*(-(x) x»)
 
All x:Any + =(*(-(x) x) -(x»
 
All x:Any + =(*(x -(x» -(-(x»)
 
All x:Any + =(*(x -(x» x)
 
All x,y:Any + =(*(y x) +(*(y x) *(y 0»)
 
All x,y:Any + =(*(y 0) +(-(*(y x» *(y x»)
 
All x:Any + -(*(x 0) 0)
 
All x,y:Any + =(*(y 0) +(*(y -(x» *(y x»)
 
All x,y:Any + -(0 +(*(y -(x» *(y x»)
 
All x:Any + -(0 +(x *(x x»)
 
All x:Any + -(0 +(x x»
 
All x:Any + -(x +(-(x) 0»
 
All x:Any + -(x -(x»
 
All x:Any + -(-(x) x)
 
All x,y:Any + -(+(y +(x y» x)
 
All x,y,z:Any + =(+(z +(y +(x +(z y»» x)
 
All x,y,z:Any + =(+(z +(+(y z) +(x y») x)
 
All x,y,z:Any + -(+(z +(y +(z +(x y»» x)
 
All x,y:Any + =(+(y x) +(*(y +(y x» *(x +(y x»»
 
All x,y:Any + =(+(y x) +(*(y +(y x» +(*(x y) *(x x»» 
All x,y:Any + =(+(y x) +(*(y +(y x» +(*(x y) x») 
All x,y:Any + =(+(y x) +(+(*(y y) *(y x» +(*(x y) x») 
All x,y:Any + =(+(y x) +(*(y y) +(*(y x) +(*(x y) x»» 
All x,y:Any + =(+(y x) +(y +(*(y x) +(*(x y) x»» 
All x,y:Any + =(+(y +(+(*(x y) x) +(y x») *(y x» 
All x,y:Any + =(+(y +(*(x y) +(x +(y x»» *(y x» 
All x,y:Any + =(+(y +(*(x y) y» *(y x» 
All x,y:Any + =(*(y x) *(x y» 
[] 

q.e.d.
 

The fourth example is another special theorem of group theory and in complexity comparable to the third one.
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Refutation:
==========

P4 ,1
P11 ,1  & 332,1
P12‚1  & P4
P4‚1  & RW13
RH13,1 & A4‚1
P16 ,1  & A2,1
P18‚1  & RH2,1
P19‚1  & RH15
RU15,1 & A7,1
P22‚1  & RW2‚1
P23 ,1  & A4
A4,1  & A7,1
P26 ,1  & RH24
59 ,1  & RH27,1
P28‚1  & RU2‚1
P29,1  l RUIS
RH30,1 & RH13‚1
“13,1 & 1231.1
P34,1 3 mm
RH15.1 l A8‚1
P45‚1 & 11:32.1
P46_‚1 t A4
“ ,1  t A8,1
949,1 & mm
RH35,1 t RH50,1
P51 ,1  & A9
RH52‚1 ! RH2,1
P53 ,1  t BH15
RW54
BHQO‚1 t 3855
A2,1 l RH61‚1
RW61‚1 l P66‚1
P74 ,1  ! A2
A9‚1 ! A7‚1
P85‚1  & A8
RH86,1 & A9
R387‚1 & A8
RH88,1 l A2
RH89‚1 1 A9
“90,1 & mns,1
P91 ,1  & A2
RU92‚1 & RWGI
RH93‚1 l RH61
RH94,1 & T10‚1

**
*!

»*
*{

.*
**

l-
{*

**
—

[*
**

ü
ifi

iü
fl

'fl
'fi

ü
—

l*
**

il
l'

l'
l-

li
'l

'*
**

-*
**

vl
"

P1:

P4 :
P11:
P12:
RU13:
RUIS:
P16:
P18:
P19:
8320:
P22:
P23:
BH24:
P26:
mm:
P28:
P29:
RH30:
P31:
P34:
RW35:
P45:
P46:
RW47:
P49:
RHSO:
P51:
RHSZ:
P53:
RH54:
R855:
3361:
P66:
P74:
RV75:
P85:
BWBS:
RUST:
3‘88:
RHBS:
RHSO:
P91:
3392:
RH93:
RH94:
R95:

A11
A11
A11
A11
A11
A11
A11
A11
A11
All
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
[]

:,yzAny + =(+(o y) +(-(x) +(x y)))
xmhny

:Any
:Any
:Any
:Any
:Any
:AnyN

N
N

N
N

N

+

+
+
+
+
+

: ‚yzAny
: ,y :Any
: ‚y :Any
: ,y :Any
: ,yzAny
::Any +

: .yüny
: ‚yzAny
: :Any

:Any
:Any
:AnJ
:Any
:AnyH

H
H

H
N

+

+
 

+
+ 

++

: ‚yzAny
: .y :Any
: :Any +

: ‚ y :Any
Lynn!
: :Any
: :Any
sny
: :Any
x:Any

+
+

+

+

+

: , y :Any
: ‚ y ‚ z :Any
: ,y , z :Any
: ‚y ‚ z :Any
my“!!! +
x,y:Any
I rwin!

x ,y :Any
x ,y :Any
x ,y :Any
x ,y :Any
: ‚yzAny
: ,yz lny
:‚yzAny

+ =(y + ( - ( : )  + ( :  y ) ) )
= ( :  + ( - ( - ( : ) )  0 ) )
=(0 + ( - ( - ( - ( : ) ) )  : ) )
= ( :  + ( - ( - ( - ( - ( : ) ) ) )  0 ) )
= ( :  - ( - ( : ) ) )
= ( :  +(x 0 ) )
=(+(x - ( x ) )  0)
+ =(0 +(y +( :  - (+ ( y  : ) ) ) ) )
+ = (+ (y  - (+ ( :  y ) ) )  + ( - ( : )  0 ) )
+ =(+(y - (+ (x  y ) ) )  - ( x ) )
+ =(*(y : )  +( * (y  :) * ( 0  : ) ) )
+ =(* (0  y) +(—(*(x y) )  * ( x  y ) ) )
=(*(0 :) 0)
+ =(* (0  y) + ( * ( - (x )  y) * (x  y ) ) )
+ =(0 + ( * ( - (y )  x) * ( y  x ) ) )
=(0 + ( * ( - ( : )  :) : ) )
= ( :  + ( - ( * ( - ( : )  : ) )  0 ) )
=( :  - ( * ( - ( : )  : ) ) )
= ( * ( - ( : )  :) - ( : ) )
=( * ( :  - ( : ) )  - ( - ( : ) ) )
= ( * ( :  - ( : ) )  :)
+ =(*(y :) +( * (y  :) * ( y  0 ) ) )
+ - ( * ( y  0) +( - ( * ( y  : ) )  * ( y  : ) ) )
' ( * ( x  0 )  0 )
+ =(*(y 0) +( * ( y  - ( : ) )  * ( y  : ) ) )
+ - (0  +( * (y  —(x)) * ( y  x ) ) )
-<0 +(x #C: : ) ) )
- (0  +(x : ) )
' ( x  + ( - ( : )  0 ) )
' ( x  - ( : ) )
= ( - ( : )  :)
+ =(+(y +( :  y) )  :)

+ =(+(z +(y + ( :  +(z y ) ) ”  :)
+ =(+(z +(+(y : )  + ( :  y ) ) )  :)
+ - (+ ( z  +(y +(z + ( :  y ) ) ) )  x)
- (+ (y  :)

+ =(+(y : )
=(+(y :)
=(+(y :)
- (+ (y  :)
=(+(y :)

=(+(y +( * ( :  y) y ) )  * ( y  : ) )
=(* (y  :) * ( x  y ) )

++
+ 

++ 
+++

q .e .d .

The fourth example is another special theorem of group theory and in complexity comparable to the third one.

12

+(*(y +(y : ) )  * ( x  +(y x ) ) ) )
+( * ( y  +(y : ) )  + ( * ( :  y) * ( x  : ) ) ) )
+(*(y +(y : ) )  + ( * ( :  y) : ) ) )
+(+(*(y y) * (y  : ) )  + ( * ( :  y) x ) ) )
+(* (y  y) + ( * (y  : )  + ( * ( :  y) : ) ) ) )
+(y +(*(y :) + ( * ( :  y) x ) ) ) )

=(+(y +(+ ( * ( :  y) :) +(y x ) ) )  * ( y  : ) )
=(+(y +( * ( :  y) + ( :  +(y x ) ) ) )  * ( y  : ) )



------------------------------------------------------------------------------------------------------

Again no unorientable equation is necessary and therefore no real problem arises. Here an additional feature 
of the Markgraf-Karl system comes into the game. It detects definitory equations and replaces the definiens 
at every occurrence by the definiendum. This is sometimes very useful because it reduces the clause set and 
especially the number of function symbols. Here A6 is taken as definition for comm and so conun is completely 
eliminated by preprocessing operations. For this example we chose the usual Knuth-Bendix ordering for the 
completion of groups [KB70] such that clause RW21 is directed from left to right. The precedence is * > - > + 
> 1 > 0 as above, and the weights are *: 1, +: 1, -: 0, 0: 0, 1: O. In this way the refutation is found 
faster, because the search space is smaller. 

Exa:mple 4.5 (Wos 4) 

Set of Axiom Clauses Resulting from Normalization 
==================================== 

* Al: All x:Any + =(x x) 
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x») 
* A3: All x:Any + =(+(0 x) x) 
* A4: All x:Any + =(+(-(x) x) 0) 
* A5: All x:Any + =(+(+(x x) x) 0) 

* A6: All x,y:Any + =(comm(y x) +(y +(x +(-(y) -(x»») 

Initial Operations on Axioms 
=====================~=~== 

A5,l t A2 --> * RW1: All x:Any + =(+(x +(x x» 0) 

Set of Theorem Clauses Resulting from Normalization 
=========:;======:====:============================ 

Initial Operations on Theorems 

T7,1 t A6 --> * RW2: - =(+(comm(c_l c_2) +(c_2 +(-(comm(c_l c_2» -(c_2»» 0) 

RW2,l t A6 --) * RW3: - =(+(+(c_l +(c_2 +(-(c_l) -(c_2»» 
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»» 

0) 

RW3,l t A2 --> * RW4: - =(+(c_l +(+(c_2 +(-(c_l) -(c_2») 
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»») 

0) 

RW4,l t A2 --> * RW5: - =(+(c_l +(c_2 +(+(-(c_l) -(c_2» 
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»»» 

0) 

RW5,l t 12 --> * Ri6: - =(+(c_l +(c_2 +(-(c_l) +(-(c_2) +(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») 
-(c_2»»») 

0) 
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Again no unorientable equation is necessary and therefore no real problem arises. Here an additional feature
of the Markgraf-Karl system comes into the game. It detects definitory equations and replaces the definiens
at every occurrence by the definiendum. This is sometimes very useful because i t  reduces the clause set  and
especially the number of function symbols. Here A6 is taken as definition for com and so com is completely
eliminated by preprocessing operations. For this example we chose the usual Knuth-Bendix ordering for the
completion of groups [KB70] such that clause M121 is directed from left to right. The precedence is * > - > +
> 1 > 0 as above, and the weights are * :  1 ,  + :  1 ,  —: O, 0 :  0 ,  1 :  0 .  In this way the refutation is found
faster, because the search space is smaller.

Example 4.5 (Wos 4 )

Set o f  Axiom Clauses Resulting fro: Normalization

A1: A11 x:Any + =(x x)
A2: A11 x,y,z:Any + =(+(+(z y) x) +(z  +(y : ) ) )
A3: A11 x:Any + =(+(0 x)  x)
A4: Al l  sny + =(+(‘(x)  x) 0)

A5: All  sny + =(+(+(x X) x) 0)
A6: All  x,y:Any + =(comn(y x) +(y +(x +( - (y)  - (x ) ) ) ) )

**
*-

**
*

Initial Operations on Axioms

AS.1 t A2 - ->  It EHI: A11 sny + - (+ (x  +(x  x ) )  0 )

Se t  o f  Theorem Clauses Resulting fro- Normalization

I t  T7:  — - (com(com(c_1  c_2) c_2) 0)

Initial Operations on Theorems

17 .1  t A6 ——> * KHZ: - =(+(comm(c_1 c_2) +(c_2 +(-(coml(c_1 c_2)) ' ( c_2 ) ) ) )  0)
“2 ,1  as A6 - ->  * nus: - =(+(+(c_1 +(c_2 +(-(c_1)  - ( c -2 ) ) ) )

+(c_2 +(-(+(c_1 +(c_2 +(-(c_1) - ( c_2 ) ) ) ) )  - ( c . . 2 ) ) ) )
0)

“3 ,1  1 A2 - ->  * mm: - =(+(c_1 +(+(c_2  + ( - ( c -1 )  - ( c_2 ) ) )
+(c_2 +(-(+(c_1 +(c_2 +(-(c_1)  - ( c_2 ) ) ) ) )  —(c_2)))))

o )

nu4,1 & A2 -—> * RUB: — =(+(c_1 +(c_2 +(+(-(c_1) - ( c_2 ) )  «
+(c_2 +(-(+(c_1 +(c_2 +(-(c_1)  - ( c_2 ) ) ) ) )  - ( c_2 ) ) ) ) ) )

0 )
“5 ,1  & A2 --> * BUS: — =(+(c_1 +(c_2 + ( - ( c -1 )  +(-(c_2) +(c_2 +(-(+(c_1 +(c_2 +( - (c_1)  - ( c_2 ) ) ) ) )

- ( c_2 ) ) ) ) ) ) )
0 )
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Re:futati.on: 
=====:==== 

A4,1 t A2,l --> * P7: All x,y:Any + -(+(0 y) +(-(x) +(x y») 
P7,1 t A3 --) * RWS: All x,y:Any + =(y +(-(x) +(x y») 
RWG,l I: RWS --> * RW9: - =(+(c_1 +(c_2 +(-(c_i) +(-(+(c_i +(c_2 +(-(c_i) -(c_2»») -(c_2»») 

0) 
A4,1 t RW8,1 --) * P14: All x:Any + =(x +(-(-(x» 0» 
RW1,1 t RWS,l --) * P15: All x:Any + =(+(x x) +(-(x) 0» 
RWl , 1 I: A2, 1 --> * P16: All x,y:Any + =(+(0 y) +(x +(+(x x) y») 
P16,l I: A2 --) * RW17: All x,y:Any + =(+(0 y) +(x +(x +(x y»» 
RW17,l t A3 --) * RW18: All x,y:Any + =(y +(x +(x +(x y»» 
RW1,1 I: RW1S,1 --) * P19: All x:Any + =(x +(x 0» 
PH,l I: P19 --> * RW20: All x:Any + =(x -(-(x») 
P15,1 I: P19 --) RW21: All x:Any + =(+(x x) -(x»* 
RW1,1 I: RW21 --) * RW22: All x:Any + =(+(x -(x» 0) 
RW22,1 I: A2,1 --) * P27: All x,y:Any + =(+(0 y) +(x +(-(x) y») 
P27,1 t A3 --> * RW28: All x,y:Any + =(y +(x +(-(x) y») 
A2, 1 I; R1l22, 1 --> * P32: All x,y:Any + =(+(y +(x -(+(y x»» 0) 
P32,1 I; R1l8, 1 --> * P33: All x,y:Any + =(+(y -(+(x y») +(-(x) 0» 
P33,1 t P19 --> * RW34: All x,y:Any + =(+(y -(+(x y») -(x» 
RW21,1 t A2,1 --> * P36: All x,y:Any + =(+(-(y) x) +(y +(y x») 
R1l34,1 I; R1l8, 1 --> * P38: All x,y:Any + =(-(+(y x» +(-(x) -(y») 
R1l9,1 t P38 --> * RW40: - =(+(c_l +(c_2 +(-(c_1) +(+(-(+(c_2 +(-(c_1) -(c_2»» -(c_1» 

-(c_2»») 
0) 

Rll40,l t P38 --> * RW4l: - =(+(c_1 +(c_2 +(-(c_1) +(+(+(-(+(-(c_l) -(c_2») -(c_2» -(c_l» 
-(c_2»») 

0) 

RW41,1 I: P38 --> * R1I42: - =(+(c_l +(c_2 +(-(c_l) +(+(+(+(-(-(c_2» -(-(c_l») -(c_2» -(c_l»
-(c_2»» ) 

0) 

RII42 , 1 t RW20 --> * RW43: - =(+(c_l +(c_2 +(-(c_i) +(+(+(+(-(-(c_2» c_1) -(c_2» -(c_l» 
-(c_2»») 

0) 
RW43 , 1 t RW20 --> * RW44: - =(+(c_1 +(c_2 +(-(c_l) +(+(+(+(c_2 c_1) -(c_2» -(c_1» -(c_2»») 0) 
RW44,1 t A2 --> * RW45: - =(+(c_1 +(c_2 +(-(c_l) +(+(+(c_2 +(c_1 -(c_2») -(c_1» -(c_2»») 0) 
Rll45 , 1 I: A2 --> * RW46: - =(+(c_1 +(c_2 +(-(c_l) +(+(c_2 +(+(c_1 -(c_2» -(c_1») -(c_2»») 0) 
RII46,1 t A2 --) * RW47: - =(+(c_1 +(c_2 +(-(c_1) +(+(c_2 +(c_l +(-(c_2) -(c_1»» -(c_2»») 0) 
RII47,1 t A2 --) * RW48: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(+(c_1 +(-(c_2) -(c_1») -(c_2»»» 0) 
RII48 , 1 I; A2 --> * RW49: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(+(-(c_2) -(c_l» -(c_2»»») 0) 
R1I49, 1 I: A2 --> * RiSO: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(-(c_2) +(-(c_l) -(c_2»»»» 0) 
A2,l I: RW21,1 --> * P51: All x,y:Any + =(+(y +(x +(y x») -(+(y x») 
P51,l I: P38 --> * RW52: All x,y:Any + =(+(y +(x +(y x») +(-(x) -(y») 
RiS2,1 I: P36,1 --> * P56: All x,y:Any + =(+(-(y) +(x +(y x») +(y +(-(x) -(y»» 
RII20,l I: P56.1 --) * P57: All x,y:Any + =(+(y +(x +(-(y) x») +(-(y) +(-(x) -(-(y»») 
P57,1 I; RW20 --) * RWS8: All x,y:Any + =(+(y +(x +(-(y) x») +(-(y) +(-(x) y») 
RW50 , 1 I: R\l58 --> • RWS9: - =(+(c_1 +(c_2 +(-(c_l) +(c_2 +(-(c_1) +(-(-(c_2» c_1»»» 0) 
RW59,1 I: R\l20 --> * RW60: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(-(c_l) +(c_2 c_1»»» 0) 
P36,1 t A2,l --> * P61: All x,y,z:Any + =(+(-(+(z y» x) +(z +(y +(+(z y) x»» 
P61,l t A2 --> * RW62: All x,y,z:Any + =(+(-(+(z y» x) +(z +(y +(z +(y x»») 
R1l62, 1 I; P38 --> * RW63: All x,y,z:Any + =(+(+(-(z) -(y» x) +(y +(z +(y +(z x»») 
RV63,1 I; A2 --> * RW64: All x,y,z:Any + =(+(-(z) +(-(y) x» +(y +(z +(y +(z x»») 
R1I60. 1 I: RW64 --> * 'R1I65: - =(+(c_1 +(c_2 +(-(c_2) +(-(-(c_1» c_1»» 0) 
Rll65, 1 I; RII20 --> * RW66: - =(+(c_l +(c_2 +(-(c_2) +(c_1 c_1»» 0) 
RW66, 1 I; RII21 --> * RW67: - =(+(c_1 +(c_2 +(-(c_2) -(c_1»» 0) 
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Refutation:

A4,1 l A2,1
P7.1  & A3
RW6‚1 & RH?

A4‚1 t nfi8,1
RU1,1 z RH8,1
RH1,1 & 12,1
P16,1 & 12
Rw17,1 : A3
Rw1,1 : aw18‚1
P14‚1 & P19
P15,1 & P19
nw1,1 & awni
Rw22,1 & 12.1
P27‚1 : A3
A2‚1 : nu22,1
P32,1 & nvs,1
PS3,1 t P19
Rw21,1 t 12,1
nua4,1 z RH8,1
nw9,1 t P38

RH40,1 & P38

RW41.1 & P38

RV42,1 t RH20

RH43,1 & R320
RH44,1 t A2
RW45‚1 t A2
RH46,1 & A2
RH47,1 & A2
RW48‚1 & A2
RH49,1 & A2
12 ,1  t RH21,1
P51,1 ! P38
RU52‚1 & P36‚1
RW20,1 & P56‚1
P57‚1  & RHZO
RH50,1 & RUSB
RW59‚1 & RU20
P36‚1  l A2‚1
P61,1 t A2
RW62,1 & P38
RW63‚1 & A2
RH60,1 & RH64
RH65,1 & RH20
RH66,1 & RH21

**
*

O
**

**
* i

**
**

**
**

**
* *

* *
* *

* *
i i

* *
* *

* *
* *

* i
*

P7:
R38:
RUB:

P14:
P15:
P16:
RH17:
RH18:
P19:
RHZO:
RH21:
RHZ2:
P27:
RH28:
P32:
P33:
RH34:
P36:
P38:
auqo:

RH41:

RH42:

R343:

3344:
RH45:
RH46:
RH47:
RU48:
RU49:
RHSO:
P51:

RH52:

P56:
P57:
RUSS:
RWSS:
RHSO:
P61:
RH62:
RH63:
RH64:
'RHSS:
RH66:
RH67:

All x‚y:Any + =(+(0 y) + ( - (x )  +(z y ) ) )
All x,y:Any + =(y +(—(x) +(z y ) ) )
- =(+(c_1 +(c_2 +(-(c_1) +(-(+(c_1 +(c_2 +(-(c_1) - (c_2) ) ) ) )  - ( c -2 ) ) ) ) )

o)
A11 x:Any + =(x + ( - ( ° (x ) )  0 ) )
All lny + =(+(x x) + ( - (x )  0 ) )
All x.y:Any + =(+(0 y) +(x +(+(x x) y ) ) )
All x,y:Any + =(+(0 y) +(z +(z +(z y ) ) ) )
All x‚y:Any + =(y +(x +(x + (z  y ) ) ) )
All x:Any + =( :  +(x 0 ) )
All sny + =(x - ( - ( x ) ) )
All sny + =(+(x x) - ( x ) )
All sny + =(+(x - ( x ) )  0)
All x,y:Any + =(+(0 y) +(z +( - (x)  ! ) ) )
All x‚y:Any + =(y +(z +( - (x)  y ) ) )
All x,y:Any + =(+(y +(z  —(+(y x ) ) ) )  o)
A11 x,y:An3 + =(+(y - (+ (x  y) ) )  +( - (x)  0 ) )
All x .y :Any  + - (+ (y  - (+ (x  y ) ) )  - ( x ) )
All x,y:Any + =(+(-(y) x) +(y +(y x ) ) )
All x,y:Any + =( - (+(y  x) )  +( - (x)  - ( y ) ) )
- =(+(c_1 +(c_2 +(-(c-1) +(+(-(+(c_2 +(-(c_1) - (c_2) ) ) )  -(c_1))

- ( c_2 ) ) ) ) )
0)

- -(+(c_1 +(c_2 +(-(c_1) +(+(+(-(+(-(c_1) - (c_2) ) )  -(c_2)) - (c -1 ) )
- (c_2 ) ) ) ) )

o)
- =(+(c_1 +(c_2 +(-(c_1) +(+(+(+(—(-(c_2)) - ( - (c_1) ) )  -(c_2)) -(c_1))

- (c_2 ) ) ) ) )
o)

- =(+(c_1 +(c_2 +(-(C-1) +(+(+(+(- ( - (c_2))  c_1) -(c_2)) - (c_1))
- ( c_2 ) ) ) ) )

0)
- =(+(c_1 +(c_2 +(-(c-1)  +(+(+(+(c_2 c_1) -(c_2))  —(c_1)) - (c_2) ) ) ) )  0)
- -(+(c_1 +(c_2 +(-(c_1) +(+(+(c_2 +(c_1 - (c_2)) )  - (c_1))  - ( c -2 ) ) ) ) )  0)
- =(+(c_1 +(c_2 +(-(c-1) +(+(c_2 +(+(c_1 - (c -2 ) )  - (C-1) ) )  - (c_2) ) ) ) )  0 )

- =(+(c_1 +(C-2 +(-(c_1) +(+(C-2 +(c_1 +(-(c_2) - (c_1) ) ) )  - ( c , 2 ) ) ) ) )  0)
- =(+(c-1 +(c_2 +(-(c_1) +(c_2 +(+(c_1 +(—(c_2) - (c_1)) )  - (c_2) ) ) ) ) )  0)
- =(+(c_1 +(c_2 +(-(c_1) +(c-2 +(C-1 +(+(-(c_2) -(c_1))  - (C -2 ) ) ) ) ) ) )  0)
- =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(-(c-2) +(-(c_1) - ( c -2 ) ) ) ) ) ) ) )  0)
All x,y:Any + - (+ (y  +(z +(y x ) ) )  - (+ (y  x) ) )
All x,y:Any + =(+(y +(x +(y x ) ) )  +( - (x)  - ( y ) ) )
All x,y:Any + =(+(-(y) +(x +(y x ) ) )  +(y +( - (x)  - ( y ) ) ) )
111 x,y:Any + =<+(y +<x +( - (y)  x ) ) )  +(- (y)  +( - (x)  —(—(y)))))
All x,y:Any + =(+(y +(z +(- (y)  x ) ) )  +(- (y)  +(—(x) y ) ) )
- -(+(c_1 +(c-2 +(-(c_1) +(c-2 +(-(c_1) +( - ( - (c_2))  c_1) ) ) ) ) )  o)
- - (+(c_1 +(c_2 +(-(c_1) +(c_2 +(-(c_1) +(c_2 c -1 ) ) ) ) ) )  o)
A11 x,y,z:Any + =(+(-(+(z y ) )  x) +(z +(y +(+(z y) x ) ) ) )
All x‚y‚z:Any + =(+( ' (+(z  y)) x) +(z +(y +(z +(y x ) ) ) ) )
All x ,y ‚z :Any  + - (+ (+ ( - ( z )  - ( y ) )  x) + (y  + ( z  + (y  + ( z  x ) ) ) ) )
All x ,y , z :Any  + =(+ ( - ( z )  + ( - ( y )  x ) )  + (y  + ( z  + (y  + ( z  x ) ) ) ) )
- =(+(c_1 +(c_2 +(-(c_2) +(—(—(c_1)) c_1)))) o)
- =(+(c_1 +(c„2  +(—(c_2) +(c_1 c_1 ) ) ) )  0 )
- =(+(c_1 +(c_2 +(-(c_2) - ( c -1 ) ) ) )  0)
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RW67,l t RW28 --) * RW68: - =(+(c_l -(c_l» 0)
 
RW68 ,1 t RW22 --) * RW69: - =(0 0)
 
RW69,l t Al,l --) * R70: [J
 

q.e.d. 

The fifth example is one in the not so widely known theory of ternary algebra and we have to say a few words 
about the problem and our proof. In most cases the theory is given with an additional axiom: a right inverse 
*(x y -(y» = x. But only one of the inverses is necessary. Normally a Knuth-Bendix reduction ordering, 
which we used for this example, sets the parentheses rightassociative so that for example a(b(c(de») is the 
normal form and not «(a b)c)d)e. In this case omitting the left inverse causes no difficulties and the theorem 
can be proved despite of the divergence of the completion algorithm. But omitting the right inverse induces 
trouble, the left side of the inverse rule cannot be unified with the left side of the equation P20. SO the other way 
of setting the parentheses must be chosen to find a proof with this method. It is a commonly used technique 
to define orderings from left to right or right to left for different operators in term rewriting. Using the left to 
right ordering and unfailing completion such that the necessary derived unorientable equations can be applied 
in both directions, increases the search space enormously such that MKRP does not find the solution. 

ExaIllple 4.6 (Wos 5) 

Set of Axiom Clauses Resulting from Normalization 
=============--=======================--===== 

Ai: All x:Any + =(x x) 
* A2: All x,y,z,u,v:Any + =(*(*(v u z) y *(v u x» *(v u *(z y x») 
* A3: All x,y:Any + =(*(y x x) x) 
* A4: All x,y:Any + =(*(y y x) y) 
* A5: All x,y:Any + =(*(-(y) y x) x) 

Set of Theorem Clauses Resulting from Normalization 
=====================================:;::= 

Refutation: 
========= 

A4,l t A2,l --) * Pl: All x,y,z,u:Any + =(*(u z *(u u y» *(u u *(x z y»)
 
Pl,l t A4 --) * RW2: All x,y,z:Any + =(*(z y *(z z x» z)
 
RW2,1 t A4 --) * RW3: All x,y:Any + =(*(y x y) y)
 
A3,1 t A2,1 --) * P7: All x,y,z,u:Any + =(*(*(u z y) x z) *(u z *(y x z»)
 
A5,1 I; P7,l --) * PS: All x,y,z:Any + =(*(*(z y -(x» x y) *(z y y»
 
P8,1 I; 13 --) * RW9: All x,y,z:Any + =(*(*(z y -(x» x y) y)
 
A4,l t P7,l --) * PlO: All x,y,z:Any + =(*(*(z y x) x y) *(z y x»
 
Pl0,1 i; RW9,1 --) * Pll: All x,y,z:Any + =(*(*(z -(y) x) y x) x)
 
RW3,l I; A2, 1 --) * P20: All x,y,z,u:Any + =(*(*(u z y) x u) *(u z *(y x u»)
 
A4,1 t P20,l --) * P23: All x,y,z:Any + =(*(*(z y x) x z) *(z y x»
 
P23,l I; Pl0,1 --) * P25: All x,y,z:Any + =(*(*(z y x) z x) *(*(z y x) x z»
 
P25,1 I; P23 --) * RW26: All x,y,z:Any + =(*(*(z y x) z x) *(z y x»
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RH67,1 l RH28
RW68‚1 ! BUZZ
RH69,1 & A1 ,1

- ->  * RHGS: - =(+ (c_1  - ( c_1 ) )  0)
--> * Russ: - =(o  0 )
--> * R70: []

q . e .d .

The fifth example is one in the not so widely known theory of ternary algebra and we have to say a few words
about the problem and our proof. In most cases the theory is given with an additional axiom: a. right inverse
*(x  y —(y)) = x .  Bu t  only one of the inverses is necessary. Normally a Knuth-Bendix reduction ordering,
which we used for this example, sets the parentheses rightassociative so that for example a(b(c(d e))) is the
normal form and not (((a b)c)d)e. In this case omitting the left inverse causes no difficulties and the theorem
can be proved despite of the divergence of the completion algorithm. But omitting the right inVerse induces
trouble, the left side of the inverse rule cannot be unified with the left side of the equation P20. So the other way
of setting the parentheses must be chosen to find a proof with this method. It  is a commonly used technique
to define orderings from left to right or right to left for different operators in term rewriting. Using the left to
right ordering and unfailing completion such that the necessary derived unorientable equations can be applied
in  both directions, increases the search space enormously such that MKRP does not find the solution.

Example 4.6 (Was 5 )

Set  o f  Axiom Clauses Resulting from Normalization

A1:
A2:
A3:
A4:
A5:

i i
i -

*4
}

All x:Any + =(x x)
All x.y.z‚u,v:Any + =(*(*(v u z)  y * (v  u x ) )  * (v  u * ( z  y : ) ) )
All x‚y:Any + =(*(y  x x) x)
All x.y:Any + =(* (y  y x) y)
All x‚y=Any  + - (* ( ‘ (y )  y x) x)

Se t  o f  Theorem Clauses Resulting from Normalization

=(* (c .1  -(c_1) c_2) c_2)

Refutation:
======E=

A4‚1 & A2‚1
P1‚1  t A4
RWZJ & A4
A3,1  & A2‚1
A5‚1 & P7 ,1
P8‚1  I: A3
A4,1  !: P7 ,1
P10‚1  & RH9,1
RW3,1 & A2 ,1
A4‚1 & P20 ,1
P23 ,1  & P10‚1
P25‚1  & P23

- ->  P1: All x‚y,z‚u:Any + =(*(u z *(u  u y) )  '"(u u *(x  z y) ) )
-—> R32: All x‚y‚z:Any + =(*(z  y * (z  z x) )  2)
- ->  “3 :  All x,y:Any + =(*(y x y) y)
- ->  P7: All x‚y‚z‚u:Any + =( * ( * (u  z y) x z) *(u  z *(y  x 2 ) ) )

P8: All x,y‚z:Any + =(*(*(z  y - ( x ) )  x y)  * (z  y y))
awe: 111 x‚y,z:Any + =(*(*(z  y - ( x ) )  x y) y)
P10: A11 x,y,z:Any + =( * ( * ( z  y x) x y) * (z  y x ) )
P11: All x‚y‚z:Any + =( * ( * ( z  - (y )  x) y x) 1:)
P20:  All x ,y , z ,u :Any  + = (* (* (u  z y)  x u) * (u  z *(y  x u) ) )
P23: All  x‚y ‚z :Any  + =(* (* (z  y x )  x z)  #(z  y x ) )
P25: All x .y,z:Any + =( * ( * ( z  y x) z x) *(* (z  y x) x 2) )
RRZS: All x‚y,z:Any + =( * ( * ( z  y x) z x) *(z  y x ) )

I | V

**
*—

lfl
l l

ö l
v—

ßfl
i i
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5 

Pll,l a RW26,l --> * P27: All x,y:Any + -(y *(x -(x) y» 
P27,1 t T6,l --> * R28: [] 

q.e.d. 

E. Lusk and R. Overbeek mentioned a sixth problem, which is probably the most famous one in equality 
3reasoning: "every ring with x = x is commutative." Many authors as for example M. Stickel [Sti84] and 

D. Kapur [KZ89] focused qn it. They used special techniques to solve it and other related problems in the 
family xn = x, especially they used completion modulo AC-unification. In particular D. Kapur developed a 
special algorithm to handle these problems very efficiently. Without AC-unification it is not feasible to solve 
this example. We shall extend our theorem prover to use AC1-unification with constraints [KK89]. 

The combination of theory unification algorithms and the Knuth-Bendix procedure seems the most promising 
way to handle unit (unconditional) equations. 

Now we come to the premised table of steps and we give the ratio number of performed steps / number 
of proof steps in a second column. Numbers smaller than one stem from the reduction steps which are not 
counted as performed paramodulations, because they are in some sense "deterministic". The third line gives 
the ratio when only completion steps in the proof are counted. The table is another hint that the completion 
process can be seen as a very straightforward lemma generation. With a corresponding selection function and 
a lookahead that should be more efficient than ours, there are almost all produced clauses useful for the proof. 

WOS t Wos2 Wosg WOS4 Wos 5 WOS6 

Steps 6 7 41 18 20 00 

Ratio with rewrites 0.75 1 0.89 0.34 1.43 00 

Ratio without rewrites 1.2 1.75 1.78 1.29 2.22 00 

The numbers of the clauses in the protocol are not related to the numbers of clauses generated during the proof, 
they get there numbers in the protocol module due to some mystery.
 

As the last point in this section we give a table to compare the runtimes for the given examples in K. Blasius'
 
system and in the Markgraf-Karl system. The time is measured in seconds and the computations were done on
 
a Symbolics 36xx. 00 means that the program cannot solve the problem.
 

WOS t Wos2 Wos3 Wos4 Wos s Wos6 

Blasius 89 40 00 00 00 00 

MKRP 25 18 546 245 312 00 

Additional Mechanisms, Orientation of Clauses 

Now the equality reasoning mechanism is combined with some other facilities of the MKRP-system as for 
example splitting, which makes it possible to formulate some problems in a more natural way, because the parts 
of the proof are proved separately. One example is 5.1. 

Example 5.1 (Splitting) 
In a group are equivalent: 

1. x+y=y+x 

2. (x+y)+(y+x)=(x+x)+(y+y) 

3. -(x + y) = -(x) + -(V) 

The three parts of a circular implication can be given as one formula and are then proved independently. 
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r11 ,1  I “26 .1  - ->  n: P27:  A11 x ,y :Any  + - (y  * (x  - (x )  y ) )
P27 ,1  ! T6‚1  - ->  * R28:  [ ]

q .e .d .

E. Lusk and R.  Overbeek mentioned a sixth problem, which is probably the most famous one in equality
reasoning: “every ring with x3 = a: is commutative.” Many authors as for example M. Stickel [Sti84] and
D. Kapur [KZ89] focused on it. They used special techniques to solve it and other related problems in the
family z"  = a:, especially they used completion modulo AC—unification. In particular D .  Kapur developed a
special algorithm to  handle these problems very efficiently. Without AC—unification it i s  not feasible to  solve
this example. We shall extend our theorem prover to use ACl—unification with constraints [KK89].

The combination of theory unification algorithms and the Knuth-Bendix procedure seems the most promising
way to handle unit (unconditional) equations.
Now we come to the premised table of steps and we give the ratio number of performed steps  / number
of  proof s t eps  in a second column. Numbers smaller than one stem from the reduction steps which are not
counted as performed paramodulations, because they are in some sense “deterministic”. The third line gives
the ratio when only completion steps in the proof are counted. The table is another hint that the completion
process can be seen as a very straightforward lemma generation. With a corresponding selection function and
a lookahead that should be more efficient than ours, there are almost all produced clauses useful for the proof.

081  082 083  034  055  ' 086

6 18 oo
rewrites 0 .75  1 0 .89  0 .34  . oo
t tes 1 1 .  . 1 00

The numbers of the clauses in the protocol are not related to  the  numbers of clauses generated during the proof,
they get there numbers in  the protocol module due to  some mystery.

As the last point in this section we give a table to compare the runtimes for the given examples in K. Bläsius’
system and in the Markgraf-Karl system. The time is measured in seconds and the computations were done on
a Symbolics 36xx. oo means that the program cannot solve the problem.

W031 W032 W053 W034 W035 W036
Bläsius 89 40 00 00 00 00
MKRP 25 18 546 245 312 oo

5 Additional Mechanisms, Orientation of  Clauses

Now the equality reasoning mechanism is combined with some other facilities of the MKRP-system as for
example splitting, which makes it possible to  formulate some problems in a more natural way, because the parts
of the proof are proved separately. One example is 5.1.

Example 5 .1  (Splitting)
In a group are equivalent:

1. x+y=y+x

2. ( r+y)+(y+z )=(z+x)+(y+y)
a—e+w=4n+4w

The three parts of a circular implication can be given as one formula and are then proved independently.
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Another feature of our theorem prover are sorts and they cause no practical trouble as long as we take care that 
the ordering is compatible with the sort structure. Of course there is an abundance of literature describing the 
combination of sorts and equality reasoning methods. J. Goguen, J .-P. Jouannaud, and J. Meseguer [GJM85], A. 
Dick [Dic85], K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer [FGJM85], M. Bidoit, and M. Glaudel 
[BG85], and J.-P. Jouannaud, and P. Lescanne [JL87] have a view from program specification on rewriting and 
sorts, the viewpoint of R. Cunningham, and A. Dick [CD85], J. Goguen, and J. Meseguer [GM85], G. Smolka, and 
collegues [SNMG87], as well as the works of J. Gallier, and T. Isakowitz [GI88)' and M. Schmidt-Schau£[SS88] 
are more theoretical. Especially [8888] must be considered when fully integrating sorts and rewriting. But 
there is also a lot of open questions in this area, in particular it is not clear how strong the restriction on the 
correlation of the reduction ordering and the sort hierarchy must be. 

One of the most powerful tools in MKRP is its dedicated clause graph reduction facility [Prii85,EOP89] and 
especially the subsumption rule is very useful in the equality reasoning context. We implemented an extended 
form, which allows a lookahead of demodulation steps such that a lot of unnecessary link generations could be 
suppressed. But there remains an enormous overhead caused by the generation of these links. 

As mentioned above simple completion and demodulation cannot be the unique mechanism to grab the problem 
of handling the equality predicate automatically. The first implication (1 ::::} 2) of example 5.1 is a suitable 
instance of such a problem. To prove 2 nothing must be done but first switching the middle pair of identifiers 
and then the right pair. But associativity can only be applied left to right and so we have an equation 
x + (y + (y + x)) = x + (x + (y + y)) and a relatively complicated proof using unfailing completion with 26 
completion and demodulation steps is generated by our theorem prover. Using AC-unification the proof consists 
of a trivial unification step, which only has to state that the two terms are equal. This shows again that theory 
unification is a powerful tool in combination with rewriting. 

Now we turn to the problem of conditional equations. In most cases they occur together with unit equations 
that can be handled by completion and rewriting. So one strategy would be to generate all "good and necessary" 
rewrite rules and then to use heuristics when applying the conditional equations. 

We shall demonstrate this principle with the following two examples taken from the theory of commutative, 
zero divisor free rings. The ring axioms are given as usual and the property that the ring has no zero divisors 
is expressed by a conditional equation "Ix, y : x· y =0 ::::} x =0 VY = 0, which can be transformed into a clause 
x . y f: 0 V x = 0 V Y =O. This is the clause in the upper right corner of the example 5.3. 

First of all we give a proof of a human mathematician and then we illustrate in example 5.3 the infeasibility of 
paramodulation and rewriting alone for such really simple problems. 

Example 5.2 (Zero Divisor Free Ring, Cancellation, Human Proof) 

Let	 a) (R, +,·,0,1) be a commutative ring with 1 and
 

b) Vx,y:x·y=O=>x=OVy=O (zerodivisorjree)
 

then Vx,y,z: x· z = y. z /\z f: O::::} x = y (cancellation) 

Proof:	 Let x, y, z E R and x . z = y . z /\ z f: 0 

=> x . z - y . z = (x - y) . z = 0 

::::} x - y = 0 because z f: 0 and b) 

=>x=y 

q.e.d. 

Next we try to depict a paramodulation proof for this example in form of a graph where the proof steps are 
labeled with D for demodulation, P for paramodulation, and R for resolution. 80metimes a D-arrow stands 
for multiple applications of demodulation rules. The proof is hand-made with the following heuristics in mind: 
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Another feature of our theorem prover are sorts and they cause no  practical trouble as long as We take care that
the ordering is compatible with the sort structure. Of course there is an abundance of literature describing the
combination of sorts and equality reasoning methods. J .  Goguen, J .-P. J ouannaud, and J .  Meseguer [GJ M85], A.
Dick [Dic85], K.  Futatsugi, J .  Goguen, J .-P. J ouannaud, and J .  Meseguer [FGJ M85], M. Bidoit, and M. Glaudel
[BG85], and J .-P. Jouannaud, and P. Lescanne [J L87] have a view from program specification on rewriting and
sorts, the viewpoint of R. Cunningham, and A. Dick [CD85], J . Goguen, and J .  Meseguer [GM85], G. Smolka, and
collegues [SNMG87], as well as the works of J.  Gallier, and T. Isakowitz [G188], and M. Schmidt—SchauB[SS88]
are more theoretical. Especially [8588] must be  considered when fully integrating sorts and rewriting. Bu t
there is also a lot of open questions in  this area, in particular i t  is not  clear how strong the restriction on the
correlation of the reduction ordering and the sort hierarchy must be.
One of the most powerful tools in MKRP is its dedicated clause graph reduction facility [Prä85,EOP89] and
especially the subsumption rule is very useful in the equality reasoning context. We implemented an extended
form, which allows a lookahead of demodulation steps such that a lot of unnecessary link generations could be
suppressed. But there remains an enormous overhead caused by the generation of these links.
As mentioned above simple completion and demodulation cannot be  the unique mechanism to grab the problem
of handling the equality predicate automatically. The first implication (1 => 2) of example 5.1 is a suitable
instance of such a problem. To prove 2 nothing must be done but first switching the middle pair of identifiers
and then the right pair. Bu t  associativity can only be  applied left to  right and so we have an equation
a: + (y + (y + x)) = z + (a: + (y + y)) and a relatively complicated proof using unfailing completion with 26
completion and demodulation steps is generated by  our theorem prover. Using AC—unification the  proof consists
of a trivial unification step, which only has to state that the two terms are equal. This shows again that theory
unification is a powerful tool in combination with rewriting.

Now we turn  t o  the problem of conditional equations. In most cases they occur together with unit equations
that can be  handled by  completion and rewriting. So  one strategy would be  to generate all “good and necessary”
rewrite rules and then to  use heuristics when applying the conditional equations.

We shall demonstrate this principle with the following two examples taken from the theory of commutative,
zero divisor free rings. The ring axioms are given as  usual and the property that the ring has no zero divisors
is expressed by a conditional equation Var, 3; : z -  y = 0 :> a: = 0V y = 0, which can be transformed into a clause
at - y 96 0 v a: = 0 V y = O. This is the clause in the upper right corner of the example 5.3.
First of all we give a proof of a human mathematician and then we illustrate in example 5.3 the infeasibility of
paramodulation and rewriting alone for such really simple problems.

Example 5 .2  (Zero Divisor Free Ring, Cancellation, Human Proof)

Let a) (R ,+ ,« ‚0 ,  1) be a commutative ring with 1 and
b) Vz,y :z -y=0=>zr=0Vy=0  (zero diviaorfree)

then Vz'‚y,z : a: - z = y . zAz  # 0 => :: = y (cancellation)

Proof: Le tm‚y , z  6R  ands -z :  y - zAzgéO

=>z-z—y.z=(m—y)-z=0
=>z~y=0  becausezgéo and 6)
=> 1: = y

q.e.d.

Next we try to  depict a paramodulation proof for this example in form of a graph where the proof steps are
labeled with D for demodulation, P for paramodulation, and R for resolution. Sometimes a D—arrow stands
for multiple applications of demodulation rules. The proof is hand—made with the following heuristics in mind:
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Use the human proof as orientation and make the proof as linear as possible and begin the linear chain with 
a clause in a rather small set of support, that is, not the whole theorem but just an essential part of it. The 
negated and Skolemized theorem consists of three clauses cb = ab, b # 0, and a # c with the Skolem constants 
a, b, and c. The most restricted set of support consists of just the conclusion of the theorem a =f: c and this 
should be the nucleus of our linear proof. The first action consisting of two paramodulation steps is to expand 
one side of the inequality by subtracting and adding the same thing, this "something" is intended to become 
a "c" so that the literal is c ;j; c and can be resolved away. This goal can almost be achieved by applying a 
rewrite rule (derived via a resolution step at the right hand side of the picture) to make a + (-y) to 0 but we 
just have a conditional rewrite rule and so we introduce a new literal. The next two steps (D and R) are done 
to activate our intention and to remove the c =f: c literal. What remains to be done is to eliminate the newly 
introduced literal, which is done straightforwardly by applying a structurally very simple equation (due to its 
lack of variables) and demodulating until resolution to the empty clause is possible. 

This proof seems to be simple but there are essential disadvantages: Rewrite rules are used in the reverse 
direction (x + 0 = x, (-y) + y = 0), paramodulation with variables is used (x + 0 = x), associativity is used 
implicitly in both directions (a + « -y) + y) = (a + (-y» + y), and a partially completed set of axioms is used 
(right identity when it is not given). 

Example 5.3 (Zero Divisor Free Ring, Cancellation, Paramodulation Proof) 

x+O=x a=l=c,'-----', 1p 

(-y)+y=o a+O=l=c b =1= 0 - y = 0 V x = 0 V xy # 0 

I lp lR 
a + (-y) + y =1= c x = 0 V xb ;j; 0 

~ 
0+ y # cV (a + (-y»b =1= 0 

In 
x = x - y =1= c V ab + - (yb) ;j; 0 

ob ~ ab aH -le:) to 
I J lp 

cb + -(cb) =1= 0 

ID 
x =x-----o =1= 0 

lR 
o 

Secondly we illustrate similar problems for a second example in the same theory. Again we begin with the 
human proof. 
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Use the human proof as orientation and make the proof as linear as possible and begin the linear chain with
a. clause in  a rather small set of support, that is, not the whole theorem but  just  an essential part of i t .  The
negated and Skolernized theorem consists of three clauses cb = ab, b 96 0, and a 96 c with the Skolem constants
a ,  b, and c. The most restricted set of support consists of  just  the  conclusion of the theorem a sé c and this
should be  the  nucleus of our linear proof. The first action consisting of two paramodulation steps i s  to  expand
one side of the inequality by  subtracting and adding the same thing, this “something” is intended to become
a “c” so that the literal is c ge 0 and can be resolved away. This goal can almost be  achieved by applying a
rewrite rule (derived via a resolution step at the right hand side of the picture) to make a + (—y) to 0 but we
just have a conditional rewrite rule and so we introduce a new literal. The next two steps (D and R) are done
to  activate our intention and to  remove the c 96 c literal. What remains to  be  done is to  eliminate the newly
introduced literal, which is done straightforwardly by applying a structurally very simple equation (due t o  its
lack of variables) and demodulating until resolution to the empty clause i s  possible.

This proof seems to be simple but there are essential disadvantages: Rewrite rules are used in the reverse
direction (a: + 0 = a:, (—y) + y = 0), paramodulation with variables is used (a: + O = a:), associativity is used
implicitly in both directions (a + ((—y) + y) = (a + (—y)) + y), and a partially completed set of axioms is used
(right identity when it is not given).

Example 5 .3  (Zero Divisor Free Ring, Cancellation, Paramodulation Proof)

z+0=z  agéc

P

( -y )+y=0  a+0¢c  b¢0—y=0Vx=0s ; é0

P R

“+( -y )+y9£c  a::OVzbgéO

P

0+y¢cV(a+(—y) )b¢0

D

: c=9 :——y; ! : cVab+- (yb ) ; é0

R

cb = ab ab+—acb) .7’: 0

P

cb+—(‘cb)7é 0

D

a: =a:—-———————0 #0

R

Cl

Secondly we illustrate similar problems for a second example in the same theory. Again we begin with the
human proof.
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Example 5.4 (Zero Divisor Free Ring, Square, Human Proof) 

Let	 a) (R,+,·,O,l) be a commutative ring with 1 and
 

b) '<Ix,y : x· y =°=? x =°Vy = 0 (zero divisor free)
 

then '<Ix : x2 - 1 = 0 =? x = 1 V x = -1 

2Proof: Let x E Rand x - 1 =° 
=? 0 = x 2 - 1 = (x - 1)· (x + 1) 

=> x-I =0 V x + 1 =0 because b) 

=> x = 1 V x =-1 

The paramodulation proof is similar to the first one. Let us restrict our attention to the main differences: 
The trick with the expansion and application of conditional x -+ °is applied twice. It is used in the last 
demodulation sequence, which additionally is very complicated relative to the one in the other proof. Another 
difference is that a further completed system of rewrite rules is needed, that is, more completion steps must be 
performed, and it cannot be decided in advance how many completion steps must be done really. 

Example 5.5 (Zero Divisor Free Ring, Square, Paramodulation Proof) 
l;fe x=x+O 

1;'-------" 
x+O=x e;f-1	 l;fe+O O=(-z)+z,'----, Ip	 !p , , 

y+(-y)=O e+O;f-1	 l:f;c+(-z)+z y=Ovx=oVYX:f;O 

, '!p	 lp I 

e+y+(-y);f-l x=oVli-O+zv(c+(-z»x;fO 
I_p_~__--..J' 

0+ (-y) i- -1 VI ¥ °+ z V (c + (-z»(c + y) ¥ ° 
lD 

x=x	 - -yi--1V1i-zV(c+(-z»(c+y);fO 

!R 
x=x	 ---- 1 i- z V (c + (-z»( c + 1) ;f 0 

!R 
(c+(-1»(c+1);fO 

ID 
c· c+ (-1) = 0 ----e· e+ (-1);f 0 

lR 
o 
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Example 5 .4  (Zero Divisor Free Ring, Square, Human Proof)

Let a} (R,+ , - ,0 ,  1) be a commutative ring with 1 and
b) Vm,y : z - y=  0 => :: =0Vy=  0 (zero divisorfree}

t heazzz—1=0=>x=1Vz=—1

Proof: Le t zeRand32—1=0
=>0=32—1=(z—1)- (z+1)
=>:c——1=0V.'c+1=0 becauseb)
: 3 :1Vx=—1

The paramodulation proof is similar to the first one. Let us restrict our attention to  the main difierences:
The trick with the expansion and application of conditional a: —> 0 is applied twice. I t  is used in  the last
demodulation sequence, which additionally is very complicated relative t o  the  one in  the other proof. Another
difference is that a further completed system of rewrite rules is needed, that is, more completion steps must be
performed, and i t  cannot be  decided in advance how many completion steps must be  done really.

Example 5 .5  (Zero Divisor Free Ring, Square, Paramodulation Proof)
1 $ c x = x + 0

P

x+0=m 675—1 1¢c+0  0= (—z)+z

P P

y+(-—y)=0 c+o‘¢—1 17Ec+(—z)+z y=0Vx=0Vyz¢0
P P

cfl—y)¢—~1 z=0V1=fi0+zV(c+(—z) )x9é0

P

0+(—y)96—1V1¢0+;V(c+(—z))(c+y)9é0
D

2 :2 :  -—— —y;£—1Vl;’:zV(c+(—z))(c+y)¢0

R

z=az —— 1;6zv(c+(—z))(c+1) ;é0

R

(c+(—1))c+1]9£0

D

c -c+ ( -—1)=0 -—-—c-c+ ( ‘—1)760

R
<
EI
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Now, what can be concluded from these examples? The intuitive way (linear paramodulation with rewriting) 
seems to lead astray, it perverts the human proof to one as complicated as possible and not as machine oriented as 
necessary. This naive approach to combine heuristics and rewriting is not really convincing. An approach using 
conditional rewriting and completion is better. G. Peterson [pet83] was the first who developped a resolution and 
paramodulation calculus which reduces to the Knuth-Bendix algorithm when only given unit equality axioms 
and theorems. M. Rusinowitch [HR86,Rus87] extended this work such that only maximal literals ofthe clauses 
must be considered for paramodulation. G. Peterson's as well as M. Rusinowitch's approaches only allow very 
restricted reduction orderings and only demodulations by unit reduction rules. H. Zhang and D. Kapur [ZK88] 
extended it to more orderings and contextual rewriting. Next we present the proofs found by Markgraf-Karl 
for our two examples using their method and strategy 5.6. 

Definition 5.6 (Advanced Control Strategy) 

while empty clause is not derived 
if R- or P-links exist 

then select the minimal link according to 
«if focus on unit clauses and not both clauses are units 

then punishment factor 
else 0 

+ (link_depth-weight * depth-of_link) 
+ (lookahead of size of clause» 

* if both parents are units
 
then reward factor
 
else 1)
 

operate on it
 
else error: graph collapsed
 

Using the Zhang-Kapur method we drastically change the resolution strategy because only on links joining 
maximal literals can be resolved or paramodulated. In this way no set-of-support or linear strategy is complete 
and in fact Markgraf-KarI now has difficulties to solve problems which were solved before. One main task in 
the future is to avoid this disadvantage. 

Example 5.7 (Zero Divisor Free Ring, Cancellation, MKRP Proof) 

Formulae given to the editor 
============================ 

Axioms: * RING * 
ALL X,Y,Z +(+(1 Y) Z) +(X +(Y Z» 
ALL X +(0 X) = X 
ALL 1 +(-(1) X) = 0 
ALL X,Y,Z *(*(1 Y) Z) = *(1 *(Y Z» 
ALL 1,Y,Z *(X +(Y Z» = +(*(X Y) *(1 Z» 
ALL X,Y,Z *(+(Y Z) X) = +(.(Y X) *(Z X» 
* WITH ONE * 
ALL 1 *(1 X) = X 
ALL X *(1 1) = X 
* ZERO DIVISOR FREE * 
ALL X,Y *(1 Y) = 0 IMPL X =0 OR Y = 0 
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Now, what can be concluded from these examples? The intuitive way (linear paramodulation with rewriting)
seems to lead astray, i t  perverts the human proof to one as complicated as  possible and not as machine oriented as
necessary. This naive approach to  combine heuristics and rewriting is not really convincing. An approach using
conditional rewriting and completion is better. G. Peterson [Pet83] was the first who developped a resolution and
paramodulation calculus which reduces to  the  Knuth-Bendix algorithm when only given unit equality axioms
and theorems. M. Rusinowitch [HR86,Rus87] extended this work such that only maximal literals of the clauses
must be  considered for paramodulation. G .  Peterson’s as well as M.  Rusinowitch’s approaches only allow very
restricted reduction orderings and only demodulations by unit reduction rules. H. Zhang and D. Kapur [ZKSS]
extended it to  more orderings and contextual rewriting; Next we present the proofs found by Markgraf-Karl
for our two examples using their method and strategy 5.6.

Definition 5 .6  (Advanced Control Strategy)

while empty clause is not derived
i f  R- or P-links exist

then select  the minimal link according to
((if focus on unit clauses and not both clauses are units

then punishment factor
e l s e  0

+ (1ink_depth_weight * depth_oi_1ink)
+ (lookahead of s ize  of clause))

* if both parents are units
then reward factor
e l se  1 )

operate on  it
e l se  error: graph col lapsed

Using the Zhang-Kapur method we drastically change the resolution strategy because only on links joining
maximal literals can be  resolved or  paramodulated. In this way no  set—of-support or  linear strategy is complete
and in fact Markgraf-Karl now has difficulties to solve problems which were solved before. One main task in
the future is to  avoid this disadvantage.

Example 5 .7  (Zero Divisor Free Ring, Cancellation, MKRP Proof)

Formulae given to  the ed i to r

Axioms: * RING *
ALL x , r , z  +(+(x Y) z) = +0: +0! 2 ) )
ALL x +<o x) = it
ALL 1: +(-(X) X) = 0
ALL x,Y,z *(* (x  Y) z )  #0! *(Y z ) )
ALL X‚Y‚Z *(X +(Y 2))
ALL X‚Y‚Z * (+ (Y  Z)  X)
* WITH ONE *
ALL x *(1  X) = X
ALL X *(X 1 )  = X
# ZERO DIVISOR FREE *
ALL X,Y * (X  Y) = 0 IHPL X = 0 OR Y = 0

+(*(X Y) *(X l ) )
+(*(Y X) *(Z X))
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Theorems:	 * CANCELLATION * 
ALL X,Y,Z *(X Y) = *(Z Y) AND NOT (Y = 0) IMPL X = Z 

Set of Axiom Clauses Resulting from Normalization 
================================================= 

* Al: All x:Any + =(x x) 

* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x») 
* A3: All x:Any + =(+(0 x) x) 
* A4: All x:Any + =(+(-(x) x) 0) 
* AS: All x,y,z:Any + =(*(*(z y) x) *(z *(y x») 
* A6: All x,y,z:Any + =(*(z +(y x» +(*(z y) *(z x») 
* A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x») 
* A8: All x:Any + =(*(1 x) x) 
* A9: All x:Any + =(*(x 1) x) 
* AI0: All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0) 

Set of Theorem Clauses Resulting from Normalization 
=====================================-=======~=~== 

* Tll: + =(*(c_2 c_l) *(c_3 c_l» 
* T12: - =(c_l 0) 
* T13: - =(c_2 c_3) 

Refutation:
 

A4,1 t A2,1 --> * Pl: All x,y:Any + =(+(0 y) +(-(x) +(x y»)
 
Pi,i ll; A3 --> * RW2: All x,y:Any + =(y +(-(x) +(x y»)
 
A4,1 ll; RW2,1 --> * P4: All x:Any + =(x +(-(-(x» 0»
 
P4,1 ll; RW2,l --> * PlO: All x:Any + =(0 +(-(-(-(x») x»
 
Pl0,l t RW2,l --> * Pit: All x:Any + =(x +(-(-(-(-(x»» 0»
 
Pit,1 t P4 --> * RW12: All x:Any + =(x -(-(x»)
 
P4,1 t RW12 --> ' * RW14: All x:Any + =(x +(x 0»
 
RW12,1 t A4,1 --> * P1S: All x:Any + =(+(x -(x» 0)
 
A3,1 t A6,1 --> * P1G: All x,y:Any + =(*(y x) +(*(y 0) *(y x»)
 
A9,1 t Pi6,l --> * P17: All x:Any + =(*(x 1) +(*(x 0) x»
 
P17,1 t A9 --> * RW18: All x:Any + =(x +(*(x 0) x»
 
RW14,1 t RW18,1 --> * P19: + =(0 *(0 0»
 
A3,1 t A7,1 --> * P21: All x,y:Any + =(*(y x) +(*(0 x) *(y x»)
 
A8,1 t P21,1 --> * P22: All x:Any + =(*(1 x) +(*(0 x) x»
 
P22,1 I; A8 --> * RW23: All x:Any + =(x +(*(0 x) x»
 
RW23,1 I: RW2,1 --> * P24: All x:Any + =(x +(-(*(0 x» x»
 
P19,1 I; AS,1 --> * P28: All x:Any + =(*(0 x) *(0 *(0 x»)
 
P28,1 I; P24,1 --> * P29: All x:Any + =(*(0 x) +(-(*(0 x» *(0 x»)
 
P29,l I; A4 --> * RW30: All x:Any + =(*(0 x) 0)
 
P28 , 1 I; RW30 --> * R\l31: All x:Any + =(*(0 x) *(0 0»
 
RW31,1 t RW30 --> * R\l32: All x:Any + =(*(0 x) 0)
 
A4,i I; A7,1 --> * P82: All x,y:Any + =(*(0 y) +(*(-(x) y) *(x y»)
 
P82, i I: RW'32 --> * R\l83: All x,y:Any + =(0 +(*(-(y) x) *(y x»)
 
RW83. 1 t RW2,1 --> * P87: All x,y:Any + =(*(y x) +(-(*(-(y) x» 0»
 
P87,1 t RW14 --> * R\l88: All x,y:Any + =(*(y x) -(*(-(y) x»)
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Theorems: * CANCELLATION *
ALL X,Y,Z *(X Y) = * (2  Y) AND NOT (Y = 0 )  IHPL X = Z

Set  o f  Axiom Clauses Resulting from Normalization

+(z +(y : ) ) )

*(z  * (y  x ) ) )
+(* (z  y )  * ( z  : ) ) )
+( * ( z  X) *(y  x ) ) )

* A1: A11 x:Any + =(x  :)
* A2: All x ,y , z :Any  + =(+(+(z  y) x)
# A3: A11 sny + - (+ (0  : )  : )
* A4: A11 sny + =(+(-(x) X) 0)
# A5: All : ‚y‚z:Any + =(*(*(z y) x)
* A6: A11 x,y,z:Any + =( * (z  +(y : ) )
* A]: All x,y,z:Any + =(*(+(z y) x)
* z All x:Any + =( * (1  : )  x)
* A9: A11 x:Any + =( * ( :  1) : )
* A10: A11 x,y:Any - “ ( * (y  : )  O) + =(y O) + =( :  0)

Set  o f  Theoren Clauses Resulting from Normalization

* T11: + =(*(c_2 c_1) *(c_3 c_1))
* T12: - =(c_1 0)
* T13: - =(c_2 c_3)

Refutation:

A4,1 z A2,1 --> * P1: All  I .y :Auy  + =(+(0 y) +(—(x) +(x y ) ) )
Pl . ]  1 A3 - ->  * R32: A11 x,y:Any + =(y +(- (x)  +(x y) ) )
A4,1 t 332,1 - ->  t P4: All  x:Any + =( :  +( - ( - ( x ) )  0) )
P4‚1  ! RH2‚1  - ->  * P10:  Al l  sny + =(0  +( ‘ (—< ‘ (X ) ) )  x) )
P10,1 t aw2,1 —-> * P11: A11 : :Any + =( :  +( - ( - (—(- (x ) ) ) )  0) )
P11,1 & P4 --> * RH12: A11 x:Any + =( :  - ( - ( x ) ) )
P4 ,1  t RUIZ - -> '  # RH14: All  : :Any  + = ( :  + ( :  0) )
Rw12.1 & 14 .1  -—> * P15: A11 x:Any + =(+(x - ( x ) )  0)
13.1 t A6,1 --> * P16: 111 x,y:Any + =(*(y x) +(*(y o) *(y x)))
A9,1  t P16 ,1  - ->  * P17: Al l  x:Any + =(* (x  1 )  +( * (x  0)  : ) )
P17 ,1  & A9 - ->  * RH18: Al l  : :Any  + =( !  +( * ( :  0 )  x) )
RW14,1  & RW18,1  - ->  * P19:  + =(0  * (0  0 ) )
A3.1  & A7 ,1  - -> # P21: A11 x ,y :Any  + =(* (y  x) + ( * (0  x) *(y  : ) ) )
A8,1  & P21 ,1  - -> * P22: A11 sny + =(* (1  : )  +( * (0  : )  : ) )
P22 ,1  & A8 - ->  * RH23:  Al l  x :Any  + =(x  +( * (0  : )  x ) )
RH23,1 t Rw2,1 --> * P24: All sny + =(x +(-(*(o x)) x))
P19 ,1  & A5,1  - -> * P28: A11 x:Any + =( * (O  : )  * (0  * (0  : ) ) )
P28,1 & P24,1 - ->  * P29: A11 x:Any + =(* (0  : )  +( - ( * (0  : ) )  * (0  : ) ) )
p29,1 & A4 - ->  * RH30: A11 sny + =(*(o : )  o)
P28‚1  & RWSO - ->  * RH31: A11  : :Any  + =( * (0  x )  *(0  0 ) )
RH31‚1 t RH30 —-> . nflazz All : :Any + =(*(o : )  0)
A4‚1 t 17 .1  ——> * P82: Al l  x,y:Any + =(*(0 y)  +(*(—(x) y) *(x  y ) ) )
p32,1 & nv32 - ->  * nusa: All :,yzAny + =(o +(*(—(y) : )  * (y  x ) ) )
RHB3‚1 ! RW2,1 - ->  * P87: A11 x,y:Any + =(*(y :) +(—(*(-(y) x) )  0 ) )
P87‚1  & RU14 - ->  t RUSS: A11  x ,y :Any  + =(* (y  I )  - ( * ( - ( y )  x ) ) )
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RW88,1 I: A4,1 --> * P97: All x,y:Any + =(+(*(y x) *(-(y) x» 0)
 
P97,1 I: RW2,1 --> * P98: All x,y:Any + =(*(-(y) x) +(-(*(y x» 0»
 
P98,1 t RW14 --> * R\l99: All x,y:Any + =(*(-(y) x) -(*(y x»)
 
A7,l a AI0,l --> * P154: All x,y,z:Any - =(+(*(z y) *(x y» 0) + =(+(z x) 0) + =(y 0)
 
TH,l t P154,l --> * P155: All x:Any - =(+(*(c_2 c_1) *(x c_l» 0) + =(+(c_3 x) 0) + =(c_1 0)
 

P155,3 t T12,l --> * R156: All x:Any - =(+(*(c_2 c_1) *(x c_1» 0) + =(+(c_3 x) 0)
 
Rll99,l t R156,l --> * P167: All x:Any - =(+(*(c_2 c_1) -(*(x c_l») 0) + =(+(c_3 -(x» 0)
 
P15,l t P167,l --> * P168: - =(0 0) + =(+(c_3 -(c_2» 0)
 
P168,1 t Al,l --> * R169: + =(+(c_3 -(c_2» 0)
 
R169,l t R\l2,1 --> * P170: + =(-(c_2) +(-(c_3) 0»
 
P170,l I: R\l14 --> * RW171: + =(-(c_2) -(c_3»
 
R\l171,l t R\l12,l --> * P172: + =(c_3 -(-(c_2»)
 
P172,l I: RW12 --> * RW173: + =(c_3 c_2)
 
RW173,l t T13,l --> * R174: [J
 

q.e.d. 

The second example is more difficult and needs a very long run time, a further detailed selection function, or 
human support. The difficulty stems from the fact that for all three literals in the formula specifying "zero 
divisor free" equality reasoning steps are necessary to resolve the literals away, whereas in example 5.7 one 
literal can be resolved without preliminary paramodulation steps (R156). The problem occurs when deriving 
P237, which is very large compared to other clauses derivable in this state of the refutation process and so the 
program first selects all smaller and useless clauses before operating on the decisive link. 

Example 5.8 (Zero Divisor Free Ring, Square, MKRP Proof) 

Formulae given to the editor 
============================ 

Axioms:	 * RING * 
ALL X,Y,Z +(+(X Y) Z) = +(X +(Y Z»
 
ALL X +(0 X) = X
 
ALL X +(-(X) X) = 0
 
ALL X,Y,Z *(*(X Y) Z) = *(X *(Y Z»
 
ALL X,Y,Z *(X +(Y Z» =+(*(X Y) *(X Z»
 
ALL X,Y,Z *(+(Y Z) X) = +(*(Y X) *(Z X»
 
* WITH ONE * 
ALL X *(1 X) = X
 
ALL X * (X 1) = X
 
* ZERO DIVISOR FREE *
 
ALL X,Y *(X Y) = 0 IMPL X = 0 OR Y = 0
 

Theorems:	 * ZEROS * 
ALL X +(*(X X) -(1» = 0 IMPL X = 1 OR X = -(1) 

Set of Axiom Clauses Resulting from Normalization 
===;:============================================ 

Al: All	 x:Any + =(x x)
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x») 
* A3: All x:Any + =(+(0 x) x) 
* A4: All x:Any + =(+(-(x) x) 0) 
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RH88,1 z A4.1 - ->  * P97: A11 x.y:Any + =(+(*(y x) * ( - ( y )  x) )  0 )
P97,1 & “ 2 .1  --> # P98: A11 x‚y:Any + =( * ( - (y )  x) +( - (* (y  x))  0 ) )
P98,1 & RH14 --> * RHQS: A11 x,y:Any + =(*(—(y) x)  - (* (y  x ) ) )
A7.1 a no .1  - ->  * P154: All x‚y,z:Any - =(+(*(z y) *(x  y ) )  0) + =(+(z x) 0 )  + =(y 0 )
T11 ,1  & P154 ,1  --> * P155:  All sny - =(+ ( * (c_2  c_1) *(x  c_1) )  O) + =(+(c_3 x)  0 )  + =(c_1  0)
P155 ,3  ! T12 ,1  - ->  * R156: All  x :Any - =(+ ( * (c_2  c_l) *(x  c_1) )  0)  + =(+(c_3  x )  0 )
Rw99,1 t R156,1 --> * P167: A11 x:Any - =(+(*(c_2 c_1) - ( # ( z  c_1))) 0)  + =(+(c_3 —(x)) 0)
P15 ,1  & P167 ,1  - ->  * P168 :  - =(0  0 )  + =(+ (c_3  - ( c_2 ) )  0)

P168 ,1  & A1‚1  - ->  * R169:  + =(+ (c_3  - ( c_2 ) )  0)
R169,1 & Rw2,1 ——> * P170: + =(—(c_2) +(-(c_3) 0) )
P170 ,1  t RHI4 —-> * RH171: + =( - (c_2 )  —(c_3))
RH171 ,1  & RW12‚1 - ->  * P172:  + =(c_3  - ( - ( c_2 ) ) )
P172‚1  & RW12 - -> * RH173: + =(c_3  c_2 )
RH173 ,1  & T13‚1  -—> * R174:  [ ]

q .e .d .

The second example is more diflicult and needs a. very long run time, a further detailed selection function, or
human support .  The difficulty stems from the fact that for all three literals in the formula specifying “zero
divisor free” equality reasoning steps are necessary to  resolve the literals away, whereas i n  example 5.7 one
literal can be  resolved without preliminary paramodulation steps (R156). The problem occurs when deriving
P237, which is very large compared to  other clauses derivable in this state of the refutation process and so the
program first selects all smaller and useless clauses before operating on the decisive link.

Example 5.8 (Zero Divisor Free Ring, Square, MKRP Proof)

Formulae given to  the editor

Axioms :  * RING *
ALL X,Y,Z  +(+(X  Y)  Z)  = +(X +(Y 2 ) )
ALL X +(0  X)  = X
ALL x +C—(X) X)  = 0
ALL X,Y,z  *(* (x  Y) z )  - *(x  * (Y 2 ) )
ALL X,Y,Z *(x +(Y 2))
ALL X.Y.z  *(+(Y z) x)
* HITH our *
ALL x *(1 x) = x
ALL x *(x 1) = x
* zrao nrvrsun FREE *
ALL x‚v *(x Y) = o IMPL x = 0 an Y = o

+(4-(x Y) * (x  2 ) )
+( * (Y  X) *(z  x ) )

Theorems:  * ZEROS *
ALL X +(*(X X) ' ( 1 ) )  = 0 IHPL X = 1 OR X = - (1 )

Se t  of Axiom Clauses Resulting from Normalization

A1: A11 x:Any + =(x x)
* A2: Al l  x,y,z:Any + =(+(+(z y) X) +(z  +(Y X)))
* A3: A11 sny + - (+ (o  x )  x)
* A4: A11 x:Any + =(+(—(x) x) 0 )
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A5: All x,y,z:Any + =(*(*(z y) x) *(z *(y x») 
* A6: All x,y,z:Any + =(*(z +(y x» +(*(z y) *(z x») 
* A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x») 
* A8: All x:Any + =(*(1 x) x) 
* A9: All x:Any + =(*(x 1) x) 
* Al0: All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0) 

Set of Theorem Clauses Resulting from Normalization 
================_==~========~=z================== 

* Tll: + =(+(*(c_l c_l) -(1» 0) 
* T12: - =(c_l 1) 
* T13: - =(c_l -(1» 

Refutation: 
========== 

A4,1 I; A2,1 --) * Pl: All x,y:Any + =(+(0 y) +(-(x) +(x y») 
Pl,l I; A3 --) * RW2: All x,y:Any + =(y +(-(x) +(x y») 
A4,1 It R\l2,1 --> * P4: All x:Any + =(x +(-(-(x» 0» 
T11,l I; A2,1 --) * PlO: All x:Any + =(+(0 x) +(*(c_l c_1) +(-(1) x») 
Pl0,1 I; A3 --) * RW11: All x:Any + =(x +(*(c_1 c_1) +(-(1) x») 
A4,1 I; R\l11,l --) * P12: + =(1 +(*(c_1 c_1) 0» 
RW2 , 1 I; RW11, 1 --) * P13: All x:Any + =(+(1 x) +(*(c_1 c_1) x» 
P12,1 I; P13 --) * RW16: + =(1 +(1 0» 
RW16,1 I; A6, 1 --) * P17: All x:Any + =(*(x 1) +(*(x 1) *(x 0») 
P17,11;A9 --) * RW18: All x:Any + =(*(x 1) +(x *(x 0») 
RW18,1 I; A9 --) * RW19: All x:Any + =(x +(x *(x 0») 
R\l19, 1 I; RW2, 1 --) * P21: All x:Any + =(*(x 0) +(-(x) x» 
P21,1 I; A4 --) * R\l22: All x:Any + =(*(x 0) 0) 
RW19,l I; RW22 --) * RW23: All x:Any + =(x +(x 0» 
P4,1 I; RW23 --) * R\l24: All x:Any + =(x -(-(x») 
P13,1 I; RW23,1 --) * P25: + =(*(c_l c_l) +(1 0» 
P25 ,1 I; RW23 --) * R\l26: + =(*(c_l c_1) 1) 
R\l24,1 I; A4,1 --> * P28: All x:Any + =(+(x -(x» 0) 
14,1 I; A6,1 --> * P32: All x,y:Any + =(*(y 0) +(*(y -(x» *(y x») 
P32,1 I; RW22 --) * R\l33: All x,y:Any + =(0 +(*(y -(x» *(y x») 
RW33 , 1 I; RW2, 1 --) * P42: All x,y:Any + =(*(y x) +(-(*(y -(x») 0» 
P42,1 I; RW23 --> * R\l43: All x,y:Any + =(*(y x) -(*(y -(x»» 
RW24,1 i R\l43,l --> * P53: All x,y:Any + =(*(y -(x» -(*(y x») 
A7,1 I; AiO,l --) * P235: All x,y,z:Any - =(+(*(z y) *(x y» 0) + =(+(z x) 0) + =(y 0) 
A8, 1 I; P235,1 --> * P236: All x,y:Any - =(+(y *(x y» 0) + =(+(1 x) 0) + =(y 0) 
A2,l I; P236,l --> * P237: All x,y,z:Any - =(+(z +(y *(x +(z y»» 0) 

+ =(+(1 x) 0) 
+ =(+(z y) 0) 

P237,1 I; A6 --> * R\l238: All x,y,z:Any - =(+(z +(y +(*(x z) *(x y»» 0) 
+ =(+(1 x) 0) 
+ =(+(z y) 0) 

A9,1 I; RW238,1 --) * P239: All x,y:Any - =(+(1 +(y +(x *(x y»» 0) 
+ =(+(1 x) 0) 
+ =(+(1 y) 0) 

RW2,l I; P239,1 --) * P240: All x:Any - =(+(1 *(x -(x») 0) + =(+(1 x) 0) + =(+(1 -(x» 0) 
P240, 1 I; P53 --> * RW241: All x:Any - =(+(1 -(*(x x») 0) + =(+(1 x) 0) + =(+(1 -(x» 0) 
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A5:
A6:
A7:
A8:
A9:
A10:

**
*-

**

Set  o f

All x,y,z:Any + =( * ( * ( z  y)  I) * ( z  * (y  ! ) ) )
A11 x,y‚z:1ny + =(+(z +(y x ) )  +(*(z  y)  * ( z  : ) ) )
A11 x,y,z:Any + =(*(+(z y) x)  +(* (z  x) * (y  : ) ) )
A11 x:Any + =(+(1 : )  x )
A11 x:Any + =(+(z 1) x)
All x,y:Any - =(*(y x) 0)  + =(y 0) + =(x 0 )

Theorem Clauses Resulting from Normalization

# T11: + =(+ ( * ( c_1  c_1) - ( 1 ) )  0)

I- T12: - =(C_1 1)
* T13: - =(c_1 - ( 1 ) )

Refutat ion:

A4‚1 & RH11‚1
RW2‚1 & RW11,1
P12 ,1  & P13
RH16,1 & A6,1
P17 ‚1  & A9
RH18.1 & A9
RH19‚1 & BH2,1
P21 ,1  & A4
RW19,1 & RU22
P4 ,1  & 8323
P13,1  & RH23,1
P25 ,1  t RH23
RH24,1 & A4 ,1
A4,1  & A6,1
P32 ,1  & RW22
RH33,1 & RW2‚1
P42,1  & RW23
RH24‚1 & RW43‚1
A7,1  & A10‚1
A8,1  & P235 ,1
A2,1  & P236,1

P237 ,1  & A6

A9,1  & RH238,1

RH2,1 & P239‚1
P240 ,1  & P53

- ->  * P1: All x,y:Any + =(+(0 y) +( - (x )  +(z  y) ) )
--> * 332: A11 x,y:Any + =(y +( - (x )  +(x y ) ) )
--> * P4: 111 x:Any + =<x +(—(—(x)) 0 ) )
- ->  * P10: 111 x:Any + =(+(o x) +(*(c_1 c_1) + ( - (1 )  x ) ) )
——> * RH11: 111 x:Any + =(x +(*(c-1  c_1) +(—(1) x ) ) )
- ->  * P12: + =(1 +(*(c_1 c_1) 0) )
- ->  t P13: All x:Any + =(+(1 x) +(*(c_1 c_1) x ) )
--> * RH16: + =(1 +(1 0 ) )
- ->  * P17: All x:Any + =(+(z 1)  +(*(x 1) * (x  0 ) ) )
——> * Rw18: 111 sny + =(*(x 1 )  +(1  * (x  0 ) ) )
- ->  * nw19: 111 sny + =(x + (z  * (x  0 ) ) )
—-> * P21: 111 x:Any + =(*(x 0) + ( - (x )  x ) )
--> * s z :  111 x:1ny + - ( * ( z  0)  0 )
-—> * RH23: All sny + =(x + (z  0 ) )
- ->  * RH24: 111 sny + - (x  - ( - (x ) ) )
- ->  * P25: + I= (" (c_1  c_1) +(1 0 ) )
—-> t EH26: + =(*(c_1 c_1) 1)
-—> * P28: 111 xz1ny + =(+(z - ( x ) )  0)
-—> * P32: A11 x,y:Any + =(* (y  o) +(*(y - ( z ) )  *(y  x ) ) )
- ->  * awas: 111 x,y:Any + - (0  +(*(y  - ( x ) )  *(y  x ) ) )
-—> * P42: All x,y:Any + =(*(y ! )  + ( - (* (y  —(x))) 0) )
—-> * RW43: A11 x,y:Any + =(*(y x)  - (* (y  - ( x ) ) ) )
-—> * P53: 111 x,y:Any + =(*(y - ( x ) )  - ( * ( y  x ) ) )
- ->  . P235: 111 z‚y ‚z :1ny - - (+ (* (z  y)  * (x  y ) )  o)  + =(+(z :) o) + =<y 0)
--> * P236: 111 x,y:Any - =(+(y * (z  y ) )  0)  + =(+(1 :) 0)  + =(y 0)
-—> * P237: 111 x,y,z:Any — =(+(z +(y * (x  +(z  y ) ) ) )  0)

+ =(+(1 x) 0 )
+ =(+(z y) 0)

--> a RH238: A11 x,y,z:Any - =(+(z +(y +(*(x z )  * (x  y ) ) ) )  0)
+ =(+(1 x) 0)
+ =(+(z y) 0)

- -> * P239: A11 x,y:Any ' =(+(1 +(y +(z  * (x  y ) ) ) )  0)
+ =(+(1 !) 0 )
+ =(+ (1  y)  0 )

- ->  # P240: All  x:Any - =(+(1 *(x  - ( x ) ) )  O) + =(+(1 :0 O) + =(+(1 - ( x ) )  0)
--> # RH241: All sny - =(+(1 - (* (x x))) 0) + =(+(1 :) 0) + =(+(1 -(x))  0)
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RW'26. 1 I; 1<W'241 , 1 --> .. P242: - =(+(1 -(1» 0) + =(+(1 c_1) 0) + =(+(1 -(c_1» 0)
 
P242.1 I; P28,1 --> .. R243: + =(+(1 c_l) 0) + =(+(1 -(c_l» 0)
 
R243,2 I; A2,1 --> .. P244: All x:Any + =(+(0 x) +(1 +(-(c_l) x») + =(+(1 c_1) 0)
 
P244,1 I; A3 --> .. RW245: All x:Any + =(x +(1 +(-(c_l) x») + =(+(1 c_l) 0)
 
P28,1 I; RV245,1 --> .. P246: + =(-(-(c_1» +(1 0» + =(+(1 c_l) 0)
 
P246,l I; RV23 --> .. RW247: + =(-(-(c_l» 1) + =(+(1 c_l) 0)
 
RV247,1 I; RV24 --> .. RW248: + =(c_l 1) + =(+(1 c_1) 0)
 
RW248,1 I; T12,1 --> .. R249: + =(+{1 c_l) 0)
 
R249,l I; RW2,1 --> .. P250: + =(c_l +(-(1) 0»
 
P250,1 I; RW23 --> .. RW251: + =(c_l -(1»
 
RW251.1 I; T13, 1 --> .. R252: []
 

q.e.d. 

The proofs found by the computer have nothing to do with the hand-made paramodulation proofs. They 
construct a solution in the opposite direction and so the usage of variable paramodulation steps is avoided. 

Conclusion 

This report was originally motivated by a programming exercise: we just wanted to implement the Knuth
Bendix method directly into the MKRP-system using the trick as described in section 4. It came to our own 
surprise, that the system now by far out performed all of its previous versions with regard to equality and 
showed results we did not expect to be so significant. 

Our conclusion is that a general equality reasoning procedure without Knuth-Bendix completion is unthinkable. 
Even if a subset of equations can be directed and completed beforehand it is still very worthwhile to have the 
completion procedure around. Almost every interesting mathematical theory has a part consisting of directable 
unit equations, albeit not "complete", and the Knuth-Bendix algorithm is the most efficient way to derive new 
interesting equations of which some are needed for almost every proof in the theory. In addition with this hard 
restriction of equation application (directed and completion) many interesting problems can be solved. In its 
constraining effect the usage of the Knuth-Bendix procedure seems to be comparable to the Waltz-effect in 
contrary to the proposition of K. Bliisius [Blii86]. The Waltz-effect is exploited in Vision for deriving consistent 
possibilities to interpret the topology of objects in a picture [Ric83b, pages 351-358]. 

But this seems to be so only for the standard completion procedure with unit equations, not for the extensions 
to arbitrary clauses. Here a heuristic approach with a strong depth search component that is orientated at 
the PROLOG strategy may be more adequate [BG90]. The problems occurring when imbedding a method for 
handling conditional completion in a resolution based theorem prover seem to be comparable to these of an 
imbedding in one based on polynomials [Den88]. 

Structure in axioms and theorems should be considered whereever this is possible but "normal" mathematical 
theories seem to have no usable structure, but at least it is not yet detected. 
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nu2s .1  n nu241 ,1  -—> . r242:  — =(+ (1  - ( 1 ) )  o)  + =(+(1  c_1) 0)  + =(+ (1  —(c_1)) 0)
P242 ,1  & P28 ,1  ——> * B243: + =(+ (1  c_1) 0)  + =(+(1  - ( c_1 ) )  o )
3243.2 & A2‚1 —-> * P244: All x:Any + =(+(o x) +(1 +(-(c_1) x ) ) )  + =(+(1 c_1) 0)
P244,1 & A3 ——> # RW245: All xznny + =(x +(1 +(-(c_1) x ) ) )  + =(+(1 c_1) 0)
P28,1 & RH245,1 - ->  * P246: + =(-(—(c_1)) +(1 0 ) )  + =(+(1 c_1) o )
P246,1 I nw23 -—> * nu247: + =(-(—(c_1)) 1)  + =(+(1 c_1) 0)
nw247,1 e RH24 -—> * RH248: + =(c_1 1) + =(+(1 c_1) o)
Rw248,1 t r12,1 -—> w R249: + =(+(1 c_1) 0)
n249,1 e nw2,1 —-> * P250: + =(c_1 +(-(1)  o) )
P25o,1 & Rw23 ——> * RH251: + =(c_1 —(1))
Rw251,1 e T13‚1 ——> * R252: [ ]

q .e .d .

The proofs found by the computer have nothing to  do with the hand-made paramodulation proofs. They
construct a solution in the opposite direction and so the usage of variable paramodulation steps is avoided.

6 Conclusion

This report was originally motivated by a. programming exercise: we jus t  wanted to  implement the Knuth-
Bendix method directly into the MKRP—system using the trick as described in section 4. It came to our own
surprise, that the system now by  far out performed all of its previous versions with regard to  equality and
showed results we did not expect to be so significant.
Our conclusion is that a general equality reasoning procedure without Knuth-Bendix completion is  unthinkable.
Even if a subset of equations can be  directed and completed beforehand it is still very worthwhile to have the
completion procedure around. Almost every interesting mathematical theory has a part consisting of directable
unit equations, albeit not “complete”, and the Knuth-Bendix algorithm is the most efficient way to derive new
interesting equations of which some are needed for almost every proof in the theory. In addition with this hard
restriction of equation application (directed and completion) many interesting problems can be solved. In its
constraining effect the usage of the Knuth-Bendix procedure seems to  be comparable to the Waltz-effect in
contrary to the proposition of K. Bläsius [315.86]. The Waltz—effect is exploited in Vision for deriving consistent
possibilities to  interpret the topology of objects in  a picture [Ric83b, pages 351-358].

But. this seems to  be  so  only for the standard completion procedure with unit equations, not for the extensions
to arbitrary clauses. Here a heuristic approach with a strong depth search component that is orientated at
the PROLOG strategy may be more adequate [BG90]. The problems occurring when imbedding a. method for
handling conditional completion in a resolution based theorem prover seem to be comparable to these of an
imbedding in one based on polynomials [Den88].
Structure in axioms and theorems should be  considered whereever this is possible but “normal” mathematical
theories seem to  have no usable structure, but at least it is not yet detected.
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