
Fo
ch

be
re

ich
In

fo
rm

at
ik

U
n

i v
e

rs
i t

ä
t

K
a

i s
e

rs
l a

u
te

rn

Po
st

fa
ch

30

49

SE
KI

-
RE

PO
RT

D
—

6
7

5
0

K
a

i s
e

rs
l a

u
te

rn

Solving Equality Reasoning Problems with a
Connection Graph Theorem Prover

Axel Präcklein

SEKI Report SR-90-O7

Solving Equality Reasoning Problems
with a Connection Graph Theorem Prover*

Axel Pracklein
Fachbereich Informatik, Universitat Kaiserslautern

Postfach 3049, D-6750 Kaiserslautern
prckln@informatik.uni-kl.de UUCP

April 18, 1990

Abstract

The integration of a Knuth-Bendix completion algorithm into a paramodulation theorem prover on
the basis of a connection graph resolution procedure is presented. The Knuth-Bendix completion idea is
compared to a decomposition approach, and some ideas to handle conditional equations are discussed. The
contents of this paper is not intended to present new material on term rewriting, instead it is more a
pleading for the usage of completion ideas in automated deduction. It records our experience with an actual
implementation of a hybrid system, where a completion procedure was imbedded into a connection graph
theorem prover, the MKRP-system, with satisfactory positive results.

Keywords: Equality reasoning, Knuth-Bendix algorithm, paramodulation, resolution.

Contents

1 Introduction 2

2 Equality Reasoning 3

3 Decomposition 5

4 Orientation of Equations in Clause Graphs 8

5 Additional Mechanisms, Orientation of Clauses 16

6 Conclusion

*This Research was supported by the Deutsche Forschungsgemeinschaft, SFB 314, D2.

24

Solving Equality Reasoning Problems
With a Connection Graph Theorem Prover*

Axel Präcklein
Fachbereich Informatik, Universität Kaiserslautern

Postfach 3049, D—6750 Kaiserslautern
prckln©informatik.uni-kl.de UUCP

April 18, 1990

Abstract

The integration of a Knuth—Bendix completion algorithm into a paramodulation theorem prover on
the basis of a connection graph resolution procedure is presented. The Knuth-Bendix completion idea is
compared to a decomposition approach, and some ideas to handle conditional equations are discussed. The
contents of this paper is not intended to present new material on term rewriting, instead i t is more a
pleading for the usage of completion ideas in automated deduction. I t records our experience with an actual
implementation of a hybrid system, where a completion procedure was imbedded into a connection graph
theorem prover, the MKRP-system, with satisfactory positive results.

Keywords: Equality reasoning, Knuth-Bendix algorithm, paramodulation, resolution.

Contents

1 Introduction 2

2 Equality Reasoning 3

3 Decomposition 5

4 Orientation of Equations in Clause Graphs ' 8

5 Additional Mechanisms, Orientation of Clauses 16

6 Conclusion 24

‘This Research was supported by the Deutsche Forschungsgemeinscluft, SFB 314, D2.

1 Introduction

The equality predicate can be described in a logical calculus by specifying the following three axioms and two
axiom schemata which are sufficient to define equality in first order logic. It is done in this or a very similar
way in all introductory books about logic like these of E. Mendelson [Men87, 3rd edition], H.-D. Ebbinghaus,
J. Flum, and W. Thomas [EFT78], and V. Sperschneider [Spe84].

Definition 1.1 (Equality Axioms)

• 'Ix: x = x (reflexivity)

• 'Ix, y: x =y ::} y =x (symmetry)

• 'Ix, y, z: x = y 1\ Y = z ::} x =z (transitivity)

• For each function symbol f and each argtlment of this function an axiom:

"Ixl' ... , x n , Y: Xi = Y ::} fXl . " Xi· .. Xn = fXl ... y ... X n

• For each predicate symbol P and each of its arguments an axiom:

"lxI, ... , X n , y: PXl ... Xi • •• X n 1\ Xi = Y ::} PXl .•• y ... X n

Of course it is very inefficient to handle the equality predicate automatically using these axioms. Hence research
on the mechanization of the equality predicate has led to a variety of different special calculi. Some of them, for
example paramodulation [RW69] and RUE-Resolution [Dig79], integrate a new rule into the existing resolution
calculus, others like E-Resolution (Mor69] and the more recent general E-unification approaches [Bla86,YS86]
ignore the context of the local equality problem and consider only equations without conditions.

There are some approaches to classify equality reasoning methods. One of them distinguishes between term
replacement and difference reduction methods [Bla86]. Term replacement works by substituting terms using
equations, difference reduction considers at least two terms and tries to make them equal by inserting equations
at top level and revising the subterms recursively for terms with the same function symbol.

The term "difference reduction" is used at two levels of abstraction. Firstly it denotes term decomposition as
explained above. This is on the same level as term replacement. Secondly it means that the whole approach is
on a higher (AI) level and reduces semantical differences [Bla86].

We propose a further classification according to the axioms and theorems containing the equality predicate but
we shall not focus on it in this paper. It concerns the structure of equations with regard to similarity of their left
and right hand sides, and with accordance to similarities between whole equations. Commutativity for example
is an axiom, which is itself structured in the sense that its left and right hand side are very similar. The single
axioms for left and right zero however are examples for formulae without such a structure. Corresponding
properties can be attached to theorems. Additionally theorems can be classified according to their relation to
axioms. Especially induction theorems have themselves structure and a strong relation to their hypotheses (for
example x(y + z) = xy + xz ::} (x + l)(y + z) = (x + l)y + (x + l)z) [Hut89]. Another dimension for the
classification is whether there is just one theorem or several theorems. Many theorems can occur when equality
is imbedded in a resolution prover via E-Resolution, namely one for each pair of literals with the same predicate
and opposite sign.

This classification induces corresponding reasoning methods. Structure in the axioms induces the usage of a
decomposition approach, structure in the theorems induces special transformation methods [Hut89]. Many
theorems in combination with structured axioms induce a graph based decomposition method to store partial
solutions to be shared such that they can be used at different positions. In the unstructured case rewriting
should bring the literals to normal form, and then they should be unifiable.

2

1 Introduction

The equality predicate can be described in a logical calculus by specifying the following three axioms and two
axiom schemata which are sufficient to define equality in first order logic. It is done in this or a. very similar
way in all introductory books about logic like these of E . Mendelson [Men87, 3rd edition], II.—D. Ebbinghaus,
J . Flum, and W. Thomas [EFT78], and V. Sperschneider [Spe84].

Definition 1.1 (Equality Axioms)

. V:: : a: = a: (reflexivity)

Vx,y : z=y => y=z (symmetry)

Vx,y,z : x = g A y = z => a: = z (transitivz'ty)

For each function symbol f and each argument of this function an aziom:
Vx1 , . . . , z , , , y : : c . -=y=>f : l : 1 . . . : c . - . . . : t , .= f : c1 . . . y . . . : c , 1

For each predicate symbol P and each of its arguments an axiom:

Vxl , . . . ‚ x ‚„y : P131 . . . : c , - . . . a : , .Az , -=y=>P31 . . . y . . . : c , ,

Of course i t is very inefficient to handle the equality predicate automatically using these axioms. Hence research
on the mechanization of the equality predicate has led to a variety of different special calculi. Some of them, for
example paramodulation [RW69] and RUE-Resolution [Dig79], integrate a new rule into the existing resolution
calculus, others like E—Resolution [Mor69] and the more recent general E—unification approaches [Blä86‚Y386]
ignore the context of the local equality problem and consider only equations without conditions.
There are some approaches to classify equality reasoning methods. One of them distinguishes between term
replacement and difference reduction methods [B1586]. Term replacement works by substituting terms using
equations, difference reduction considers at least two terms and tries to make them equal by inserting equations
at top level and revising the subterms recursively for terms with the same function symbol.

The term “difference reduction” is used at two levels of abstraction. Firstly i t denotes term decomposition as
explained above. This is on the same level as term replacement. Secondly it means that the whole approach is
on a higher (AI) level and reduces semantics] differences [B1586].
We propose a further classification according to the axioms and theorems containing the equality predicate but
we shall not focus on it in this paper. I t concerns the structure of equations with regard to similarity of their left
and right hand sides, and with accordance to similarities between whole equations. Commutativity for example
is an axiom, which is itself structured in the sense that its left and right hand side are very similar. The single
axioms for left and right zero however are examples for formulae without such a structure. Corresponding
properties can be attached to theorems. Additionally theorems can be classified according to their relation to
axioms. Especially induction theorems have themselves structure and a. strong relation to their hypotheses (for
example a:(y + z) = my + 32 => (:1: + 1)(y + z) = (::: + 1)y + (z + 1)z) [Hut89]. Another dimension for the
classification is whether there is just one theorem or several theorems. Many theorems can occur when equality
is imbedded in a resolution prover via E-Resolution, namely one for each pair of literals with the same predicate
and opposite s ign.

This classification induces corresponding reasoning methods. Structure in the axioms induces the usage of a
decomposition approach, structure in the theorems induces special transformation methods [Hut89]. Many
theorems in combination with structured axioms induce a graph based decomposition method to store partial
solutions to be shared such that they can be used at different positions. In the unstructured case rewriting
should bring the literals to normal form, and then they should be unifiable.

/ / _ 2 ” /

2

But the most interesting case of equality reasoning is when conditional equations occur. All advanced equality
reasoning methods mentioned above are led astray when formulae like A :::} x = y or A:::} x = c (see examples
5.2 and 5.4) are among the axioms. Such conditional equations are typical for real situations and neither do
they have structure nor are they directable, and there is no reason to believe that the "equality problem" is
solved when a satisfactory procedure for handling the unit equations is found.

Nevertheless we also focus our attention on sets of unit equations because these theories are so far better
researched and must be the entry point for an efficient and powerful equality prover.

Equality Reasoning

Research on the mechanization of the equality predicate can be classified into three areas: unification theory,
the development of special deduction rules for equality, and term rewriting systems. We shall briefly sketch the
work in these areas.

Unification The simplest case of working with equality is to make two objects equal by the replacement of
subobjeets by others. Unification is the process to find a uniform replacement for the variables in terms such
that these terms become syntactically equal, which means that they can be written as the same string. The
endomorphism describing the replacement for the variables is called a substitution. A unifier is a substitution
that makes the terms equal. {x 1-+ b, y 1-+ a}, for example, is a unifier of f(x, a) and f(b, y). In the following we
often discard the parentheses of the terms, when the arities of the function symbols are clear.

To come closer to the mathematical equality relation the notion of unification can be extended to E-unification,
where a set E of equations is given as axioms, which induce an equivalence relation that is written =E. An
example for a unifier of f(a,x) and f(b,y) under the theory E={f(x,y) = f(y,x)} ofcommutativity is {x 1-+

b,Yl-+a}.

In general a unification problem can have more than one solution. J. Robinson [Rob65] proved that in the case
with empty E there exists (up to renaming of variables) a unique most general unifier representing the whole set
of solutions whenever this set is not empty. In arbitrary theories there is not necessarily such a representative
unique unifier. The next step was to extend the concept to sets of unifiers, which fulfill the requirements to
be correct, complete, and minimal. But there are theories for which such sets do not exist. Hence equational
theories can be classified as to whether for each unifiable set of terms the set of most general unifiers has only
one element, is finite, infinite, or does not exist at all [Sie88]. The corresponding theories are called unitary,
finitary, infinitary, and nullary.

One task in unification theory is to develop algorithms to compute sets of unifiers. A universal unification
algorithm is one working for all theories, usually this notion is also used for algorithms handling whole classes
of theories. One main goal in this area is to combine known unification algorithms for special theories to
new ones for more complex theories. However there are problems: for example the algorithms for associative
unification and commutative unification could not be combined to an algorithm for theories that have both
properties, and this is the case for almost all theories. In general a new algorithm must be designed for such
combined theories. Currently the most advanced approach is M. Schmidt-SchauB' method for the combination
of unification algorithms [S887]. It works for arbitrary disjunct theories and free function symbols.

Deduction A general purpose deduction system must handle all combinations of equations, even if they occur
together with other predicates in the same formula, as for example in 'In: Even(n) {:> (3m: n =2m).

The handling of equality via the axioms in definition 1.1 is very inefficient and hence J. Darlington [Dar68], E.
Siebert [Sib69], J. Robinson [Rob65], and G. Robinson and L. Wos [RW69] incorporated the equality relation
into automated deduction systems by designing new inference rules. The best known inference rule is paramod
ulation, which works on two clauses where one of them contains an equality literal. One side of the equation
must be unifiable with a term t in the other clause by a substitution u. Then the paramodulant consists of all

3

But the most interesting case of equality reasoning is when conditional equations occur. All advanced equality
reasoning methods mentioned above are led astray when formulae like A => 3: = y or A => x = c (see examples
5.2 and 5.4) are among the axioms. Such conditional equations are typical for real situations and neither do
they have structure nor are they directable, and there is no reason to believe that the “equality problem” is
solved when a satisfactory procedure for handling the unit equations is found.

Nevertheless we also focus our attention on sets of unit equations because these theories are so far better
researched and must be the entry point for an efficient and powerful equality prover.

2 Equality Reasoning

Research on the mechanization of the equality predicate can be classified into three areas: unification theory,
the development of special deduction rules for equality, and term rewriting systems. We shall briefly sketch the
work in these areas.

Unification The simplest case of working with equality is to make two objects equal by the replacement of
snbobjects by others. Unification is the process to find a uniform replacement for the variables in terms such
that these terms become syntactically equal, which means that they can be written as the same string. The
endomorphism describing the replacement for the variables is called a substitution. A unifier is a substitution
that makes the terms equal. {:3 H b, y H a}, for example, is a unifier of f(:r, a) and f(b, y). In the following we
often discard the parentheses of the terms, when the arities of the function symbols are clear.
To come closer to the mathematical equality relation the notion of unification can be extended to E-unification,
where a set E of equations is given as axioms, which induce an equivalence relation that is written =E. An
example for a unifier of f(a,:n) and f(b, y) under the theory E={f(:c,y) = f (y ‚ z) } of commutativity is {m H
b,y H a}.
In general a unification problem can have more than one solution. J. Robinson [Rob65] proved that in the case
with empty E there exists (up to renaming of variables) a unique most general unifier representing the whole set
of solutions whenever this set is not empty. In arbitrary theories there is not necessarily such a representative
unique unifier. The next step was to extend the concept to sets of unifiers, which fulfill the requirements to
be correct, complete, and minimal. But there are theories for which such sets do not exist. Hence equational
theories can be classified as to whether for each unifiable set of terms the set of most general unifiers has only
one element, is finite, infinite, or does not exist at all [Sie88]. The corresponding theories are called unitary,
finitary, infinitary, and nullary.

One task in unification theory is t o develop algorithms to compute sets of unifiers. A universal unification
algorithm is one working for all theories, usually this notion is also used for algorithms handling Whole classes
of theories. One main goal in this area is to combine known unification algorithms for special theories to
new ones for more complex theories HOWever there are problems: for example the algorithms for associative
unification and commutative unification could not be combined to an algorithm for theories that have both
properties, and this is the case for almost all theories. In general a new algorithm must be designed for such
combined theories. Currently the most advanced approach is M. Schmidt-SchauB’ method for the combination
of unification algorithms [SS87]. It works for arbitrary disjunct theories and free function symbols.

Deduction A general purpose deduction system must handle all combinations of equations, even if they occur
together with other predicates in the same formula, as for example in Vn : Even(n) er (Elm : n : 2m).
The handling of equality via the axioms in definition 1.1 is very inefficient and hence J. Darlington [Dar68], E.
Siebert [Sib69], J. Robinson [Rob65], and G. Robinson and L. Wos [RW69] incorporated the equality relation
into automated deduction systems by designing new inference rules. The best known inference rule is paramod-
ulation, which works on two clauses where one of them contains an equality literal. One side of the equation
must be unifiable with a term t in the other clause by a substitution 0'. Then the paramodulant consists of all

literals of the two clauses without the equality literal after replacing the term t by the other side of the equation
and applying the substitution <T to all literals of the new clause. R. Kowalski showed [Kow75] that using the
paramodulation rule enhances the power of deduction systems.

Paramodulation is a deduction rule that is applicable 'almost everywhere' making search graphs very bushy
[Bun83], and so it should only be used if the result is of overriding importance for other arguments in the proof.

To transt:orm two literals into resolvable ones using equations is the motivation of E-Resolution [Mor69] and
RUE-Resolution [Dig79] and we shall come back to this type of reasoning in section 3.

Rewriting The observation that equations can be 'applied' to terms led to a term replacement approach
for the treatment of the equality relation. To obtain an algorithm to prove the equality of two terms one can
successively apply equations to the terms. Such an algorithm only decides the equality of the terms but can
not make them equal by computing an instantiation of their variables as required for resolution based systems.
The main idea is to consider the equations as rules that can only be applied in one direction. The direction is
determined by an ordering on the set of terms.

A method to decide the equality of two terms under special equality theories can then be obtained by "reducing"
the terms to a unique normal form using the directed equations. The theory axioms must obey certain conditions,
they must be confluent and Noetherian, to ensure completeness and termination of the decision procedure. The
equations defining the theory must be directable and must have the properties above or it must be possible
to add other equations such that the new system is equivalent to the old one and has the desired properties.
This procedure developed by D. Knuth and P. Bendix [KB70] is called completion. The new system of directed
equations constitutes a set of rewriting rules.

When computing a normal form of a term all situations where two rules can be applied to derive different
successors are dangerous because it must be ensured that both cases later on lead to the same normal form. D.
Knuth and P. Bendix showed that it is enough to consider critical pairs between rules and to add corresponding
equations to ensure this property. Critical pairs can be constructed from two rules or two instances of the same
rule if the left hand sides of the rules overlap, that means that some subterm of the left hand side can be unified
with the other left hand side. One term of the critical pair is the right hand side of the first rule with the unifier
applied to it. For the other term the unifiable subterm in the one left hand side is replaced by the other right
hand side and again the unifier is applied to the result.

In principle the Knuth-Bendix completion algorithm then works as follows [KB70,H080,Buc85,Der87,JL87]:
Beginning with a set of undirected equations, an empty set of directed rules, and a reduction ordering it tries
to derive a convergent set of rules from the equations. It applies the following steps until no equations remain:
Take an equation, apply all rules to the equation, direct the equation according to the given reduction ordering,
and put it into the set of rules. Generate all critical pairs, that is, terms for which rule applications overlap,
between the new rule and the set of rules and put them into the set of equations. If this algorithm terminates,
it produces a set of rules that can be used to decide the equality of arbitrary terms of the given theory.

A rule is applicable to a term if the left hand side of the rule matches the term or a subterm of it. If a rule
is applied to an object with subterms to which it is applicable, then these are replaced by the right hand side
of the rule with the matcher applied to it. In the field of Automated Deduction the application of the rules is
often called demodulation [WRCS67,WOLB84] and we will use this term here too.

Of course there are interrelations between unification theory and term rewriting systems and one goal is to
combine rewriting techniques and unification algorithms.

Some results of the research in term rewriting systems led to universal unification algorithms restricted to so
called confluent or canonical theories. F. Fages (Fag83], J. HuUot [HuI80], J.-P. Jouannaud, C. Kirchner, H.
Kirchner [JKK83], J. You, P. Subramayou (YS86], A. Martelli, C. Moiso, G. Rossi (MMR86], and C. Kirchner
[Kir85] defined systems for this purpose.

4

literals of the two clauses without the equality literal after replacing the term t by the other side of the equation
and applying the substitution « to all literals of the new clause. R . Kowalski showed [Kow75] that using the
paramodulation rule enhances the power of deduction systems.

Paramodulation is a deduction rule that is applicable ‘almost everywhere’ making search graphs very bushy
[Bun83], and so it should only be used if the result is of overriding importance for other arguments in the proof.
To transform two literals into resolvable ones using equations is the motivation of E—Resolution [Mor69] and
RUE—Resolution [Dig79] and we shall come back to this type of reasoning in section 3.

Rewriting The observation that equations can be ‘applied’ to terms led to a term replacement approach
for the treatment of the equality relation. To obtain an algorithm to prove the equality of two terms one can
successively apply equations to the terms. Such an algorithm only decides the equality of the terms but can
not make them equal by computing an instantiation of their variables as required for resolution based systems.
The main idea is to consider the equations as rules that can only be applied in one direction. The direction is
determined by an ordering on the set of terms.

A method to decide the equality of two terms under special equality theories can then be obtained by “reducing”
the terms to a unique normal form using the directed equations. The theory axioms must obey certain conditions,
they must be confluent and Noetherian, to ensure completeness and termination of the decision procedure. The
equations defining the theory must be directable and must have the properties above or it must be possible
to add other equations such that the new system is equivalent to the old one and has the desired properties.
This procedure developed by D . Knuth and P. Bendix [KB70] is called completion. The new system of directed
equations constitutes a set of rewriting rules.
When computing a normal form of a term all situations where two rules can be applied to derive different
successors are dangerous because it must be ensured that both cases later on lead to the same normal form. D .
Knuth and P. Bendix showed that i t is enough to consider critical pairs between rules and to add corresponding
equations to ensure this property. Critical pairs can be constructed from two rules or two instances of the same
rule if the left hand sides of the rules overlap, that means that some subterm of the left hand side can be unified
with the other left hand side. One term of the critical pair is the right hand side of the first rule with the unifier
applied to it. For the other term the unifiable subterm in the one left hand side is replaced by the other right
hand side and again the unifier is applied to the result.
In principle the Knuth—Bendix completion algorithm then works as follows [KB70,H080,Buc85,Der87,JL87]:
Beginning with a set of undirected equations, an empty set of directed rules, and a reduction ordering i t tries
to derive a convergent set of rules from the equations. It applies the following steps until no equations remain:
Take an equation, apply all rules to the equation, direct the equation according to the given reduction ordering,
and put i t into the set of rules. Generate all critical pairs, that is, terms for which rule applications overlap,
between the new rule and the set of rules and put them into the set of equations. If this algorithm terminates,
it produces a set of rules that can be used to decide the equality of arbitrary terms of the given theory.
A rule is applicable to a term if the left hand side of the rule matches the term or a subterm of it. If a rule
is applied to an object with subterms to which it is applicable, then these are replaced by the right hand side
of the rule with the matcher applied to it. In the field of Automated Deduction the application of the rules is
often called demodulation [WRCSG7,WOLB84] and we will use this term here too.
Of course there are interrelations between unification theory and term rewriting systems and one goal is to
combine rewriting techniques and unification algorithms.
Some results of the research in term rewriting systems led to universal unification algorithms restricted to so
called confluent or canonical theories. F. Fages [Fag83], J. Hullot [Hu180], J .-P. Jouannaud, C. Kirchner, H.
Kirchner [JKK83], J . You, P. Subramayou [YS86], A. Martelli, C . Moiso, G . Rossi [MMRSG], and C . Kirchner
[Kir85] defined systems for this purpose.

3

Sometimes special theory unification algorithms are used in completion systems. Such a method was used for
example by M. Stickel (Sti85] to prove ring commutativity from x 3 :::: x. We shall recourse to this point in
section 5.

There are also interrelations between special deduction rules and rewriting systems; we shall come back to them
in section 5 too.

Decomposition

Decomposition was first used by J. Herbrand in his thesis [Her30]. With this concept we mean the method to
derive unifiers for the subterms of the given terms and to combine these solutions to solve the equality problem
for the whole terms. A. Martelli and U. Montanari (MM82] exploited this 'divide and conquer' strategy for an
alternative to the unification algorithm of J. Robinson [Rob65]. The kernel of the unification algorithm based
on decomposition is given in definition 3.1.

Definition 3.1 (Unification by Transformation Rules)
A unification problem is a set of equations. It is in solved form when each equation has the form x :::: t with x

not occurring anywhere else in the equation set. The following rules are performed on a set of equations until
no rule is applicable. If the system is in solved form in this final situation the derived set of equations represents
a solution, else no solution exists.

1.	 Switching: Replace an equation t:::: x by x:::: t.

2.	 Deletion: Delete t :::: t.

3.	 Decomposition: Replace f81 ... Sn = ft1 ... t n by Sl :::: t1,"" Sn :::: in.

4.	 Elimination: replace all occurrences of x by t in all other equations if x :::: t is an equation where x does
not occur in t.

A. Martelli and U. Montanari refined this version using special datastructures and labelings and obtained
an almost linear unification algorithm. Of course they used another representation of unifiers because the
exponentiality of Robinson-unification stems from the term replacement property of idempotent unifiers.

One advantage of the usage of nondeterministic rules is that the order of operations is easier to control and
unessential conditions need not be checked in the control mechanism. This can make correctness and complete
ness proofs for theory unification algorithms much easier.

C. Kirchner [Kir85] invented a conceptual framework to include special equality theories in such a rule based
algorithm. J. Gallier [GS86,GS89] and K. Bliisius [Bla,86] concurrently described universal unification algorithms
via rules. J. Gallier used a Martelli-Montanari-like version for the pure unification part, whereas K. Blasius
unifies with a Robinson procedure. In addition K. Blasius' approach is more implementation oriented and
proposes special graph structures for storing the information about the unification state.

The basis for our work was the system of K. Blasius and so we implemented an improved version of his rule
system, where the Robinson rules are replaced by Martelli-Montanari-rules because these fit better into the
general framework.

We demonstrate the usage of the rules with the help of a classical example, namely that - - x = x in a group.
Unsolved subproblems are indicated by dashed lines, solved subproblems by complete lines labeled with unifiers.
Equality chains are written in the text term! - 11 = r1 - ... - In :::: rn - term2, two terms concatenated
with - must always have the same function symbol or must be variables, no equation is allowed to occur more
than once in one chain.

5

Sometimes special theory unification algorithm are used in completion systems. Such a method was used for
example by M. Stickel [Sti85] to prove ring commutativity from m3 = x . We shall recourse to this point in
section 5.
There are also interrelations between special deduction rules and rewriting systems; we shall come back to them
in section 5 too.

3 Decomposition

Decomposition was first used by J. Herbrand in his thesis [Her30]. With this concept We mean the method to
derive unifiers for the subterms of the given terms and to combine these solutions to solve the equality problem
for the whole terms. A. Martelli and U. Montanari [MM82] exploited this ‘divide and conquer’ strategy for an
alternative to the unification algorithm of J . Robinson [Rob65]. The kernel of the unification algorithm based
on decomposition is given in definition 3.1.

Definition 3.1 (Unification by Transformation Rules)
A unification problem is a set of equations. It is in solved form when each equation has the form z = t with a:

no t occurring anywhere else in the equation set. The following rules are performed on a. se t of equations until
no rule is applicable. If the system is in solved form in this final s i tuat ion the derived se t of equations represents
a solution, else no solution exists.

1. Switching: Replace an equation t = .v by a: = t .

Deletion: Delete t = t .

Decomposition: Replace f s l . . . s„ : f t l . . . t,1 by 31 = t1 , . . . , s,. = t n .

”5
5°

!“

Elimination: replace al l occurrences of:: by t in all o ther equations ifs = t is an equation where :: does
not occur in t .

A . Martelli and U . Montanari refined this version using special datastructures and labelings and obtained
an almost linear unification algorithm. Of course they used another representation of unifiers because the
exponentiality of Robinson-unification stems from the term replacement property of idempotent unifiers.

One advantage of the usage of nondeterministic rules is that the order of operations is easier to control and
unessential conditions need not be checked in the control mechanism. This can make correctness and complete-
ness proofs for theory unification algorithms much easier.

C . Kirchner [Kir85] invented a conceptual framework to include special equality theories in such a rule based
algorithm. J . Gallier [GSS6,G589] and K. Bläsius [B1ä86] concurrently described universal unification algorithms
via rules. J. Gallier used a Martelli-Montanari—like version for the pure unification part , whereas K. Bläsius
unifies with a Robinson procedure. In addition K . Blasius’ approach is more implementation oriented and
proposes special graph structures for storing the information about the unification state.
The basis for our work was the system of K. Bläsius and so we implemented an improved version of his rule
system, where the Robinson rules are replaced by Martelli-Montanari—rules because these fit better into the
general framework.

We demonstrate the usage of the rules with the help of a classical example, namely that —- -— :1: = a: in a group.
Unsolved subproblems are indicated by dashed lines, solved subproblems by complete lines labeled with unifiers.
Equality chains are written in the text terml — 11 = r1 —— . . - —— 1,, = r,1 -— termz, two terms concatenated
with — must always have the same function symbol or must be variables, no equation is allowed to occur more
than once in one chain.

“

Example 3.2 (Group, Involution)
- - a	

is the initial termgraph, that is, - - a and a are to be made equal. The dashed line
indicates the problem to be solved.

a

- - a	 - - a
is the graph after the insertion The first and fourth subproblems
of the equality chain 11, = +11,0 are solved, the second and third /uH_-a
+x+yz = ++xyz - +Ov = v.	 are decomposed again into sub

-it = fUO	 Four subproblems indicated by problems, where two of them can
the dashed lines must be solved u./t~x be trivially solved. Note that
and their solutions must be com/., the subproblems 0 = +yz and

+x+yz = t+xyz bined to solve the whole problem.	 +xy = 0 are structurally equal.
+x+yz ~:~7~ ZThe chains to be inserted must

have the property that the terms
 ./
of each arising subproblem have

+Ov = ~	 +Ov = V
the same top level symbol. In
this case: 11, -	 -, + - +, + !~a
+, and v - a

a

- - a

/uH_-a
U =+11,0

;:. :::

...... 0'= +-ww
: U l--+ x .. ·· . ..0

.'

+x+yz = ++xyz

+-w'w' = 0
.............

VHZ

a

a

The solved subproblems - - a All considered subprob
are indicated by lines [ems are solved and the /u~--a
marked with the corres unifiers can be succes
ponding unifier. Two sively combined to de
chains can be inserted rive 5.'~1
to solve the nontrivial
subproblems of the last 0= +-ww
graph.

~:~w

+x+yz = ++xyz

(//I / I" ~ -w'

z ~ w
l

~Z'
+Ov = v

!~a

a

In this example only the successful steps of the algorithm are depicted, however as everybody knows who works
in the field there is also an enormous amount of useless steps in the search space. The power of an equality
prover lies in its facility to avoid such useless steps as much as possible. Even the duplicate steps, like for
example the second one with the axiom + - ww = 0 in the above example, should be avoided.

K. Blasius and V. Lotz [LoBS] used several heuristics in the first implementation of the system and the main
power of the program stems from these heuristics. But the results are still unsatisfactory if we consider the
standard problems of equality reasoning. Only the first two examples proposed by E. Lusk and R. Overbeek
[L084] could be solved by the program.

6

Example 3.2 (Group, Involution)
-—a

{J:—MO

:f—a:+yz : :I—+zyz

+0v=v

ll-z-hyz = -_l-+:cyz

:.; _‘Inwyw’ _=.”a

'+'o';‚=v
VH3

VH2

is the initial termgraph, that is, - - a and a are t o be made equal. The dashed line
indicates the problem to be solved.

is the graph after the insertion
of the equality chain a : +140 —
+z+yz = ++ryz —— +0v = v.
Four sabproblems indicated by
the dashed lines must be solved
and their solutions must be com-
bined to solve the whole problem.
The chains to be inserted must
have the property that the terms
of each arising sabproblem have
the same top level symbol. In
this case: ?; —-‚ + — +, + —-
+, and v — a

The solved subproblems
are indicated by lines
marked with the corres-
ponding unifier. Two
chains can be inserted
to solve the nontrivial
subproblems of the last
graph.

The first and fourth subproblems
are solved, the second and third
are decomposed again into sub-
problems, where two of them can
be trivially solved. Note that
the subproblems 0 : +yz and
+:vy = 0 are structurally equal.

All considered subprob-
Iems are solved and the
anifiers can be succes-
sively combined to de-
rive e .

In this example only the successful steps of the algorithm are depicted, however as everybody knows who works
in the field there is also an enormous amount of useless steps in the search space. The power of an equality
prover lies in its facility to avoid such useless steps as much as possible. Even the duplicate steps, like for
example the second one with the axiom + — ww = 0 in the above example, should be avoided.

K. Bläsius and V . Lotz [L088] used several heuristics in the first implementation of the system and the main
power of the program stems from these heuristics. But the results are still unsatisfactory if we consider the
standard problems of equality reasoning. Only the first two examples proposed by E. Lusk and R. Overbeek
[L084] could be solved by the program.

In the following we try to illustrate what went wrong using this decomposition technique but first we describe
our own extensions of the system.

The global strategy was to switch off all heuristics of K. Blasius' system to detect and eliminate the weaknesses
in the inference mechanism. The first change was the introduction of A. Martelli and U. Montanari's multi
equation framework to make the combination with theory unification more feasible, since these algorithms are
mostly formulated using such transformation rules. Naturally this change of representation did not give the
prover more power. The second and more essential change was to use structure sharing of subproblems to realize
the 'subgraph replacement' proposed by K. Bliisius.

We shall now focus on some details of the second change. To use different solutions of structurally identical
subproblems at different positions in the graph all subproblems with their graphs are organized in a hashtable.
The hashkey is computed from the structure of the two terms of the equality problem. The test for equality of
two such pairs of terms (two equality problems) is made efficient by using the same variable, theory-free constant,
and theory-free function symbols, that is, fClC2 = fC2X is structurally the same problem as fC2Cl = fClY when
Cl and C2 are Skolem constants (not occurring in a theory) and z and y are variables. This approach is similar
to the usual indexing mechanisms in automated theorem proving [OL80,Ohl89]. Everywhere in the graph a
"renaming" to the standard representation is stored instead of commonly used subproblems, in the just given
example {x 1-+ xd and {C2 1-+ Cl, Cl 1-+ C2, Y 1-+ xd. Solutions for the subproblems are then simply propagated
to all superproblems applying the inverse of the "renaming" to the solutions.

Example 3.3 (Structure Sharing)
- a

lu~--a
This is a variant of the fourth graph of example 3.2.
The same (up to renaming) subproblem 0 = +XlX2

occurs at two different positions. The renaming sub
u =+uO stitutions are depicted in the boxes.

o

v~z

+x+yZ = +fxyz --.....

Experiments with the system showed that it often ran into cycles producing arbitrary many unifiers for the
same subproblem and propagating them as partial solutions to superproblems. For example it generated the
unifiers {x 1-+ a}, {x 1-+ -a}, {x 1-+ - - O} for the problem x = 0, that is, it tried to enumerate all unifiers
{{x 1-+ on} I n E N} instead of postponing the computation until nothing better could be done which was
normally controlled by the heuristics. Another possibility of avoiding such situations is to use demodulation to
reduce all solutions to the simplest ones. The principle of demodulation was introduced and promoted by L.
Wos [WRCS67,WOLB84]. Equations are directed and applied to all occurring terms. When using demodulation
it is clear that new good demodulators should be computed during the search of a proof and this directly leads
to the usage of the Knuth-Bendix completion algorithm.

7

In the following we try to illustrate what went wrong using this decomposition technique but first we describe
our own extensions of the system.

The global strategy was to switch off all heuristics of K . Bläsius’ system to detect and eliminate the weaknesses
in the inference mechanism The first change was the introduction of A. Martelli and U. Montanari’s multi
equation framework to make the combination with theory unification more feasible, since these algorithms are
mostly formulated using such transformation rules. Naturally this change of representation did not give the
prover more power. The second and more essential change was to use structure sharing of subproblems to realize
the ‘subgraph replacement’ proposed by K . Bläsius.

We shall now focus on some details of the second change. To use different solutions of structurally identical
subproblems at different positions in the graph all subproblems with their graphs are organized in a hashtable.
The hashkey is computed from the structure of the two terms of the equality problem. The test for equality of
two such pairs of terms (two equality problems) is made efficient by using the same variable, theory-free constant,
and theory-free function symbols, that is, fc1c2 = f cz: is structurally the same problem as fogcl : fc ly when
c1 and cz are Skolem constants (not occurring in a theory) and :: and y are variables. This approach is similar
to the usual indexing mechanisms in automated theorem proving [OL80,0h189]. Everywhere in the graph a
“renaming” to the standard representation is stored instead of commonly used subproblems, in the just given
example {z H 1:1} and {02 H c1,c1 H c2, g H 2:1}. Solutions for the subproblems are then simply propagated
to all superproblems applying the inverse of the “renaming” to the solutions.

Example 3 .3 (Structure Sharing)

‚ ' _ a This is a variant of the fourth graph of example 3.2.
u . . . - - a The same (up to renaming) subproblem O = +z lx2

occurs a t two dijferent positions The renaming sub-
u = +u0 stiiutions are depicted in the bores.

s l , s z

lfm—Hz = :I-fryz

(c r—>31 , yn—rmz

Experiments with the system showed that it often ran into cycles producing arbitrary many unifiers for the
same subproblem and propagating them as partial solutions to superproblems. For example it generated the
unifiers {m H 0 } ‚ { z H —0}‚ {z H -— — 0} for the problem z = 0, that is, i t tried to enumerate all unifiers
{{:c H 0"} | 11 E N} instead of postponing the computation until nothing better could be done which was
normally controlled by the heuristics. Another possibility of avoiding such situations is to use demodulation to
reduce all solutions t o the simplest ones. The principle of demodulation was introduced and promoted by L .
Wos [VVRCSG7,WOLB84]. Equations are directed and applied to all occurring terms. When using demodulation
it is clear that new good demodulators should be computed during the search of a proof and this directly leads
to the usage of the Knuth—Bendix completion algorithm.

4 Orientation of Equations in Clause Graphs

Many authors as for example J. Siekmann, [Sie75), A. Bundy [Bun83], and K. Blasius [Bla86] discussed the
complexity of automatically finding a proof for the problem "every group with x + x = 0 is commutative"
depending on the number of inference steps in the different calculi.

A resolution prover with explicit usage of the equality axioms as stated above based on breadth first search
must generate about 1021 resolvents to prove this theorem. For a similarly uninformed paramodulation prover
the situation is "slightly" better: it "only" has to create approximately 1210 (~ 6 . 1010) clauses. This smaller
number of steps comes from the fact that paramodulation search trees are not as deep as resolution search
trees, but they are much more bushy, and so the amount of reduction is less than hoped for by the inventors of
paramodulation.

It is intuitive that an orientation of the equations, that is, their usage in only one direction, leads to another
drastic reduction of unnecessary steps. However the reduction is more enormous than someone can imagine,
who does not know the Knuth-Bendix completion method. A comparable inference step is to choose a critical
pair and incorporate it as a rule. Administrating the critical pairs with a FIFO-strategy which simulates the
breadth first search leads to a proof in less than 100 steps. With some simple refinements the number of steps
is reduced to 7 (Example 4.2).

This example alone shows that completion is indispensible for equality reasoning and should be placed into the
centre of every efficient equality reasoning program. So the question arises why this approach was ignored in
almost all theorem proving systems based on the traditional methods of AI.

First of all the application of rewriting seemed to be restricted to some special cases where a canonical rewriting
system can be derived. But even if the Knuth-Bendix procedure diverges enough interesting results can be
derived as examplified in problems 4.4 and 4.6. With help of the examples we shall demonstrate that most
generated clauses are useful lemmas to finally find the proofs for the theorems.

In these cases completion may be superior to the other methods dealing with equality. Many researchers
overlooked the capacity for development imbedded in this approach. Meanwhile there are results in handling
undirectable equations [BDP87] and using special theory unification and matching algorithms [Sti85,KZ89].
In addition there are attempts to use rewrite systems to construct universal unification algorithms [Kir87]
and to integrate this work with conditional equations [Ric83a,Pet83,Kap84,ZR85,JW86,JL87,Rus87,ZK88] but
unfortunately all these attempts are not as convincing as the pure method when unit equations are directable.

Another disadvantage of completion not yet mentioned is that completion represents a forward reasoning method
without goal and that no possibility exists to distinguish between different abstraction levels. The parameters
to be set are only the reduction ordering and the selection strategy to choose critical pairs to be directed.

E. Lusk and R. Overbeek [L084] published a set of six equality problems without conditions that should be
useful to check the power of an equality reasoning procedure. Finishing this section we show the results of
the experiments solving the first five examples of E. Lusk and R. Overbeek with a conventional resolution and
paramodulation based theorem prover.

Here we have to throw a view on the inards of the Markgraf-Karl system, say the clause graph calculus. More
detailed descriptions can be found in [BBB+84,OS89,EOP89,Eis89). A clause graph consists of a set of clauses,
each of them a multi set of literals, and a set of links, which join pairs of literals with unifiable atoms. A link
joining a positive and a negative literal is called an R-link (Resolution), while an S-link (Subsumption) joins
two literals with the same sign. If the literals incident with a link belong to two different clauses, it is an R2- or
S2-link. If both literals belong to the same clause, the link is called R1- or SI-link. In this case it may be that
the atoms of the literals are unifiable only after renaming their variables apart, then we speak of a weak link.

The different kinds of links provide immediate access to different kinds of operations involving a given literal
occurrence. Most notably, R2-links represent the possible applications ofthe resolution rule and S1-links indicate
faetoring. When applying such deduction rules, we have to add to the graph the new clause along with the links
connecting the new literals to the just existing graph. If the new literals are instances of ancestor literals already

8

4 Orientation of Equations in Clause Graphs

Many authors as for example J . Siekmann, [Sie75], A. Bundy [Bun83], and K. Bläsius [Blä86] discussed the
complexity of automatically finding a proof for the problem “every group with z + a: = 0 is commutative”
depending on the number of inference steps in the different calculi.
A resolution prover with explicit usage of the equality axioms as stated above based on breadth first search
must generate about 1021 resolvents to prove this theorem. For a similarly uninformed paramodulation prover
the situation is “slightly” better: it “only” has to create approximately 1210 (z 6 - 101°) clauses. This smaller
number of steps comes from the fact that paramodulation search trees are not as deep as resolution search
trees, but they are much more bushy, and so the amount of reduction is less than hoped for by the inventors of
paramodulation.

I t is intuitive that an orientation of the equations, that is, their usage in only one direction, leads to another
drastic reduction of unnecessary steps. However the reduction i s more enormous than someone can imagine,
who does not know the Knuth—Bendix completion method. A comparable inference step is to choose a critical
pair and incorporate it as a. rule. Administrating the critical pairs with a FIFO-strategy which simulates the
breadth first search leads to a proof in less than 100 steps. With some simple refinements the number of steps
is reduced to 7 (Example 4.2).
This example alone shows that completion is indispensible for equality reasoning and should be placed into the
centre of every efficient equality reasoning program. So the question arises why this approach was ignored in
almost all theorem proving systems based on the traditional methods of AI.
First of all the application of rewriting seemed to be restricted to some special cases where a canonical rewriting
system can be derived. But even if the Knuth-Bendix procedure diverges enough interesting results can be
derived as examplified in problems 4.4 and 4.6. With help of the examples we shall demonstrate that most
generated clauses are useful lemmas to finally find the proofs for the theorems.

In these cases completion may be superior to the other methods dealing with equality. Many researchers
overlooked the capacity for development imbedded in this approach. Meanwhile there are results in handling
undirectable equations [BDP87] and using special theory unification and matching algorithms [Sti85,KZ89].
In addition there are attempts to use rewrite systems to construct universal unification algorithms [Kir87]
and to integrate this work with conditional equations [Ric83a,Pet83,Kap84,ZR85,JW86,JL87,Rus87,ZK88] but
unfortunately all these attempts are not as convincing as the pure method when unit equations are directable.
Another disadvantage of completion not yet mentioned is that completion represents a forward reasoning method
without goal and that no possibility exists to distinguish between different abstraction levels. The parameters
to be set are only the reduction ordering and the selection strategy to choose critical pairs to be directed.

E. Lusk and R. Overbeek [L084] published a set of six equality problems without conditions that should be
useful to check the power of an equality reasoning procedure. Finishing this section we show the results of
the experiments solving the first five examples of E. Lusk and R. Overbeek with a. conventional resolution and
paramodulation based theorem prover.
Here we have to throw a view on the inards of the Markgraf—Karl system, say the clause graph calculus. More
detailed descriptions can be found in [BBB+84,0589,EOP89,Eis89]. A clause graph consists of a set of clauses,
each of them a multi set of literals, and a set of links, which join pairs of literals with unifiable atoms. A link
joining a positive and a negative literal is called an R—link (Resolution), while an S-link (Subsumption) joins
two literals with the same sign. If the literals incident with a link belong to two different clauses, it is an R2— or
S2-link. If both literals belong to the same clause, the link is called Rl— or Sl- l ink. In this case it may be that
the atoms of the literals are unifiable only after renaming their variables apart, then we speak of a weak link.
The different kinds of links provide immediate access t o different kinds of operations involving a given literal
occurrence. Most notably, R2-links represent the possible applications of the resolution rule and Sl—links indicate
factoring. When applying such deduction rules, we have to add to the graph the new clause along with the links
connecting the new literals t o the just existing graph. If the new literals are instances of ancestor literals already

present in the graph, the new links can be obtained without searching by a simple inheritance process. This
inheritance was invented by R. Kowalski [Kow75] and later extended to RI-links by M. Bruynooghe [Bru75].
For a detailed explanation of the mechanism in the MKRP-system see H. J. Ohlbach [OhI87]. The transfer to
S-links is trivial. For new literals that are not obtained by instantiating others, for example the paramodulated
literal in a paramodulation step, this form of link inheritance does not work.

In the case of paramodulation there have also been attempts at approaches based on links and inheritance
[SW80]. Links to be paramodulated upon do not join literals, they join one side of a positive literal with
equality predicate with an arbitrary unifiable term in another literal. They are P2-links if the other literal is in
another clause, PI-links if they are in the same. Such a link mechanism was implemented in our system, but
unfortunately P-link inheritance can not work as this for R-links because in each resolution or paramodulation
step unifiers are applied and therefore completely new terms are generated. Hence our first task was to repair
this inheritance mechanism to produce the lacking links. This is simply done by newly generating all P-links.

In addition we made two changes to the theorem prover. The first one concerns the strategy of selecting the
links to operate upon. First all demodulating paramodulation links are selected, then possible resolutions are
done according to the selected resolution strategy, and the next steps are paramodulation steps corresponding
to the generation of critical pairs.

Definition 4.1 (Control Strategy)

while empty clause is not derived
if demodulation P-links exist

then operate on one of them
else if R-links exist

then operate on this link selected by the corresponding selection function
else if P-links exist

then operate on one of them producing the smallest critical pair
else error: graph collapsed

The second change is for efficiency. When our paramodulation strategy is selected, only these paramodulation
links are generated that are applicable in the sense of completion. In this way only P-links are generated, which
represent critical pairs. The reduction of generated P-links is illustrated in the following table.

Number of initial links Wos 1 Wos 2 Wos3 Wos 4 Woss Wos 6

Using completion 5 1 16 5 12 28
Without completion 38 21 158 68 69 161

In the actual version of the system we lose the main advantage of connection graphs, which is the inheritance
mechanism for links, but this idea fails for equality links, because equality operations drastically change the
term structure. But with a (not yet implemented) link construction tool based on an indexing mechansim
[OL80,OhI89] we think that the generation of the necessary paramodulation links enhances the advantages of
storing this information explicitly. The strategy 4.1 is an obviously incomplete restriction strategy but very
useful for many examples in practice where unconditional equations occur.

A first improvement of the method is to handle demodulating P-links separately like all other clause graph
reduction rules as for example purity, subsumption, tautolgy, replacement factoring, and replacement resolution.
This reduces the number of performed paramodulation steps but not really the time spent for the refutation
and in particular it does not really change the strategy.

But of course it can be changed to a complete one such that R- and P-links are considered to have equal rights,
that is, the same weight function is applied to both types of links. For example we can choose the link producing
the smallest clause and adding its depth in the search space. Such a strategy is selected for the examples 5.7
and 5.8 and given in definition 5.6.

Now we come to the examples. The default reduction ordering for the system is a lexicographic recursive path
ordering with the precedence * > - > + > 1 > O. We changed it for the examples 4.5 and 4.6. The selected

9

present in the graph, the new links can be obtained without searching by a simple inheritance process. This
inheritance was invented by R. Kowalski [Kow75] and later extended to Rl-links by M. Bruynooghe [Bru75].
For a detailed explanation of the mechanism in the MKRP-system see H. J. Ohlbach [Oh187]. The transfer to
S-links is trivial. For new literals that are not obtained by instantiating others, for example the paramodulated
literal in a paramodulation step, this form of link inheritance does not work.

In the case of paramodulation there have also been attempts at approaches based on links and inheritance
[SW80]. Links to be paramodulated upon do not join literals, they join one side of a positive literal with
equality predicate with an arbitrary unifiable term in another literal. They are P2—links if the other literal is in
another clause, Pl-links if they are in the same. Such a link mechanism was implemented in our system, but
unfortunately P—link inheritance can not work as this for R—links because in each resolution or paramodulation
step unifiers are applied and therefore completely new terms are generated. Hence our first task was to repair
this inheritance mechanism to produce the lacking links. This is simply done by newly generating all P—links.

In addition we made two changes to the theorem prover. The first one concerns the strategy of selecting the
links to operate upon. First all demodulating paramodulation links are selected, then possible resolutions are
done according to the selected resolution strategy, and the next steps are paramodulation steps corresponding
to the generation of critical pairs.

Definition 4.1 (Control Strategy)

while empty clause is not derived
i f demodulation P-links exist

then operate on one o f them
e l se if B-links exist

then operate on this link se lected by the corresponding s e l ec t ion function
else i f P-1inks exist

then operate on one o f them producing the smallest crit ical pair
else error: graph collapsed

The second change is for efficiency. When our paramodulation strategy i s selected, only these paramodulation
links are generated that are applicable in the sense of completion. In this way only P-links are generated, which
represent critical pairs. The reduction of generated P-links is illustrated in the following table.

Number of initial links W031 W032 W083 W054 W055 W036
Using completion 5 1 16 5 12 28

Without completion 38 21 158 68 69 161
In the actual version of the system we lose the main advantage of connection graphs, which is the inheritance
mechanism for links, but this idea fails for equality links, because equality operations drastically change the
term structure. But with a (not yet implemented) link construction tool based on an indexing mechansim
[OL80,0hl89] we think that the generation of the necessary paramodulation links enhances the advantages of
storing this information explicitly. The strategy 4.1 is an obviously incomplete restriction strategy but very
useful for many examples in practice where unconditional equations occur.
A first improvement of the method is to handle demodulating P-links separately like all other clause graph
reduction rules as for example purity, subsumption, tautolgy, replacement factoring, and replacement resolution.
This reduces the number of performed paramodulation steps but not really the time spent for the refutation
and in particular i t does not really change the strategy.

But of course it can be changed to a complete one such that R— and P-links are considered to have equal rights,
that is, the same weight function is applied to both types of links. For example we can choose the link producing
the smallest clause and adding its depth in the search space. Such a strategy is selected for the examples 5.7
and 5.8 and given in definition 5.6.

Now we come to the examples. The default reduction ordering for the system is a lexicographic recursive path
ordering with the precedence * > — > + > 1 > O. We changed it for the examples 4.5 and 4.6. The selected

one is explained there. The number of paramodulation steps really performed is not depicted in the protocol
and so we give it after the examples in a separate table.

The asterisks in the protocols label the axioms and derived clauses really used in the proof.

The first theorem states that every group with x + x =0 is commutative, and this problem is very trivial using
the completion technique.

Example 4.2 (Wos 1)

Set of Axiom Clauses Resulting from Normalization
================-=====.==============s==~=c=====

Ai: All x:Any + =(x x)
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
* A3: All x:Any + =(+(0 x) x)

A4: All x:Any + =(+(-(x) x) 0)

* A5: All x:Any + =(+(x x) 0)

Set of Theorem Clauses Resulting from Normalization
=============~===--=;===================

Refutation:

A5,l t 12,1 --> * P1: All x,y:Any + =(+(0 y) +(x +(x y»)

Pl,l I; 13 --> * RW2: All x,y:Any + =(y +(x +(x y»)

A5,1 t RW2,1 --> * P3: All x:Any + =(x +(x 0»

A5,1 t 12,1 --> * PS: All x,y:Any + =(0 +(y +(x +(y x»»

PS, 1 8: RW2, 1 --> * pg: All x,y:Any + =(+(y +(x y» +(x 0»

pg ,1 8: P3 --> * RW10: All x,y:Any + =(+(y +(x y» x)

R"10,l 8: R"2,1 --> * P12: All x,y:Any + =(+(y x) +(x y»

P12,1 8: T6,1 --> * R13: []

q.e.d.

The second theorem states that the inverse of a group is an involution, and this problem is trivial too, especially
because for a non-commutative group there exists a complete and confluent rewrite system, such that in this
theory all purely equational theorems can be solved.

Example 4.3 (Wos 2)

Set of Axiom Clauses Resulting from lormalization
=============:~~===============================

Ai: All x:Any + =(x x)
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)

10

one is explained there. The number of paramodulation steps really performed is not depicted in the protocol
and so we give it after the examples in a separate table.

The asterisks in the protocols label the axioms and derived clauses really used in the proof.

The first theorem states that every group with :c + z = 0 is commutative, and this problem is very trivial using
the completion technique.

Example 4.2 (Was 1)

Set of Axiom Clauses Resulting from Normalization

A1: All x:Any + =(: x)
* A2: All x ,y , z :Any + - (+ (+ (z y) x) + (z + (y x)))
* A3: All lny + =(+(0 x) x)

M: All x:Any + =(+(- (x) x) 0)
* A5: A11 sny + =(+(x :) 0)

Set o f Theorem Clauses Resulting from Normalization

* T6: — - (+(c-2 c_1) +(c_1 c__2))

Refutation:

55,1 t A2,1 -—> * P1: A11 x,y:Any + =(+(0 y) +(x +(x y)))
P1‚1 t A3 - -> a: m: A11 x,y:Any + =(y +0: +0: y)))
A5,1 & “2 ,1 - -> * P3: All x:Any + =(: +(x 0))
A5,1 & A2‚1 ——> * P8: All x,y:Any + =(0 +(y +(x +(y x))))
P8,1 & “2 .1 —-> * P9: All x,y=Any + =(+<y +(x y)) +(x 0))
P9,1 z P3 - -> * “10: All x.y:Any + =(+(y +(x y)) !)
nw1o‚1 a “2 ,1 —-> * P12: A11 x ,y :Any + =(+(y x) + (x y))
P12‚1 : T6‚1 - -> * R13: []

q .e .d .

The second theorem states that the inverse of a. group is an involution, and this problem is trivial too, especially
because for a. non—commutative group there exists a complete and confluent rewrite system, such that in this
theory all purely equational theorems can be solved.

Example 4 .3 (Was 2)

Set o f Axiom Clauses Resulting from Normalization

A1: All sny + =(x x)
* A2: Al l x,y,z:Any + =(+(+(z y) :) +(z +(y :)))

10

All x:Any + =(+(0 x) x) • A3:
All x:Any + =(+(-(x) x) 0)• A4:

Set of Theorem Clauses Resulting from Normalization
========================~=-======-==~=:==~=======

Refutation:
==========

A4,1 i; A2,1 --> • Pi: All x,y:Any + =(+(0 y) +(-(x) +(x y»)

P1,1 i; A3 --> • RW2: All x,y:Any + =(y +(-(x) +(x y»)

A4,1 i; RW2,1 --> • P4: All x:Any + =(x +(-(-(x» 0»

P4,1 i; RW2,1 --> • P8: All x:Any + =(0 +(-(-(-(x») x»

P8,1 i; RW2,1 --> • P9: All x:Any + =(x +(-(-(-(-(x»» 0»

P9,1 I: P4 --> • RW10: All x:Any + =(x -(-(x»)

RW10,1 I: T5,1 --> • R11: []

q.e.d.

The third example comes from ring theory and is therefore more complicated but not really difficult because
the commutativity of addition is not involved and so no undirectable equations must be applied.

Example 4.4 (Wos 3)

Set of Axiom Clauses Resulting from Normalization

Ai:	 All x:Any + =(x x)

All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
• A2:

* A3: All x:Any + =(+(0 x) x)
* A4: All x:Any + =(+(-(x) x) 0)

A5: All x,y:Any + =(+(y x).+(x y»

A6: All x,y,z:Any + =(*(.(z y) x) .(z *(y x»)

* A7: All x,y,z:Any + =(.(+(z y) x) +(*(z x) .(y x»)
* A8: All x,y,z:Any + =(.(z +(y x» +(*(z y) .(z x»)

All x:Any + =(.(x x) x)
 • A9:

Set of Theorem Clauses Resulting from Normalization
====================================

11

* A3: A11 sny + =-(+(0 x) x)
* A4: A11 x:Any + =(+(- (x) x) 0)

Set of Theorem Clauses Resulting from Normalization

* T5: — =(—(-(c_1)) C-1)

Refutation:

A4,1 l A2,1 - -> * P1: All x ,y :Any + =(+ (0 y) +C- (x) + (x y)»
P1,1 I: A3 - -> t kHz: A11 x,y:Any + =(}! + (- (x) + (x y)))
A4,1 & “2 ,1 - -> =- P4: All x:Any + =(x +(- (- (x)) 0))
134.1 I RH2‚1 - -> * P8 . Al l x:Any + = (0 +(- (- (—(x))) X))
P8,1 & RW2‚1 - -> * P9: All x:Any + =(: + (- (- (- (- (x)))) 0))
P9 ,1 & P4 -—> * RH10: All z:Any + =(x - (—(x)))
RH10 ,1 & T5 ,1 - -> * R11: []

q .e .d .

The third example comes from ring theory and is therefore more complicated but not really difficult because
the commutativity of addition is not involved and so no undirectable equations must be applied.

Example 4.4 (Was 3)

Set of Axiom Clauses Resulting from Normalization

A1 A11 sny + = (! x)
A2. A11 x,y,z:Any + =(+(+(z y) !) +(z +(y x)))

* A3: A11 sny + =(+(0 :) x)
A4 A11 sny + =(+(-(x) x) 0)
A5: A11 x ,y :Any + =(+(y x) .+ (x y))
A6: A11 x,y,z:Any + =(* (* (z y) x) * (z * (y x)))

* A7: A11 x,y,z:Any + =(*(+(z y) x) +(* (z x) ‘"(y x)))
* AB: All x ,y , z :Any + =(* (z +(y x)) + (* (z y) * (z x)))
* A9: A11 x:Any + =(*(x x) I)

Set o f Theorem Clauses Resulting from Normalization

* T10: - - (* (c_ ,1 c_2) * (c_2 c__1))

11

--

Refutation:

A4,l i; A2,l
Pl,l i; A3
A4,l I; RW2, 1
P4,1 I; RW2,1
PH,l i; RW2, 1
P12,1 It P4
P4,1 I; RW13
RW13,1 I; A4,1
P16,1 I; A2,1
P18,1 It RW2,1
P19,l It RW15
RW15,1 &: A7,1
P22,1 It RW2,1
P23,l It A4
A4,1 I; A7,l
P26,1 I; RW24
A9,l I; RW27 ,1
P28 , 1 I; RW2, 1
P29,1 11; RW15
RW30,1 It RW13,1
RW13,1 &: P31,1
P34,l I; RW13
RW15,l I; A8,l
P45 , 1 I; RW2, 1
P46!1 I; A4
A4,1 It A8,1
P49,1 I; RW47
RW35,1 i; RW50, 1
P51,1 I; A9
RW52,l i; RW2, 1
P53,l It RW15
RW54
·RW20,1 I; RS55
A2,1 t RW61,l
RW61,l t P66,l
P74,1 i; A2
A9,l t A7,1
P85,1 i; A8
RW86,1 t A9
RW87,l t A8
RW8S,1 I; A2
RW89,l I; A9
RW90, 1 I; RW75, 1
P91,l I; A2
R1l92,1 It R1l61
R1l93,1 &: R1l61
R1l94,1 &: Tl0,l

--> * Pl:
--> * RW2:
--> * P4:
--> * PH:
--> * P12:
--> * RV13:
--> * RW15:
--> * P16:
--> * P18:
--> * P19:
--> * RW20:
--> • P22:
--> • P23:

--> * RW24:
--> * P26:
--> * RV27:
--> * P28:
--> * P29:
--> * RW30:
--> * P31:
--> * P34:
--> * RW35:
--> * P45:
--> * P46:
--> * RW47:
--> * P49:
--> * RW50:
--> * P51:
--> * RW52:
--> * P53:
--> * RW54:
--> * RS55:
--> * R1l61:
--> * P66:
--> * P74:
--> * RV75:
--> * P85:
--> * RW86:
--> * RW87:
--> * RW8:
--> * RW89:
--> * RW90:
--> * P91:
--> * RW92:
--> * RW93:
--> * RW94:
--> * R95:

All x,y:Any + =(+(0 y) +(-(x) +(x y»)
All x,y:Any + =(y +(-(x) +(x y»)
All x:Any + -(x +(-(-(x» 0»
All x:Any + =(0 +(-(-(-(x») x»
All x:Any + =(x +(-(-(-(-(x»» 0»
All x:Any + =(x -(-(x»)
All x:Any + -(x +(x 0»
All x:Any + =(+(x -(x» 0)
All x,y:Any + =(0 +(y +(x -(+(y x»»)
All x,y:Any + =(+(y -(+(x y») +(-(x) 0»
All x,y:Any + =(+(y -(+(x y») -(x»
All x,y:Any + =(*(y x) +(*(y x) *(0 x»)
All x,y:Any + =(*(0 y) +(-(*(x y» *(x y»)
All x:Any + =(*(0 x) 0)
All x,y:Any + =(*(0 y) +(*(-(x) y) *(x y»)

All x,y:Any + =(0 +(*(-(y) x) *(y x»)

All x:Any + =(0 +(*(-(x) x) x»

All x:Any + =(x +(-(*(-(x) x» 0»

All x:Any + =(x -(*(-(x) x»)

All x:Any + =(*(-(x) x) -(x»

All x:Any + =(*(x -(x» -(-(x»)

All x:Any + =(*(x -(x» x)

All x,y:Any + =(*(y x) +(*(y x) *(y 0»)

All x,y:Any + =(*(y 0) +(-(*(y x» *(y x»)

All x:Any + -(*(x 0) 0)

All x,y:Any + =(*(y 0) +(*(y -(x» *(y x»)

All x,y:Any + -(0 +(*(y -(x» *(y x»)

All x:Any + -(0 +(x *(x x»)

All x:Any + -(0 +(x x»

All x:Any + -(x +(-(x) 0»

All x:Any + -(x -(x»

All x:Any + -(-(x) x)

All x,y:Any + -(+(y +(x y» x)

All x,y,z:Any + =(+(z +(y +(x +(z y»» x)

All x,y,z:Any + =(+(z +(+(y z) +(x y») x)

All x,y,z:Any + -(+(z +(y +(z +(x y»» x)

All x,y:Any + =(+(y x) +(*(y +(y x» *(x +(y x»»

All x,y:Any + =(+(y x) +(*(y +(y x» +(*(x y) *(x x»»
All x,y:Any + =(+(y x) +(*(y +(y x» +(*(x y) x»)
All x,y:Any + =(+(y x) +(+(*(y y) *(y x» +(*(x y) x»)
All x,y:Any + =(+(y x) +(*(y y) +(*(y x) +(*(x y) x»»
All x,y:Any + =(+(y x) +(y +(*(y x) +(*(x y) x»»
All x,y:Any + =(+(y +(+(*(x y) x) +(y x») *(y x»
All x,y:Any + =(+(y +(*(x y) +(x +(y x»» *(y x»
All x,y:Any + =(+(y +(*(x y) y» *(y x»
All x,y:Any + =(*(y x) *(x y»
[]

q.e.d.

The fourth example is another special theorem of group theory and in complexity comparable to the third one.

12

Refutation:
==========

P4 ,1
P11 ,1 & 332,1
P12‚1 & P4
P4‚1 & RW13
RH13,1 & A4‚1
P16 ,1 & A2,1
P18‚1 & RH2,1
P19‚1 & RH15
RU15,1 & A7,1
P22‚1 & RW2‚1
P23 ,1 & A4
A4,1 & A7,1
P26 ,1 & RH24
59 ,1 & RH27,1
P28‚1 & RU2‚1
P29,1 l RUIS
RH30,1 & RH13‚1
“13,1 & 1231.1
P34,1 3 mm
RH15.1 l A8‚1
P45‚1 & 11:32.1
P46_‚1 t A4
“ ,1 t A8,1
949,1 & mm
RH35,1 t RH50,1
P51 ,1 & A9
RH52‚1 ! RH2,1
P53 ,1 t BH15
RW54
BHQO‚1 t 3855
A2,1 l RH61‚1
RW61‚1 l P66‚1
P74 ,1 ! A2
A9‚1 ! A7‚1
P85‚1 & A8
RH86,1 & A9
R387‚1 & A8
RH88,1 l A2
RH89‚1 1 A9
“90,1 & mns,1
P91 ,1 & A2
RU92‚1 & RWGI
RH93‚1 l RH61
RH94,1 & T10‚1

**
*!

»*
*{

.*
**

l-
{*

**
—

[*
**

ü
ifi

iü
fl

'fl
'fi

ü
—

l*
**

il
l'

l'
l-

li
'l

'*
**

-*
**

vl
"

P1:

P4 :
P11:
P12:
RU13:
RUIS:
P16:
P18:
P19:
8320:
P22:
P23:
BH24:
P26:
mm:
P28:
P29:
RH30:
P31:
P34:
RW35:
P45:
P46:
RW47:
P49:
RHSO:
P51:
RHSZ:
P53:
RH54:
R855:
3361:
P66:
P74:
RV75:
P85:
BWBS:
RUST:
3‘88:
RHBS:
RHSO:
P91:
3392:
RH93:
RH94:
R95:

A11
A11
A11
A11
A11
A11
A11
A11
A11
All
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
A11
[]

:,yzAny + =(+(o y) +(-(x) +(x y)))
xmhny

:Any
:Any
:Any
:Any
:Any
:AnyN

N
N

N
N

N

+

+
+
+
+
+

: ‚yzAny
: ,y :Any
: ‚y :Any
: ,y :Any
: ,yzAny
::Any +

: .yüny
: ‚yzAny
: :Any

:Any
:Any
:AnJ
:Any
:AnyH

H
H

H
N

+

+

+
+

++

: ‚yzAny
: .y :Any
: :Any +

: ‚ y :Any
Lynn!
: :Any
: :Any
sny
: :Any
x:Any

+
+

+

+

+

: , y :Any
: ‚ y ‚ z :Any
: ,y , z :Any
: ‚y ‚ z :Any
my“!!! +
x,y:Any
I rwin!

x ,y :Any
x ,y :Any
x ,y :Any
x ,y :Any
: ‚yzAny
: ,yz lny
:‚yzAny

+ =(y + (- (:) + (: y)))
= (: + (- (- (:)) 0))
=(0 + (- (- (- (:))) :))
= (: + (- (- (- (- (:)))) 0))
= (: - (- (:)))
= (: +(x 0))
=(+(x - (x)) 0)
+ =(0 +(y +(: - (+ (y :)))))
+ = (+ (y - (+ (: y))) + (- (:) 0))
+ =(+(y - (+ (x y))) - (x))
+ =(*(y :) +(* (y :) * (0 :)))
+ =(* (0 y) +(—(*(x y)) * (x y)))
=(*(0 :) 0)
+ =(* (0 y) + (* (- (x) y) * (x y)))
+ =(0 + (* (- (y) x) * (y x)))
=(0 + (* (- (:) :) :))
= (: + (- (* (- (:) :)) 0))
=(: - (* (- (:) :)))
= (* (- (:) :) - (:))
=(* (: - (:)) - (- (:)))
= (* (: - (:)) :)
+ =(*(y :) +(* (y :) * (y 0)))
+ - (* (y 0) +(- (* (y :)) * (y :)))
' (* (x 0) 0)
+ =(*(y 0) +(* (y - (:)) * (y :)))
+ - (0 +(* (y —(x)) * (y x)))
-<0 +(x #C: :)))
- (0 +(x :))
' (x + (- (:) 0))
' (x - (:))
= (- (:) :)
+ =(+(y +(: y)) :)

+ =(+(z +(y + (: +(z y)) ” :)
+ =(+(z +(+(y :) + (: y))) :)
+ - (+ (z +(y +(z + (: y)))) x)
- (+ (y :)

+ =(+(y :)
=(+(y :)
=(+(y :)
- (+ (y :)
=(+(y :)

=(+(y +(* (: y) y)) * (y :))
=(* (y :) * (x y))

++
+

++
+++

q .e .d .

The fourth example is another special theorem of group theory and in complexity comparable to the third one.

12

+(*(y +(y :)) * (x +(y x))))
+(* (y +(y :)) + (* (: y) * (x :))))
+(*(y +(y :)) + (* (: y) :)))
+(+(*(y y) * (y :)) + (* (: y) x)))
+(* (y y) + (* (y :) + (* (: y) :))))
+(y +(*(y :) + (* (: y) x))))

=(+(y +(+ (* (: y) :) +(y x))) * (y :))
=(+(y +(* (: y) + (: +(y x)))) * (y :))

--

Again no unorientable equation is necessary and therefore no real problem arises. Here an additional feature
of the Markgraf-Karl system comes into the game. It detects definitory equations and replaces the definiens
at every occurrence by the definiendum. This is sometimes very useful because it reduces the clause set and
especially the number of function symbols. Here A6 is taken as definition for comm and so conun is completely
eliminated by preprocessing operations. For this example we chose the usual Knuth-Bendix ordering for the
completion of groups [KB70] such that clause RW21 is directed from left to right. The precedence is * > - > +
> 1 > 0 as above, and the weights are *: 1, +: 1, -: 0, 0: 0, 1: O. In this way the refutation is found
faster, because the search space is smaller.

Exa:mple 4.5 (Wos 4)

Set of Axiom Clauses Resulting from Normalization
====================================

* Al: All x:Any + =(x x)
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
* A3: All x:Any + =(+(0 x) x)
* A4: All x:Any + =(+(-(x) x) 0)
* A5: All x:Any + =(+(+(x x) x) 0)

* A6: All x,y:Any + =(comm(y x) +(y +(x +(-(y) -(x»»)

Initial Operations on Axioms
=====================~=~==

A5,l t A2 --> * RW1: All x:Any + =(+(x +(x x» 0)

Set of Theorem Clauses Resulting from Normalization
=========:;======:====:============================

Initial Operations on Theorems

T7,1 t A6 --> * RW2: - =(+(comm(c_l c_2) +(c_2 +(-(comm(c_l c_2» -(c_2»» 0)

RW2,l t A6 --) * RW3: - =(+(+(c_l +(c_2 +(-(c_l) -(c_2»»
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»»

0)

RW3,l t A2 --> * RW4: - =(+(c_l +(+(c_2 +(-(c_l) -(c_2»)
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»»)

0)

RW4,l t A2 --> * RW5: - =(+(c_l +(c_2 +(+(-(c_l) -(c_2»
+(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»») -(c_2»»»

0)

RW5,l t 12 --> * Ri6: - =(+(c_l +(c_2 +(-(c_l) +(-(c_2) +(c_2 +(-(+(c_l +(c_2 +(-(c_l) -(c_2»»)
-(c_2»»»)

0)

13

Again no unorientable equation is necessary and therefore no real problem arises. Here an additional feature
of the Markgraf-Karl system comes into the game. It detects definitory equations and replaces the definiens
at every occurrence by the definiendum. This is sometimes very useful because i t reduces the clause set and
especially the number of function symbols. Here A6 is taken as definition for com and so com is completely
eliminated by preprocessing operations. For this example we chose the usual Knuth-Bendix ordering for the
completion of groups [KB70] such that clause M121 is directed from left to right. The precedence is * > - > +
> 1 > 0 as above, and the weights are * : 1 , + : 1 , —: O, 0 : 0 , 1 : 0 . In this way the refutation is found
faster, because the search space is smaller.

Example 4.5 (Wos 4)

Set o f Axiom Clauses Resulting fro: Normalization

A1: A11 x:Any + =(x x)
A2: A11 x,y,z:Any + =(+(+(z y) x) +(z +(y :)))
A3: A11 x:Any + =(+(0 x) x)
A4: Al l sny + =(+(‘(x) x) 0)

A5: All sny + =(+(+(x X) x) 0)
A6: All x,y:Any + =(comn(y x) +(y +(x +(- (y) - (x)))))

**
*-

**
*

Initial Operations on Axioms

AS.1 t A2 - -> It EHI: A11 sny + - (+ (x +(x x)) 0)

Se t o f Theorem Clauses Resulting fro- Normalization

I t T7: — - (com(com(c_1 c_2) c_2) 0)

Initial Operations on Theorems

17 .1 t A6 ——> * KHZ: - =(+(comm(c_1 c_2) +(c_2 +(-(coml(c_1 c_2)) ' (c_2)))) 0)
“2 ,1 as A6 - -> * nus: - =(+(+(c_1 +(c_2 +(-(c_1) - (c -2))))

+(c_2 +(-(+(c_1 +(c_2 +(-(c_1) - (c_2))))) - (c . . 2))))
0)

“3 ,1 1 A2 - -> * mm: - =(+(c_1 +(+(c_2 + (- (c -1) - (c_2)))
+(c_2 +(-(+(c_1 +(c_2 +(-(c_1) - (c_2))))) —(c_2)))))

o)

nu4,1 & A2 -—> * RUB: — =(+(c_1 +(c_2 +(+(-(c_1) - (c_2)) «
+(c_2 +(-(+(c_1 +(c_2 +(-(c_1) - (c_2))))) - (c_2))))))

0)
“5 ,1 & A2 --> * BUS: — =(+(c_1 +(c_2 + (- (c -1) +(-(c_2) +(c_2 +(-(+(c_1 +(c_2 +(- (c_1) - (c_2)))))

- (c_2)))))))
0)

13

Re:futati.on:
=====:====

A4,1 t A2,l --> * P7: All x,y:Any + -(+(0 y) +(-(x) +(x y»)
P7,1 t A3 --) * RWS: All x,y:Any + =(y +(-(x) +(x y»)
RWG,l I: RWS --> * RW9: - =(+(c_1 +(c_2 +(-(c_i) +(-(+(c_i +(c_2 +(-(c_i) -(c_2»») -(c_2»»)

0)
A4,1 t RW8,1 --) * P14: All x:Any + =(x +(-(-(x» 0»
RW1,1 t RWS,l --) * P15: All x:Any + =(+(x x) +(-(x) 0»
RWl , 1 I: A2, 1 --> * P16: All x,y:Any + =(+(0 y) +(x +(+(x x) y»)
P16,l I: A2 --) * RW17: All x,y:Any + =(+(0 y) +(x +(x +(x y»»
RW17,l t A3 --) * RW18: All x,y:Any + =(y +(x +(x +(x y»»
RW1,1 I: RW1S,1 --) * P19: All x:Any + =(x +(x 0»
PH,l I: P19 --> * RW20: All x:Any + =(x -(-(x»)
P15,1 I: P19 --) RW21: All x:Any + =(+(x x) -(x»*
RW1,1 I: RW21 --) * RW22: All x:Any + =(+(x -(x» 0)
RW22,1 I: A2,1 --) * P27: All x,y:Any + =(+(0 y) +(x +(-(x) y»)
P27,1 t A3 --> * RW28: All x,y:Any + =(y +(x +(-(x) y»)
A2, 1 I; R1l22, 1 --> * P32: All x,y:Any + =(+(y +(x -(+(y x»» 0)
P32,1 I; R1l8, 1 --> * P33: All x,y:Any + =(+(y -(+(x y») +(-(x) 0»
P33,1 t P19 --> * RW34: All x,y:Any + =(+(y -(+(x y») -(x»
RW21,1 t A2,1 --> * P36: All x,y:Any + =(+(-(y) x) +(y +(y x»)
R1l34,1 I; R1l8, 1 --> * P38: All x,y:Any + =(-(+(y x» +(-(x) -(y»)
R1l9,1 t P38 --> * RW40: - =(+(c_l +(c_2 +(-(c_1) +(+(-(+(c_2 +(-(c_1) -(c_2»» -(c_1»

-(c_2»»)
0)

Rll40,l t P38 --> * RW4l: - =(+(c_1 +(c_2 +(-(c_1) +(+(+(-(+(-(c_l) -(c_2») -(c_2» -(c_l»
-(c_2»»)

0)

RW41,1 I: P38 --> * R1I42: - =(+(c_l +(c_2 +(-(c_l) +(+(+(+(-(-(c_2» -(-(c_l») -(c_2» -(c_l»
-(c_2»»)

0)

RII42 , 1 t RW20 --> * RW43: - =(+(c_l +(c_2 +(-(c_i) +(+(+(+(-(-(c_2» c_1) -(c_2» -(c_l»
-(c_2»»)

0)
RW43 , 1 t RW20 --> * RW44: - =(+(c_1 +(c_2 +(-(c_l) +(+(+(+(c_2 c_1) -(c_2» -(c_1» -(c_2»») 0)
RW44,1 t A2 --> * RW45: - =(+(c_1 +(c_2 +(-(c_l) +(+(+(c_2 +(c_1 -(c_2») -(c_1» -(c_2»») 0)
Rll45 , 1 I: A2 --> * RW46: - =(+(c_1 +(c_2 +(-(c_l) +(+(c_2 +(+(c_1 -(c_2» -(c_1») -(c_2»») 0)
RII46,1 t A2 --) * RW47: - =(+(c_1 +(c_2 +(-(c_1) +(+(c_2 +(c_l +(-(c_2) -(c_1»» -(c_2»») 0)
RII47,1 t A2 --) * RW48: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(+(c_1 +(-(c_2) -(c_1») -(c_2»»» 0)
RII48 , 1 I; A2 --> * RW49: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(+(-(c_2) -(c_l» -(c_2»»») 0)
R1I49, 1 I: A2 --> * RiSO: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(-(c_2) +(-(c_l) -(c_2»»»» 0)
A2,l I: RW21,1 --> * P51: All x,y:Any + =(+(y +(x +(y x») -(+(y x»)
P51,l I: P38 --> * RW52: All x,y:Any + =(+(y +(x +(y x») +(-(x) -(y»)
RiS2,1 I: P36,1 --> * P56: All x,y:Any + =(+(-(y) +(x +(y x») +(y +(-(x) -(y»»
RII20,l I: P56.1 --) * P57: All x,y:Any + =(+(y +(x +(-(y) x») +(-(y) +(-(x) -(-(y»»)
P57,1 I; RW20 --) * RWS8: All x,y:Any + =(+(y +(x +(-(y) x») +(-(y) +(-(x) y»)
RW50 , 1 I: R\l58 --> • RWS9: - =(+(c_1 +(c_2 +(-(c_l) +(c_2 +(-(c_1) +(-(-(c_2» c_1»»» 0)
RW59,1 I: R\l20 --> * RW60: - =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(-(c_l) +(c_2 c_1»»» 0)
P36,1 t A2,l --> * P61: All x,y,z:Any + =(+(-(+(z y» x) +(z +(y +(+(z y) x»»
P61,l t A2 --> * RW62: All x,y,z:Any + =(+(-(+(z y» x) +(z +(y +(z +(y x»»)
R1l62, 1 I; P38 --> * RW63: All x,y,z:Any + =(+(+(-(z) -(y» x) +(y +(z +(y +(z x»»)
RV63,1 I; A2 --> * RW64: All x,y,z:Any + =(+(-(z) +(-(y) x» +(y +(z +(y +(z x»»)
R1I60. 1 I: RW64 --> * 'R1I65: - =(+(c_1 +(c_2 +(-(c_2) +(-(-(c_1» c_1»» 0)
Rll65, 1 I; RII20 --> * RW66: - =(+(c_l +(c_2 +(-(c_2) +(c_1 c_1»» 0)
RW66, 1 I; RII21 --> * RW67: - =(+(c_1 +(c_2 +(-(c_2) -(c_1»» 0)

14

Refutation:

A4,1 l A2,1
P7.1 & A3
RW6‚1 & RH?

A4‚1 t nfi8,1
RU1,1 z RH8,1
RH1,1 & 12,1
P16,1 & 12
Rw17,1 : A3
Rw1,1 : aw18‚1
P14‚1 & P19
P15,1 & P19
nw1,1 & awni
Rw22,1 & 12.1
P27‚1 : A3
A2‚1 : nu22,1
P32,1 & nvs,1
PS3,1 t P19
Rw21,1 t 12,1
nua4,1 z RH8,1
nw9,1 t P38

RH40,1 & P38

RW41.1 & P38

RV42,1 t RH20

RH43,1 & R320
RH44,1 t A2
RW45‚1 t A2
RH46,1 & A2
RH47,1 & A2
RW48‚1 & A2
RH49,1 & A2
12 ,1 t RH21,1
P51,1 ! P38
RU52‚1 & P36‚1
RW20,1 & P56‚1
P57‚1 & RHZO
RH50,1 & RUSB
RW59‚1 & RU20
P36‚1 l A2‚1
P61,1 t A2
RW62,1 & P38
RW63‚1 & A2
RH60,1 & RH64
RH65,1 & RH20
RH66,1 & RH21

**
*

O
**

**
* i

**
**

**
**

**
* *

* *
* *

* *
i i

* *
* *

* *
* *

* i
*

P7:
R38:
RUB:

P14:
P15:
P16:
RH17:
RH18:
P19:
RHZO:
RH21:
RHZ2:
P27:
RH28:
P32:
P33:
RH34:
P36:
P38:
auqo:

RH41:

RH42:

R343:

3344:
RH45:
RH46:
RH47:
RU48:
RU49:
RHSO:
P51:

RH52:

P56:
P57:
RUSS:
RWSS:
RHSO:
P61:
RH62:
RH63:
RH64:
'RHSS:
RH66:
RH67:

All x‚y:Any + =(+(0 y) + (- (x) +(z y)))
All x,y:Any + =(y +(—(x) +(z y)))
- =(+(c_1 +(c_2 +(-(c_1) +(-(+(c_1 +(c_2 +(-(c_1) - (c_2))))) - (c -2)))))

o)
A11 x:Any + =(x + (- (° (x)) 0))
All lny + =(+(x x) + (- (x) 0))
All x.y:Any + =(+(0 y) +(x +(+(x x) y)))
All x,y:Any + =(+(0 y) +(z +(z +(z y))))
All x‚y:Any + =(y +(x +(x + (z y))))
All x:Any + =(: +(x 0))
All sny + =(x - (- (x)))
All sny + =(+(x x) - (x))
All sny + =(+(x - (x)) 0)
All x,y:Any + =(+(0 y) +(z +(- (x) !)))
All x‚y:Any + =(y +(z +(- (x) y)))
All x,y:Any + =(+(y +(z —(+(y x)))) o)
A11 x,y:An3 + =(+(y - (+ (x y))) +(- (x) 0))
All x .y :Any + - (+ (y - (+ (x y))) - (x))
All x,y:Any + =(+(-(y) x) +(y +(y x)))
All x,y:Any + =(- (+(y x)) +(- (x) - (y)))
- =(+(c_1 +(c_2 +(-(c-1) +(+(-(+(c_2 +(-(c_1) - (c_2)))) -(c_1))

- (c_2)))))
0)

- -(+(c_1 +(c_2 +(-(c_1) +(+(+(-(+(-(c_1) - (c_2))) -(c_2)) - (c -1))
- (c_2)))))

o)
- =(+(c_1 +(c_2 +(-(c_1) +(+(+(+(—(-(c_2)) - (- (c_1))) -(c_2)) -(c_1))

- (c_2)))))
o)

- =(+(c_1 +(c_2 +(-(C-1) +(+(+(+(- (- (c_2)) c_1) -(c_2)) - (c_1))
- (c_2)))))

0)
- =(+(c_1 +(c_2 +(-(c-1) +(+(+(+(c_2 c_1) -(c_2)) —(c_1)) - (c_2))))) 0)
- -(+(c_1 +(c_2 +(-(c_1) +(+(+(c_2 +(c_1 - (c_2))) - (c_1)) - (c -2))))) 0)
- =(+(c_1 +(c_2 +(-(c-1) +(+(c_2 +(+(c_1 - (c -2)) - (C-1))) - (c_2))))) 0)

- =(+(c_1 +(C-2 +(-(c_1) +(+(C-2 +(c_1 +(-(c_2) - (c_1)))) - (c , 2))))) 0)
- =(+(c-1 +(c_2 +(-(c_1) +(c_2 +(+(c_1 +(—(c_2) - (c_1))) - (c_2)))))) 0)
- =(+(c_1 +(c_2 +(-(c_1) +(c-2 +(C-1 +(+(-(c_2) -(c_1)) - (C -2))))))) 0)
- =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(-(c-2) +(-(c_1) - (c -2)))))))) 0)
All x,y:Any + - (+ (y +(z +(y x))) - (+ (y x)))
All x,y:Any + =(+(y +(x +(y x))) +(- (x) - (y)))
All x,y:Any + =(+(-(y) +(x +(y x))) +(y +(- (x) - (y))))
111 x,y:Any + =<+(y +<x +(- (y) x))) +(- (y) +(- (x) —(—(y)))))
All x,y:Any + =(+(y +(z +(- (y) x))) +(- (y) +(—(x) y)))
- -(+(c_1 +(c-2 +(-(c_1) +(c-2 +(-(c_1) +(- (- (c_2)) c_1)))))) o)
- - (+(c_1 +(c_2 +(-(c_1) +(c_2 +(-(c_1) +(c_2 c -1)))))) o)
A11 x,y,z:Any + =(+(-(+(z y)) x) +(z +(y +(+(z y) x))))
All x‚y‚z:Any + =(+(' (+(z y)) x) +(z +(y +(z +(y x)))))
All x ,y ‚z :Any + - (+ (+ (- (z) - (y)) x) + (y + (z + (y + (z x)))))
All x ,y , z :Any + =(+ (- (z) + (- (y) x)) + (y + (z + (y + (z x)))))
- =(+(c_1 +(c_2 +(-(c_2) +(—(—(c_1)) c_1)))) o)
- =(+(c_1 +(c„2 +(—(c_2) +(c_1 c_1)))) 0)
- =(+(c_1 +(c_2 +(-(c_2) - (c -1)))) 0)

14

RW67,l t RW28 --) * RW68: - =(+(c_l -(c_l» 0)

RW68 ,1 t RW22 --) * RW69: - =(0 0)

RW69,l t Al,l --) * R70: [J

q.e.d.

The fifth example is one in the not so widely known theory of ternary algebra and we have to say a few words
about the problem and our proof. In most cases the theory is given with an additional axiom: a right inverse
*(x y -(y» = x. But only one of the inverses is necessary. Normally a Knuth-Bendix reduction ordering,
which we used for this example, sets the parentheses rightassociative so that for example a(b(c(de») is the
normal form and not «(a b)c)d)e. In this case omitting the left inverse causes no difficulties and the theorem
can be proved despite of the divergence of the completion algorithm. But omitting the right inverse induces
trouble, the left side of the inverse rule cannot be unified with the left side of the equation P20. SO the other way
of setting the parentheses must be chosen to find a proof with this method. It is a commonly used technique
to define orderings from left to right or right to left for different operators in term rewriting. Using the left to
right ordering and unfailing completion such that the necessary derived unorientable equations can be applied
in both directions, increases the search space enormously such that MKRP does not find the solution.

ExaIllple 4.6 (Wos 5)

Set of Axiom Clauses Resulting from Normalization
=============--=======================--=====

Ai: All x:Any + =(x x)
* A2: All x,y,z,u,v:Any + =(*(*(v u z) y *(v u x» *(v u *(z y x»)
* A3: All x,y:Any + =(*(y x x) x)
* A4: All x,y:Any + =(*(y y x) y)
* A5: All x,y:Any + =(*(-(y) y x) x)

Set of Theorem Clauses Resulting from Normalization
=====================================:;::=

Refutation:
=========

A4,l t A2,l --) * Pl: All x,y,z,u:Any + =(*(u z *(u u y» *(u u *(x z y»)

Pl,l t A4 --) * RW2: All x,y,z:Any + =(*(z y *(z z x» z)

RW2,1 t A4 --) * RW3: All x,y:Any + =(*(y x y) y)

A3,1 t A2,1 --) * P7: All x,y,z,u:Any + =(*(*(u z y) x z) *(u z *(y x z»)

A5,1 I; P7,l --) * PS: All x,y,z:Any + =(*(*(z y -(x» x y) *(z y y»

P8,1 I; 13 --) * RW9: All x,y,z:Any + =(*(*(z y -(x» x y) y)

A4,l t P7,l --) * PlO: All x,y,z:Any + =(*(*(z y x) x y) *(z y x»

Pl0,1 i; RW9,1 --) * Pll: All x,y,z:Any + =(*(*(z -(y) x) y x) x)

RW3,l I; A2, 1 --) * P20: All x,y,z,u:Any + =(*(*(u z y) x u) *(u z *(y x u»)

A4,1 t P20,l --) * P23: All x,y,z:Any + =(*(*(z y x) x z) *(z y x»

P23,l I; Pl0,1 --) * P25: All x,y,z:Any + =(*(*(z y x) z x) *(*(z y x) x z»

P25,1 I; P23 --) * RW26: All x,y,z:Any + =(*(*(z y x) z x) *(z y x»

15

RH67,1 l RH28
RW68‚1 ! BUZZ
RH69,1 & A1 ,1

- -> * RHGS: - =(+ (c_1 - (c_1)) 0)
--> * Russ: - =(o 0)
--> * R70: []

q . e .d .

The fifth example is one in the not so widely known theory of ternary algebra and we have to say a few words
about the problem and our proof. In most cases the theory is given with an additional axiom: a. right inverse
*(x y —(y)) = x . Bu t only one of the inverses is necessary. Normally a Knuth-Bendix reduction ordering,
which we used for this example, sets the parentheses rightassociative so that for example a(b(c(d e))) is the
normal form and not (((a b)c)d)e. In this case omitting the left inverse causes no difficulties and the theorem
can be proved despite of the divergence of the completion algorithm. But omitting the right inVerse induces
trouble, the left side of the inverse rule cannot be unified with the left side of the equation P20. So the other way
of setting the parentheses must be chosen to find a proof with this method. It is a commonly used technique
to define orderings from left to right or right to left for different operators in term rewriting. Using the left to
right ordering and unfailing completion such that the necessary derived unorientable equations can be applied
in both directions, increases the search space enormously such that MKRP does not find the solution.

Example 4.6 (Was 5)

Set o f Axiom Clauses Resulting from Normalization

A1:
A2:
A3:
A4:
A5:

i i
i -

*4
}

All x:Any + =(x x)
All x.y.z‚u,v:Any + =(*(*(v u z) y * (v u x)) * (v u * (z y :)))
All x‚y:Any + =(*(y x x) x)
All x.y:Any + =(* (y y x) y)
All x‚y=Any + - (* (‘ (y) y x) x)

Se t o f Theorem Clauses Resulting from Normalization

=(* (c .1 -(c_1) c_2) c_2)

Refutation:
======E=

A4‚1 & A2‚1
P1‚1 t A4
RWZJ & A4
A3,1 & A2‚1
A5‚1 & P7 ,1
P8‚1 I: A3
A4,1 !: P7 ,1
P10‚1 & RH9,1
RW3,1 & A2 ,1
A4‚1 & P20 ,1
P23 ,1 & P10‚1
P25‚1 & P23

- -> P1: All x‚y,z‚u:Any + =(*(u z *(u u y)) '"(u u *(x z y)))
-—> R32: All x‚y‚z:Any + =(*(z y * (z z x)) 2)
- -> “3 : All x,y:Any + =(*(y x y) y)
- -> P7: All x‚y‚z‚u:Any + =(* (* (u z y) x z) *(u z *(y x 2)))

P8: All x,y‚z:Any + =(*(*(z y - (x)) x y) * (z y y))
awe: 111 x‚y,z:Any + =(*(*(z y - (x)) x y) y)
P10: A11 x,y,z:Any + =(* (* (z y x) x y) * (z y x))
P11: All x‚y‚z:Any + =(* (* (z - (y) x) y x) 1:)
P20: All x ,y , z ,u :Any + = (* (* (u z y) x u) * (u z *(y x u)))
P23: All x‚y ‚z :Any + =(* (* (z y x) x z) #(z y x))
P25: All x .y,z:Any + =(* (* (z y x) z x) *(* (z y x) x 2))
RRZS: All x‚y,z:Any + =(* (* (z y x) z x) *(z y x))

I | V

**
*—

lfl
l l

ö l
v—

ßfl
i i

15

5

Pll,l a RW26,l --> * P27: All x,y:Any + -(y *(x -(x) y»
P27,1 t T6,l --> * R28: []

q.e.d.

E. Lusk and R. Overbeek mentioned a sixth problem, which is probably the most famous one in equality
3reasoning: "every ring with x = x is commutative." Many authors as for example M. Stickel [Sti84] and

D. Kapur [KZ89] focused qn it. They used special techniques to solve it and other related problems in the
family xn = x, especially they used completion modulo AC-unification. In particular D. Kapur developed a
special algorithm to handle these problems very efficiently. Without AC-unification it is not feasible to solve
this example. We shall extend our theorem prover to use AC1-unification with constraints [KK89].

The combination of theory unification algorithms and the Knuth-Bendix procedure seems the most promising
way to handle unit (unconditional) equations.

Now we come to the premised table of steps and we give the ratio number of performed steps / number
of proof steps in a second column. Numbers smaller than one stem from the reduction steps which are not
counted as performed paramodulations, because they are in some sense "deterministic". The third line gives
the ratio when only completion steps in the proof are counted. The table is another hint that the completion
process can be seen as a very straightforward lemma generation. With a corresponding selection function and
a lookahead that should be more efficient than ours, there are almost all produced clauses useful for the proof.

WOS t Wos2 Wosg WOS4 Wos 5 WOS6

Steps 6 7 41 18 20 00

Ratio with rewrites 0.75 1 0.89 0.34 1.43 00

Ratio without rewrites 1.2 1.75 1.78 1.29 2.22 00

The numbers of the clauses in the protocol are not related to the numbers of clauses generated during the proof,
they get there numbers in the protocol module due to some mystery.

As the last point in this section we give a table to compare the runtimes for the given examples in K. Blasius'

system and in the Markgraf-Karl system. The time is measured in seconds and the computations were done on

a Symbolics 36xx. 00 means that the program cannot solve the problem.

WOS t Wos2 Wos3 Wos4 Wos s Wos6

Blasius 89 40 00 00 00 00

MKRP 25 18 546 245 312 00

Additional Mechanisms, Orientation of Clauses

Now the equality reasoning mechanism is combined with some other facilities of the MKRP-system as for
example splitting, which makes it possible to formulate some problems in a more natural way, because the parts
of the proof are proved separately. One example is 5.1.

Example 5.1 (Splitting)
In a group are equivalent:

1. x+y=y+x

2. (x+y)+(y+x)=(x+x)+(y+y)

3. -(x + y) = -(x) + -(V)

The three parts of a circular implication can be given as one formula and are then proved independently.

16

r11 ,1 I “26 .1 - -> n: P27: A11 x ,y :Any + - (y * (x - (x) y))
P27 ,1 ! T6‚1 - -> * R28: []

q .e .d .

E. Lusk and R. Overbeek mentioned a sixth problem, which is probably the most famous one in equality
reasoning: “every ring with x3 = a: is commutative.” Many authors as for example M. Stickel [Sti84] and
D. Kapur [KZ89] focused on it. They used special techniques to solve it and other related problems in the
family z" = a:, especially they used completion modulo AC—unification. In particular D . Kapur developed a
special algorithm to handle these problems very efficiently. Without AC—unification it i s not feasible to solve
this example. We shall extend our theorem prover to use ACl—unification with constraints [KK89].

The combination of theory unification algorithms and the Knuth-Bendix procedure seems the most promising
way to handle unit (unconditional) equations.
Now we come to the premised table of steps and we give the ratio number of performed steps / number
of proof s t eps in a second column. Numbers smaller than one stem from the reduction steps which are not
counted as performed paramodulations, because they are in some sense “deterministic”. The third line gives
the ratio when only completion steps in the proof are counted. The table is another hint that the completion
process can be seen as a very straightforward lemma generation. With a corresponding selection function and
a lookahead that should be more efficient than ours, there are almost all produced clauses useful for the proof.

081 082 083 034 055 ' 086

6 18 oo
rewrites 0 .75 1 0 .89 0 .34 . oo
t tes 1 1 . . 1 00

The numbers of the clauses in the protocol are not related to the numbers of clauses generated during the proof,
they get there numbers in the protocol module due to some mystery.

As the last point in this section we give a table to compare the runtimes for the given examples in K. Bläsius’
system and in the Markgraf-Karl system. The time is measured in seconds and the computations were done on
a Symbolics 36xx. oo means that the program cannot solve the problem.

W031 W032 W053 W034 W035 W036
Bläsius 89 40 00 00 00 00
MKRP 25 18 546 245 312 oo

5 Additional Mechanisms, Orientation of Clauses

Now the equality reasoning mechanism is combined with some other facilities of the MKRP-system as for
example splitting, which makes it possible to formulate some problems in a more natural way, because the parts
of the proof are proved separately. One example is 5.1.

Example 5 .1 (Splitting)
In a group are equivalent:

1. x+y=y+x

2. (r+y)+(y+z)=(z+x)+(y+y)
a—e+w=4n+4w

The three parts of a circular implication can be given as one formula and are then proved independently.

16

Another feature of our theorem prover are sorts and they cause no practical trouble as long as we take care that
the ordering is compatible with the sort structure. Of course there is an abundance of literature describing the
combination of sorts and equality reasoning methods. J. Goguen, J .-P. Jouannaud, and J. Meseguer [GJM85], A.
Dick [Dic85], K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer [FGJM85], M. Bidoit, and M. Glaudel
[BG85], and J.-P. Jouannaud, and P. Lescanne [JL87] have a view from program specification on rewriting and
sorts, the viewpoint of R. Cunningham, and A. Dick [CD85], J. Goguen, and J. Meseguer [GM85], G. Smolka, and
collegues [SNMG87], as well as the works of J. Gallier, and T. Isakowitz [GI88)' and M. Schmidt-Schau£[SS88]
are more theoretical. Especially [8888] must be considered when fully integrating sorts and rewriting. But
there is also a lot of open questions in this area, in particular it is not clear how strong the restriction on the
correlation of the reduction ordering and the sort hierarchy must be.

One of the most powerful tools in MKRP is its dedicated clause graph reduction facility [Prii85,EOP89] and
especially the subsumption rule is very useful in the equality reasoning context. We implemented an extended
form, which allows a lookahead of demodulation steps such that a lot of unnecessary link generations could be
suppressed. But there remains an enormous overhead caused by the generation of these links.

As mentioned above simple completion and demodulation cannot be the unique mechanism to grab the problem
of handling the equality predicate automatically. The first implication (1 ::::} 2) of example 5.1 is a suitable
instance of such a problem. To prove 2 nothing must be done but first switching the middle pair of identifiers
and then the right pair. But associativity can only be applied left to right and so we have an equation
x + (y + (y + x)) = x + (x + (y + y)) and a relatively complicated proof using unfailing completion with 26
completion and demodulation steps is generated by our theorem prover. Using AC-unification the proof consists
of a trivial unification step, which only has to state that the two terms are equal. This shows again that theory
unification is a powerful tool in combination with rewriting.

Now we turn to the problem of conditional equations. In most cases they occur together with unit equations
that can be handled by completion and rewriting. So one strategy would be to generate all "good and necessary"
rewrite rules and then to use heuristics when applying the conditional equations.

We shall demonstrate this principle with the following two examples taken from the theory of commutative,
zero divisor free rings. The ring axioms are given as usual and the property that the ring has no zero divisors
is expressed by a conditional equation "Ix, y : x· y =0 ::::} x =0 VY = 0, which can be transformed into a clause
x . y f: 0 V x = 0 V Y =O. This is the clause in the upper right corner of the example 5.3.

First of all we give a proof of a human mathematician and then we illustrate in example 5.3 the infeasibility of
paramodulation and rewriting alone for such really simple problems.

Example 5.2 (Zero Divisor Free Ring, Cancellation, Human Proof)

Let	 a) (R, +,·,0,1) be a commutative ring with 1 and

b) Vx,y:x·y=O=>x=OVy=O (zerodivisorjree)

then Vx,y,z: x· z = y. z /\z f: O::::} x = y (cancellation)

Proof:	 Let x, y, z E R and x . z = y . z /\ z f: 0

=> x . z - y . z = (x - y) . z = 0

::::} x - y = 0 because z f: 0 and b)

=>x=y

q.e.d.

Next we try to depict a paramodulation proof for this example in form of a graph where the proof steps are
labeled with D for demodulation, P for paramodulation, and R for resolution. 80metimes a D-arrow stands
for multiple applications of demodulation rules. The proof is hand-made with the following heuristics in mind:

17

Another feature of our theorem prover are sorts and they cause no practical trouble as long as We take care that
the ordering is compatible with the sort structure. Of course there is an abundance of literature describing the
combination of sorts and equality reasoning methods. J . Goguen, J .-P. J ouannaud, and J . Meseguer [GJ M85], A.
Dick [Dic85], K. Futatsugi, J . Goguen, J .-P. J ouannaud, and J . Meseguer [FGJ M85], M. Bidoit, and M. Glaudel
[BG85], and J .-P. Jouannaud, and P. Lescanne [J L87] have a view from program specification on rewriting and
sorts, the viewpoint of R. Cunningham, and A. Dick [CD85], J . Goguen, and J . Meseguer [GM85], G. Smolka, and
collegues [SNMG87], as well as the works of J. Gallier, and T. Isakowitz [G188], and M. Schmidt—SchauB[SS88]
are more theoretical. Especially [8588] must be considered when fully integrating sorts and rewriting. Bu t
there is also a lot of open questions in this area, in particular i t is not clear how strong the restriction on the
correlation of the reduction ordering and the sort hierarchy must be.
One of the most powerful tools in MKRP is its dedicated clause graph reduction facility [Prä85,EOP89] and
especially the subsumption rule is very useful in the equality reasoning context. We implemented an extended
form, which allows a lookahead of demodulation steps such that a lot of unnecessary link generations could be
suppressed. But there remains an enormous overhead caused by the generation of these links.
As mentioned above simple completion and demodulation cannot be the unique mechanism to grab the problem
of handling the equality predicate automatically. The first implication (1 => 2) of example 5.1 is a suitable
instance of such a problem. To prove 2 nothing must be done but first switching the middle pair of identifiers
and then the right pair. Bu t associativity can only be applied left to right and so we have an equation
a: + (y + (y + x)) = z + (a: + (y + y)) and a relatively complicated proof using unfailing completion with 26
completion and demodulation steps is generated by our theorem prover. Using AC—unification the proof consists
of a trivial unification step, which only has to state that the two terms are equal. This shows again that theory
unification is a powerful tool in combination with rewriting.

Now we turn t o the problem of conditional equations. In most cases they occur together with unit equations
that can be handled by completion and rewriting. So one strategy would be to generate all “good and necessary”
rewrite rules and then to use heuristics when applying the conditional equations.

We shall demonstrate this principle with the following two examples taken from the theory of commutative,
zero divisor free rings. The ring axioms are given as usual and the property that the ring has no zero divisors
is expressed by a conditional equation Var, 3; : z - y = 0 :> a: = 0V y = 0, which can be transformed into a clause
at - y 96 0 v a: = 0 V y = O. This is the clause in the upper right corner of the example 5.3.
First of all we give a proof of a human mathematician and then we illustrate in example 5.3 the infeasibility of
paramodulation and rewriting alone for such really simple problems.

Example 5 .2 (Zero Divisor Free Ring, Cancellation, Human Proof)

Let a) (R ,+ ,« ‚0 , 1) be a commutative ring with 1 and
b) Vz,y :z -y=0=>zr=0Vy=0 (zero diviaorfree)

then Vz'‚y,z : a: - z = y . zAz # 0 => :: = y (cancellation)

Proof: Le tm‚y , z 6R ands -z : y - zAzgéO

=>z-z—y.z=(m—y)-z=0
=>z~y=0 becausezgéo and 6)
=> 1: = y

q.e.d.

Next we try to depict a paramodulation proof for this example in form of a graph where the proof steps are
labeled with D for demodulation, P for paramodulation, and R for resolution. Sometimes a D—arrow stands
for multiple applications of demodulation rules. The proof is hand—made with the following heuristics in mind:

17

Use the human proof as orientation and make the proof as linear as possible and begin the linear chain with
a clause in a rather small set of support, that is, not the whole theorem but just an essential part of it. The
negated and Skolemized theorem consists of three clauses cb = ab, b # 0, and a # c with the Skolem constants
a, b, and c. The most restricted set of support consists of just the conclusion of the theorem a =f: c and this
should be the nucleus of our linear proof. The first action consisting of two paramodulation steps is to expand
one side of the inequality by subtracting and adding the same thing, this "something" is intended to become
a "c" so that the literal is c ;j; c and can be resolved away. This goal can almost be achieved by applying a
rewrite rule (derived via a resolution step at the right hand side of the picture) to make a + (-y) to 0 but we
just have a conditional rewrite rule and so we introduce a new literal. The next two steps (D and R) are done
to activate our intention and to remove the c =f: c literal. What remains to be done is to eliminate the newly
introduced literal, which is done straightforwardly by applying a structurally very simple equation (due to its
lack of variables) and demodulating until resolution to the empty clause is possible.

This proof seems to be simple but there are essential disadvantages: Rewrite rules are used in the reverse
direction (x + 0 = x, (-y) + y = 0), paramodulation with variables is used (x + 0 = x), associativity is used
implicitly in both directions (a + « -y) + y) = (a + (-y» + y), and a partially completed set of axioms is used
(right identity when it is not given).

Example 5.3 (Zero Divisor Free Ring, Cancellation, Paramodulation Proof)

x+O=x a=l=c,'-----', 1p

(-y)+y=o a+O=l=c b =1= 0 - y = 0 V x = 0 V xy # 0

I lp lR
a + (-y) + y =1= c x = 0 V xb ;j; 0

~
0+ y # cV (a + (-y»b =1= 0

In
x = x - y =1= c V ab + - (yb) ;j; 0

ob ~ ab aH -le:) to
I J lp

cb + -(cb) =1= 0

ID
x =x-----o =1= 0

lR
o

Secondly we illustrate similar problems for a second example in the same theory. Again we begin with the
human proof.

18

Use the human proof as orientation and make the proof as linear as possible and begin the linear chain with
a. clause in a rather small set of support, that is, not the whole theorem but just an essential part of i t . The
negated and Skolernized theorem consists of three clauses cb = ab, b 96 0, and a 96 c with the Skolem constants
a , b, and c. The most restricted set of support consists of just the conclusion of the theorem a sé c and this
should be the nucleus of our linear proof. The first action consisting of two paramodulation steps i s to expand
one side of the inequality by subtracting and adding the same thing, this “something” is intended to become
a “c” so that the literal is c ge 0 and can be resolved away. This goal can almost be achieved by applying a
rewrite rule (derived via a resolution step at the right hand side of the picture) to make a + (—y) to 0 but we
just have a conditional rewrite rule and so we introduce a new literal. The next two steps (D and R) are done
to activate our intention and to remove the c 96 c literal. What remains to be done is to eliminate the newly
introduced literal, which is done straightforwardly by applying a structurally very simple equation (due t o its
lack of variables) and demodulating until resolution to the empty clause i s possible.

This proof seems to be simple but there are essential disadvantages: Rewrite rules are used in the reverse
direction (a: + 0 = a:, (—y) + y = 0), paramodulation with variables is used (a: + O = a:), associativity is used
implicitly in both directions (a + ((—y) + y) = (a + (—y)) + y), and a partially completed set of axioms is used
(right identity when it is not given).

Example 5 .3 (Zero Divisor Free Ring, Cancellation, Paramodulation Proof)

z+0=z agéc

P

(-y)+y=0 a+0¢c b¢0—y=0Vx=0s ; é0

P R

“+(-y)+y9£c a::OVzbgéO

P

0+y¢cV(a+(—y))b¢0

D

: c=9 :——y; ! : cVab+- (yb) ; é0

R

cb = ab ab+—acb) .7’: 0

P

cb+—(‘cb)7é 0

D

a: =a:—-———————0 #0

R

Cl

Secondly we illustrate similar problems for a second example in the same theory. Again we begin with the
human proof.

18

Example 5.4 (Zero Divisor Free Ring, Square, Human Proof)

Let	 a) (R,+,·,O,l) be a commutative ring with 1 and

b) '<Ix,y : x· y =°=? x =°Vy = 0 (zero divisor free)

then '<Ix : x2 - 1 = 0 =? x = 1 V x = -1

2Proof: Let x E Rand x - 1 =°
=? 0 = x 2 - 1 = (x - 1)· (x + 1)

=> x-I =0 V x + 1 =0 because b)

=> x = 1 V x =-1

The paramodulation proof is similar to the first one. Let us restrict our attention to the main differences:
The trick with the expansion and application of conditional x -+ °is applied twice. It is used in the last
demodulation sequence, which additionally is very complicated relative to the one in the other proof. Another
difference is that a further completed system of rewrite rules is needed, that is, more completion steps must be
performed, and it cannot be decided in advance how many completion steps must be done really.

Example 5.5 (Zero Divisor Free Ring, Square, Paramodulation Proof)
l;fe x=x+O

1;'-------"
x+O=x e;f-1	 l;fe+O O=(-z)+z,'----, Ip	 !p , ,

y+(-y)=O e+O;f-1	 l:f;c+(-z)+z y=Ovx=oVYX:f;O

, '!p	 lp I

e+y+(-y);f-l x=oVli-O+zv(c+(-z»x;fO
I_p_~__--..J'

0+ (-y) i- -1 VI ¥ °+ z V (c + (-z»(c + y) ¥ °
lD

x=x	 - -yi--1V1i-zV(c+(-z»(c+y);fO

!R
x=x	 ---- 1 i- z V (c + (-z»(c + 1) ;f 0

!R
(c+(-1»(c+1);fO

ID
c· c+ (-1) = 0 ----e· e+ (-1);f 0

lR
o

19

Example 5 .4 (Zero Divisor Free Ring, Square, Human Proof)

Let a} (R,+ , - ,0 , 1) be a commutative ring with 1 and
b) Vm,y : z - y= 0 => :: =0Vy= 0 (zero divisorfree}

t heazzz—1=0=>x=1Vz=—1

Proof: Le t zeRand32—1=0
=>0=32—1=(z—1)- (z+1)
=>:c——1=0V.'c+1=0 becauseb)
: 3 :1Vx=—1

The paramodulation proof is similar to the first one. Let us restrict our attention to the main difierences:
The trick with the expansion and application of conditional a: —> 0 is applied twice. I t is used in the last
demodulation sequence, which additionally is very complicated relative t o the one in the other proof. Another
difference is that a further completed system of rewrite rules is needed, that is, more completion steps must be
performed, and i t cannot be decided in advance how many completion steps must be done really.

Example 5 .5 (Zero Divisor Free Ring, Square, Paramodulation Proof)
1 $ c x = x + 0

P

x+0=m 675—1 1¢c+0 0= (—z)+z

P P

y+(-—y)=0 c+o‘¢—1 17Ec+(—z)+z y=0Vx=0Vyz¢0
P P

cfl—y)¢—~1 z=0V1=fi0+zV(c+(—z))x9é0

P

0+(—y)96—1V1¢0+;V(c+(—z))(c+y)9é0
D

2 :2 : -—— —y;£—1Vl;’:zV(c+(—z))(c+y)¢0

R

z=az —— 1;6zv(c+(—z))(c+1) ;é0

R

(c+(—1))c+1]9£0

D

c -c+ (-—1)=0 -—-—c-c+ (‘—1)760

R
<
EI

19

Now, what can be concluded from these examples? The intuitive way (linear paramodulation with rewriting)
seems to lead astray, it perverts the human proof to one as complicated as possible and not as machine oriented as
necessary. This naive approach to combine heuristics and rewriting is not really convincing. An approach using
conditional rewriting and completion is better. G. Peterson [pet83] was the first who developped a resolution and
paramodulation calculus which reduces to the Knuth-Bendix algorithm when only given unit equality axioms
and theorems. M. Rusinowitch [HR86,Rus87] extended this work such that only maximal literals ofthe clauses
must be considered for paramodulation. G. Peterson's as well as M. Rusinowitch's approaches only allow very
restricted reduction orderings and only demodulations by unit reduction rules. H. Zhang and D. Kapur [ZK88]
extended it to more orderings and contextual rewriting. Next we present the proofs found by Markgraf-Karl
for our two examples using their method and strategy 5.6.

Definition 5.6 (Advanced Control Strategy)

while empty clause is not derived
if R- or P-links exist

then select the minimal link according to
«if focus on unit clauses and not both clauses are units

then punishment factor
else 0

+ (link_depth-weight * depth-of_link)
+ (lookahead of size of clause»

* if both parents are units

then reward factor

else 1)

operate on it

else error: graph collapsed

Using the Zhang-Kapur method we drastically change the resolution strategy because only on links joining
maximal literals can be resolved or paramodulated. In this way no set-of-support or linear strategy is complete
and in fact Markgraf-KarI now has difficulties to solve problems which were solved before. One main task in
the future is to avoid this disadvantage.

Example 5.7 (Zero Divisor Free Ring, Cancellation, MKRP Proof)

Formulae given to the editor
============================

Axioms: * RING *
ALL X,Y,Z +(+(1 Y) Z) +(X +(Y Z»
ALL X +(0 X) = X
ALL 1 +(-(1) X) = 0
ALL X,Y,Z *(*(1 Y) Z) = *(1 *(Y Z»
ALL 1,Y,Z *(X +(Y Z» = +(*(X Y) *(1 Z»
ALL X,Y,Z *(+(Y Z) X) = +(.(Y X) *(Z X»
* WITH ONE *
ALL 1 *(1 X) = X
ALL X *(1 1) = X
* ZERO DIVISOR FREE *
ALL X,Y *(1 Y) = 0 IMPL X =0 OR Y = 0

20

Now, what can be concluded from these examples? The intuitive way (linear paramodulation with rewriting)
seems to lead astray, i t perverts the human proof to one as complicated as possible and not as machine oriented as
necessary. This naive approach to combine heuristics and rewriting is not really convincing. An approach using
conditional rewriting and completion is better. G. Peterson [Pet83] was the first who developped a resolution and
paramodulation calculus which reduces to the Knuth-Bendix algorithm when only given unit equality axioms
and theorems. M. Rusinowitch [HR86,Rus87] extended this work such that only maximal literals of the clauses
must be considered for paramodulation. G . Peterson’s as well as M. Rusinowitch’s approaches only allow very
restricted reduction orderings and only demodulations by unit reduction rules. H. Zhang and D. Kapur [ZKSS]
extended it to more orderings and contextual rewriting; Next we present the proofs found by Markgraf-Karl
for our two examples using their method and strategy 5.6.

Definition 5 .6 (Advanced Control Strategy)

while empty clause is not derived
i f R- or P-links exist

then select the minimal link according to
((if focus on unit clauses and not both clauses are units

then punishment factor
e l s e 0

+ (1ink_depth_weight * depth_oi_1ink)
+ (lookahead of s ize of clause))

* if both parents are units
then reward factor
e l se 1)

operate on it
e l se error: graph col lapsed

Using the Zhang-Kapur method we drastically change the resolution strategy because only on links joining
maximal literals can be resolved or paramodulated. In this way no set—of-support or linear strategy is complete
and in fact Markgraf-Karl now has difficulties to solve problems which were solved before. One main task in
the future is to avoid this disadvantage.

Example 5 .7 (Zero Divisor Free Ring, Cancellation, MKRP Proof)

Formulae given to the ed i to r

Axioms: * RING *
ALL x , r , z +(+(x Y) z) = +0: +0! 2))
ALL x +<o x) = it
ALL 1: +(-(X) X) = 0
ALL x,Y,z *(* (x Y) z) #0! *(Y z))
ALL X‚Y‚Z *(X +(Y 2))
ALL X‚Y‚Z * (+ (Y Z) X)
* WITH ONE *
ALL x *(1 X) = X
ALL X *(X 1) = X
ZERO DIVISOR FREE *
ALL X,Y * (X Y) = 0 IHPL X = 0 OR Y = 0

+(*(X Y) *(X l))
+(*(Y X) *(Z X))

20

Theorems:	 * CANCELLATION *
ALL X,Y,Z *(X Y) = *(Z Y) AND NOT (Y = 0) IMPL X = Z

Set of Axiom Clauses Resulting from Normalization
===

* Al: All x:Any + =(x x)

* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
* A3: All x:Any + =(+(0 x) x)
* A4: All x:Any + =(+(-(x) x) 0)
* AS: All x,y,z:Any + =(*(*(z y) x) *(z *(y x»)
* A6: All x,y,z:Any + =(*(z +(y x» +(*(z y) *(z x»)
* A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x»)
* A8: All x:Any + =(*(1 x) x)
* A9: All x:Any + =(*(x 1) x)
* AI0: All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0)

Set of Theorem Clauses Resulting from Normalization
=====================================-=======~=~==

* Tll: + =(*(c_2 c_l) *(c_3 c_l»
* T12: - =(c_l 0)
* T13: - =(c_2 c_3)

Refutation:

A4,1 t A2,1 --> * Pl: All x,y:Any + =(+(0 y) +(-(x) +(x y»)

Pi,i ll; A3 --> * RW2: All x,y:Any + =(y +(-(x) +(x y»)

A4,1 ll; RW2,1 --> * P4: All x:Any + =(x +(-(-(x» 0»

P4,1 ll; RW2,l --> * PlO: All x:Any + =(0 +(-(-(-(x») x»

Pl0,l t RW2,l --> * Pit: All x:Any + =(x +(-(-(-(-(x»» 0»

Pit,1 t P4 --> * RW12: All x:Any + =(x -(-(x»)

P4,1 t RW12 --> ' * RW14: All x:Any + =(x +(x 0»

RW12,1 t A4,1 --> * P1S: All x:Any + =(+(x -(x» 0)

A3,1 t A6,1 --> * P1G: All x,y:Any + =(*(y x) +(*(y 0) *(y x»)

A9,1 t Pi6,l --> * P17: All x:Any + =(*(x 1) +(*(x 0) x»

P17,1 t A9 --> * RW18: All x:Any + =(x +(*(x 0) x»

RW14,1 t RW18,1 --> * P19: + =(0 *(0 0»

A3,1 t A7,1 --> * P21: All x,y:Any + =(*(y x) +(*(0 x) *(y x»)

A8,1 t P21,1 --> * P22: All x:Any + =(*(1 x) +(*(0 x) x»

P22,1 I; A8 --> * RW23: All x:Any + =(x +(*(0 x) x»

RW23,1 I: RW2,1 --> * P24: All x:Any + =(x +(-(*(0 x» x»

P19,1 I; AS,1 --> * P28: All x:Any + =(*(0 x) *(0 *(0 x»)

P28,1 I; P24,1 --> * P29: All x:Any + =(*(0 x) +(-(*(0 x» *(0 x»)

P29,l I; A4 --> * RW30: All x:Any + =(*(0 x) 0)

P28 , 1 I; RW30 --> * R\l31: All x:Any + =(*(0 x) *(0 0»

RW31,1 t RW30 --> * R\l32: All x:Any + =(*(0 x) 0)

A4,i I; A7,1 --> * P82: All x,y:Any + =(*(0 y) +(*(-(x) y) *(x y»)

P82, i I: RW'32 --> * R\l83: All x,y:Any + =(0 +(*(-(y) x) *(y x»)

RW83. 1 t RW2,1 --> * P87: All x,y:Any + =(*(y x) +(-(*(-(y) x» 0»

P87,1 t RW14 --> * R\l88: All x,y:Any + =(*(y x) -(*(-(y) x»)

21

Theorems: * CANCELLATION *
ALL X,Y,Z *(X Y) = * (2 Y) AND NOT (Y = 0) IHPL X = Z

Set o f Axiom Clauses Resulting from Normalization

+(z +(y :)))

*(z * (y x)))
+(* (z y) * (z :)))
+(* (z X) *(y x)))

* A1: A11 x:Any + =(x :)
* A2: All x ,y , z :Any + =(+(+(z y) x)
A3: A11 sny + - (+ (0 :) :)
* A4: A11 sny + =(+(-(x) X) 0)
A5: All : ‚y‚z:Any + =(*(*(z y) x)
* A6: A11 x,y,z:Any + =(* (z +(y :))
* A]: All x,y,z:Any + =(*(+(z y) x)
* z All x:Any + =(* (1 :) x)
* A9: A11 x:Any + =(* (: 1) :)
* A10: A11 x,y:Any - “ (* (y :) O) + =(y O) + =(: 0)

Set o f Theoren Clauses Resulting from Normalization

* T11: + =(*(c_2 c_1) *(c_3 c_1))
* T12: - =(c_1 0)
* T13: - =(c_2 c_3)

Refutation:

A4,1 z A2,1 --> * P1: All I .y :Auy + =(+(0 y) +(—(x) +(x y)))
Pl .] 1 A3 - -> * R32: A11 x,y:Any + =(y +(- (x) +(x y)))
A4,1 t 332,1 - -> t P4: All x:Any + =(: +(- (- (x)) 0))
P4‚1 ! RH2‚1 - -> * P10: Al l sny + =(0 +(‘ (—< ‘ (X))) x))
P10,1 t aw2,1 —-> * P11: A11 : :Any + =(: +(- (- (—(- (x)))) 0))
P11,1 & P4 --> * RH12: A11 x:Any + =(: - (- (x)))
P4 ,1 t RUIZ - -> ' # RH14: All : :Any + = (: + (: 0))
Rw12.1 & 14 .1 -—> * P15: A11 x:Any + =(+(x - (x)) 0)
13.1 t A6,1 --> * P16: 111 x,y:Any + =(*(y x) +(*(y o) *(y x)))
A9,1 t P16 ,1 - -> * P17: Al l x:Any + =(* (x 1) +(* (x 0) :))
P17 ,1 & A9 - -> * RH18: Al l : :Any + =(! +(* (: 0) x))
RW14,1 & RW18,1 - -> * P19: + =(0 * (0 0))
A3.1 & A7 ,1 - -> # P21: A11 x ,y :Any + =(* (y x) + (* (0 x) *(y :)))
A8,1 & P21 ,1 - -> * P22: A11 sny + =(* (1 :) +(* (0 :) :))
P22 ,1 & A8 - -> * RH23: Al l x :Any + =(x +(* (0 :) x))
RH23,1 t Rw2,1 --> * P24: All sny + =(x +(-(*(o x)) x))
P19 ,1 & A5,1 - -> * P28: A11 x:Any + =(* (O :) * (0 * (0 :)))
P28,1 & P24,1 - -> * P29: A11 x:Any + =(* (0 :) +(- (* (0 :)) * (0 :)))
p29,1 & A4 - -> * RH30: A11 sny + =(*(o :) o)
P28‚1 & RWSO - -> * RH31: A11 : :Any + =(* (0 x) *(0 0))
RH31‚1 t RH30 —-> . nflazz All : :Any + =(*(o :) 0)
A4‚1 t 17 .1 ——> * P82: Al l x,y:Any + =(*(0 y) +(*(—(x) y) *(x y)))
p32,1 & nv32 - -> * nusa: All :,yzAny + =(o +(*(—(y) :) * (y x)))
RHB3‚1 ! RW2,1 - -> * P87: A11 x,y:Any + =(*(y :) +(—(*(-(y) x)) 0))
P87‚1 & RU14 - -> t RUSS: A11 x ,y :Any + =(* (y I) - (* (- (y) x)))

21

RW88,1 I: A4,1 --> * P97: All x,y:Any + =(+(*(y x) *(-(y) x» 0)

P97,1 I: RW2,1 --> * P98: All x,y:Any + =(*(-(y) x) +(-(*(y x» 0»

P98,1 t RW14 --> * R\l99: All x,y:Any + =(*(-(y) x) -(*(y x»)

A7,l a AI0,l --> * P154: All x,y,z:Any - =(+(*(z y) *(x y» 0) + =(+(z x) 0) + =(y 0)

TH,l t P154,l --> * P155: All x:Any - =(+(*(c_2 c_1) *(x c_l» 0) + =(+(c_3 x) 0) + =(c_1 0)

P155,3 t T12,l --> * R156: All x:Any - =(+(*(c_2 c_1) *(x c_1» 0) + =(+(c_3 x) 0)

Rll99,l t R156,l --> * P167: All x:Any - =(+(*(c_2 c_1) -(*(x c_l») 0) + =(+(c_3 -(x» 0)

P15,l t P167,l --> * P168: - =(0 0) + =(+(c_3 -(c_2» 0)

P168,1 t Al,l --> * R169: + =(+(c_3 -(c_2» 0)

R169,l t R\l2,1 --> * P170: + =(-(c_2) +(-(c_3) 0»

P170,l I: R\l14 --> * RW171: + =(-(c_2) -(c_3»

R\l171,l t R\l12,l --> * P172: + =(c_3 -(-(c_2»)

P172,l I: RW12 --> * RW173: + =(c_3 c_2)

RW173,l t T13,l --> * R174: [J

q.e.d.

The second example is more difficult and needs a very long run time, a further detailed selection function, or
human support. The difficulty stems from the fact that for all three literals in the formula specifying "zero
divisor free" equality reasoning steps are necessary to resolve the literals away, whereas in example 5.7 one
literal can be resolved without preliminary paramodulation steps (R156). The problem occurs when deriving
P237, which is very large compared to other clauses derivable in this state of the refutation process and so the
program first selects all smaller and useless clauses before operating on the decisive link.

Example 5.8 (Zero Divisor Free Ring, Square, MKRP Proof)

Formulae given to the editor
============================

Axioms:	 * RING *
ALL X,Y,Z +(+(X Y) Z) = +(X +(Y Z»

ALL X +(0 X) = X

ALL X +(-(X) X) = 0

ALL X,Y,Z *(*(X Y) Z) = *(X *(Y Z»

ALL X,Y,Z *(X +(Y Z» =+(*(X Y) *(X Z»

ALL X,Y,Z *(+(Y Z) X) = +(*(Y X) *(Z X»

* WITH ONE *
ALL X *(1 X) = X

ALL X * (X 1) = X

* ZERO DIVISOR FREE *

ALL X,Y *(X Y) = 0 IMPL X = 0 OR Y = 0

Theorems:	 * ZEROS *
ALL X +(*(X X) -(1» = 0 IMPL X = 1 OR X = -(1)

Set of Axiom Clauses Resulting from Normalization
===;:==

Al: All	 x:Any + =(x x)
* A2: All x,y,z:Any + =(+(+(z y) x) +(z +(y x»)
* A3: All x:Any + =(+(0 x) x)
* A4: All x:Any + =(+(-(x) x) 0)

22

RH88,1 z A4.1 - -> * P97: A11 x.y:Any + =(+(*(y x) * (- (y) x)) 0)
P97,1 & “ 2 .1 --> # P98: A11 x‚y:Any + =(* (- (y) x) +(- (* (y x)) 0))
P98,1 & RH14 --> * RHQS: A11 x,y:Any + =(*(—(y) x) - (* (y x)))
A7.1 a no .1 - -> * P154: All x‚y,z:Any - =(+(*(z y) *(x y)) 0) + =(+(z x) 0) + =(y 0)
T11 ,1 & P154 ,1 --> * P155: All sny - =(+ (* (c_2 c_1) *(x c_1)) O) + =(+(c_3 x) 0) + =(c_1 0)
P155 ,3 ! T12 ,1 - -> * R156: All x :Any - =(+ (* (c_2 c_l) *(x c_1)) 0) + =(+(c_3 x) 0)
Rw99,1 t R156,1 --> * P167: A11 x:Any - =(+(*(c_2 c_1) - (# (z c_1))) 0) + =(+(c_3 —(x)) 0)
P15 ,1 & P167 ,1 - -> * P168 : - =(0 0) + =(+ (c_3 - (c_2)) 0)

P168 ,1 & A1‚1 - -> * R169: + =(+ (c_3 - (c_2)) 0)
R169,1 & Rw2,1 ——> * P170: + =(—(c_2) +(-(c_3) 0))
P170 ,1 t RHI4 —-> * RH171: + =(- (c_2) —(c_3))
RH171 ,1 & RW12‚1 - -> * P172: + =(c_3 - (- (c_2)))
P172‚1 & RW12 - -> * RH173: + =(c_3 c_2)
RH173 ,1 & T13‚1 -—> * R174: []

q .e .d .

The second example is more diflicult and needs a. very long run time, a further detailed selection function, or
human support . The difficulty stems from the fact that for all three literals in the formula specifying “zero
divisor free” equality reasoning steps are necessary to resolve the literals away, whereas i n example 5.7 one
literal can be resolved without preliminary paramodulation steps (R156). The problem occurs when deriving
P237, which is very large compared to other clauses derivable in this state of the refutation process and so the
program first selects all smaller and useless clauses before operating on the decisive link.

Example 5.8 (Zero Divisor Free Ring, Square, MKRP Proof)

Formulae given to the editor

Axioms : * RING *
ALL X,Y,Z +(+(X Y) Z) = +(X +(Y 2))
ALL X +(0 X) = X
ALL x +C—(X) X) = 0
ALL X,Y,z *(* (x Y) z) - *(x * (Y 2))
ALL X,Y,Z *(x +(Y 2))
ALL X.Y.z *(+(Y z) x)
* HITH our *
ALL x *(1 x) = x
ALL x *(x 1) = x
* zrao nrvrsun FREE *
ALL x‚v *(x Y) = o IMPL x = 0 an Y = o

+(4-(x Y) * (x 2))
+(* (Y X) *(z x))

Theorems: * ZEROS *
ALL X +(*(X X) ' (1)) = 0 IHPL X = 1 OR X = - (1)

Se t of Axiom Clauses Resulting from Normalization

A1: A11 x:Any + =(x x)
* A2: Al l x,y,z:Any + =(+(+(z y) X) +(z +(Y X)))
* A3: A11 sny + - (+ (o x) x)
* A4: A11 x:Any + =(+(—(x) x) 0)

22

A5: All x,y,z:Any + =(*(*(z y) x) *(z *(y x»)
* A6: All x,y,z:Any + =(*(z +(y x» +(*(z y) *(z x»)
* A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x»)
* A8: All x:Any + =(*(1 x) x)
* A9: All x:Any + =(*(x 1) x)
* Al0: All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0)

Set of Theorem Clauses Resulting from Normalization
================_==~========~=z==================

* Tll: + =(+(*(c_l c_l) -(1» 0)
* T12: - =(c_l 1)
* T13: - =(c_l -(1»

Refutation:
==========

A4,1 I; A2,1 --) * Pl: All x,y:Any + =(+(0 y) +(-(x) +(x y»)
Pl,l I; A3 --) * RW2: All x,y:Any + =(y +(-(x) +(x y»)
A4,1 It R\l2,1 --> * P4: All x:Any + =(x +(-(-(x» 0»
T11,l I; A2,1 --) * PlO: All x:Any + =(+(0 x) +(*(c_l c_1) +(-(1) x»)
Pl0,1 I; A3 --) * RW11: All x:Any + =(x +(*(c_1 c_1) +(-(1) x»)
A4,1 I; R\l11,l --) * P12: + =(1 +(*(c_1 c_1) 0»
RW2 , 1 I; RW11, 1 --) * P13: All x:Any + =(+(1 x) +(*(c_1 c_1) x»
P12,1 I; P13 --) * RW16: + =(1 +(1 0»
RW16,1 I; A6, 1 --) * P17: All x:Any + =(*(x 1) +(*(x 1) *(x 0»)
P17,11;A9 --) * RW18: All x:Any + =(*(x 1) +(x *(x 0»)
RW18,1 I; A9 --) * RW19: All x:Any + =(x +(x *(x 0»)
R\l19, 1 I; RW2, 1 --) * P21: All x:Any + =(*(x 0) +(-(x) x»
P21,1 I; A4 --) * R\l22: All x:Any + =(*(x 0) 0)
RW19,l I; RW22 --) * RW23: All x:Any + =(x +(x 0»
P4,1 I; RW23 --) * R\l24: All x:Any + =(x -(-(x»)
P13,1 I; RW23,1 --) * P25: + =(*(c_l c_l) +(1 0»
P25 ,1 I; RW23 --) * R\l26: + =(*(c_l c_1) 1)
R\l24,1 I; A4,1 --> * P28: All x:Any + =(+(x -(x» 0)
14,1 I; A6,1 --> * P32: All x,y:Any + =(*(y 0) +(*(y -(x» *(y x»)
P32,1 I; RW22 --) * R\l33: All x,y:Any + =(0 +(*(y -(x» *(y x»)
RW33 , 1 I; RW2, 1 --) * P42: All x,y:Any + =(*(y x) +(-(*(y -(x») 0»
P42,1 I; RW23 --> * R\l43: All x,y:Any + =(*(y x) -(*(y -(x»»
RW24,1 i R\l43,l --> * P53: All x,y:Any + =(*(y -(x» -(*(y x»)
A7,1 I; AiO,l --) * P235: All x,y,z:Any - =(+(*(z y) *(x y» 0) + =(+(z x) 0) + =(y 0)
A8, 1 I; P235,1 --> * P236: All x,y:Any - =(+(y *(x y» 0) + =(+(1 x) 0) + =(y 0)
A2,l I; P236,l --> * P237: All x,y,z:Any - =(+(z +(y *(x +(z y»» 0)

+ =(+(1 x) 0)
+ =(+(z y) 0)

P237,1 I; A6 --> * R\l238: All x,y,z:Any - =(+(z +(y +(*(x z) *(x y»» 0)
+ =(+(1 x) 0)
+ =(+(z y) 0)

A9,1 I; RW238,1 --) * P239: All x,y:Any - =(+(1 +(y +(x *(x y»» 0)
+ =(+(1 x) 0)
+ =(+(1 y) 0)

RW2,l I; P239,1 --) * P240: All x:Any - =(+(1 *(x -(x») 0) + =(+(1 x) 0) + =(+(1 -(x» 0)
P240, 1 I; P53 --> * RW241: All x:Any - =(+(1 -(*(x x») 0) + =(+(1 x) 0) + =(+(1 -(x» 0)

23

A5:
A6:
A7:
A8:
A9:
A10:

**
*-

**

Set o f

All x,y,z:Any + =(* (* (z y) I) * (z * (y !)))
A11 x,y‚z:1ny + =(+(z +(y x)) +(*(z y) * (z :)))
A11 x,y,z:Any + =(*(+(z y) x) +(* (z x) * (y :)))
A11 x:Any + =(+(1 :) x)
A11 x:Any + =(+(z 1) x)
All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0)

Theorem Clauses Resulting from Normalization

T11: + =(+ (* (c_1 c_1) - (1)) 0)

I- T12: - =(C_1 1)
* T13: - =(c_1 - (1))

Refutat ion:

A4‚1 & RH11‚1
RW2‚1 & RW11,1
P12 ,1 & P13
RH16,1 & A6,1
P17 ‚1 & A9
RH18.1 & A9
RH19‚1 & BH2,1
P21 ,1 & A4
RW19,1 & RU22
P4 ,1 & 8323
P13,1 & RH23,1
P25 ,1 t RH23
RH24,1 & A4 ,1
A4,1 & A6,1
P32 ,1 & RW22
RH33,1 & RW2‚1
P42,1 & RW23
RH24‚1 & RW43‚1
A7,1 & A10‚1
A8,1 & P235 ,1
A2,1 & P236,1

P237 ,1 & A6

A9,1 & RH238,1

RH2,1 & P239‚1
P240 ,1 & P53

- -> * P1: All x,y:Any + =(+(0 y) +(- (x) +(z y)))
--> * 332: A11 x,y:Any + =(y +(- (x) +(x y)))
--> * P4: 111 x:Any + =<x +(—(—(x)) 0))
- -> * P10: 111 x:Any + =(+(o x) +(*(c_1 c_1) + (- (1) x)))
——> * RH11: 111 x:Any + =(x +(*(c-1 c_1) +(—(1) x)))
- -> * P12: + =(1 +(*(c_1 c_1) 0))
- -> t P13: All x:Any + =(+(1 x) +(*(c_1 c_1) x))
--> * RH16: + =(1 +(1 0))
- -> * P17: All x:Any + =(+(z 1) +(*(x 1) * (x 0)))
——> * Rw18: 111 sny + =(*(x 1) +(1 * (x 0)))
- -> * nw19: 111 sny + =(x + (z * (x 0)))
—-> * P21: 111 x:Any + =(*(x 0) + (- (x) x))
--> * s z : 111 x:1ny + - (* (z 0) 0)
-—> * RH23: All sny + =(x + (z 0))
- -> * RH24: 111 sny + - (x - (- (x)))
- -> * P25: + I= (" (c_1 c_1) +(1 0))
—-> t EH26: + =(*(c_1 c_1) 1)
-—> * P28: 111 xz1ny + =(+(z - (x)) 0)
-—> * P32: A11 x,y:Any + =(* (y o) +(*(y - (z)) *(y x)))
- -> * awas: 111 x,y:Any + - (0 +(*(y - (x)) *(y x)))
-—> * P42: All x,y:Any + =(*(y !) + (- (* (y —(x))) 0))
—-> * RW43: A11 x,y:Any + =(*(y x) - (* (y - (x))))
-—> * P53: 111 x,y:Any + =(*(y - (x)) - (* (y x)))
- -> . P235: 111 z‚y ‚z :1ny - - (+ (* (z y) * (x y)) o) + =(+(z :) o) + =<y 0)
--> * P236: 111 x,y:Any - =(+(y * (z y)) 0) + =(+(1 :) 0) + =(y 0)
-—> * P237: 111 x,y,z:Any — =(+(z +(y * (x +(z y)))) 0)

+ =(+(1 x) 0)
+ =(+(z y) 0)

--> a RH238: A11 x,y,z:Any - =(+(z +(y +(*(x z) * (x y)))) 0)
+ =(+(1 x) 0)
+ =(+(z y) 0)

- -> * P239: A11 x,y:Any ' =(+(1 +(y +(z * (x y)))) 0)
+ =(+(1 !) 0)
+ =(+ (1 y) 0)

- -> # P240: All x:Any - =(+(1 *(x - (x))) O) + =(+(1 :0 O) + =(+(1 - (x)) 0)
--> # RH241: All sny - =(+(1 - (* (x x))) 0) + =(+(1 :) 0) + =(+(1 -(x)) 0)

23

6

RW'26. 1 I; 1<W'241 , 1 --> .. P242: - =(+(1 -(1» 0) + =(+(1 c_1) 0) + =(+(1 -(c_1» 0)

P242.1 I; P28,1 --> .. R243: + =(+(1 c_l) 0) + =(+(1 -(c_l» 0)

R243,2 I; A2,1 --> .. P244: All x:Any + =(+(0 x) +(1 +(-(c_l) x») + =(+(1 c_1) 0)

P244,1 I; A3 --> .. RW245: All x:Any + =(x +(1 +(-(c_l) x») + =(+(1 c_l) 0)

P28,1 I; RV245,1 --> .. P246: + =(-(-(c_1» +(1 0» + =(+(1 c_l) 0)

P246,l I; RV23 --> .. RW247: + =(-(-(c_l» 1) + =(+(1 c_l) 0)

RV247,1 I; RV24 --> .. RW248: + =(c_l 1) + =(+(1 c_1) 0)

RW248,1 I; T12,1 --> .. R249: + =(+{1 c_l) 0)

R249,l I; RW2,1 --> .. P250: + =(c_l +(-(1) 0»

P250,1 I; RW23 --> .. RW251: + =(c_l -(1»

RW251.1 I; T13, 1 --> .. R252: []

q.e.d.

The proofs found by the computer have nothing to do with the hand-made paramodulation proofs. They
construct a solution in the opposite direction and so the usage of variable paramodulation steps is avoided.

Conclusion

This report was originally motivated by a programming exercise: we just wanted to implement the Knuth
Bendix method directly into the MKRP-system using the trick as described in section 4. It came to our own
surprise, that the system now by far out performed all of its previous versions with regard to equality and
showed results we did not expect to be so significant.

Our conclusion is that a general equality reasoning procedure without Knuth-Bendix completion is unthinkable.
Even if a subset of equations can be directed and completed beforehand it is still very worthwhile to have the
completion procedure around. Almost every interesting mathematical theory has a part consisting of directable
unit equations, albeit not "complete", and the Knuth-Bendix algorithm is the most efficient way to derive new
interesting equations of which some are needed for almost every proof in the theory. In addition with this hard
restriction of equation application (directed and completion) many interesting problems can be solved. In its
constraining effect the usage of the Knuth-Bendix procedure seems to be comparable to the Waltz-effect in
contrary to the proposition of K. Bliisius [Blii86]. The Waltz-effect is exploited in Vision for deriving consistent
possibilities to interpret the topology of objects in a picture [Ric83b, pages 351-358].

But this seems to be so only for the standard completion procedure with unit equations, not for the extensions
to arbitrary clauses. Here a heuristic approach with a strong depth search component that is orientated at
the PROLOG strategy may be more adequate [BG90]. The problems occurring when imbedding a method for
handling conditional completion in a resolution based theorem prover seem to be comparable to these of an
imbedding in one based on polynomials [Den88].

Structure in axioms and theorems should be considered whereever this is possible but "normal" mathematical
theories seem to have no usable structure, but at least it is not yet detected.

Acknowledgement

I have to thank Jorg Denzinger, Manfred Kerber, Christoph Lingenfelder, Hans Jiirgen Ohlbach, JorgSiekmann,
and Christoph Weidenbach for readings and corrections of drafts of this paper.

24

nu2s .1 n nu241 ,1 -—> . r242: — =(+ (1 - (1)) o) + =(+(1 c_1) 0) + =(+ (1 —(c_1)) 0)
P242 ,1 & P28 ,1 ——> * B243: + =(+ (1 c_1) 0) + =(+(1 - (c_1)) o)
3243.2 & A2‚1 —-> * P244: All x:Any + =(+(o x) +(1 +(-(c_1) x))) + =(+(1 c_1) 0)
P244,1 & A3 ——> # RW245: All xznny + =(x +(1 +(-(c_1) x))) + =(+(1 c_1) 0)
P28,1 & RH245,1 - -> * P246: + =(-(—(c_1)) +(1 0)) + =(+(1 c_1) o)
P246,1 I nw23 -—> * nu247: + =(-(—(c_1)) 1) + =(+(1 c_1) 0)
nw247,1 e RH24 -—> * RH248: + =(c_1 1) + =(+(1 c_1) o)
Rw248,1 t r12,1 -—> w R249: + =(+(1 c_1) 0)
n249,1 e nw2,1 —-> * P250: + =(c_1 +(-(1) o))
P25o,1 & Rw23 ——> * RH251: + =(c_1 —(1))
Rw251,1 e T13‚1 ——> * R252: []

q .e .d .

The proofs found by the computer have nothing to do with the hand-made paramodulation proofs. They
construct a solution in the opposite direction and so the usage of variable paramodulation steps is avoided.

6 Conclusion

This report was originally motivated by a. programming exercise: we jus t wanted to implement the Knuth-
Bendix method directly into the MKRP—system using the trick as described in section 4. It came to our own
surprise, that the system now by far out performed all of its previous versions with regard to equality and
showed results we did not expect to be so significant.
Our conclusion is that a general equality reasoning procedure without Knuth-Bendix completion is unthinkable.
Even if a subset of equations can be directed and completed beforehand it is still very worthwhile to have the
completion procedure around. Almost every interesting mathematical theory has a part consisting of directable
unit equations, albeit not “complete”, and the Knuth-Bendix algorithm is the most efficient way to derive new
interesting equations of which some are needed for almost every proof in the theory. In addition with this hard
restriction of equation application (directed and completion) many interesting problems can be solved. In its
constraining effect the usage of the Knuth-Bendix procedure seems to be comparable to the Waltz-effect in
contrary to the proposition of K. Bläsius [315.86]. The Waltz—effect is exploited in Vision for deriving consistent
possibilities to interpret the topology of objects in a picture [Ric83b, pages 351-358].

But. this seems to be so only for the standard completion procedure with unit equations, not for the extensions
to arbitrary clauses. Here a heuristic approach with a strong depth search component that is orientated at
the PROLOG strategy may be more adequate [BG90]. The problems occurring when imbedding a. method for
handling conditional completion in a resolution based theorem prover seem to be comparable to these of an
imbedding in one based on polynomials [Den88].
Structure in axioms and theorems should be considered whereever this is possible but “normal” mathematical
theories seem to have no usable structure, but at least it is not yet detected.

Acknowledgement

I have to thank Jörg Denzinger, Manfred Kerber, Christoph Lingenfelder, Hans Jürgen Ohlbach, Jörg Siekmann,
and Christoph Weidenbach for readings and corrections of drafts of this paper.

24

IReferences
I
[BBB+84] Susanne Biundo, Karl-Hans Blasius, Hans-Jiirgen Biirckert, Norbert Eisinger, Alexander Herold,

Thomas Kiiufl, Christoph Lingenfelder, Hans Jiirgen Ohlbach, Manfred Schmidt-SchauB, Jorg H.
Siekmann, and Christoph Walther. The Markgraf Karl Refutation Procedure. SEKI-MEMO MK
84-01, Fachbereich Informatik, Universitat Kaiserslautern, Institut fur Informatik I, Universitiit
Karlsruhe, Postfach 3049, D-6750 Kaiserslautern, Postfach 6380, D-7500 KarIsruhe 1, 1984.

[BDP87] Leo Bachmair, Nachum Dershowitz, and David Plaisted.
Lakaway, Texas, 1987.

Completion without failure. CREAC,

[BG85] M. Bidoit and M. C. Glaudel.
Bicre + GlobeIe 45, 1985.

PLUSS: Proposition pour un langage de specification strueturee.

[BG90] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with simplification.
To appear on 10th CADE, 1990.

[Bla.86] Karl Hans Blasius.
1986.

Equality Reasoning Based on Graphs. PhD thesis, Universitiit Kaiserslautern,

[Bru75] M. Bruynooghe. The inheritance oflinks in a connection graph. Report CW2, Applied Mathematics
and Programming Division, Katholieke Universiteit Leuven, 1975.

[Buc85] Bruno Buchberger.
1985.

History and basic features of the critical-pair/completion approach. Dijon,

[Bun83] Alan Bundy. The computer modelling of mathematical reasoning. Academic Press, London, 1983.

[CD85] R. J. Cunningham and A. J. J. Dick.
22:149-169,1985.

Rewrite systems on a lattice of types. Acta Informatica,

[Dar68] J. L. Darlington. Automatic theorem proving with equality substitution and mathematical induc
tion. Machine Intelligence, 3:113-127, 1968.

[Den88] Jorg Denzinger. EQTHEOPOGLES Ein Theorembeweiser fiir die Priidikatenlogik erster Stufe
basierend auf Rewrite Techniken. Diplomarbeit, Universitiit Kaiserslautern, Postfach 3049, D-6750
Kaiserslautern, 1988.

[Der87] Nachum Dershowitz. Rewriting systems. Draft, 1987.

[Dic85] A. J. J. Dick. Eril equational reasoning, an interactive laboratory.
ference, Linz, 1985.

In Proceedings Eurocal Con

[Dig79] V. J. Digricoli. Resolution by unification and equality. In Proceedings 4th Workshop on Automated
Deduction, Austin, 1979.

[EFT78] H.-D. Ebbinghaus, J. Flum, and W. Thomas. Einfiihrung in die mathematische logik. Darmstadt,
1978.

[Eis89] Norbert Eisinger. Completeness, Confluence, and Related Properties of Clause Graph Resolution.
PhD thesis, Universitiit Kaiserslautern, Postfach 3049, D-6750 Kaiserslautern, 1989.

[EOP89] Norbert Eisinger, Hans Jiirgen Ohlbach, and Axel Pracklein. Elimination of redundancies in clause
sets and clause graphs. SEKI Report SR-89-10, Fachbereich Informatik, Universitiit Kaiserslautern,
D-6750 Kaiserslautern, October 1989.

[Fag83] F. Fages. Formes canoniques dans les algebres booIeennes et application it la demonstration au
tomatique en logique de premier ordre. These de 3eme Cycle, Paris, 1983.

25

lReferences

[BDP87]

[Bess]

[BG90]

[B1586]

[Bru75]

[Buc85]

[Bun83]

[CD85]

[Dar68]

[Den88]

[Der87]
[Dic85]

[Dig79]

[EFT78]

[Eis89]

[E0P89]

[Fag83]

[BBB+84] Susanne Biundo, Karl—Hans Bläsius, Hans-Jürgen Biirckert, Norbert Eisinger, Alexander Herold,
Thomas Käufl, Christoph Lingenfelder, Hans Jürgen Ohlbach, Manfred Schmidt—Schauß, Jörg H.
Siekmann, and Christoph Walther. The Markgraf Karl Refutation Procedure. SEKI-MEMO MK-
84—01, Fachbereich Informatik, Universität Kaiserslautern, Institut für Informatik I, Universität
Karlsruhe, Postfach 3049, D—6750 Kaiserslautern, Postfach 6380, D—7500 Karlsruhe 1, 1984.

Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion without failure. CREAC,
Lakaway, Texas, 1987.

M. Bidoit and M. C . Glaudel. PLUSS: Proposition pour un langage de spécification structurée.
Bicre + Globele 45, 1985.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with simplification.
To appear on 10th CADE, 1990.

Karl Hans Bläsius. Equality Reasoning Based on Graphs. PhD thesis, Universität Kaiserslautern,
1986.

M. Bruynooghe. The inheritance of links in a. connection graph. Report CW2, Applied Mathematics
and Programming Division, Katholieke Universiteit Leuven, 1975.

Bruno Buchberger. History and basic features of the critical-pair/completion approach. Dijon,
1985.

Alan Bundy. The computer modelling of mathematical reasoning. Academic Press, London, 1983.

R. J . Cunningham and A. J. J. Dick. Rewrite systems on a lattice of types. Acta Informatica,
22:149-169, 1985.

J . L. Darlington. Automatic theorem proving with equality substitution and mathematical induc-
tion. Machine Intelligence, 3:113—127, 1968.

Jörg Denzinger. EQTHEOPOGLES Ein Theorembeweiser für die Prädikatenlogik erster Stufe —
basierend auf Rewrite Techniken. Diplomarbeit, Universität Kaiserslautern, Postfach 3049, D-6750
Kaiserslautern, 1988.

Nachum Dershowitz. Rewriting systems. Draft, 1987.

A. J . J . Dick. Eril — equational reasoning, an interactive laboratory. In Proceedings Eurocal Con-
ference, Linz, 1985.

V. J. Digricoli. Resolution by unification and equality. In Proceedings 4th Workshop on Automated
Deduction, Austin, 1979.

H.—D. Ebbinghaus, J. Flum, and W. Thomas. Einführung in die mathematische logik. Darmstadt,
1978.

Norbert Eisinger. Completeness, Confluence, and Related Properties of Clause Graph Resolution.
PhD thesis, Universität Kaiserslautern, Postfach 3049, D-6750 Kaiserslautern, 1989.

Norbert Eisinger, Hans J iirgen Ohlbach, and Axel Präcklein. Elimination of redundancies in clause
sets and clause graphs. SEKI Report SR—89-10, Fachbereich Informatik, Universität Kaiserslautern,
D-6750 Kaiserslautern, October 1989.

F . Fages. Formes canoniques dans les algébres booléennes et application ä. la. démonstration au-
tomatique en logique de premier ordre. Thése dc Séme Cycle, Paris, 1983.

25

[FGJM85] K. Futatsugi, Joseph A. Goguen, J. P. Jouannaud, and Jose Meseguer. Principles of OBJ2.
Proceedings 12th ACM Symposium on Principles of Programming Languages, 1985.

In

(GI88] Jean H. Gallier and T. Isakowitz. Rewriting in order-sorted equational logic. Draft, Department
of Computer and Information Science, School of Engineering and Applied Science, University of
Pennsylvania, Philadelphia, PA 19104-6389, USA, 1988.

(GJM85] Joseph A. Goguen, J.-P. Jouannaud, and Jose Meseguer. Operational semantics of order-sorted
algebra. In Proceedings 12th ICALP, LNCS, pages 221-231. Springer, 1985.

(GM85] Joseph A. Goguen and Jose Meseguer. Eqlog: Equality, types, and generic modules for logic pro
gramming. In Doug DeGroot and Gary Lindstrom, editors, Functional and Logic Programming,
pages 295-363. Prentice Hall, Englewood Cliffs, NewJersey 07632, 1985.

(GS86] Jean H. Gallier and Wayne Snyder. A general complete E-unification procedure. Philadelphia, 1986.

(GS89] Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general E-unification.
Report MS-CIS-89-12, Department of Computer and Information Science, School of Engineering
and Applied Science, University of Pennsylvania, Philadelphia, PA 19104-6389, USA, December
1989.

(Her30] J. Herbrand. Recherches sur la theorie de la demonstration. Travaux de la societe des sciences et
de lettre de Varsovie, Class III Science mathematique et physique, 33, 1930.

(H080] G. Huet and D. Oppen.
International, 1980.

Equations and rewrite rules: a survey. Technical Report CSL-llI, SRI

[HR86] J. Hsiang and M. Rusinowitch. A new method for establishing refutational completeness in theorem
proving. In Proceedings 8th CA DE, LNCS, Oxford, 1986. Springer.

[Hu180] J. M. Hullot. Canonical forms and unification. In Proceedings 5th Workshop on A utomated Deduc
tion, pages 318-334, 1980.

[Hut89] D. Hutter. Induction. Talk at Deduktionstreffen, 1989.

(JKK83] J.-P. Jouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification algorithms
in equational theories. In Proceedings ICALP, pages 361-373, 1983.

(JL87] J.-P. Jouannaud and P. Lescanne.
6(3):181-199,1987.

Rewriting systems. Technology and Science of Informatics,

[JW86] J.-P. Jouannaud and B. Waldmann. Reductive conditional term rewriting systems. In Proceedings
Srd IFIP Conference on Formal Description of Programming Concepts, Lyngby, 1986.

[Kap84] S. Kaplan. Fair conditional term rewriting systems: Unification, termination and confluence. Lab
oratoire de Recherche en Informatique, UniversiU d'Orsay, 1984.

(KB70] Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263-297. Pergamon Press, 1970.

[Kir85) C. Kirchner. Methodes et outils de conception systematique d'algorithmes d'unification dans les
theories equationelles. These d'e-tat, UniversiU de Nancy I, 1985.

[Kir87] C. Kirchner. Methods and tools for equational unification. Colloquium on Resolution of Equations
in Algebraic Structures, 1987.

(KK89) C. Kirchner and H. Kirchner. Constrained equational rewriting.
Unification, UN/F, 1989.

Third International Workshop on

26

[FGJM85] K . Futatsugi, Joseph A. Goguen, J . P . Jouannaud, and José Meseguer. Principles of OBJ2 . In

[G188]

[GJM851'

[GM85]

[G586]
[G589]

[Her30]

[H080]

[HR86]

[Hu180]

[Hut89]
[JKK83]

[JL87]

[se]

[Kap84]

[KB7U]

[Kir85]

[Kir87]

[KK89]

Proceedings 12th ACM Symposium on Principles of Programming Languages, 1985.

Jean H . Gallier and T . Isakowitz. Rewriting in order-sorted equational logic. Draft, Department
of Computer and Information Science, School of Engineering and Applied Science, University of
Pennsylvania, Philadelphia, PA 19104-6389, USA, 1988.

Joseph A. Goguen, J .—P. Jouannaud, and J osé Meseguer. Operational semantics of order-sorted
algebra. In Proceedings 12th ICALP, LNCS, pages 221-231. Springer, 1985.

Joseph A . Goguen and J osé Meseguer. qog: Equality, types, and generic modules for logic pro-
gramming. In Doug DeGroot and Gary Lindstrom, editors, Functional and Logic Programming,
pages 295—363. Prentice Hall, Englewood Cliffs, NewJersey 07632, 1985.

Jean H . Gallier and Wayne Snyder . A general complete E-unification procedure. Philadelphia, 1986.

Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general E-unification.
Report MS-CIS-89—12, Department of Computer and Information Science, School of Engineering
and Applied Science, University of Pennsylvania, Philadelphia, PA 19104-6389, USA, December
1989.

J . Herbrand. Récherches sur la théorie de la demonstration. Tr‘avaur de Ia societe’ des sciences et
de lettre de Varsovie, Class III Science mathématigue et physique, 33, 1930.

G. Huet and D. Oppen. Equations and rewrite rules: a survey. Technical Report CSL-III, SRI
International, 1980.

J . Hsiang and M. Rusinowitch. A new method for establishing refutational completeness i n theorem
proving. In Proceedings 8th CADE, LNCS, Oxford, 1986. Springer.

J . M. H'ullot. Canonical forms and unification. In Proceedings 5th Workshop on Automated Deduc-
t ion, pages 318—334, 1980.

D . Hutter . Induction. Talk a t Deduktionstrefl 'en, 1989.

J .-P. J ouannaud, C. Kirchner, and H. Kirchner. Incremental construction of unification algorithms
in equational theories. In Proceedings I CALP, pages 361—373, 1983.

J . -P . Jouannaud and P . Lescanne. Rewriting systems. Technology and Science of Informatics,
6(3):181-199, 1987.

J . -P . J ouannaud and B . Waldmann. Reductive conditional term rewriting systems. In Proceedings
3rd IFIP Conference on Formal Description of Programming Concepts, Lyngby, 1986.

S . Kaplan. Fair conditional term rewriting systems: Unification, termination and confluence. Lab-
oratoire de Recherche en Informatique, Université d’Orsay, 1984.

Donald E . Knuth and Peter B . Bendix. Simple word problems in universal algebras. In J . Leech,
editor, Computational Problems in Abstract Algebra, pages 263—297. Pergamon Press, 1970.

C . Kirchner. Méthodes e t outils de conception systematique d’algorithmes d’unification dans les
theories equationelles. These d’e’tat, Université de Nancy I, 1985.

C . Kirchner. Methods and tools for equational unification. Colloquium on Resolution of Equations
in Algebraic Structures, 1987.

C. Kirchner and H. Kirchner. Constrained equational rewriting. Third International Workshop on
Unification, UNIF, 1989.

26

[Kow75] R. Kowalski. A proof procedure using connection graphs. JACM, 22(4), 1975.

[KZ89] D. Kapur and H. Zhang. A case study of the completion procedure: Proving ring commutativity
problems. State University of New York at Albany, 1989.

[L084] E. Lusk and R. Overbeek. A short problem set for testing systems that include equality reasoning.
Argonne National Laboratory, 1984.

[Men87] E. Mendelson. Introduction to Mathematical Logic.
Series. Wadsworth, 3rd edition, 1987.

The Wadsworth & Brooks/Cole Mathematics

[MM82] A. Martelli and U. Montanari. An efficient unification algorithm. A CM Transactions on Program
ming Languages and Systems, 4(2):258-282, 1982.

[MMR86] A. Martelli, C. Moiso, and G. F. Rossi. Lazy unification algorithms for canonical rewrite systems.
1986.

[Mor69] J. B. Morris. E-resolution: An extension of resolution to include the equality relation. In Proceedings
1st IlCAI, pages 287-294, 1969.

[Ohl87] Hans Jiirgen Ohlbach. Link inheritance in abstract clause graphs. Journal of Automated Reasoning,
3(1):1-34, 1987.

[Ohl89] Hans Jiirgen Ohlbach. Abstraction tree indexing for terms. In Hans-Jiirgen Biirckert and Werner
Nutt, editors, UNIF'89 Extended Abstracts of the 3rd Int. Workshop on Unification, pages 131-136,
1989.

[OL80] R. Overbeek and E. Lusk. Data structures and control architecture for implemention of theorem
proving programs. In Proceedings 5th CA DE, 1980.

[OS89] Hans Jiirgen Ohlbach and Jorg H. Siekmann. The Markgarf Karl Refutation Procedure. SEKI
REPORT SR-89-19, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049, D-6750
Kaiserslautern, 1989.

[Pet83] Gerald E. Peterson. A technique for establishing compl~teness results in theorem proving with
equality. SIAM (Society for Industrial and Applied Mathematics) Journal of Computing, 12(1):82
100, February 1983.

[Pra85] Axel Pracklein. Ein Reduktionsmodul fur einen automatischen Beweiser. Diplomarbeit, Universitat
Karlsruhe, Postfach 3049, D-6750 Kaiserslautern, Marz 1985.

[Ric83a] M. Rice. The construction of a complete minimal set of contextual normal forms.
1st Eurocal, London, 1983.

In Proceedings

[Ric83b] Elaine Rich.
1983.

Artificial Intelligence. International Student Edition. McGraw Hill Book Company,

[Rob65] J. A. Robinson.
1965.

A machine-oriented logic based on the resolution principle. JACM, 12(1):23-41,

[Rus87] M. Rusinowitch. Demonstration automatique par des techniques de reecriture. These de Doctorat
d'Jhat en Mathematique, Nancy, 1987.

[RW69] G. Robinson and L. Wos. Paramodulation and theorem proving in first order theories with equality.
Machine Intelligence, 4, 1969.

[Sib69] E. E. Sibert. A machine-oriented logic incorporating the equality axioms.
4:103-133, 1969.

Machine Intelligence,

27

[Kow75]

[KZ89]

[L084]

[Men87]

[MM82]

[MMR86]

[Mor69]

[0h187]

[Oh189]

[OL80]

[OS89]

[Pet83]

[Pr'a85]

[Ric83a]

[Ric83b]

[Rob65]

[Rus87]

[RW69]

[Sib69]

R. Kowalski. A proof procedure using connection graphs. JA CM, 22(4), 1975.

D. Kapur and H . Zhang. A case study of t he completion procedure: Proving ring commutativity
problems. State University of New York a t Albany, 1989.

E. Lusk and R. Overbeek. A short problem set for testing systems that include equality reasoning.
Argonne Nat ional Laboratory, 1984.

E. Mendelson. Introduction to Mathematical Logic. The Wadsworth &. Brooks/ Cole Mathematics
Series. Wadsworth, 3rd edition, 1987.

A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on Program-
ming Languages and Systems, 4(2):258—282, 1982.

A. Martelli, C. Moiso, and G. F. Rossi. Lazy unification algorithm for canonical rewrite systems.
1986.

J . B . Morris. E—resolution: An extension of resolution to include the equality relation. In Proceedings
Ist IJCAI, pages 287—294, 1969.

Hans Jürgen Ohlbach. Link inheritance in abstract clause graphs. Journal of Automated Reasoning,
3(1):1—34, 1987.

Hans Jürgen Ohlbach. Abstraction tree indexing for terms. In Hans-Jiirgen Biirckert and Werner
Nutt , editors, UNIF’89 Extended Abstracts of the 3rd Int. Workshop on Unification, pages 131—136,
1989.

R. Overbeek and E . Lusk. Data structures and control architecture for implemention of theorem-
proving programs. In Proceedings 5th CADE, 1980.

Hans Jürgen Ohlbach and Jörg H . Siekmann. The Markgarf Karl Refutation Procedure. SEKI—
REPORT SR—89-19, Fachbereich Informatik, Universität Kaiserslautern, Postfach 3049, D-6750
Kaiserslautern, 1989.

Gerald E. Peterson. A technique for establishing completeness results in theorem proving with
equality. SIAM (Society for Industrial and Applied Mathematics) Journal of Computing, 12(1):82—
100, February 1983.

Axel Präcklein. Ein Reduktionsmodul fiir einen automatischen Beweiser. Diplomarbeit, Universität
Karlsruhe, Postfach 3049, D-6750 Kaiserslautern, März 1985.

M. Rice. The construction of a complete minimal set of contextual normal forms. In Proceedings
Ist Eurocal, London, 1983.

Elaine Rich. Artificial Intelligence. International Student Edit ion. McGraw Hill Book Company,
1983.

J . A. Robinson. A machine-oriented logic based on the resolution principle. JA CM, 12(1):23—-41,
1965. ~

M.‚Rusinowitch. Demonstration automatique par des téchniques de reécriture. These de Doctorat
d’Etat en Mathématique, Nancy, 1987.

G. Robinson and L . Wos. Paramodulation and theorem proving in first order theories with equality.
Machine Inte l l igence, 4 , 1969 .

E. E. Sibert. A machine-oriented logic incorporating the equality axioms. Machine Intelligence, _
4:103—133, 1969.

27

[Sie75] Jarg H. Siekmann. Stringunification. Memo CSM-7of, Essex University, 1975.

[Sie88] Jorg H. Siekmann. Unification theory. Journal of Symbolic Computation, 1988.

[SNMG87] Gert Smolka, Werner Nutt, Jose Meseguer, and Joseph A. Goguen. Order-sorted equational com
putation. In Proceedings CREAS Workshop, 1987.

[Spe84] Volker Sperschneider. Logik. Script for Lectures at the Universitiit Karlsruhe, 1984.

[8887] M. Schmidt-SchauB. Unification in a combination of arbitrary disjoint equational theories. SEKI
Report SR-87-16, Fachbereich Informatik, Universitiit Kaiserslautern, December 1987.

[S888] Manfred 8chmidt-8chauB. Computational Aspects of an Order-Sorted Logic with Term Declarations.
PhD thesis, Universitiit Kaiserslautern, 1988.

[Sti84] M. E. Stickel. A case study of theorem proving by the Knuth-Bendix method discovering that
x 3 = x implies ring commutativity. In Proceedings 7th CA DE, 1984.

[Sti85] M. E. Stickel. Automated deduction by theory resolution. JAR, 1(4):333-357, 1985.

[SW80] Jorg H. Siekmann and Graham Wrightson. Paramodulated connection graphs. Acta Informatica,
13:67-86, 1980.

[WOLB84]	 L. Wos, R. Overbeek, E. Lusk, and J. Boyle. Automate4 Reasoning Introduction and Applications.
Prentice Hall, Englewood Cliffs, New Jersey, 1984.

[WRCS67]	 L. Was, G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in theorem prooving.
JACM, 14:698-706, 1967.

[YS86]	 J. H. You and P. A. Subramanyou. E-unification algorithms for a class of confluent term rewriting
systems. In Proceedings 13th ICALP, 1986.

[ZK88]	 H. Zhang and D. Kapur. First order theorem proving using conditional rewrite rules. In Ewing
Lusk and Ross Overbeek, editors, Proceedings 9th CADE, pages 1-20, Argonne, Illinois, USA, 1988.
Springer.

[ZR85]	 H. Zhang andJ. 1. Remy. Contextual rewriting. In Proceedings 1st Conference on Rewriting Tech
niques and Applications, Lecture Notes in Computer Science, pages 46-62, Berlin, 1985. Springer.

28

[Sie75]

[Sie88]

[SNMG87]

[Spe84]

[SS87]

[ssss]

[Sti84]

[sass]
[swso]

[WOLB84]

[WRCSG7]

[Y586]

[ZK88]

[ZRBS]

Jörg H . Siekmann. Stringunification. Memo CSM—7of, Essex University, 1975.

Jörg H. Siekmann. Unification theory. Journal of Symbolic Computation, 1988.

Gert Smolka, Werner Nutt, José Mweguer, and Joseph A. Goguen. Order-sorted equational com-
putation. In Proceedings CREAS Workshop, 1987.

Volker Sperschneider. Logik. Script for Lectures at the Universität Karlsruhe, 1984.

M. Schmidt-Schauß. Unification in a combination of arbitrary disjoint equational theories. SEKI—
Report SR—87-16, Fachbereich Informatik, Universität Kaiserslautern, December 1987.

Manfred Schmidt-SchauB. Computational Aspects of an Order-Sorted Logic with Term Declarations.
PhD thesis, Universität Kaiserslautern, 1988.

M. E . Stickel. A case study of theorem proving by the Knuth—Bendix method discovering that
2:3 = :c implies ring commutativity. In Proceedings 7th CADE, 1984.

M. E. Stickel. Automated deduction by theory resolution. JAR, 1(4):333—357, 1985.

J org H . Siekmann and Graham Wrightson. Paramodulated connection graphs. Acta Information,
13:67—86, 1980.

L. Wos, R. Overbeek, E . Lusk, and J. Boyle. Automated Reasoning Introduction and Applications.
Prentice Hall, Englewood Cliffs, New Jersey, 1984.

L. Wos, G. Robinson, D. Carson, and L. Shalla. The concept of demodulation in theorem prooving.
JACM, 14:698—706, 1967.

J. H. You and P . A . Subramanyou. E-unification algorithms for a class of confluent term rewriting
systems. In Proceedings 13th ICALP, 1986.

H. Zhang and D. Kapur. First order theorem proving using conditional rewrite rules. In Ewing
Lusk and Ross Overbeek, editors, Proceedings 9th CADE, pages 1—20, Argonne, Illinois, USA, 1988.
Springer.

H. Zhang and 'J . L. Rémy. Contextual rewriting. In Proceedings Ist Conference on Rewriting Tech-
niques and Applications, Lecture Notes in Computer Science, pages 46—62, Berlin, 1985. Springer.

28

