
M
75

9 K
ais

ers
lau

ter
n“

 1.
 w

.. G
am

ay
P

o
st

fa
C

h
”3

0
4

9

Fa
ch

be
re

ic
hIn

fo
rm

at
ik

“u
ni

ve
rs

it
ätK

ai
se

rs
la

u
te

rn
A

rt
ifi

ci
al

In
t e

l l
i g

e r
t e

a

Lab
o';ra

torie
si«

S
E

H
i°

H
E

P
lH

T

_ Expert-System Shells:
Very—High-Level Languages for

Artificial Intelligence

Harold Boley‘ -
SEKI Report SR-88-22

EXPERT-SYSTEM SHELLS: VERY-HIGH-LEVEL LANGUAGES FOR ARTIFICIAL INTELLIGENCE

Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany
boley@uklirb.uucp [1]

Abstract:

Expert-system shells are discussed as very-high-level programming languages
for knowledge engineering. Based on a category/domain distinction for
expert systems the concept of expert-system shells is explained using seven
classifications. A proposal for a shell-development policy is sketched.
The conclusions express concern about overemphasis on shell surfaces.

1. Introduction

Artificial intelligence has often inspired the development of new tools in
computer science, both hardware and software. In particular, a large
number of programming languages (processing kernels and interaction inter­
faces) have grown out of, or in connection with, AI projects.

The earlier development of functional, logical, and object-oriented pro­
gramming languages supporting all subfields of AI (surveyed, e.g., in
[Boley1983a]), is now accompanied by an explosive development of languages

more specifically supporting the large AI subfield of knowledge engineering
or expert systems (XPSs). Reaching for a language level that permits
(non-programmer) experts of application domains to build simple XPSs, they
are prototypes of what [Leavenworth1974a] anticipated as "non-procedural"
or "very-high-level" languages.

Several terms are employed for these very-high-level expert-system
languages, nine of which are represented by the following extended regular
expression:

{knowledge engineering, expert system [building]}{tools,environments,shells}

Note that the term 'language' is not normally used, perhaps because these
interface-intensive very-high-level languages are thought to be more than
languages (whereas we adopt the definition "language = kernel + interface")
or because there is some unfamiliarity with the tradition of very-high­
level and AI languages.

The term "expert system shells" -- induced from "emptied" expert systems
with interchangeable knowledge bases -- tends to be most often employed as
the principal one, and we will follow this use here. A disadvantage of
this convention is the term's too narrow connotation with "knowledge­
emptied expert systems"; an advantage is that it can be shortened to

[1] This research was done on a stay as a visiting scholar at Siemens AG

EXPERT-SYSTEM SHELLS: VERY-HIGH-LEVEL LANGUAGES FOR ARTIFICIAL INTELLIGENCE

Harold Boley, FB Informatik, Univ. 675 Kaiserslautern, Box 3049, W. Germany
boley@uklirb.uucp [1]

A b s t r a c t :

Expert-system shells are discussed a s very—high—level programming languages
for knowledge engineering. Based on a category/domain distinction for
expert systems the concept of expert-system shells is explained using seven
classifications. A proposal for a shell-development policy is sketched.
The conclusions express concern about overemphasis on shell surfaces.

I. Introduction

Artificial intelligence has often inspired the development of new tools in
computer science, both hardware and software. In particular, a large
number o f programming languages (processing kernels and interaction inter—
faces) have grown out o f , or in connection with, AI projects.

The earlier development o f functional, logical, and object-oriented pro—
gramming languages supporting all subfields of AI (surveyed, e.g., in
[Boleyl983a]), i s now accompanied by an explosive development of languages
more specifically supporting the large AI subfield o f knowledge engineering
or expert systems (XPSs). Reaching for a language level that permits
(non—programmer) experts of application domains t o build simple XPSs, they
are prototypes of what [Leavenworthl974a] anticipated as "non-procedural"
or "very—high—level" languages.

Several terms are employed for these very-high—level expert—system
languages, nine of which are represented by the following extended regular
expression:

{knowledge engineering,expert system [building]}{tools,environments,shells}

Note that the term ’language' i s not normally used, perhaps because these
interface—intensive very—high—level languages are thought to be more than
languages (whereas we adopt the definition “language = kernel + interface")
or because there is some unfamiliarity with the tradition of very-high—
level and AI languages.

The term "expert system shells" —— induced from "emptied" expert systems
with interchangeable knowledge bases —— tends to be most often employed as
the principal one, and we will follow this use here. A disadvantage of
this convention is the term’s too narrow connotation with "knowledge-
emptied expert systems"; an advantage i s that it can be shortened to

[1] This research was done on a stay as a visiting scholar at Siemens AG

mailto:boley@uklirb.uucp

2

"shells" without clashing against many other computer-science terms (except
the clash with UNIX [2] shells).

A shell consists of three principal parts, the first two constituting the
shell's kernel, inherited from OPS/PLANNER/PROLOG-like (forward/backward
rules) and FRL/KRL/KL-ONE-like (frames/nets) AI languages, the third con­
stituting the shell's interface, developed much further than in these AI
languages:

(1)	 Knowledge base, containing both data-like and method-like knowledge
representations.

(2)	 Inference engine, mechanically applying the methods to infer new
knowledge from given knowledge.

(3)	 User interface, with knowledge browsing/acquisition and inference
tracing/explanation features utilizing modern graphics technology.

Of course, this usual break-down of shells into three components oversim­
plifies reality. In particular, the "(augmented) truth-maintenance system"
of many shells cannot be easily subsumed under either the knowledge base or
the inference engine alone but rather belongs to the entirety of what we
call the shell kernel. Also, besides the user interface most widely-used
shells now have what may be called a "conventional data-processing inter­
face", subdivided into interfaces to the operating system, to a bulk data­
base, to a management-information system and/or the like.

Several surveys of shells have appeared in the literature, normally with a
detailed treatment of the user interface ([Richer1986a], [Gevarter1987a],
[Citrenbaum1987a], [Igney1987a], [Karras1987a], [Harmon1988a]).

The present paper directs most attention to the shell kernel. It attempts
to characterize the shell concept by introducing a system of classifica­
tions such as special-purpose vs. general-purpose shells. Because of the
kinship between XPS shells and AI classics like LISP, PROLOG, and SMALLTALK
we suggest a policy based on a more coordinated and integrated development
of both varieties of languages.

2. The category and domain of an XPS

Before turning to XPS shells we should clarify some aspects of the XPS con­
cept itself. Several distinctions are used for describing XPSs in the
literature, but a clear differentiation of what we feel are two basic
dimensions is not made very often.

One important dimension is the cateqory of an XPS [Waterman1986a], called
"function capabilities" in [Gevarter1987a], specifying whether the XPS is
applied for diagnosis, configuration, planning, etc.

[2] UNIX is a registered trade-mark of Bell-Laboratories

"shells“ without clashing against many other computer-science terms (except
the clash with UNIX [2] shells).

A shell consists of three principal parts, the first two constituting the
Shell's kernel, inherited from OPS/PLANNER/PROLOG—like (forward/backward
rules) and FRL/KRL/KL—ONE—like (frames/nets) AI languages, the third con—
stituting the Shell's interface, developed much further than in these AI
languages:

(1) Knowledge base, containing both data—like and method—like knowledge
representations.

(2) Inference engine, mechanically applying the methods t o infer new
knowledge from given knowledge.

(3) User interface, with knowledge browsing/acquisition and inference
tracing/explanation features utilizing modern graphics technology.

Of course, this usual break—down of shells into three components oversim-
plifies reality. In particular, the “(augmented) truth—maintenance system"
of many shells cannot be easily subsumed under either the knowledge base o r
the inference engine alone but rather belongs t o the entirety o f what we
call the shell kernel. Also, besides the user interface most widely—used
shells now have what may be called a "conventional data—processing inter-
face", subdivided into interfaces to the operating system, t o a bulk data—
base, to a management-information system and/or the like.

Several surveys of shells have appeared in the literature, normally with a
detailed treatment o f the user interface ([Richerl986a], [Gevarterl987a],
[Citrenbauml987a], [Igneyl987a], [Karrasl987a], [Harmon1988a]).

The present paper directs most attention t o the shell kernel. It attempts
to characterize the shell concept by introducing a system of Classifica—
tions such a s special—purpose vs. general-purpose shells. Because of the
kinship between XPS shells and AI classics like LISP, PROLOG, and SMALLTALK
we suggest a policy based on a more coordinated and integrated development
of both varieties of languages.

3. The category_and domain 9£_an XPS

Before turning t o XPS shells we should clarify some aspects o f the XPS con—
cept itself. Several distinctions are used for describing XPSs i n the
literature, but a clear differentiation o f what we feel are two basic
dimensions is not made very often.

One important dimension i s the category o f an XPS [Waterman1986a]‚ called
"function capabilities" in [Gevarterl987a], specifying whether the XPS is
applied for diagnosis, configuration, planning, etc.

[2] UNIX is a registered trade-mark of Bell Laboratories

3

The other important dimension is the domain of an XPS, specifying whether
the XPS is applied in medicine, engineering, administration, etc.

Frequently these dimensions are put under the same vague heading of XPS
"application", ignoring what we emphasize as the difference between "appli ­
cation for" and "application in", or, more technically, as category and
domain, respectively.

Indeed, we consider these dimensions as almost-orthogonal, with all combi­
nations being possible in principle, as in the following example (the
second combination may be problematic) :

Application for diagnosis in medicine.
Application for configuration in medicine.
Application for planning in medicine.
Application for diagnosis in engineering.
Application for configuration in engineering.
Application for planning in engineering.
Application for diagnosis in administration.
Application for configuration in administration.
Application for planning in administration.

etc.	 etc.

If this "Application for category in domain" schema is employed systemati­
cally, unusual -- perhaps still unexplored -- applications may arise. How­
ever, we describe the dimensions as "almost-orthogonal" only, because
(a) categories like 'configuration' and 'planning' can also be regarded as
one larger group that may be circumscribed as 'design' (while configuration
stresses "space designs", planning stresses "time designs"), and
(b) independent variation of category and domain occurs rarely in practice
of human expertise (an architect, say, is not only an expert "for design in
housing" but can also be employed -- with graceful performance degradation
-- both "for diagnosis in housing" and "for design in shipping") .

Regarding XPS architecture, the 'category' dimension correlates with the
inference engine, while the 'domain' dimension correlates with the
knowledge base. The distinction is interesting not only because of sys­
tematics but also because it draws attention to two complementary ways of
proceeding from individual XPSs to "metasystems":

(1)	 If the inference engine is kept fixed and the knowledge base is
varied a metasystem of XPSs for the same category in different
domains can be constructed.

(2)	 If the knowledge base is kept fixed and the inference engine is
varied a metasystem of XPSs in the same domain for different
categories can be constructed.

The former possibility leads to those well-known metasystems called
"shells" (to be explored in the following sections), the latter to new
metasystems that might be called "pools" (only discussed briefly below) .

The other important dimension is the domain of an XPS, specifying whether
the XPS is applied in medicine, engineering, administration, etc.

Frequently these dimensions are put under the same vague heading of XPS
"application", ignoring what we emphasize as the difference between "appli—
cation fgr" and "application in", o r , more technically, a s category and
domain, respectively.

Indeed, we consider these dimensions a s almost-orthogonal, with all combi—
nations being possible in principle, as in the following example (the
second combination may be problematic):

Application for diagnosis in medicine.
Application for configuration in medicine.
Application for planning in medicine.
Application for diagnosis in engineering.
Application for configuration in engineering.
Application for planning in engineering.
Application for diagnosis in administration.
Application for configuration in administration.
Application for planning in administration.

etc. etc.

If this "Application for category in domain" schema is employed systemati—
cally, unusual —— perhaps still unexplored -- applications may arise. How-
ever, we describe the dimensions as “almost—orthogonal" only, because
(a) categories like 'configuration' and 'planning' can also be regarded as
one larger group that may be circumscribed a s 'design' (while configuration
stresses "space designs", planning stresses "time designs"), and
(b) independent variation of category and domain occurs rarely in practice
o f human expertise (an architect, say, i s not only an expert " for design in
housing" but can a l s o be employed —— with graceful performance degradation
-— both " f o r diagnosis in housing" and "for design in shipping").

Regarding XPS architecture, the 'category' dimension correlates with the
inference engine, while the 'domain' dimension correlates with the
knowledge base. The distinction is interesting not only because of sys—
tematics but also because it draws attention to two complementary ways of
proceeding from individual XPSs to "metasystems":

(1) If the inference engine is kept fixed and the knowledge base is
varied a metasystem of XPSs for the same category in different
domains can be constructed.

(2) I f the knowledge base i s kept fixed and the inference engine i s
varied a metasystem of XPSs in the same domain for different
categories can be constructed.

The former possibility leads t o those well—known metasystems called
"shells" (t o be explored in the following sections), the latter to new
metasystems that might be called "pools" (only discussed briefly below).

4

A pool is a knowledge base in a particular XPS domain, say UNIX peripherals
(printers, terminals, drives), that can support several XPS categories (say
diagnosis and repair, configuration and planning) implemented by several
inference engines (say forward reasoning, backward reasoning). The advan­
tage of sharing the knowledge base for several XPS categories (inference
engines) may be at least as big as that of sharing the inference engine for
several XPS domains (knowledge bases); this may become increasingly obvious
as the domain representations of XPSs evolve from shallow rules to deep
models (cf. section 3.7). For example, we could augment the knowledge base
of the printer diagnosis/repair XPS micro-UNIXPERT.M [Lessel1988a] for
printer configuration -- reusing much of the knowledge acquired in micro­
UNIXPERT.M and add inference mechanisms for configuration to obtain a
printer configuration XPS. An exciting possibility arising
knowledge bases is XPSs cooperating in the same domain: in
after each printer reconfiguration the diagnosis XPS could
updated knowledge generated by the configuration XPS.

with shared
our example,
access the

3. A classification of shells

In the following subsections we
some related to criteria for AI

give seven classifications of
programming-language design.

XPS shells,

3.1. Academic and commercial shells

Shell development began in academia, as an offspring of the XPS MYCIN at
Stanford University (EMYCIN) and an engineered version of the cognitive
model of production systems at Carnegie-Mellon University (OPS5).

The development quickly continued commercially, joining with the work on
graphic man-machine interfaces at XEROX PARC (LOOPS); today commercial
shell development has an explosive character, fueled by the workstation and
PC markets.

Some academically initiated shells were later extended and marketed commer­
cially by AI startup companies, often recruiting people from the original
shell-developer team. The academic/commercial distinction is not clear-cut
also for another reason: Some universities are distributing their shells at
prices ($100 to $500) that are usual for commercial PC shells.

3.2. Mainframe, workstation, and PC shells

While the first shells were run on mainframes (which today have a 'come­
back' due to the "conventional data processing (DP) integration" trend,
sketched in section 4.2), the rapid rise of the memory and speed charac­
teristics of PCs up to those based on MOTOROLA 68020 and INTEL 80386
processor chips -- has permitted to run shells on PCs for smaller XPS
applications. Often PCs are used for special-purpose shells (cf. section
3.5) and for delivery versions. The boundary between PCs and workstations
is becoming increasingly hard to discern, and may vanish with systems based
on processors like MOTOROLA 68030.

Today, however, the major hardware basis for shells is the intermediate
computer class of workstations such as SUN, APOLLO, IBM-RT, and

A pool i s a knowledge base i n a particular XPS domain, say UNIX peripherals
(printers, terminals, drives), that can support several XPS categories (say
diagnosis and repair, configuration and planning) implemented by several
inference engines (say forward reasoning, backward reasoning). The advan-
tage of sharing the knowledge base for several XPS categories (inference
engines) may be at least a s big as that of sharing the inference engine for
several XPS domains (knowledge bases); this may become increasingly obvious
as the domain representations of XPSs evolve from shallow rules to deep
models (cf. section 3.7). For example, we could augment the knowledge base
o f the printer diagnosis/repair XPS micro-UNIXPERT.M [Lesse11988a] for
printer configuration -— reusing much of the knowledge acquired in micro—
UNIXPERT.M —— and add inference mechanisms for configuration to obtain a
printer configuration XPS. An exciting possibility arising with shared
knowledge bases is XPSs cooperating in the same domain: in our example,
after each printer reconfiguration the diagnosis XPS could access the
updated knowledge generated by the configuration XPS.

;. A classification 2§_shells

In the following subsections we give seven classifications of XPS shells,
some related t o criteria for AI programming—language design.

3.;. Academic and commercial shells

Shell development began in academia, as an offspring of the XPS MYCIN at
Stanford University (EMYCIN) and an engineered version of the cognitive
model of production systems at Carnegie-Mellon University (OPSS).

The development quickly continued commercially, joining with the work o n
graphic man-machine interfaces at XEROX PARC (LOOPS); today commercial
shell development has an explosive character, fueled by the workstation and
PC markets.

Some academically initiated shells were later extended and marketed commer—
cially by AI startup companies, often recruiting people from the original
shell—developer team. The academic/commercial distinction is not clear-cut
also for another reason: Some universities are distributing their shells at
prices ($100 t o $500) that are usual for commercial PC shells.

;„g. Mainframe, workstation, and gg shells

While the first shells were run on mainframes (which today have a ’come*
back' due to the "conventional data processing (DP) integration" trend,
sketched in section 4.2), the rapid r i s e o f the memory and speed charac—
teristics of PCs —— up to those based on MOTOROLA 68020 and INTEL 80386
processor chips —— has permitted to run shells o n PCs for smaller XPS
applications. Often PCs are used for special-purpose shells (cf. section
3.5) and for delivery versions. The boundary between PCs and workstations
i s becoming increasingly hard to discern, and may vanish with systems based
on processors like MOTOROLA 68030.

Today, however, the major hardware basis for shells is the intermediate
computer class o f workstations such a s SUN, APOLLO, IBM—RT, and

5

HP-9000/350, some based on RISC technology. They are now expanding both
'up' (towards mainframes) and 'down' (towards PCs) .

Competitors of workstations in AI are both LISP machines and PROLOG
machines, which provide shells based on LISP and PROLOG with high computing
power. Those using a special chip such as the TI Explorer 11 with its LISP
chip are particularly suited for large XPSs. The price/performance ratio
is improved by combined systems, like the microExplorer or Maclvory, using
a LISP chip, like TI's or SYMBOLICS', as a coprocessor for a high-end PC,
like Apple's Mac 11.

LISP machines allied with high-end PCs are thus trying to counter the pene­
tration of workstations into the LISP and shell domains. Since worksta­
tions share the universality of mainframes, they are favored by the "con­
ventional DP integration" trend and by the ensuing tendency to replace LISP
by C as the shell base language (cf. next subsection).

3.3. PROLOG-, LISP-, and ~-based shells

While most shells are still written in LISP (some in PROLOG), there is
presently a strong tendency towards C as the implementation language for
XPS shells. C is favored by the de facto operation-system standard UNIX,
by the "conventional DP integration" trend, and by the shell marketing
strategy of squeezing out the last bit of efficiency from computers.

LISP has a good chance to stand this battle if the de facto standard COMMON
LISP can quickly be developed into an ISO standard, and if excellent inter­
faces between the LISP standard and conventional DP standards (including C)
are created. It would be ironic if now that there exist really fast LISP
implementations (on chip and otherwise), AI's language of choice would be
replaced by the (powerful but low-level) systems programming language C in
commercial AI. The constant factor of speed improvement should become
smaller as ever more optimizing LISP compilers are developed, making the
much higher development and maintenance cost of C-based shells less and
less acceptable (even inside the C community there is a recent trend
towards higher-level variations such as C++). The time until LISP will
completely dominate COBOL or FORTRAN in AI is called the "LISP Gap" in
[Harmon1988a]. However, it is very hard to estimate the real amount of
time up to a possible break-even point such as the one between LISP and C.
If break-even would occur within the next few years it would be clearly
unwise to 're-re-code' a big shell from LISP to C to LISP. Perhaps LISP­
to-C translators like those offered by C-Lambda could further help avoid
the need for people again having to write (all of) big XPS shells in C
manually.

The situation regarding PROLOG -- not as a shell component, but as the
shell-implementation language is similar, but perhaps more serious
because of PROLOG's higher level (greater distance to C), which is at even
greater variance to current shell implementation-language trends.

HP—9000/350, some based on R I S C technology. They are now expanding both
' u p ' (towards mainframes) and 'down' (towards PCs).

Competitors of workstations in AI are both LISP machines and PROLOG
machines, which provide shells based on LISP and PROLOG with high computing
power. Those using a special chip such as the T I Explorer I I with its LISP
chip are particularly suited for large XPSs. The price/performance ratio
is improved by combined systems, like the microExplorer or MacIvory, using
a LISP chip, like T I ' s or SYMBOLICS', as a coprocessor for a high—end PC,
like Apple's Mac I I .

LISP machines allied with high—end PCs are thus trying t o counter the pene-
tration of workstations into the LISP and shell domains. Since worksta-
tions share the universality of mainframes, they are favored by the "con—
ventional DP integration" trend and by the ensuing tendency to replace LISP
by C a s the shell base language (cf. next subsection).

§.§. PROLOG—, LISP—, and Q—based shells

While most shells are still written in LISP (some in PROLOG), there i s
presently a strong tendency towards C as the implementation language for
XPS shells. C i s favored by the de facto operation—system standard UNIX,
by the “conventional DP integration" trend, and by the shell marketing
strategy of squeezing out the last bit of efficiency from computers.

LISP has a good chance t o stand this battle if the de facto standard COMMON
LISP can quickly be developed into an ISO standard, and if excellent inter-
faces between the LISP standard and conventional DP standards (including C)
are created. It would be ironic i f now that there exist really fast LISP
implementations (o n chip and otherwise), A I ' s language o f choice would be
replaced by the (powerful but low—level) systems programming language C in
commercial A I . The constant factor o f speed improvement should become
smaller a s ever more optimizing LISP compilers are developed, making the
much higher development and maintenance cost of C—based shells less and
less acceptable (even inside the C community there is a recent trend
towards higher-level variations such as C++). The time until LISP will
completely dominate COBOL or FORTRAN in AI is called the "LISP Gap" in
[Harmon1988a]. However, it i s very hard t o estimate the real amount o f
time up to a possible break—even point such as the one between LISP and C.
If break—even would occur within the next few years it would be clearly
unwise to ’re—re-code' a big shell from LISP t o C to LISP. Perhaps LISP—
to—C translators like those offered by C—Lambda could further help avoid
the need for people again having to write (all of) big XPS shells in C
manually.

The situation regarding PROLOG —— not a s a shell component, but as the
shell-implementation language —- is similar, but perhaps more serious
because of PROLOG's higher level (greater distance t o C) , which i s at even
greater variance t o current shell implementation—language trends.

6

3.4. End-user, knowledge-engineer, and AI-programmer shells

Users of an XPS shell can have entirely different amounts of training in
AI. A shell can be targeted to the large market of untrained, inexperi­
enced end users (people working in any XPS domain, usually not computer
science) or to the (still) small market of highly-trained, experienced AI
programmers.

End-user shells employ their base language (which can be an AI language
like LISP, PROLOG, or SMALLTALK, or a conventional language like FORTRAN,
PASCAL or C) merely as an implementation language for a fixed set of com­
ponents. The shell is restricted to accept domain knowledge, not AI pro­
grams, from the user.

AI-programmer shells employ their base language (which must be an AI
language) as a programming platform with an open set of preprogrammed shell
components. These are accessible as separate modules, like individual
tools of a tool box (program library), and can also be extended by program­
ming new tools for oneself, which are then accessed in the same manner.
Subsets of these tools can be clustered as demanded by the XPS being built.

In between the end user and the AI programmer there is often a knowledge
engineer trained to acquire largely unstructured domain knowledge from a
human expert and to formalize it for input into a shell's knowledge
representation(s) .

Many shells have interfaces for all three kinds of users. However, commer­
cial pressure seems to direct evolution towards colorful, menu-driven,
'bells-and-whistles' end-user shells, often not modifiable on an AI pro­
gramming level. The recent JOSHUA language (described in [Rowley1987a]
[Schuelting1988a]) again seems to proceed in the opposite direction
powerful, LISP-integrated, 'wheels-and-engine' AI-programmer shells.

and
of

3.5. Special-purpose and general-purpose shells

Relating to the distinction of end-user and AI-programmer shells in
previous subsection, there are two principal ways of constructing an

the
XPS

shell.

First, it is possible to take an XPS directly implemented in an AI base
language like LISP and empty it of (some or) all the knowledge stored in
the knowledge base, thus leaving (the reusable knowledge and) the represen­
tation formats, the inference engine, and the user interface. This (more or
less) empty "shell" -- in the original sense of the word -- can be refilled
with knowledge describing another (subdomain or) domain to obtain another
XPS for the same category. The classic example of this procedure is the
LISP-developed MYCIN XPS and its derivatives, and the shell EMYCIN
[Melle1984a], later extended commercially, as for example in S.l/M.l.

Second, it is possible to use an AI base language to construct various com­
ponents for knowledge representation, inferencing (forward, backward,
inheritance), and user interface, as needed for rapid XPS building. This
user "shell" -- in a new sense of the word -- can be employed to build an

g„3. End—user, knowledge-engineer, and AI—prggrammer shells

Users of an XPS shell can have entirely different amounts of training i n
AI. A shell can be targeted to the large market of untrained, inexperi—
enced end users (peOple working in any XPS domain, usually not computer
science) or t o the (still) small market o f highly~trained, experienced AI
programmers.

End-user shells employ their base language (which can be an AI language
like LISP, PROLOG, o r SMALLTALK, o r a conventional language like FORTRAN,
PASCAL or C) merely as an implementation language for a fixed set o f com-
ponents. The shell is restricted to accept domain knowledge, not AI pro-
grams, from the user.

AI—programmer shells employ their b a s e language (which must be an AI
language) a s a programming platform with an open set o f preprogrammed shell
components. These are accessible a s separate modules, like individual
t ools o f a t ool box (program library), and can also be extended by program-
ming new t o o l s for oneself, which are then accessed i n the same manner.
Subsets of these tools can be clustered as demanded by the XPS being built.

In between the end user and the AI programmer there is often a knowledge
engineer trained t o acquire largely unstructured domain knowledge from a
human expert and t o formalize it for input into a shell's knowledge
representation(s).

Many shells have interfaces for all three kinds of users. However, commer-
cial pressure seems t o direct evolution towards colorful, menu—driven,
’bells—and—whistles’ end—user shells, often not modifiable on an AI pro-
gramming level. The recent JOSHUA language (described in [Rowleyl987a] and
[Schueltingl988a]) again seems to proceed in the opposite direction of
powerful, LISP-integrated, 'wheels—and—engine' AI—programmer shells.

§,§. Special—purpose and general—purpose shells

Relating t o the distinction of end—user and AI—programmer shells in the
previous subsection, there are two principal ways o f constructing an XPS
shell.

First, it i s possible to take an XPS directly implemented i n an AI base
language like LISP and empty it o f (some o r) all the knowledge stored i n
the knowledge base, thus leaving (the reusable knowledge and) the represen—
tation formats, the inference engine, and the user interface. This (more o r
less) empty "shell" —— in the original sense o f the word —— can be refilled
with knowledge describing another (subdomain or) domain to obtain another
XPS for the same category. The classic example of this procedure is the
LISP-developed MYCIN XPS and i t s derivatives, and the shell EMYCIN
[Melle1984a], later extended commercially, a s for example in S.l/M.l.

Second, it i s possible t o use an AI base language to construct various com~
ponents for knowledge representation, inferencing (forward, backward,
inheritance), and user interface, a s needed for rapid XPS building. This
user "shell" —— in a new sense of the word -— can be employed to build an

7

XPS for an arbitrary category in an arbitrary domain. Presently the most
well-known commercial examples, developed with LISP as the base language,
are ART, KEE, and KnowledgeCraft, used to build several XPSs.

While the first way leads to special-purpose shells (to build XPSs for the
same category in different domains), the second way leads to general­
purpose shells (to build XPSs for different categories in different
domains). Of course, there really is a whole scale of more or less general
shells: after conception, special-purpose shells can be generalized, and
general-purpose shells can be specialized. About in the middle of this
scale are shells that can be used to build XPSs for an entire group of
categories such as configuration and planning.

3.6.	 Uniform and hybrid shells

The knowledge representation -- and consequently the inference engine -- of
a shell can be uniform or hybrid; in both cases the shell may still be
special-purpose or general-purpose in the sense of the previous subsection.

A uniform representation employs one canonical formalism throughout, say
Horn clauses only (PROLOG) or forward rules only (OPS5) . (Although PROLOG
and OPS5 are classic AI languages, they can be used like uniform shells.)

A hybrid representation employs two or more formalisms in various parts of
the knowledge base, say both forward rules and frames, or all of Horn
clauses, forward rules, and frames.

The obvious advantages of uniformity are:

(1)	 less learning overhead if the user wants to learn the entire shell,

(2)	 no need for inter-representation translation (either human or
machine),

(3)	 avoiding the evolution of redundant, overlapping representations,

(4)	 no need for a selection methodology for the individual representa­
tions.

The complementary advantages of hybridness are:

(1)	 no learning overhead if the user can find a familiar representation
among those offered,

(2)	 knowledge bases coded in one of the component representations can be
easily imported from other shells,

(3)	 additional insights gained by multiple representational perspec­
tives,

(4)	 the most natural and efficient representation can be chosen pragmat­
ically for each problem.

XPS for an arbitrary category in an arbitrary domain. Presently the most

well—known commercial examples, developed with LISP as the base language,
are ART, KEE, and KnowledgeCraft, used t o build several XPSs.

While the first way leads to special—purpose shells (to build XPSs for the
same category in different domains), the second way leads to general—
purpose shells (to build XPSs for different categories in different
domains). Of course, there really i s a whole scale of more or l e s s general

shells: after conception, special—purpose shells can be generalized, and
general—purpose shells can be specialized. About in the middle of this
scale are shells that can be used to build XPSs for an entire group of
categories such as configuration and planning.

§,§. Uniform and hybrid shells

The knowledge representation —— and consequently the inference engine -— of
a shell can be uniform or hybrid; in both cases the shell may still be
special—purpose or general-purpose in the sense of the previous subsection.

A uniform representation employs one canonical formalism throughout, say
Horn clauses only (PROLOG) or forward rules only (OPSS). '(Although PROLOG
and OPSS are classic AI languages, they can be used like uniform shells.)

A hybrid representation employs two or more formalisms in various parts of
the knowledge base, say both forward rules and frames, or all of Horn
clauses, forward rules, and frames.

The obvious advantages of uniformity are:

(1) l e s s learning overhead if the user wants to learn the entire shell,

(2) no need for inter—representation translation (either human or
machine),

(3) avoiding the evolution of redundant, overlapping representations,

(4) no need for a selection methodology for the individual representa-
tions.

The complementary advantages of hybridness a r e:

(1) no learning overhead if the user can find a familiar representation
among those offered,

(2) knowledge bases coded in one of the component representations can be
easily imported from other shells,

(3) additional insights gained by multiple representational perspec—
tives,

(4) the most natural and efficient representation can be chosen pragmat—
ically for each problem.

8

There is an ongoing debate about the merits of both classes of shells. A
recent tendency in academic shell-like reasoning systems such as KRYPTON
is to restrict hybrid systems to exactly two representations, thought to be
be fundamentally different (and, we might add, to subsume all other
representations under either of the two). This minimum or "essence" of
hybrid representations [Brachman1985a] consists of the so-called ABox (for
Assertional, or logic, representation) and TBox (for Terminological, or
frame, representation) . Since "ABox+TBox" hybrids are related to
"logic+sorts" combinations -- which can be reduced to uniform predicate
logic by reducing sorts to unary predicates -- an "essential hybrid"
representation is not far removed from a uniform representation. No well ­
known commercial
paradigm.

shell seems yet to be based on the "essential hybrid"

3.7. Shallow and deep shells

The inference engine of a shell can support shallow or deep inferences
(reasoning) over a knowledge base of rules or models, respectively.

A shallow inference consists of the chaining of rules that associates prem­
ises (e.g. observed symptoms) with a conclusion (e.g. a hypothetic diag­
nosis) .

A deep inference consists of the probing of a model that collects -- often
qualitative properties (e.g. causal, temporal, and/or spatial ones) of
the domain.

Older, established 'rule-based' XPSs and shells support shallow inferences.
Newer, exploratory 'model-based' XPSs and shells support deep inferences.

In present AI, ("common-sense") theories of model-based reasoning in
domains like mechanical and electrical engineering as well as qualitative
representation of time and space belong to the most active research areas.
The combination of shallow and deep reasoning is also being attempted
[Gladel-Speicher1988a] .

While shallow reasoning can be realized in a natural fashion using forward
rules (of production systems like OPS5) or backward rules (of Horn-clause
languages like PROLOG), deep reasoning can be realized easily using frames
(as in FRL) or objects (as in SMALLTALK or CLOS). The combination of shal­
low and deep reasoning would then call for a combination of
forward/backward rules with frames/objects (as in many present-day shells) .

The trend from shallow inferences to deep inferences may be an important
reason for a present tendency from PROLOG back to LISP and SMALLTALK: the
direct support of (backward) rules in PROLOG appears no longer as impor­
tant, while the direct support of frame-like property lists and object­
oriented extensions in LISP and the objects in SMALLTALK are becoming more
important. However, it should be noted that it is quite easy to add
frame-like structures and object-oriented message passing to PROLOG (see
[Lee1986a] for one example). The present SMALLTALK-80 may turn out as an
interim solution since a powerful standard for object-oriented programming
extending COMMON LISP has finally been achieved with CLOS [Bobrow1988a].

There i s an ongoing debate about the merits of both classes o f shells. A
recent tendency in academic shell—like reasoning systems such as KRYPTON
i s t o restrict hybrid systems t o exactly two representations, thought to be
be fundamentally different (and, we might add, to subsume all other
representations under either o f the two). This minimum or "essence" o f
hybrid representations [Brachmanl985a] consists o f the so-called ABox (for
Assertional, or logic, representation) and TBox (for Terminological, or
frame, representation). Since "ABox+TBox" hybrids are related t o
"logic+sorts" combinations —— which can be reduced t o uniform predicate
logic by reducing sorts t o unary predicates - — an "essential hybrid“
representation is not far removed from a uniform representation. No well—
known commercial shell seems yet to be based on the "essential hybrid"
paradigm.

§,l. Shallow and deep shells

The inference engine o f a shell can support shallow o r deep inferences
(reasoning) over a knowledge base of rules or models, respectively.

A shallow inference consists o f the chaining o f rules that associates prem-
ises (e.g. observed symptoms) with a conclusion (e.g. a hypothetic diagw
nosis).

A deep inference consists of the probing of a model that collects -— often
qualitative —— properties (e.g. causal, temporal, and/or spatial ones) o f
the domain.

Older, established 'rule—based’ XPSs and shells support shallow inferences.
Newer, exploratory ’model—based' XPSs and shells support deep inferences.

In present A I , ("common—sense") theories o f model—based reasoning i n
domains like mechanical and electrical engineering as well as qualitative
representation o f time and space belong to the most active research areas.
The combination of shallow and deep reasoning i s a l s o being attempted
[Gladel-Speicher1988a].

While shallow reasoning can be realized in a natural fashion using forward
rules (of production systems like OPS5) or backward rules (of Horn—clause
languages like PROLOG), deep reasoning can be realized easily using frames
(as in FRL) or objects (as in SMALLTALK or CLOS). The combination of shal—
low and deep reasoning would then call for a combination of
forward/backward rules with frames/objects (as in many present—day shells).

The trend from shallow inferences to deep inferences may be an important
reason for a present tendency from PROLOG back t o LISP and SMALLTALK: the
direct support o f (backward) rules i n PROLOG appears n o longer a s impor—
tant, while the direct support o f frame-like property lists and object—
oriented extensions in LISP and the objects in SMALLTALK are becoming more
important. However, it should be noted that it i s quite easy t o add
frame—like structures and object-oriented message passing t o PROLOG (see
[Leel986a] for one example). The present SMALLTALK-BO may turn out as an
interim solution since a powerful standard for object—oriented programming
extending COMMON LISP has finally been achieved with CLOS [Bobrowl988a].

9

4. ~ policy of shells

In the subsections below
development.

we make some proposals for a policy of shell

4.1. In-house development

There is a number of reasons why an organization - ­ if it has programmers
who are capable of programming in languages up to the level of LISP or even
PROLOG -- should not blindly rely on any shell product, and afford a
(perhaps small) in-house AI-language or shell-development group (even after
deciding to purchase a large shell):

(1)	 It is not clear from the outset whether a desired XPS is best pro­
grammed in raw LISP (PROLOG, SMALLTALK, ...), in an extension of
such a language by a few shell components, or in a full-fledged
shell; the in-house shell group should be consulted for each XPS.

(2)	 The selection of the right shell (not only suited for the first XPS)
can be done much more securely if the purchasers have their own
technical shell know-how, which can only be acquired through practi ­
cal developments.

(3)	 A 'mini-version' of a shell -- showing many of the kernel concepts
such as forward/backward rules and frames -- can be realized and
studied in LISP or PROLOG with surprisingly little effort (cf.
[Boley1987a]} .

(4)	 Better, more efficient use can be made of a big commercial shell if
experience in shell implementation concepts has been gathered,
perhaps initially with a small model shell.

(5)	 If the knowledge bases of the big commercial shell and the small
in-house shell are compatible or translation tools between them can
be realized, less copies of the big shell need be paid because the
unlimited number of copies of the small shell will be sufficient for
a lot of (clerical) work during XPS development -- perhaps also for
the XPS delivery version.

(6)	 The past has shown that even a large -- seemingly prospering AI
firm can get into problems and stop the support of its products, in
which case at least minimum maintenance should be transferrable to
the in-house group.

If we accept the opinion of [Citrenbaum1987a], that no (and we might add,
currently existing) shell is likely to have "all the attributes needed for
all purposes", we may well come to the conclusion that every XPS-developing
organization must have these crucial abilities: to evaluate shell tenders
down to the implementation level, to adapt shells acquired with a source­
code license for its own purposes, as well as to develop shell components,
configure a shell from given components, and if necessary even program a
new shell on its own.

£, a policy of shells

In the subsections below we make some proposals for a policy of shell
development.

fi,l. In—house development

There is a number of reasons why an organization —— if it has programmers
who are capable of programming in languages up t o the level of LISP or even
PROLOG —— should not blindly rely on any shell product, and afford a
(perhaps small) in—house AI—language or shell—development group (even after
deciding t o purchase a large shell):

(1) It is not clear from the outset whether a desired XPS i s best pro-
grammed in raw LISP (PROLOG, SMALLTALK, ...), in an extension of
such a language by a few shell components, or in a full-fledged
shell; the in—house shell group should be consulted for each XPS.

(2) The selection o f the right shell (not only suited for the first XPS)
can be done much more securely i f the purchasers have their own
technical shell know—how, which can only be acquired through practi-
cal developments.

(3) A 'mini—version' of a shell -- showing many of the kernel concepts
such as forward/backward rules and frames -- can be realized and
studied i n LISP o r PROLOG with surprisingly little effort (cf.
[Boleyl987a]).

(4) Better, more efficient u s e can be made of a big commercial shell i f
experience in shell implementation concepts has been gathered,
perhaps initially with a small model shell.

(5) If the knowledge bases of the big commercial shell and the small
in-house shell are compatible or translation tools between them can
be realized, l e s s copies of the big shell need be paid because the
unlimited number of copies o f the small shell will be sufficient for
a lot of (clerical) work during XPS development —— perhaps also for
the XPS delivery version.

(6) The past has shown that even a large —— seemingly prospering —— AI
firm can get into problems and stop the support of its products, in
which case at least minimum maintenance should be transferrable to
the in-house group.

If we accept the opinion of [Citrenbauml987a], that no (and we might add,
currently existing) shell is likely to have "all the attributes needed for
all purposes", we may well come to the conclusion that every XPS—developing
organization must have these crucial abilities: to evaluate shell tenders
down t o the implementation level, to adapt shells acquired with a source-
code license for its own purposes, a s well as t o develop shell components,
configure a shell from given components, and if necessary even program a
new shell on its own.

10

4.2. Conventional DP integration

After the "first wave" of enthusiasm about AI products has gone, these days
it seems very difficult to market "stand-alone AI systems" rather than the
more and more important "embedded AI systems". In particular, XPS shells
must now be integrated with conventional data-processing systems in order
to successfully compete with "trend-setter shells" that already did this
move into mainstream DP.

Purely academic AI researcher may worry about whether "the real AI" might
get lost in the floods of this mainstream, or become transformed beyond
recognition. In fact, a marketing recommendation like "hide the AI com­
ponent of your system" may sound discouraging to AI students contemplating
about their career, especially if they feel themselves "close to the solu­
tion of the central AI problem".

However, in our opinion efforts to improve the true intelligence of a sys­
tem need not be corrupted by efforts to interface it with all sorts of
unintelligent systems. An AI system, like a human, is free to make intel ­
ligent use of operating-system utilities, bulk databases, numerical simula­
tion packages, and so on, building a pyramid of unconventional reasoning
methods on a platform of conventional DP.

Perhaps the most important DP interface of XPS shells is the one to bulk
databases because knowledge bases in main memory are often too small for
realistic XPSs. Translation procedures between XPS knowledge bases and con­
ventional bulk databases should be employed to smoothly switch between
(unformatted) knowledge and (formatted) data representations of the domain.
In the case of PROLOG-like clausal knowledge and SQL-like relational data
this is quite easy: several PROLOG vendors offer relational database inter­
faces.

4.3. Standardization

A suggestion to provide translation facilities to a standard shell
knowledge base in order to gain portability is made in [Citrenbaum1987a].
The paper proposes that the standard would have different forms for rules,
schemata, and so forth.

For uniform shells as discussed in section 3.6 such a standard would become
a complete standard of the knowledge base. Presumably it will not be a
trivial matter to agree on a uniform formalism for a knowledge-base stan­
dard because this depends on resolving old but still open AI issues such as
the declarative-procedural debate (today reappearing as a logic-oop
debate). Whatever a possible standard may look like, a knowledge base hav­
ing a clear, simple, uniform ASCII representation will be more easily
translated to the knowledge bases of other shells than those without such
representations. (ASCII will also facilitate knowledge transmission via
networks such as ETHERNET.)

Regarding the large number of shells coming on the market every year, each
developer of a new shell should provide "portability links" as part of the
documentation: they should show which (parts of) knowledge bases of other

10

3.2. Conventional gg integrat ion

After the "first wave" of enthusiasm about AI products has gone, these days
it seems very difficult to market "stand-alone AI systems" rather than the
more and more important "embedded AI systems". In particular, XPS shells
must now be integrated with conventional data-processing systems in order
to successfully compete with “trend—setter shells" that already did this
move into mainstream DP.

Purely academic AI researcher may worry about whether "the real A I " might
get lost in the floods o f this mainstream, or become transformed beyond
recognition. I n fact, a marketing recommendation like "hide the AI com—
ponent o f your system" may sound discouraging t o AI students contemplating
about their career, especially i f they feel themselves "close t o the solu-
tion of the central AI problem".

However, in our opinion efforts to improve the true intelligence of a sys—
tem need not be corrupted by efforts t o interface it with all sorts o f
unintelligent systems. An AI system, like a human, i s free t o make intel-
ligent use of Operating-system utilities, bulk databases, numerical simula—
tion packages, and s o on, building a pyramid o f unconventional reasoning
methods on a platform o f conventional D P .

Perhaps the most important DP interface of XPS shells is the one t o bulk
databases because knowledge bases in main memory are often too small for
realistic XPSs. Translation procedures between XPS knowledge bases and con—
ventional bulk databases should be employed t o smoothly switch between
(unformatted) knowledge and (formatted) data representations o f the domain.
In the case of PROLOG—like clausal knowledge and SQL—like relational data
this i s quite easy: several PROLOG vendors offer relational database inter-
faces.

iaQ- Standardization

A suggestion t o provide translation facilities t o a standard shell
knowledge base in order to gain portability is made in [Citrenbaum1987a].
The paper proposes that the standard would have different forms for rules,
schemata, and so forth.

For uniform shells a s discussed in section 3.6 such a standard would become
a complete standard o f the knowledge base. Presumably it will not be a
trivial matter t o agree on a uniform formalism for a knowledge—base stan—
dard because t h i s depends on resolving old but still open AI issues such a s
the declarative—procedural debate (today reappearing a s a logic-cop
debate). Whatever a possible standard may look like, a knowledge base hav—
ing a clear, simple, uniform ASCII representation w i l l be more easily
translated to the knowledge bases of other shells than those without such
representations. (ASCII will also facilitate knowledge transmission via
networks such as ETHERNET.)

Regarding the large number o f shells coming on the market every year, each
developer of a new shell should provide "portability links" as part of the
documentation: they should show which (parts of) knowledge bases of other

11

well-known shells can be imported -- perhaps, with which tools -- and to
which ones they can be exported. Perhaps an entire "portability web" could
thus evolve, making users feel more comfortable when investing into a new
shell.

Besides the central standardization issue for knowledge bases (cf. our
'pool' concept in section 2), there is a related issue for inference
engines, and a separate standardization theme for the user interface.

In accordance with the "conventional DP integration" trend, a shell stan­
dard for the user interface should be compatible with general interface
standards, e.g. the developing X-Windows standard.

Similarly, interfaces to other conventional DP subsystems such as databases
and operating systems (say SQL and UNIX, respectively) should of course
follow the standards established there.

Finally, for the shell implementation language a de facto standard such as
COMMON LISP (incl. CLOS), CPROLOG, SMALLTALK-80, or C(++) should be chosen;
hopefully, the forthcoming ISO standards for some of these languages will
encourage choices of such a kind. A "conservative use" of a very large
language such as COMMON LISP, restricting it to a non-controversial subset,
may be a good method to ensure conformity with its eventual standardized
version.

4.4.	 User organization

The explosive development of XPS shells confronts prospective users with a
bewildering 'zoo' of originals and variants, choices and pressures,
trend and hype.

One useful perspective on shells is that of 'commercialized programming
languages' :

(1) Since the main developmental effort was invested by companies
based on earlier R & D done by universities -­ shell concepts are
more often presented in advertising-marketing contexts than in
critical-scientific contexts.

(2)	 Shell-implementation techniques are not often treated in detail in
publications, since competition encourages confidential and
proprietary procedures.

(3)	 In their desire to be the best of all, compatibility with other
shell vendors has not (yet) been a widely recognized design goal of
companies.

Although there is a number of journals and newsletters watching the shell
market, these should be complemented by a more interactive way of informa­
tion exchange. Perhaps a moderated UUCP newsgroup on XPS shells,
[Bachmann1988a], will be a good medium. (Occasionally there are shell con­
tributions in comp.ai.digest, but this group already has a lot of traffic.)

ll

well-known shells can be imported —— perhaps, with which tools —— and to
which ones they can be exported. Perhaps an entire "portability web" could
thus evolve, making users feel more comfortable when investing into a new
shell.

Besides the central standardization issue for knowledge bases (of. our
’pool' concept in section 2), there is a related issue for inference
engines, and a separate standardization theme for the user interface.

In accordance with the "conventional DP integration" trend, a shell stan-

dard for the user interface should be compatible with general interface
standards, e.g. the developing x—Windows standard.

Similarly, interfaces to other conventional DP subsystems such as databases
and operating systems (say SQL and UNIX, respectively) should of course
follow the standards established there.

Finally, for the shell implementation language a de facto standard such as
COMMON LISP (incl. CLOS), CPROLOG, SMALLTALK—BO, or C(++) should be chosen;
hOpefully, the forthcoming ISO standards for some of these languages will
encourage choices of such a kind. A "conservative use" of a very large
language such as COMMON LISP, restricting it t o a non-controversial subset,
may be a good method to ensure conformity with its eventual standardized
version.

3.3. User organization

The explosive development of XPS shells confronts prospective users with a
bewildering 'zoo' of originals and variants, choices and pressures,
trend and hype.

One useful perspective on shells is that of 'commercialized programming
languages’:

(1) Since the main developmental effort was invested by companies -—
based on earlier R & D done by universities —— shell concepts are
more often presented in advertising—marketing contexts than in
critical—scientific contexts.

(2) Shell—implementation techniques are not often treated in detail in
publications, since competition encourages confidential and
proprietary procedures.

(3) In their desire to be the best o f all, compatibility with other
shell vendors has not (yet) been a widely recognized design goal of
companies.

Although there is a number of journals and newsletters watching the shell
market, these should be complemented by a more interactive way of informa—
tion exchange. Perhaps a moderated UUCP newsgroup on XPS shells,
[Bachmann1988a], will be a good medium. (Occasionally there are shell con—
tributions in comp.ai.digest‚ but this group already has a lot of traffic.)

12

Similarly, no vendor-independent, international "user organization for XPS
shells" seems to exist presently; perhaps it could be formed in connection
with the shells newsgroup. Among other things, it could distribute public­
domain shells (cf. NASA's COSMIC at the University of Georgia), develop
shell benchmarks (perhaps somewhat more complex than NASA's Monkey & Bana­
nas benchmark), organize shell contests (unpublished draft), compile shell
bibliographies (see appendix), maintain price/performance comparisons, and
work towards a shell standard (see previous subsection).

The field of XPS shells seems to be ripe for some kind of coordination
along these lines. XPSs and shells have become so important in commercial
AI that academic AI must be concerned about their further development,
which may well be critical to the future of AI as a whole.

5. Conclusions

The hype surrounding XPSs (including shells) has often been criticized
inside and outside of AI. Indeed, some shell names, advertisements, and
presentations can make laymen think of a glittering 'magicians box': Win­
dows are created 'out of thin air' in the midst of the screen with a mouse
click (e.g., to browse into some structure) or even surface automatically
(e.g., to signal an error), animated color graphics move and blink and
transmute much like in a video game, and sometimes all the bells ring and
all the whistles blow. At the peak of the XPS hype it would not have been
a great surprise if a new company would have advertised a forthcoming pro­
duct called 'The Magic Shell' in which the rectangular shape (the remaining
symbol of pure rationality) of windows was replaced by asterisk-shaped
'star windows', the mouse was replaced by a magic-wand-like 'laser pen',
the flat screen was replaced by a crystal-baIl-like 'holographic screen',
and an important inference was announced (and possible errors were con­
cealed) not only by verbose voice output but also by emitting a little
cloud of blue smoke.

Non-computer scientists watching a shell presentation may well feel like an
audience that is puzzled by the tricks of a stage magician [3] because it
cannot tell the 'kernel' events below the thick layers of the 'surface'
show. The animated objects on the screen give only a superficial picture of
the operational semantics of the real computation going on inside the
shell; the mystified layman observing a shell screen is in a situation
still worse than the observer in Plato's "cave" parable because the meaning
of people's shadows is deciphered more easily than that of abstract
object's screen images.

We do not want to question the value of graphic visualization and direct
manipulation of abstract structures and processes if the users are trained
appropriately (actually, we argue for iconic programming elsewhere). In
particular, more consciousness should be developed about what is the

[3] After writing this section, a report from the Industrial Exhibition
of AAAI-88 in St. Paul, Minn., showed how reality can surpass fiction: The
main attraction was a magician employed by a company for advertising.

12

Similarly, no vendor—independent, international "user organization for XPS
shells" seems t o exist presently; perhaps it could be formed in connection
with the shells newsgroup. Among other things, it could distribute public-
domain shells (cf. NASA's COSMIC at the University of Georgia), develop
shell benchmarks (perhaps somewhat more complex than NASA's Monkey & Bana-
nas benchmark), organize shell contests (unpublished draft), compile shell
bibliographies (see appendix), maintain price/performance comparisons, and
work towards a shell standard (see previous subsection).

The field of XPS shells seems to be ripe for some kind of coordination
along these lines. XPSs and shells have become so important in commercial
AI that academic AI must be concerned about their further development,
which may well be critical t o the future o f AI a s a whole.

2. Conclusions

The hype surrounding XPSs (including shells) has often been criticized
inside and outside o f A I . Indeed, some shell names, advertisements, and
presentations can make laymen think of a glittering 'magicians box': Win-
dows are created 'out of thin air' in the midst of the screen with a mouse
click (e.g., to browse into some structure) or even surface automatically
(e.g., to signal an error), animated color graphics move and blink and
transmute much like in a video game, and sometimes all the bells ring and
all the whistles blow. At the peak of the XPS hype it would not have been
a great surprise if a new company would have advertised a forthcoming pro-
duct called ’The Magic Shell' in which the rectangular shape (the remaining
symbol o f pure rationality) o f windows was replaced by asterisk—shaped
’star windows’, the mouse was replaced by a magic—wand—like ’laser pen’,
the flat screen was replaced by a crystal-ball—like ’holographic screen',
and an important inference was announced (and possible errors were con-
cealed) not only by verbose voice output but also by emitting a little
cloud of blue smoke.

Non-computer scientists watching a shell presentation may well feel like an
audience that is puzzled by the tricks of a stage magician [3] because it
cannot tell the 'kernel’ events below the thick layers of the 'surface’
show. The animated objects on the screen give only a superficial picture of
the operational semantics of the real computation going on inside the
shell: the mystified layman observing a shell screen is in a situation
still worse than the observer in Plato's "cave" parable because the meaning
of people's shadows i s deciphered more easily than that o f abstract
object's screen images.

We do not want t o question the value of graphic visualization and direct
manipulation o f abstract structures and processes i f the users are trained
appropriately (actually, we argue for iconic programming elsewhere). I n
particular, more consciousness should be developed about what is the

[3] After writing t h i s section, a report from the Industrial Exhibition
of AAAI-88 in S t . Paul, Minn., showed how reality can surpass fiction: The
main attraction was a magician employed by a company for advertising.

13

external knowledge presentation and what is the internal knowledge
representation. Otherwise, it seems that overloading a shell interface
with impressive but useless graphics can conceal the real perhaps too
trivial? computation (in hybrid shells already the kernel does have a
baroque architecture). Also -- and perhaps even worse -- the beauty of its
surface can lead to a superficial use of a shell: playing with all these
things can prevent the 'hypnotized' users from having their work done on
the expensive equipment. Thus, clear logical-linguistic thinking may be
slowly replaced by cloudy illogical-visual imagining. Early signs of this
can be discerned for instance in universities when watching students 'doing
graphics' on pes or workstations.

Even though modern computer support of imagination is important in the
creative, 'brainstorming' phases of a project, classical computer support
of thinking is still important in its analytical, criticizing phases. Oth­
erwise, excessive computer use may have a 'brainwashing' effect similar to
the one we must now witness in the abuse of TV and video (games).

Unfortunately, when presenting a shell to a large audience, people watching
the screen from a greater distance can observe almost only the 'graphics
events' (unless a beamer is employed). This is one more reason seducing
vendors to give 'shallow presentations'. Things can become embarrassing,
however, both for some stage magicians and shell presenters. Towards the
end of a graphics-oriented shell presentation there once came the simple
suggestion "Would you please show us how to define factorial in your for­
malism" from the audience; the trivial recursive function could not be
written down by the shell company's represent~tives.

Thus, while some years ago graphic surfaces were only an addendum to AI
systems, these days the relation could well become inverted: At least the
large number of programmers new in very-high-Ievel languages or AI (XPSs)
having to decide on an XPS shell -- with support from their more playful
managers -- may be dazzled so much by a shell surface that they purchase
almost any shell kernel along with a pretty surface.

Therefore, this paper has tried to show that there is quite a lot of space
for variation in the knowledge base and inference engine. Hopefully, open
kernel issues such as "essential hybrid" systems or suitable combinations
of backward-chaining and forward-chaining strategies will play an increas­
ing role in future shell-purchase decision making.

Like other successful fields that originated in connection with AI, modern
workstation graphics has already become a mainstream computer-science area
on its own, and even if graphics is a necessary sales argument for XPS
shells, to let it look more and more like a sufficient argument means to
push one's shell outside the market of artificial-intelligence products.
Blurring the difference between graphics tools and AI systems may result in
short-term AI success through graphics success, but the AI field may have
to pay the long-term price of loosing its identity.

13

external knowledge presentation and what i s the internal knowledge
representation. Otherwise, it seems that overloading a shell interface
with impressive but useless graphics can conceal the real - — perhaps too
trivial? —- computation (i n hybrid shells already the kernel does have a
baroque architecture). Also -- and perhaps even worse —- the beauty of its
surface can lead to a superficial use o f a shell: playing with all these
things can prevent the 'hypnotized’ users from having their work done on
the expensive equipment. Thus, clear logical—linguistic thinking may be
slowly replaced by cloudy illogical—visual imagining. Early signs o f this
can be discerned for instance in universities when watching students 'doing
graphics’ on PCs or workstations.

Even though modern computer support of imagination i s important in the
creative, 'brainstorming' phases of a project, classical computer support
of thinking is still important in its analytical, criticizing phases. Oth—
erwise, excessive computer use may have a 'brainwashing' effect similar to
the one we must now witness in the abuse of TV and video (games).

Unfortunately, when presenting a shell t o a large audience, people watching
the screen from a greater distance can observe almost only the 'graphics
events’ (unless a beamer i s employed). This i s one more reason seducing
vendors to give 'shallow presentations'. Things can become embarrassing,
however, both for some stage magicians and shell presenters. Towards the
end of a graphics—oriented shell presentation there once came the simple
suggestion "Would you please show us how to define factorial in your for—
malism" from the audience; the trivial recursive function could not be
written down by the shell company’s representatives.

Thus, while some years ago graphic surfaces were only an addendum to AI
systems, these days the relation could well become inverted: At least the
large number o f programmers new in very-high—level languages or AI (XPSs)
having to decide on an XPS shell —— with support from their more playful
managers —— may be dazzled so much by a shell surface that they purchase
almost any shell kernel along with a pretty surface.

Therefore, this paper has tried to show that there is quite a lot of space
for variation in the knowledge base and inference engine. Hopefully, open
kernel issues such a s "essential hybrid“ systems or suitable combinations
of backward-chaining and forward-chaining strategies will play an increas-
ing role in future shell—purchase decision making.

Like other successful fields that originated in connection with A I , modern
workstation graphics has already become a mainstream computer—science area
on its own, and even if graphics i s a necessary sales argument for XPS
shells, t o let it look more and more like a sufficient argument means to
push one's shell outside the market of artificial—intelligence products.
Blurring the difference between graphics tools and AI systems may result in
short—term AI success through graphics success, but the AI field may have
to pay the long-term price o f loosing i t s identity.

14

Acknowledgements

I want to thank Siemens AG, ZTI (now: ZFE F 2), Munich, for the inspiring
working environment. In particular, SYS 5 and SOF 1 are thanked for their
hospitality. This paper was written while I was hosted by the AIL­
Clearingstelle, profiting from discussions with Harald Lausecker, Claus
Jaekel, and Wolfgang Weber. Claus and Wolfgang also suggested improvements
to an earlier draft. Moreover, I want to thank David M. W. Powers, Mac­
quarie University, for helpful comments on the final draft. Of course, I
have the sole responsibility for any remaining omissions and errors, and I
apologize for them. All opinions expressed in this paper are my own.

References

Bachmann1988a.
Bernd Bachmann, Harold Boley, Norbert Kratz, Robert Rehbold, Michael
M. Richter, Peter Spieker, and Thomas Wetter, "An Informal Proposal
for a Newsgroup on Expert System Shells," Submitted to mod-ki and
comp.ai.digest, Univ. Kaiserslautern, FB Informatik (Dec 1988).

Bobrow1988a.
Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonya E.
Keene, Gregor Kiczales, and David A. Moon, "Common Lisp Object System
Specification," Document 88-002R, X3J13 (June 1988).

Boley1983a.
Harold Boley, "Artificial Intelligence Languages and Machines," Tech­
nology and Science of Informatics Vol. 2(3) pp. 137-158 (May-June
1983) .

Boley1987a.
Harold Boley, "Frame and Heir: Clausal Frames and Multiple Inheritance
in LISPLOG," SEKI Working Paper SWP-87-09, Univ. Kaiserslautern, FB
Informatik (Nov 1987) .

Brachman1985a.
Ronald J. Brachman, Victoria Pigman Gilbert, and Hector J. Levesque,
"An Essential Hybrid Reasoning System: Knowledge and Symbol Level
Accounts of KRYPTON," IJCAI-~, pp. 532-539 (Aug 1985).

Citrenbaum1987a.
R. Citrenbaum, J. Geissman, and R. Schultz, "Selecting a Shell," AI
Expert Vol. 2(9) pp. 30-39 (Sep 1987).

Gevarter1987a.
William B. Gevarter, "The Nature and Evaluation of Commercial Expert
System Building Tools," IEEE Computer, pp. 24-41 (May 1987).

Gladel-Speicher1988a.
Simone Gladel-Speicher, "Vergleichende Untersuchung der Integration­
sproblematik von Diagnoseexpertensystemen und Tiefenmodellierungsspra­
chen am Beispiel verschiedener, bereits existierender Systeme," SEKI
Working Paper SWP-88-04, Univ. Kaiserslautern, FB Inform. (Mar 1988).

14

Acknowledgements

I want t o thank Siemens AG, ZTI (now: ZFE F 2) , Munich, for the inspiring
working environment. In particular, SYS 5 and SOF 1 are_thanked for their
hospitality. This paper was written while I was hosted by the AIL“
Clearingstelle, profiting from discussions with Harald Lausecker, Claus
Jaekel, and Wolfgang Weber. Claus and Wolfgang also suggested improvements
to an earlier draft. Moreover, I want to thank David M . W . Powers, Mac-
quarie University, for helpful comments on the final draft. O f course, I
have the sole responsibility for any remaining omissions and errors, and I
apologize for them. All opinions expressed in t h i s paper are my o w n.

References

Bachmann1988a.
Bernd Bachmann, Harold Boley, Norbert Kratz, Robert Rehbold, Michael
M . Richter, Peter Spieker, and Thomas Wetter, "An Informal Proposal
for a Newsgroup on Expert System Shells," Submitted to mod—ki and
comp.ai.digest, Univ. Kaiserslautern, FB Informatik (Dec 1988).

Bobrowl988a.
Daniel G . Bobrow, Linda G . DeMichiel, Richard P . Gabriel, Sonya E .
Keene, Gregor Kiczales, and David A . Moon, "Common Lisp Object System
Specification," Document 88—002R, X3Jl3 (June 1988).

Boley1983a.
Harold Boley, "Artificial Intelligence Languages and Machines," Tech—
nolggy and Science 9£_ Informatics Vol. 2(3) p p . 137—158 (May—June
1983).

Boley1987a.
Harold Boley, "Frame and Heir: Clausal Frames and Multiple Inheritance
in LISPLOG," SEKI Working Paper SWP—87—09, Univ. Kaiserslautern, FB
Informatik (Nov 1987).

Brachman1985a.
Ronald J . Brachman, Victoria Pigman Gilbert, and Hector J . Levesque,
"An Essential Hybrid Reasoning System: Knowledge and Symbol Level
Accounts of KRYPTON," IJCAI—gg, pp. 532—539 (Aug 1985).

Citrenbaum1987a.
R. Citrenbaum, J. Geissman, and R. Schultz, "Selecting a Shell," A;
Expert Vol. 2(9) pp. 30-39 (Sep 1987).

Gevarter1987a.
William B . Gevarter, “The Nature and Evaluation o f Commercial Expert
System Building Tools," IEEE Computer, p p . 24—41 (May 1987).

Gladel—Speicher1988a.
Simone Gladel—Speicher, "Vergleichende Untersuchung der Integration—
Sproblematik von Diagnoseexpertensystemen und Tiefenmodellierungsspra—
chen am Beispiel verschiedener, bereits existierender Systeme," SEKI
Working Paper SWP—88-04, Univ. Kaiserslautern, FB Inform. (Mar 1988).

15

Harmon1988a.
Paul Harmon, Rex Maus, and William Morrissey, Expert Systems Tools and
Applications, John Wiley & Sons, New York (1988).

Igney1987a.
Karin Igney, "Hybride Expertensystem-Shells: Konzepte und anwendungs­
bezogene Evaluationskriterien," Diplomarbeit, TU Muenchen, Institut
fuer Informatik (Nov 1987).

Karras1987a.
Detlef Karras, Lutz Kredel, and Uwe Pape, Entwicklungsumgebungen fuer
Expertensysteme. Vergleichende Darstellung ausgewaehlter System€;
Walter de Gruyter, Berlin, New York (1987).

Leavenworth1974a.
B. Leavenworth and J. Sammet, "An Overview of Nonprocedural
Languages," SIGPLAN Notices Vol. 9(4)B. Leavenworth (Ed.): ACM SIGPLAN
Symposium on Very High Level Languages, (Mar 1974).

Lee1986a.
N. S. Lee, "Programming with P-Shell," IEEE Expert Vol. 1(2) (Summer
1986) .

Lessel1988a.
Michael Lessel, "Modellbasierte Diagnose von Benutzer- und
Systemsoftware-Fehlern, dargestellt am Beispiel des UNIX­
Spoolingsystems," Diplomarbeit, Univ. Kaiserslautern, FB Informatik
(Oct 1988).

Melle1984a.
W. van Melle, E. Shortliffe, and G. Buchanan, "EMYCIN: A Knowledge
Engineer's Tool for Constructing Rule-Based Systems," G. Buchanan and
E. Shortliffe (Eds.): Rule-Based Expert Systems, pp. 302-313
Addison-Wesley, (1984).

Richer1986a.
Mark H. Richer, "An Evaluation of Expert System Development Tools,"
Expert Systems Vol. 3 (3) pp. 166-182 (Jul 1986).

Rowley1987a.
Steve Rowley, Howard Shrobe, Robert Cassels, and Walter Hamscher,
"Joshua: Uniform Access to Heterogeneous Knowledge Structures or Why
Joshing is Better than Conniving or Planning," AAAI-~, pp. 48-52
(Aug 1987).

Schuelting1988a.
Heinz-Werner Schuelting, "JOSHUA, eine flexible KI-Sprache mit
einheitlicher Oberflaeche," Preprint, Symbolics (1988).

Waterman1986a.
Donald A. Waterman, A Guide to Expert Systems, Addison-Wesley, Read­
ing, MA (1986).

15

Harmonl988a.
Paul Harmon, Rex Maus, and William Morrissey, Expert Systems Tools and
Applications, John Wiley & Sons, New York (1988).

Igneyl987a.
Karin Igney, "Hybride Expertensystem—Shells: Konzepte und anwendungs—
bezogene Evaluationskriterien," Diplomarbeit, TU Muenchen, Institut
fuer Informatik (Nov 1987).

Karrasl987a.
Detlef Karras, Lutz Kredel, and Uwe Pape, Entwicklungsumgebungen fuer
Expertensysteme. Vergleichende Darstellung ausgewaehlter Systeme,
Walter de Gruyter, Berlin, New York (1987).

Leavenworthl974a.
B . Leavenworth and J . Sammet, "An Overview of Nonprocedural
Languages," SIGPLAN Notices V o l . 9(4)B. Leavenworth (Ed.): ACM SIGPLAN
Symposium on Very High Level Languages, (Mar 1974).

Lee1986a.
N . S . Lee, "Programming with P—Shell," IEEE Expert Vol. l(2)(Summer
1986).

Lessell988a.
Michael Lessel, "Modellbasierte Diagnose von Benutzer- und
Systemsoftware-Fehlern, dargestellt am Beispiel des UNIX-
Spoolingsystems," Diplomarbeit, Univ. Kaiserslautern, FB Informatik
(Oct 1988).

Melle1984a.
W . van Melle, E . Shortliffe, and G . Buchanan, "EMYCIN: A Knowledge
Engineer’s Tool for Constructing Rule-Based Systems," g . Buchanan and
E. Shortliffe <§g§.): Rule—Based Expert Systems, pp. 302-313
Addison—Wesley, (1984).

Richer1986a.
Mark H . Richer, "An Evaluation o f Expert System Development Tools,"
Expert Systems Vol. 3(3) pp. 166-182 (Jul 1986).

Rowley1987a.
Steve Rowley, Howard Shrobe, Robert Cassels, and Walter Hamscher,
"Joshua: Uniform. Access t o Heterogeneous Knowledge Structures or Why
Joshing is Better than Conniving or Planning," AAAIjgl, pp. 48—52
(Aug 1987).

Schuelting1988a.
Heinz—Werner Schuelting, "JOSHUA, eine flexible KI—Sprache mit
einheitlicher Oberflaeche," Preprint, Symbolics (1988).

Waterman1986a.
Donald A. Waterman, A Guide to Expert Systems, Addison—Wesley, Read-
ing, MA (1986).

16

A P PEN D I X: THE IRUBESS PROPOSAL

Incremental REFER-UUCP Bibliography on Expert System Shells (IRUBESS-O)

Pmail: H. Boley, FB Inform., Univ. 675 Kaiserslautern, Box 3049, W. Germany
Email: lisplog@uklirb.uucp

General-purpose tools made for knowledge representation & processing
in expert systems (rather than special-purpose tools derived from
expert systems for diagnosis, configuration etc.) are the 'shells' to
be emphasized here.

Such expert system shells can be regarded as -- often hybrid -- AI
languages with good interactive environments because the label 'expert
systems' is popularly used for a large subset of AI applications.

While we are far away from 'an exact science of shells' (with subfields
like 'shell semantics', 'shell correctness', and 'shell complexity'),
the compilation of a bibliography on serious shell papers could help
users, developers, and analysts of these -- often commercial -- tools.
Because the IRUBESS data are provided in machine-readable form in a
non-profit fashion, they may contribute to saving duplication of effort,
which should also be attempted in other fields inside or outside AI.

Since REFER is now a de facto standard for notating bibliographies in
ASCII (with conversion routines to other, possibly non-ASCII, notations
being simple), it was selected for the shell references in IRUBESS.

Because of REFER's UUCP-wide use IRUBESS can also be made available and
further expanded electronically via UUCP (email and newsgroups). We can
profit from the REFER convention to sort a bibliography on demand only,
just appending new entries at the end of the ASCII file that constitutes
the bibliography (addbib irubess): IRUBESS can be UUCPed incrementally
in well-defined parts from update to update, and recipients can simply
copy these together and then have the new IRUBESS file sorted before
pretty printing (sortbib irubess I roffbib I more).

If you haven't used the family of REFER programs before, e.g. for collecting
the sub-bibliography of references quoted in an nroff/troff/xroff text,
please consult the manual pages (man refer). You may try REFER with the
entries at the end of this text. Should IRUBESS grow very large, indexing
with INDXBIB may become necessary, but fortunately this would still support
incremental growth. Is there a REFER better than our May 1986 version?

Follow these rules when emailing references to the above electronic address:

*	 Specify "Subject: IRUBESS update" for normal updates and -- in separate
email -- "Subject: IRUBESS correction" for corrections of existing
entries (if such should still become necessary), and give both your email
address (return paths are often nasty and sometimes unusable) and your

16

A P P E N D I x: THE IRUBESS PROPOSAL

Incremental REFER-UUCP Bibliography on Expert System Shells (IRUBESS-0)

Pmail: H . Boley, FB Inform., Univ. 6 7 5 Kaiserslautern, Box 3049, W . Germany
Email: lisplog@uklirb.uucp

General—purpose tools made for knowledge representation & processing
in expert systems (rather than special—purpose tools derived from
expert systems for diagnosis, configuration etc.) are the ’shells’ t o
be emphasized here.

Such expert system shells can be regarded a s — - often hybrid -— AI
languages with good interactive environments because the label 'expert
systems' i s popularly used for a large subset of AI applications.

While we are far away from ’an exact science of shells’ (with subfields
like ' s h e l l semantics', ’shell correctness’, and ’shell complexity’),
the compilation of a bibliography on serious shell papers could help
users, developers, and analysts of t hese —— often commercial —— tools.
Because the IRUBESS data are provided in machine—readable form in a
non—profit fashion, they may contribute to saving duplication of effort,
which should also be attempted in other fields inside or outside AI.

Since REFER is now a de facto standard for notating bibliographies in
ASCII (with conversion routines to other, possibly non—ASCII, notations
being simple), it was selected for the shell references in IRUBESS.

Because o f REFER’s UUCP—wide use IRUBESS can a l s o be made available and
further expanded electronically via UUCP (email and newsgroups). We can
profit from.the REFER convention t o sort a bibliography on demand only,
just appending new entries at the end of the ASCII f i l e that constitutes
the bibliography (addbib irubess): IRUBESS can be UUCPed incrementally
in well—defined parts from update to update, and recipients can simply
copy these together and then have the new IRUBESS file sorted before
pretty printing (sortbib irubess | roffbib | more).

If you haven't used the family of REFER programs before, e.g. for collecting
the sub-bibliography of references quoted in an nroff/troff/xroff text,
please consult the manual pages (man refer). You may try REFER with the
entries at the end o f this text. Should IRUBESS grow very large, indexing
with INDXBIB may become necessary, but fortunately t h i s would still support
incremental growth. Is there a REFER better than our May 1986 version?

Follow t h e s e rules when emailing references t o the above electronic address:

* Specify "Subject: IRUBESS update" for normal updates and —— in separate
email __ "Subject: IRUBESS correction" for corrections of existing
entries (if such should still become necessarY), and give both your email
address (return paths are often nasty and sometimes unusable) and your

mailto:lisplog@uklirb.uucp

17

"shortest unique physical/postal/paper address" (as the last resort) in
the body of your email, followed by the correct references in REFER syntax.

*	 Send references about shell overviews, critiques, and user experiences,
as well as references technically describing individual shells, etc.,
but do not send pseudo-references of commercial shell descriptions (no
advertisement) .

*	 Feel free to email references of those of your own papers that fit well
into the category of shells compiled in IRUBESS, even if your shell is
experimental only (has no external users); you should pmail hardcopies of
any such emailed references to the above paper address.

*	 Since we will watch for quality we cannot be obliged to distribute (all)
references emailed to us, or to leave references distributed in an update
also in later versions of the full version of IRUBESS (such a "bibliography
non-monotonicity" may be unavoidable in exploding fields, where it can
be hard to distinguish short-term relevance from long-term relevance); one
small aspect of quality, supported by IRUBESS, is awareness of related work.

*	 Make sure that you don't send references already in IRUBESS, if uncertain,
by	 requesting the most recent update(s) or the full version via email
(since parallel submissions cannot be avoided the final job of duplicate
elimination must be done centrally in Kaiserslautern) .

*	 Use exactly the capitalization and abbreviation conventions exemplified
in the sample entries below (for authors don't use initials if you know
their full first names).

*	 Supply complete references only, e.g. both volume and issue numbers of
journal articles (the normal ADDBIB doesn't prompt for the issue number,
but you can end the volume line with "\" and then type the prompt "%N"
yourself) .

*	 You may send references with optional fields like keywords and abstract,
but these may be eliminated from the distributed version because of the
problems of overall consistency and manageable size.

Other important rules of the game are the following:

*	 Even though every sender is urged to cross-check every single reference
submitted to IRUBESS, we cannot accept any liability for errors in the
IRUBESS data (in this entire text "IRUBESS data" includes all updates) .

*	 It is forbidden to exploit the IRUBESS data commercially, as by selling
them as a stand-alone bibliography to third parties; it is permissible to
use a REFER-generated sub-bibliography of IRUBESS even within a technical
paper that is distributed commercially.

*	 Only if there is no other way to obtain the IRUBESS data (e.g. from the
friend who told you about them) will they be sent directly to a recipient
via email from Kaiserslautern, the normal way being its incremental

17

"shortest unique physical/postal/paper address" (a s the last resort) i n
the body o f your email, followed by the correct references in REFER syntax.

* Send references about shell overviews, critiques, and user experiences,
a s well a s references technically describing individual shells, etc.,
but do not send pseudo—references of commercial shell descriptions (n o
advertisement).

* Feel free t o email references of those o f your own papers that fit well
into the category of shells compiled in IRUBESS, even if your shell is
experimental only (has no external users); you should pmail hardcopies o f
any such emailed references to the above paper address.

* Since we will watch for quality we cannot be obliged t o distribute (all)
references emailed t o us, or t o leave references distributed in an update
also in later versions of the full version of IRUBESS (such a "bibliography
non—monotonicity" may be unavoidable i n exploding fields, where it can
be hard to distinguish short—term relevance from long—term relevance); one
small aspect of quality, supported by IRUBESS, i s awareness of related work.

* Make sure that you don't send references already in IRUBESS, i f uncertain,
by requesting the most recent update(s) or the full version via email
(since parallel submissions cannot be avoided the final job of duplicate
elimination must be done centrally in Kaiserslautern).

* Use exactly the capitalization and abbreviation conventions exemplified
in the sample entries below (for authors don’t use initials if you know
their full first names).

* Supply complete references only, e . g . both volume and issue numbers of
journal articles (the normal ADDBIB doesn't prompt for the issue number,
but you can end the volume line with "\" and then type the prompt "%N"
yourself).

* You may send references with optional fields like keywords and abstract,
but these may be eliminated from the distributed version because of the
problems of overall consistency and manageable size.

Other important rules of the game are the following:

* Even though every sender i s urged to cross—check every single reference
submitted to IRUBESS, we cannot accept any liability for errors in the
IRUBESS data (in this entire text "IRUBESS data" includes all updates).

* It is forbidden to exploit the IRUBESS data commercially, as by selling
them a s a stand—alone bibliography t o third parties; it i s permissible t o
use a REFER—generated sub—bibliography of IRUBESS even within a technical
paper that i s distributed commercially.

* Only i f there i s no other way to obtain the IRUBESS data (e.g. from the
friend who told you about them) will they be sent directly t o a recipient
via email from Kaiserslautern, the normal way being i t s incremental

18

submission to a newsgroup. (Perhaps an ftp option or an automatic mail
replier for "Subject: IRUBESS request" may be installed later.)

*	 The IRUBESS management in Kaiserslautern may be ended at any time,
perhaps after having found another site to continue the managing job.

The following REFER input example is a prefix of the file used for the
references of this paper, the 'version zero' of IRUBESS:

%A William Mettrey
%T An Assessment of Tools for Building Large Knowledge-Based Systems
%J AI Magazine
%V 8
%N 4
%P 81-89
%1 AAAI
%C Menlo Park
%D Winter 1987

%A Detlef Karras
%A Lutz Kredel
%A Uwe Pape
%T Entwicklungsumgebungen fuer Expertensysteme.
Vergleichende Darstellung ausgewaehlter Systeme
%1 WaIter de Gruyter
%C Berlin, New York
%D 1987

%A William B. Gevarter
%T The Nature and Evaluation of Commercial Expert System Building Tools
%J IEEE Computer
%P 24-41
%D May 1987

%A Mark H. Richer
%T An Evaluation of Expert System Development Tools
%J Expert Systems
%V 3
%N 3
%P 166-182
%D Jul 1986

%A R. Citrenbaum
%A J. Geissman
%A R. Schultz
%T Selecting a Shell
%J AI Expert
%V 2
%N 9
%P 30-39
%D Sep 1987

18

submission t o a newsgroup. (Perhaps an ftp option or an automatic mail
replier for "Subject: IRUBESS request" may be installed later.)

* The IRUBESS management in Kaiserslautern may be ended at any time,
perhaps after having found another s i t e to continue the managing job.

The following REFER input example i s a prefix o f the f i l e used for the
references of this paper, the 'version zero’ of IRUBESS:

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

U
O

H
'
”
U
 Z

<:
 C

I
F3

3"

H
i
fi
?
!
»

o\
°
o\
°
o\
°
o
\
°

William Mettrey
An Assessment o f Tools for Building Large Knowledge—Based Systems
AI Magazine
8
4
81—89
AAAI
Menlo Park
Winter 1987

Detlef Karras
Lutz Kredel
Uwe Pape
Entwicklungsumgebungen fuer Expertensysteme.

Vergleichende Darstellung ausgewaehlter Systeme
% I
% C
% D

%A
% T

o
\
°

o
\
°

o
\
°

UrU
(
_
;

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°

o
\
°
 o
\°

 o
\°

 o
\°

 o
\°

 o
\°

 o
\
°
 o
\°

 o
\
°

C
J

"
U

'
Z

<
C

!
|
_
]

:
1
5

D
’

3
5

Walter de Gruyter
Berlin, New York
1 9 8 7

William B. Gevarter
The Nature and Evaluation of Commercial Expert System Building Tools
IEEE Computer
24—41
May 1987

Mark H. Richer
An Evaluation of Expert System Development Tools
Expert Systems
3
3
166—182
Jul 1986

R . Citrenbaum
J. Geissman
R . Schultz
Selecting a Shell
AI Expert
2
9
30-39
Sep 1987

