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Abstract A resolution calculus for the quantified versions of the modal logics K, T, K4, KB, 54, S5,
B, D, D4 and DB is presented. It presupposes a syntax transformation, similar to the skolemization in
predicate logic, that eliminates the modal operators from modal logic formulae and shifts the modal
context information to the term level. The formulae in the transformed syntax can be translated into
conjunctive normal form such that a clause based modal resolution calculus is definable without any
additional inference rule, but with special modal unification algorithms. The method can be applied to
first-order modal logics with the two operators 8 and ¢ and with standard constant-domain possible
worlds semantics with flexible constant and function symbols, where the accessibility relation may have
any combination of the following properties: reflexivily, symmelry, transitivity, scrialily or non-scriality.
While extensions to other systems seem possible, they have not yet been investigated.
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Chapter One

Introduction

The invention of the resolution principle for predicate logic by John Alan Robinson [Robinson 65] was
an important step in the long lasting attempt of rendering formal reasoning to automated treatment. The
resolution rule is simple, clear and easy to implement. Its efficiency - in terms of the branching rate in the
search space, which is always finite for resolution - surpasses considerably other calculi like natural
deduction or tableau systems with an unrestricted instantiation rule. Therefore the resolution rule has
become the favorite inference rule, for automated theorem proving as well as for PROLOG style logic
programming. In more than 25 years of work with resolution based theorem proving sophisticated
refinements, control and implementation techniques have been developed that enable today’s theorem
provers to solve undoubtedly nontrivial problems [Wos&Winker 84].

Unfortunately the application of the clause based resolution principle has been restricted to standard
predicate logic. For nonclassical logics - modal logics, temporal logics, epistemic logics, relevance logics
etc. - complctely different calculi have been developed that require different implementations for their
respective theorem proving systems with hardly a chance to apply results and techniques of the
traditional work.

With this monograph we intend to make a first step towards a situation where nonstandard logics, at least
a large class of modal logics, are amenable to standard techniques. The method to bring this change
about is to “skolemize” the modal operators. For example the formula 0¥ is translated into a formula
Vw Flw] where w is quantified over all accessible worlds and [w] is attached as an additional argument
to the terms and literals in . Thus, we eliminate the modal operators and obtain a standard predicate
logic like syntax that still represents the modal semantics. The modal context information is recorded as a
“world-path”, a new kind of terms for which a special unification algorithm is to be defined. For each
particular modal logic like S4, S5 etc., we need a particular unification algorithm; and this is the only
change that is necessary to turn any resolution theorem prover for predicate logic, no matter if clause
based or not, and even logic programming systems, into a theorem prover for modal logic.



An Example that Demonstrates the Basic Ideas

Consider the formula
O OVx(OPx A O Qx) = ¢ (VyPy A VzQz) )

The meaning of such a formula can be described in terms of possible worlds which are connected by an
accessibility relation [Hughes& Cresswell 68]. A possible world is an interpretation in the predicate logic
sense. It determines how the function and predicate symbols are to be interpreted in that world. For
instance the symbol P may be interpreted in world ‘a’ as the predicate ‘even’, and in world ‘b’ as the
predicate ‘odd’. The nesting of the modal operators in a formula determines which world or which
interpretation respectively is actually meant. 0 means “there is a world b which is accessible from the
actual world a, such that Fholds in b”. B F means *“for every world b which is accessible from the actual
world a, Fholds in b”.

The premises ¢ 0Vx (0Px A oQx) of the formula (%) can thereforc be expressed in words as:
0 From the actual world there is an accessible world a,
¢ from a there is an accessible world b,
Vx  such that for all x
© there is a world c, accessible from b (but depending on x, therefore c(x))
Px such that Px holds, where P is interpreted in world c(x)
A and
o for all worlds u which are accessible from b
Qx) Qx holds, where Q is interpreted in world u.

Graphically:

> O

o

The syntax transformation we are going to present in this paper records these worlds a, b, c(x) and u
explicitly and attaches them as an additional “world-path” argument to the predicate and function
symbols.

The above formula ¢ 0Vx (0Px A oQx), for instance, is translated into Vx(P[abc(x)]x A Vu Q[abu]x)
with the intuitive meaning:

Vx | For all x

(P([abe(x)] x) | Px holds in all worlds which are accessible via the paths a b ¢(x)

A |and

Yu | for all admissible worlds u (which worlds are actually admissible depends on the
| . world-paths in the subformulae of the quantifier.)
Q(labu] x)) | Qx holds in all worlds which are accessible via the paths abu.



In order to prove the formula (%) by contradiction the consequence of the implication must be negated,
yielding — 0 (VyPy A VzQz), and after moving the negation sign inside: o(dy—Py v 3z—Qz).
The transformed version is Vv(—P([v] f{v]) v —Q([v] g[v])) with the intuitive meaning:

Vv | For all admissible worlds v

(—=P([v] flv]) |—P(f{v]) holds in all accessible worlds.
I fis a skolem function that denotes the original y “that must exist”,
| but in each world v, there may exist another y.

v |or

—-Q([v] glvD)) | =Q(g[v]) holds in all accessible worlds.
| g is the second skolem function that depends also on v.

(The first world-path [v] in P([v] f[v]) determines the modal context for the predicate symbol P whereas
the second [v] determines the modal context for £. It is a coincidence that both are the same.)

Eliminating the universal quantifiers, the transformed negated formula (%) can be written in clause form:

C1 P([abc(x)] x)
Cc2: Q([abu] x)
3 —P([v] fIv]) v —=Q([v] glv]D)

Let us try to find a resolution proof.

Case 1: Assume the accessibility relation is serial, i.e. from each world there is an accessible world.
There are two candidates for resolution operations, C2 with C3,2 and C1 with C3,1. Consider the first
candidate, C2 with C3,2. Before generating a resolvent the atoms Q(fabu] x) and Q([v] g[v]) must be
unified, i.e. the problem of unifying the two world-paths [abu] and [v] has to be solved. It is easy to see
that the unification is impossible unless the accessibility relation of the underlying logic is transitive or
symmetric. Let us assume transitivity. In this case {v ~ [abu]} is a (most general) unifier for [abu] and
[v]. Combining this substitution with the unifier for x and g[v], the final unifier {v » [abu], x - g[abu]}
is obtained.

The modal resolution step is now:

C2: Q([abu] x)
C3:  —P(v] fiv]) v =Q([v] g[v]) unifier: 6 = (v [abu] , x ~ gfabu]}

Resolvent: —P([abu] flabu]) (in modal syntax: ®0qdy —Py)

Consider now the second resolution possibility which gives rise to the unification problem P([abc(x)] x)
and P([v] f{v]). This time the world-paths [abc(x)] and [v] can be unified only in logics with a transitive
accessibility relation. In this case the unifier is {v ~ [abc(x)]}. This substitution can be applied to the
remaining terms before the unification proceeds, and the second unification problem, x with flabc(x)],
fails with an occur check failure. The atoms P([abc(x)] x) and P([v] f[v]) are not unifiable. Since the first
resolvent is also not unifiable with any other atom, and there is no other possibility for resolution, the
proof fails; and in fact, the formula (%) is not a theorem.



Case 2: Assume the accessibility relation is not serial.
In the non-serial case there may be worlds from which there are no accessible worlds at all. A formula
O is true in such worlds, not because the formula # evaluates to a truth value, but because the
quantification “for all accessible worlds ...” in the semantics of the t1-operator is empty. This has two
consequences for the resolution rule in the transformed syntax: The first consequence is that a
world-variable v in a formula Vv—P([v] flv]) v —Q([v] g[v]) cannot be instantiated safely with a non-
variable term. The interpretations with no accessible worlds would satisfy the original formula, but not
its instance. The second consequence is that two syntactically complementary literals like Vv R[v] and
Vv—R[v] are not necessarily semantically contradictory. Both formulae are simultaneously satisfiable
when the quantification Vv is empty. They can’t therefore be used as resolution literals without further
provision.
To overcome these difficulties we must introduce explicit reasoning about inhabited and not inhabited
worlds. To this end a special predicate ‘End(p)’ is introduced which is true in an interpretation when ‘p’
is evaluated to the “last” world, i.e. a world without accessible worlds. The right instance of
Vv —P([v] flv))v—Q([v] g[v]) with the substitution 6 = {v + [abu], x = g[abu]} can now be expressed:
—End([]) A —=End([a]) A —End([ab]) = Vu —P([abu] flabu]) v —Q([abu]g[abu]) or in clause form
End([]) v End([a]) v End([ab]) v —P([abu] fTabu}) v —Q([abu]g[abu})
with the meaning “when neither the initial world, nor the world [a] nor the world [ab] is the last world
then Vu —P([abu] flabu]) v —Q([{abu] g[abu]) is a correct instance. (Actually the last condition
—End([ab]) can be omitted because when [ab] is the last world then the quantification Vu is empty and
the clause is true anyway.)

The “conditioned instances” of the two resolution literals in our example

C2: Q(labu] x)

C3: =P(vlflv]) v =-Q(v] glvD unifier; ¢ = {v - [abu] , x - g[abu}}
are

olC2: End([]) v End([a]) v Q([abu] gfabu))

c1C3: End({]) v End([a]) v —P([abu] flabu]) v —Q([abu] g[abu])

To complete the resolution operation for this example we create the resolvent in the usual way, but insert
an additional literal End([ab)) into the resolvent to ensure that the variable u denotes a nonempty set and
the literals Q([abu] glabu]) and —Q([abu]g[abu]) are really contradictory. The resolvent is therefore
End([]) v End([a]) v End([ab]) v —P([abu] f[abu])
The presence of the literal —P([abu] fTabu]) in this particular example makes the literal End([ab])
superfluous such that the final resolvent is
End([]) v End([a]) v —P([abu] f[abu]).

A literal End(p) can be resolved with a literal containing a world-path [p c...] where c is a nonvariable
term denoting a world which is accessible from the world denoted by p. In the above example, both
literals End([]) and End({a]) can be resolved against C2 because the world-path [abu] in C2 denotes a
world [a], accessible from the initial world - which contradicts End([]) - and a world [ab] - which
contradicts End([a]). Two more resolution steps yield therefore the same clause —P([abu] flabu]) as in
the serial case.

Thus, the resolution rule in the non-serial case is a partial theory resolution in the sense of Mark Stickel
[Sticke] 85] where the End-literals form the residue which is implied by the conjunction of the two
resolution literals.



A Short Summary of the Subsequent Chapters

Chapter 2:  M-Logic
We define the modal logics that are considered in this thesis. The formal definition of syntax and
semantics serves as a point of reference for the following soundness and completeness proofs.

Chapter 3:  P-Logic
The modal operators are translated into “world-paths™ as mentioned above. We call the resulting logic
“P-logic” and give a precise definition of the syntax and semantics of this logic.

Chapter 4:  Translation from M-Logic to P-Logic

An algorithm for translating modal logic formulae into P-logic syntax is presented in this chapter. It is
shown that a modal logic formula is satisfiable if and only if the corresponding translated formula is
satisfiable in P-logic. Beyond this point, there is no need to ever consider the original modal logic syntax
and instead we concentrate on the development of algorithms for the P-logic syntax.

Chapter 5:  Tools for P-Logic
This chapter contains technical preparations for the subsequent chapters, the generation of a conjunctive
normal form for P-formulae, some invariants on the structure of terms and the definition of substitutions.

Chapter 6: Modal Unification

The unification algorithms for different variants of the accessibility relation are defined in this chapter.
We prove the termination, soundness and completeness as well as some helpful invariants on the
structure of the unificd terms. It turns out that some of the unification problems are special cases of well
known theory unification problems (c.f. [Siekmann 88]).

Chapter 7:  Modal Resolution

The two versions of the modal resolution rule are defined. Resolution for logics with a serial accessibility
relation is just like ordinary resolution with the only difference that the unification algorithm may produce
more than one, but at most finitely many most general unifiers. When the accessibility relation is not
serial, additional literals must be inserted into the resolvent which express the condition “if the worlds in
question are inhabited then ...”. We show the soundness of these two resolution rules. For the
completeness proofs, an additional device is needed which will be provided in the next two chapters.

Chapter 8: Term Frames

Completeness of the resolution rule says that whenever a clause set is unsatisfiable, i.e. false in all
interpretations, the cmpty clause can be derived by a finite sequence of resolution steps. Standard
completeness proofs take advantage of the fact that not all interpretations, but only interpretations over
the set of ground terms (in predicate logic usually called Herbrand Interpretations, although originally
introduced by Léwenheim and Skolem) need to be considered. We therefore define term interpretations
or term frames respectively for P-logic and show that every satisfiable clause set has a term model.

Chapter 9:  Semantic Trees

Semantic trees are a standard datastructure for giving an exhaustive survey of all possible term
interpretations. In this chapter it is shown for P-logic that an unsatisfiable clause set has a finite closed
semantic tree, which is then used in the completeness proof.
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Chapter 10: Completeness of Modal Resolution

Collecting the results of the two previous chapters, we can now prove that for every unsatisfiable clause
set, the empty clause can be derived by a finite sequence of resolution steps. Hence, we have a
semidecision procedure for first-order modal logic formulae based on the resolution rule.

Chapter 11: Conclusion

The final conclusion of this work is that modal logic theorems can be proved using an ordinary clause
based resolution thcorem prover. The efficiency, i.e. the branching rate in the search space for modal
logics with serial accessibility relations is not worse than the efficiency of predicate logic resolution
theorem proving with, say, an associative and commutative function symbol, where we have more than
one most general unifier. Although the technical aspects of the resolution rule for logics with non-serial
accessibility relations can be compared with Digricoli’s RUE-resolution for equality handling [Digricoli
791, the final search space is much smaller. Therefore logics with non-serial accessibility relations are
also tractable. ‘

We compare the new method with other deduction methods for modal logic and conclude with a
discussion of possible extensions of the ideas presented in this work to more complex modal and
cpistemic logics.

Although most of our logical notions are formally defined within this thesis, we assume some familiarity
with standard predicate and modal logic as well as some knowledge of automated theorem proving.
Standard references are [Chang&Lee 73), [Loveland 78], [Hughes&Cresswell 68], [Smullyan 68].



Chapter Two

M-Logic

Since there is a large variety of modal logics, in syntax as well as in semantics, it is necessary to firmly
establish the particular kind of logic we are interested in. M-logic (M for Modal) is the name fot a
syntactically restricted version of the “classical” modal logics with the two modal operatots O
(necessarily) and ¢ (possibly). The restrictions are not principal in nature, but concern the elimination of
some “‘syntactic sugar” in order to keep the still extensive formalism in manageable proportions.
Although our modal resolution calculus is not based on the original modal logic syntax, the formal
definition of the syntax and semantics of our M-logic serves as a point of reference for the translation
from M-logic into 2 more appropriate syntax, and for proving the soundness and completeness of the
translation.

2.1 Syntax of M-Logic

The formulae of most classical modal logics are usually built - unlike more recent extensions in temporal
or dynamic logics - just as predicate logic formulae with two additional modal operators. We shall use
the following logical connectives, quantifiers and operators:

A (and) v (for all)

v (or) 3 (there exists)
- (not) o (necessarily)
=  (implies) Y (possibly)
& (isequivalent)

We consider modal logic formulae in negation normal form without the implication and equivalence sign,
where all negation signs are moved in front of the atoms. Arbitrary modal logic formulae can be brought
into this normal form using the following validity preserving rewrite rules:

Fe G - FDIGAGSF ~FAG) = =FVv-G
F=G - -FVv G =(Fv G) - —FA G
-Vx F -  Ix-F -aF -~ 07
—dx F -  Vx-F ~QF - o7

In the sequel “M” will be used as the index and prefix for Modal logic, because in subsequent chapters
we must distinguish between the original and the translated formulae, which then will be indexed and
prefixed with “P” for Predicate logic style. Additional notions like D-variables and D-valued function
symbols (D for Domain) are also defined this way, to distinguish them from other variable and function
types to be added later on.



Definition 2.1.1 (The Signature of M-Logic)
Besides of the fixed set of logical connectives and operators {A, v,— ¢, O}, the alphabet for building
M-logic terms and formulae consists of the following disjoint sets of symbols:

Vp is a set of D-variable symbols.

Fpn is a set of n-place D-valued function symbols where constants are in Fpy (.

Fp is the union of all D-valued function symbols.

P, is a set of n-place predicate symbols.

P is the union of all predicatc symbols.

Ly = Vp, Fp, P) is an M-signature . [

The prefix “D” in D-variable symbols has been introduced to emphasize that these variables are
interpreted in the Domain of discourse. In P-logic we shall introduce W-variable symbols which are
interpreted in the set of Worlds. Hence, the prefix “D” in D-terms below emphasizes that the terms
denote domain elements, in contrast to W-terms in P-logic which concern worlds.

It is noted that an M-signature does not only supply symbols for building formulae, but we shall also
speak of the M-signature of a set of formulae, i.e. the particular set of symbols which occur just in these
formulae.

As a point of reference we state the standard definitions for terms, atoms, literals and formulae.

Definition 2.1.2 (Terms, Atoms, Literals and Formulae)
Given an M-signature Z,, := (Vp, Fp, P),
» the set of D-terms Ty, over X, is defined as the least set such that:
(1)  Each D-variable symbol is a D-term.
(i) Iffe Fpp andty,....t, are D-terms then f(t,,...,t;)) is a D-term.
» IfPe P andt,,...t, are D-terms then P(t,,...,t;) is an M-atom.
> An M-literal is either an M-atom (positive literal) or a negated M-atom (negative literal).
Let £P(t;,....t,) denote a literal which is either positive or negative.
> The set of M-formulae over Xy, is defined as the least set such that:
(i)  AnM:-literal is an M-formula.
(ii) If Fand Gare M-formulae and x is a D-variable symbol then
FAG FVv G VxF Ix¥ nFand ¢ ¥ are M-formulae.
For convenience we assume that the quantified variables in a formula are standardized apart
(renamed), i.e. formulae like Vx3xFor VxG v 3xF do not occur. ]
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2.2 Semantics of M-Logic

A common model theory for modal logics is Kripke s “possible worlds semantics” [Kripke 59, 63]. A
possible world determines how the function and predicate symbols are to be interpreted in that world.
Within each world the interpretation is defined in the classical predicate logic sense. Different possible
worlds may assign different meanings to the same symbol. For instance, the symbol f may be interpreted
in one world as addition on integers and in another world as multiplication. Some authors distinguish
between ‘“‘rigid” function and predicate symbols, whose interpretation is the same in every world, and
“flexible” function symbols whose interpretation may differ from world to world. We do not make this
distinction, because it is a trivial exercise to exiend a calculus with flexible symbols to one with rigid
symbols as well. Just ignore the modal context information for rigid symbols.

When the domain of the interpretation is the same in every possible world, we speak of a constant-
domain interpretation, otherwise we speak of a varying-domain interpretation. Constant-domain
interpretations arc characterized by the Barcan formula: VxoF = oVx ¥ which expresses the fact that the
universal quantifier does not depend on the modal context. Our modal resolution calculus will be defined
for constant-domain interpretations only; a slight modification for varying-domain interpretations,
however, will be presented in chapter 11,

Worlds are connccted by an *“accessibility relation” R. A possible worlds structure can be displayed as a
tranjsition graph, where the nodes are labeled with the worlds and the edges represent the accessibility
relation R. Two main classes of accessibility relations can be distinguished: serial and non-serial ones.
An accessibility relation is said to be serial if from every world there exists an accessible world; the
relation is non-serial otherwise. Accessibility relations with the following properties are considered in
this work. (The letters in parentheses denote the traditional name of the corresponding logic.)

non-serial | serial
no special propertics (K) | scriality only (D)
reflexivity (Tor M) (reflexivity implies seriality)
symmetry (DB) (symmetry implies seriality)
transitivity (K4) transitivity  (D4)

[

[

I

I reflexivity and symmetry (B)

| reflexivity and transitivity (S4)

I reflexivity, symmetry and transitivity (S5).

The two missing combinations symmetry and non-seriality (KB) as well as symmetry and transitivity can
be reduced to simpler ones as follows:

If the accessibility relation R is symmetric, either R is not serial and there are only isolated worlds (let us
call this the predicate logic interpretations) or R is serial because whenever a world b can be accessed
from a world a, there is a world accessible from b, namely a. In order to check a formula for
unsatisfiability in symmetric non-serial interpretations, it is therefore possible to split the proof into two
cases;

11



1. Check the predicate logic interpretations. The unsatisfiability check for predicate logic interpretations
can be performed by evaluating all subformulae 0¥ to False and all subformulae 0¥ to True and then
proving the remaining first-order predicate logic formula with a theorem prover for predicate logic.

2. Check the other interpretalions assuming symmetry and seriality of R.

If the accessibility relation R is symmetric and transitive, we have for all worlds a, b: If b is accessible
rom a, then by symmetry, a is also accessible from b, hence by transitivity, a is accessible by itsclf,
Thus, either g is isolated or R is reflexive in a. In order to check a formula for unsatisfiability in
symmetric and transitive interpretations, it is therefore again possible to split the proof into two cases:

1. Check the predicate logic interpretations.

2. Check the other interpretations assuming R being an equivalence relation.

Examples 2.2.1: Possible worlds structures. € represents a world and => the accessibility relation:

O 0

Y > B>
o=»0 =0 0 4«0
\ R is iransitive \ R is reflexive \ R is symmetric
© butnot serial o) D o

In the sequel expressions like “serial interpretations” mean “logics with serial accessibility relations”.

We define the semantics of our M-logic in the usual three steps:

1. An “interpretation” defines the meaning of the individual symbols.

2. The interpretation is turned into an interpreter, which assigns domain elements to terms.
3. A satisfiability relation is defined that assigns truth values to formulae.

Following authors like [Fitting 83], we introduce “frames” as the kernel of an interpretation. A frame
describes the possible worlds structure, but it says nothing about the interpretation of variables and the
actual world that has to be used for the interpretation of a formula. This information is added in so called
“M-interpretations”.

Definition 2.2.2 (M-Frames and M-Interpretations)

By an M-frame ¥, for the signature X,, we understand any triple (D, 3, X) where

» DD is anon-empty set, the domain of discourse.

» S is a set of signature interpretations. Each signature interpretation is an assignment of
“values” to each function symbol and predicate symbol in X as follows:
To each n-place function symbol a mapping from D" to D is assigned.
To each n-place predicate symbol an n-place relation over D" is assigned.

» Ris arelation over 3 x 8.

12



By an M-interpretation 3 for the signature X, we understand any triple (Fy;, 3, d) where

» Fy =D, 3, R) is an M-frame.

» G isan element of 8.

» d is a D-variable assignment, i.e. a mapping Y — D. ]

Remarks. Since a “‘possible world” determines the interpretation of the function and predicate symbols,
it is convenient to identify a possible world and the corresponding signature interpretation. Therefore we
use in the sequel the notions ‘world’ and ‘signature interpretation’ as synonyms to denote the elements of
. Hence, R is still the usual accessibility refation on worlds.

The variable assignment o is irrelevant for the interpretation of closed formulae. It is used for recording
the binding of quantified variables during a recursive descent into a formula. The world 3 in an
M-interpretation denotes the “actual” or “current” world that reflects the modal context for a subformula
inside a formula (see def. 2.2.5).

As a notational convention we define:
Definition 2.2.3
Letd be a variable assignment. We define d[x/a] as:

d(y) ify#x
d[x/a] (y) :=

a ify=x
1.c. d[x/a] is like of, cxcept that it maps x to a.
Let X =(...,d,...) be any tuple containing a variable assignment. We use X[x/a] as an abbreviation for
(...,d[x/a],...). If X is a set of such tuples we use X[x/a] to denote the corresponding set where in each
element d is replaced by dfx/a]. |

Definition 2.2.4 (Evaluation of D-Terms)
Let Sy, = (Fy,» S, d) be an M-interpretation for X,,.
S can be turned into an homomorphism that evaluates D-terms in the actual world S by:

d if t is a D-variable symbol
3y = _
3O Gyt S )y ift=1(,...1)
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Definition 2.2.5 (Satisfiability)

The satisfiability relation Iy, that determines the logical value of a formula in an M-interpretation is
defined inductively over the structure of M-formulae as follows:

Let Fy = (D, S, R) be an M-frame and Ict ), := (Fyy, 3, o) be an M-interpretation, then

S ey Pty aty) i SPUS pty)se . Spyty)). (P is a predicate symbol.)
Sm iy —F iff not 3y iy 7.

SmlFm (FA Q) iff Syl Fand Sy iy 6.

Sutrm (FV & iff Syt For Sy G

Sy Ix F iff foreveryae D: Sy [x/a]iyy, 7

Sy 3x F iff forsomeae D: Jy(x/a] iy F

Sm-u BF iff forevery S'e S with R(S, 3"): (Fy, 3, 8) 1y F
Suru® F iff there is some S'e § with R(S, 3") and (Fy,, S, d) by 7.

Sy satisfies Fiff 3y - F (F), satisfies F in the world 3)
Fy satisfies 7 iff it satisfies Fin every world |

Definition 2.2.6 (M-Models)

An M-frame is an M-model {or an M-formula 7 iff it satisfies ¥in some world.

An M-formula ¥ is a tautology iff every M-frame satisfies #in every world.

It is satisfiable iff there exists an M-model for 7.

It is unsatisfiable iff no M-model for Fexists. n

It is noted that in the definition of the semantics of the m-operator: “‘for every S'e 3 with R(3, 3")...”
the quantification ‘for every’ may be empty if R is not serial and if there is no accessible world from 3 at
all. In this case O is true for every ¥, not because an atom evaluates to a truth value, but because a
quantification quantifies over an empty set. This phenomenon which is not known in standard predicate
logic causes the introduction of several new technical concepts and notions.

A Normal Form for Formulae in S5 Interpretations.

When the accessibility relation is an equivalence relation (modal logic S5), there is a certain normal form
for M-formulae [Fitting 83]. Roughly speaking all modal operators except the innermost nested ones can
be climinated and a formula with at most one nested modal operator (“modal degrce” one) is kept. The
reason is that in S5 every world is accessible from every other world, hence 1 denotes the same set of
worlds as 0. Also the worlds accessed by 09 can all be taken to be the same as the one accessed by ¢
alone. In the sequel we shall assume for S5 interpretations that all formulae have been reduced to this
normal form.

14



Chapter Three

P-Logic

P-logic (“P” for Predicate logic style) is a syntactic variant of M-logic where the modal operators are
replaced by “‘world-paths”. A world-path represents the modal context, i.c. the sequence of nested modal
operators of the corresponding M-formula, and is attached as an additional argument to the function and
predicate symbols. It records the world in which the term or formula is to be interpreted. Thus a
world-path denotes a mapping from the initial world to the actual world and not to a domain element.
This suggests to formulate P-logic as a two-sorted logic with the two basic disjoint sorts D (for Domain)
and W (for Worlds).

All in all we need the following syntactic constituents:

1. The D-variables in P-logic are the same as in the M-logic. -

(Actually this is a consequence of our restriction to constant-domain interpretations.)

2. To each function symbol in M-logic there is a corresponding P-logic function symbol with an
additional world-path argument. If the type of the M-logic symbol is (D" — D), the type of the new
function symbol is therefore (W x D" — D).

3. To each n-place predicate symbol in the M-logic there is a corresponding P-logic predicate symbol
with an additional world-path argument.

The type of this predicate symbol is therefore (W x D) — {True, False}).

4. The O-operator is translated into Skolem functions which are intended to map worlds to accessible
worlds, possibly depending on some domain variables,
Therefore we need function symbols of type (D* — (W — W)),

5. The o-operator is translated into universally quantified variables. The objects that are to be assigned
to such a variable are functions which map worlds to accessible worlds.
The type of such a “W-variable” is therefore (W — W).

Since W-variables are functional variables, P-logic is actually a two-sorted monadic second order logic.
There is a one to one correspondence between the M-logic function and predicate symbols and the
corresponding P-logic function and predicate symbols with the additional world-path argument. For

convenience we do not use different names, such that we can use the same symbol for building M-logic
and P-logic terms and atoms.

15



3.1 Syntax of P-Logic
As usual we begin with the definition of the signature.

Definition 3.1.1 (Signature of P-Logic)
The alphabet for building P-logic terms and formulae consists of the logical connectives A, v, V and the
following disjoint sets of symbols:

Vp is aset of D-variable symbols, i.e. variable symbols of type D.

Fp n is aset of D-valued function symbols, i.e. function symbols of type (W x D" — D).
Fp s the union of all D-valued function symbols.

P, isasetof predicate symbols of type (W x D) — {True, False})

P is the union of all predicate symbols.

Vw is a set of W-variable symbols, i.e. variable symbols of type (W — W).
Py n is aset of W-valued function symbols, i.e. function symbols of type (D" — (W — W)).
Fy  is the union of all W-valued function symbols.

In case the signature is used to build terms, which are to be interpreted in logics with a symmetric
accessibility relation we assume Vyy and Fy, ,, to contain for each symbol s an associated “inverse”
symbol s}, These symbols denote functions that move “backward” in the possible worlds structure.
They do not occur in formulae, but only in substitutions. If for example there is a constant symbol
a e Fy o denoting a function that maps for example a world %/, 10 %), then a"l denotes the inverse
function which maps %} to #),. We shall use these inverse functions only when the original functions
are injective such that their inverse exists.

Zp = (Vp, Fp, P, Vy, By) is a P-signature . u

Again Zp may also be used to denote the particular symbols which occur in a set of P-formulae.

Definition 3.1.2 (Terms, Atoms, Literals and Formulae)
Given a P-signature Ep := (Vp, Fp, P, V. By,
> the set of D-terms over Zpis defined as the least set such that:
(i) D-variable symbols are D-terms.
() Iffe Fpg,ty.....t, are D-terms and p is a world-path then f(p, t,,...,t;)) is a D-term.
> The set of W-terms over Zp is defined as the least set such that:
(i)  W-variable symbols are W-terms.
(i) Ifge ]FW'n and t;,...,t, are D-terms then g(t;,...,t,) is a W-term.
> A world-path is a (possibly empty) string of W-terms.
» IfPe P, ;,...,t, are D-terms and wp is a world-path then P(wp, t,,...,t,)) is a P-atom.
» A P-literal is either a P-atom or a negated P-atom.
> A ground term or ground literal is a term (literal) without variables.
» The set of P-formulae over Zp is defined to be the least set such that:
@@ A P-literal is a P-formula.
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(ii) If Fand G are P-formulae and x is a D- or W-variable symbol then
FA G Fv G VxFare P-formulae.
(No existential quantifier is necessary because the translation into P-logic syntax contains a
skolemization step which eliminates all existential quantifiers.)
For convenience we assume again that the variables in the scope of quantifiers are appropriately
renamed such that formulae like Vx (GAVx%) or VxGv VxF do not occur.

Some auxiliary notions:

» A variable is bound, if it is in the scope of a quantifier.

» A variable is free in a term, atom or formula if it is not bound.

» s € t is true either if the term s is a subterm of the term, atom or formula t or
if s is a prefix (leading part) of some world-path occurring in t, i.e. for example [uv] € [uvwa].
(€ is different from the membership predicate €.)

» Vars(s;...s;) = setof all free variables occurring in the objects (terms etc.) s,,...,8,.
» W-vars(s, ...s;) := Vars(s;...s;) N Vy is the set of W-variables occurring in s,,....5,,.
» D-vars(s,...s;) := Vars(s,...s;) N Vp is the set of D-variables occurring in s,,...,8,,. n

Examples for P-formulae and their M-logic counterparts: (Some parentheses are omitted.)

Mlogic Plogic  _  Signawe
oP Vw P[w] Pe Py we Vy
oP Plg] Pe Py ge Fyg
Vx 0Q(x,a) Vx Q([h(x)], x, a[h(x)])) Qe Py, xe Vp,ae Fpg, he Fy,
Ovx SX)AQ 3y0SQH) Vv Vx (S(v], x) A Vw S(vwk(x)], r([vw], x))
T T ™M SeP,vwe Vy, ke Fy,re Fp ;.
A w rk

Notational Conventions

In the sequel the letters u, v, w, X, y, z from the end of the alphabet will be used to denote variables. In
most cases, but not always, the letters x, y, z denote D-variables whereas u,v,w denote W-variables.
Capital letters P, Q and S are predicate symbols. All other letters are used to denote terms or function
symbols. In the particular context, it should be clear, what kind of objects are meant. Some letters are
written outlined in order to emphasize that they denote sets.

It is noted that we are not interested in all possible P-formulae which can be built according to the above
definition. We are only interested in a subclass whose formulae reflect the meaning of a corresponding
M-formula. We shall see that this restriction finds its expression in the fact that all occurrences of a
particular W-variable symbol in a formula have identical prefixes in the world-path strings. This is so,
because a particular W-variable symbol w corresponds to a particular occurrence of a b-operator, and the
prefix of w corresponds to the modal context (surrounding modal operators) of this occurrence of 0.
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In order to characterize the subclass of P-formulae, which cotrespond to M-formulae, we need some
additional notation.

Definition 3.1.3 (The Prefix of a W-Variable)
Let t be a term, termlist, formula or list of formulae and let w be a W-variable.
The prefix of the variable w in the term t is:

prefix(w,t) = {[s .w]l[s.w]et} ([s.w] :=[sy...5w] in case 8 = [s;...5])
prefix*(w, t) ;= {sl{s.w] et}
We shall omit the embracing set parentheses when the prefix of a W-variable is unique. u

Examples for prefixes of W-variables.
prefix (w, Vw,u Plwu)) = [w]. prefix*(w, Vw,u P[wu]) = [].
prefix (w, Vw,u Plwulv Quw]) = {Iw], [uw]} prefix*(w, Vw,u P[wulv Q[uw]) = {[], [u]}. =

The nesting of the universal quantifiers in a P-formula which corresponds to some M-formula is
correlated with the nesting of the variables in W-terms: When a variable x occurs in the prefix of a
W-variable v, the quantifier Vx must precede the quantifier Vu. If this condition is violated, we cannot
evaluate P-formulae properly in logics with non-serial accessibility relations. We therefore define an
ordering relation on variables, which expresses the nesting of variables in world-paths and can be used
to compare the nesting of variables with the nesting of quantifiers.

Definition 3.1.4 (An Ordering Relation on Vari@bles.)
Let z be a (W- or D-) variable, w a W-variable and let #be a P-formula.
z wa iff z € prefix(w, 7). n

Examples for the <, relation:
F=Vw,uP[wul: w<su
G = Vw,x,u P[wg(x)u]: w Sgu and x Squ, but not w ng [

Lemma 3,1.5: <,is an ordering relation for W-variables in a formula # with unique prefixes.
Proof: Reflexivity: Clearly w € prefix(w, ) = {[s .w] | [s .w] € #} if w occurs in ¥, i.e. w Sgw.
Antisymmetry: Let w <gu and u Sgw,ie WE prefix(u, ¥) and u € prefix(w, %).
For some s, [s .w] occurs as a subterm in prefix(u, #), i.e. in [s.w...u]. s cannot contain u as a
proper subterm, otherwise prefix(u, #) would consist of at least two elements, which contradicts the
precondition that the prefixes are unique. Therefore w and u must be identical, i.e. w =u.
Transitivity: The transitivity of < 4 follows immediately from the transitivity of € (“is subterm of”) m

Now we are ready to give a characterization of the subclass of “M-adjusted” P-formulae which
correspond to M-formulae.
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Definition 3.1.6 (M-Adjusted P-Formulae.)
A P-formula Gis said to be M-adjusted iff '
a) the prefixes of all W-variables occurring in G are unique and
b) the nesting of the quantifications is in accordance with the <, relation, i.e.
for every subformula Vz Foccurring in G: —z <, v for every free variable v occurring in 7. [

Examples and Counterexamples for M-adjusted P-formulae.

M-adjusted | not M-adjusted

Yu,w Pluw] | Vw,u Pluw] (violates condition b)
Yu,x,w Plug(x)w] | Vu,w Pluw] v P[w]) (violates condition a)
Vx,u,w Plug(x)w] I Vu,w,x P [ug(x)w] (violates condition b) m

3.2 Semantics of P-Logic

The semantics for P-logic is constructed as usual, except for the meaning of the W-valued symbols.
W-valued function symbols are intended to convey the meaning of the ¢-operator whose interpretation is:
From a given world S there exists an accessible world 3' (possibly depending on some surrounding
V-quantifiers) such that .... Thus, the object that is to be assigned to a W-valued function symbol must
be a function - possibly depending on some domain arguments - which maps worlds to worlds.

The W-variables are intended to convey the meaning of the O-operator whose interpretation is: For all
worlds ' which are accessible from a given world S .... A quantification Vw... over a W-variable must
therefore be restricted to some worlds; moreover the restriction has a dynamic character - it depends on
the actual world. The only way to incorporate this restriction is to assign functions to W-variable
symbols, which map worlds to accessible worlds.

A serious complication arises in non-serial models, where a world may have no accessible world at all.
Functions mapping worlds to accessible worlds are not total in such models. To handle partial functions
we use the notion of a strict ®-extension of a function (see for instance [Loeckx 84]). The idea is to add
an artificial bottom element L to the domain of the function and to change partial functions f into
corresponding total functions f* (w-extensions), which return L if f is not defined for some argument
value. f” is said to be strict if it returns L. whenever one of the arguments is L.

Definition 3.2.1 (World-Access Functions)
Given an M-frame F\, = (D, 3, R), a function ¢ : S — S is called a world-access function iff
» Itis a strict @-extension.
» Forevery S e 8: ¢(3) =L = RS, ¢(3)). (¢ maps worlds to accessible worlds.)
» Forevery 3 e 3. Whenever there is at least one world accessible from 3 then ¢(3) # L.
(¢ is maximally defined.)
Let S_, be the set of all world-access functions for 3. [ |
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Definition 3.2.2 (P-Frames and P-Interpretations)

By a P-frame ¥ p for a P-signature Zp we understand any tuple (Fy;, 3,) where

> Fy =@, 3, RN) is an M-frame.
(I.e. an M-frame is the kernel of P-logic’s semantics.)

» Sy is a W-signature interpretation that assigns to each W-valued function symbol g of type
D" — (W — W) a function y: D" — §_, that maps domain elements to world-access functions.
In case R is symmetric we need an additional property of Sy,:
Whenever 3, assigns a function y to a W-valued function symbol g such that ¥(a;,...,a,) is
injective for every a;,...,a, € D then 3, must assign to the associated inverse symbol g'1 an
associated inverse function Y1 such that Way,....a ) o 'y'l(al,. ..,a,) is the identity mapping.

By a P-interpretation Sp for the signature Zp we understand any tuple (Fp, 3, d, w) where

> Fp=(D, 8, N), 3y,) is a P-frame.

» 3 is an clement of 3. (3 is the “initial world”.)

» ol is a D-variable assignment, i.e. an assignment of domain elements to D-variable symbols.

> W is a W-variable assignmens, i.c. an assignment of world-access functions to W-variable symbols.
Whenever w assigns to a W-variable symbol u an injective world-access function ¢ then w must
assign the inverse function ¢! to the associated inverse W-variable symbol ul. |

Now that the meaning of the signature has been defined, we have to say how a term is to be evaluated in
a given interpretation: D-terms must be evaluated to domain elements, W-terms to world-access functions
and world-paths to compositions of world-access functions.

Definition 3.2,3 (Evaluation of P-Logic Terms)

Let Sp = ((Fp, Syw): Sg. tf, w) be a P-interpretation for the signature Zp, where Fp = (D, 3§, R).

Sp can be turned into a strict @-extension of a function from D-terms to D and W-terms to 3_, and
world-paths 10 3— 8.

We define the evaluation 3 p(t) inductively on the structure of the term t.

1. W-terms:  t=w and w is a W-variable symbol: Sp(w) = Ww(w)

t=g(ty,...t): Sty ty))  =Swl® Spty),....3p(ty)
2. World-paths: t=] Sp(D := identity mapping

t=[s.r1] Sp(ls . 1]) := 3 p(s) o Sp()
3. D-terms: t=x and x is a D-variable symbol: 3p(x) =d(x)

t=f(Wp,ty,....ty): SpEWD,L .. ot)) = Sp(wp)(S)E) (Spty),....Sp(ty)) W

Since W-terms are interpreted as world-access functions, the interpretation of a world-path - as the
composition of the world-access functions assigned to its components - is a function that maps worlds 3
to other worlds 3~ which are accessible from 3 in the transitive closure of R.

The world 3, determines the “initial world”” which is used to “start” the interpretation of a formula. The

initial world is mapped by the function assigned to a world-path to the actual world. Thus for a given
world-path wp, 3p(wp)(S) denotes the world which corresponds to the actual world in M-logic.
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Definition 3.2.4 (Satisfiability of M-Adjusted P-Formulae)

The satisfiability relation -p for the initial world of a P-interpretation is defined inductively over the
construction of M-adjusted P-formulae.

Let Fp = (D, S, R), Sy) be a P-frame and let Ip = (Fp, 3, d, W) be a P-interpretation:

Spikp P(wp, tq,...,t0) iff Sp(wp)Sg)# L and fori=1...n Jp(t) L and
Spwp)S)P) (Sp(ty),...3p(ty)).

Spirp =P(wp, ty,....t0) iff Sp(wp) (Sg)#Landfori=1..n Sp(t) #L and
not Sp(wp)(SP) (Sp(ty),... S plty)).

Spip(FAG) iff Spirp Fand Spikp G

Spirp (FV G) iff Spirp ForSpirp G.

Splkp Vx Fwhere x is a D-variableiff for every a e D: Sp x/a]lp 7.
Spip Vu Fwhere uis a W-variable
iff for wp := prefix*(u, %): (The prefix is unique.)
gither Sp(wp)(Sg) = L and Spip .
or  Sp(wp)(Sp) =L and for every ¢ € S_, with (Sp(wp)od)(S) # L: Sp[w/d] i-p 7.
Spsatisfies ¥ iff Spirp F (Fp satisfies Fin the world J)
Fp satisfies ¥ iff it satisfies F in every world ]

Remarks
When the accessibility relation is serial, Sp is a total function on terms. In this case we can greatly
simplify the satisfiability relation:

Splkp POWD, ti,...0t) iff SpWP)SP) Splty)s- . Sp(t)).
Spirp—F iff not Spip F

Spip (FAG) iff Spirp Fand Spikp G.

Splkp (FV G) iff Spirp For Spikp G.

Sptkp Vx Fwhere x is a D-variable iff foreveryae D:  Splx/a]irp 7.
Spirp Yu Fwhere uisa W-variable iff foreveryde S_: Splu/o]i-p 7.

Since in serial interpretations all world access functions map worlds to accessible worlds, there need be
no restriction on the W-variable assignments: “for every ¢ € S_,: Sp[u/¢] -p 7. This is different from
the interpretation of the O-operator in M-logic where an explicit restriction to accessible worlds must be
included in the interpretation of a formula o .

If the accessibility relation is not serial, satisfiability as defined above would not work for P-logic
formulae which are not M-adjusted. Consider as an example the P-formula ¥VvVu P[uv] which is not
M-adjusted. The prefix of the outermost variable v is [u]. In order to check SP([u])(SO) the value of u
must be known, but no value has bcen assigned to u so far. Even if some default value could be
assumed, one can casily construct cxamples where the two formulae VvVu Pluv] and VuVv Pluv] with
exchanged quantificrs yield different truth values; and this is of course not acceptable for a decent logic.
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The next lemma states that the P-satisfiability relation works as expected when applied to M-adjusted

formulae.

Lemma 3.2.5 (i-p is Well Defined for M-Adjusted P-Formulae.)
Let Vu Vv Fand Vv Vu Fbe two M-adjusted P-formulae and let Sp be a P-interpretation.

SpirpVu Vv 7 ifl Spip Vv Vu £
Proof: The proof is based on a rather technical case analysis. The main arguments arc: Since both
formulae are M-adjusted, neither u can occur in the (unique) prefix of v (if v is a W-variable) nor v can
occur in the (unique) prefix of u (if u is a W-variable). Therefore the evaluation of both prefixes is
independent of the actual order of the variable assignments for u and v in the definition of i-p. |

The previous lemma does not imply that quantifiers can be arbitrarily exchanged: they can only be
cxchanged when the accessibility relation is scrial or the new formula is still M-adjusted. A definition of
the P-satisfiability relation that avoids this effect, would have to ignore quantifications completely and
extract the necessary information from the world-paths directly. This is possible, but much more
complicated. In particular it is unnecessary, as the translation from M-logic to P-logic produces
M-adjusted formulae automatically, and it can be shown that the resolution rule preserves this property.

Definition 3.2.6 (P-Model)

A P-frame is a P-model for a P-formula Fiff it satisfies ¥ in some world S.

(The corresponding P-interpretation that satisfies F will sometimes also be called a P-model for )

A P-formula Fis a tautology iff it is satisfied by every world in every P-frame.

It is satisfiable iff a P-model for Fexists.

It is unsatisfiable iff no P-model for Fexists. L]
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Chapter Four

Translation from M-Logic to P-Logic

In this chapter the translation algorithm from M-logic to P-logic is defined and soundness and
completencss results are presented. Soundness means that whenever an M-formula is satisfiable then the
translated P-formula is satisfiable too. Completeness means that whenever the translated formula is
satisfiable, the corresponding original M-logic version of the formula is also satisfiable. Together, these
results are the basis for a complete proof procedure: In order to prove that an M-logic formula is
unsatisfiable, it is sufficient to prove that the translated P-logic formula is unsatisfiable.

4.1 The Translation Algorithm

Definition 4.1.1 (Translation of M-Formulae into P-Logic Syntax)

1. Transformation of the signature:

Given an M-formula with the M-signature Zy; = (Vp, Fp, P) we construct an initial P-signature Zp :=
(Vp, Fp, P, @, ¢) for the translated formula. That is, we identify the D-variables of the M-signature and
the D-variables of the P-signature, the D-valued function symbols of the M-signature and the D-valued
function symbols of the P-signature, and the predicate symbols of the M-signature and the predicate
symbols of the P-signature. The W-valued function symbols which replace the ¢-operator, the
W-variable symbols which replace the O-operator as well as the Skolem functions for the existential
quantifier are then added to Zp during the translation of the formula.

2. Translation of tcrms and formulac:

We define a translation function IT that takes an M-formula Fand translates it into a P-formula [T(#). The
function IT also updates the P-signature Zp with the generated W-variables that replace the D-operator
and the skolem functions for the 3-quantifier and the ¢-operator. I needs an auxiliary function 7 for the
recursive descent into the M-formulae and terms. The function « has three arguments: The first is the
actual formula to be translated, the second argument records the modal context in form of a world-path
wp and the third argument collects the universally quantified D-variables in order to generate the appro-
priate Skolem terms.

Some notational conventions:

D-vars + x dcnotes the concatcnation of a list D-vars = (x ... x;)) with x yielding (x; ... x, x).
[(... D-vars) denotes the term ((... x4, ..., x,) where D-vars = (x; ... X))

Fx « 5] means the replacement of all occurrences of x by s in the formula 7.

|D-varsl denotes the length of the list D-vars.
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Now we are ready to give the translation rules.

The toplevel call is: TI(P) :=n(F [, ) where () is the empty list.
The translation rules for & are:
n( FA G, wp, D-vars) := n(F, wp, D-vars) A n(G, wp, D-vars)
n( v G, wp, D-vars) = n(F, wp, D-vars) v n(G, wp, D-vars)
{ Vx¥, wp, D-vars) := Vx n(F wp, D-vars + x)
n(a% wp, D-vars) = Vu n(# [wp . u], D-vars)
u is added as a new W-variablc symbol to Vy, in Zp.
n( IxF, wp, D-vars) := (R(F, wp, D-vars))[xf(wp, D-vars)]
fis added as a new D-valued function symbol of type (W — (D'P-varsl D)) 1o Fp in Zp.
=( ¢ F,  wp, D-vars) := (¥, [wp . g(D-vars)], D-vars)
g is added as a new W-valued function symbol of type (D'D'vaISI - (W - W) to Fy in Zp.

n( £P(ty,....t,), wp, D-vars) where P is an n-place predicate symbol
= *P(wp, n(t), wp, D-vars) ,..., m(t,, wp, D-vars))
n( {(ty,...,t,), wp, D-vars) where f is an n-place function symbol

= f(wp, n(ty, wp, D-vars) ,..., n(t,, wp, D-vars))
n( x, wp, D-vars) =X where x is a D-variable symbol. n

Lemma 4,1.2

When Fis a wellformed M-formula then T1I( %) is a wellformed M-adjusted P-formula.

Proof: The wellformedness of IT(F) can be shown by structural induction. The M-adjustedness is an
immediate consequence of the fact that a new W-symbol is introduced only once in the translation
algorithm. The new symbol is used to build just one new world-path, and although it may be used as a
prefix in different world-paths, its own prefixes never change. L]
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The following technical lemma establishes a syntactic invariant for the translation function rt, which is
exploited in the soundness proof for 7. It states that the wp-argument really collects the prefixes of the
newly generated W-variables which are then shifted into the translated formula.

Lemma 4.1.3
Let ¥ be an M-logic term or formula, wp a world-path and D-vars a list of D-variables generated by =
during the translation.
For every W-variable symbol v occurring in ®(¥, wp, D-vars):
v € wp implies prefix(v, (¥, wp, D-vars)) = prefix(v, wp) and
v ¢ wp implies prefix(v, (¥, wp, D-vars)) = [wp . v].
Proof: By induction on the structure of M-formulae.
Let v be a W-variable symbol occurring in 7t(F, wp, D-vars).
Actually if v ¢ wp then ¥ = 0G.
In the remaining case analysis it is sulficient to consider only the first case v € wp.
Base Case: Fis a D-variable symbol.
This case is trivial because no W-variable symbol occurs in 7.
Induction Step: Let  be a compound term or formula.
By a case analysis on the structure of F
Case F=1(1},....1,) is a D-term.
prefix(v, ©(F, wp, D-vars)) = prefix(v, f(wp, n(t;, wp, D-vars) ,..., 7(t;, wp, D-vars)))
= prefix(v,wp) U prefix(v, n(t;, wp, D-vars)) U ... U prefix(v, n(t,, wp, D-vars))
= prefix(v,wp) U prefix(v,wp) u... U prefix(v,wp) (induction hypothesis)
= prefix(v,wp).
Case #=1P(t,,...,t)). This case is identical with the previous one.
Case F=FiAnFor F=F VvV 5F,.
prefix(v, n{F, wp, D-vars)) = prefix(v, T(F,, wp, D-vars)) L prefix(v, n( Fy, WP, D-vars))

= prefix(v,wp) U prefix(v,wp) (induction hypothesis)
= prefix(v,wp).
Case F=0g6.
prefix(v, n(F, wp, D-vars)) = prefix(v, Vu n(G, [wp . u], D-vars))
= prefix(v, [wp.ul]) (induction hypothesis)
Subcase 1: v=u: prefix(u, [wp.u])=[wp.u] '
Subcase 2: v # u: prefix(v, [wp . u]) = prefix(v, wp).
Case F=0G.
prefix(v, (¥, wp, D-vars)) = prefix(v, (G, [wp . g(D-vars)], D-vars))
= prefix(v, [wp . g(D-vars)]) (induction hypothesis)
= prefix(v, wp). (v ¢ D-vars)
Case F=Vx G.
preﬁx(v, (¥, wp, D-vars)) = Vx (G, wp, D-vars+ x))
= prefix(v, wp). (induction hypothesis)
Case F=3x G.

prefix(v, n(F, wp, D-vars)) = prefix(v, (G, wp, D-vars)[x«f(wp, D-vars)])
= prefix(v, n(G, wp, D-vars)) U prefix(v, f(wp, D-vars))
= prefix(v, wp) . (induction hypothesis, x ¢ wp) m
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Our second main technical lemma below establishes another invariant for the translation function =,
which is exploited in the completeness proof for 7. It states that any P-interpretation 3 satisfying the
translated formula Fp := n(#, wp, D-vars) evaluates the world-path wp to a function that maps the initial
world 3 to an actual world, and not to ... The main argument is that wp is a prefix of all world-paths
occurring in Fp. Therefore not a single atom in Fp could be satisficd if Sp(wp)(SO) =.1.

Lemma 4.1.4
Let F be an M-formula, wp a world-path and D-vars a list of D-variables as gencrated during the
translation performed by 7.
For cvery P-interpretation Sp with initial world S which satisfies 7p := ®(#, wp, D-vars):
Spwp)(Sg) # L.
Proof: By induction on the structure of M-formulae. Assume Sp i-p Fp.
Base Case: F = 1P(t;,...,t ) and P is a predicate symbol.

Spkp Fp = £P(wp, w(t, wp, D-vars) ..., w(t,, wp, D-vars))

= Jp(wp)(Sgp) = L. (def. 3.2.4)
Induction Step: We perform a case analysis according to the structure of .
Case F=F A Fy

Sp I-p T(F;, wp, D-vars) A T(F,, wp, D-vars)

= Jp Ip ®(Fy, wp, D-vars) (and 3p i-p T(F,, wp, D-vars)) (def. 3.2.4)

= 3p(wp)(Sg) # L. (induction hypothesis)
Case F= | v %,.

Sp i-p #(F), wp, D-vars) v ®(F,, wp, D-vars)

= 3p I-p ®(F;, wp, D-vars) or Sp IFp (F,, wp, D-vars) (def. 3.2.4)

= Sp(wp)(Sp) # L. . (induction hypothesis applied to the positive case)
Case F=0¢G. The translation rule is: ®(¥, wp, D-vars) = Vu r(G, [wp . u], D-vars).

Case 1: Sp(prefix*(u, n(G, [wp . u], D-vars))}(Sg) = L

= Sp Ikp 7(G, {wp . u], D-vars)) (def. 3.2.4)
= Sp([wp . uD(Sp) # L (induction hypothesis)
= Sp(wp)Sg) = L. (world-access functions are strict)
Case 2: Sp(prefix*(u, n(G, [wp . ul, D-vars))Sg) # =
= Sp(prefix*(u, [wp. uD))(Sg) =Ip(wp)(Sp) 2L (lemma 4.1.3)
Case F=0G. The translation rule is: ®(F, wp, D-vars) = n(G, [wp . g(D-vars)], D-vars)
Sp([wp . g(D-vars)])(Sp) # L (induction hypothesis)
= 3p(wp)(Sp) = L. (world-access functions are strict)
Case F= Vx G. The translation rule is: ®(¥, wp, D-vars) = Vx ®(§, wp, D-vars+ x)
Splx/a] trp (G, wp, D-vars+ x) for any ae D (def. 3.2.4)
= Jplx/al(wp)(Sp) # L (induction hypothesis)
= Jp(wp)(Sg) # L. (x ¢ wp)

Case F= 3x G. The translation rule is: 7(F, wp, D-vars) = (n(G, wp, D-vars))[x «~f(wp, D-vars)]
Assume Sp(wp)(3y) = L, i.e. Sp(f(wp, D-vars)) = L
=» The fact Sp 1-p ©(Ix G, wp, D-vars) does not depend on the assignment to x.
=> Sp i-p 7t(G, wp, D-vars)
= 3p(wp)Sg#L. & (induction hypothesis)
= The assumption is wrong, i.e. Sp(wp)(Sg) # L must hold. u
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4.2 Soundness of the Translation

In order to establish the soundness of the translation function I, we show that whenever an M-formula
Fhas an M-model, the translated P-formula I'T(#) has a P-model. The essential idea in the (constructive)
proof is to augment the functionality of the translation functions IT and & such that in parallel with the
translation of an M-formula to a P-formula, an M-frame is translated to a P-frame. If we can then show
that an M-frame satisfying ¥ is translated into a P-frame satisfying I1(¥) we are done.

Since a P-frame Fp = ('FM,SW) consists of an M-frame and the interpretation of the W-valued function
symbols, the only thing the augmented translation functions have to do, is to define the interpretation of
the generated Skolem functions. Just as for the generation of the Skolem terms, information about the
embracing universal quantifiers was made available with the D-vars argument of the function =, for the
definition of their semantics we need in the augmented translation function an additional argument Kthat
takes information about the assignment of values to the variables in the current world. This Zcargument
takes for a particular world 3 in the M-frame (the world that satisfies the formula) a set with elements

(S,d, w) where 3 is the actual world that is determined by the nesting of the modal operators in 7, d is
the assignment of values to the D-variables and w is the assignment of values to the generated
W-variables.

In the sequel we use the following notational convention:

IfFp = (F), Sy) is the generated P-frame, X:= (3, d, w) e Kthen
let Ky = (Fy, 3. o) denote the corresponding M-interpretation and
let Kp = ((Fypp Sy S o, W) denote the corresponding P-interpretation.

Definition 4.2.1 (The augmented translation functions)
Let Fbe a closed M-formula and let F, := (D, 3, R) be an M-frame over the signature of F.

We define the augmented toplevel translation function IT as follows:

The arguments are TI(F, F;,3,).

[T creates an initial P-frame Fp:= (F),, #) and calls the augmented recursive translation function r:
(% 11, 0.{Sg. 2, 2)D)

The initial P-frame is updated in parallel with the generation of the skolem functions.

I returns the translated formula and the generated and updated P-frame.

The augmented translation rules realized by & are:
{ FA G, wp, D-vars, X) 1= n(F, wp, D-vars, X) A (G, wp, D-vars, ).
n( Fv G wp, D-vars, ) = n(¥, wp, D-vars, K;) v n(G, wp, D-vars, %)
where X = {Xe K| Kylhy F} and X := {Ke K| Kyl G}
n( VxF, wp, D-vars, KX) := Vx n(¥ wp, D-vars + x, £)
where £ = {X[x/a] | Ke Kand ae D}.
n( 0 F, wp, D-vars, K) := Vu n(F, [wp . u], D-vars, L)
u is added as a new W-variable symbol to Vy, in Zp. (see def. 4.1.1)
L ={(0).d, wuweD IS, d,w)e K oe S_, with¢(S) =L}
n( IxF, wp, D-vars, X) := (R(F, wp, D-vars, L£))[x«f(wp, D-vars)]
f is added as a new D-valued function symbol of type W — (D'PV&s! — D) to Fyy in Zp.
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Among all possible interpretations for f select one that satisfies the following condition and add
it to the signature interpretations in Fp:

Forevery £=(3,d,w)e &

Among the a € D with %[x/a] iy, Fthere is an & with Kp(f(wp. D-vars)) = .
L:={Kx/a]lae D, Ke X, Kylx/a] -y F}.

n( O F, wp, D-vars, ) := w(¥, [wp . g(D-vars)], D-vars, £)

g is added as a new W-valued function symbol of type D'P-Varsl 5 (W — W) to Fyy, in Zp.
Among all possible interpretations for g select onc that satisfies the following condition and add
it to the 3, component in Fp:

Forevery X=(3,d,w)e &

Among the 3” e 3 with R(S, 3" and (3", d, W)y, Ik Fthere is an 3~ with

Kp(g(D-vars))Q3) = 8.
£ ={(&dw) x=@G,dw)e KRS, T, (", d, W)y, Hy F Kpgd-vars))(S)=3"}
n( P(ty,...,t,), wp, D-vars, X) where P is an n-place predicate symbol
= P(wp, n(t,, wp, D-vars, K ,..., m(t,, wp, D-vars, X))
t( f(tl,...,tn), wp, D-vars, %) where f is an n-place function symbol
:= f(wp, n(ty, wp, D-vars, K ,..., n(t,, wp, D-vars, X))
n( x, wp, D-vars} :=x where x is a D-variable symbol. =

The lemma below states that the variable assignment and the actual world in the A-argument of the
augmented translation function & are well defined, i.e. when the initial M-frame is an M-model for the
formula to be translated, then the M-interpretations that can be obtained from the elements of K satisfy
the corresponding subformula that is currently being translated.

Lemma 4.2.2: When F; is an M-frame satisfying the M-formula #{in the world 3 then
for each recursive call ©(¥, wp, D-vars, &) during the translation I1(#, F,,,3) the following invariant
holds as long as ¥ is a formula: For every Xe XK Kylty 7.
Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0: This is just the initial call (1 [], 0,{(Sq. 2, &)}
Since ¥\ is assumed to satisfy #in S, (3, 8, )y, Iy # holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let (%, wp, D-vars, X) be the actual call to «.
The induction hypothesis states: For every Xe X Xy iy F-
In order to show that the statement holds for the next recursion step we must perform a case analysis
according to the structure of F and analyze the corresponding translation rule.
Case F= FyA F,. The translation rule is:

(FA Fy, wp, D-vars, K) = (F;, wp, D-vars, X) A T(F,, wp, D-vars, x.

The statement follwos immediately from the induction hypothesis and def. 2.2.5.
Case F=F,v %,. The translation rule is:

o Fyv Fp, wp, D-vars, X) := =(Fy, wp, D-vars, X;) v n(¥, wp, D-vars, %x;) where

K = {Ke K| Kyy F ) and X, == {Ke X Kylby F)-

Thus, the condition is explicitly enforced in the definition of .
Case F= Vxg. The translation rule for this case is:

n(VxgG, wp, D-vars, &) = Vx n(G, wp, D-vars + x, L) where

L = {%{x/a] | Xe Xand a e D}
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The induction hypothesis implies: For every Xe X Ky[x/ali-y G, (def. 2.2.5)
i.e. the condition holds for L.
Case ¥ = 0G. The translation rule for this case is:
n( ag, wp, D-vars, %) = Vu n(G, [wp . u], D-vars, £) where
L= {0Q), d, wu/oD) | S.d,w)e K e S_, with ¢(3) #.L}.
Let £=(¢(3).d, wlu/d]) e L.
Since ¢(3) # L holds and since ¢ is a world-access function, R(3, ¢(3)) holds.
The induction hypothesis therefore implies: Ly ik G- (def. 2.2.5)
Case = 3x G. The translation rulc for this case is:
n( 3xG, wp, D-vars, X) = (n(G, wp, D-vars, £))[x«[(wp, D-vars)| where
L= (Kx/a]lae D, Ke X, Kylx/a] by G},
i.e. with “%[x/a] Iy G the condition is explicitly enforced in the definition of .
Case F= 0 G. The translation rule for this case is:
(0 G, wp, D-vars, K) := (G, [wp . g(D-vars)], D-vars, £)
L ={@ dwix=G,dwle KRS, T, (3", d, w)y hy G KpED-vars))(3)=3"},
i.e. with (3", o, W)y, Ik, G the condition is explicitly enforced in the definition of . [ |

The next lemma ensures that for each element in the Zargument of the augmented translation function &
there is a coincidence between the actual world as defined by the nesting of the modal operators and the
interpretation of the constructed world-path when applied to the initial world.

Lemma 4.2.3 When F; is an M-frame satisfying the M-formula #{in the world 3 then
for each recursive call (%, wp, D-vars, &) during the translation I1(# F,, 3) the following invariant
holds as long as Fis a formula:
Forevery X=(3,d, w)e K Kp(wp)(Sp) =3.
Proof: By induction on the recursion depth,
Base Case: Recursion depth = 0: This is just the initial call n(#; [], O, {(S¢, 8, 8)}).
Therefore Kp([1)(3() = 3 holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let m(F, wp, D-vars, &) be the recursive call to .
The induction hypothesis states:
Forevery X=(3,d, w)e & Kp(wp)(Sy) = 3.
In order to show that the statement holds for the next recursion step we must perform a case analysis
according to the structure of Fand analyze the corresponding translation rule.
Case F= F,A F,. The translation rule is:

T(F1A Fy, wp, D-vars, K) = n(F;, wp, D-vars, K) A n(F,, wp, D-vars, %).

The statement follows immediately from the induction hypothesis.
Cuase F= 7,v %,. The translation rule is:

T F1v Fp. wp, D-vars, K) := n(F, wp, D-vars, X;) v n(¥,, wp, D-vars, %X;) where

K = (Xe K| Ky F1)} and K = ({Ke K] K-y R}

The statement follows immediately from the induction hypothesis.
Case F= VxgG. The translation rule for this case is:

n(VxG wp, D-vars, ) = Vx n(‘g, wp, D-vars + x, L) where

L ={x{x/a] | KXe Kand a € D}
Since formulae are standardized apart, x does not occur in wp and the induction hypothesis can
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immediately be applied.
Case ¥ = 0G. The translation rule for this case is:
n( ag, wp, D-vars, X) := Vu n(G, [wp . u], D-vars, £) where
L= {Sg (). d, wu/pD 1 (S.d,w)e K e J_, with $(S) =L}
Let £=(¢@S). d, w[u/p]) e L
Lp([wp . u]) (Sp)
= (Lp(wp)ow [u/d](u)) (S¢) (def. 3.2.3)
= §(3). (induction hypothesis)
Case = 3x G. The translation rule for this case is:
7( 3xG, wp, D-vars, X) := (n(G, wp, D-vars, L)) x«f(wp, D-vars)] where
L:={xix/a] lae D, Xe X, Ky[x/a] -y G}.
Since x does not occur in wp, the induction hypothesis can immediately be applied.
Case F = 0G. The translation rule for this case is:
®(0 G, wp, D-vars, X) := (G, [wp . g(D-vars)], D-vars, £)
L ={&,dwlx=@,d,w)e KRS, I, (T".d, W)y Fy 6 Kp@ED-vars))(S) ="}
Let =@, d,w)e L
Lp([wp . g(D-vars)])(Sg)

= (Lp(Wp) o Lp(g(D-vars))) (S (def. 3.2.3)
= Lp(g(D-vars)) (3) (induction hypothesis)
= 3" [

Now we are ready to show the main part of the soundness proof for the translation: At each level of the
translation operation, the generated P-interpretations satisfy the translated subformula.

Lemma 4.2.4 When F), is an M-frame satisfying the M-formula #/in the world 3 then
for each recursive call #p = =(¥, wp, D-vars, X) during the translation IT(# Fy, 3,) the following
invariant holds as long as is a formula: For every X=(3,d, w) e X Xp'!-p Fp.
Proof: By induction on the structure of M-formulae.
First Base Case: 7 =P(t,,...,t,) is an atom.
Lat =3, d, w)e X

According to the translation rule for the atomic case we must show:

Xp Hp P(wp, n(t;, wp, D-vars, K),..., n(t,, wp, D-vars, X)).
Neither wp nor X changes during the recursive descent into the terms,
therefore, with lemma 4.2.3, Xp(wp)(Sp) =S holds for the translation of the terms. (%)

First of all we must prove by induction on the structure of M-logic terms:
Xp (r(t, wp, D-vars, X)) = K, (1) for te {t;,....t;}. (%)
Base case: t is a D-variable: Xp(n(t, wp, D-vars, K)) = %p(t) = d(t) = X(1). (def. 22.4,323)
Induction step: t = f(s;,...,8,):
Kp(n(t, wp, D-vars, X))

= Xp(f(wp, ®(s,, wp, D-vars, K),...,%(s,,, wp, D-vars, X))) (translation rule)
= Kp(wWpXS )(f) (Xp(R(s,, wp, D-vars, K)),..., XKp(T(sy,, Wp, D-vars, X)) (def 3.2.3)

= 3(f) (Ky(s1)r---» Ky(Sp)) (induction hypothesis and %)

= K4 (D).
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Now we can conclude:
Ko PCpse oty (lemma 4.2.2)
= S(P) (Ky(ty)s-- s Ky(ty)) (def. 2.2.5)
= Kp(WpX3)(P) (Xp(n(ty, wp, D-vars, X)),..., Kp(n(ty,, wp, D-vars, X)) (% and ¢)
. = Xp+p P(wp, n(t;, wp, D-vars, X),..., ®(t,, wp, D-vars, X)) = Fp. (lemma 4.2.3, def. 3.2.4)

Second Base Case: ¥ = -P(t,,...,t,,) is a negated atom.
Let X=(3,d,w)e X
According to the translation rule for the atomic case we must show:
XKp -p —P(wp, x(t;, wp, D-vars, K)...., ®(t,, wp, D-vars, X)).
With the same arguments as in the first base case we can show:
Xp (m(t, wp, D-vars, X)) = K() for te {t;,....0;}.
Now we can conclude:
Ky g P (s-0ty) (lemma 4.2.2)
= not S(P) (Ky4(ty),.--» Ku(ty)) (def. 2.2.5)
= not Kp(wp)S)(P) (Kp(x(ty, wp, D-vars, K),..., Kp(n(t,, wp, D-vars, X))) (% and &)
= Xpip —P(wp, n(t;, wp, D-vars, X),..., 7L, wp, D-vars, X)) = Fp (lemma 4.2.3, def. 3.2.4)

Induction Step: Let #be an M-formula, but no literal.
Let X=(S,d,w)e X With lemma 4.2.2 we know K4l F.
In order to show % I-p Fp we must perform a case analysis according to the structure of ¥.
Case 7= F;A F,. The translation rule is:
n(FyA Fo, Wp, D-vars, X) := ®(F;, wp, D-vars, X) A ®(F,, wp, D-vars, X).
According to the induction hypothesis, we know
Xp -p ®(Fy, wp, D-vars, X) and Xp i-p ®(Fy, wp, D-vars, X).
Thus Xp I-p T(F;, wp, D-vars, K) A ®(F,, wp, D-vars, ) = Fp. (def. 3.2.4)
Case F= F,v %,. The translation rule is:
7( F1V Fo, wp, D-vars, X) .= n(F;, wp, D-vars, X;) v ®(F,, wp, D-vars, X;) where
K = {Xe X| Xyiby 71} and X; = {Ke X| Ky iy Fol-
Because of %,,i-, Feither Xy iy Fy OF Kyl Fas
According to the induction hypothesis, we know
Kp IFp ®(Fy, wp, D-vars, X) or Xp Ip ®(F,, wp, D-vars, X)
and therefore we conclude %p i-p Fp.
Case 7= Vx@. The translation rule for this case is:
n(Vx G, wp, D-vars, X) = Vx (G, wp, D-vars + x, £) where £ = {XIx/a] | Xe Kand a € D}.
According to the induction hypothesis, we know for every a €. D: X[x/a]p i+-p n(G, wp, D-vars, K)
and therefore we conclude %p I+-p p.
Case F = 0gG. The translation rule for this case is:
n( 0gG, wp, D-vars, X) := Vu n(G, [wp . u], D-vars, £) where
L={(¢S).d, wupD ! (S, d,w)e K oe S_, with ¢S)=1}.
Kp(prefix*(u, Vu n(G, (wp . ul, D-vars, £))) (S)

= Kp(prefix*(u, [wp . u])) Sy (lemma 4.1.3)
= Kp(wp) (B)
=3 #L (lemma 4.2.3)

=> only the or case in def. 3.2.4 need be considered.

31



Let ¢ e S_, with (3) #.L.
= K[u/¢lpi-p ®(G, [wp . u], D-vars, £) (induction hypothesis)
= XpI-p Fp- (def. 3.2.4)
Case F=3x G. The translation rule for this case is:
n( 3xG, wp, D-vars, %) := (r(G, wp, D-vars, L£))[x¢<f(wp, D-vars)] where
L= {Kx/a] lae D, Xe X, Xy[x/a] iry G}.
Since %Iy # there is at least one a € D with X, ,[x/a] iy G.
Therefore for the particular & with Xp(f(wp, D-vars)) =7
XIx/alp -p ™G, wp, D-vars, X) holds according to the induction hypothesis.
Furthermore, since &{x/ @]p(f(wp, D-vars)) =3 (x ¢ f(wp, D-vars)
K/ &lp I+p ®(G, wp, D-vars, K)[xef(wp, D-vars)] = n( IxG, wp, D-vars, X)
and since x ¢ =( Ix G, wp, D-vars, X), Xp I-p Fp.
Case ¥ = 0. The translation rule for this case is:
(0 G, wp, D-vars, X) = (G, [wp . g(D-vars)], D-vars, L)
£ ={@d,w) S d w)e KRS, 3I), (.d, W)y +y G Kp(g(D-vars)) (3) = 8.
The induction hypothesis is immediately applicable stating
Kp Ip (G, [wp . g(D-vars)], D-vars, X = Fp. "

Theorem 4.2.5 (Soundness of the Translation Algorithm)
If Ais a satisfiable M-formula then I'I(#) is a satisfiable P-formula.
This is now a trivial consequence of the previous lemma. ]

Remark

The proof shows that the translation from M-logic to P-logic does not change the models of the
formulae, only the way they are described. In M-logic we have the accessibility relation as a relation in
the usual way whereas in P-logic the same relation is described indirectly by the domain-range relation of
the world-access functions.
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4.3 Completeness of the Translation

In order to demonstrate the completeness of the translation function II we show that whenever the
translated formula has a P-model then the original formula has an M-model. This proof is easier than the
soundness proof because we can discard the additional information contained in the P-frame and show
that the M-frame, which is the kernel of the P-frame, is a model for the original formula. To this etd we
show that the P-interpretations for the subformulae of the translated formula can be turned into
M-interpretations for the corresponding subformulae of the original formula. Therefore we again redefine
the translation functions IT and . This time I1 has as additional parameters the P-frame and a
P-interpretation and ® has the P-interpretations for the corresponding subformulae as an additional

argument.

Definition 4.3.1 (The augmented translation functions.)
Let Fp := (D, 8, R), Sy,) be a P-frame and S, a P-interpretation with initial world 3.
The toplevel call is now : TI(%, F5,3p) = n(F, [1, 0.{Sp})
The recursive calls to &t are:
T FA G, wp, D-vars, Sp) := (¥, wp, D-vars, Sp) A (G, wp, D-vars, Sp).
n( ¥V G, wp, D-vars, Sp) := n(¥, wp, D-vars, Sp,) v ©(G, wp, D-vars, Sp,)
where 3p; := {Sp € Sp | Spip ®(F,, wp, D-vars)}
and 3p, = (Spe 3p | Splp 7(F,, wp, D-vars)}.
n( VxF, wp, D-vars, 8p) := Vx (¥ wp, D-vars +x, )
where 8p := {Splx/a] ISp e Spand a e D).
7 O F, wp, D-vars, Sp) 1= Vu (¥, [wp . u], D-vars, §p)
u is added as a new W-variable symbol to Vy; in Zp.
8p = {Splu/d] 1 Spe Spand 0 € 3_, with (Sp(wp)od)Sy) #.L).
~( Ix ¥, wp, D-vars, 3p) := ((F, wp, D-vars, Sp))[x«f(wp, D-vars)]
f is added as a new D-valued function symbol of type W — (D'D-V&s! — D) to Fp in £p.
8p = (Sp[x/Sp(f(wp, D-vars))] | Sp e Sp with S p(f(wp, D-vars)) # L }.
n( ¢ ¥, wp, D-vars, Sp) = 7(¥, [wp . g(D-vars)], D-vars, Sp)
g is added as a new W-valued function symbol of type D'P-va™! — (W — W) to Fy, in Z,.

n( 2P(t;,.. ,t;), wp, D-vars, Sp) where P is an n-place predicate symbol
= 2P(wp, n(t,, wp, D-vars, 8p) ..., n(t,, wp, D-vars, Sp))
n( f(t},....t,), wp, D-vars, Sp) where f is an n-place function symbol
:= f(wp, n(ly, wp, D-vars, Sp) ,..., ®(t,, wp, D-vars, 3p))
n( x, wp, D-vars) :=x where x is a D-variable symbol. | |
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The next lemma statcs that the augmented translation functions are well defined, i.c. when the input
P-frame is a P-model for the translated formula then the generated P-interpretations satisfy the
corresponding translated subformulae.

Lemma 4.3.2 When F, is a P-frame satisfying the P-formula #{in the world 3, then
for cach recursive call Fp = T(F, wp, D-vars,ﬁp) during the translation T1(#, Fp, 3p) the following
invariant holds as long as Fis a formula: For every S e Spt Spip Fp.
Proof: By induction on the recursion depth.
Base Case: Recursion depth = 0: This is just the initial call n(¥, [1, 0.(3ph)
Since 3y is assumed to satisfy 94 the statement holds by definition.
Induction Step: Let the recursion depth be greater than 0.
Let Fp = n(F, wp, D-vars, ;) be the recursive call to 7.
The induction hypothesis states: For every Sp € Sp: Splkp Fp.
In order to show that the statement holds for the next recursion step we perform a case analysis
according to the structure of Fand analyze the corresponding translation rule.
Case F= F|A F». The translation rule is:
(FyA Fpo wp, D-vars, Sp) = n(F;, wp, D-vars, Sp) A n(F,, wp, D-vars, Sp).
The induction hypothesis implies:
For every 3p e Sp: Spip n(F,, wp, D-vars, Sp) and Spi-p n(F,, wp, D-vars, Sp) (def. 3.2.4)
This is just what we need.
Case F= F|v 5. The translation rule is:
T( F, v Fp, wp, D-vars, $p) := n(F,, wp, D-vars, Sp,) v r(¥,, wp, D-vars, Sp,)
where 8p; = (Sp e Sp | Spirp n(F, wp, D-vars)}
and  Bp, = {Spe Sp|3pip n(F,, wp, D-vars)}.
Thus with “Spip ©(#...” the condition is explicitly enforced in the definition of .
Case = VxG. The translation rule for this case is:
n( VxgG, wp, D-vars, Sp) := Vx (g, wp, D-vars + x, 8p)
where 8p = (Splx/a] | Spe Sp and ae D}
The induction hypothesis implies:
For every 3p e Sp, 3plx/alirp n(G, wp, D-vars + x, §p) , (def. 3.2.4)
i.c. the condition holds for Sp.
Case ¥ = 0gG. The translation rule for this case is:
n( G, wp, D-vars, Sp) := Yu n(G, [wp . u], D-vars, §p)
where Sp = {Sp[u/0]1Fpe Spand pe S_, with (Sp(wp)od)(S) =L}
Let Splu/p] € S-P-
S p(prefix*(u, n(gG, [wp . u}, D-vars, $p))) (Sy)

= G p(prefix*(u, [wp . ul)) (Sp) (lemma 4.1.3)
=3 p(wp) (S())
# 1 (lemma 4.1.4)

= Splu/0]i-p (G, [wp . u], D-vars, §P) (induction hypothesis and def. 3.2.4, or-case)
Case F=3x G. The translation rule for this case is:
n( 3xG, wp, D-vars, Sp) = (r(gG, wp, D-vars, S}))[x(——f(wp, D-vars)]
gp = {Splx/3pf(wp, D-vars))] | Sp € §p with Sp(f(wp, D-vars)) = L }.
Let Sp[x/3p(f(wp, D-vars))] € 8p.
Since Sp (f(wp, D-vars)]) = Sp[x/f(wp, D-vars))](x) by induction on the structure of P-terms it can
be shown that 3 evaluates the terms occurring in ®(G, wp, D-vars, §P)[x<-—f(wp, D-vars)] to the
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same valucs as 3p{x/3p(f(wp, D-vars))] does with the corresponding terms in (G, wp, D-vars, S};).
Since Sp i-p ((G, wp, D-vars, §p))[xef(wp, D-vars)] (induction hypothesis)
we can conclude Sp[x/3p(f(wp, D-vars))] ip m(G, wp, D-vars, 5_1)).

Case F= 0 G. The translation rule for this case is:
n( 0G, wp, D-vars, Sp) = (G, [wp . g(D-vars)], D-vars, Sp)
Thus, the induction hypothesis is immediately applicable. ]

Now we arc ready to prove the main part of the completeness thcorem, namely that the P-interpretations
for the subformulae of the translated formula can be turned into M-interpretations for the corresponding
subformulae of the original formula.

Lemma 4.3.3 When Fp := (F,,,3y,) is a P-frame satisfying the P-formula #/in the world 3, then
for each recursive call (¥, wp, D-vars,SP) during the translation I1(# ¥p) the following invariant
holds as long as Fis a formula:
For every Sp == (Fp, 3o, th, w)€ Sp: Sy = (Fyp Sp(wp)(S), th) 1y F.
(3, denotes the M-interpretation in the world Sp(wp)(S) that corresponds to the P-interpretation Sp.)
Proof: Let #p := n(, wp, D-vars, Sp) be the actual call to , let Sp e Sp and
let 3, denote the corresponding M-interpretation in the world S := Sp(wp)(Sy) # L. (lemmad4.1.4)
With lemma 4.3.2 we know Spit-p 7p.
We perform an induction on the structure of M-formulae.
First Base Case: 7 =P(t;,...,t)) is an atom.
Since the wp-argument of 7 remains unchanged in the recursive descent of & into terms, and since
Sp(wp)(S ) is the actual world of 3y, we can show by induction on the structure of M-logic terms:
S mty) = Sp(n(t;, wp, D-vars,Sp)) fori=1,...n
Spi-p Fp implies Sp(t) # L fori=1,...,n and
Sp(wWpXSIP) Sty Syt = SP) (Spy(ty)s..., S(t)) holds
Thus, Sy 1y F
Second Base Case: 7 = —P(t;,...,t ) is an atom.
The proof is analogous to the {irst base case.
Induction Step: Let 7 be an M-formula which is no M-literal.
We perform a case analysis according to the structure of 7.
Case F= F;A %,. The translation rule is:
T(F A Fp, wp, D-vars, Sp) := n(F;, wp, D-vars, Sp) A 1(F,, wp, D-vars, Sp).
The statement follows immediately from the induction hypothesis and def. 2.2.5.
Case F= F;Vv %,. The translation rule is:
m( Fy v Fp, wp, D-vars, Sp) = n(Fy, wp, D-vars, Sp;) v n(F,, wp, D-vars, Sp,)
where Sp; == (Sp e Sp | Spip n(F;, wp, D-vars)}
and  Sp, = {Sp e 8p | Spikp n(F,, wp, D-vars)}.
Since 3p ikp Fp, cither Spe Gp; or Sp e Sp,.
We can apply the induction hypothesis finding either Sy -y F, or Sy 1y T, thus Sy -y, F.
Case F= Vxg. The translation rule for this case is:
7( Vx§G, wp, D-vars, Sp) := Vx =(G, wp, D-vars + x, §p)
where Sp = {3plx/a] ISpe Jpand ae D}.
Since 3p I-p Fp, forevery ae D: Splx/a] ip (G, wp, D-vars + x, §P).
We can apply the induction hypothesis finding Sy,[x/a] Iy G, thus Sy 1y 7.
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Case ¥ =04. The translation rule for this case is:
n( 0G, wp, D-vars, Sp) := Vu n(G, {wp . u], D-vars, §p)
where Sp = {Sp[w/]1Spe Spand ¢ € §_, with (Sp(wp)oh)(S) = L.
Since Sp i-p Fp and since 3 = L, for every 3” with R(3,3") thereisan ¢ € S_, with ¢(3) = 3",
We can apply the induction hypothesis finding (Fy,, 37, tf) -y, G, thus Sy, 1ty F.
Case F= 3x G. The translation rule for this case is:
n( 3xG, wp, D-vars, $p) = (n(G, wp, D-vars, gp))[xe—f(wp, D-vars)]
3]) = {Splx/3p(fwp, D-vars)] | 3p & S, with Sp(f(wp, D-vars)y = L},
Since 3y 1-p Fp and S p(1(wp.D-vars)) = 3| x/3 p({(wp, D-vars))|(x) we have
3l x/3p(l(wp, D-vars))] i 7(G, wp, D-vars, $p).
We can apply the induction hypothesis finding 3y, [x/3p(f(wp, D-vars))} iy G, thus 3y 1k 7.
Case F= 0 . The translation rule for this case is:
T 0G, wp, D-vars, Sp) := (G, [wp . g(D-vars)], D-vars, Sp).
Since SP I-p Fp, according to lemma 4.1.4, 37 := Sp(g(D-vars)(J) = L.
According to def. 3.2.1, R(3, I ") holds.
We can apply the induction hypothesis finding (F,, 3, d) Iy G» thus SM g F ]

Theorem 4.3.3 (Completeness of the Translation Algorithm)
If TI(#) is a satisfiable P-formula then % is a satisfiable M-formula.
This is now an obvious consequence of the previous lemma. u

Combining theorem 4.3.3 and theorem 4.2.5 we obtain the main result of this section:

Corollary 4.3.4 An M-formula ¥ is unsatisfiable if and only if IT(%) is unsatisfiable. n



Chapter Five

Tools for P-Logic

5.1. Conjunctive Normal Form

A formula in conjunctive normal form is a conjunction of a disjunction of literals, where all variables are
taken 1o be universally quantiﬁcd'. Each disjunction is usually called a clause and is written as a set. Since
the P-logic syntax contains the logical connectives A and v and the universal quantifier, but no existential
quantifier and no modal operators, a transformation of an arbitrary formula to a set of clauses is simpler
than in first-order predicate logic. Therefore only the critical aspects are dealt with in the following.

Transformation of P-Formulae to Clauses:

In order to gencerate the conjunctive normal form of a P-formula the distributivity laws for A and v, laws
for moving universal quantifiers over conjunctions and in certain cases over disjunctions and a law [or
rcnaming universally quantified variables are necessary. Each transformation rule must be verified by
proving that a P-interpretation satisfies the original formula if and only if it satisfies the transformed
formula. As this is fairly straightforward, we only demonstrate it for the rules that move quantifiers for
W-variables and consider only those cases, which actually occur.

Lemma 5.1.1 (Moving Quantifiers over Conjunctions)
Let Vu (F A G) be an M-adjusted P-formula (i.e. the prefix of u is unique) where the W-variable u occurs
both in Fand G. Let SP be a P-interpretation for Vu (F A G).
Then Sp -pVu (F A G) iff Spirp Vu FA Vu G.
Proof: Let S be the initial world of Sp.
Spip Vu(Fag)
i€ for wp = prelix*(u, FA G) (del. 3.2.4)
cither S (wp)(Cp)= L andSpibp FA G
o Spwp)Sy) # L and forcvery d e J_with (Sp(wp)od)(Sg) = L: Splu/d]ikp FA G
iff for wp = prefix*(u, F A G) = prefix*(u, F) = prefix*(u, )
gither Sp(wp)Sg) = L and Spip Fand Spip G
or  Sp(wp)(Sp)# L and for every ¢ € S_ with (Sp(wp)od)(S) # L:
3plu/¢]-p Fand Splu/lip G
iff for wp = prefix*(u, 5
gither Sp(wpXSgp)= L and Spirp F
or  3p(wp)Sg)# L and for every ¢ € I_,with (Sp(Wp)od)(Sq) # L: Sp[u/o]ikp F
and for wp = prefix*(u, G)
gither Sp(wp)(Sp)= L and Spip G
Qr Sp(wp)(3y) # L and for every ¢ € S_ with (Sp(wp)ed)(Sy) # L: Spludli-p G
iff Spi-p Vu F and Spikp Vu ¢
iff Spip Yu FA Vug. ‘ n
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Lemma 5.1.2 (Moving Quantifiers over Disjunctions)
Let FvVu g be an M-adjusted P-formula where the W-variable u does not occur in .
Let 3p be a P-interpretation for #vVu ¢. Then 3p liep FvVU Gill Spikp Yu (Fv ().
Proof: Let wp := prefix*(u, §) = prefix*(u, F vVu G). Let 3, be the initial world of 3.
“="Let Spirp FvVu G.
Case 1: Spirp F, thus Spirp FVv G. (def. 3.2.4)
If 3p(wp)(Sg) = L then 3piFp Fv Gand therefore Sp p Yu (Fv G).
If Sp(wp)(Sg) # L then Sp[u/¢]i-p Ffor the corresponding world-access functions,
thus Sp[u/d) i-p Fv G and therefore Spi-p Vu (Fv G).
Case 2: SpirpVu g
If Sp(wp)(Sg) = L then Spi-p G, thus Spi-p Fv G and therefore Sp ikp Yu (FV G).
I Sp(wpX(Sg) # L then 3plu/¢] i-p F for the corresponding world-access functions,
thus Splu/d) -p Fv G and therefore Spikp Yu (Fv G).
“e=" Let Spiep Yu(F v ().
Case 1: Sp(wpi(Syy) = L.
= Bplkp FV G
= Bpikp For Spip G
= Jplp For Spip Yu G.
= Jpikp FVVu G.
Casc 2: Sp(wp)(Sy) # L.
= For the corresponding world-access functions ¢: Sp[w/¢] i+p FVv G. (def. 3.2.4)
= For the corresponding world-access functions ¢: 3p[u/¢] #p For Splw/d]irp 6.
= 3p ikp For for the corresponding world-access functions ¢: 3 p[u/¢] i-p G.
= Jpip FVvVu G. N

Example for a transformation to conjunctive normal form,

M-formula: 03x Px v ¢ {Qx A ORx)
TT T
w a g v
— P-formula: Vw P([w], a[w]) v (Q([wg], a[w]) A Vv R{[wgv], a[w]))
— Clauscs: Yw P([w], a[w]) v Q({wg], a[w])
Yw’ P(lw’], alw’]) v R([w’gv], a[w’]). L

Theorem 5.1.3 (Soundness and Completeness of the Transformation into Clauses)
a) An M-adjusted P-formula ¥ is satisfiable iff the corresponding conjunctive normal form is satisfiable.
b) The conjunctive normal form is M-adjusted.
Proof: a) This is a consequence of the two previous lemmata and the corresponding lemmata for the
variable renaming rule and the distributivity laws (which are obvious.)
b) This is a consequence of three facts:

1. The transformation into conjunctive normal form does not change the termstructure.

2. Itis not necessary to change the ordering of quantifiers.

3. Clauses arc completely variable disjoint. =
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The Semantics of Clauses Without Quantifier Prefix

The semantics of clauses without a quantifier prefix in first-order predicate logic is: A clause C with free
variables {xy,...,x,} is true in an interpretation 3 iffS[xllcl,...,xn/cn] i+ C for every combinalion of
variable assignments x;/c;. The choice of a particular variablc assignment is independent of the other
assignments. This nice property which allows to eliminate the quantifier prefix, holds also in P-logic
when the accessibility relation is serial. Unfortunately it does not hold in non-serial interpretations as the
following example demonstrates:

Consider the M-forrnula 00OP and the corresponding P-logic version Yu,v Pluav] which is satisfied by
the following interpretation:

Qa
sa¢ ) >@¢’3>ep
0%,/ a
u A\

Only the combination Sp[u/t,, v/9;] satisfies the literal, whereas S p[u/$;, v/931([uav]}(Sy) = L. In fact
this combination would not be considered during the recursive descent of -p because as soon as

3 plu/d,]1 has been generated for the quantifier Vu, there is no further world accessible from
Splu/d,1(ua])(S). Thus Splu/;] 1-p Vv Pluav] regardless of the structure of the literal.

In order to eliminate the quantifier prefix in the non-serial casc as well and to “{latten” the definition of
the satisfiability relation I-p for clauses, we must consider only those P-interpretations 3p":=
Splx,/cqs... X /c,] which are “continuing”, i.e. which have the property that for every W-variable x;
with wp = prefix*(x;, C): Sp(wp)# L = Sp([wp.x;]) # L. The first P-interpretation in the above
example has this property, the second one has not. This motivates the following definition:

Definition 5.1.4 (Continuing P-Interpretations)
A P-interpretation S p with initial world S, is called Fcontinuing for an M-adjusted P-formula ¥ iff
for every W-variable u in F with wp = prefix*(u, #): Sp(wp)(Sg) # L implies Sp([wp.ul)(Sp) =z L. =

Since P-interpretations are total functions on terms when the accessibility relation is serial, all

P-interpretations are continuing in this case.

Now a correspondence between a P-model 3p for a fully quantified clause Vvy,...,v, C' and
C'-continuing P-models Sp[v,/c,...,v /c,] for C' can be shown. It will be used frequently in the
soundness proof for the resolution rule in chapter 7.
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Theorem 5.1.5 (The Semantics of Clauses)

Let C = Vv,...v, C be a fully quantified clause and let Sp be a P-interpretation for C.

Spip C iff for every C'-continuing P-interpretation Sp':= Sp[v,/cy,...,v /e ]: Sp'tep C'.

Proof: Let 3 be the initial world of 3p.

“=5" Let 8p ikp C and let Spp = 3plvyfcq,...v /eyl be a C'-continuing P-interpretation.

In order to show 3p_ I-p C' we follow per induction the recursive descent of Ip. Thus we reconstruct
S py in such a way that at each level i for Sp,; 1= Sp[v,/cq,....vy/c;):

Spiltp VVisr-
Base Case: 3pip C is the precondition.

Induction Step: Let Sp, := Sp[vy/cq,...,vy/c;] and Sp; Ikp Vv
Case 1: v, is a D-variable.

..v, C'is ensured and therefore finally Splv,/cy,...,v,/c,] iFp C' holds.

i410+-+Vn C' (*) (induction hypothesis)
Because of (*) we know that Sp,[v;, 1/¢;11] = Spie1 = Splvi/Crs . »Vip1Cip1 ] FpYViggse -V €
Case 2: v, 4 is a W-variable with wp = prefix*(v;,;, C"
Case 2.1: Sp(wp)(Sg) = L.
= Jp; FpVV49:-...v, C and the satisfiability does not depend on the variable assignment of v; ;.

i+1°

= IpilVisr/Ciny] = Spiy FpVViggee vy C
Casc 2.2: Sp(wp)(Sy) # L.
Since Spi(wp) = Sp (wp) and Sp ([w.v; ;1S # L (Sp, is C-continuing) there is a world-
access function ¢;, ) with (Sp,(wp) o ¢;,1) () # L. Therefore and because of (*) we know again
3pilvis1/Cin1] = Spir1 FpTVigge- ¥y C
“<=" Assume for every C'-continuing P-interpretation Sp,, := Sp[v,/cq,....v /e ]: Spybp C C¥)
In a first step we follow the recursive descent of 1 when applied to the quantifier prefix of C and show
at each level with Sp;=S3p[v,/cy,...,vi/c;]:
For every W-variable Vi€ {V{s-..sv;} and wp = preﬁx*(vj,C'):
if 3py(wp)(Sp) # L then Spillwp.vIXSp) # L.
This is an immediate consequence of the or case in the definition of Ip (def. 3.2.4), therefore the proof
is omitted.
The result of this induction is that the literal level of the recursion is reached with C'-continuing
P-interpretations Sp, = 3plv;/cy,...,v /c;] and the assumption (%) states Sp i+p C'.
This is the basc casc of a second induction, this time “bottom up” proving that at each level either
3p; = Splvifeq,.. . vife ipYvi,...v C when Spi(prefix*(v;, ., C))(Sg) = L, or
{or every world access function c;,; with (Sp,(wp) o ¢;,1) (Sg) #L: Sp;[v; 165411 FpVViga--- v, C
and therefore Jp; HpVv,,;...v, C\
This second induction gives the desired result: Spt+p C. n
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§.2 Substitutions

One of our important notions is that of a substitution as a mapping from terms to terms. Substitutions
must be constructed with respect to two requirements:

1. The application of a substitution to a term must produce again a wellformed term.

In our case this means that D-variables must be mapped to D-terms and W-variables must be mapped
either to W-terms or to world-paths. In the latter case the world-path that replaces the W-variable u must
be spliced into the world-path containing u such that the result is again a world-path.

2. The instance of a true formula should again be true.

In our case this means that a W-variable, which is interpreted in P-logic as a world-access function, can
only be replaced by a world-path that can also be interpreted as a world-access function, i.e. a function
that maps worlds to accessible worlds. The syntactic restrictions to substitution components for
W-variables which guarantee this property depend on the properties of the accessibility relation R: In
case R is transitive, a W-variable can be replaced by every non empty world-path because in transitive
relations every world which can be accessed via several other worlds can also be accessed in one step. In
all other cases a W-variable can be replaced by one W-term. In case R is reflexive, also the empty
world-path - which is interpreted as the identity mapping - is admissible.

To fix these conditions we introduce the notion of an R-admissible world-path.
Definition 5.2.1 (R-Admissible Worid-Paths)

Depending on the properties of the accessibility relation R, a world-path wp is called R-admissible if it
satisfies the following properties:

In case R is transitive: the length of wp may be greater than 1.

In case R is reflexive: wp may be empty.

In the other cases wp consists of exactly one W-term.

In case R is symmetric: wp may consist of an “inverse” W-term [g'l(sl,. pE-n)
where g1 is the associated inverse symbol for some symbol g.
(c.f. def. 3.1.1). [

Examples and counterexamples for R-admissible world-paths

properties of R | R-admissible I non-R-admissible
no special propertics I [a] I [1,[ab], [a]
reflexive | 1, [a) | [ab],[a!]
symmetric | [a] [a)] | [], [ab]
reflexive and symmetric | 1, [a], [a'1] I [ab]

transitive I [a], [ab] I [0, [a]
transitive and reflexive | [1, [a], [a b] | [al]

Lemma 5.2.2 Given a P-interpretation with an accessibility relation R, an R-admissible world-path is
interpreted as a world-access function.
Proof: Obvious. ]
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Definition §.2.3: (Substitutions)

» A substitution o is a sort preserving mapping from D-variables to D-terms and W-variables 1o
R-admissible world-paths and can be represented as a finite set {x, = ty,..., x,+ 1} of variable
term pairs. To emphasize that a particular substitution actually has the property to map W-variables
only to R-admissible world-paths, we sometimes call it an %-admissible substitution.

> Substitutions can be turned into mappings from terms to terms, literals to literals and clauses to
clauses using the inductive definition of terms and such that the following homomorphic equation for
all function and predicate symbols F and terms w and t; hold:

o(F(wp,ty,...,1,)) = F(o(wp), o(ty),...,0(t,)).
We sometimes omit parentheses and write ot instead of o(t).
» The composition Got of two substitutions ¢ and 7 is the usual functional composition.
We shall omit the o-sign and write o1 instead of GoT.
The set of substitutions with the composition o is a monoid with identity @.
It is easy Lo verify that the composition of two substitutions maps W-variables to R-admissible
world-paths.
> Oy is the restriction of a substitution & to a set V of variables, i.c.
oy(x)=0x ifxeV
oy(x)=x ifxe V.
The domain of a substitution G is the set of variables which are moved by o, i.c.
DOM(0o) = {x l 6x #x}.

The codomain of a substitution G is COD(o) = {oxix e DOM(0)}

The variables introduced by G are: VCOD(0) := Vars(COD(0)).

A ground substitution is a substitution with VCOD(c) = ¢.

Let t be a term, atom, literal or clause and let ¢ be a substitution.

ot is called an instance of't. ot is called a ground instance of t if it contains no variables.

There is an ordering relation <g; [V] on substitutions:

YyYYyYVvYyYy \

A

For two substitutions ¢ and © and a set V of variables:
0 <x T[V] iff there exists an R-admissible substitution § such that V x € V: o(x) = Et(x).
> A substitution ¢ is idempotent iff 66 =o0. n

An application of a substitution ¢ = {x; = t;,..., X, = t,} to a term t has the intuitive meaning that all
occurrences of D-variables x; are simultaneously replaced by t; whereas the application of a substitution
component x; - [g;...gp] for a W-variable X splices the partial world-path [g;...g,] into cach world-
path at the place of an occurrence of X; i.e. for example {x;+ [g;...g, 1} [...axb ...]=[...agy...8,
b...]. Furthermore, in symmetric interpretations the rewrite rule [g(a;,..., a.n)g'l(al,..., ay)] — [] will
implicitly be applied whenever it is possible.

(We shall see that this is sufficient to avoid the occurrence of inverse functions in the resolvents.)

Lemma 5.2.4  (Some useful properties of idempotent substitutions.)

a) A substitution ¢ is idempotent iff DOM(c) N VCOD(0) = g@.

b) For an idempotent substitution ¢ and a term t: DOM(0G) N Vars(ot) = 9.

¢) For two idempotent substitutions ¢, 6: DOM(c) N VCOD(B) = ¢ = ©0 is idempotent.

The proofs are similar to the proofs for standard substitutions in predicate logic which can for instance be
found in [Herold 83] or [Herold 87]. n
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Lemma 5.2.5  Substitutions can be turned into semantic variable assignments:
a) For a P-interpretation Sp with initial world S and a substitution 6 = {x; & ty,...,x, = t,} with
Sp(t;) # L fori=1,...,n, the object Sp[o] := Sp[x,/ Sp(ty)s..., X/ Sp(ty)]
is again a P-interpretation.
b) Given a substitution ¢ such that 3p[o] is a P-interpretation, for every term t: Sp[6](t) = Sp(ot).
Proof: a) This follows immediately from the fact that substitutions map W-variables to R-admissible
world-paths which are interpreted as world-access functions (lemma 5.2.2).
b) We perform an induction on the structure of terms and world-paths.
The two base cases t =[] and t is a variable is trivial.
Induction step:
Case 1: t=1{(wp,s,,...,s,) where f is a D-valued function symbol.

SplO1EWP,Sy,....8)) = Splolwp)SHD(SpIOI(s)),....3plGI(s)) (def. 3.2.3)
= Jp(owp)(Sp)E (Sp(0s)),....3p(0s,)) (ind. hypothesis)
=3 p(ot).
Case 2: t = g(sy,...,8,) where g is a W-valued function symbol.
Splol(gsys-.sy) = Sw(@(Splollsy).....3pl61(s)) (def. 3.2.3)
= Jw(® (Sp(05))s....3p(05;)) (ind. hypothesis)
= 3 p(ot).
Case 3:t=[p .s]
3pl61(0p 5D = 3p[61(p)e3p[0](s)
= 3p(6p)o3 p(0s) (ind. hypothesis)
=S p(ot). N
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5.3 Prefix-Stability - An Invariant on the Structure of Terms.

In lemma 4.1.2 we noticed that terms of a translated M-formula have the property that all occurrences of
a W-variable have identical subterms (M-adjusted termstructure). A term like f([w], g[vw]) for example
can not be the result of a translation. This property ensures that the unification algorithms for transitive
models are finitary, and should therefore be preserved for resolvents also. This property is now formally
defined for terms and substitutions and some consequences are shown

Definition 5.3.1 (Prefix-Stable Terms and Prefix-Preserving Substitutions)

Let s be a term, a world-path, a list or a set of those. Let x be a W-variable and let 6 be a substitution.

> prefix-stable (s) <= Vu e W-Vars(s): Iprefix(u, s)l = 1.

» If'sis prefix-stable then prefix-preserving (o, s) :< prefix-stable (0s). ]

Examples for prefix stable terms and prefix-preserving substitutions.

prefix(w, f(fw v1, glv wl)) = {[w], [v wl}. This term is not prefix-stable.

prefix(w, f([w], glw v])) = {[w]}. This term is prefix-stable.

prefix-preserving({w - [k(a[v])}, [w])

not prefix-preserving({w v [k(afv )}, f({w], k(@alc v])),

i.c. the a substitution may be prelix-preserving for a prefix-stable term s and not prefix-preserving for
another prefix-stable term t. u

Lemma 5.3.2 All subterms of prefix-stable terms are also prefix-stable.
The proof is obvious. u

The next lemma gives the conditions under which a substitution that is prefix-preserving for a set of
terms (for instance the unified terms in a resolution step) is also prefix preserving for a larger set of terms
(for instance all terms occurring in the resolvent.)

Lemma 5.3.3 (Lifting of the Prefix-Preserving Predicate)

Let s and  be terms, world-paths, lists or a sets of those and let ¢ be a substitution, then

prefix-stable(s) A prefix-preserving(o, s) A (Vars(o) \ Vars(s)) N Vars(t) = ¢ A prefix-stable((s,1)) =
prefix-preserving(c, (s,0))

Proof: Let a) prefix-stable(s) and b) prefix-preserving(o,s) and
¢) (Vars(o)\ Vars(s)) N Vars(t) = ¢ and d) prefix-stable((s,t)).
Letue W-Vars(o(s,t)) .
Case 1: u ¢ Vars(o)
= ue Vars((s,t))
= prefix(u, (s,t)) is unique (d)
= prefix(u, o(s,1)) is uniquc. (since u ¢ Vars(g))
Case 2: u e Vars(o)
= ue COD(o) (since u € W-Vars(o(s,1))
= Jy...y € Vars(s,l): ue oy;
= {y;...yx) € Vars(s) ()

= Vy e {y;...yy}:y is a W-variable implies prefix(y, s) = prefix(y, (s,t)) is unique (d)
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= Each occurrence of u in 6(s,t) that is caused by areplacement of some y € {y;...yy}

has a unique prefix. (b)
In addition the occurrences of u in o(s,t) which stem from (s,t) have to be considered:
Case 2.1: ue Vars(s) '
=ug Vars(t) ©)

= Each occurrence of u in 0(s,t) is caused by a replacement of some y € y;...yy
and has thercfore a unique prefix.
Casc 2.2:  ue Vars(s)
- prefixu, (s, 1) is unique. (D)
prefix-preserving(o, 8) implics that cach occurrence of u in Os has the same prefix
regardless whether it stems from s or from a replacement by 6.
= prefix(u, os) = prefix(u, 6(s,t)).
= prefix(u, o(s,t)) is unique.
= prefix-preserving(o, (s, t)). ]

It is instructive 10 see what will happen if the disjointness condition (Vars(c) \ Vars(s)) M Vars(t) = @ is
not satisfied: Let 6 :== {w~ v}, s := [w] and t := [a v]. Clearly prefix-stable(s), prefix-preserving(c, s)
and prefix-stablc((s, t)), but os = [v] and ot = [a v] and therefore prefix-preserving(c, (s,t)) is not true.
The disjointness condition therefore forces a unification algorithm to build a unifier either with
W-variables from the tcrms to be unified or with completely new W-variables in the codomain. (This
very natural condition is well known from theory unification algorithms for associativity for instance.)

An important property of prefix-stable terms is that they have no multiple occurrences of a W-variable on
the toplevel of a world-path (toplcvel linearity). Furthermore a W-variable in a prefix-stable term cannot
occur more than once in its own prefix (prefix linearity). Nevertheless it is possible, that a W-variable
occurs a second time behind its first occurrence in a prefix-stable world-path, however only at a deeper
level of nesting, as for example in [w g(a[w v])].

Definition 5.3.4 (Toplevel and Prefix Linearity)
Let wp be a world-path and let s be a term.
» wp is called toplevel linear iff no variable occurs more than once at the toplevel of wp.
s is called toplevel linear  iff each world-path in s is toplevel linear.
> wp is called prefix linear  iff each toplevel variable uin wp =: [s;...s_; u ...] does not occur in

[$1-+ 8 1)
s is called prefix linear  iff each world-path in s is prefix linear, ]
LLemma 5.3.5 {Prefix-Stable Terms are Toplevel and Prefix Linear)

Each prefix-stable finitc term s is toplevel lincar and prefix lincar.

Proof: a) Toplevel lincarity: If there was a world-path [s...s,_; u 8 ...u...] in s with two occurrences
of a variable u, then u would have two different prefixes, which contradicts the prefix-stability of s.

b) Prefix linearity: If there was a world-path [s;...f(g([...u...]1))...s; u ...] in s where the variable u
occurs in its prefix [s...f(g([...n...1))...s,], this second occurrence must have the same prefix, i.e.
again another occurrence of u in its prefix, etc., otherwise s would not be prefix-stable. This is not
possible in finite terms. ]

45



Chapter Six

Modal Unification

6.1 Introduction

Unification is the basic operation in resolution based deduction systems. In this chapter we define the
unification algorithms for atoms, terms and world-paths in P-logic. Since there is no cquational theory
for the function symbols, they can be treated like free function symbols in first-order logic and unified in
the usual way. For the unification of world-paths, however, we need additional algorithms. As we shall
see in chapter 8, only R-admissible substitutions are allowed as unifiers, consequently for the unification
of world-paths we need a specialized algorithm for the different accessibility relation types. However,
the algorithms do not depend on the seriality or non-seriality of the accessibility relation. Only
reflexivity, symmetry, transitivity and their combinations have to be considered. Before going into
technical details, let us discuss briefly the characteristics of each unification algorithm for world-paths.

Unification where the Accessibility Relation has no Special Properties
(Modal Logics K and D)

R-admissible substitutions are allowed to substitute a partial world-path with exactly one W-term for a
W-variable. Two world-paths like [v a} and [b w] are therefore unifiable with a unifier {v~ b, w » a},
whereas the two world-paths [v a] and [bu w] would require a non-R-admissible substitution {v -
[bu], w~ a}. They are not unifiable.

In general two world-paths are unifiable when they have equal length and the W-terms are pairwise
unifiable with compatible unifiers. Thus, the world-paths can be treated like ordinary terms and except
that the argument lists may be of different length, there is no difference to the unification of first-order
terms. There is at most one most general unifier, which is unique up to variable renaming, for every
unification problem, i.e. the unification is of type unitary. When an algorithm in the style of Martelli &
Montanari“s algorithm for free first order terms is used, the complexity of the unification is therefore
lincar [Martelli&Montanari 82].

Unification where the Accessibility Relation is Reflexive.
(Modal LogicT)

The substitution component w + (] represents the assignment of the identity mapping to a W-variable. It
is R-admissible, because in reflexive interpretations a world is accessible from itself. Therefore
R-admissible substitutions are allowed to substitute a partial world-path with at most one W-term for a
W-variable. The substitution components w ~ [] allow to remove a variable completely from a
world-path such that for example the world-paths [v a] and [b u w] are unifiable with the two indepen-
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dent unifiers {v - b, uw [}, w a}.and {ve~ b,ur a, we []}. Hence, this kind of unification is akin
to unification of first order terms with an identity element.

The unification algorithm enumerates all possibilities 1o remove W-variables w by the substitution
componcnt w + [] and then unifics the W-terms in the reduced world-paths pairwise. Since there are
only finitcly many variablcs to be removed, there arc at most finitely many most general unifiers for each
unification problem, i.e. the unification is of type finitary. The number of unifiers computed in this way
is at most 2" where n is the number of W-variables in the terms to be unified. (This is the size of the
powersct of W-variables.) Therefore the complexity of the unification is exponential and there is no
chance to do it better.

Unification where the Accessibility Relation is Symmetric.
(Modal Logic DB)

In symmetric interpretations, each W-valued function symbol has an associated inverse function symbol.
A substitution component w + a'l for example is therefore suitable for collapsing the partial world-path
[a w] into [aa’l] = []. R-admissible substitutions are allowed to substitute a partial world-path with
exactly one W-term or an “inverse” W-term for a W-variable. The “inverse” v'! of a W-variablic is also
allowed, because the interpretation of a W-variable is also a function whose inverse exists in symmetric
interpretations. For example the two world-paths [v w] and [] are unifiable with a unifier {w~ v1}.

The unification algorithm must consider all possibilitics to collapse a W-variable w and its predecessor t
in the world-path by the substitution component w - [t"1] to the empty path [] and to unify the W-terms
in the reduced world-paths pairwise. Since there are only finitely many variables to be collapsed, there
are at most finitely many most general unifiers for each unification problem, i.c. the unification is again
of type finitary. The number of unifiers is at most 22 where n is the number of W-variables in the terms
to be unified. Therefore the complexity of the unification is also exponential.

This is the first case where the prefix-stability of terms can be exploited: When a W-variable w and its
predecessor t in a world-path have been collapsed with the substitution component w - t'1, we know
that in all other terms in the clause set, t is the predecessor of w. The application of w - t'! to an
arbitrary term containing w in the clause set will therefore collapse [t w] to []. No inverse W-tcrm will
ever occur in an instantiated term, thus we need not investigate the unification of such terms,

Unification where the Accessibility Relation is Reflexive and Symmetric.
(Modal LogicB)

The two basic techniques for reflexivity and symmetry can now be joined: The unification algorithm
enumerates all possibilities for the removal of W-variables w by the substitution component w +~ [] and
for collapsing a W-variable w and its predecessor t in the world-path by the substitution component
wt"1 and then unifies the W-terms in the reduced world-paths pairwise. Since there are only finitely
many variables to be collapsed or.to be removed, there are at most finitely many most general unifiers for
cach unification problem,
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For example the two world-paths [a u v] and [w] are unifiable with the two independent unifiers

1 1

{fumal,vow}land {veu!l, we al.

The number of unifiers may again be exponential in the number of W-variables.

Unification where the Accessibility Relation is Transitive.
(Modal Logics K4 and D4)

R-admissible substitutions may now substitute arbitrary partial world-paths for a W-variable. For
cxample a unifier for the two world-paths [v ¢ d] and [a b w d] is {v ~ [a b], w c]}, but the
substitution {v~ [ab w'], w [w’' c]} with a new W-variable w' is also a unifier. Thus, we introduce
a variable splitting technique similar to the splitting technique in the unification algorithm for associative
functions. This is in general infinitary, but fortunately it turns out that the toplevel linearity of
world-paths is sufficient to keep this unification finitary. The number of unifiers, however, can be
extremely large. When for example two world-paths [v,...v_ ] = [u,...u,] consisting of variables only
are to be unified, all possibilities to assign v, and w to leading parts of the opposite world-path must be
enumerated and the corresponding tails of the world-paths must be unified recursively. The number
f(n,m) of unifiers - without variable splitting - can then be calculated with the following recursive
formula:

f(n, 0) =f (0O,m)=0, f(n,1)=f1,m)=1

f(nm) = f(n-1,m-1) + ... + f(n-1,1) + f(n-2, m-1) + ... + (1, m-1).
The graph of the function f(n,n), i.e. the number of unifiers for world-paths of equal length is drawn
below:
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It shows a clear exponential behaviour which is worse than 27,

Unification where the Accessibility Relation is Reflexive and Transitive.
(Modal Logic S4)

The algorithms for the reflexive case and for the transitive case can be joined without any further
problems. The algorithm for the transitive case must be augmented by a step that removes W-variables w
with a substitution component w ~ []. There are still at most finitely many most general unifiers for each
unification problem. The number of unifiers can again be exponential with the number of W-variables.
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Unification where the Accessibility Relation is an Equivalence Relation
(Modal Logic SS)

World-paths for S5 interpretations have a special normal form (of modal degree one) consisting of at
most one W-term, i.e. they look like [] or [t]. Two world-paths [] and [t] can only be unified when tis a
variable, the unifier is t+ []. Two world-paths [s] and [t] can be unified when s and t are unifiable.
Therefore there is at most one most general unifier for each unification problem.

The following definition formally introduces the usual notions of complete and minimal sets of unifiers.
Since the accessibility relation plays the same role as an equational theory in equational based unification
we adopt the notions of unification under equational theories (c.f. [Schmidt-Schauss 87]).

Definition 6.1.1 (Complete and Minimal Sets of R-Unifiers)
LetT:= {“s; =" li=1,...,n} be a system of equations for prefix-stable D-terms, W-terms, atoms or
world-paths,
Let R be an accessibility relation,
a) A substitution ¢ R-unifies I' iff ¢ is R-admissible and for every equation “s; =t in T we have
os; = ot;. In this case we say © is an R-unifier for I', or simply ¢ unifies I".
The set of all R-unifiers for I is denoted by Ug(I).
b) A complete set cCUg(T") of unifiers for I is a set satisfying

i) cUx@) < Ugx@) (correctness)
ii) Vo e Ug(I) It e cUx(D): 1<k o [Vars(I)] (completeness)
c) A complete set is cailed minimal or a set of most general unifiers (mgus), iff additionally
iii) Vo,T € cUgx(I): t<g o [Vars()] =>1t=0 (minimally)
Minimal sets are also denoted as pUg(I). ]

6.2 Unification as Transformations on Systems of Equations

We consider the process of unification as a sequence of - in general nondeterministic - transformations
on systems of equations that starts with the terms or atoms “p = q” to be unified and terminates in the
positive case with a system “x; = t;” in solved form. The nondeterministic choice of the transformation
rules generates a tree like search space where the nodes are the actual state of the equation systém. Each
successful transformation chain computes a unifier for p and q. This follows the ideas in [Herband 30],
[Martelli&Montanari 82] and others. We shall divide a system of equations into an unsolved ordered part
I, an ordered set, that initially contains the single equation {“p = q"’} to be solved, and into an initially
empty solved part ¢ with components of the form “x = t” such that ¢ represents an idempotent
substitution.

The transformation starts by checking the trivial cases, i.e. whether or not the initial system “p = ¢” is
already in the form “x =1t”,
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Each transformation replaces a system I, ¢ by a modified system I'", 6~ as follows:
» Pick the left most equations=te I (depth first, left to right selection, I is ordered).
Remove s=t from I".
> Select from the set of admissible transformation rules a rule Twhich is applicable tos =tort=s.
If no rule is applicable then terminate this branch in the search space with failure.
> Apply the rule Tto s =t (or t = s respectively).
Let s) =t; & ...& s =t be the result of the transformation.
» Fori=n...1:
If s; equals t; then ignore this component (tautology rule).
If s; and t; are both non-variable terms then push s; = t; at the front of I'.
otherwise let w.l.o.g s; be a variable.
If's; € t; (occurs check) or if s; is a W-variable and t; is a non-R-admissible world-path
then terminate this branch in the search space with failure,
otherwise replace all occurrences of s; in T and © by t; (application rule) and
insert s; =t; into ©.

It is noted that we imposed a Prolog like depth first, left to right lincar selection strategy and an
immediate application of the computed substitutions on the control structure of the transformation
process. This ensures that an equation is completely solved once it is selected before the next one is
attacked. This strategy simplifies the termination proof of the splitting rule (see below) considerably.

The following transformation rules are needed to build unification systems for P-logic:
(The letters written outlined denote - possibly empty - strings of W-terms.)

Definition 6.2.1 (Transformation Rules)

The transformation system P-Unify consists of the following rules:
f(s1,....8) = f(t),...t) = s;=1, &... & Sp=1, (Decomposition)
[ss)=[tt] - s=t&s=t (Separation)
[sws]=t > w=[]&[ss] =t (Identity)
[ssws]=t > w=sl&[ss] =t (Inverse)
[ws]=[tt] > w=t & s=t (Path-Separation)
[wssi=[ttvt] = v=[vivy] &w=[ttv,] &[ss] =[v,t] (Splitting)

if s and t exist. v| and v, are new variables. »

Since the application rule explicitly checks the equations for R-admissibility, it is in principle not
necessary to define separate rule systems for each type of the accessibility relation. In order to obtain
more efficient algorithms, however, it seems a good idea to group the unification rules according to the
type of the accessibility relation such that those rules are eliminated which produce non-R-admissible
substitution components. We do this in the following way:
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Definition 6.2.2 (Logic Dependent Unification Rule Systems)
Name of | applicable to | propertics of the | transformation rules
the system | modal logics | accessibility relation I

K-D | K,D | no special properties | Decomposition, Separation

T I'T [ reflexivity | System K-D, Identity

DB I DB | symmetry | System K-D, Inverse

B | B | symmetry and reflexivity | System T, Inverse

K4-D4 | K4,D4 | transitivity | System K-D, Path-Separation, Splitting
S4 | S4 | reflexivity and transitivity | System K4-D4, Identity

S5 I S5 | equivalence relation | Decomposition

Examples 6.2.3 (for some applications of the unification rules).
In the following cxamples we show only the most important transformation branches.
1. Suppose the accessibility relation has no special properties. We apply the rule system K-D.
We unify [v ¢ a] with [bc w]:
HVCM?[bCWH,¢

Separation

4
{[ca] =[cw]}, {v=D}

I
Separation ¢ =c is eliminated

g, {w=a,v=Dhb])

2. Supposc the accessibility relation is reflexive. We apply the rule system T,
We unily v a] with |bu w]:
{lval=[buwl}, o
Separlation

v
{[a] = [u w]}, {v =D}

— I
‘/Separation Identity \Idemit
v L\\A

¢, {fu=a,w=[], v=b} g, {u=[l,w=a, v=b)} g, {(w=[],u=a, v=b}

(The third solution is redundant, i.e. the algorithm is not minimal.)
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3. Suppose the accessibility relation is symmetric. We apply the rule system DB
We unify [a v a] with [a]:
{lava]=[a]},p

Separation = TInverse
{[V a]=!_a]}.¢ ¢,{v=a'1}
Scparlation
{lal=11}), {v=a}

Failure since no further rule
is applicable

4. Suppose the accessibility relation is symmetric and reflexive. We apply the rule system B.
We unify [au v] with [w]:
{lauvli=[w]}, ¢
Separation - Inv!crse

{luv]=[1}, (w=a} gfu=alv=w} g{v=u’, w=a}

|
Identity\ldentity

g {u=[Lv=[,w=a} @ {v=[,u=[],w=a)

The algorithm computes again superfluous unifiers. The two most general unifiers are {u~ al, v w)
and (v~ ul, we al).
5. Suppose the accessibility relation is transitive. We apply the rule system K4-D4.
We unify [ubcv] with [awc]:
{lubcvl=[awc]}, ¢
Splitting —_,
Separation {([bevl=[wcl}, {(w=[wwlu=[aw])
<— analogous
(bevi=[wel), (u=a) :
I
Path Separation Splitting _
€ \
g{w=[bcl,v=c,u=a) g.{v=[vicl,w=[bcv],u=a)}

Only the successful and not redundant branches are drawn.
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6. Suppose the accessibility relation is reflexive and transitive. We apply the rule system S4.
We unify [u b c v] with [a wc]:

{lubcvl=[awc]}, o
Splitting —_g,
Separation {bcvl=[wcl}, (w=[ww],u=[aw]}

<+ analogous
{lbcvl=[wcl}, {u=a}

| . \\ ..
Separation Path-Separation Splitting
T~

T

{lcvl=ch{w=b,u=a} g,(w=[bcl,v=c,u=a} g (v=[vic,w=[bcv],u=a)}
Separation.I Identity

. (v=[lwW=b,u=a) Only the successful and not redundant branches are drawn.

7. Suppose the accessibility relation is an equivalence relation.
The world-paths are in modal degree one normal form.We apply the rule system S5.
We unify f([c(x)], g([1, x)) with {([u] g([], h[u])):

{f([c(x)], g([1,x) |= f({u], g((}, hlul)}, ¢
Decomposition

{g((1,x)) = g([1, hlc(x)])}, {u = c(x)}
DecomI ition

occurs-check failure x = h[c(x)]

Remark

The correspondences between the properties of the accessibility relation and the type of the unification
algorithm was first recognized by L.Wallen [Wallen 87]. Exploiting the prefix stability of terms we were
however able to optimize the corresponding algorithms for semigroups, monoids etc.
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In the next three sections we prove the soundness, termination and completeness of the unification rule
system P-Unify as defined in 6.2.1. Since the control algorithm for the transformation explicitly checks
the equations for R-admissibility, it is not necessary to consider the rule systems for each type of the
accessibility relation separately.

6.3 Soundness of the Unification Procedure

First we show that the unification rules compute idempotent, R-admissible, prefix-preserving unifiers
for the terms to be unified, i.e. their soundness.

Lemma 6.3.1 The unification rules P-Unify compute idempotent and R-admissible substitutions.
Proof: Idempotence and R-admissibility is explicitly ensured in the control algorithm for the
transformation which is the only place where new equations are inserted into the solved part. The idem-
potence follows from the occurs-check and the fact that the application of an equation x = t to the other
equations removes x completely from the equation system before x =t is inserted into the solved part. m

Lemma 6.3.2 If the unification rules P-Unify are applied to terms p and g, the resulting substitutions
actually unify p and q.

Proof: In order to prove that the substitutions actually unify the terms p and q we must show that no
transformation I, — I'",0” of the equations increases the set of solutions i.e. Uy(I'w o) 2 Ugx(I"uo”).
With other words we must analyze each transformation rule in def. 6.2.1 and show that a unifier for
I'"u o’ is also a unifier for I'U o. Since this is trivial, we omit these proofs. By induction on the length
of a transformation chain we can then conclude that the unifier corresponding to the solved equation
system unifies the original terms p and q. n

Lemma 6.3.3 If the unification rules P-Unify are applied to terms p and g, the resulting substitutions
are prefix-preserving for p and q.

Proof: The idea for the proof is as follows: At first we modify the transformation system slightly:

After selecting the initial equation *“p = q” from the initial equation system I'y, “p = q” is not removed
from I such that it is automatically instantiated when a new equation “x = t” is computed. When the
procedure terminates, “p = q is then instantiated with the computed unifier 6. Obviously the initial
system [y is prefix-stable. Now we show for each transformation I' — I'” that the transformed system
I' is again prefix-stable. With induction on the length of the computation path, we obtain that the final
system which now contains op = 0q is prefix-stable, i.e. 6 is prefix-preserving for p and q.

Unfortunately the separation rules remove leading parts of the world-path. Therefore the intermediate
equation systems are not prefix-stable, just because the unified leading parts of the world-paths are
removed. For the purposes of this proof we therefore modify the transformation system again by adding
to each equation “s = t” the removed leading part p, i.e. we manipulate tuples p, “s = t”. p has no
influence on the algorithm, but it is used to prove the invariant that the intermediate equation systems I
are prefix-stable. p is automatically instantiated when a new equation “x=a” is computed. The depth
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first, left to right selection strategy for the rule application ensures that p is always the common unified
part of the world paths [p s] and [p t]. The prefixes of the variables both in s and t are therefore
computed with respect to p.

With the modified transformation system we can now prove that each transformation I' — I'” leaves the
prefix-stability invariant:
Decomposition: f(sy,...,s;) = f(t},...t)) = 8;=t; &... &s =t
If none of the s; and ¢, is a variable, I'” is obviously prefix-stable.
If there are components x = s among the s; = t; we can apply lemma 5.3.3 to {x+ s},
yielding prefix-preserving ({x » s}, ({x, s}, I')).
With induction on the number of these variable-term pairs we obtain that I"” is prefix-stable.
Separation: p,[ssl=[tt] — s=t&[ps],s=t
The left to right selection strategy of the rule application ensures that before [p s], s =t is selected
as the new equation to be transformed, s and t are unified. Therefore it does not matter if [ps] or
[p t] is taken for the new prefix of s=t.
If neither s nor t is a variable then I'" is obviously prefix-stable.
W.lLo.g let t be a variable and ( & 8,
Then we have prefix-stable(|p s|, T) and
since t ¢ s and t ¢ p = prefix(t, I'): prefix-preserving({t - s}, (Ip s], [p ).
Furthermore Vars({t - s})\ Vars([ps], [pt])) = .
Thus, we can again apply lemma 5.3.3 yielding that I"” is prefix-stable.
Identity: p, swsl=t > w=[1&p,[s5] =t.
w vanishes simultaneously from all world-paths in I, therefore I'” is again prefix-stable.
Inverse: p.lsswsl=t— w=s1&p,[ss] =t
[sw] vanishes simultaneously from all world-paths in I', therefore I is again prefix-stable.
Path-Separation: p, [ws]=[tt]— w=t & [pwl,s=t".
With the same arguments as for the separation rule we obtain that I' is again prefix-stable.
Splitting:  p, [wss]=[ttvt] > v=[vivy]l &w=[ttv;] &[pw] [ss] =[v,1]
if both s and t exist. v, and v, are new variables.
We can assume w ¢ [t t] (otherwise there is an occurs check clash.)
LetA:={ve [vivol, we [ttv ]} orA:= {ve [v; s8], wr [ttv ]} whent =]
We have prefix-stable([p w], [ptt v]).
Since v ¢ [ptt] = prefix(v, ") and w ¢ p =prefix(v, I'), thus w ¢ [ptt].
Therefore Vars(A) \ Vars([p wi, [pttv]) < {v; vo} and {v; vl Vars() = ¢ (vq,v, are new).
Finally we can apply lemma 5.3.3 once again yielding that I'" is prefix-stable. [ |

Corollary 6.3.4 When the transformation system is applied to prefix-stable terms p and q, the
variables w and v in the splitting rule

[wss]=[ttvt] = v=[vivy] &w=[ttvy] &([ss] =[v,yt]
are always different. Furthermore if w ¢ [t t], w and v do not occur at toplevel of [s s] and ¢".
Proof: Applying the same construction as in the previous lemma, we obtain

prefix-stable(([pwss], [pttvt]).
Since v and w have different prefixes, they cannot be equal. Because of the toplevel linearity of the two
world-paths (lemma 5.3.5), w cannot occur in [s §] and v cannot occur in t”. If w would occur at the
toplevel of ¢, v would occur in the prefix of w, i.e. in its own prefix [p t] which is impossible (lemma
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5.3.5). If v would occur at the toplevel of [s s], w would occur in the prefix of v, i.e. because w & [t ]
w would occur in p which is again impossible. [

Collecting the results we can finally state:

Theorem 6.3.5 (Soundness of the Unification)
Applied to prefix-stable terms or atoms p and g, the unification rules P-Unify compute idempotent,
prefix-preserving and R-admissible unifiers for p and q. ]

6.4 Termination of the Unification Procedure

In order to prove the termination of the unification process we define a well founded complexity measure
p(I") for the unsolved part of the equation system and show for each node I',6 in the search space: If i is
the current measure for I” then in each branch below I',G there is a finite number of transformations after
which the measure is smaller than .

For an equation system I let w(I') =: (V, S) where
V=Vars(I) and

S = number of symbol occurrences in I" + z Iwpl
wp=world-path in I"
i.c. the length of cach world-path is added to the number of symbol occustences in T,
We order y lexicographically. Since both components are always non-negative, this is clearly a well
founded ordering on I'.

Theorem 6.4.1 The unification rules P-Unify terminate, if applied to prefix-stable terms or atoms.
Proof: We prove for each node I',6 in the search tree: If | is the current measure at I' then in each
branch below I',o there is a finite number of transformations after which the measure is smaller than .
Let I',o be the current set of unsolved equations and let p(I") =: (V, S) be the current measure
We examine each possible transformation.
(Remember that equations x=t are immediately applied to all other equations, i.e. x vanishes completely.)
Decomposition: {(sy,...,s,) = f(t;,...t)) = s;=t; &... &s =1,
If one of the s; or t; is a variable, V decrcases immediately, otherwise S decreases by 2 because
the two occurrences of f disappcar.
Scparation: [s8]=tt] - s=t1&s=t
In case either s or t is a variable, V decreases immediately, otherwise S decreases by 2 because the
two new world-paths are shorter.

Identity: [sws]=t - w=[]&([ss] =t. V decreases atleast by 1.
Inverse: [ssws]=t — w=s1&[ss] =t. Vdecreases at least by 1.
Path-Separation: {w s] = [t t'] ) > w=t & s=t". V decreases at least by 1.
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Splitting: (wssl=[ttvt] = v=[vyvy] &w=[ttvy] &[ss] =[v, ]
if both s and t exist. v; and v, are new variables.
According o corollary 6.3.4, w is different to v, furthermore neither w nor v occurs at toplevel of
8 and ¢, therefore the substitution of v and w docs not change the length of s and t. (@)
Case 1: t’is empty. Since solved variables are immediately applied to I', v and w vanish whereas
v, is inserted, i.e. the total number of variables deceases by 1.
Case 2: t’ is not empty. We exploit the linear selection strategy for the rule application which
states that [s s] = [v, t'] is to be selected next. In this case each of the transformation rules except
the splitting rule causes at least one variable to vanish form I' in the next step, i.e. in these
branches the number of variables decreases by 1 after one additional transformation.
The splitting rule can be applied only finitely often to [s s] = [v, t'] because of (@) each splitting
shrinks these world-paths. Therefore the two world-paths will eventually be small enough that
case 1 applies and the number of variables decreases by 1.
Since the lexicographic ordering on l is well founded, no infinite transformation chain is possible. =

6.5 Completeness of the Unification Procedure

A unification algorithm is said to be complete if it computes a complete set cUg(*‘p = q”') of unifiers for
the two given terms p and q. To prove this property for a unification algorithm, according to def. 6.1.1
we must show that for every R-admissible unifier A for p and q there is a unifier T € cUg(“p = q”) with
A <g T [Vars (p, 9)].

Theorem 6.5.1 (Completeness of the Unification Rules P-Unify)

Let p and q be two terms or atoms and let Ay be an R-admissible unifier for p and q, i.e. AP = Agg.
Then the rule system P-Unify computes a unifier T which is more general than A,

ie. Ag<qg T [Vars (p, )]

Proof: Let V := Vars (p, q). The idea for the proof is as follows: Starting with the initial node I',0 =
{“P=q"}, 8, and A as the initial unifier for 5,6, we extend A by substitution components for the
generated new variables (see the splitting rule) and show for each node I',¢ in the search tree: if the
current extended version A of A unifies I, then there is at least one successor node I',6" = I',6(rule

application) which is unified by an extended substitution A", Since A unifies the initial equation system
[3:0¢, by induction on the depth of the search tree we can then conclude that there is a successful search
path such that the last version A, of A unifies the leaf node ¢,7, i.e. since T is R-admissible (lemma
6.3.1), A, < T [V]. Since A,y = Ay therefore Ay < T [V] holds.

Now let I',6 be the current node in the search tree and let A be the current extended version of Ao
Furthermore let “s =t” € I be the equation to be transformed next. With the induction hypothesis we can
assume that A unifies I',6 and in particular As = At. The control algorithm of the transformation system
ensures that neither s nor t is a variable. Therefore the following cases remain to be examined:

Case 1: “s =t =1 f(sy...,8) = f(ty,..,t)"
As = At implies As; = Aty,..., As, = At Therefore A unifies I'",6” := I',c(decomposition).
Case 2: “s =" = “[s]...,8,] = [ty,..,t,]” are world-paths.

Casc 2.1 W.Lo.g A collapses a leading part of t, i.e. Alty,....t; ] = [].
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(The case that A collapses a leading part of s is symmetric.)
= Some of the ; in [t;,...,t;; ] must be variables and either At = [] or A; =¢; ;L.
= A unifies I'",6” := I',6(identity or inverse).
Case 2.2: A collapses no leading part of s or t.
Case 2.2.1: Asy =Aty.
= As,...5] = Alty...t ]
= A unifies I'",6" := I',6(separation).
Case 2.2.2: As; # Aty
Case 2.2.2.1: As; = Aft;...t, ] for some k > 1.
= Alsy...8,] = Ayt ]
= Aunifics I'",6” := I',0(path-separalion).
Case 2.2.2.2: Aty = Als;...5; | for some k > 1. This case is symmetric to the previous one.
Case2.2.2.3: Asy #Aft;...t ] and Aty # Afsy...5.] foreveryk > 1.
=> either s, or t; is a variable and both s, and t, must exist.
Case 2.2.2.3.1: Both s; and t; are variables.
Let Asy =: [al...ag] and Aty =: [a,...a;] where w.l.o.g h > g (since As; # At;, h = g is not possible)
Since Aty # Als;...s;] for every k, there must be another variable s;, i >1 such that the situation
looks as follows:

S =[s; $p -..8;y 8; 8410+
| | (v | () | |
As -'-'-[al...ag ag_,_l...ajaj+l...ahb1...b1 ?\'si-f-i"'] ie. XSi": [aj.+1..;ahb1..§b1] o
| |
Mo o=[ag8 8 ay by...bjcy... ]
{ = [tl 12...]

Therefore the splitting rule

“Iwssl=[ttvet] > v=[vivy] &w=[ttv;] &[ss] =[v, ]

if's and t exist. vy and v, arc ncw variables.”

is applicable for splitting s;.
We split s; yielding “s; = [vy vo]” & *“t; = [81...8, V1" & “[ty ...t ] = [V5 §;,1...8,]".
We define A= {v; [aj+1...ah], Vo [by...bj]} o A and have

A's; = [aj+1...ahb1...bl] =LA’ [v; v,] and

Aty = [al...ag ag+1...ah] =A[sy...s;1v;] and

Aty .t ] =[by..bcr J= A Vo Asp g A = AV, 55,...8,)
Thus, A" unifies I''6" = T'o(splitting).
(That this case can be handled by splitting a variable other than s; and t, is one of the main reasons
for the termination of the unification process.)

Case 2.2.2.3.2: W.lo.gt, is avariable and s is not a variable.

Let Aty =: [a;...a,]. Since Aty # A[s;...s; ] for every k, there must be another variable s;, i >1 such
that the situation looks as follows:

S = [Sl "'si-l Si Si+1"']
! vy | (vp) |
)\.S = [al...ag ag+1...ahb1...b1 )bsi+1...] ie. }\.Sl = [ag+1...ahb1...b1]
| I
A'[ = [al ............... ahbl...blcl...]
t = [tl tz.]
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Therefore the splitting rule
“Iwssl=[ttvt] > v=[v;vy] &w=[ttv] & [ss] =[v, ]
if s and t cxist. v; and v, are ncw variables.”
is again applicablc for splitting s;.
We split s; yiclding “s; = [v; v,]” & “t; = [s;...5. 1V ]” & “[ty ...t 1 = vy §,4...8,]"
We define A= (v - [agﬂ .
s = [ugﬂ...ah by...bl=A"|v; vy] and

..ayl, vo = [by...b] oA and have again

)\,‘tl = [al.ag ag+1...ah] = K’[Sl...si_lvl] a.nd
Aty ot I=[by...bycy. . = [A Vo A's; ... As 1= A [vy 85,5, ]

Thus, A" unifies ['o” = I'c(splitting). u

Conclusion We have presented sound, terminating and complete unification algorithms for P-logic
terms. Except for the relatively simple cases where the accessibility relation has no special properties or
is an equivalence relation, the algorithm is not minimal (see the examples 6.2.3), i.e. it may compute
superfluous unifiers. Since the number of unifiers is still finite, a minimal algorithm may be obtained by
climinating the redundant unificrs in an appropriale postprocessing step. However, because in general
there may be exponentially many unifiers, there is a need for further investigation into the unification of
P-logic anyhow in order 1o find more restrictions during the generation of redundant unificrs.



Chapter Seven

Modal Resolution

Two different versions of the resolution rule are necessary. Resolution for interpretations with a serial
accessibility relation is just like ordinary resolution. The only difference is that the unification may
produce more than one, but at most finitely many unifiers. When the accessibility relation is not serial a
more complex theory resolution operation is necessary. The two versions are defined in this chapter and
their soundness is shown. For the completeness proofs more technical machinery is necessary which
will be provided in the next chapters.

7.1 Resolution for Serial Interpretations

There is no significant diffcrence to the resolution rule for predicate logic. For simplicity we incorporate
the factoring rule into the resolution rule.

Definition 7.1.1 (The Resolution Rule for Serial Interpretations)
Let C= Pyv..vPl vC and

D=-Psly v...v—Psl v D
be two clauses with no variables in common, the parent clauses, and let 6 be a prefix-preserving and
R-admissible unifier for the termlists tl,....tL, and sly,...,sl , of the resolution literals {Pd,,.. P}
and {—.Psll,...,ﬂPslm} ie.otly=..=0tl,=0sl; =...=0sl.
Then the clause 6C' v oD’ is called a resolvent of the parent clauses C and D. |

The soundness proof is a special case of the soundness proof for the resolution rule for non-serial
interpretations which will be given below.

Examples for resolution operations:
C=P[va] v Q[v] Let the accessibility relation be reflexive
D = —P[buw] v S[bu] oc={veb,ura we []}

Resolvent: Q[b] v S[ba]

C=P[va] v Q[v] Let the accessibility relation be transitive
D=—-Plbuw] v §S[bu] o= {ve [bu], wr a}

Resolvent: Q[bu] v S[bu]. u
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7.2 Resolution for Non-Serial Interpretations.

The execution of a resolution operation usually consists of two steps:

Step 1: The parent clauses must be instantiated with the unifier.

Step 2: The contradictory literals must be identified and the remaining literals in the instantiated
parent clauses must be collected into the resolvent.

Both steps are not without problems when the accessibility relation is not serial. We shall discuss the
problems with some examples and then give a solution.

7.2.1 Conditioned Instantiation of Clauses

Consider the simple clause C = P[u]. This clause is satisfiable with a P-interpretation consisting of the
initial world only, but the instance {u - a}P[u] = P[a] with a non-variable ‘a’ is not satisfiable in this
interpretation. Therefore a straightforward instantiation rule is ngt sound. The reason is that certain
P-interpretations may satisfy a quantified formula just by making the quantification empty. Of course this
P-interpretation can no longer satisfy the instantiated formula where the variable in question has been
replaced by a non-variable term. Thus, we can only create a conditioned instance of the clause where the
condition for the instantiated W-variable u expresses somehow “if there is a world accessible from the
world denoted by prefix(u, C) then ...” or after rewriting the implication as a disjunction: “either there is
no world accessible from the world denoted by prefix(u, C) or ...”, In order to express such conditions
as literals we nced a special predicate ‘End” which takes one world-path p as argument and expresses
“The world denoted by p is the last one”. The correct instance of the example above is then {u~ a}P[u]
= End([]) v P[a] with the informal meaning: Either there is no world beyond the initial world or there is
one and P holds in this world.

Definition 7.2.1 (The ‘End” Predicate)
A special predicate symbol "End” is defined which is distinguished from all other symbols. "End” takes
one world-path (or W-term) as argument. Its semantics is:
For a P-interpretation 3p with initial world 35:
Spip End(p) iff  Sp(p)(Sy) # L and there is no world accessible from Sp(p)(S). [ |

Definition 7.2.2 (Conditioned Instantiation of Clauses)
Let C= be a clause and let ¢ be a prefix-preserving substitution,
olC = U{{End(p), End([pa,]), ..., End([pa;...a )} |

p = o(prefix*(u, C)) where u € DOM(0) and ou = [a,...a a1} (a)
v U{{End(D),..., End([...b,,D} I [...b by, 1] is @ subterm in COD(c)} )
v oC. ©) =
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Examples for conditioned instantiation of clauses:
{ve [cvyd], w e [ew;wy], x » yH Pla(x)vbw] =

End([a(y)]) v End({a(y)c]) v End([a(y)cvy]) v

End([a(y)cv,db]) v End([a(y)cv,dbe]) v End([a(y)cv dbew,])

v Pla(y)cv,dbew; w,]
{x+~ flab]}{ Q({] x) = End([]) v End([a]) v Q([] flab])
(This looks horribly inefficient, but the number of End-literals can be considerably reduced using the
End-reduction rule which is defined below. Furthermore most of the remaining End-litcrals disappear
when the resolvent is generated.)

Theorem 7.2.3 (Conditioned Instantiation is Sound)

Let C = Vu,,...,u C' be a fully quantified clause, let Sp be a P-model for C with initial world S, let 6
be an R-admissible, idempotent and prefix-preserving substitution and let D := Vv,...,v, 61C' be the
fully quantified conditioned instance of C. Then Spi-p D.

Proof: Since ¢ is prefix-preserving, D is again an M-adjusted clause.

W.Lo.g let DOM(0) := {x1,....%;} & {ug,....u}.

The correspondences between the different variable sets is as follows:

VarS(C) = {ul, ......... s uk}
DOM(©G) = {Xq,....x} < Vars(C)
Vars(D) = {viseesvyl M DOM(0) =9 (since © is idempotent)

Thus, Vars(C) \DOM(o) = Vars(C) N Vars(D).
In order to apply theorem 5.1.5, let Sp” := Splv,/c;...v /c, ] be a 6lC'-continuing P-interpretation.
We must show that 3p” satisfies 6l C'.
Case 1: Sp” satisfies one of the generated End-literals.
Obviously 3p” satisfies 61C'.
Case 2: 3p” satisfies not a single of the generated End-literals.
Since none of the literals “U{ (End([])...., End([...b,, D} [...bb, 4] is a subterm in COD(0)}”
(def. 7.2.2,b) is true in Sp’, obviously Sp(ox;) =L fori=1,...,.
Therefore let 3p" := Sp [0] (see lemma 5.2.5).
Lemma 5.2.5 states in particular
for every D-term tin C': 3p"(t) # .L implies Sp"(t) = Sp“(ot) and
for every world-path p in C': Sp"(p) () # L implies Sp"(P)(Sg) = Sp (6p)(Sp). (#)
The next thing to be show is that 3p" is C'-continuing, i.e.
for every world-path [p.ul e C': if Sp"(p)(Sp) # L then Sp"([p.ul)(Sp) # L: (def. 5.1.4)
Therefore let [p.u...] € C with Sp"(pXS) # L. With (%) we have S, (op)(Sy) = L.
Case a) u ¢ Dom(o).
Since op € 6lC' and 8" is 61 C'-continuing, L # Sp ([op.ul)(S() = Sp"([p.ul)(Sy)-
Case b) u € Dom(0).
= End(op) € 6lC (def. 7.2.2,a)
Since Sp” does not satisfy End(op), and therefore 3p" does not satisfy End(p), there is a
world accessible from Sp"(p)(S), thus Sp"([p.ul)(Sg) # L.
Now, since 3p" is C'-continuing, by theorem 5.1.5, 3p" i-p C', i.e. Sp" ip L for some literal L in
C'. Furthermore, with (%) we get 3p”IFp oL, and therefore again Sp” 1-p 61C'.
Applying theorem 5.1.5 now, we conclude Spip D. u
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Theorem 7.2.4 (The End-Reduction Rule)

A literal End(p) can be removed from a clause C if there is another literal containing a world-path [p.u...]
with a W-variable u.

Proof: Clearly no C-continuing P-interpretation Sp with initial world 3, can satisfy End(p), for
otherwise there is no accessible world form 3p(p)(3 ) such that Sp([p.u])}(3y) # L. Hence, End(p) is
false in all C-continuing P-models for C and can therefore be removed. |

The next example demonstrates the power of the End-reduction rule:
Instantiation without the End-reduction rule:
{ve [cvyd], w e [ew;W,], x » yHP[a(x)vbw] =
End([a(y)]) v End([a(y)c]) v End([a(y)cv;]) v
End([a(y)cv,db]) v End([a(y)cv,dbe]) v End([a(y)cv,dbew, ])
v Pla(y)cv,dbeww,]
Instantiation and application of the the End-reduction rule:
{ve [cvid], we [ew;w,], x = yHP[a(x)vbw]| =
End(|a(y)]) v End([a(y)cv,]) v End([a(y)cv,db])
v Pla(y)cvdbew;w,].

7.2.2 Complementary Literals

Usually two complementary literals, i.e. literals with opposite sign and the same predicate symbol can be
used as resolution literals. They are removed [rom the resolvent because they are semantically
contradictory. Wc must extend this definition by saying what is complementary to the new “End”
predicate. The semantics of the End-predicate obviously enforces that every literal L containing a
world-path [p.a...], a # [] is complementary to a literal End(p).

Definition 7.2.5 (Complementary Literals)

Two literals L and K are called complementary if either:

» L=Pu,K=-Ptl or tl is a termlist

» L =1Pt, K = End(p), [p.a...] € tl for some a # [] or

» L = End(s), K = End(p), either s = [p.a...] or p = [s.a...] for some a # []

Two sets L and K of literals are called complementary if every literal in L is complementary to each literal
in K. [ |
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Lemma 7.2.6  Two scts C and D of complementary literals are unsatisfiable by a P-interpretation.
Proof: Assume there is a P-interpretation 3p with initial world 3, that satisfies a literal L € Cand a
literal K € D.
Case 1: L = End(p), i.e. Sp(p)(S) # L and there is no world accessible from Sp(p}(S3).
Case 1.1: K = End([p.a...]).
This contradicts the fact Sp([p.a])}(Sy) = L.
Case 1.2: K =End(s) and p = [s.a...],
i.e. Sp(s)(Sp) # L and there is no world accessible from Sp(s)}(S).
This contradicts the fact Sp(p)(Sy) # L.
Case 1.3: K =4Ptl, [pa...] e tl.
Since there is no world accessible from Sp(p)X(Sg), Sp([p-al)(S) = L
which contradicts Spi-p K.
Case 2: L =Pl
The case that K is an End-literal is symmetric to case 1.3. The only remaining case is K = —Ptl. Since
S p satisfies L, 3p(t) # L for every term t in tl. Therefore Sp cannot satisfy Ptl and —Ptl.
In all cases we got a contradiction. Thus, Sp cannot satisfy both sets C and D. [ ]

The previous lemma holds for unquantified literals. It does not imply that two quantified literals Vu P[u]
and Vu—P[u] are contradictory because the P-interpretation consisting of the initial world only satisfies
both of them. The reason is again that the quantification Vu is empty in this interpretation and in this case
the structure of the literal is irrelevant for the truth value of the whole formula. If we therefore assume
that both Vu P[u] and Yu—P[u] are true in a P-interpretation, we can deduce that there can’t be worlds
accessible from the initial world, i.e. End({]) must be true in this P-interpretation. End([]) is therefore
implied by Vu P[u] and Vu—P[u] and must be inserted as a residue into a resolvent where P[u] and
—-P[u] are used as resolution literals (see [Stickel 85]).

In general such residue literals are constructed as follows:
Definition 7.2.7 (The Residue of Literal Sets)

For a literal set C: Residue(C) := {End(p) | p = prefix*(u, C), u € W-vars(C)} | ]

Example for residues:  Residue({Q[aubcv]}) = {End[a], End[aubc]}. [ |



Now we are ready to define the general resolution rule.

Definition 7.2.8 (The General Resolution Rule)

Let C =C,v(, and

D =Dy vD, be two clauses with no variables in common, the parent clauses,
and let o be a prefix-preserving and R-admissible substitution such that

olC =0C,vC3vaC,vCy and

oiD =oD;vD;vcD,vD, are the conditioned (“End-reduced”) instances

where the End-literals C;, C4, D5 and D, are partitioned such that 6C; U C; and 6D L D5 are
complementary. The clause

Residue(cC;  C; woD;uUD3)voC, v CyvoD,v Dy
is called a resolvent of the parent clauses C and D. "

It is noted that the substitution G may be a unifier for literals with the same predicate symbol and different
signs, but 6 may also unify the world-path p of an End-literal with the leading part q of a world-path
{q.a...] occurring in the resolution literals of the second clause. The term a following q in this sccond
world-path should be a non-variable term, for, otherwise the generated resolvent will be subsumed by
onc of its parent clauses. (It is an cxcrcise for the reader to prove this.)

Examples for resolution operations with End-reduction in non-serial interpretations.

a) C = Plavv], Q[avv]

D = —P[wbul], S[wbu] o={wwoa,ve b, um v}
Instantiation: olC = Plabv], End|[a], Qlabv]

olD = —P[abv], End[], End[ab], S[abv]

End-reduction: clC P{abv], End[a], Q[abv]

olD =-—Pf[abv], End[], S[abv] Residue = End[ab]
Resolvent: End[ab], Q[abv], S[abv]
End-reduction: Q[abv], S[abv]

b) C = P(lL.x, Qf]

D  =-P(], c[au]) o = {x clau]}
Instantiation: olC = P([], c[au]), End[], End[a], Q[]

olD = -P(], c[au])
End-reduction: olC = P(]], clau]), End[], Qf]

olD =-P(l], clau]) Rcsiduc = End[a]
Resolvent: End[a], Q[]
c) C = End[vc], Q[v]

D = S[abcd] o = (v [ab]}
Instantiation: olC =End[abc], End[], End[a], Q[ab]

6lD = S[abcd]
Resolvent: Qlab] . [ ]
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Theorem 7.2.9 (Soundness of the General Resolution Rule).
Let C and D be two clauses with no variables in common, and let ¢ be a prefix-preserving and
R-admissible substitution such that 6{C =: C' U C" and 6D = D' U D" are the conditioned instances
and E = Residue(C' u D") u C" u D" is a resolvent.
Then every P-model for the fully quantified clauses C and D is also a P-model for the fully quantified
resolvent.
Proof: Let 3p be a P-model for the two fully quantified parent clauses C and D. According to theorem
7.2.3, 8p is also a P-model for the fully quantified instances 6lC and 6lD. Since G is
prefix-prescrving, the W-variables in the instantiated parent clauses and the resolvent have the same
prelixes. In order to apply thcorem 5.1.5, let 3p” := 3p[v,/cy,...,v /c | be an E-continuing
P-interpretation, where w.l.0.g {vy,...,v} are the variables occurring in the instantiated parent clauses
and the resolvent.
Case 1: 3p” is not 6lC-continuing.
Le. there is a variable v with [p.v] = prefix(v, 61C) and 3p"(p) # L and Sp"([p.v]) = L.
Since 3p” is E-continuing, v cannot occur in C" and must therefore occur in C'.
In this case, the literal End(p) is part of the residue and satisfies 3p". Hence, Sp i+p E.
Case 2: 3p” is not 6l D-continuing. This case is symmetric to the previous one.
Case 3: 3p” is 0lCucD-continuing.
Since 3 p satisfies the fully quantified instances 61C and 61D, by theorem 5.1.4, 3p” satisfies
clCand 6lD, i.e. 3p” satisfies a literal L in 61C and a literal K in 6D. If L is in C" then
X -p E as well. Therefore let L € C'. Since Sp” cannot satisfy any of the complementary literals in
D' (lemma 7.2.6), K must be an element of D" ¢ E. Hence, 3p”i-p E.
Applying theorem 5.1.5 we can now conclude that 3p satisfies the fully quantified resolvent. [ |
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Chapter Eight
Term Frames

The goal of the three subsequent chapters is to prove the completencss of the resolution rules. In this
context completeness means that the empty clause, i.e. ‘False’, can be deduced from every unsatisfiable
clause set by a sequence of resolution operations. The completeness proof we are going to present
follows the ideas of the completeness proof for the resolution rule in first order predicate logic (c.f.
[Chang&Lee 73]). The first step is to reduce the definition of unsatisfiability, such that not all possible
P-frames need be considered to find out whether a clause set is unsatisfiable, but only certain “term
frames”, or “T-frames” for short, whose domain consists of terms. The second step is to represent all
possible T-frames in a “semantic tree” and to show that for every unsatisfiable clause set a given
semantic tree can be cut below a certain depth such that the remaining finite tree still contains enough
information for determining the unsatisfiability of the clause set. This finite tree can then be used to
generate the desired sequence of resolution operations terminating with the empty clause.

Before we come to the definition of term frames, however, we define an algebraic relation between

P-frames:

8.1 Frame Homomorphisms

Frame homomorphisms map the worlds in one frame to the worlds in another frame such that the
accessibility relations are respected. A frame homomorphism will be used to describe the basic relation
between an arbitrary model and a term model for a clause set.

Definition 8.1.1 (Frame Homomorphism)
Given two M-frames F, = (Dy, 8, ®;) and F, = (D,, 3,, R,), over the same signature, a mapping ®:
¥, — ¥, iscalled a frame homomorphism if it maps the worlds in 3, to worlds in 3, with respect to
the accessibility relations, i.e.

a) forevery 3, 3,¢e 3y Ri(31,39) = Ry(P(S,), D(3,)) and

b) forevery 8, € 3 and 35" € Jy: Ry(@(3), 3,) =33, € 31:3,"=(3,) and R,3,.3,)

Example O

for a frame 3,
homomorphism T
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The next lemma states that two P-frames correlated by a frame homomorphism evaluate terms in a similar
way.

Lemma 8.1.2
Given two P-frames F[ = (D, 8, R), Sy) and Fy = ((D,, $,, R,), 3y,) with a frame
homomorphism ®: ¥, — F,, for cvery P-interpretation Sp =(F, 3,0, 0):
For every ground term Sp(t) # L iff ®(Sp)(t) #.L and
for every ground world-path t: Sp(S) = L iff DSp)NP(S)) =L
where ®(3p) is defined to be (F,, D(3), 8, 8).
Proof: Let Sp = (F;, S, ¢, #) and let t be a ground term or a ground world-path.
“="Let Sp(t) # L or Sp(t)(S) # L respectively.
We perform an induction on the structure of t.
The single base case t = [] is trivial.
The induction steps are:
Casg 1: t=[p. s] is a world-path.
The induction hypothesis states (3 p)(P)(P(3)) # L and (S p)(s) # L.
Since Sp([p . sHS) 2 L, R (Sp@)(S), Sp([p . s1)XS3)) must hold and
since @ is a frame homomorphism, there must be an R,-accessible world from (3 p)(PXD(I)).
Finally, because world-access functions are maximally defined (def. 3.2.1),
PS3pXNP(I)) = D(Sp)(P) o D(SpX(s) (P(T)) # L.
Case 2: tis a W-term or a D-term. The statement follows immediately from the induction hypothesis.

“e=" Let @(Sp)(t) # L or D(3p)(tN(P(S)) # L respectively.
Again we perform induction on the structure of t.
The base case t =[] is trivial.
The induction steps are
Case 1: t=[p. s] is a world-path,
The induction hypothesis states Sp(p)(S3) # L and Sp(s) # L
Since (Sp)([p . sSI(D(I)) # L there is a world accessible from &(Sp)(p)(P(3)), namely
3, = 0Sp)([p - sHP(3)) = (2(Sp)(P) o P(Sp)(s)) (P(3)
=38,¢€ 3,:3,"=D(3,) and K, (Sp(P)(3). I5) (def. 8.1.2)
= (Sp(E)eSp(s)(Q) #L (def. 3.2.1, world-access functions are maximally defined)
= Jp()(S) = L.
Cage 2: tis a W-term or a D-term. The statement follows immediately from the induction hypothesis. m
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8.2 Construction of Term Frames

T-frames arc the analogue to Herbrand interpretations in predicate logic. The name “T-frame” abbreviates
“term frame” and suggests that the domain of a T-frame consists of ground D-terms over a given
signatur. In the non-serial case there are not necessarily all possible ground D-terms. Function symbols
are mapped [0 term constructor functions. However, since the worlds usually interpret a functiott symbol
differently, there must be different term constructor functions for each world. A function symbol f is
therefore mapped in a world S to a term constructor function that takes terms t;,...,t, and creates a term
f(p, t{,....t,) where p is a characteristic term for the world 3. To stay in the P-logic syntax, this p must
be a world-path. Thus, we must construct the possible worlds structure in T-frames such that there is a
unique correspondence between a ground world-path p and a world SP. In the sequel we shall therefore
always write worlds in T-frames indexed by their characteristic world-path

Definition 8.2.1 (T-Frames)
A T-frame Fp = (D, §, R), Sy) over a signature Zp is a special P-frame where
a) The signature interpretations Sp e $ map the D-valued function symbols f to term constructor
functions. f7:ty,...,t, & {(p, t;,....t).
b) Dis the set of ground D-terms containing world-paths which have a corresponding element in 3.
¢) The accessibility relation R is the corresponding reflexive, symmetric, transitive closure over a
basic relation which relates worlds Sp with 3[p_s].
d) Sy maps W-valued function symbols g to functions g”: (s,...,s )+ (Sp - S[p_g(sl,.__,sn)]).
Since Sy(g)(sys....s,) is always injective, the interpretation of associated inverse function
symbols in the symmetric case is straightforward (c.f. def. 3.2.2).

Lemma 8.2.2

A T-frame Fp := (D, 8, RN), 3y) establishes the following correspondence between the accessible
worlds R(3,, 3,) which are indexed with the world-paths r and s and the syntactic structure of r and s:
a) In casc R has no special propertics, cxcept scriality, s = {r. a] where a is a single W-tcrm.

b) In case N is reflexive, s =r is in addition possible.

¢) Incase N is symmetric, r = [s . a] where a is a single W-term is in addition possible.

d) In case R is transitive, s = [r . p] where p is a non-empty world-path.

Proof: Obvious. n
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One of the advantages of Herbrand interpretations in predicate logic is that there is no difference between
semantic variable assignments x — a and syntactic ground substitutions. This is so because the domain
elements are just ground terms. In the definition of the satisfiability relation I~ (for predicate logic), the
casc handling the universal quantifier can therefore be expressed simply:

For an Herbrand interpretation Syy: Sy Vx F iff Sylx/a] - 7 for every ground term a.

That means the semantics of the quantifier can be expressed using syntactic notions only.

To regain this nice property also in P-logic for term interpretations (P-interpretations built from
T-frames) is the subject of the rest of this chapter. There are no problems with quantifications over
D-variables because the domain elements in term interpretations are also ground terms, though not
necessary all possible ground terms. But what about quantifications over W-variables? Candidates for
the syntactic counterpart of the semantic world-access functions are R-admissible world-paths whose
interpretation are actually world-access functions (lemma 5.2.2). But is this enough? Can"t there be
world-access functions in term interpretations which are not representable as world-paths? In fact, the
following example confirms this negative conjecture.

Example for a world-access function in a term interpretation which is not representable as a world-path.
Consider the following non-serial term-interpretation for a signature with the two W-valued function
symbols g and h:

g 3 (s8]
k 1]
[g] k' is a world-access
\ function that is not
representable as a
Sgn P
world-path.
/ ¥ el
MX‘
o S n

Fortunately it can be shown that these additional world-access functions are not necessary for describing
the semantics of the class of M-adjusted formulae (def. 3.1.6), we are interested in. The reason is that in
our case W-variablcs have a unique prefix which denotes in each interpretation one particular world. A
quantification over a W-variable need therefore range just over the set of worlds which are accessible
from this particular world (that is the original semantics of the O-operator!), and world-access functions
that correspond to ground world-paths are sufficient for accessing from a given world all accessible
worlds.

Definition 8.2.3 (Term-World-Access Functions)
Given a T-frame Fy := (D, S, R), Sy,
let Sp_, = {Swl(g)(S11r+-S1np)o - S W) Sx1s- -+ oSicquc) | [€1(8115+ 58101+ Bk(Sk 1o+ - »Sieru)] 18

an R-admissible ground world-path.}
be the set of “term-world-access functions”. ]

According to lemma 5.2.2, S1_, < 3_, and, as the above example demonstrates, Sp_, # 3 _, in general.

70



Lemma 8.2.4 (Exhaustiveness of Term-World-Access Functions)

Given a T-frame Fp := (D, 3, R), Sy) and a world Sp e S, every accessible world Sp, can be
accessed by some term-world-access function.

Proof’: For the basic accessibility relation this is a consequence of conditions b and c in the definition of
T-frames (def. 8.2.1). When the accessibility relation is reflexive, the R-admissible empty world path []
which denotes the identity mapping accesses the world itself. When the accessibility relation is
symmetric, world-paths built with inverse function symbols denote functions which actess the
“pbackwards lying” worlds. Finally when the accessibility relation is transitive, the statement follows by
induction on the number of steps which are necessary to access Spr from Sp in the basic non-transitive
accessibility relation. [

The next lemma states that quantification over world-access functions which correspond to world-paths
are sufficient for describing the semantics of W-variables.

Lemma 8.2.5 (A restriction for Quantifications over W-variables)
Given a term interpretation 3¢ with initial world 3_and an M-adjusted formula Vu ¥ where u is a
W-variable and p = prefix*(u, %),
Spi-p Vu Filf

gither Sr(p) =L and S i-p F

or 3(p) # L and for every ¢ € Sp_, with (S1(p)od)(S,) # L: Sp[u/d] -p F
Proof: “=" This direction of the proof follows immediately from 31_, < 3_, and def. 3.2.4.
“«=" The only thing to be proved is that in the or case of the original definition of S 1-p Vu 7 (def.
3.2.4) the quantification “for every ¢ € 3_,” can indeed be reduced to “for every ¢ € S_,”.
Thus, assume S1(p) # L and let ¢~ be any world-access function with (S(p)ed U S,) # L. Using
lemma 8.2.4 we know that the world (S(p)o¢)(3,) can be accessed by some term-world-access
function ¢, i.e. (S1(P)ed NS, = (S1(p)d)(S,). Since all occurrences of u in Fhave the same subterm,
namely p, and since we know now S[u/$ 1([p.u]) = S[u/¢]([p.u]), both term interpretations S-p[u/$]
and S-r[u/¢] evaluate every term in ¥ to the same value. Thus, since Sp[u/¢] i-p F Sr[u/¢1i-p F must
hold as well, and finally, with the definition of I-p we conclude S i+p Vu 7. N

Now we are ready to describe the scmantics of clauses in term interpretations.

Corollary 8.2.6 (Semantics of Clauses in Term Interpretations)

Let C = Vv;,...,v, C be a fully quantified clause and let 3 be a term interpretation for C.

S irp Ciff for every C'-continuing term interpretation S "= S1[v/3(c)),....v,/S1(c,)] where the c;
are either ground D-terms or R-admissible ground world-path: S 'i-p C'.

Proof: The proof follows immediately from theorem 5.1.5 and the previous lemma. ]
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8.3 The Existence Theorem

The final task to be done in this chapter is to prove that term frames are the right objects to represent
P-models for clauses, i.e. to show that there is a term model for each satisfiable clausc set. We first
define for P-frames associated T-frames which evaluate ground literals to the same truth valuc as the
P-frame and then show that each P-model for a clause set has an assoctated T-model.

Definition 8.3.1 (Associated T-Frame)
Given a P-frame ¥p and a world 3 in Fp, a T-frame F is said to be 3-associated iff
a) The mapping ®@:Fp — Fp: <I>(Sp) = 3p(p)(S) is a frame homomorphism,
where 3p is the special P-interpretation with initial world 3.
b) For every world Sp in Frp: Sp and <I>(Sp) assign the same truth values to ground literals ]

Lemma 8.3.2 (Existence of Associated T-Frames)
For every P-frame Fp = ((D, 3, R), Sv) and for every world S in Fp there is an S—associated T-frame
Fr =D, 31, Fp), Swr)-
Proof: We define 3 to be the domain of the mapping <I>(Sp) = 3p(P)S).
Thus, Sp(p)(S) # L for every ground world-path occurring in Dy,
We must show that @ is a frame homomorphism.,
Let Sp := (Fp, 3, 8, #) be the special P-interpretation with initial world 3.
a) Let3, S e Spwith RS, ) (def. 8.1.1, a)
R(PS, D(3Y) = R(Sp)(SQ), Sp()S))
A case analysis according to the properties of R and lemma 8.1.2 confirms the last relation
R(Sp(r)S), Sp)S)).
b) Let3 € Srand 3," € 3 such that R(P(3,), 3,") holds.
(3, has accessible worlds, therefore there must be a world 3, ;; € Sy with
(3 Ip.spP = Sp[ps(Sy) =3, and EKT(SP, S‘[p_s]) holds.
Thus, @ is a frame homomorphism. u

Theorem 8.3.3 (Existence of Term Models)

A set C of pairwise variable disjoint clauses is satisfiable if and only if it has a term model.

Proof: “=” Let Fp be a P-model for C which satisfies C in the world 3 and let F be an 3-associated
T-frame (def. 8.3.1) where @ is the corresponding frame homomorphism.

Let Sp := (Fp, 3, 8, @) be the special P-interpretation with initial world 3 = ®(3 -

The corresponding special T-interpretation is 3. := (F, 3y, 8. ¢)-

When vy,...,v,, are the variables of C and 6 := {v;~ ¢,...,v ¢, } is a ground substitution,

let Splo] := S1lv,/S1(cy). .., v/S(c,)] be a C-continuing term interpretation with ground D-terms and
ground world-paths respectively.

Since the clauses are pairwise variable disjoint, there are no conflicts.

Furthermore, the fact that 3-[o] is a term interpretation guarantees S(c;) # L fori=1,....n.

Lemma 8.1.2 then states 3p(c;) # & fori=1,...,n.

Therefore we can define the P-interpretation Sp[6] = Sp[v1/3p(cy),...,vp/Sp(Cpy)].
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We show that Sp[c] is C-continuing:
Letp = preﬁx*(wj, ©) for the W-variable w; and assume Sp[c](p) # L.
With lemma 8.1.2 we know 34[c](p) # L, and since 3[0] is C-continuing, 3r[c]([p.w;]) # L.
Again with lemma 8.1.2 , Sp[c]([p.w;]) # L must hold.
Thus, 3p[o] is C-continuing.
Since 3p satisfics C, for every clause C e C there is a literal L such that Sp[6] i-p L (theorem 5.1.5).
With lemma 5.2.5, we obtain for every term tin C: Splo](t) = Sp(ot).

Thus, Spi-p oL (oL is a ground literal.)
= Syirpol (def. 8.3.1, b)
= Sylolip L (lemma 5.2.5)

Since 3-[6] was arbitrarily chosen, corollary 8.2.6 states that 3 satisfies each fully quantified clause in
C, thus Fyis a P-model for C.

* & This direction of the proof is trivial. (]
An obvious consequence of the previous proof is:
Corollary 8.3.4

When a formula is satisfiable at all then there is always a T-model satisfying it in the world S[], u

Thus, we need no longer distinguish between a term model for a formula , i.e. a T-frame satisfying 7
in some world, and the special term interpretation with initial world S j that satisfies 7.
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Chapter Nine

Semantic Trees

The last step of the preparation for the completeness proof for the resolution rules is to find a
representation for the set of all term interpretations for a given clause set. When the clause set is
unsatisfiable, a finite part of this datastructure should be sufficient to prove its unsatisfiability. A trec
structure, called semantic trees, is used in predicate logic for this task. A semantic trec in predicate logic
is a (downward) tree T with an unlabeled root node and subtrees where the nodes are labeled with
ground atoms as follows: If Ny,...,N; are the tip nodes of T, then take a new ground atom A and attach
k copies of the partial tree consisting of the root node and exactly two descendent nodes labeled with A
and —A to Ny,...,N,.. (There are other equivalent definitions.)

As an example consider the semantic tree for a signature consisting of a constant symbol ‘a’, a one place
function symbol f and a one place predicate symbol P. The set of ground atoms built with these symbols
is {Pa, Pf(a), Pf(f(a)), ...}. A semantic trec for this signature is:

Clcarly the sct of labels in cach branch in the tree represents an Herbrand interpretation. For instance the
rightmost branch represcnts the Herbrand interpretation assigning False to Pa, Pf(a), Pf(f(a)) etc. The sct
of all branches gives an exhaustive survey over all Herbrand interpretations.

The definition of semantic trees in P-logic for serial interpretations is exactly the same as the above
definition for predicate logic. For non-serial interpretations however, it is necessary to extend the
definition for incorporating the information about the “‘end-worlds”, i.e. the worlds where no further
worlds are accessible. Therefore we use the special ‘End”-predicate (def. 7.2.1) and its negation for
representing the possibilities to terminate paths in the world structure. Remember that a literal End(p) is
true in a term frame if Sp exists, i.e. if there is a world denoted by p, and there is no world accessible
from Sp. We shall further introduce a literal -End(p) (which never occurred so far). It is intecnded to
represent the information that the world structure of the term frame corresponding to the path containing
-End(p) in a semantic tree must have a world Sp and there must be worlds accessible from Sp. That
means -End(p) is not exactly the negation of End(p).
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To illustrate this, consider the partial tree corresponding to the ground atom Q[ab] which looks like:
End[] -End[]

End[a] -End[a]

7\

Q[ab]  —Q[ab]

The branch ending with End[] represents the information that the world structure of the corresponding
term frame consists of the initial world only. This interpretation would falsify both Q[ab] and —Q[ab],
therefore there is no descendent node. The other branch passing -End[] represents the information that
the world structure must have at least one further accessible world. Consequently the next layer in the
trec represents the two possibilities that either the world structure ends with the world denoted by the
path [a] or that it has further accessible worlds. Only the interpretation corresponding to the second
possibility can be extended such that either Q[ab] or —Q[ab] holds.

The formal definition for semantic trees given below includes the serial case. For the non-serial case
some auxiliary notions will be introduced which correspond to partial semantic trees for single
worlds-paths and atoms. These partial semantic trees may contain inconsistencies, i.¢. paths containing
contradictory literals. They are removed in the final definition for semantic trees for a signature.

Definition 9.1 (Semantic Trees)

A world-path tree for a world-path p = [t,...t,] is a (downward) tree consisting of an unlabeled root
node, two descendent nodes labeled with End([]) and -End([]) respectively, and subtrees which are
defined as follows: If N is a tip node labeled with -End([t, ...t ]) where k < n-1 then N has two
descendent nodes labeled with End([t;...t, ,,]) and -End([t,...4, ;1) respectively.

A world-path tree for a set P = {p,,...,p,,} of world-paths is a tree T constructed as follows:

Let P” := (py-....Pp-) be a permutation of P such that a world-path p in P precedes all world-paths in q
in P’ containing p as a subterm.

Initialize T with a world-path tree for p; -.

Fori"=2’,...,m": Extend T by attaching a copy of a world-path tree for p;- at each tip node of T.

A partial semantic tree for a ground atom A in a serial interpretation is a trec consisting of a rool node and
two descendent nodes fabeled with A and A,

A partial semantic tree for a ground atom A in a non-serial interpretation is a tree consisting of a
world-path tree for the set of world-paths occurring in A where the tip nodes labeled with -End(...) have
exactly two descendent nodes labeled with A and —A.
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A semantic tree for a P-signature p, is a (downward) tree consisting of the root node and subtrees which

are constructed in three steps:

Step 1: Let A be the set of ground atoms which can be constructed with symbols from Zp. Starting from
the empty tree T, select a new atom A from A and extend T by attaching a copy of a partial
world-path tree for A at cach tip node of T.

Step 2: Cut each branch B of T at the first occurrence of a label which is complementary to another label
at a higher node (closer to the root node) in B.

Step 3: 1M anode N has only one descendent node M, remove M and attach the descendent node of M
below N.

A semantic tree T is said to be complete for Zp iff each ground atom, built from symbols in Zp occurs
in the labels of T. (A complete semantic tree can be obtained by performing step 1 in the above definition
as long as possible .)

If B is a branch in T, let literals(B) be the set of all labels of the nodes in B.
If N is a tip node in T, let literals(N) be the set of all labels of the nodes in the branch terminating with N.

A semantic tree for a clause set C is a semantic tree for the P-signature Zp of C.
In case C contains only End-literals, add an artificial predicatc symbol 1o Z,. n

Examples for semantic trecs:

The world-path tree for p = [ab] is:
End[] -End(]

End[a] -End[a]

The world-path tree for the set {[ab], [cd]} is:

/\

End[] -End[]
7N
End{] -End][] End[a] -End[a]
27N )
End[c] -End[c] j\End[] -End[] End[] -End[]
End[c] -End[c] End[c] -End[c]

The marked parts of the tree will be removed at the steps 2 and 3 when this partial tree is integrated into a
complete sémantic tree,



A reduced partial semantic tree for the two atoms Q[ab] and S([ab], flcd]) may look like:

End([] -End[]

End|a] -End|[a]
End[c] -End[c] me]

End[c] -Endic]

N

S({ab], fled]) ~ —S([ab], flcd])

Lemma 9.2 Each branch B in a semantic tree T for a P-signature Zp corresponds to a particular term
frame ¥ =: F(B) for Zp where the possible worlds structure consists only of those worlds Sp where
-End(p) occurs in B and the relations that are assigned to a predicate symbol Q are defined as follows:

If Q(p, t}.....t) € literals(B) then assign 'true’ to Q(ty,...,t ) in Sp

If —Q(p, t,,....t) € literals(B) then assign 'false’ to Q(t,...,t) in Sp.
The assignment of values to atoms A where neither A e literals(B) nor —A € literals(B) is left open.
F1(B) is said to be a partial frame in this case. n

Lemma 9.3 A complete semantic tree T for a P-signature Zp corresponds to an exhaustive survey of all
possible term interpretations for Zy,.

Proof: This is mainly a consequence of the fact that all possible ground atoms for Xp are used to
construct the tree. The world-paths contained in these ground atoms denote all possibilities to construct
worlds in a term interpretation. [ |

Definition 9.4  (Failure Nodes and Closed Semantic Trees)

Let T be a semantic tree for a clause set C and let N be one of its nodes.

» Fy denotes the partial term frame corresponding to the branch in T which terminates with N.

> N falsifies aliteral L if Fy does not satisfy L and no predecessor node of N falsifies L.
Actually N falsifics a litcral L if its label is complementary to L.

» Nis called a failure node il Fy falsifies some ground instance 64C of a clause Cin C and no
predecessor node of N has this property.

» Tis called closed iff cvery branch of T terminates with a failure node. [ |
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Examples for failure nodes and closed semantic trees.
Both clause sets in the examples below are unsatisfiable, therefore there is a finite closed semantic tree.
Example 1:

Clauses: closed semantic tree
A Yu Pul  o=(uw a _
B: Vy —P[v] T={v » a} ;ﬂdl] -End[] < falsifies End[]
< Qlal failure node )
olA =Plal], End[] for C Pla]  —P[a] * falsifies P(a]
— P, ] it
TIB = —P[a], End(] failure node failure node
fortlB for glA
Example 2:
Clauses: closed semantic tree,

A: Vu Plau] o={uwo b}

failure node i
B: VV '—IP[Vb] T= {V . a} ure = End[] 'Endl]

for 6lA
failure node
ol A =Plab], End[a) w End[a] -End[a]
fort B
T.lB = —Pfab], End|]
P[ab| —P[ab]
i &
failure node failurc node
fortlB for clA

The next theorem confirms that for every unsatisfiable clause set there is a closed semantic tree.

Theorem 9.5 A finite set C of clauses is unsatisfiable if and only if corresponding to every complete
semantic tree of C, there is a finite closed semantic tree.

Proof; “=" Suppose C is unsatisfiable. Let T be a complete semantic tree for C. For each branch B of
T, let F(B) be the corresponding term frame. Since C is unsatisfiable, F(B) must falsify an instance

olC of C. However, since olC is finite, there must exist a failure node Np (which is a finite number of
links away from the root node) on the branch B. Since every branch of T has a failure node, therc is a
closed semantic tree T' for C. Furthermore, since each node has only two immediate descendent nodes,
T' must be finite.

“«" Conversely, if corresponding to every complete semantic tree T for C there is a finite closed
semantic tree, then every branch of T contains a failure node. Because the branches of a complete
semantic tree correspond to an exhaustive survey of all possible term frame, this means that every term
frame falsifies C. Hence, C is unsatisfiable. n
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Inference Nodes

Inference nodes in semantic trees for predicate logic and P-logic with serial interpretations arc simply
nodcs whose two immediate descendent nodes are failure nodes for two ground instances of some
clauscs. Given an unsatisfiable clause sct and a corresponding closed semantic tree, an inference node N
suggests a (ground) resolution step that is definitely a step forward towards the deduction of the empty
clause. The resolution literals for this step are determined just by taking the two literals that are falsified
by the two failure nodes below N. Since these two literals are instances of literals in the original
non-ground clause set, there is no problem to lift this resolution step to a resolution step between two
original clauses. In non-serial interpretations we have the problem that these ground literals may be
End-literals that are generated by the conditioned instantiation. They are actually not available for a
resolution step with the uninstantiated clauses. The example below shows a situation where a failure
node falsifics an End-literal of an instance of a clause which is not contained in the clause itself.

A: Vu Q([ab] flcu])

ground instance: End[] -End[]

B: Q([ab] f[cd]), End[c]
falsifies Q([ab] flcd]) = End[a] -End[a]

_End[c] o faih.xre node for B
falsifies End[c]

The trivial solution, adding an instantiation rule, is unacceptable because instantiation rules generate t0o
large search spaces. The other solution is to prove that there is still another resolution possibility that
uses only directly instantiated literals. The above example gives a hint where another resolution step
might be possible. If the node labeled -End(a] is a failure node, there must be a clause containing a literal
End[a] and if this is a direct instance of some literal in the original clause set, it can be used to resolve
directly with clause A. In this case the node labeled -End[] would be the inference node. Our definition
of inference nodes in serial interpretations coincides therefore with the corresponding definition in

End[c]

predicate logic, whereas for the non-serial case it is more general.

Definition 9.6 Inference Nodes
Given a finite unsatis(iable clausc set € and a corresponding finite closed semantic tree, a node N is
called an inference node iff
cither its two immediate descendent nodes are failure nodes and both falsify some direct instances
of literals of clauses in C
or its two immediate descendent nodes N and N_ are labeled End(p) and -End(p) for some p and:
For N__there is a clause AlC, falsified by some branch containing N, and aliteral K e C
containing a world-path [p-a...], a # ], a is no variable, p = Ap” and AK is falsified by N,.
N_ is a failure node and falsifies a direct instance AEnd(p”) =End(p) e ACofsome Ce C. m

Belore we can prove the existence of an inference node, we need some auxiliary lemmata to throw some
light on the circumstances where nodes labeled with End-literals are failure nodes. They concern only

non-serial intcrpretations.
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Lemma 9.7 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled -End(p)
and falsifying a ground instance AlC of a clause C € C. Then
gither N falsifies a literal AEnd(p”) = End(p) € ALC
or there is a node M in the branch above N, labeled End(q) and a literal K € C containing a
world-path [q“a...], a #[], a is no variable and q = Aq” such that AK is falsified by M.

Proof:

Case 1: N falsifies some direct ground instance L of a literal in C.
L can in principle be a literal End(r) where r is a start sequence of p. If r is a start sequence of
p, there is a node labeled -End(r) in the branch above N that falsifies End(r) (def. 9.1). That
contradicts the part of the definition for falsifying nodes (def. 9.4) that requires no node in the
branch above the current one to falsify the literal. Therefore r = p and L = AEnd(p”) = End(p).

Case 2: N falsifies no direct ground instance of a literal in C.
Since N must falsify at least one literal in ALC, with the same arguments as in case 1, it can be
shown that N falsifies a literal End(p) € AlC. This time, End(p) must have come into ALC by
conditioned instantiation (def. 7.2.2). Therefore there must be another literal K, € AlC
containing a world-path [pc...], ¢ # [] which is a direct instance of a literal K € C, i.e. K, =
AK. Since K, contains a world-path that has p as a start sequence, K, cannot be falsified by a
node labeled just with the negation of K, because these nodes would occur below N. It can
also not be falsified by a node labeled End(r) where r is a start sequence of p; there would be
two contradictory labels in one branch. Since K, must be falsified by some node in the branch
of N, the only chance is that there is a node M with a label End(q) and q is a start sequence of
some world-path wp = [qa...], a # [] occurring in K.
Suppose wp is an instance of some world-path [s u...] with uA = [a;...a ;] such that [qa...]
= [As a,...a;] for some i < n. In this case End(q) would be in ALC (def. 7.2.2,a) which is
impossible because the branch of M could not falsify ALC. Using the same argument it can be
excluded that wp came into K, as a codomain term in A (using def. 7.2.2,b). The only
possibility is now that wp is an instance of a world-path [q“a...] with Aq” = q and a is no
variable. N

Lemma 9.8 Let T be a closed semantic tree for a clause set C. Let N be a failure node labeled End(p)
and falsifying a ground instance AlC of a clause C € C. Then
gither there is a literal L € C containing a world-path [p“a...], a#[], a is no variable and p = Ap
and N falsifies AL.
or there is a node M in the branch above N, labeled End(q) and a literal K € C containing a
world-path [q"a...], a#[], a is no variable and q = Aq” such that AK is falsified by M.
Proof: Let L be a literal in ALC that is falsified by N, i.e. complementary to End(p). (def. 7.2.5)
Case 1: L =End(r) and r is a start sequence of p.
This is not possible because -End(r) is a label in the branch above N that already falsifies L.
Case 2: L contains a world-path wp such that p is a start sequence of wp, i.e. wp={pc...],c =[]
Case 2.1: L is an instance of a literal in C.

P

Suppose wp is an instance of some world-path [s u...] with Au = [a,...a ] such that
[pc...] = [Asa;...a;] for some i < n. In this case End(p) would be in ALC (def. 7.2.2,a)
which is impossible because the branch of N could not falsify ALC. Using the same
argument it can be excluded that wp came into K, as a codomain term in A (using def.
7.2.2,b). The only possibility is now that wp is an instance of a world-path [p’c...] with
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Ap” = p and a is no variable. This is just the gither case we wanted to prove.
Case 2.2: L isnot an instance of a literal in C.

L must be a literal End(wp) that came into ALC by conditioned instantiation. Therefore there
must be another literal K; € AlC containing a world-path wp = [rb...] = [pc...b...],c #[],

b # [] which is a direct instance of a literal K € C, i.e. K; = AK. If K, is falsified by N, we
have case 2.1 and we are ready. If K, is not falsified by N, it must be falsified by some other
node M above N. Proceeding just like in case 2 of lemma 9.7 we find that there is this node
M in the branch above N, labeled End(q) and K, is the instance of aliteral K € C containing
a world-path [q"a...], a # [], a is no variable and q = Aq” that is falsified by M. n

Theorem 9.9 (Existence of Inference Nodes)
In every finite closed semantic tree T for an unsatisfiable clause set there exists an inference node.
Proof: First of all we notice, that there is at least one node whose immediate descendent nodes are
failure nodes, for, if it did not, then every node would have at least one nonfailure descendent. We could
then find an infinite branch through T, violating the fact that T is finite.
If there is a node whose two immediate descendent nodes both falsify some direct instances of literals in
C, we are ready.
Therefore, assume for every node whose two immediate descendent nodes are failure nodes, at least one
of them falsifies only End-literals generated by conditioned instantiation. That means all pairs of failure
nodes must be labeled with literals End(q) and -End(q) for some world-path q. (*)
Now we must prove that an inference node N exists that satisfies the gr-case in definition 9.6, i.e.
its two immediate descendent nodes N, and N_ are labeled End(p) and -End(p) for some p and:
For N, there is a clause AlC, falsified by some branch containing N, and aliteral K e C
containing a world-path [p“a...], a # (], a is no variable, p = Ap” and AK is falsified by N,.
N_ is a failure node and falsifies a direct instance AEnd(p”) = End(p) € AC of some Ce C.
In order to find this inference node, we define a procedure for searching this node and prove that it must
successfully terminate. The procedure moves around the tree, but its motions are always into right
neighbour branches. Because T is finite, it must therefore terminate. In order to formalize this, we must
give coordinates to the nodes in the tree which increase when moving to right neighbour branches. The
coordinates are as follows: If the maximal depth of the tree is n, we take numbers of length n, the first
digit is for the first level, the second for the second etc. The digit for the left branch becomes the number
1, the digit for the right branch becomes 2 as the figure below illustrates.

/K /200\
/]0\ /170\ /0\ }O\
111 112 121 122 211 312 231 322

Clearly the numbers increase when moving downwards or to right neighbor branches.

Remember now that our semantic trees have been organized such that a node with label End(p) is placed
to the left of the -End(p) node.
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The search procedure works as follows:
It starts with a tip node labeled either End(p) or -End(p) that falsifies no direct instance of a literal in C.

Let N be the current tip node that falsifies no direct instance of a literal in C.

Let n,...n be the coordinate of this node.

According to the lemmata 9.7 and 9.8 there exists a node M, labeled End(q) in the branch above N that
falsifies some direct instances of literals in C. The coordinates of M are n,.. .njO. ..0, according to its
depth in the tree. Since the nodes labeled with End(q) are in the left branches we know that n; = 1.
Consider now its right sibling node M” labeled -End(q) and with the coordinates n; .. .nj_120. ..0.

Case 1:
Case 1.1:

Case 1.2:

Case 2:

M- is a failure node.

M~ falsifies some direct instances of literals in C.
In lemma 9.7. it has been proved that this instance is really End(p) and no End-literal with
shorter world-path. The common predecessor node is therefore an inference node and the
procedure can terminate with success.

M falsifies no direct instance of literals in C.

We move from node N with coordinates nl...nj_llnj +1---1y to node M~ with the greater
coordinates n; ...n; ; 20...0 and continue the search with M".

M’ is no failure node.

In this case the subtree of M” must again contain a node whose two immediate descendents
are failure nodes. According to our assumption (*) they must be labeled with End(r), -End(r)
for some world-path r and at least one of them, say M" does not falsify a direct instance of a
literal in C. We continue the search with M" whose coordinates n...n; ;21

1+1"'1k are also
greater than the coordinates of N.

We have moved from node to node with ever increasing coordinates. Since the tree is finite, the

procedure must terminate. Moreover, the only possibility to terminate is the successful case 1.1. |
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Chapter Ten

Completeness of Modal Resolution

“Completeness of the resolution rules” means that for every finite unsatisfiable clause set C there is a
finite sequence of resolution operations terminating with the empty clause. Since there are still some
uncertainties concerning variable renamings, we define precisely how this sequence of resotution
operations is to be generated.

Definition 10.1 (Resolution Refutation Procedure)

The resolution refutation procedure works as follows:

Given a finite set C of clauses, select as long as the empty clause is not in C two variable disjoint copies
of clauses in C which are resolvable with a most general R-admissible unifier, generate the resolvent E,
replace all variables in E by new ones and add the renamed resolvent to C.

More precisely we consider two variable disjoint clauses C and D to be resolvable upon the resolution

literals C" g Cand D" Diiff

Case 1: C" = {P1l,, ..., PU;} and D" = {—Psl,, ..., —Psly } for some predicate P and termlists tl; and sl;,
and there is a most general R-admissible unifier © for {d,, ...,.0}, {sl;, ..., sl }, i.e.
ot =... =0t =05l =... =osl,.

Case 2: (non-serial case),
C’ = {End(py), ..., End(p,)} and D"={A e DI [ga...] € A, a#[], ais no variable} and there
is a most general R-admissible unifier ¢ for {p,,....p,} and {q;....qx} == {ql[qa...]€ D'}, i.e.
Op;=...=0p,=0q; =... =0qy. ]

It is noted that this definition allows “self resolution”, i.e. resolution with two copies of the same clause.
Although there is a strong conjccture that this is not necessary, it cannot be proved with the methods
available so far. (A corresponding completeness proof for resolution without self resolution in first-order
predicate logic exploits the completeness of hyperresolution [Eisinger 87].)

For an implementation the general resolution operation can of course be split into a factoring operation

which merges two literals in the same clause and a narrow resolution operation that considers only one
resolution literal per clause.
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10.1 Preliminaries

There are some auxiliary lemmata necessary for the final completeness proof.

For the ordinary (not conditioned) instantiation operation the equation A(cC) = (Ac)C holds because the
composition operation for substitutions is just defined in this way. It is not at all obvious and must
therefore be proved that the corresponding equation AL(G{C) = (Ac){C holds for conditioned
instantiation as well.

Lemma 10.1.1 (*“Associativity” of Conditioned Instantiation)

Let C be a prefix-stable clause and let ¢ and A be two prefix-preserving substitutions, R-admissible with
non-serial accessibility relations. (That means components u ~ [] (reflexivity) or u - [a’l] (symmetry)
do not occur.) Then Al(clC) = (Ac)IC.

Proof: W.l.o.g we assume DOM(o) ¢ Vars(C) and DOM(A) ¢ Vars(clC).

The situation is as follows:

¢ =[LCc ] =C

ac =[oC__ | [Es ]

M= acc | [AEs| [ Er] [ 2Cc | [ Eox | =olC

E; are the End-literals generated by the conditioned instantiation of C with G.
E, arc the End-literals generated by the conditioned instantiation of 6lC with A.
E; are the End-literals generated by the conditioned instantiation of C with Ac.
It is obvious that the AGC parts of AL(clC) and (Ac)IC are identical.
Therefore AE; U E, = E; remains to be shown.

“e” Let L =: End(p,) € AE; UE;.
Case 1: L e AE,.
=> L = End(Ap,) for some world-path p; with End(py) € Eg.
We consider the two different possibilities to generate End-literals (def. 7.2.2 a and b):
Case1.1: dKe C:|pu...]eKandou=|[a;...a ] and

Pg = [Op a;...3;] for some i € {0,...,n}. (def. 7.2.2,a)
= Acu = [Aa,..Aa, 4]
= End[Aop Aa;...A3;] = End(Apy) =L € (Ao} C (def. 7.2.2,a)
Case 1.2: JKe C:xeK, xisavariable and p, € Ox. (def. 7.2.2,b)
= Ap € OAX
= End(Apy) =L € (Ac)IC (def. 7.2.2,b)

Case 2: L e E,
Case2.1: 3JK e olC: [pyv...]€ K and Av =[a,...a ] and
Py = [Apg 2;...3;] for some i€ {0,...,n}. (def. 7.2.2,a)

Case 2.1.1: v ¢ Cod(o)

=3JKe C:[pv...]e Kand p; = 0p

= End[cAp al...ai]\= End[Apg 2,...a;] =End(p)) =L e (Ac)iC (def. 7.2.2,a)
Case 2.1.2: ve Cod(o)
Case 2.1.2.1:uw [qv...] € © for some W-variable u. (Q may be empty.)
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=3JKe Cs=[ru.]eK,os=[orqv...] [orq] =pg
= End[Aor Aq a,...a;] = End[A(or Q) a,...a,] = End[pg 2,...3;] = End(py) =L € (Ac)LC
(def. 7.2.2,a)

Case 2.1.2.2: x = t € ¢ for some variable x and [pgv...] € t.

=x~»Me Aoand 3Ke C:xe K

=> End[Ap, a;...3;] =End(p;) =L € (Ac)iC (def. 7.2.2,b)
Case2.2: 3K, e olC:xe K, xisavariable and [pja...] € Ax, a # [].

= [p)a...] € COD(AG).

= End(p)) € CL(A0).

“2" Let L= End(pgy) € Egy,
Case 1: dKe C:|pu...|]€ Kand Acu =[a,...a ;] and
Doy = [Aop a;...a]] for some i € {0,...,n}. (case 7.2.2,3)
Letou =:[b;...b. 4]
Case 1.1: 3Jje {0,...,r} X[bl...bj] =[a;...q]
= End[opb,.. .bj] € E;
= End[Aop a,...3,] = End(py)) =L € AE; < M(clC).
Case 1.2: Vije {0,...r} ?»[bl...bj] #[a;...a]
= Cu= [bl...bj v ql,q #[] and Av = [a...a;] such that [Xbl...kbj a...a;] = [a;...3]].
= End[op bl“'bj"] € Eg
= End[Acp )»bl...?»bj a...a;] = End[Aop a,...a;] = End(pg) = L € Ey < A(clC).
Casc 2: x> te Ao with [pgy a...1€ t,a =[] (case 7.2.2,b)
=3I Ke Cwithx € K.
Case 2.1: x ¢ DOM(o)
=>x€0Ke oC andx—te A
= End(py;) € Ej < M(clC). (def. 7.2.2,b)
Case 2.2: xe DOM(o)
=xpt’ecandM’=tandt” € oK € 6C.
Case 2.2.1 Jdyet” withAp,=pg
= End(py;) € E, c AM(clC).
Case 2.2.2 J[psa’let” withAp;=pgy

= End(ps) € Eg (def. 7.2.2,b)
= End(Apg) = End(pgy) = L € AE; < A(0lC).
Casc 223 dlpgv...|€ 1T Av = |a...a,, | such that [Apg a)...0;) = Pgy forsomeic (1,...,n}.

=> End|Apg a;...3;] = End(pgy) = L € Ey < A(clC).
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The next lemma establishes a very useful correspondence between conditioned instances of the residuc of
a literal set and the conditioned instances of these literals themsclves.

Lemma 10.1.2 Let C be a prefix-stable literal set and let A be a ground substitution with Vars(C) ¢
DOM(A) that is R-admissible with non-serial accessibility relations. Then AlResidue(C) c ALC
Proof: Let L =: End(p,) € AlResidue(C).
Case 1: L € AResidue(C)
= L = End(Ap) with End(p) € Residue(C).

=q=[pu.]eC (def. 7.2.7)
= End(Ap) =L e AlC.
Casc 2: L & AResidue(C), i.e. L is an End-literal generated by the instantiation with A.
Case 2.1: 3 End|p v ...b] e Residue(C) withdv = |a;...a | and
pa = [Ap a;...q;| for some i € {0,....,n} (b may be empty.) (def 7.2.2,a)
=[pv..bw.]=[qw...]e C
=> End[Ap a,...a;] = End(p;) € AC (def 7.2.2,a)
Case 2.2: I xwte A wherex is a D-variable and p, € t. (case 7.2.2,b)
=> x € End(p) € Residue(C) for some world-path p
=x€C
= p, € MC. (def. 7.2.2,b) n

In first order predicate logic, the “lifting lemma” states that for each resolvent E” of instances of two
clauses there is a resolvent E of the clauscs itself with most general unifier that is more general than E.
This lemma confirms that whenever there is a resolution deduction of the empty clause with some
instances of the original clauses, resolution with most general unifiers does the same job, hence no
additional instantiation rule is necessary. The proof of the lifting lemma exploits that cvery unifier for
two terms is an instance of the corresponding most general unifier. Although the original proof assumes
the existence of only one most general unifier for two terms (apart from variable renaming) there is no
difference in the proof when a complete set of most general unifiers is available. Since this is the case for
P-logic (theorem 6.3.4), we prove the lifting lemma only for non-serial accessibility relations where all
these complicated things like conditioned instantiation and residues must be considered. Actually a proof
for the serial case can be obtained from the proof below by forgetting residues and End-literals.

Lemma 10.1.3 (Lifting Lemma)
Let C and D be two prefix-stable clauses and let 0” be a prefix-preserving substitution such that 6°1C
and D” ¢ ¢°1D are ground and the two literal sets C' ¢ 6°lC and D* ¢ ¢°{D are complementary in one
of the following two ways:
Case 1: C’ = (A4} where A - is anormal literal (no End-literal) and D” = {—A-}.
Case 2:a) C’={End(py-)} and End(p,-) is a direct instance of at least one element of C and

b) D'co’D;:={Kl[pa...]€eK,a#[], aisno variable, 0’p = pc,} cD and

¢) End(ps)¢ o°ID.
LetE = (6"lC\C) uw (c°ID\D") be the resolvent of C and D Then there exists a resolvent E of C and
D with a most general unifier such that an instance of E is a subset of E”.
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Proof: We prove the two cases indcpendently.

Casc 1: Since C” = {A4-} and D” = {—A-} are complementary but no End-literals, there are literals
Ci={A;,...A } < Cand Dy = {—A{",...,mA)"} © D and a most general unifier ¢ 2 ¢” such that
O{A....A } =0{A{",...,A"} = {Aj]) (theorem 6.5.1). Let E :=Residue{Aq, —A5)} LU oC U C U
oD, U Dg be a resolvent of C and D where C, = C\Cy, D, = D\ D, and C; and D are the
corresponding End-literals generated by the conditioned instantiation with .

We must show that AlE = E” where 6" =: AC.

First of all, using the associativity of the conditioned instantiation (lemma 10.1.1), we know

¢’lC = (Ao)LC = Al(0lC) and 6°1D = (Ao)ID = Al(ciD). Therefore the situation is as follows:

c  -[oe] (5] [57] =D

\\\N\\N "Q-.V\ 0N .AQO")F A A A AT f%
ac  =[AglloCH i (D] DoJ|] =ow
w&wmwhm mw ool Semmv—_.
= Al(olD)

M@O=[AAG|[AsCyl [ACql [ Co | [A-A{q[AcDy| [ ADg| [ Dy |

O\'o)‘L C _ A /.g/g”////llllll A /r/{r!% /77/!/? _ }\’
- B B /////}/"/ o P 00 /ﬁﬂ/"// = (ollD
+ Residue = Resovent E W// = Resolvent E~

C,- and D are the End-literals generated by the conditioned instantiation of C and D with ¢”.
Thus, AlE = MResiduc{Ag, ~Ags} U A(0Cy U Cy U 6D, U D)
= MResiduc(Ay) U 6'C, UCy L 6D, U D,
= MResidue(A,) U E”.
=E~ (lemma 10.1.2: AMResidue(Ay) < C) < Cy-)

Case 2: Since End(py-) is a direct instance of a literal in C (condition a) let C; := {End(p,)...., End(p,)}
< Cwith 6°Cy = End(p,-). Since 6” is a unifier for {p;,...,.p;} and {p | [pa...] € D, 6°q = py-}, there
is also a most general unifier 6 2 ¢~ for these sets of world-paths. Let 6” =: AG, let p; == 0p; = ... = Opy
=....Let C;:= C\C, and Dy :=D\D,. Let 6lC := {End(ps)} L 6C, U C; and let 6iD :=0D; UD;
U 6D, U D, where C and Dg; U D, are the End-literals, generated by the conditioned instantiation
with 0. D, contains those End-literals which are complementary to End(p,). It is noted that 6D, U D,
does not contain any world-path [qa...], a # [], with Aq = p-. All these literals are collected in 6D, U
Dgy! (#). Let E := Residue({End(py)} L 6D; U Dy;) U 6C, U C; U 6D, U D, be aresolvent of C
and D. We must show that ALEC E".

First of all, using again the associativity of the conditioned instantiation (lemma 10.1.1), we know

0°lC = (Ao C=A(6lC) and 6°LC = (Ao)D = Al(ciD). Therefore the situation is as follows:

C =G |LC2]

AM(olO)= IXEnd(EIH z]llﬂl Ca] BGDQ»DmIr_dLXd)ZI@! Dy 5] =Al(oLD)
= = U

+ Residue = Resolvent E % = Resolvent E”
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D, 1 w Dy, are the End-litcrals coming from the conditioned instantiation of 61D by A. D, ; contains
those End-literals in 6D, U D, with a world-path [ps-a...], a # [], as subterm. They would be
complementary to End(p-) and therefore they would probably be not be part of E” although they are part.
of AJE. We must show that this set is empty. The idea is to prove that whenever D, | is not empty, there
must be a literal End(p,-) € 6°1D which contradicts the assumption c).
Therefore let L = End(q) € D, ; with p” == [ps-a...] € q.
Since q is a A-instance of some term t in oD, U D, and because of (<) there are two possibilities to
instantiate t by A such that p” € q = At:
Casc 1: [p“a...] € COD(A).
In this case, according to def. 7.2.2,b: End(pg-) € 671 D. That contradicts assumption ¢).
Casc 2: There is a world-path [ru ...] € oD, U D, with a W-variable u such that Au = [a;...a;] and
[Ara,...a;] = [ps-a] for someie (1,....n}.
In this case, according to def. 7.2.2,a: End[Ar ay...a; ;] =End(ps-) € o’lD.
That contradicts again assumption d).
Thus, D, ; =¢.

Let Res: = Residue({End(pg)}w oD; U Dy;)

Now, AME =AlRes UAL(GC, U C U oD,y U Dyy)
cMResUc'C,UC,;ua DU D,
=ARes UE".

According to lemma 10.1.2, AlResidue(End(p,)) < (A6)LC and MResidue(D;6 L D) < (AS)ID.
Clearly AlResidue(End(p,) # End(p-) and therefore AlResidue(End(ps)) c E”.

Because of (%) and again lemma 10.1.2, AlResidue(D,6 U D) does not contain a world-path
[pg-a...] that is complementary to End(p,-) and therefore AJResidue(D;6 U D) 6D, U D, < E”.
That proves finally ALE c E". [

10.2 The Completeness Proof

The main idea in the completeness proof presented below is the same as in the corresponding
completeness proof for resolution in first order predicate logic: Given an unsatisfiable set C of clauses, a
finite closed semantic tree T for C is chosen, which exists according to theorem 9.5. The two failure
nodes below an inference node N determine two instances ¢'LC and ¢'lD of clauses in C and two sets
of literals C* ¢ ¢'LC and D" < ¢'{D which are falsified by these failure nodes and by no other node
closer to the root node in the branch of N. We can show that there is a most general unifier © 2 ¢’ for
some literals in C and D such that C and D are resolvable and there is an instance of the resolvent
containing no literal of C” and D". Therefore the semantic tree T can be cut at least below the inference
node N yielding a smaller tree T~ with a new inference node etc. This process terminates with the empty
clause after finitely many steps.

Note that we can only show the existence of a sequence of resolutions that terminates with the empty
clause. Since the proof for the existence of a finite closed semantic tree is not constructive, it cannot be
used in an actual implementation to guide a resolution based theorem prover. To find the right resolution
sequence therefore, as always, requires search.
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We illustrate the procedure that will be used in the completeness proof with a few examples.

In the figures below the inference node in the semantic trees are marked with ‘& whereas the failure
nodes are marked with D,n v denoting the n’th literal in the clause D which is falsified by the label of
this node and by no other node above this one.

Example 1: The first example is a simple propositional one.

Clauses: .
A P QI ongma‘l close‘d
B) —P[] semantic tree: B P P
G -Ql
Cew Q —-Q wmA,2
The inference node suggests a resolution with A and C.
1. Resolution: reduced semantic tree: ©
A2 & C »EL P[]
Bes P —P =.El

The next inference node suggests the final resolution yielding the empty clause.
B &El1 >5E2:%

For the same clause set there is another closed semantic tree which generates the second possible
deduction of the empty clause:

Clauses: ther closed

A)  P[, QI ano er‘cos /\

B) —P[] semantic tree: Cw Q Q =
O QU /\

1. Resolution: B& A,1 —El: Q[]
2.Resolution: E1& C  —E2; 5.

Example 2: The second example involves conditioned instantiation and the generation of a residue.
Assume transitivity and non-seriality of the accessibility relation.

Clauses: aclosed

A)  Plauw] semantic tree:  End[] -End(]

B) —P[vbz] ]
C)  Qlxc] OlA  Efdla]  -End[a]
&

o' ={up b vea we c,zmc,x [ab] ] .
c'= {X [ a} dlCI End[ab] -End[ab]

é <1
olC1 NI

ol A = P[abc], End[a], End[ab] Plabc] ~P[abe]
ol B = —P[abc], End[], End[ab] y .
olC = Qlabc], End[], End[a] SLiB.1 LA
d'lC= Qlac], End[]

(Note that we joined some individual substitutions for variable disjoint clauses into ¢°).
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The inference node suggests resolution with A and B, which is in fact the only possible one. The ground
resolvent would be E = {End[], End[a)], End[ab]} and actually three more ground resolutions of this
style would be necessary to deduce the empty clause. Resolution with most general unifiers and the
usage of more complementary literals than the failure nodes suggest, shortens the proof:
Unification of P[auw] and P[vbz] yields ¢ = {u~ b, v+ a, z~ w}. Instantiation with ¢ yields:

6lA = P[abw], End[a]

G6lB = —P[abw], End[].

All literals are complementary, however the residuc is End[ab], therefore the resolvent is:
El = End[abl.

The corresponding reduced
semantic tree is: End][] -End[]

&

olA  Efdla]  -End[a]

é 2]
6"1« C, 1 /\
End[ab] -End[ab]
b b
cglGl El

According to the new inference node, the literals E1 = End[ab] and C = Q[xc] must be made
complcmcntar)’(. Therefore we unify the world-paths [ab] and [x]. The unifier is T= (x ~ [ab]}. The
instances are:

1lEl = End[ab]

TlC = Q[abc], End[], End[a]
All literals are complementary, thus the resolvent is empty and the corresponding semantic tree is also
empty.

Example 3: The last example shows what happens when the two failure nodes below an inference node
are not tip nodes.

Clauses:

A) Q([ab] flcu])

B) Ricd] B= End[] -End[]

C) End[a] o={um c}

GLA = Q([ab] flcd]), End[c] olA, 1w Endla] -Endla] =C
B =Rjcd]

C =End[a] Bw End[c] -End[c] ® olA2

Resolution between the literals suggested by the lowest failure nodes is not possible. Therefore the
inference node labeled -End[] suggest resolution between A and C. The resolvent consists of the residue
only: E =End[c].

Both nodes End[a] and -End[a] can now be removed from the tree. (In general more than one resolution
is necessary before the tree can be shortened.) The situation is then:
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Relevant Clauses:
B) Rlcd] Bw End[] -End[] -

E) End[c] /\

Bw End[c] -End[c] ®mE
Resolution with B and E yields the empty clause. .

The proof of the completeness theorem below is mainly a proof for non-serial interpretations. A
corresponding proof for serial interpretations can be obtained just by ignoring the cases dealing with the
End-predicate.

Theorem 10.2 (Completeness of the Resolution Refutation Procedure)

A finite set C of clauses is unsatisfiable if and only if the resolution refutation procedure deduces the
empty clause after finitely many steps.

Proof: “=" Suppose C is unsatisfiable. Let T be a finite closed semantic tree for C which must exist
according to theorem 9.5. If T consists only of the root node, then the empty clause must be in C, for no
other clause can be falsified at the root node of a semantic tree. In this case the theorem is obviously true.
Assume T consists of more than one node. According to theorem 9.9, T has at least one inference node
N. Let N; and N, be the immediate descendent nodes of N. According to def. 9.6 we must distinguish
two different cases.

Case 1: N; and N, are both failure nodes.

In this case we assume that N; and N, are labeled with ordinary literals A and —A, not with End-literals
The End-literal case will be a trivial subcase of case 2. This case 1 is the usual “predicate logic case” and
the only one that can occur when the accessibility relation is serial.

The situation around the inference node N can be visualized as follows:

inference node N s /\

olD VZ/Z7774—A ] ® falsifies A —A falsifiess [ A NNNN\\] 6lC
b b
failure node N failure node N,

E' = VY7771 O DNNNN falsified by N or some nodes above N

The two failure nodes falsify the literals —A and A of two ground instances 61D and 6lC of two
variable disjoint clauses C and D in C (we can choose ¢ to be the same substitution for both clauses
because they are variable disjoint. If C and D are not variable disjoint, we make copies of them) The
literals in the resolvent E" = 6D U 6lC\ {A, —A} are all falsified by some nodes above N; and N,.
(The residue is empty because A is ground.) Now we can apply the lifting lemma 10.1.3, case 1 which
states that there is a resolvent E between C and D such that E” is a ground instance of E. Putting this
resolvent into C we obtain a unsatisfiable clause set C U (E} with a corresponding closed semantic tree
T’ that is obtained by cutting the branches of T below the first node that falsifies E’, at least below N.
Clearly T” is smaller than T.
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Cas¢ 2: Now we consider the case that the inference node N has two immediate descendent nodes N,
and N; labeled End(p) and -End(p). N, is a failure node and N; may or may not have further descendent
nodes. According to def. 9.6 and the lemmata 9.7 and 9.8, for N, there is at lcast onc ground clause
oD falsified by the branch of N; such that D contains literals D, with world-paths [pa...],a= (), ais
no variable and p = op’, i.e. N, falsifies oK € oD for each K € D;. Let D be the set of all these
ground clauses. Clearly D is finite. N, falsifies a literal End(p) = cEnd(p”) € 6lC where 6lCis a
ground instance of a clause C e C. For a particular element of D the situation is as follows:

falsified by nodes above N; /\
/’__' = inference node N
GlD /\ 6.C

YZZIQlpa. . [Ripb...]| = falsifies End(p) -End(p) falsifies o [End(p)RNOO

failure node N, é b
failure node N,

falsified by nodes below N,
but not containing world-paths [pc...] E’ = N% v \\\‘

Obviously oD cannot contain End(p) because it is falsified by the branch of N;. Since the two literal

sets that are falsified by the two nodes are complementary, a resolvent E” is possible that does not
contain End(p) and no other literal with a world-path [pc...], ¢ # [] that could be falsified by N;.
Therefore the failure node of 6lD falsifies E” as well. Applying the lifting lemma 10.1.3, case 2 we get
again a resolvent E between C and D such that a ground instance of E is a subset of E”. We put E into C.
In this way we resolve all elements of D with C getting finitely many new resolvents such that all failure
nodes that falsified elements of D now either themselves or some of their predecessor nodes falsify the
corresponding instances of the new resolvents. None of the resolvents has a literal that is falsified by N;.
For this new clause set we can obtain a new closed semantic tree T” from T by removing at least N, and
lifting N, at the place of N. Clearly T is again smaller than T.

The whole process is repeated until the closed semantic tree that consists of the root node only is
generated. This is possible only when the empty clause is derived. Therefore, there is a deduction of the
empty clause from C.

“&=" Conversely, suppose there is a deduction of the empty clause from C. Let E,...,E, be the
resolvents in the deduction. Assume C is satisfiable. Then there is a P-model Fp of C. If a model
satisfies the parentclauses, it satisfies the resolvent as well (theorem 7.2.9). Therefore Fp satisfies
E,,....E,. However, this is impossible because one of these resolvents is the empty clause. Hence, C
must be unsatisfiable. ]
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Our final theorem gathers all the results of this work and defines a semidecision procedure for the modal

logics we have considered.

Last Theorem The following procedure is a semidecision procedure for first order modal logics with

the two operators O and 9, constant-domain possible worlds semantics and an accessibility relation that

may have no special properties or it may have any combination of the following properties: reflexivity,

symmetry, transitivity, seriality.

Input:
Output:

Step 1:
Step 2:

Step 3:
Step 4:
Step 5:
Step 6:

Proof:

A modal logic formula Fand an accessibility relation type R,
A resolution proof if the formula is a tautology in the corresponding logic.
If the formula is no tautology, the procedure may not terminate.

Negate ¥ in order to perform a refutation proof. Set F:=—F.

If ® denotes an equivalence relation (S5), generate the modal degree 1 normal form for #.
If ® = {symmetric, non-serial} or ® = {symmeltric, transitive, non-serial},

split the problem into the predicate logic version and the serial modal logic version.

(See chapter 2.2). Both problems must be solved.

In the sequel we consider only the modal logic version.

Eliminate implication and equivalence signs and transform ¥ into negation normal form.
Translate 7 into the P-logic syntax I'T(7).

Generate the conjunctive normal form for IT(%).

Apply the resolution refutation procedure to the clauses.

1. Completeness Suppose ¥ is a tautology.

Step 1:
Step 2:

Step 3:

Step 4:
Step 5:
Step 6:

The negated 7 is unsatisfiable.

If ® denotes an equivalence relation, each formula is equivalent to a formula with ‘modal
degree 1. A proof can for instance be found in [Fitting 83], proposition 13.1.

If R denotes a symmetric accessibility relation, either the initial world is the only one, that is
the predicate logic case, or the relation is serial. In this case a symmetric and transitive
relation is an equivalence relation. Thus, F must be unsatisfiable in both classes of models.
The rules for transforming a formula into negation normal form preserves the equivalence,
i.e. the normalized formula is still unsatisfiable.

Corollary 4.3.4 confirms that I'l(¥) is unsatisfiable.

Theorem 5.1.3 confirms that the conjunctive normal form is unsatisfiable.

The completeness theorem 10.2 confirms that the resolution refutation procedure terminates
with the empty clause. The sequence of resolution operations represents a proof for 7.

2. Soundness Supposc ¥ is not a tautology.

Step 1:
Step 2:

The negated ¥ is satisfiable.

If Rdenotes an equivalence relation, each formula is equivalent to a formula with modal
degree 1. Fmust also be satisfiable in this case.

If R denotes a symmetric accessibility relation, F must either be satisfied by a predicate
logic model or by a serial model. In the first case, the soundness of predicate logic
deduction calculi ensures that a proof fails. In the second case, ¥is satisfiable in a serial
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model.

Step 3: The rules for transforming a formula into negation normal form preserve the equivalence,
i.e. the normalized formula is still satisfiable.

Step 4: Corollary 4.3.4 confirms that IT(F) is satisfiable.

Step 5: Theorem 5.1.3 confirms that the conjunctive normal! form C is satisfiable.

Step 6: The soundness theorem 7.2.9 confirms that the model for C satisfies the resolvents.
The empty clause can therefore never be deduced. The semidecision procedure fails. [}

A last example shall illustrate the whole procedure. The example proves that in the modal system K
(non-serial accessibility relation) Léb’s Axioms (06 = ¢ = nGimply the formula 0P = ooP that
characterizes transitive accessibility relations. Lob“s Axioms axiomatize the modal system G (which we
have not considered so far) that has a transitive and non-serial accessibility relation R with no infinite
R-chains. Let G:=P A OP. The theorem to be proved is
F = ((@(P AaP) = (P A oP)) = a(P A oP))= (aP = naP).

We apply our new semidecision procedure to . The accessibility relation type is ® = non-serial.
Step 1: Negation of Fyields: —((0(a(P A oP) = (P A 0P)) = o(P A 0P))= (0P = oaP)).
Step 2: is skipped
Step 3: -~((o(@@®P A OP) = (P A0P)) = 0P A oP))= (OP = aaP))

- ..

- (@@ AOP) A (—P v 0-P)) vOP A OP))A (OP A 00—P))
Step4: Translation into P-logic syntax:

((Vu (Plau] A Vv Plauv]) A (—P[a] v —P[ab])) v VW(P[w] A Vx P[wx])) A (Vy Ply] A =P[cd])

Step5:  Conjunctive normal form (clause notation):

Cl1: P[au], P{w] C2: P[au], P[wx] C3: P[auv], P[w]
C4: Plauv], P[wx]| C5: —PJa|, —P|ab], Plw] C6: —P|a)], —Plab], P|wx|
C7:. Ply] C8: —P[cd].

Step 6:  Resolution refutation procedure:
1. Resolution between C6, literal 1 and C7 with unifier ¢ = {y + a}
Instantiation of C7: P[a], End[]
The two literal sets {—P[a]} and {P[a], End[]} are complementary. The resolvent R1 is:
R1: —P[ab], P[w x].
2. Resolution between R1, literal 2 and C8 with unifier 6= {w'm ¢, x "+ d}
Instantiation of R1: ~ —P[ab], P[cd], End[], End[c]
The two sets {—P[cd]} and {P[cd], End[], End[c]} are complementary. The resolvent is:
R2: —P[ab].
Resolution between R2 and C2, literal 2 with unifier: 6 = {u+ b}
Instantiation of C2: P[ab], End[a], P[wx]
The two literal sets {P[ab], End[a]} and {—P[ab]} are complementary. The resolvent is:
R3: P[wx].
4. Resolution between R3 and C8 with unifier 6= {ww ¢, x~ d}.
Instantiation of R3: P[cd}, End[], End[c].
The two literal sets {P[cd], End[], End[c]} and {—P[cd]} are complementary.
The resolvent is empty.
The procedure terminates successfully and actually no End-literal occurred in the resolvents.

w
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Chapter Eleven

Conclusion

A clause based resolution calculus has been developed for a class of first-order modal logics including

those with non-serial accessibility relation. The two most significant advantages of this calculus are:

» Instantiation and inference across modal operators can be controlled by a uniform and deterministic
unification algorithm. The extensive search space generated by the usual instantiation rules and
operator shifting rules in tablcau based systems for instance is eliminated. Of course the inherent
complexity of the underlying logical problem does not vanish: it may surface again in the many
different unifiers that have to be computed. However here they can be much better controlled than
with an undiscriminating set of inference rules.

» The method fits into the paradigm of the predicate logic resolution principle. Therefore it is no longer
necessary to write specialized theorem provers for modal logics and only slight modifications of
existing predicate logic resolution based theorem provers are sufficient. That means that most of the
sophisticated implementation and search control techniques, for instance the connection graph idea
[Kowalski 75, Eisinger 86], which have been developed for predicate logic can immediately be
applied to modal logic as well. This is an indirect advantage which, however, should not be
underestimated because it makes more than twenty five years of experience with the resolution
principle available to modal logic theorem proving.

Since there are many extensions to the modal systems considered in this work, let us briefly recapitulate
the whole procedure and point out which part depends on which assumption in order to gain a feeling for
the limitations of the general ideas and about possibilities for extending the methods to other modal and
temporal logics.

The first main step is the transformation of a modal logic formula into negation normal form.

This step depended on two assumptions about the scmantics of the logical connectives:

1. Every binary logical operator, such as the implication or cquivalence sign can be represented with A, v
and the ncgation sign. The final conjunctive normal form of the translated P-logic formula can be
generated with these operators only. If non-clausal resolution would be considered, it might be possible
to relax this requirement.

2. To be able to move negation signs in front of the atoms, the negation of every operator and quantifier
must be known. Moving negations into formulae is necessary because the negation normal form
determines the final status of the variables, existential or universal. This gives the information where
instantiation is allowed and where not.

The next main siep is the translation of a modal logic formula into P-logic.

The restriction (o constant-domain interpretations becomes obvious in this step because the domain
variables lose the information about their modal context. On the other hand the definition of P-logic
itself, the translation function and the soundness and completeness proof, do not depend on the
properties of the accessibility relation.
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Generation of conjunctive normal form:

This step relies on the fact that the remaining operators are just A, v, — plus the universal quantifier.
Furthermore, it was possible to move universal quantifiers, even for W-variables, outside the formulae
and to finally eliminate them altogether. Reasoning with clauses is just easier to implement because the
data- and control structures are much more simpler. But in first-order predicate logic also resolution
methods for formulae which are not in conjunctive normal form have been developed. It should be no
problem to apply these methods to P-logic as well and possibly to extend them for formulae with other
operators, for instance the binary temporal logic “until”” operator.

The resolution operation:

The basic operation of a resolution step is the unification of the atoms. Unification depends on the
syntactic structure of the terms as well as on the semantics of the symbols, in P-logic in particular on the
properties of the accessibility relation. We have considered only reflexivity, symmetry and transitivity.
For different properties other unification algorithms must be developed. The property of an accessibility
rclation to be non-serial found its expression in the fact that a formula can become true in an
interpretation not because a predicate evaluates to a truth value, but because a quantification V u F about
an empty set is always considered to be true, regardless of . This problem also occurs in many-sorted
logics when empty sorts are allowed and a formula V x:S # with an empty sort S is true. Our solution
for this problem in P-logic is the introduction of the “End”-predicate. The conditioned instantiation and
the residue seems to be elegant and computationally efficient because in many cases the End-literals
disappear already during the resolution step. An analogue solution to this problem in many-sorted logics,
not with an End-predicate, but with an “Empty”’-predicate is obvious.

Future Directions

My hope is that the basic ideas presented in this work are powerful enough to open the door to efficient
theorem proving in a much larger class of non-standard logics than the relatively simple modal systems I
have examined so far. Let me therefore sketch some ideas for further work in this area.

Epistemic Logics

Hintikka originally had the idea of formalizing the propositional attitude of belief with possible worlds
[Hintikka 62]. The basic concept is that the propositions of an actor’s (say A) belief are represented as a
sct of worlds, compatible with A’s beliefs. Any member of this set is, according to the way A thinks, a
candidate for the real world, that is

A beliefs if and only if for all w € possible-worlds(A), Fis true in w.

Levesque, Halpern and Moses, Konolige and others have developed this idea to a formal logic with a
tableau based deduction calculus [Levesque 84], [Konolige 86], [Halpern&Moses 85]. The syntax of
this logic is similar to modal logic, except that there are not only the two modal operators O and ¢, but
for each actor A there is an individual pair o, and 0, of operators. 0, #may be interpreted: “A beliefs
F"and 0, Fmay be interpreted “A thinks # might be possible”. The semantics is a Kripke semantics
where an individual accessibility relation R, is associated with each pair of modal operators 0, and 0.
Therefore there is no big conceptual difference to classical modal logics. The basic idea to *'skolemize
modal operators” which allowed to translate a modal formula into predicate logic syntax can be applied
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straightforwardly to this kind of epistemic logics. A formula 0, ¥ is translated into Vw(A) Flw(A)] and
05 Fis translated into F{c(A)] where the world variables and skolem terms depend on the actor A.

To demonstrate this idea let us try solve the wise man puzzle, a famous example from McCarthy that has
been used to test the representation ability of formalisms for knowledge and belief. The traditional form
is:

A certain King wishes to determine which of his three wise men is the wisest. He arranges them in a circle so
that they can see and hear each other and tells them that he will put a white or black spot on each of their
foreheads but at least one spot will be white. In fact all three spots are white. He then offers his favor to the one
who first tells him the colour of his spot. After a while, the wisest announces that his spot is white, How does
ke Know?

(Actually the information that all three spots are white is not necessary to solve the puzzle.)

The solution involves the wisest man reasoning about what his colleagues know and don’t know from
observations and the king’s announcement.

To axiomatize this puzzle in epistemic logic, assume the three wise man are A, B and C and C is the
wisest. First of all we need the three formulae:

Cl: AzB
C2: AxC
C3: B2C

and assume the symmetry of the #-predicate.
At least one of them has a white spot and everybody knows that everybody else knows that his
colleagues know this.

C4: VS, 8, 8" ngog ng- W(A) v W(B) v W(C)
(W(S) means S has a white spot.)
The three men can see each other and they know this. Therefore whenever one of them has a white or
black spot, he knows that his colleagues know this and he knows also that his colleagues know this from
each other.

Cs: V8,8 8 #8' = og(=W(S) = ag—W(S))

Cé6: VS,S'S"S#SAS#5"AS 28" = Og0g (-W(S) = Dg—W(S))

Cr: VS,5.8" S #8'AS#8" A8 28" = og0g (-W(S) = 0g.—W(S"))
(We give only the minimum number of axioms which are necessary for the proof.)
They can hear each other and they know this. B did not say anything, therefore C knows that B does not
know the colour of his own spot.

C8: O¢c— 0O W(B) (& 0¢ 05 —-W(B))
C knows that B knows that A does not know the colour of his spot.

We translate the formulae into predicate logic syntax:
Cl: A%B C2: AxC C3: BxC
C4: VS,u, S, S"u": W([u(S) u'(S") u"(S")1, A) v W([u(S) u'(S") uv"(S"], B) v
W([u(S) u'(S) u"(S")], C)
Cs: VS, St S =8'v W(u(S)], S) v -W(u(s) u'(SH1, S)
Cé6: VSuSu,$"u":8S=8vS8§=8"vs§=8"v
W([u(S) u'(§H], S) v ~W([u(S) u'(S") u"(S")1, S))
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C7: vV Su, S, 8" umS=8vS8=8"vS=8"v

W([u(S) u'(S1], 8 v —=W([u(S) v'(S) u"(8")], §)
C8: Yu -=W({u(C) g(B)], B)
C9: Vu,v ~W([u(C) v(B) h(A)], A)

A deduction of the fact that C knows the colour of his own spot, i.e. Oc W(C) is now a trivial exercise
for any resolution thcorem prover. The following UR-proof was found by our systcm
| Eisinger&Ohlbach 86|

CLC2,C3,C7,C8  — RI: Vuu" -W(u(C) gB)u"(A)], B)  (e>0¢ 0 Oy ~W(B))
€Y, R1,C4 - R2:  Vu W(u(O) g(B) h(A)], C) (¢ O¢ O 05 W(O))
C1,C2,C3,R2,C6  — R3:  Vu W([u(C) g(B)], C) (e 0 0 WO))
C3,R3,C5 - R4:  Vu W((C)], C) (& 0cW(O) .

Equality Reasoning in Modal Logics

Equality can either be cxplicitly axiomatized with the corresponding set of equality axioms or it can be
built into a deduction calculus with a special inference rule like paramodulation [Robinson&Wos 69].
Since paramodulation sharply increases the efficiency of reasoning systems for predicate logic [Wos 88],
it is desirable to build paramodulation also into a reasoning system for modal logic. To see the difficulties
consider the formula #: a=b A OP(a). Since the second occurrence of ‘a’ is in the scope of the
D-operator and may therefore be interpreted different to the first occurrence, it is not possible to replace
‘a’ by ‘b’ and to deduce OP(b). Thus, an unrestricted application of a replacement operation in the modal
logic syntax is not sound. In P-logic syntax, the modal context is available at each term and can be used
to influence a deduction operation. The translated formula II(#): a[] = b[] A ¥V u P([u], a[u]) therefore
can safely be paramodulated when the accessibility relation is reflexive, the unifier for a[] and alu] is
{uw~[]}, and the paramodulant is P([], b[]). (We assume the equality predicatc 10 be rigid!) Thus,
equality reasoning by paramodulation should be no problem in P-logic. The paramodulation rule need
not be changed, just the accessibility relation dependent unification algorithms must be applied for
unifying one side of an equation, which is always a D-term, with the subterm of the literal to be
paramodulated. The application of the unifier must of course be performed by conditioned instantiation in
non-serial interpretations.

Many-Sorted Modal Logics

Resolution and paramodulation calculi for sorted first order predicate logic have been developed for
instance by [Walther 87| and |Schmidt-Schauss 85, 88]. They have shown that only two slight
modifications of the unification algorithm and one modification of the paramodulation rule are nccessary
for handling hierarchical sort structures: A variable x of sort S1 and a variable y of sort S2 can only be
unifijed when there is a common subsort of S1 and S2. A variable x of sort S1 can only be unified with a
term t of sort S2 if S2 = S1 or S2 is a subsort of S1. The paramodulation rule must take care that a
paramodulation operation with an equation whose two sides have different sorts does not increase the
sort of the paramodulated term. Adapting these ideas to P-logic should be no problem when the sort
structure and the sort declarations for the function symbols do not depend on the modal context. This is
the case in most applications where only fixed sorts like “Integer”, “Real” elc. occur.
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Varying-Domain Modal Logics

In varying-domain interpretations there is no universal domain, but each world has its own domain
which may or may not intersect with the domain of other worlds. That means universally quantified
domain variables depend on the modal context. At least for monotonically increasing domains the idea is
now to modify the translation function I such that the W-term that characterizes the modal context is
attached to the domain variables as well. Unification of such a world-depending D-variable x[p] with a
D-term f([q].t,,....t;,) is possible only when the world-paths p and q are unifiable. To demonstrate this,
let us try to prove the Barcan formula VxaPx = oVxPx which does not hold in varying-domaiti
models. If the proof fails, we have some evidence that the idea is sufficient. The P-logic clause form of
the negated Barcan formula VxOPx A03x—Px is: Cl: P([u] x[]) C2: —P([a] fla))

In fact, the two world-paths [] and [a] of the variable x and the symbol f are not unifiable and no
refutation is possible. In constant domain interpretations on the other hand, where x has no world-path,
there is the unifier {u ~ a, x - f[a]].

In case the domains vary arbitrarily, there is no satisfactory solution so far because terms and atoms
containing variables may have no interpretation at all in a world where the domain element bound to a
variable does not exist.

Modal Logics with Linear Accessibility Relations

Linear means that there is just one sequence of worlds. The interesting case, where the interpretation of
the two modal operators is not identical is when the accessibility relation R is transitive, i.e. a total
ordering. In this case for two given worlds it can always be determined which one is farer away from the
initial world. The consequence is that for example a formula like 0OP A O0-P is unsatisfiable when in
addition R is serial. The reason is that for the two worlds denoted by the two 0-operators, all worlds
“behind” that one which is farthest away from the initial worla, are also accessible from the other world.
In other words there is no linear and serial interpretation where the intersection of the worlds denoted by
the two D-operators is empty, and the formula requires P and —P to hold in these worlds.

We present an idea which should be capable to reason explicitly about the order of the worlds in linear
Kripke structures and illustrate it with the following example:
The formula 0@®P v Q) AR) A ¥(—P A —-Q) AO—-R)
is unsatisfiable when the accessibility relation is linear, reflexive and transitive.
The corresponding clause set in P-Logic is:

Ct: Plau] v Q[au]

C2: R]a] Ca: -QI[b]

C3: =P[b] C5: —R[bv]
In order to resolve between C2 and C5 we unify [a] and [bv]. The unifier is ¢ := {v+ (b > a)} with the
intended meaning: (b > a) maps ‘b’ to ‘a’, provided ‘b’ lies before ‘a’ or b = a (reflexivity):

b> a
linear Kripke structure | >L

[ 1
b a

Thus, the conditioned c-instance of CS is: 61CS : = (b < a = —R[b(b > a)]) = (b > a v —R[a]), where
[b(b > a)] has been rewritten to [a] with an appropriate rewrite rule.

The resolvent between C2 and CS is now: C2&C5 —» R1: b>a.

In the same way we unify [au] and [b] of C1 and C3 and obtain a unifier {u (a > b)}.
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The next resolvents are now:

Cl1,1&C3 — R2: a>b v Qb]
R2&C4 — R3: a>b
R1&R3 — R4 empty. |

This finishes my current collection of extensions to the basic modal logics where the translation method
presented in this work should be immediately applicable. To extend this method also to more complex
modal and temporal logics with Kripke semantics is subject of ongoing work.

Comparison with other Deduction Calculi for Modal Logics.

Classical Methods

The classical approaches to develop proof systems for logics are usually based on tableau systems,
Gentzen sequent calculi and natural deduction calculi. Calculi of this kind are very flexible when applied
to a new logic because they need not be based on a model theoretic semantics. An axiomatic semantics is
completely sufficient to transform the axioms of the logic into inference rules. Therefore these were the
first proof systems developed for modal logics before Kripke discovered a model theoretic semantics. A
very good overview of the classical methods and further references are given in [Fitting 83]. Since a
straightforward instantiation rule is not sound in the presence of flexible constant and function symbols,
the classical methods can only be applied to the restricted case with rigid constant and function symbols
only. Furthermore, from an implementation point of view, the classical methods are not very suitable for
developing an automated reasoning system. The objects they are manipulating are, compared to clauses,
very complicated things. Algorithms which make resolution theorem provers efficient are therefore not
easily available, such as fast indexing techniques, fast tautology and subsumption recognition, macro
operations like hyperresolution which avoid the generation of intermediate formulae, etc. Furthermore
these calculi usually contain an instantiation rule for universally quantified variables which blows up the
search space. The resolution rule on the other hand applies a unification algorithm to compute - and not
to search - the necessary instantiation. Its search space has therefore always a finite branching rate which
makes it clearly superior to methods with an uncontrolled instantiation rule.

Matrix Proof Methods

The matrix methods, pioneered by Prawitz [Prawitz 60], and further developed by Andrews [Andrews
81] and Bibel [Bibel 81] for predicate logic have recently been extended to modal logics without flexible
constant and function symbols by Lincoln Wallen [Wallen 87]. The major features of this method may be
summarized with Lincoln’s words as follows. Validity within a logic is characterized by the existence of
a set of connections (pairs of atomic formula occurrences: one positive, one negative) within a formula,
with the property that every so-called atomic path through the formula contains (as a subpath) a
connection from the set. Such a set of connections is said to span the formula. For classical propositional
logic this condition suffices. For first-order logic a substitution must be found under which the (then
propositional) connections in the spanning set are complementary. For modal logic additional conditions
must ensure that, semantically, the two atomic formulae of a connection can be interpreted as inhabiting
the same world.
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The formula to be proved is represented as a formula tree in the usual way, but additional labels are
attached to the nodes containing information about the polarity of the subformula and names for the
positions of the subformula inside the formula.

An example: The annotated formula tree for our introductory example
QOVx(OPx A OQx) = ¢(VyPy A VzQz)
(which actually stems from L. Wallen) is:

- = ag
/ \

+ i) a; - i) a9

+ (I) a - A 3y

+V x as -V)ﬁ\—‘v’z a2

/M - AR - Py 23 -Qz 3y
+ 0 as + oay +0(\+Da7,1
| | |

+ Px ag + Qx 384+ Pxjag + Qxy28,1

(Since the universal quantifier in Vx(0Px A 0Qx) is not moved over the conjunction and renamed, we
need two copies of the subformula (0Px A 0Qx).)
The corresponding matrix with the two possible paths and the four potential connections is:

connection

pat.% Py _— q /—Py
=EPx =Qx FEP=Qx [px [Py Qx
@ \&_Qz

Wallen uses strings consisting of position names a, to represent the modal context information for the

subformulae. The modal contexts of the six atoms are:

Px at position a;:  [agaja3a] Px at position a; 1 (agazasag ;1
Qx at position ag:  [aga,azag] Qx at position ag ;: [agasasag ;]
Py at position a;,:  [a4a;] Qz at position a4 [aga; o)

According to the polarity and the modal operators, some of the a; have the status of a constant and some
have the status of a variable. The underlined names ag, a8 and a, in this example have the status of a
variable.

Note that from the domain variables only x and x; have the status of a universally quantified variable. y
and z have, due to the negative polarity of the quantifier, the status of an existential variable.

In order to dctermine which of the potential connections form a spanning set, one possibility is to unify
the atoms Px and Py as well as Qx and Qz simultaneously. This is not possible because y and z arc
different. The sccond possibility is to unify Px and Py as well as Qx, and Qz simultaneously yiclding
{x+y, x; » 2z}. In addition the corresponding modal contexts [agajazag] and [aga) o] as well as

[agaya3ag 1] and [aga, (] must be unified. In case the accessibility relation is transitive, this is possible
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and the unifier is {29+ aya3a4, 3~ 8¢, 8g1 ag}. The predicate logic part and the modal part of the
unifier, however, are not independent of each other but correlated over the formula tree. The
substitutions determine new “is subterm of” relations which must be added to the original formula tree.
The fact that x is mapped to y for example relates node a;, with node a, (the nodes below the
corresponding quantifiers) and the other component x, - z relates node a4 with node a, ;. Thus, the
following ““is subterm of”’ relations between the various nodes are obtained:

/\. 7\

36,1 ag,1
Since this graph contains a cycle, the predicate and modal parts of the unifier are not compatible and the
unification therefore fails.

The example has shown that Wallens method to represent the modal context information explicitly as
terms and to unify these terms is very similar to the method I presented in this monograph. The only
difference is that no skolemization is performed. Neither the existential quantifiers nor the names
denoting those worlds which depend on other variables are replaced by skolem functions. Therefore
instead of an occurs check in the terms, a complicated cycle test in the formula tree must be performed.

Summarizing one can say that for the restricted case without flexible constant and function symbols
Wallen’s method is essentially to my one as Andrews’s and Bibel ‘s matrix methods are to the resolution
calculus in predicate logic. The matrix methods for predicate logic have always the choice to work on the
initial structure of the formula or on a clause form and to benefit from all the redundancy removing
algorithms which work on clauses. To have a similar choice for the modal case one must skolemize the
existential quantifiers as well as the ¢-operator, thus, one must translate modal formulae into P-logic. In
this case the original matrix methods should - at least for the serial case - be immediately applicable. At
the time being it is undecided which of these methods are to be preferred.

Nonclausal Modal Resolution
After earlier attempts of Farifias del Cerro [Farifias 85], Abadi and Manna have developed a resolution
system for modal logics which works on the original modal syntax, but replaces uncontrolled
instantiation by unification { Abadi&Manna 86).
The nonclausal resolution for classical propositional logic is:

A(F,.... ), B(F...,H) = A[FHrue] v B[ F/false]
That is, if the formulae A(%,...,%) and B(%....,) have a common subformula ¥, then we can derive a
resolvent A[Ffirue] v B[ #/false] by substituting ‘true’ for certain (one or more) occurrences of ¥in
A(%,...,%) and ‘false’ for certain occurrences of #in B(¥,...,7), and taking the disjunction of the
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modal context. To bring potential resolution partners into the same modal context, additional move rules
for modal operators are necessary, for example 0%, 0G — O(F A G). These rules introduce new
formulae, thus wrecking the advantages of working in nonclausat form and avoiding the multiplication
into conjunctive normal form.
Abadi and Manna dcfined a system for quantified modal logics which consists of the appropriate
restricted resolution rule for the first-order case, rules for moving modal operators and quantifiers and
rules for simplifying formulac containing ‘true’ or ‘false’. The move rules for operators can be applied
nondeterministically, i.e. they require additional search. In the modal resolution calculus I presented in
this work exactly this additional amount of search is replaced by the deterministic unification algorithm
for world-paths which computes the modal context for a sound resolution operation.
To compare both methods from a practical point of view, Abadi and Manna’s proof for the Barcan
formula is listed below [Abadi&Manna 86]:
“We prove that a(Vx P(x)) = (Vx OP(x))
in the resolution system for K. We will derive ‘false’ from
—(—-o(Vx P(x)) v (Vx OP(x)))
By the negation rules we first get
o(Vx P(x)) A (Ix ¢ —P(x))
The rule for moving quantifiers of existential force yields
Ix” (@(Vx P(x)) A 0 =P(x))
The modality rule in the system K yields
Ix(@Vx P(x)) A 0 =P(x") A O((¥x P(x)) A =P(x7)))
Weakening reduces this sentence to
Ix” (VX P(x)) A =P(x"))
Take A = —P(x"), B=P(x), v; = P(x"), v, = P(x). Resolution yields
Ix7 UV P(x)) A =P(x") A (—true v false))

1Y

truc-false simplification yiclds ‘false’.

In the P-logic resolution calculus we get instead:
We prove that 0(Vx P(x)) = (Vx aP(x))
Negation normal form of the negated theorem:

o(Vx P(x)) A (3x 0—P(x))
Translation into P-logic:
Vw,x P({w], x) A —P([a], fla])
Conjunctive normal form:
Cl: P([{w], x)
€2 —P(lal, fla])
(Up to this step, the transformations arc perfectly deterministic. No scarch is nccessary.)
Resolution: C1&C2 — empty clause.



Nonclausal Resolution for Epistemic Logics
Kurt Konolige has defined various calculi for his version of epistemic logics which are also applicable to
modal logics [Konolige 86]. Among these calculi there is a theory resolution calculus with a so called
B-resolution rule (some technical details are omitted):

(Sl 7, v G,

[Sij| FuV Gn

- [§1Fvg Frroon FyprinF

8Gv BG,v..vegG,
[S;]is the “knowledge operator” for the agent i - corresponding to the O-operator for an accessibility
relation ‘Ri. “Freens Tntie J “means that 67 is derivable from corresponding 8-instances of the ¥, with
the rcasoning system for agent i, which may or may not be again a resolution system. The substitution 8
is to be obtained by an answer extraction mechanism during the proof of #.
The B-resolution rule is very flexible in combining different deduction systems for different agents.
However, instead of a simple unification, it requires a separate proof of a subproblem to enable a single
resolution operation on the higher level. This rises considerable scheduling problems to avoid getting lost
in a nonterminating proof attempt for an irrelevant subproblem.

Clausal Modal Resolution

Man-chung Chan has published a resolution method which, in its kernel, contains already the idea to
skolemize the 9-operator in order to allow a transformation into conjunctive normal form [Chan 87]. It is
only defined for the propositional case where it is not necessary to consider dependencies of the
0-operator from universally quantified variables. (Actually so far Chan considered only S4.) The main
obstacle that prevents the generation of a conjunctive normal form is that the ¢-operator cannot be moved
over a conjunction, i.e. O(FA G)is not equivalent to 0 F A 0Gbecause the information that there is only
one world in which (¥ A @) holds is lost. However, if each occurrence of a 0-operator is marked with a
unique index, we can safely move an indexed operator over a conjunction without losing the information
that there is only one world , i.e. 0;(FA G)— O,F A 0;G. All modal operators can now be pushed far
enough into the formulae to enable multiplication into clause form. A resolution rule can be defined
where the modal operator prefixes of the literals are unified to get a common modal context for both
resolution partners.

The correspondence of this method to resolution in P-logic is that the indices of the literals” modal
operator prefixes are actually the world-paths in P-logic. For the propositional case, there is therefore
neither a big conceptual difference nor a difference in the search behaviour.
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Naive Translation into Predicate Logic.

There is a very simple method for translating a modal formula into a predicate logic formula [Moore 80]:
A special predicate R is introduced which represents the accessibility relation. A formula O is then
translated into Vw ®R(a,w) = F[w] where ‘a’ denotes the current world and F{w] means adding ‘w’ as
an additional argument to the literals and terms. Analogously ¢ Fis translated into 3w R(a,w) A Flw].
The properties of the accessibility relation can be expressed by simply adding the corresponding dxions
for ® to the formulae. This method is very flexible because all kinds of accessibility relations can easily
be axiomatized. To see its drawbacks, let us try to prove the introductory example:
QOVx(OPx A DQX) = O(VyPy A VzQz)

The translated formula is:

Ja ®(0,a) A 3b R(a,b) A Vx (Fc R(b,c) A P(c, x) A YW R(b,w) = Q(w, X))

= 3v R0,v) AVY P(v, y) A VzQ(v,z))
The clause form of the negated formula is:

Cl: =(0,a) C2: R(ab) C3: R(b,c(x))

C4:  P(c(x), X) '

C5: —R(b,w) v QUw, x))

C6: —RO,v) v —P.1(v)) v -Q(v,g(V))
In addition we need the transitivity law for ® and a formula expressing its seriality:

Cl: =R, v) v —=R(v, W) v R(u, w)

C8: R(u, h(u))
With these clauses there are 15 resolution possibilities of level O and there is no chance that the resolution
process ever stops and proves the satisfiability of the clause set. In chapter one, however, we have seen
that after the translation into P-logic, there is only one resolution possibility. The process then stops and
shows the satisfiability. The difference between these two methods is therefore essentially like the
difference between equality handling with equality axioms and equality handling with paramodulation.

Full First-Order Clausal Modal Resolution

The basic idea for a clause based modal resolution technique is to skolemize the modal operators and then
to translate modal formulae into predicate logic syntax. The earliest work in this spirit seems to be
Nakamatsu and Suzuki’s method for translating modal formulae into two-sorted predicate logic. They
considered mainly the S4 and S5 case [Nakamatsu&Suzuki 82, 84].

In the last year two further groups have developed almost the same skolemization technique for modal
operators as I did. They are Luis Farifias del Cerro and Andreas Herzig from Toulouse and Patrice
Enjalbert from Caen together with Yves Auffray from Saint-cloud [Farifias&Herzig 88],
[Enjalbert& Auffray 88]. Although the technical details are different, the net effect, a clause form with an
explicit term representation of the modal context, is almost the same. Both groups, however, did not yet
consider the non-serial case which is the real hard one. Furthermore they did not yet consider the effects
of prefix-stability which allows to restrict the variable splitting rule in the transitive case and to obtain a
terminating unification algorithm. On the other hand, Enjalbert and Auffray gave a purely predicate logic
semantics for the transformed syntax which allows - in the serial case - to benefit from the results
obtained for predicate logic.
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Appendix A Procedural Version of the Unification Algorithms

In order to obtain implementable unification algorithms for P-logic terms the unification rules as defined
in chapter 6 must be provided with a control structure. This section therefore contains a proposal for a

control structure which is suitable for an immediate implementation.

Only a few parts of the unification algorithms for P-logic terms actually depend on the accessibility
rehation. Therefore only one algorithm is defined that gets the accessibility relation type R, where the
mformation about the seriality of the accessibility relation is ignored, as an additional parameter and
branches internally to the R-depending algorithm for world-paths. (Note that the accessibility relation
Lype is just a list of key words like “reflexive’, ‘symmetric” or ‘transitive”.) The main control loop of the
algorithm is similar to the Robinson algorithm for first-order terms.

There are two toplevel functions for unifying terms and termlists. Internally there is a function for

unifying world-paths that branches to the ®-depending parts. In addition there are some auxiliary
functions which are called from different places inside the main functions.

Function Unify-terms (s, t, ®)

Input: s and t are cither empty lists or two prefix-stable terms or atoms.
R is the accessibility relation type.
Output: A complete set of idempotent and prefix-preserving unifiers for s and t.
If s=t then Return {g}
If sisavariable then Return If set then ¢ else {{s—1t}}
If tisavariable then Return If tes then ¢ else {{t—s})}
If Vars(s,t)=gors=()ort=() or topsymbol(s) # topsymbol(t) then Return @.
If sandtare CW-terms then Return Unify-termlists(arguments(s), arguments(t), )

Lets=:1(v,sy,...,8 ) and t = f(w,ty,...0t0)
Lel E := Unify-world-paths (v, w, ®)
Return Uies{ge | ® € Unify-termlists (§(s;,....,8p), &(ty....tp), B}

Function Unify-termlists (s, t, ®)
Input: Two prefix-stable termlists s =: (s;...s;) and t =: (t;...t ).
R is the accessibility relation type.
Output: A complete set of prefix-preserving idempotent unifiers for s and t.
If s=t then Return {g).
Lel E = Unify-terms (s1, 1, R
Retumn Uéez{(ge),\,m(s'l) 18 € Unify-termlists (§(s,...8p), &(15...1), R}.
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Function Unify-world-paths (s, 1, ®)

Input: Two world-paths and an accessibility relation type R,
Output: A complete set unifiers for s and t.
If s=t then Return {g}.
Return Case Ris
@ then Unify-termlists (s, t, X)
{reflexive} or {symmetric} or both then Unify-world-paths-reflexive-or-symmetric (s, t, ®)
{transitive } then Unify-world-paths-transitive (s, t, X)
{reflexive, transitive} then Unify-world-paths-transitive (s, 1, X)

{reflexive, symmetric, transitive}  then Unify-world-paths-equivalence (s, L, K).

Function Unify-world-paths-reflexive-or-symmetric (s, t, )

Input: Two world-paths s =: [s; ... s ] andt=:[t; ... t] and ¢ # R {reflexive, symmetric}.
Output: A compilete set of unifiers for s and t.

Let A := Unify-instantiated-wps (Unify-terms (s;, t;, K, [s,...5,], [t5...t,], B

If R = {reflexive} then n':=1,m':=1 ¢lge n':=n,m' :=m.

For i=1,...,n" A:=A U Unify-instantiated-wps (Unify-collapse ([s;...s;], R, [8;,1--.5,], t. K.
For i=1,....m" A:=A U Unify-instantiated-wps (Unify-collapse ([t;...1;], R), s, [t;,;...1,], ).

Return A.

Function Unify-world-paths-lransitive (s, , R)

Input: Two world-paths s =: [s; ... s;] andt=:[t; ... L]
R = {uwansitive} or R= {reflexive, transitive}.
Output: A complete set of unifiers for s and t.
Let A=p
For i=0,...,m (1 =0 is the collapsing case when reflexive € )

Let = := Unify-prefix (s, [t;...t;], R
A:= A U Unify-instantiated-wps (&, [s,...s], [tj;1---t,], ).
A= A U Unify-split (s, t, i, ®).
Rcpeat the For loop with s and t exchanged.
Return {?Wm(s‘l) A e A}

Function Unify-world-paths-cquivalence (s, t, %)

Input: Two world-paths s and t, and R = (reflexive, symmetric, transitive}.
Output; A complete set of unifiers for s and t.
Retumn Casc (s,0) =
{, b then {¢}
(L1, [w]) or ([w], []) where w is a variable  then {{w~ []}}
({3, IrD or (Irl, D then ¢
(Ir], [qD) then Unify-terms (r, g, ®).
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Auxiliary Functions

Function
Input:
Output:

Unify-instantiated-wps (Z, s, t, X)
Z is a set of substitutions, s and t are two world-paths, R is the accessibility relation type.

A complete sct of unifiers for s and t which are smaller than some element of Z.

Return U £e ={(E®)yars(s,r) | © € Unify-world-paths Es, Et, B).

Function
Input:
Output:

Unify-collapse(t, %)
t=:[t,...,t ] is a world-path and g # R C {reflexive, symmetric}.
A complete set of unifiers which collapse t into [].

Casc n=0 Retumn {g}.
n>0 Let A=¢

Function
Input:
Oulput:
Rejurm

Function
Input:

Output:

If reflexive € Rand Lisa variable then

T= {4 =[]} A=A U {1010 e Unify-collapsc(t[t,,....t,], )
If symmetrice Randn>1 then

For i=2,..n
Ift;is a variable then

T:={t;> [t;1]); E = {1010 e Unify-collapse([ty,....t; 1], B))

A =AU U - (€610 € Unify-collapse(Elt;, ;... -stp), R)
Return A.

Unify-prefix (s, t, ®)
A W-term s,, a world-path t =: [t,...1 ] and ®= {transitive} or R= {reflexive, transitive}
Ifcither s, is a variable or n = 1: A complete set of unifiers for [s;]and [t...1].

Lo=1I then Unify-terms (sq, t;, K.

elseif 8y is a variable and s, ¢ t and either n > 0 or reflexive € R
then {{sym 1}}.

otherwise d.

Unify-split (s, t, i, ®)

Two world-paths s =: [s,...s,] and t =: [t;...t ], a positive integer
and R= {transitive} or R= {reflexive, transitive}.

A complete set of unifiers for s and t.

If i>1andt isavariable and t;_; is no variable and s, ¢ [1;...t;] thep

Let §:=

{sy = [ty ...t; yul, t;» [u v]}where u and v are new variables

Return {BIVa.rs(s,t) | 8 € Unify-instantiated-wps ({&}, [s5...5.), [V t;yq--- ], R))
clse Return g.
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Rectification

The translation from M-Logic into P-Logic (def. 4.1.1) contains a strong Skolemization rule for the
¢-operator. Its Skolem functions depend on the universally quantified domain variables only, but not
on the W-variables generated from embracing O-operators. A counterexample from Patrice Enjalbert,
however, has shown that at least for the first-order case when the accessibility relation is symmetric
this is not sound. '
The example is o 3x (P(x) A O0—=P(x)).
The formula is satisfiable, but the translated formula Vu P([u] a[u]) A Vv —=P([u v ¢] a[u]), where the
Skolem function ¢ for the ¢-operator does not depend on u and v, is unsatisfiable in P-logic and
would be refuted by the modal resolution calculus (The unifier is {ur ¢, v+ ¢1}.) There is a strong
conjecture that this effect occurs only in the first-order case when the accessibility relation is
symmetric. However, as long as the correct condition is not known, it is therefore safer to generate in
any case Skolem functions for the ¢-operator which depend also on the embracing W-variables. In
order to preserve prefix stability, however, instead of the W-variables themselves, their prefixes can
be taken as arguments of the Skolem functions. The above formula has then to be translated into

Vu P([u] a[u]) A Vv =P([u v c([u], [u v])] afu]).
Unification of the two literals produces now an occur check clash, i.e. the formula is not refutable.
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